Science.gov

Sample records for ozonation-biological coupled processes

  1. Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery.

    PubMed

    Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Hu, Jiang Yong; Tao, Guihe; Kekre, Kiran; Viswanath, Balakrishnan; Lay, Winson; Seah, Harry

    2009-09-01

    Ozonation was used in this study to improve biodegradability of RO brine from water reclamation facilities. An ozone dosage ranging from 3 to 10 mg O(3)/L and contact times of 10 and 20 min in batch studies were found to increase the biodegradability (BOD(5)/TOC ratio) of the RO brine by 1.8-3.5 times. At the same time, total organic carbon (TOC) removal was in the range of 5.3-24.5%. The lab-scale ozone-biological activated carbon (BAC) at an ozone dosage of 6.0mg O(3)/L with 20-min contact time was able to achieve 3 times higher TOC removal compared to using BAC alone. Further processing with Capacitive Deionization (CDI) process was able to generate a product water with better water quality than the RO feed water, i.e., with more than 80% ions removal and a lower TOC concentration. The ozone-BAC pretreatment has the potential of reducing fouling in the CDI process. PMID:19580984

  2. [Removal characters of ozone-biological activated carbon process for typical pollutants in southern brooky regions of China].

    PubMed

    Lin, Tao; Chen, Wei; Wang, Lei-Lei

    2009-05-15

    The products of relative molecular weight (Mr) distribution, bromate (BrO3(-)) and trihalomethanes (THMs) were studied by ozone-biological activated carbon (O3-BAC) process for treating organic matters and bromide (Br(-)) in water source of southern brooky regions of China. The experimental results showed that dissolved organic matters (DOC) with Mr lower than 10(3) accounted for 80% of the total. The removal rate of DOC and SUVA (UV254/DOC) were 8% and 14% respectively by traditional treatment process with main removalonly for ones with Mr higher than 100 x 10(3). Only 30% of DOC and 31% of SUVA were decreased by O3-BAC process for the removal of ones with Mr between 10(3) and 5 x 10(3), in which the biotic degradation was certainly restricted by predominant organic matters of hydrophilic and Mr was lower than 1000. An obvious increase of BrO3(-) occurred in the effluent from ozone oxidation process when the dose of ozone beyond 2 mg/L which increased Br(-) concentration. This could increase the product of BrO3(-). A poor and unstable removal effect of BrO3(-) was observed in the effluent of BAC process during the experiment. Each species of THMs, decreasing 40% of total, was reduced by O3-BAC treatment compared with the traditional treatment process. But the products of brominated trihalomethanes, especially CHBr3 would be markedly increased by enhanced chlorine dosage and Br(-) concentration. PMID:19558108

  3. Treatment of waste metalworking fluid by a hybrid ozone-biological process.

    PubMed

    Jagadevan, Sheeja; Graham, Nigel J; Thompson, Ian P

    2013-01-15

    In metal machining processes, the regulation of heat generation and lubrication at the contact point are achieved by application of a fluid referred to as metalworking fluid (MWF). MWFs inevitably become operationally exhausted with age and intensive use, which leads to compromised properties, thereby necessitating their safe disposal. Disposal of this waste through a biological route is an increasingly attractive option, since it is effective with relatively low energy demands. However, successful biological treatment is challenging since MWFs are chemically complex, and include biocides specifically to retard microbial deterioration whilst the fluids are operational. In this study remediation of the recalcitrant component of a semi-synthetic MWF by a novel hybrid ozone-bacteriological treatment, was investigated. The hybrid treatment proved to be effective and reduced the chemical oxygen demand by 72% (26.9% and 44.9% reduction after ozonation and biological oxidation respectively). Furthermore, a near-complete degradation of three non-biodegradable compounds (viz. benzotriazole, monoethanolamine, triethanolamine), commonly added as biocides and corrosion inhibitors in MWF formulations, under ozonation was observed. PMID:23274939

  4. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    PubMed

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal. PMID:23422307

  5. Coping Processes of Couples Experiencing Infertility

    ERIC Educational Resources Information Center

    Peterson, Brennan D.; Newton, Christopher R.; Rosen, Karen H.; Schulman, Robert S.

    2006-01-01

    This study explored the coping processes of couples experiencing infertility. Participants included 420 couples referred for advanced reproductive treatments. Couples were divided into groups based on the frequency of their use of eight coping strategies. Findings suggest that coping processes, which are beneficial to individuals, may be…

  6. Earthquake-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    an ionospheric phenomenon attributed to tsunami, termed tsunamigenic ionospheric hole (TIH) [Kakinami and Kamogwa et al., GRL, 2012]. After the TEC depression accompanying a monoperiodic variation with approximately 4-minute period as an acoustic resonance between the ionosphere and the solid earth, the TIH gradually recovered. In addition, geomagnetic pulsations with the periods of 150, 180 and 210 seconds were observed on the ground in Japan approximately 5 minutes after the mainshock. Since the variation with the period of 180 seconds was simultaneously detected at the magnetic conjugate of points of Japan, namely Australia, field aligned currents along the magnetic field line were excited. The field aligned currents might be excited due to E and F region dynamo current caused by acoustic waves originating from the tsunami. This result implies that a large earthquake generates seismogenic field aligned currents. Furthermore, monoperiodical geomagnetic oscillation pointing to the epicenter of which velocity corresponds to Rayleigh waves occurs. This may occur due to seismogenic arc-current in E region. Removing such magnetic oscillations from the observed data, clear tsunami dynamo effect was found. This result implies that a large EQ generates seismogenic field aligned currents, seismogenic arc-current and tsunami dynamo current which disturb geomagnetic field. Thus, we found the complex coupling process between a large EQ and an ionosphere from the results of Tohoku EQ.

  7. Coupled processes associated with nuclear waste repositories

    SciTech Connect

    Tsang, C.F.

    1987-01-01

    This book deals with coupled processes which affect a nuclear waste repository. While there are many descriptive accounts of environmental degradation resulting from various land uses, the author emphasizes the geomorphic processes responsible for such changes and the reasons why various reclamation practices are valuable in environmental management.

  8. Coupled transport processes in semipermeable media

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1990-03-01

    The thermodynamics of irreversible processes leads to nonlinear governing equations for direct and coupled mass transport processes. Analytical solutions of linearized versions of these equations can be used to verify numerical solutions of the nonlinear equations under conditions such that nonlinear terms are relatively small. This report presents derivations of the analytical solutions for one-dimensional and axisymmetric geometries. 7 refs.

  9. Coupling environmental models and geospatial data processing

    NASA Astrophysics Data System (ADS)

    Brandmeyer, Jo Ellen

    2000-10-01

    This research investigated geospatial functions for solving environmental problems from the perspective of the environmental modeler. Its purpose is to better understand the different approaches to coupling complex models and geospatial data processing, plus the implications for the coupled system. To this end, various coupling methodologies were systematically explored using a geographic information system (GIS) and an emissions processor (SMOKE) for air quality models (AQMs). SMOKE converts an emissions inventory into the format required by an AQM. A GIS creates a file describing the spatial distribution of emissions among the cells in a modeling domain. To demonstrate advantages of a coupled GIS---environmental model system, two methods of spatially distributing on-road mobile emissions to cells were examined. The existing method calculates emissions for each road class, but distributes emissions to the cells using population density. For the new method a GIS builds road density by class and then distributes the emissions using road density. Comparing these methods reveals a significantly different spatial pattern of emissions. Next, various model-coupling methodologies were analyzed, revealing numerous coupling approaches, some of which were categorized in the literature. Critiquing these categorizations while comparing them with documented implementations led to the development of a new coupling hierarchy. The properties of each hierarchical level are discussed with the advantages and limitations of each design. To successfully couple models, the spatial and temporal scales of all models in the coupled system and the spatiotemporal extents of the data must be reconciled. Finally, a case study demonstrated methodologies for coupling SMOKE and a GIS. One methodology required a new approach utilizing dynamically linked libraries. Consequently, emissions were processed using SMOKE from a GIS. Also, a new method of converting data from netCDF files into a database

  10. Induction coupled thermomagnetic processing: A disruptive technology

    DOE PAGESBeta

    Ahmad, Aquil; Mackiewicz-Ludtka, Gail; Pfaffmann, George; Ludtka, Gerard Michael

    2016-06-01

    Here, one of the major goals of the U.S. Department of Energy (DoE) is to achieve energy savings with a corresponding reduction in the carbon footprint. With this in mind, the DoE sponsored the Induction Coupled Thermomagnetic Processing (ITMP) project with major partners Eaton Corp., Ajax Tocco Magnethermic, and Oak Ridge National Laboratory (ORNL) to evaluate the viability of processing metals in a strong magnetic field.

  11. CAD/CAM-coupled image processing systems

    NASA Astrophysics Data System (ADS)

    Ahlers, Rolf-Juergen; Rauh, W.

    1990-08-01

    Image processing systems have found wide application in industry. For most computer integrated manufacturing faci- lities it is necessary to adapt these systems thus that they can automate the interaction with and the integration of CAD and CAM Systems. In this paper new approaches will be described that make use of the coupling of CAD and image processing as well as the automatic generation of programmes for the machining of products.

  12. Coupled transport processes in semipermeable media

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1990-04-01

    A numerical simulator has been developed to investigate the effects of coupled processes on heat and mass transport in semipermeable media. The governing equations on which the simulator is based were derived using the thermodynamics of irreversible processes. The equations are nonlinear and have been solved numerically using the n-dimensional Newton's method. As an example of an application, the numerical simulator has been used to investigate heat and solute transport in the vicinity of a heat source buried in a saturated clay-like medium, in part to study solute transport in bentonite packing material surrounding a nuclear waste canister. The coupled processes considered were thermal filtration, thermal osmosis, chemical osmosis and ultrafiltration. In the simulations, heat transport by coupled processes was negligible compared to heat conduction, but pressure and solute migration were affected. Solute migration was retarded relative to the uncoupled case when only chemical osmosis was considered. When both chemical osmosis and thermal osmosis were included, solute migration was enhanced. 18 refs., 20 figs.

  13. Modeling of Inner Magnetosphere Coupling Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2011-01-01

    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.

  14. Coupled transport processes in semipermeable media

    SciTech Connect

    Carnahan, C.L.; Jacobsen, J.S.

    1990-04-01

    The thermodynamics of irreversible processes (TTIP) is used to derive governing equations and phenomenological equations for transport processes and chemical reactions in water-saturated semipermeable media. TTIP is based on three fundamental postulates. The first postulate, the assumption of local equilibrium, allows the formulation of balance equations for entropy. These equations are the bases for the derivation of governing equations for the thermodynamic variables, temperature, pressure, and composition. The governing equations involve vector fluxes of heat and mass and scalar rates of chemical reactions; in accordance with the second postulate of TTIP, these fluxes and rates are related, respectively, to all scalar driving forces (gradients of thermodynamic variables) acting within the system. The third postulate of TTIP states equality (the Onsager reciprocal relations) between certain of the phenomenological coefficients relating forces and fluxes. The description by TTIP of a system undergoing irreversible processes allows consideration of coupled transport processes such as thermal osmosis, chemical osmosis, and ultrafiltration. The coupled processes can make significant contributions to flows of mass and energy in slightly permeable, permselective geological materials such as clays and shales.

  15. Synthesis report on thermally driven coupled processes

    SciTech Connect

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  16. Abstraction of Drift-Scale Coupled Processes

    SciTech Connect

    N.D. Francis; D. Sassani

    2000-03-31

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M&O 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  17. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    This is the third semi-annual report for NAS5-97039, covering January through June 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strengths and weaknesses of the next generation assessment models.

  18. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Rodriguez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Junusz; Sze, Nien-Dak

    1999-01-01

    This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  19. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  20. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  1. Processes of Change in Self-Directed Couple Relationship Education

    ERIC Educational Resources Information Center

    Wilson, Keithia L.; Halford, W. Kim

    2008-01-01

    The current study examined the learning processes involved in professionally supported self-directed couple relationship education (CRE). Fifty-nine couples completed Couple CARE, a systematic, self-directed CRE program designed in flexible delivery mode to be completed at home. Couples watched a DVD introducing key relationship ideas and skills…

  2. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Li; Sze, N. D.

    1997-01-01

    This is the first semi-annual report for NAS5-97039 summarizing work performed for January 1997 through June 1997. Work in this project is related to NAS1-20666, also funded by NASA ACMAP. The work funded in this project also benefits from work at AER associated with the AER three-dimensional isentropic transport model funded by NASA AEAP and the AER two-dimensional climate-chemistry model (co-funded by Department of Energy). The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry.

  3. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Shia, Run-Lie; Scott, Courtney J.; Sze, Nien Dak

    1998-01-01

    This is the fourth semi-annual report for NAS5-97039, covering the time period July through December 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the Atmospheric and Environmental Research (AER) two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. For this six month period, we report on a modeling study of new rate constant which modify the NOx/NOy ratio in the lower stratosphere; sensitivity to changes in stratospheric water vapor in the future atmosphere; a study of N2O and CH4 observations which has allowed us to adjust diffusion in the 2-D CTM in order to obtain appropriate polar vortex isolation; a study of SF6 and age of air with comparisons of models and measurements; and a report on the Models and Measurements II effort.

  4. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Rodriquez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Janusz; Sze, Nien-Dak; Stewart, Richard W. (Technical Monitor)

    1999-01-01

    This is the final report for NAS5-97039 for work performed between December 1996 and November 1999. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  5. Coupling entropy of co-processing model on social networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanli

    2015-08-01

    Coupling entropy of co-processing model on social networks is investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are achieved to disclose the formation. In order to understand the evolution of the co-processing and design the optimal routing strategy according to the maximal entropic diffusion on networks, we propose the coupling entropy comprehending the structural characteristics and information propagation on social network. Based on the analysis of the co-processing model, we analyze the coupling impact of the structural factor and information propagating factor on the coupling entropy, where the analytical results fit well with the numerical ones on scale-free social networks.

  6. Thermodynamically coupled mass transport processes in a saturated clay

    SciTech Connect

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table.

  7. Fostering new relational experience: clinical process in couple psychotherapy.

    PubMed

    Marmarosh, Cheri L

    2014-03-01

    One of the most critical goals for couple psychotherapy is to foster a new relational experience in the session where the couple feels safe enough to reveal more vulnerable emotions and to explore their defensive withdrawal, aggressive attacking, or blaming. The lived intimate experience in the session offers the couple an opportunity to gain integrative insight into their feelings, expectations, and behaviors that ultimately hinder intimacy. The clinical processes that are necessary include empathizing with the couple and facilitating safety within the session, looking for opportunities to explore emotions, ruptures, and unconscious motivations that maintain distance in the relationship, and creating a new relational experience in the session that has the potential to engender integrative insight. These clinical processes will be presented with empirical support. Experts from a session will be used to highlight how these processes influence the couple and promote increased intimacy. (PsycINFO Database Record (c) 2014 APA, all rights reserved). PMID:24059733

  8. Process for fabricating a charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  9. Phase transformations coupled to deformation processes

    NASA Astrophysics Data System (ADS)

    Lookman, Turab

    2013-06-01

    Phase transformation processes have a substantial impact on the inelastic and damage response of materials. Yet, our understanding of how different loading conditions affect volume fractions of transformed phases, microstructure and transformation pathways is very much in its infancy. With an emphasis on distilling single crystal physics that can, in principle, be incorporated into higher length scale models, I will discuss how recent atomistic simulations on Ti are beginning to provide insights into transformation pathways and the interplay of phase transformations and deformation processes. These simulations are complemented by shock experiments on Zr, Ti together with characterization studies at the Advanced Photon Source.

  10. Solar terrestrial coupling through space plasma processes

    SciTech Connect

    Birn, J.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations.

  11. Dissociative identity disorder and the process of couple therapy.

    PubMed

    Macintosh, Heather B

    2013-01-01

    Couple therapy in the context of dissociative identity disorder (DID) has been neglected as an area of exploration and development in the couple therapy and trauma literature. What little discussion exists focuses primarily on couple therapy as an adjunct to individual therapy rather than as a primary treatment for couple distress and trauma. Couple therapy researchers have begun to develop adaptations to provide effective support to couples dealing with the impact of childhood trauma in their relationships, but little attention has been paid to the specific and complex needs of DID patients in couple therapy (H. B. MacIntosh & S. Johnson, 2008 ). This review and case presentation explores the case of "Lisa," a woman diagnosed with DID, and "Don," her partner, and illustrates the themes of learning to communicate, handling conflicting needs, responding to child alters, and addressing sexuality and education through their therapy process. It is the hope of the author that this discussion will renew interest in the field of couple therapy in the context of DID, with the eventual goal of developing an empirically testable model of treatment for couples. PMID:23282049

  12. Eliminating amplitude death by the asymmetry coupling and process delay in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Yao, Chenggui; Zhao, Qi; Zou, Wei

    2016-02-01

    Coupling mode plays a key role in determining the dynamical behavior and realizing certain system's rhythm and function in the complex systems. In this work, the effects of the asymmetry and process delay in the coupling on the dynamical behavior are investigated. We find that both the asymmetry and process delay effectively reduce the region of the frequency-mismatch-induced amplitude death in the parameter space, and make the system to recover oscillation in the amplitude death regime so as to retain sustained system's rhythm function. Furthermore, we show the asymmetry and process delay can destroy synchronization. Our results suggest that the asymmetry coupling and process delay are of crucial importance in controlling amplitude death and synchronization, and hence that their considerations are vital for modeling real life problems.

  13. The coupling of pathways and processes through shared components

    PubMed Central

    2011-01-01

    Background The coupling of pathways and processes through shared components is being increasingly recognised as a common theme which occurs in many cell signalling contexts, in which it plays highly non-trivial roles. Results In this paper we develop a basic modelling and systems framework in a general setting for understanding the coupling of processes and pathways through shared components. Our modelling framework starts with the interaction of two components with a common third component and includes production and degradation of all these components. We analyze the signal processing in our model to elucidate different aspects of the coupling. We show how different kinds of responses, including "ultrasensitive" and adaptive responses, may occur in this setting. We then build on the basic model structure and examine the effects of additional control regulation, switch-like signal processing, and spatial signalling. In the process, we identify a way in which allosteric regulation may contribute to signalling specificity, and how competitive effects may allow an enzyme to robustly coordinate and time the activation of parallel pathways. Conclusions We have developed and analyzed a common systems platform for examining the effects of coupling of processes through shared components. This can be the basis for subsequent expansion and understanding the many biologically observed variations on this common theme. PMID:21714894

  14. Coupling and Hydrodynamic Limit for the Inclusion Process

    NASA Astrophysics Data System (ADS)

    Opoku, Alex; Redig, Frank

    2015-08-01

    We show propagation of local equilibrium for the symmetric inclusion process (SIP) after diffusive rescaling of space and time, as well as the local equilibrium property of the non-equilibrium steady state in the boundary driven SIP. The main tool is self-duality and a coupling between SIP particles and independent random walkers.

  15. Simulation of Stochastic Processes by Coupled ODE-PDE

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  16. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  17. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  18. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  19. Numerical simulation of the SAGD process coupled with geomechanical behavior

    NASA Astrophysics Data System (ADS)

    Li, Pingke

    Canada has vast oil sand resources. While a large portion of this resource can be recovered by surface mining techniques, a majority is located at depths requiring the application of in situ recovery technologies. Although a number of in situ recovery technologies exist, the steam assisted gravity drainage (SAGD) process has emerged as one of the most promising technologies to develop the in situ oil sands resources. During the SAGD operations, saturated steam is continuously injected into the oil sands reservoir, which induces pore pressure and stress variations. As a result, reservoir parameters and processes may also vary, particularly when tensile and shear failure occur. This geomechanical effect is obvious for oil sands material because oil sands have the in situ interlocked fabric. The conventional reservoir simulation generally does not take this coupled mechanism into consideration. Therefore, this research is to improve the reservoir simulation techniques of the SAGD process applied in the development of oil sands and heavy oil reservoirs. The analyses of the decoupled reservoir geomechanical simulation results show that the geomechanical behavior in SAGD has obvious impact on reservoir parameters, such as absolute permeability. The issues with the coupled reservoir geomechanical simulations of the SAGD process have been clarified and the permeability variations due to geomechanical behaviors in the SAGD process investigated. A methodology of sequentially coupled reservoir geomechanical simulation technique was developed based on the reservoir simulator, EXOTHERM, and the geomechanical simulator, FLAC. In addition, a representative geomechanical model of oil sands material was summarized in this research. Finally, this reservoir geomechanical simulation methodology was verified with the UTF Phase A SAGD project and applied in a SAGD operation with gas-over-bitumen geometry. Based on this methodology, the geomechanical effect on the SAGD production

  20. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  1. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in

  2. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    E. Sonnenthale

    2001-04-16

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required

  3. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    SciTech Connect

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  4. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  5. Calcium dynamics in astrocyte processes during neurovascular coupling

    PubMed Central

    Otsu, Yo; Couchman, Kiri; Lyons, Declan G; Collot, Mayeul; Agarwal, Amit; Mallet, Jean-Maurice; Pfrieger, Frank W; Bergles, Dwight E; Charpak, Serge

    2015-01-01

    Enhanced neuronal activity in the brain triggers a local increase in blood flow, termed functional hyperemia, via several mechanisms, including calcium (Ca2+) signaling in astrocytes. However, recent in vivo studies have questioned the role of astrocytes in functional hyperemia because of the slow and sparse dynamics of their somatic Ca2+ signals and the absence of glutamate metabotropic receptor 5 in adults. Here, we reexamined their role in neurovascular coupling by selectively expressing a genetically encoded Ca2+ sensor in astrocytes of the olfactory bulb. We show that in anesthetized mice, the physiological activation of olfactory sensory neuron (OSN) terminals reliably triggers Ca2+ increases in astrocyte processes but not in somata. These Ca2+ increases systematically precede the onset of functional hyperemia by 1–2 s, reestablishing astrocytes as potential regulators of neurovascular coupling. PMID:25531572

  6. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Rick Colwell; Corey Radtke; Mark Delwiche; Deborah Newby; Lynn Petzke; Mark Conrad; Eoin Brodie; Hope Lee; Bob Starr; Dana Dettmers; Ron Crawford; Andrzej Paszczynski; Nick Bernardini; Ravi Paidisetti; Tonia Green

    2006-06-01

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires different ?lines of evidence? indicating that the wastes are effectively destroyed. We are studying the coupled biogeochemical processes that dictate the rate of TCE co-metabolism first in the medial zone (TCE concentration: 1,000 to 20,000 ?g/L) of a plume at the Idaho National Laboratory?s Test Area North (TAN) site and then at Paducah or the Savannah River Site. We will use flow-through in situ reactors (FTISR) to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. TCE co-metabolic rates at TAN are being assessed and interpreted in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial co-metabolism relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites contaminated with chlorinated hydrocarbons.

  7. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

    2006-04-05

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

  8. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  9. Upscalling processes in an ocean-atmosphere multiscale coupled model

    NASA Astrophysics Data System (ADS)

    Masson, S. G.; Berthet, S.; Samson, G.; Crétat, J.; Colas, F.; Echevin, V.; Jullien, S.; Hourdin, C.

    2015-12-01

    This work explores new pathways toward a better representation of the multi-scale physics that drive climate variability. We are analysing the key upscaling processes by which small-scale localized errors have a knock-on effect onto global climate. We focus on the Peru-Chilli coastal upwelling, an area known to hold among the strongest models biases in the Tropics. Our approach is based on the development of a multiscale coupling interface allowing us to couple WRF with the NEMO oceanic model in a configuration including 2-way nested zooms in the oceanic and/or the atmospheric component of the coupled model. Upscalling processes are evidenced and quantified by comparing three 20-year long simulations of a tropical channel (45°S-45°N), which differ by their horizontal resolution: 0.75° everywhere, 0.75°+0.25° zoom in the southeastern Pacific or 0.25° everywhere. This set of three 20-year long simulations was repeated with 3 different sets of parameterizations to assess the robustness of our results. Our results show that adding an embedded zoom over the southeastern Pacific only in the atmosphere cools down the SST along the Peru-Chili coast, which is a clear improvement. This change is associated with a displacement of the low-level cloud cover, which moves closer to the coast cooling further the coastal area SST. Offshore, we observe the opposite effect with a reduction of the cloud cover with higher resolution, which increases solar radiation and warms the SST. Increasing the resolution in the oceanic component show contrasting results according to the different set parameterization used in the experiments. Some experiment shows a coastal cooling as expected, whereas, in other cases, we observe a counterintuitive response with a warming of the coastal SST. Using at the same time an oceanic and an atmospheric zoom mostly combines the results obtained when using the 2-way nesting in only one component of the coupled model. In the best case, we archive by this

  10. Queueing up for enzymatic processing: correlated signaling through coupled degradation.

    PubMed

    Cookson, Natalie A; Mather, William H; Danino, Tal; Mondragón-Palomino, Octavio; Williams, Ruth J; Tsimring, Lev S; Hasty, Jeff

    2011-01-01

    High-throughput technologies have led to the generation of complex wiring diagrams as a post-sequencing paradigm for depicting the interactions between vast and diverse cellular species. While these diagrams are useful for analyzing biological systems on a large scale, a detailed understanding of the molecular mechanisms that underlie the observed network connections is critical for the further development of systems and synthetic biology. Here, we use queueing theory to investigate how 'waiting lines' can lead to correlations between protein 'customers' that are coupled solely through a downstream set of enzymatic 'servers'. Using the E. coli ClpXP degradation machine as a model processing system, we observe significant cross-talk between two networks that are indirectly coupled through a common set of processors. We further illustrate the implications of enzymatic queueing using a synthetic biology application, in which two independent synthetic networks demonstrate synchronized behavior when common ClpXP machinery is overburdened. Our results demonstrate that such post-translational processes can lead to dynamic connections in cellular networks and may provide a mechanistic understanding of existing but currently inexplicable links. PMID:22186735

  11. A Fully Coupled Computational Model of the Silylation Process

    SciTech Connect

    G. H. Evans; R. S. Larson; V. C. Prantil; W. S. Winters

    1999-02-01

    This report documents the development of a new finite element model of the positive tone silylation process. Model development makes use of pre-existing Sandia technology used to describe coupled thermal-mechanical behavior in deforming metals. Material properties and constitutive models were obtained from the literature. The model is two-dimensional and transient and focuses on the part of the lithography process in which crosslinked and uncrosslinked resist is exposed to a gaseous silylation agent. The model accounts for the combined effects of mass transport (diffusion of silylation agent and reaction product), chemical reaction resulting in the uptake of silicon and material swelling, the generation of stresses, and the resulting material motion. The influence of stress on diffusion and reaction rates is also included.

  12. Upscaled modeling of CO2 injection with coupled thermal processes

    NASA Astrophysics Data System (ADS)

    Gasda, Sarah; Stephansen, Annette; Dahle, Helge; Aavatsmark, Ivar

    2013-04-01

    Large-scale models of CO2 storage in geological formations must capture the relevant physical, chemical and thermodynamical processes that affect the migration and ultimate fate of injected CO2. These processes should be modeled over the appropriate length and time scales. Some important mechanisms include convection-driven dissolution, caprock roughness, and local capillary effects, all of which can impact the direction and speed of the plume as well as long-term trapping efficiency. In addition, CO2 can be injected at a different temperature than reservoir conditions, leading to significant density variation within the plume over space and time. This impacts buoyancy and migration patterns, which becomes particularly important for injection sites with temperature and pressure conditions near the critical point. Therefore, coupling thermal processes with fluid flow should be considered in order to correctly capture plume migration and trapping within the reservoir. A practical modeling approach for CO2 storage over relatively large length and time scales is the vertical-equilibrium model, which solves partially integrated conservation equations for flow in two lateral dimensions. We couple heat transfer within the vertical equilibrium framework for fluid flow, focusing on the thermal processes that most impact the CO2 plume. We investigate a simplified representation of heat exchange between the plume and the reservoir that also includes transport of heat within the plume. In addition, we explore CO2 thermodynamic models for reliable prediction of density under different injection pressures, temperatures and composition. The model concept is demonstrated on simple systems and applied to a realistic storage aquifer.

  13. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    P. Dixon

    2004-04-05

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC

  14. Father responsivity: couple processes and the coconstruction of fatherhood.

    PubMed

    Matta, Dana Shawn; Knudson-Martin, Carmen

    2006-03-01

    Forty in-depth interviews of heterosexual parents of children 5 five years of age and younger are analyzed using a qualitative grounded theory approach to understand how couples coproduce fatherhood within their day-to-day relationships and in social, cultural, and economic contexts. The analysis identifies the construct "responsivity" as a central process through which, to varying degrees, fathers are aware of the needs of their wives and children and able to take an active part in meeting them. Three groups of fathers are examined according to their level of responsivity: low, moderate, and high. Factors influencing degree of father responsivity include gender constructions, power and the wife's influence, attunement, work schedules, and emotional tradeoffs. Implications for practice are suggested. PMID:16615251

  15. Anomalous diffusion and scaling in coupled stochastic processes

    SciTech Connect

    Bel, Golan; Nemenman, Ilya

    2009-01-01

    Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. The diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.

  16. Mountain-Scale Coupled Processes (TH/THC/THM)

    SciTech Connect

    P. Dixon

    2004-02-09

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in

  17. Evolutionary games of condensates in coupled birth-death processes

    NASA Astrophysics Data System (ADS)

    Weber, Markus F.; Knebel, Johannes; Krueger, Torben; Frey, Erwin

    2015-03-01

    Condensation phenomena occur in many systems, both in a classical and a quantum mechanical context. Typically, the entities that constitute a system collectively concentrate in one distinct state during condensation. For example, cooling of an equilibrated bosonic gas may lead to condensation into the quantum ground state. Notably, the mathematical theory of this Bose-Einstein condensation is not limited to quantum theory but was also successfully applied to condensation in random networks. In our work, we follow the opposite path. We apply the theory of evolutionary dynamics to describe condensation in a bosonic system that is driven and dissipative. It was shown that the system may condense into multiple quantum states, but into which states has remained elusive. We find that vanishing of relative entropy production determines these states. We illuminate the physical principles underlying the condensation and show that the condensates do not need to be static but may engage in ``evolutionary games'' with exchange of particles. On the mathematical level, the condensation is described by coupled birth-death processes. The generic structure of these processes implies that our results also apply to condensation in other systems, ranging from population biology to chemical kinetics.

  18. 3-D Modelling of Electromagnetic, Thermal, Mechanical and Metallurgical Couplings in Metal Forming Processes

    SciTech Connect

    Chenot, Jean-Loup; Bay, Francois

    2007-04-07

    The different stages of metal forming processes often involve - beyond the mechanical deformations processes - other physical coupled problems, such as heat transfer, electromagnetism or metallurgy. The purpose of this paper is to focus on problems involving electromagnetic couplings. After a brief recall on electromagnetic modeling, we shall then focus on induction heating processes and present some results regarding heat transfer, as well as mechanical couplings. A case showing coupling for metallurgic microstructure evolution will conclude this paper.

  19. DRIFT-SCALE COUPLED PROCESSES (DST AND TH SEEPAGE) MODELS

    SciTech Connect

    J.T. Birkholzer; S. Mukhopadhyay

    2005-01-13

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  20. Drift-Scale Coupled Processes (DST and TH Seepage) Models

    SciTech Connect

    J. Birkholzer; S. Mukhopadhyay

    2004-09-29

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  1. Modeling of coupled geochemical and transport processes: An overview

    SciTech Connect

    Carnahan, C.L.

    1989-10-01

    Early coupled models associated with fluid flow and solute transport have been limited by assumed conditions of constant temperature, fully saturated fluid flow, and constant pore fluid velocity. Developments including coupling of chemical reactions to variable fields of temperature and fluid flow have generated new requirements for experimental data. As the capabilities of coupled models expand, needs are created for experimental data to be used for both input and validation. 25 refs.

  2. Evolutionary games of condensates in coupled birth–death processes

    PubMed Central

    Knebel, Johannes; Weber, Markus F.; Krüger, Torben; Frey, Erwin

    2015-01-01

    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose–Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth–death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock–paper–scissors game of condensates. PMID:25908384

  3. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1990-01-01

    A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

  4. Small spatial and fast temporal ionosphere-magnetosphere coupling processes

    NASA Astrophysics Data System (ADS)

    Zhu, Hua

    2000-09-01

    I have developed a two-dimensional, three-fluid model (electrons, ions and neutrals) to simulate small-scale magnetosphere-ionosphere coupling processes. The code includes ionization and recombination processes, the Hall term in Ohm's law, and various heat sources in the energy equations. The electro-dynamic response and the evolution of the collision frequencies are treated self- consistently in a height resolved ionosphere. The model allows for the propagation of Alfvén waves. The simulation is particularly suited for fast temporal variations and small spatial scale ionospheric structures associated with filamentary aurora and ionospheric heating experiments (e.g. HAARP). I have investigated the evolution of field-aligned currents in the magnetosphere-ionosphere system and found several notable effects-ion heating due to plasma- neutral friction, electron heating resulting from energetic particle precipitation and ohmic dissipation by strong field-aligned currents. The simulation of plasma. heating in the ionosphere is motivated by a specific auroral event that was simultaneously observed with optical and radar instruments. The results indicate that a consistent explanation of this event requires ohmic heating of electrons in a strong field-aligned electric current layer. They suggest strongly that the observed sequence of events can be explained only if spatial structure is present in the ionosphere so that it requires at least a two-dimensional model. Electron heating in strong field-aligned currents also provides a mechanism to deposit energy in the F-region of ionosphere and thus can explain the formation of tall auroral arcs. The simulation of the formation of field-aligned currents shows a strong plasma density depletion in the region of downward field-aligned current layer. The depletion is due to the divergent flow of the plasma. Similarly, the plasma density increases in the region of upward field- aligned current because of the convergent plasma motion

  5. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  6. Client Discourses on the Process of Seeking Same-Sex Couple Counselling

    ERIC Educational Resources Information Center

    Grove, Jan; Peel, Elizabeth; Owen-Pugh, Valerie

    2013-01-01

    How same-sex couples manage the process of seeking help for their relationships is an under-researched area. Twelve semi-structured interviews were conducted with 16 people who had engaged in same-sex couple counselling, and were analysed using discourse analysis. The ways in which the couples positioned themselves as part of a "minority…

  7. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1989-01-01

    A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

  8. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  9. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  10. Coupling processes related to the Sun-weather problem

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Herman, J. R.

    1979-01-01

    Physical mechanisms for coupling the energetics of solar activity to meteorological responses are reviewed. Although several hypotheses have been advanced, none can be said to be sufficiently complete to be applied to weather or climate prediction. Solar activity indicators potentially useful for forecasting are identified, including sunspots, solar flares, and magnetic sector boundary crossings. Additional experiments, studies, and analyses are required before Sun-weather concepts can be utilized for predicting meteorological responses.

  11. Panel discussion on near-field coupled processes with emphasis on performance assessment

    SciTech Connect

    Codell, R.B.; Baca, R.G.; Ahola, M.P.

    1996-04-01

    The presentations in this panel discussion involve the general topic of near-field coupled processes and postclosure performance assessment with an emphasis on rock mechanics. The potential impact of near-field rock mass deformation on repository performance was discussed, as well as topics including long term excavation deterioration, the performance of geologic seals, and coupled processes concerning rock mechanics in performance assessments.

  12. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  13. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  14. Low power, compact charge coupled device signal processing system

    NASA Technical Reports Server (NTRS)

    Bosshart, P. W.; Buss, D. D.; Eversole, W. L.; Hewes, C. R.; Mayer, D. J.

    1980-01-01

    A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated.

  15. MODELING COUPLED HYDROLOGICAL AND CHEMICAL PROCESSES: LONG-TERM URANIUM TRANSPORT FOLLOWING PHOSPHOROUS-FERTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminants in the vadose zone are affected by the physical processes of water flow, heat movement and multicomponent transport, as well as generally by a range of interacting biogeochemical processes. Coupling these various processes within one integrated numerical simulator provides a process-ba...

  16. Coupled model of physical and biological processes affecting maize pollination

    NASA Astrophysics Data System (ADS)

    Arritt, R.; Westgate, M.; Riese, J.; Falk, M.; Takle, E.

    2003-04-01

    Controversy over the use of genetically modified (GM) crops has led to increased interest in evaluating and controlling the potential for inadvertent outcrossing in open-pollinated crops such as maize. In response to this problem we have developed a Lagrangian model of pollen dispersion as a component of a coupled end-to-end (anther to ear) physical-biological model of maize pollination. The Lagrangian method is adopted because of its generality and flexibility: first, the method readily accommodates flow fields of arbitrary complexity; second, each element of the material being transported can be identified by its source, time of release, or other properties of interest. The latter allows pollen viability to be estimated as a function of such factors as travel time, temperature, and relative humidity, so that the physical effects of airflow and turbulence on pollen dispersion can be considered together with the biological aspects of pollen release and viability. Predicted dispersion of pollen compares well both to observations and to results from a simpler Gaussian plume model. Ability of the Lagrangian model to handle complex air flows is demonstrated by application to pollen dispersion in the vicinity of an agricultural shelter belt. We also show results indicating that pollen viability can be quantified by an "aging function" that accounts for temperature, humidity, and time of exposure.

  17. Solute coupled diffusion in osmotically driven membrane processes.

    PubMed

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process. PMID:19764248

  18. "The best is always yet to come": Relationship stages and processes among young LGBT couples.

    PubMed

    Macapagal, Kathryn; Greene, George J; Rivera, Zenaida; Mustanski, Brian

    2015-06-01

    Limited research has examined relationship development among lesbian, gay, bisexual, and transgender (LGBT) couples in emerging adulthood. A better understanding of LGBT couples can inform the development of relationship education programs that reflect their unique needs. The following questions guided this study: (a) What are the stages and processes during young LGBT couples' relationship development? and (b) How do these compare with existing literature on heterosexual adults? A secondary goal was to explore similarities and differences between couples assigned male (MAAB) and female at birth (FAAB). Thirty-six couples completed interviews on their relationship history. Qualitative analyses showed that relationship stages and processes were similar to past research on heterosexuals, but participants' subjective experiences reflected their LGBT identities and emerging adulthood, which exerted additional stress on the relationship. These factors also affected milestones indicative of commitment among heterosexual adults (e.g., introducing partner to family). Mixed methods analyses indicated that MAAB couples described negotiating relationship agreements and safe sex in more depth than FAAB couples. Relationship development models warrant modifications to consider the impact of sexual and gender identity and emerging adulthood when applied to young LGBT couples. These factors should be addressed in interventions to promote relationship health among young LGBT couples. PMID:26053345

  19. It Takes Two? An Exploration of Processes and Outcomes in a Two-Session Couple Intervention.

    PubMed

    Bradford, Kay; Mock, D Jim; Stewart, J Wade

    2016-07-01

    Although relationship distress is common, couples often forego professional help due to concerns such as time constraints, financial costs, and stigma. The two-session relationship checkup is an alternative format of couple intervention developed to address these concerns. In this qualitative study, we interviewed 20 coupled participants and six clinicians to examine the checkup's processes and outcomes. The phenomenological themes that emerged revealed sequential processes by which this format works. Couple themes included client motivation, the therapeutic relationship, and therapeutic change in terms of perceptions and behaviors-particularly with regard to communication. Clinician data largely mirrored these themes. The results suggest the intervention addressed barriers to help-seeking and may be a viable selective option for at-risk couples. PMID:26525590

  20. Coupling between mantle and surface processes: Insights from analogue modelling

    NASA Astrophysics Data System (ADS)

    Király, Ágnes; Sembroni, Andrea; Faccenna, Claudio; Funiciello, Francesca

    2014-05-01

    Thermal or density anomalies located beneath the lithosphere are thought to generate dynamic topography. Such a topographic signal compensates the viscous stresses originating from the anomaly driven mantle flow. It has been demonstrated that the erosion modulates the dynamic signal of topography changing the uplift rate by unload. The characteristic time for adjustments of dynamic topography due to surface erosion is likely similar to post-glacial rebound time (10000 - 50000 years). Here we present preliminary results of a new set of analogue models realized to study and quantify the contribution given by erosion to dynamic topography, during a process specifically driven by a positively buoyant deep anomaly. The adopted set up consists of a Plexiglas box (40x40x50 cm3) filled with glucose syrup as analogue upper mantle. A silicon plate positioned on the top of the syrup simulates the lithosphere. On the silicone plate is placed a thin layer of a high viscous glucose syrup which reproduces the upper, erodible layer of the crust. To simulate the positively buoyant anomaly we used an elastic, undeformable silicon ball free to rise by buoyancy in the syrup until the floating silicone plate is hit. The changes in topography have been monitored by using a 3D laser scan, while a side-view camera recorded the position of the rising ball in time. Data have been post-processed with image analysis techniques (e.g., Particle Image Velocimetry) in order to obtain the evolution of topography, uplift rate, erosion patterns of the top layer, bulge width and mantle circulation during the experiment. We ran experiments with and without the shallow, erodible crustal layer in order to quantify the effect of erosion on dynamic topography. Preliminary results showed that both the maximum topography and uplift rate are inversely proportional to the lithospheric thickness. The maximum uplift rate and the deformation of the lithospheric plate occurred just before the arrival of the

  1. Diagnosing coupled watershed processes using a fully-coupled groundwater, land-surface, surface water and mesoscale atmospheric model

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Kollet, S. J.; Chow, F. K.

    2007-12-01

    A variably-saturated groundwater flow model with an integrated overland flow component, a land-surface model and a mesoscale atmospheric model is used to examine the interplay between coupled water and energy processes. These processes are influenced by land-surface topography and subsurface heterogeneity. This parallel, integrated model simulates spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. Spatial statistics are used to demonstrate spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating. Additionally, spectral transforms of subsurface arrival times are computed using a transient Lagrangian transport simulation. Macrodispersion is used to mimic the effects of subsurface heterogeneity for a range of Peclet numbers. The slopes of these transforms indicate fractal scaling of this system over a range of timescales. All of these techniques point to importance of realistically representing coupled processes and the need to understand and diagnose these processes in nature. This work was conducted under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory (LLNL) under contract W-7405-Eng-48. This project was funded by the Laboratory Directed Research and Development Program at LLNL

  2. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Krooss, B. M.; Littke, R.

    2012-12-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a subbituminous A coal from the Surat Basin, Queensland Australia (figure). From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg-corrected permeability depends on gas type. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa, with increasing mean pore pressure at lower confining pressure an increase in permeability is observed, which is attributed to a widening of cleat aperture. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane and CO2. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals was significantly lower (by 50%) than that of dry coals, no hysteresis was observed between sorption and desorption on dry and moisture-equilibrated samples and the

  3. Sequential Processes in Palladium-Catalyzed Silicon-Based Cross-Coupling

    PubMed Central

    Denmark, Scott E.; Liu, Jack H.-C.

    2012-01-01

    Although developed somewhat later, silicon-based cross-coupling has become a viable alternative to the more conventional Suzuki-Miyaura, Stille-Kosugi-Migita, and Negishi cross-coupling reactions because of its broad substrate scope, high stability of silicon-containing reagents, and low toxicity of waste streams. An empowering and yet underappreciated feature unique to silicon-based cross-coupling is the wide range of sequential processes available. In these processes, simple precursors are first converted to complex silicon-containing cross-coupling substrates, and the subsequent silicon-based cross-coupling reaction affords an even more highly functionalized product in a stereoselective fashion. In so doing, structurally simple and inexpensive starting materials are quickly transformed into value-added and densely substituted products. Therefore, sequential processes are often useful in constructing the carbon backbones of natural products. In this review, studies of sequential processes involving silicon-based cross-coupling are discussed. Additionally, the total syntheses that utilize these sequential processes are also presented. PMID:23293392

  4. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  5. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Cumming, D.; Krooss, B. M.

    2012-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  6. Coupling centrality and authority of co-processing model on complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanli; Li, Huibin

    2016-04-01

    Coupling centrality and authority of co-processing model on complex networks are investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are obtained to disclose the formation. Considering the influence of a node to the global dynamical behavior, coupling centrality and authority are introduced for each node, which determine the relative importance and authority of nodes in the diffusion process. Furthermore, the experimental results on large-scale complex networks confirm our analytical prediction.

  7. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    SciTech Connect

    Tsang, C.F.; Mangold, D.C.

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100{sup 0}C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced.

  8. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-10-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.

  9. Synchronization of elastically coupled processive molecular motors and regulation of cargo transport

    NASA Astrophysics Data System (ADS)

    Kohler, Felix; Rohrbach, Alexander

    2015-01-01

    The collective work of motor proteins plays an important role in cellular transport processes. Since measuring intermotor coupling and hence a comparison to theoretical predictions is difficult, we introduce the synchronization as an alternative observable for motor cooperativity. This synchronization can be determined from the ratio of the mean times of motor resting and stepping. Results from a multistate Markov chain model and Brownian dynamics simulations, describing the elastically coupled motors, coincide well. Our model can explain the experimentally observed effect of strongly increased transport velocities and powers by the synchronization and coupling of myosin V and kinesin I.

  10. Coupled finite element simulation and optimization of single- and multi-stage sheet-forming processes

    NASA Astrophysics Data System (ADS)

    Tamasco, Cynthia M.; Rais-Rohani, Masoud; Buijk, Arjaan

    2013-03-01

    This article presents the development and application of a coupled finite element simulation and optimization framework that can be used for design and analysis of sheet-forming processes of varying complexity. The entire forming process from blank gripping and deep drawing to tool release and springback is modelled. The dies, holders, punch and workpiece are modelled with friction, temperature, holder force and punch speed controlled in the process simulation. Both single- and multi-stage sheet-forming processes are investigated. Process simulation is coupled with a nonlinear gradient-based optimization approach for optimizing single or multiple design objectives with imposed sheet-forming response constraints. A MATLAB program is developed and used for data-flow management between process simulation and optimization codes. Thinning, springback, damage and forming limit diagram are used to define failure in the forming process design optimization. Design sensitivity analysis and optimization results of the example problems are presented and discussed.

  11. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  12. Benchmark initiative on coupled multiphase flow and geomechanical processes during CO2 injection

    NASA Astrophysics Data System (ADS)

    Benisch, K.; Annewandter, R.; Olden, P.; Mackay, E.; Bauer, S.; Geiger, S.

    2012-12-01

    CO2 injection into deep saline aquifers involves multiple strongly interacting processes such as multiphase flow and geomechanical deformation, which threat to the seal integrity of CO2 repositories. Coupled simulation codes are required to establish realistic prognoses of the coupled process during CO2 injection operations. International benchmark initiatives help to evaluate, to compare and to validate coupled simulation results. However, there is no published code comparison study so far focusing on the impact of coupled multiphase flow and geomechanics on the long-term integrity of repositories, which is required to obtain confidence in the predictive capabilities of reservoir simulators. We address this gap by proposing a benchmark study. A wide participation from academic and industrial institutions is sought, as the aim of building confidence in coupled simulators become more plausible with many participants. Most published benchmark studies on coupled multiphase flow and geomechanical processes have been performed within the field of nuclear waste disposal (e.g. the DECOVALEX project), using single-phase formulation only. As regards CO2 injection scenarios, international benchmark studies have been published comparing isothermal and non-isothermal multiphase flow processes such as the code intercomparison by LBNL, the Stuttgart Benchmark study, the CLEAN benchmark approach and other initiatives. Recently, several codes have been developed or extended to simulate the coupling of hydraulic and geomechanical processes (OpenGeoSys, ELIPSE-Visage, GEM, DuMuX and others), which now enables a comprehensive code comparison. We propose four benchmark tests of increasing complexity, addressing the coupling between multiphase flow and geomechanical processes during CO2 injection. In the first case, a horizontal non-faulted 2D model consisting of one reservoir and one cap rock is considered, focusing on stress and strain regime changes in the storage formation and the

  13. Multi-field coupled numerical simulation of hot reversible rolling process of GCr15 steel rod

    NASA Astrophysics Data System (ADS)

    Gu, Sendong; Zhang, Liwen; Ruan, Jinhua; Mei, Hongyu; Zhen, Yu; Shi, Xinhua

    2013-05-01

    In this paper, based on rolling technology of hot reversible rolling mill, a multi-filed coupled finite element (FE) model of hot reversible rolling process of large dimension cross-section GCr15 steel rod is established. Thermal, mechanical and microstructural phenomena during the rolling process are coupled in the model. By employing grain growth experiment, double and single hit hot compression experiments, the austenite grain size growth mathematical model and recrystallization behavior mathematical models are determined. And a designed subprogram is coupled in the FE model. Actual hot reversible rolling process of GCr15 steel is simulated using the model and the distribution and evolution of different filed-variables, such as temperature, effective strain and austenite grain size are obtained. To verify the model predictions, hot rolling experiments are carried out and the temperature and microstructure of the rolling metal are compared with the predicted results. The comparison between the two sets of data shows a good agreement.

  14. Coupled processes in single fractures, double fractures and fractured porous media

    SciTech Connect

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed.

  15. Atmosphere-ocean coupled processes in the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    DeMott, Charlotte A.; Klingaman, Nicholas P.; Woolnough, Steven J.

    2015-12-01

    The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understanding of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere-upper ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper ocean mixing in coupled model simulations, designing model experiments that minimize mean state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.

  16. Differences in Pornography Use Among Couples: Associations with Satisfaction, Stability, and Relationship Processes.

    PubMed

    Willoughby, Brian J; Carroll, Jason S; Busby, Dean M; Brown, Cameron C

    2016-01-01

    The present study utilized a sample of 1755 adult couples in heterosexual romantic relationships to examine how different patterns of pornography use between romantic partners may be associated with relationship outcomes. While pornography use has been generally associated with some negative and some positive couple outcomes, no study has yet explored how differences between partners may uniquely be associated with relationship well-being. Results suggested that greater discrepancies between partners in pornography use were related to less relationship satisfaction, less stability, less positive communication, and more relational aggression. Mediation analyses suggested that greater pornography use discrepancies were primarily associated with elevated levels of male relational aggression, lower female sexual desire, and less positive communication for both partners which then predicted lower relational satisfaction and stability for both partners. Results generally suggest that discrepancies in pornography use at the couple level are related to negative couple outcomes. Specifically, pornography differences may alter specific couple interaction processes which, in turn, may influence relationship satisfaction and stability. Implications for scholars and clinicians interested in how pornography use is associated with couple process are discussed. PMID:26228990

  17. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  18. MASSIVELY PARALLEL FULLY COUPLED IMPLICIT MODELING OF COUPLED THERMAL-HYDROLOGICAL-MECHANICAL PROCESSES FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIRS

    SciTech Connect

    Robert Podgorney; Hai Huang; Derek Gaston

    2010-02-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing) to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid system and our ability to reliably predict how reservoirs behave under stimulation and production. In order to increase our understanding of how reservoirs behave under these conditions, we have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a continuum multiphase flow and heat transport model. In DEM simulations, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external load is applied. DEM models have been applied to a very wide range of fracturing processes from the molecular scale (where thermal fluctuations play an important role) to scales on the order of 1 km or greater. In this approach, the continuum flow and heat transport equations are solved on an underlying fixed finite element grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms and

  19. Coupling pre-mRNA processing to transcription on the RNA factory assembly line

    PubMed Central

    Lee, Kuo-Ming; Tarn, Woan-Yuh

    2013-01-01

    It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression. PMID:23392244

  20. Linking Tectonics and Surface Processes through SNAC-CHILD Coupling: Preliminary Results Towards Interoperable Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Choi, E.; Kelbert, A.; Peckham, S. D.

    2014-12-01

    We demonstrate that code coupling can be an efficient and flexible method for modeling complicated two-way interactions between tectonic and surface processes with SNAC-CHILD coupling as an example. SNAC is a deep earth process model (a geodynamic/tectonics model), built upon a scientific software framework called StGermain and also compatible with a model coupling framework called Pyre. CHILD is a popular surface process model (a landscape evolution model), interfaced to the CSDMS (Community Surface Dynamics Modeling System) modeling framework. We first present proof-of-concept but non-trivial results from a simplistic coupling scheme. We then report progress towards augmenting SNAC with a Basic Model Interface (BMI), a framework-agnostic standard interface developed by CSDMS that uses the CSDMS Standard Names as controlled vocabulary for model communication across domains. Newly interfaced to BMI, SNAC will be easily coupled with CHILD as well as other BMI-compatible models. In broader context, this work will test BMI as a general and easy-to-implement mechanism for sharing models between modeling frameworks and is a part of the NSF-funded EarthCube Building Blocks project, "Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks."

  1. A Coupled Modeling Approach for Root-Soil Interaction Processes Using DuMuX

    NASA Astrophysics Data System (ADS)

    Schröder, N.; Helmig, R.; Flemisch, B.; Koch, T.

    2015-12-01

    The water and nutrient uptake of plant roots in soils have a crucial influence on soil physical processes. The interacting processes between plant roots and soil are important for several agricultural problems, for example water management or leaching of pesticides. However, the coupled mechanisms of local soil and root water flow, transport of dissolved substances, root growth, and root uptake are difficult to measure and thus experimental data are rare. Numerical models can be used to understand these complex soil-root systems and help to analyze and interpret experimental measurements. The model approach presented here couples a root system and a soil model. Crucial for this approach is the 1D-3D grid coupling which combines a 1D network grid (root system) with the 3D soil grid. Based on that grid coupling, local processes are defined, for instance the local water uptake of a single root segment. Here, the interface conditions between roots and soil play a major role and we use local grid refinement strategies to better resolve these interface processes. This grid refinement of the 3D soil grid is based on the root network (1D grid) and adapts if root growth occurs. It offers the possibility to describe processes in the soil-plant continuum in a more physical manner avoiding empirical descriptions of root water uptake as a function of bulk matric potential, osmotic potential, root length density, and transpiration rate. Our coupling approach is included into the framework of DuMux, an open-source simulator for flow and transport processes in porous media. This implementation combines biological, chemical and physical processes in soil, inside roots, and at root-soil interfaces, and is contained in a sustainable and consistent framework for the implementation. We will show example simulations describing water flow, solute transport and root growth in a soil-root system.

  2. Fano-like coupling between two oppositely enhanced processes by diffraction in a dielectric grating.

    PubMed

    Zhang, Jian; Zhang, Xinping

    2015-11-16

    Fano-like coupling was investigated extensively in plasmonic nanostructures, which is based on the interaction between the photonic and plasmonic resonance modes. Metallic photonic crystals consisting of waveguide metallic gratings are typical devices exhibiting strong Fano-coupling between waveguide and plasmon resonance modes. However, we demonstrate here that similar effects can also be achieved in waveguide dielectric grating structures. In this case, the broad-band strong optical extinction results from multifold diffraction processes, instead of the plasmonic absorption and scattering of light. The diffraction efficiency of the waveguide dielectric gratings was tuned by changing the duty cycle through adjusting the exposure time in interference lithography. Enhanced diffraction efficiency reduces the direct transmission while enhances the waveguide resonance mode, leading to a Fano-like coupling process. PMID:26698522

  3. Childhood Emotional Abuse and Attachment Processes in the Dyadic Adjustment of Dating Couples

    ERIC Educational Resources Information Center

    Riggs, Shelley A.; Cusimano, Angela M.; Benson, Karen M.

    2011-01-01

    In an effort to improve understanding of the mechanisms that link early maltreatment to later outcomes, this study investigated the mediation effects of adult attachment processes on the association between childhood emotional abuse and later romantic relationships among heterosexual couples. College students and their dating partners (N = 310;…

  4. Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove

    2013-01-01

    This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.

  5. Numerical methods for TVD transport and coupled relaxing processes in gases and plasmas

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1990-01-01

    The construction of second-order upwind schemes for nonequilibrium plasmas, for both one- and two-fluid formulations is demonstrated. Coupled relaxation processes, including ionization kinetics and radiative processes and their algorithms for nonequilibrium, multiple temperature conditions are described as well. The paper applies the numerical techniques on some simple test cases, points out critical problems and their solutions, and makes qualitative comparisons with known results, whenever possible.

  6. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio

    2012-03-15

    Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. PMID:21543156

  7. Magnetization process in a two-phase exchange-coupled system: A microscopic study

    SciTech Connect

    Ryan, D.H.; Feutrill, E.H.; Ding, J.

    1997-04-01

    The magnetization process in an exchange-coupled {alpha}-Fe+Nd{sub 2}Fe{sub 14}B nanocomposite has been studied by M{umlt o}ssbauer spectroscopy. Measurements in fields of up to 2 T confirm that the magnetization of the soft phase is strongly coupled to that of the hard phase. Analysis of magnetization curves and magic-angle spectra of saturated samples shows that the remanence is dominated by the hard phase. {copyright} {ital 1997 American Institute of Physics.}

  8. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes.

    SciTech Connect

    Tikare, Veena; Hernandez-Rivera, Efrain; Madison, Jonathan D.; Holm, Elizabeth Ann; Patterson, Burton R.; Homer, Eric R.

    2013-09-01

    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  9. Coupling of a vacuum-ultraviolet-radiation source to a processing system

    SciTech Connect

    Chatterton, J. D.; Upadhyaya, G. S.; Shohet, J. L.; Lauer, J. L.; Bathke, R. D.; Kukkady, K.

    2006-08-15

    A hollow capillary array is examined as a coupling window between an electron cyclotron resonance plasma vacuum ultraviolet (vuv) source and a separate processing chamber. The transmission of vuv through the capillary array as a function of wavelength is measured and shown to agree with theoretical calculations. A silicon wafer with a dielectric surface is then placed in the processing chamber and exposed to vuv, both with and without the capillary array. A Kelvin probe is used to measure the surface charge induced on the wafer by photoemission in both cases, which confirms the previously measured transmission values. The results show that a capillary array can efficiently couple vuv radiation from a source to a processing chamber without significant modification in the spectrum and its resulting effects on a material.

  10. Advances in Coupling of Kinetics and Molecular Scale Tools to Shed Light on Soil Biogeochemical Processes

    SciTech Connect

    Sparks, Donald

    2014-09-02

    Biogeochemical processes in soils such as sorption, precipitation, and redox play critical roles in the cycling and fate of nutrients, metal(loid)s and organic chemicals in soil and water environments. Advanced analytical tools enable soil scientists to track these processes in real-time and at the molecular scale. Our review focuses on recent research that has employed state-of-the-art molecular scale spectroscopy, coupled with kinetics, to elucidate the mechanisms of nutrient and metal(loid) reactivity and speciation in soils. We found that by coupling kinetics with advanced molecular and nano-scale tools major advances have been made in elucidating important soil chemical processes including sorption, precipitation, dissolution, and redox of metal(loids) and nutrients. Such advances will aid in better predicting the fate and mobility of nutrients and contaminants in soils and water and enhance environmental and agricultural sustainability.

  11. INFLUENCE OF COUPLED PROCESSES ON CONTAMINANT FATE AND TRANSPORT IN SUBSURFACE ENVIRONMENTS

    SciTech Connect

    Jardine, Philip M

    2008-01-01

    The following chapter emphasizes subsurface environmental research investigations over the past 10 to 15 years that couple hydrological, geochemical, and biological processes as related to contaminant fate and transport. An attempt is made to focus on field-scale studies with possible reference to laboratory-scale endeavors. Much of the research discussed reflects investigations of the influence of coupled processes on the fate and transport of inorganic, radionuclide, and organic contaminants in subsurface environments as a result of natural processes or energy and weapons production endeavors that required waste disposal. The chapter provides on overview of the interaction between hydro-bio-geochemical processes in structured, heterogeneous subsurface environments and how these interactions control contaminant fate and transport, followed by experimental and numerical subsurface science research and case studies involving specific classes of inorganic and organic contaminants. Lastly, thought provoking insights are highlighted on why the study of subsurface coupled processes is paramount to understanding potential future contaminant fate and transport issues of global concern.

  12. A model-free definition of coupling strength for assessing the influence between climatic processes

    NASA Astrophysics Data System (ADS)

    Runge, J.; Kurths, J.

    2012-04-01

    Assessing the strength of influence between climatic processes from observational data is an important problem on the way to construct conceptual models or make predictions. An example being the influence of ENSO on the Indian Monsoon compared to the influence of other climatic processes. It is an especially difficult task if the interactions are nonlinear where linear measures like the Pearson correlation coefficient fail. Apart from nonlinearity, auto-dependencies in the processes can lead to misleading high values of coupling strength. There exist statistical methods that address these issues, but most of them assume some model, e.g., a linear model in the case of the partial correlation. We propose a measure based on conditional mutual information that makes no assumptions on the underlying model and is able to exclude auto-dependencies and even influences of external processes. We investigate how the strength measured relates to model systems where a coupling strength is known and discuss its limitations. The measure is applied to time series of different climate indices and gridded data sets to gain insights into the coupling strength between climatic teleconnections. Applied to more than two time series it is also able to shed light on mechanisms of interactions between multiple processes.

  13. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process.

    PubMed

    Feyissa, Aberham Hailu; Gernaey, Krist V; Adler-Nissen, Jens

    2013-04-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change in microstructure (permeability, water binding capacity and elastic modulus) that occur during the meat roasting process. The developed coupled partial differential equations were solved by using COMSOL Multiphysics®3.5 and state variables are predicted as functions of both position and time. The proposed mechanism was partially validated by experiments in a convection oven where temperatures were measured online. PMID:23305831

  14. Sequoia: A fault-tolerant tightly coupled multiprocessor for transaction processing

    SciTech Connect

    Bernstein, P.A.

    1988-02-01

    The Sequoia computer is a tightly coupled multiprocessor, and thus attains the performance advantages of this style of architecture. It avoids most of the fault-tolerance disadvantages of tight coupling by using a new fault-tolerance design. The Sequoia architecture is similar to other multimicroprocessor architectures, such as those of Encore and Sequent, in that it gives dozens of microprocessors shared access to a large main memory. It resembles the Stratus architecture in its extensive use of hardware fault-detection techniques. It resembles Stratus and Auragen in its ability to quickly recover all processes after a single point failure, transparently to the user. However, Sequoia is unique in its combination of a large-scale tightly coupled architecture with a hardware approach to fault tolerance. This article gives an overview of how the hardware architecture and operating systems (OS) work together to provide a high degree of fault tolerance with good system performance.

  15. Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process

    NASA Astrophysics Data System (ADS)

    Breinlinger, Thomas; Kraft, Torsten

    2015-08-01

    Die filling is an important part of the powder compaction process chain, where defects in the final part can be introduced—or prevented. Simulation of this process is therefore a goal for many part producers and has been studied by some researchers already. In this work, we focus on the influence of the surrounding air on the powder flow. We demonstrate the implementing and coupling of the discrete element method for the granular powder and the smoothed particle hydrodynamics method for the gas flow. Application of the method to the die filling process is demonstrated.

  16. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    PubMed Central

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  17. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes.

    PubMed

    Ma, X; Fang, F; Li, Q; Zhu, J; Yang, Y; Wu, Y Z; Zhao, H B; Lüpke, G

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  18. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    SciTech Connect

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  19. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGESBeta

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  20. The Coupling and Modeling of Eco-hydrological Processes in the Upper Reaches of Heihe River

    NASA Astrophysics Data System (ADS)

    Yang, Dawen; Cong, Zhentao; Yang, Hanbo

    2013-04-01

    Developing new watershed models to couple the ecological, hydrological and social-economical processes for improving the understanding and regulation ability of the processes involved in water resources generation and transformation in the inland watersheds, is one important general scientific target of the NSFC Major Plan of "Integrated Research on the Eco-Hydrological Processes of Heihe Basin". With aims at this scientific target, the proposed research project will carry out a multi-scales and multi-processes study on eco-hydrology in the upper reaches of the Heihe River, identify the key eco-hydrological processes in the study region, develop a distributed eco-hydrological model for this region, and build a data assimilation and uncertainty analysis system for the developed model. Then this model will be used to assess the impacts of climate change and human activity on the runoff in the upper reaches of Heihe River. This study will improve the ability in simulating and predicting the runoff responses to environment changes in this basin, and also to promote the realization of the target of the NSFC Major Plan. This project will focus on the following three major researches: 1) the identification of key eco-hydrological processes and the overall structure designing of eco-hydrological model; 2) the development of distributed eco-hydrological watershed model; 3) the simulation and prediction of the eco-hydrological changes in the upper reaches of Heihe River. Through this study, it is expected to establish a benchmark eco-hydrological model for the mountainous watersheds with arid-cold climate and high elevation, where there are the most complex landscape, closely coupled ecological and hydrological system, and the most comprehensive hydrological processes. Also a breakthrough in the simulation of coupled eco-hydrological processes is expected.

  1. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  2. Coupled transport processes in semipermeable media. Part 2: Numerical method and results

    NASA Astrophysics Data System (ADS)

    Jacobsen, Janet S.; Carnahan, Chalon L.

    1990-04-01

    A numerical simulator has been developed to investigate the effects of coupled processes on heat and mass transport in semipermeable media. The governing equations on which the simulator is based were derived using the thermodynamics of irreversible processes. The equations are nonlinear and have been solved numerically using the n-dimensional Newton's method. As an example of an application, the numerical simulator has been used to investigate heat and solute transport in the vicinity of a heat source buried in a saturated clay-like medium, in part to study solute transport in bentonite packing material surrounding a nuclear waste canister. The coupled processes considered were thermal filtration, thermal osmosis, chemical osmosis and ultrafiltration. In the simulations, heat transport by coupled processes was negligible compared to heat conduction, but pressure and solute migration were affected. Solute migration was retarded relative to the uncoupled case when only chemical osmosis was considered. When both chemical osmosis and thermal osmosis were included, solute migration was enhanced.

  3. Understanding Coupled Earth-Surface Processes through Experiments and Models (Invited)

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kim, W.

    2013-12-01

    Traditionally, both numerical models and experiments have been purposefully designed to ';isolate' singular components or certain processes of a larger mountain to deep-ocean interconnected source-to-sink (S2S) transport system. Controlling factors driven by processes outside of the domain of immediate interest were treated and simplified as input or as boundary conditions. Increasingly, earth surface processes scientists appreciate feedbacks and explore these feedbacks with more dynamically coupled approaches to their experiments and models. Here, we discuss key concepts and recent advances made in coupled modeling and experimental setups. In addition, we emphasize challenges and new frontiers to coupled experiments. Experiments have highlighted the important role of self-organization; river and delta systems do not always need to be forced by external processes to change or develop characteristic morphologies. Similarly modeling f.e. has shown that intricate networks in tidal deltas are stable because of the interplay between river avulsions and the tidal current scouring with both processes being important to develop and maintain the dentritic networks. Both models and experiment have demonstrated that seemingly stable systems can be perturbed slightly and show dramatic responses. Source-to-sink models were developed for both the Fly River System in Papua New Guinea and the Waipaoa River in New Zealand. These models pointed to the importance of upstream-downstream effects and enforced our view of the S2S system as a signal transfer and dampening conveyor belt. Coupled modeling showed that deforestation had extreme effects on sediment fluxes draining from the catchment of the Waipaoa River in New Zealand, and that this increase in sediment production rapidly shifted the locus of offshore deposition. The challenge in designing coupled models and experiments is both technological as well as intellectual. Our community advances to make numerical model coupling more

  4. Coupled hydro-mechanical processes in crytalline rock and ininduratedand plastic clays: A comparative discussion

    SciTech Connect

    Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

    2006-02-15

    This paper provides a comparative discussion of coupledhydromechanical processes in three different geological formations:crystalline rock, plastic clay, and indurated clay. First, the importantprocesses and associated property characteristics in the three rock typesare discussed. Then, one particular hydromechanical coupling is broughtup for detailed consideration, that of pore pressure changes in nearbyrock during tunnel excavation. Three field experiments in the three rocktypes are presented and their results are discussed. It is shown that themain physical processes are common to all three rock types, but with verydifferent time constants. The different issues raised by these cases arepointed out, and the transferable lessons learned are identified. Suchcross fertilization and simultaneous understanding of coupled processesin three very different rock types help to greatly enhance confidence inthe state of science in this field.

  5. High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process

    NASA Astrophysics Data System (ADS)

    Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu

    2016-09-01

    Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.

  6. High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process

    NASA Astrophysics Data System (ADS)

    Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu

    2016-04-01

    Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.

  7. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  8. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

    2016-04-01

    Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations

  9. Coupled simulation of an electromagnetic heating process using the finite difference time domain method.

    PubMed

    Chen, Hao; Tang, Juming; Liu, Fang

    2007-01-01

    Due to the complexity of interactions between microwaves and food products, a reliable and efficient simulation model can be a very useful tool to guide the design of microwave heating systems and processes. This research developed a model to simulate coupled phenomena of electromagnetic heating and conventional heat transfer by combining commercial electromagnetic software with a customer built heat transfer model. Simulation results were presented and compared with experimental results for hot water and microwave heating in a single mode microwave system at 915 MHz. Good agreement was achieved, showing that this model was able to provide insight into industrial electromagnetic heating processes. PMID:18351003

  10. Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs.

    PubMed

    Liu, C C; Chien, J H; Kim, J H; Chuang, Y F; Cheng, D T; Anderson, W S; Lenz, F A

    2015-09-10

    Cross-frequency coupling has been shown to be functionally significant in cortical information processing, potentially serving as a mechanism for integrating functionally relevant regions in the brain. In this study, we evaluate the hypothesis that pain-related gamma oscillatory responses are coupled with low-frequency oscillations in the frontal lobe, amygdala and hippocampus, areas known to have roles in pain processing. We delivered painful laser pulses to random locations on the dorsal hand of five patients with uncontrolled epilepsy requiring depth electrode implantation for seizure monitoring. Two blocks of 40 laser stimulations were delivered to each subject and the pain-intensity was controlled at five in a 0-10 scale by adjusting the energy level of the laser pulses. Local-field-potentials (LFPs) were recorded through bilaterally implanted depth electrode contacts to study the oscillatory responses upon processing the painful laser stimulations. Our results show that painful laser stimulations enhanced low-gamma (LH, 40-70 Hz) and high-gamma (HG, 70-110 Hz) oscillatory responses in the amygdala and hippocampal regions on the right hemisphere and these gamma responses were significantly coupled with the phases of theta (4-7 Hz) and alpha (8-1 2 Hz) rhythms during pain processing. Given the roles of these deep brain structures in emotion, these findings suggest that the oscillatory responses in these regions may play a role in integrating the affective component of pain, which may contribute to our understanding of the mechanisms underlying the affective information processing in humans. PMID:26168707

  11. Coupled Environmental Processes and Long-term Performance of Landfill Covers in the northern Mojave Desert

    SciTech Connect

    David Shafer; Michael Young; Stephen Zitzer; Eric McDonald; Todd Caldwell

    2004-05-12

    Evapotransiration (ET) covers have gained widespread acceptance as a closure feature for waste disposal sites, particularly in the arid and semi-arid regions of the southwestern U.S. But as landforms, ET covers are subject to change over time because of processes such as pedogenesis, hydrologic processes, vegetation establishment and change, and biological processes. To better understand the effects of coupled process changes to ET covers, a series of four primary analog sites in Yucca Flat on the Nevada Test Site, along with measurements and observations from other locations in the Mojave Desert, were selected to evaluate changes in ET covers over time. The analog sites, of varying ages, were selected to address changes in the early post-institutional control period, the 1,000-year compliance period for disposal of low-level and mixed low-level waste, and the 10,000-year compliance period for transuranic waste sites.

  12. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    NASA Astrophysics Data System (ADS)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  13. Conservation Laws for Coupled Hydro-mechanical Processes in Unsaturated Porous Media: Theory and Implementation

    SciTech Connect

    Borja, R I; White, J A

    2010-02-19

    We develop conservation laws for coupled hydro-mechanical processes in unsaturated porous media using three-phase continuum mixture theory. From the first law of thermodynamics, we identify energy-conjugate variables for constitutive modeling at macroscopic scale. Energy conjugate expressions identified relate a certain measure of effective stress to the deformation of the solid matrix, the degree of saturation to the matrix suction, the pressure in each constituent phase to the corresponding intrinsic volume change of this phase, and the seepage forces to the corresponding pressure gradients. We then develop strong and weak forms of boundary-value problems relevant for 3D finite element modeling of coupled hydro-mechanical processes in unsaturated porous media. The paper highlights a 3D numerical example illustrating the advances in the solution of large-scale coupled finite element systems, as well as the challenges in developing more predictive tools satisfying the basic conservation laws and the observed constitutive responses for unsaturated porous materials.

  14. Theory and computational modeling: Medium reorganization and donor/acceptor coupling in electron transfer processes

    SciTech Connect

    Newton, M.D.; Feldberg, S.W.; Smalley, J.F.

    1998-03-01

    The continuing goal is to convert the rapidly accumulating mechanistic information about electron transfer (et) kinetics (often representable in terms of simple rate constants) into precise tools for fine-tuned control of the kinetics and for design of molecular-based systems which meet specified et characteristics. The present treatment will be limited to the kinetic framework defined by the assumption of transition state theory (TST). The primary objective of this paper is to report recent advances in the theoretical formulation, calculation, and analysis of energetics and electronic coupling pertinent to et in complex molecular aggregates. The control of et kinetics (i.e., enhancing desired processes, while inhibiting others) involves, of course, both system energetics (especially reorganization energies (E{sub r}) and free energy changes ({Delta}G{sup 0})) and electronic coupling of local D and A sites, which for thermal processes is most directly relevant only after the system has reached the appropriate point (or region) along the reaction coordinate (i.e., the transition state). The authors first discuss TST rate constant models, emphasizing genetic features, but also noting some special features arising when metal electrodes are involved. They then turn to a consideration of detailed aspects of medium reorganization and donor/acceptor coupling. With these theoretical tools in hand, they examine the results of recent applications to complex molecular systems using the techniques of computational quantum chemistry and electrostatics, together with detailed analysis of the numerical results and comparison with recent electrochemical kinetic data.

  15. Treatment response in couple therapy: Relationship adjustment and individual functioning change processes.

    PubMed

    Knobloch-Fedders, Lynne M; Pinsof, William M; Haase, Claudia M

    2015-10-01

    This study, a naturalistic investigation of the process of change in relationship adjustment and individual functioning during conjoint therapy, examined the first 8 sessions of a multisystemic model of couple therapy, integrative problem-centered metaframeworks (Breunlin, Pinsof, Russell, & Lebow, 2011; Pinsof, Breunlin, Russell, & Lebow, 2011). The sample consisted of 125 heterosexual couples who reported on their relationship adjustment and individual functioning before every session using the Systemic Therapy Inventory of Change (Pinsof et al., 2009; Pinsof, Zinbarg, et al., in press). Data were analyzed using dyadic latent growth curve and cross-lagged models. For both men and women, relationship adjustment and individual functioning showed nonlinear change, increasing during Sessions 1-4 and stabilizing during Sessions 5-8. At pretreatment, women reported lower levels of relationship adjustment than men; no gender differences existed in initial levels of individual functioning or in the change trajectories of relationship adjustment or individual functioning. Higher relationship adjustment predicted positive change in individual functioning for men (but not for women). In contrast, there were no cross-lagged effects of individual functioning on relationship adjustment for men or women. The results demonstrate the importance of examining the processes by which relational and individual pathology respond to couple-based interventions. PMID:26376428

  16. Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing

    NASA Astrophysics Data System (ADS)

    Račiukaitis, G.; Grubinskas, S.; Gečys, P.; Gedvilas, M.

    2013-07-01

    Selectiveness of the laser processing is the top-most important for applications of the processing technology in thin-film electronics, including photovoltaics. Coupling of laser energy in multilayered thin-film structures, depending on photo-physical properties of the layers and laser wavelength was investigated experimentally and theoretically. Energy coupling within thin films highly depends on the film structure. The finite element and two-temperature models were applied to simulate the energy and temperature distributions inside the stack of different layers of a thin-film solar cell during a picosecond laser irradiation. Reaction of the films to the laser irradiation was conditioned by optical properties of the layers at the wavelength of laser radiation. Simulation results are consistent with the experimental data achieved in laser scribing of copper-indium-gallium diselenide (CIGS) solar cells on a flexible polymer substrate using picosecond-pulsed lasers. Selection of the right laser wavelength (1064 nm or 1572 nm) enabled keeping the energy coupling in a well-defined volume at the interlayer interface. High absorption at inner interface of the layers triggered localized temperature increase. Transient stress caused by the rapid temperature rise facilitating peeling of the films rather than evaporation. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material.

  17. Processes, observations and parameters in a coupled surface water-groundwater model

    NASA Astrophysics Data System (ADS)

    Foglia, Laura; Hill, Mary; Mehl, Steffen; Burlando, Paolo

    2013-04-01

    Hydrological models of surface-water flow and infiltration allow for a process-based representation of recharge to ground water models. Recharge is a fundamental and often difficult to quantify component of a groundwater system, in part because recharge and hydraulic conductivity changes tend to similarly affect hydraulic heads, the most common kind of observations in groundwater systems. Here the goal is to analyze the importance of using recharge derived from hydrologic processes for groundwater model development and furthermore the importance of a spatially distributed value of recharge. To achieve the goal we followed this procedure: 1) independently calibrate and test the groundwater and hydrological models (accomplished as described in Foglia et al., 2007GW, 2009WRR, in press WRR); 2) for the hydrological model, we present a new sensitivity analysis and calibration obtained with a set of observations that provides more detail at low flows, which was identified as important by Foglia et al. (2009); 3) couple the two models (here, one-way coupling transfers infiltration from the surface-water model to the groundwater model after multiplying by an estimated factor); 4) identify important parameters and observations using a sensitivity analysis conducted with linear statistics for this computationally demanding model; 5) use regression in an hypothesis testing framework to explore parameter and observation importance further and also explore resulting estimates and model fit. The analysis is carried out using s physically based models of groundwater flow (MOFLOW-2000) and surface hydrology (TOPKAPI) developed for the Maggia Valley in Southern Switzerland. Calibration and sensitivity analysis were performed using UCODE_2005. Sensitivity analysis is used to identify the most important observations for both the individual and coupled models. As expected, the observations belonging to the hydrological model play a more significant role in the coupled calibration

  18. Contagion processes on the static and activity-driven coupling networks

    NASA Astrophysics Data System (ADS)

    Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming

    2016-03-01

    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.

  19. Interpersonal forgiveness in emotion-focused couples' therapy: relating process to outcome.

    PubMed

    Meneses, Catalina Woldarsky; Greenberg, Leslie S

    2014-01-01

    The objective of this study was to relate the in-session processes involved in interpersonal forgiveness to outcome. The sample consisted of 33 couples who received 10-12 sessions of Emotion-focused couple therapy with the aim of resolving various forms of emotional injuries (i.e., transgression that violates the expectations of a close relationship, which leaves one partner feeling hurt and angry). The results of the present study were based on the analyses of 205 video-taped segments from 33 couples' therapies. Hypotheses relating the role of three in-session components of resolution, the injurer's "expression of shame"; the injured partner's "accepting response" to the shame, and the injured partner's "in-session expression of forgiveness", to outcome were tested using hierarchical linear regression analyses. Outcome measures included the Enright Forgiveness Inventory (The Enright Forgiveness Inventory user's manual. Madison: The International Forgiveness Institute, 2000), the Dyadic Adjustment Scale (Journal of Marriage and Family, 1976; 13: 723) and the The Interpersonal Trust Scale (Trust; Journal of Personality and Social Psychology, 1985; 49: 95). PMID:25059412

  20. Modeling coupled thermal-mechanical processes of frozen soil induced by borehole heat exchanger

    NASA Astrophysics Data System (ADS)

    Shao, H.

    2015-12-01

    To utilize the shallow geothermal energy, heat pumps are often coupled with Borehole Heat Exchangers (BHE) to provide heating and cooling for buildings. In cold regions, soil freezing around the BHE is a potential problem which will dramatically influence the underground soil temperature distribution, subsequently the inlet and outlet refrigerant temperature of the BHE, and finally the efficiency of the heat pump. In this study, a numerical model has been developed to simulate the coupled temperature evolution both inside the BHE, and the propagating freezing front in the surrounding soil. The coupled model was validated against analytical solutions and experimental data. The influence of the freezing process on the overall system performance is investigated by comparing one long BHE configuration without freezing and another short one with latent heat from the frozen groundwater. It is found that when freezing happens, the coefficient of performance (COP) of the heat pump will decrease by around 0.5, leading to more electricity consumption. Furthermore, analysis of the simulation result reveals that the exploitation of latent heat through groundwater freezing is only economically attractive if electricity price is low and interest rate high, and it is not the case is most European countries.

  1. Advanced Simulation of Coupled Earthquake and Tsunami Events (ASCETE) - Simulation Techniques for Realistic Tsunami Process Studies

    NASA Astrophysics Data System (ADS)

    Behrens, Joern; Bader, Michael; Breuer, Alexander N.; van Dinther, Ylona; Gabriel, Alice-A.; Galvez Barron, Percy E.; Rahnema, Kaveh; Vater, Stefan; Wollherr, Stephanie

    2015-04-01

    At the End of phase 1 of the ASCETE project a simulation framework for coupled physics-based rupture generation with tsunami propagation and inundation is available. Adaptive mesh tsunami propagation and inundation by discontinuous Galerkin Runge-Kutta methods allows for accurate and conservative inundation schemes. Combined with a tree-based refinement strategy to highly optimize the code for high-performance computing architectures, a modeling tool for high fidelity tsunami simulations has been constructed. Validation results demonstrate the capacity of the software. Rupture simulation is performed by an unstructured tetrahedral discontinuous Galerking ADER discretization, which allows for accurate representation of complex geometries. The implemented code was nominated for and was selected as a finalist for the Gordon Bell award in high-performance computing. Highly realistic rupture events can be simulated with this modeling tool. The coupling of rupture induced wave activity and displacement with hydrodynamic equations still poses a major problem due to diverging time and spatial scales. Some insight from the ASCETE set-up could be gained and the presentation will focus on the coupled behavior of the simulation system. Finally, an outlook to phase 2 of the ASCETE project will be given in which further development of detailed physical processes as well as near-realistic scenario computations are planned. ASCETE is funded by the Volkswagen Foundation.

  2. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOEpatents

    McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  3. A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes

    NASA Technical Reports Server (NTRS)

    Carpenter, Russell; Lee, Taesul

    2008-01-01

    Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.

  4. Parallel processing implementation for the coupled transport of photons and electrons using OpenMP

    NASA Astrophysics Data System (ADS)

    Doerner, Edgardo

    2016-05-01

    In this work the use of OpenMP to implement the parallel processing of the Monte Carlo (MC) simulation of the coupled transport for photons and electrons is presented. This implementation was carried out using a modified EGSnrc platform which enables the use of the Microsoft Visual Studio 2013 (VS2013) environment, together with the developing tools available in the Intel Parallel Studio XE 2015 (XE2015). The performance study of this new implementation was carried out in a desktop PC with a multi-core CPU, taking as a reference the performance of the original platform. The results were satisfactory, both in terms of scalability as parallelization efficiency.

  5. Strong Asymmetric Coupling of Two Parallel Exclusion Processes: Effect of Unequal Injection Rates

    NASA Astrophysics Data System (ADS)

    Xiao, Song; Dong, Peng; Zhang, Yingjie; Liu, Yanna

    2016-03-01

    In this letter, strong asymmetric coupling of two parallel exclusion processes: effect of unequal injection rates will be investigated. It is a generalization of the work of Xiao et al. (Phys. Lett. A 8, 374 (2009)), in which the particles only move on two lanes with rate 1 toward right. We can obtain the diverse phase diagram and density profiles of the system. The vertical cluster mean-field approach and extensively Monte Carlo simulations are used to study the system, and theoretical predictions are in excellent agreement with simulation results.

  6. Sensitivity analysis of coupled groundwater processes within a land surface model.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Miller, N. L.; Kollet, S. J.

    2004-05-01

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budgets that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, models for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM2.0) and a variably-saturated groundwater model (ParFlow) have been coupled as single model, in single-column and distributed form. An initial set of single column simulations based on data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) and synthetic data demonstrate the temporal dynamics of both of the coupled models. A 15-year single-column simulation using the data from the Usadievskiy catchment in Valdai, Russia demonstrate the coupled model's ability to accurately predict the soil moisture profile and location of the water table, in addition to water and energy balance within the watershed. The distributed coupled model will also be demonstrated using a series of spatially variable subsurface parameter runs, which will be used to investigate upscaling in land-surface models. The coupled model will ultimately be used to assist

  7. Sensitivity Analysis of Coupled Groundwater Processes within a Land Surface Model

    SciTech Connect

    Maxwell, R M; Miller, N L; Kollet, S J

    2004-05-05

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budgets that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, models for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM2.0) and a variably-saturated groundwater model (ParFlow) have been coupled as single model, in single-column and distributed form. An initial set of single column simulations based on data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) and synthetic data demonstrate the temporal dynamics of both of the coupled models. A 15-year single-column simulation using the data from the Usadievskiy catchment in Valdai, Russia demonstrate the coupled model's ability to accurately predict the soil moisture profile and location of the water table, in addition to water and energy balance within the watershed. The distributed coupled model will also be demonstrated using a series of spatially variable subsurface parameter runs, which will be used to investigate upscaling in land-surface models. The coupled model will ultimately be used to assist

  8. The Experience of Chinese Couples Undergoing In Vitro Fertilization Treatment: Perception of the Treatment Process and Partner Support

    PubMed Central

    Ying, Li-Ying; Wu, Lai Har; Loke, Alice Yuen

    2015-01-01

    Background Couples undergoing In Vitro Fertilization (IVF) Treatment suffer as dyads from the stressful experience of the painful treatment and the fear that the IVF cycle will fail. They are likely to report that their marital relationship has become unstable due to the prolonged period of treatment. Methods This is a qualitative study that was conducted to explore the experiences that Chinese couples have had with IVF treatment, especially their perceptions of the process and the support between couples. Results The interviews revealed that couples suffered from the process, experiencing physical and emotional pain, struggling with the urgency and inflexibility of bearing a child, and experiencing disturbances in their daily routines and work. The participants described how they endured the hardships as a couple and how it affected their relationship. The couples felt that sharing feelings and supporting each other contribute to psychological well-being and improves the marital relationship. They also identified some unfavorable aspects in their partner relationship. They were ambivalent about receiving social support from friends and family members. Conclusions With the couples indicating that the support that they received from each other affected their experience during the treatment process, it is suggested that a supportive intervention that focuses on enhancing the partnership of the couples and dealing with their inflexibility on the issue of bearing a child might result in improvements in the psychological status and marital relationship of infertile couples undergoing IVF treatment. PMID:26431545

  9. Neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat.

    PubMed

    Jeffrey-Gauthier, Renaud; Guillemot, Jean-Paul; Piché, Mathieu

    2013-08-01

    Neuroimaging methods such as functional magnetic resonance imaging (fMRI) have been used extensively to investigate pain-related cerebral mechanisms. However, these methods rely on a tight coupling of neuronal activity to hemodynamic changes. Because pain may be associated with hemodynamic changes unrelated to local neuronal activity (eg, increased mean arterial pressure [MAP]), it is essential to determine whether the neurovascular coupling is maintained during nociceptive processing. In this study, local field potentials (LFP) and cortical blood flow (CBF) changes evoked by electrical stimulation of the left hind paw were recorded concomitantly in the right primary somatosensory cortex (SI) in 15 rats. LFP, CBF, and MAP changes were examined in response to stimulus intensities ranging from 3 to 30 mA. In addition, LFP, CBF, and MAP changes evoked by a 10-mA stimulation were examined during immersion of the tail in non-nociceptive or nociceptive hot water (counter-stimulation). SI neurovascular coupling was altered for stimuli of nociceptive intensities (P<0.001). This alteration was intensity-dependent and was strongly associated with MAP changes (r=0.98, P<0.001). However, when the stimulus intensity was kept constant, SI neurovascular coupling was not significantly affected by nociceptive counter-stimulation (P=0.4), which similarly affected the amplitude of shock-evoked LFP and CBF changes. It remains to be determined whether such neurovascular uncoupling occurs in humans, and whether it also affects other regions usually activated by painful stimuli. These results should be taken into account for accurate interpretation of fMRI studies that involve nociceptive stimuli associated with MAP changes. PMID:23707276

  10. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-01

    Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  11. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often

  12. A general strategy for nanohybrids synthesis via coupled competitive reactions controlled in a hybrid process.

    PubMed

    Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun

    2015-01-01

    A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesis can be realized by the hybrid process, which enables us to investigate nanohybrid formation at each stage through their solution color changes and TEM images. By adjusting the bi-channel solvents and kinetic parameters of each stage, the primary components of alloyed cores and the second components of transition metal doping ZnO or Al2O3 as surface coatings can be successively formed. The core alloying and shell gradient-doping strategy can efficiently eliminate the crystal lattice mismatch in different components. Consequently, varieties of gradient core-shell nanohybrids can be synthesized using CoM, FeM, AuM, AgM (M = Zn or Al) alloys as cores and transition metal gradient-doping ZnO or Al2O3 as shells, endowing these nanohybrids with unique magnetic and optical properties (e.g., high temperature ferromagnetic property and enhanced blue emission). PMID:25818342

  13. Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling

    NASA Astrophysics Data System (ADS)

    Bäcker, V.; Klocke, F.; Wegner, H.; Timmer, A.; Grzhibovskis, R.; Rjasanow, S.

    2010-06-01

    Highly stressed components of aircraft engines, like turbine blades, have to satisfy stringent requirements regarding durability and reliability. The induction of compressive stresses and strain hardening in their surface layer has proven as a promising method to significantly increase their fatigue resistance. The required surface layer properties can be achieved by deep rolling. The determination of optimal process parameters still requires elaborate experimental set-up and subsequent time- and cost-extensive measurements. In previous works the application of the Finite Element Method (FEM) was proposed as an effective and cost reducing alternative to predict the surface layer state for given process parameters. However, FEM requires very fine mesh in the surface layer to resolve the high stress gradients with sufficient accuracy. The hereby caused high time and memory requirements render an efficient simulation of complete turbine components as impossible. In this article a solution is offered by coupling the FEM with the Boundary Elements Method (BEM). It enables the computing of large scale models at low computational cost and high result accuracy. Different approaches of the FEM/BEM-coupling for the simulation of deep rolling are examined with regard to their stability and required computing time.

  14. A General Strategy for Nanohybrids Synthesis via Coupled Competitive Reactions Controlled in a Hybrid Process

    PubMed Central

    Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun

    2015-01-01

    A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesis can be realized by the hybrid process, which enables us to investigate nanohybrid formation at each stage through their solution color changes and TEM images. By adjusting the bi-channel solvents and kinetic parameters of each stage, the primary components of alloyed cores and the second components of transition metal doping ZnO or Al2O3 as surface coatings can be successively formed. The core alloying and shell gradient-doping strategy can efficiently eliminate the crystal lattice mismatch in different components. Consequently, varieties of gradient core-shell nanohybrids can be synthesized using CoM, FeM, AuM, AgM (M = Zn or Al) alloys as cores and transition metal gradient-doping ZnO or Al2O3 as shells, endowing these nanohybrids with unique magnetic and optical properties (e.g., high temperature ferromagnetic property and enhanced blue emission). PMID:25818342

  15. Coupled analysis on landscape pattern and hydrological processes in Yanhe watershed of China.

    PubMed

    Li, J; Zhou, Z X

    2015-02-01

    As a typical experimental Soil and Water Conservation District, Yanhe watershed has long been plagued by soil erosion due to severe human disturbances. Exerting remote sensing (RS) and geographic information system (GIS) technology, this paper firstly analyzed and simulated ecological hydrological process in Yanhe watershed based on SWAT model, constructed a comprehensive landscape indices which was closely related to soil erosion, and reflected the coupling relationship between regional landscape pattern change and soil erosion. The results are as follows: (1) Areas of different land use types remained relatively stable from 1990 to 2000 and then changed drastically from 2000 to 2010, which was characterized by lawn expansion and cultivated land shrinkage. (2) In terms of the spatial heterogeneity of hydrological response unit (HRUs), the correlation coefficient of seven selected landscape indices and runoff was very small, and cannot pass all significant testing. But correlation between the indices and sediment yield except for Total Core Area (TCA) and Interspersion and Juxtaposition Index (IJI) was remarkable. (3) According to 'the source-sink' theory of soil erosion, new landscape index-slope-HRU landscape index (SHLI) was built, and reflected the relationship between landscape pattern and soil erosion processes to a certain extent. (4) Coupling relationship between SHLI in 2010 and annual sediment was very prominent. In the sub-basin scale, SHLI has obvious regional differentiation from annual sediment. PMID:25461094

  16. Penrose process in a charged axion-dilaton coupled black hole

    NASA Astrophysics Data System (ADS)

    Ganguly, Chandrima; SenGupta, Soumitra

    2016-04-01

    Using the Newman-Janis method to construct the axion-dilaton coupled charged rotating black holes, we show that the energy extraction from such black holes via the Penrose process takes place from the axion/Kalb-Ramond field energy responsible for rendering the angular momentum to the black hole. Determining the explicit form for the Kalb-Ramond field strength, which is argued to be equivalent to spacetime torsion, we demonstrate that at the end of the energy extraction process, the spacetime becomes torsion free with a spherically symmetric non-rotating black hole remnant. In this context, applications to physical phenomena, such as the emission of neutral particles in astrophysical jets, are also discussed. It is seen that the infalling matter gains energy from the rotation of the black hole, or equivalently from the axion field, and that it is ejected as a highly collimated astrophysical jet.

  17. Micro-Macro Coupling in Plasma Self-Organization Processes during Island Coalescence

    SciTech Connect

    Wan Weigang; Lapenta, Giovanni

    2008-01-25

    The collisionless island coalescence process is studied with particle-in-cell simulations, as an internal-driven magnetic self-organization scenario. The macroscopic relaxation time, corresponding to the total time required for the coalescence to complete, is found to depend crucially on the scale of the system. For small-scale systems, where the macroscopic scales and the dissipation scales are more tightly coupled, the relaxation time is independent of the strength of the internal driving force: the small-scale processes of magnetic reconnection adjust to the amount of the initial magnetic flux to be reconnected, indicating that at the microscopic scales reconnection is enslaved by the macroscopic drive. However, for large-scale systems, where the micro-macro scale separation is larger, the relaxation time becomes dependent on the driving force.

  18. Numerical simulation of fine blanking process using fully coupled advanced constitutive equations with ductile damage

    NASA Astrophysics Data System (ADS)

    Labergere, C.; Saanouni, K.; Benafia, S.; Galmiche, J.; Sulaiman, H.

    2013-05-01

    This paper presents the modelling and adaptive numerical simulation of the fine blanking process. Thermodynamically-consistent constitutive equations, strongly coupled with ductile damage, together with specific boundary conditions (particular command of forces on blank holder and counterpunch) are presented. This model is implemented into ABAQUS/EXPLICIT using the Vumat user subroutine and connected with an adaptive 2D remeshing procedure. The different material parameters are identified for the steel S600MC using experimental tensile tests conducted until the final fracture. A parametric study aiming to examine the sensitivity of the process parameters (die radius, clearance die/punch) to the punch force and fracture surfaces topology (convex zone, sheared zone, fracture zone and the burr).

  19. Lattice Boltzmann technique for heat transport phenomena coupled with melting process

    NASA Astrophysics Data System (ADS)

    Ibrahem, A. M.; El-Amin, M. F.; Mohammadein, A. A.; Gorla, Rama Subba Reddy

    2016-04-01

    In this work, the heat transport phenomena coupled with melting process are studied by using the enthalpy-based lattice Boltzmann method (LBM). The proposed model is a modified version of thermal LB model, where could avoid iteration steps and ensures high accuracy. The Bhatnagar-Gross-Krook (BGK) approximation with a D1Q2 lattice was used to determine the temperature field for one-dimensional melting by conduction and multi-distribution functions (MDF) with D2Q9 lattice was used to determine the density, velocity and temperature fields for two-dimensional melting by natural convection. Different boundary conditions including Dirichlet, adiabatic and bounce-back boundary conditions were used. The influence of increasing Rayleigh number (from 103 to 105) on temperature distribution and melting process is studied. The obtained results show that a good agreement with the analytical solution for melting by conduction case and with the benchmark solution for melting by convection.

  20. Modeling the coupled mechanics, transport, and growth processes in collagen tissues.

    SciTech Connect

    Holdych, David J.; Nguyen, Thao D.; Klein, Patrick A.; in't Veld, Pieter J.; Stevens, Mark Jackson

    2006-11-01

    The purpose of this project is to develop tools to model and simulate the processes of self-assembly and growth in biological systems from the molecular to the continuum length scales. The model biological system chosen for the study is the tendon fiber which is composed mainly of Type I collagen fibrils. The macroscopic processes of self-assembly and growth at the fiber scale arise from microscopic processes at the fibrillar and molecular length scales. At these nano-scopic length scales, we employed molecular modeling and simulation method to characterize the mechanical behavior and stability of the collagen triple helix and the collagen fibril. To obtain the physical parameters governing mass transport in the tendon fiber we performed direct numerical simulations of fluid flow and solute transport through an idealized fibrillar microstructure. At the continuum scale, we developed a mixture theory approach for modeling the coupled processes of mechanical deformation, transport, and species inter-conversion involved in growth. In the mixture theory approach, the microstructure of the tissue is represented by the species concentration and transport and material parameters, obtained from fibril and molecular scale calculations, while the mechanical deformation, transport, and growth processes are governed by balance laws and constitutive relations developed within a thermodynamically consistent framework.

  1. Plasma surface kinetics studies of silicon dioxide etch process in inductively coupled fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Chang, Won-Seok; Yu, Dong-Hun; Cho, Deog-Gyun; Yook, Yeong-Geun; Chun, Poo-Reum; Lee, Se-Ah; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    With continuous decrease of nanoscale design rule, plasma etching processes to form high aspect ratio contact hole still remains a challenge to overcome their inherent drawbacks such as bowing and twisted feature. Due to their complexities there still exist big gaps between current research status and predictable modeling of this process. To address this issue, we proposed a surface kinetic model of silicon nitride etch process under inductively coupled fluorocarbon plasmas. For this work, the cut-off probe and quadrapole mass spectroscopy were used for measuring electrical plasma properties, the ion and neutral radical species. Furthermore, the systematic surface analysis was performed to investigate the thickness and chemical bonding of polymer passivation layer during the etch process. The proposed semi-global surface kinetic model can consider deposition of polymer passivation layer and silicon nitride etching self-consistently. The predicted modeling results showed good agreement with experimental data. We believe that our research will provide valuable information to avoid the empirical development of plasma etching process.

  2. Report of the second meeting of the consultants on coupled processes associated with geological disposal of nuclear waste

    SciTech Connect

    Tsang, Chin-Fu; Mangold, D.C.

    1985-09-01

    The second meeting of the Consultants on Coupled Processes Associated with Geological Disposal of Nuclear Waste occurred on January 15-16, 1985 at Lawrence Berkeley Laboratory (LBL). All the consultants were present except Dr. K. Kovari, who presented comments in writing afterward. This report contains a brief summary of the presentations and discussions from the meeting. The main points of the speakers' topics are briefly summarized in the report. Some points that emerged during the discussions of the presentations are included in the text related to the respective talks. These comments are grouped under the headings: Comments on Coupled Processes in Unsaturated Fractured Porous Media, Comments on Overview of Coupled Processes, Presentations by Consultants on Selected Topics of Current Interest in Coupled Processes, and Recommendations for Underground Field Tests with Applications to Three Geologic Environments.

  3. Relevance of the time-quasi-polynomials in the classic linear thermodynamic theory of coupled transport processes

    NASA Astrophysics Data System (ADS)

    Mészáros, Cs.; Kirschner, I.; Bálint, Á.

    2014-07-01

    A general description of the basic system of ordinary differential equations of coupled transport processes is given within framework of a linear approximation and treated by tools of matrix analysis and group representation theory. It is shown that the technique of hyperdyads directly generalizes the method of simple dyadic decomposition of operators used earlier in the classical linear irreversible thermodynamics and leads to possible new applications of the concept of quasi-polynomials at descriptions of coupled transport processes.

  4. A Coupled GCM-Cloud Resolving Modeling System to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Peters-Lidard, Christa; Hou, Arthur; Lin, Xin

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud resolving models (CRMs) agree with observations better than traditional single column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA Satellite and field campaign cloud related data sets can provide initial conditions as well as validation for both the MMF and CRMs. Also we have implemented a Land Information System (LIS that includes the CLM and NOAH land surface models into the MMF. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM) This modeling system has been applied and tested its performance for two different climate scenarios, El Nino (1998) and La Nina (1999). The coupled new modeling system produced more realistic propagation and intensity of tropical rainfall systems and intraseasonal oscillations, and diurnal variation of precipitation that are very difficult to forecast using even the state-of-the-art GCMs. In this talk I will present: (1) a brief review on GCE model and its applications on precipitation processes (both Microphysical and land processes) and (2) The Goddard MMF and the Major difference between two existing MMFs (CSU MMF and Goddard MMF) and preliminary results (the comparison with traditional GCMs).

  5. A coupled Bio-EF process for mineralization of the pharmaceuticals furosemide and ranitidine: Feasibility assessment.

    PubMed

    Olvera-Vargas, Hugo; Oturan, Nihal; Buisson, Didier; Oturan, Mehmet A

    2016-07-01

    A coupled Bio-EF treatment has been applied as a reliable process for the degradation of the pharmaceuticals furosemide (FRSM) and ranitidine (RNTD) in aqueous medium, in order to reduce the high energy consumption related to electrochemical technology. In the first stage of this study, electrochemical degradation of the drugs was assessed by the electro-Fenton process (EF) using a BDD/carbon-felt cell. Biodegradability of the drugs solutions was enhanced reaching BOD5/COD ratios close to the biodegradability threshold of 0.4, evidencing the formation of bio-compatible by-products (mainly short-chain carboxylic acids) which are suitable for biological post-treatment. Moreover, toxicity evaluation by the Microtox(®) method revealed that EF pre-treatment was able of detoxifying both, FRSM and RNTD solutions, constituting another indicator of biodegradability of EF treated solutions. In the second stage, electrolyzed solutions were treated by means of an aerobic biological process. A significant part of the short-chain carboxylic acids formed during the electrochemical phase was satisfactorily removed by the used selected microorganisms. The results obtained demonstrate the efficiency and feasibility of the integrated Bio-EF process. PMID:27155476

  6. Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation.

    PubMed

    Villa, Ricardo D; Trovó, Alam G; Nogueira, Raquel F Pupo

    2010-02-15

    In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p,p'-DDT (DDT) and p,p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments, Triton X-100 (TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT), 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC(eff)). The wastewater obtained was then treated using a solar photo-Fenton process. After 6h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu, Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation. PMID:19853992

  7. Etch Process Sensitivity To An Inductively Coupled Plasma Etcher Treated With Fluorine-Based Plasma

    NASA Astrophysics Data System (ADS)

    Xu, Songlin; Sun, Zhiwen; Qian, Xueyu; Yin, Gerald

    1997-10-01

    Significant etch rate drop after the treatment of an etch chamber with Fluorine-based plasma has been found for some silicon etch processes on an inductively coupled plasma reactor, which might cause problems in IC production line once the etch chamber runs alternative processes with F-based and F-free chemistry, or needs frequent cleaning with F-plasma. In this work, a systematic study of the root cause of process sensitivity to the etch chamber treated with F-plasma has been conducted. The experimental results show that pressure is a key factor to affect the etch rate drop. Processes at high pressure are more sensitive than those at low pressure because the quenching of neutral reactive species becomes more severe after the F-treatment. O2 addition also increases the etch rate sensitivity, basically due to higher O2(subscript: )concentration after F-treatment which enhances the oxidation of silicon. The EDX and XPS elemental analysis of the chamber interior wall reveals a significant composition change after the interaction with F-plasma, the altered surface might accelerate the recombination of free radical species.

  8. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    SciTech Connect

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  9. Vertically Integrated Models for CO2 Storage with Coupled Thermal Processes

    NASA Astrophysics Data System (ADS)

    Gasda, S. E.; Gray, W. G.; Dahle, H. K.

    2014-12-01

    CO2 storage involves coupled processes that affect the migration and ultimate fate of injected CO2 over multiple length and time scales. Coupled thermal and mechanical processes may have implications for storage security, including thermally induced fracturing and loss of caprock integrity near the wellbore. This may occur when CO2 is injected at a different temperature from reservoir conditions, e.g. Snøhvit injection, potentially leading to large temperature, density and volume changes over space and time. In addition, thermally induced density changes impact plume buoyancy that may affect large-scale migration patterns in gravity-driven systems, e.g. Sleipner injection. This interaction becomes particularly important near the critical point. Therefore, thermal processes should be considered in order to correctly capture plume migration within the reservoir. A practical modeling approach for CO2 storage at the field scale is the vertical-equilibrium (VE) model, which solves partially integrated conservation equations for flow in two lateral dimensions. This class of models is well suited for strongly segregated flows. We extend the classical VE model to nonisothermal systems by integrating the heat transport equations, focusing on thermal processes that most impact the CO2 plume. The model allows for heating/cooling of the CO2 plume through heat exchange with the surrounding environment. The upscaling procedure assumes vertically constant temperature across the plume thickness for relatively thin plumes. Conduction across the plume boundaries, into the caprock above and brine below, is modeled by an analytical heat transfer function. As a starting point, we investigate the validity of the simplifying assumptions and heat transfer boundary conditions for relatively simple systems. We find that the upscaled model compares well for systems where heat advection in the plume is the dominant heat transport mechanism. For high CO2 flux, improvements to the model can be

  10. Fiber coupling of high-power diode laser stack for direct polycarbonate processing

    NASA Astrophysics Data System (ADS)

    Vidal, E.; Quintana, I.; Azkorbebeitia, U.; Mendez, E.; Viera, G.; Galán, M.; Otaduy, D.

    2010-02-01

    We present a novel optical system for fiber coupling of a commercial high power diode laser stack and the application of this laser system to transmission welding of engineering thermoplastics. The diode laser stack is made up of two 20% fill factor bars, emitting at 808 nm and with a total maximum output power of 120W CW. The stack was collimated using FSAC micro-optics lenses in the fast and slow axis, with a full angle divergence of <4mrad and <25mrad respectively. The optical design and simulations were carried out using ZEMAX®. Based on the design we built an optical set up, which is divided in two subsystems. The first one collimates the laser beam in order to achieve the best focus and couple it into the 400μm core fiber with NA0.22 and 70% efficiency. The second subsystem is designed for beam conformation after the fiber output, using collimation and beam shaping to have a Gaussian beam profile on the work piece. The laser system was applied to study the welding of polycarbonate plastics, based on the effects of selected welding parameters on the seam geometry and surface integrity. The quality of the spot welding has been analyzed obtaining welded seams with a mean diameter about 500-600μm, preserving the good technological properties of the thermoplastic considered in this work. The results show that we have successfully developed a novel laser system which is highly efficient for thermoplastics processing.

  11. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    SciTech Connect

    Janecky, D.R.

    1988-09-21

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs.

  12. “The Best is Always Yet to Come”: Relationship Stages and Processes Among Young LGBT Couples

    PubMed Central

    Macapagal, Kathryn; Greene, George J.; Rivera, Zenaida A.; Mustanski, Brian

    2015-01-01

    Limited research has examined relationship development among lesbian, gay, bisexual, and transgender (LGBT) couples in emerging adulthood. A better understanding of LGBT couples can inform the development of relationship education programs that reflect their unique needs. The following questions guided this study: 1) what are the stages and processes during young LGBT couples’ relationship development? and 2) how do these compare to existing literature on heterosexual adults? A secondary goal was to explore similarities and differences between couples assigned male (MAAB) and female at birth (FAAB). Thirty-six couples completed interviews on their relationship history. Qualitative analyses showed that relationship stages and processes were similar to past research on heterosexuals, but participants’ subjective experiences reflected their LGBT identities and emerging adulthood, which exerted additional stress on the relationship. These factors also affected milestones indicative of commitment among heterosexual adults (e.g., introducing partner to family). Mixed-methods analyses indicated that MAAB couples described negotiating relationship agreements and safe sex in more depth than FAAB couples. Relationship development models warrant modifications to consider the impact of sexual and gender identity and emerging adulthood when applied to young LGBT couples. These factors should be addressed in interventions to promote relationship health among young LGBT couples. PMID:26053345

  13. MI Coupling Processes in the Regions of Diffuse Aurora: Ionospheric Outlook

    NASA Astrophysics Data System (ADS)

    Khazanov, George V.; Glocer, Alex; Sibeck, David

    2016-04-01

    The precipitation of high-energy magnetospheric electrons in the diffuse aurora contributes significant energy flux into the Earth's ionosphere. In the diffuse aurora, precipitating electrons initially injected from the plasma sheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These initially precipitating electrons of magnetospheric origin can be additionally reflected back into the magnetosphere, leading to a series of multiple reflections that can greatly influence the initially precipitating flux at the upper ionospheric boundary, the resultant population of secondary electrons, and electrons cascading toward lower energies. It is found that magnetosphere-ionosphere coupling is the key element in the formation of electron distribution function in the regions of diffuse aurora at ionospheric altitudes.

  14. Localization in covariance matrices of coupled heterogenous Ornstein-Uhlenbeck processes

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo

    2014-12-01

    We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitative agreement with some stylized facts of financial markets. Through the presented model formulas are given for the analysis of heterogeneous time series. Furthermore evidence for a localization transition in eigenvectors related to small and large eigenvalues in cross-correlations analysis of this model is found, and a simple explanation of localization phenomena in financial time series is provided. Finally we identify both in our model and in real financial data an inverted-bell effect in correlation between localized components and their local temperature: high- and low-temperature components are the most localized ones.

  15. In situ vitrification: Numerical studies of coupled heat transfer and viscous flow processes

    NASA Astrophysics Data System (ADS)

    Carey, Graham F.; MacKinnon, Robert J.; Murray, Paul E.

    1990-09-01

    This report describes the formulation, results and conclusions of a series of numerical studies performed to support the Idaho National Engineering Laboratory (INEL) In Situ Vitrification (ISV) treatability study. These studies were designed to explore some of the questions related to the dominant physical phenomena associated with the coupled electric field, heat transfer, and fluid flow processes. The work examines the case of a 3-D axisymmetric problem with a central electrode. Such issues as the form of an electric heating model, choice of boundary conditions, latent heat effects, and conductive and convective transport are considered. Some important conclusions and recommendations are made in relation to the convective effects, determination of property parameters, and the issue of a valid electrical heating model.

  16. In situ vitrification: Numerical studies of coupled heat transfer and viscous flow processes

    SciTech Connect

    Carey, G.F.; MacKinnon, R.J.; Murray, P.E.

    1990-09-01

    This report describes the formulation, results and conclusions of a series of numerical studies performed to support the Idaho National Engineering Laboratory (INEL) In Situ Vitrification (ISV) treatability study. These studies were designed to explore some of the questions related to the dominant physical phenomena associated with the coupled electric field, heat transfer, and fluid flow processes. The work examines the case of a 3-D axisymmetric problem with a central electrode. Such issues as the form of an electric heating model, choice of boundary conditions, latent heat effects, and conductive and convective transport are considered. Some important conclusions and recommendations are made in relation to the convective effects, determination of property parameters, and the issue of a valid electrical heating model. 4 refs., 100 figs., 1 tab.

  17. Multi-scale Characterization and Prediction of Coupled Subsurface Biogeochemical-Hydrological Processes

    SciTech Connect

    Hubbard, Susan; Williams, Ken; Steefel, Carl; Banfield, Jill; Long, Phil; Slater, Lee; Pride, Steve; Jinsong Chen

    2006-06-01

    To advance solutions needed for remediation of DOE contaminated sites, approaches are needed that can elucidate and predict reactions associated with coupled biological, geochemical, and hydrological processes over a variety of spatial scales and in heterogeneous environments. Our previous laboratory experimental experiments, which were conducted under controlled and homogeneous conditions, suggest that geophysical methods have the potential for elucidating system transformations that often occur during remediation. Examples include tracking the onset and aggregation of precipitates associated with sulfate reduction using seismic and complex resistivity methods (Williams et al., 2005; Ntarlagiannis et al., 2005) as well as estimating the volume of evolved gas associated with denitrification using radar velocity. These exciting studies illustrated that geophysical responses correlated with biogeochemical changes, but also that multiple factors could impact the geophysical signature and thus a better understanding as well as integration tools were needed to advance the techniques to the point where they can be used to provide quantitative estimates of system transformations.

  18. A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes

    NASA Astrophysics Data System (ADS)

    Velazquez Escobar, Francisco; Piwowarski, Patrick; Salewski, Johannes; Michael, Norbert; Fernandez Lopez, Maria; Rupp, Anna; Muhammad Qureshi, Bilal; Scheerer, Patrick; Bartl, Franz; Frankenberg-Dinkel, Nicole; Siebert, Friedrich; Andrea Mroginski, Maria; Hildebrandt, Peter

    2015-05-01

    Phytochromes are bimodal photoswitches composed of a photosensor and an output module. Photoactivation of the sensor is initiated by a double bond isomerization of the tetrapyrrole chromophore and eventually leads to protein conformational changes. Recently determined structural models of phytochromes identify differences between the inactive and the signalling state but do not reveal the mechanism of photosensor activation or deactivation. Here, we report a vibrational spectroscopic study on bathy phytochromes that demonstrates that the formation of the photoactivated state and thus (de)activation of the output module is based on proton translocations in the chromophore pocket coupling chromophore and protein structural changes. These proton transfer steps, involving the tetrapyrrole and a nearby histidine, also enable thermal back-isomerization of the chromophore via keto-enol tautomerization to afford the initial dark state. Thus, the same proton re-arrangements inducing the (de)activation of the output module simultaneously initiate the reversal of this process, corresponding to a negative feedback mechanism.

  19. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    SciTech Connect

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-02-28

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.

  20. Coupled diffusion processes and 2D affinities of adhesion molecules at synthetic membrane junctions

    NASA Astrophysics Data System (ADS)

    Peel, Christopher; Choudhuri, Kaushik; Schmid, Eva M.; Bakalar, Matthew H.; Ann, Hyoung Sook; Fletcher, Daniel A.; Journot, Celine; Turberfield, Andrew; Wallace, Mark; Dustin, Michael

    A more complete understanding of the physically intrinsic mechanisms underlying protein mobility at cellular interfaces will provide additional insights into processes driving adhesion and organization in signalling junctions such as the immunological synapse. We observed diffusional slowing of structurally diverse binding proteins at synthetic interfaces formed by giant unilamellar vesicles (GUVs) on supported lipid bilayers (SLBs) that shows size dependence not accounted for by existing models. To model the effects of size and intermembrane spacing on interfacial reaction-diffusion processes, we describe a multistate diffusion model incorporating entropic effects of constrained binding. This can be merged with hydrodynamic theories of receptor-ligand diffusion and coupling to thermal membrane roughness. A novel synthetic membrane adhesion assay based on reversible and irreversible DNA-mediated interactions between GUVs and SLBs is used to precisely vary length, affinity, and flexibility, and also provides a platform to examine these effects on the dynamics of processes such as size-based segregation of binding and non-binding species.

  1. An EGSB-SBR based process for coupling methanogenesis and shortcut nitrogen removal.

    PubMed

    Bai, Cui; Zhang, Daijun; He, Qiang; Lu, Peili; Ai, Hainan

    2013-01-01

    An integrated process consisting of an anaerobic/anoxic expanded granular sludge bed (EGSB) reactor and an aerobic sequencing batch reactor (SBR) was developed by a mode of sequencing batch operation, in which methanogenesis, denitrification and anammox were coupled in EGSB with methanogenesis first, then denitrification and anammox simultaneously, and partial nitrification occurred in SBR for providing nitrite to EGSB. This process extended the application of the anammox process to the treatment of wastewater containing high concentrations of chemical oxygen demand (COD) and ammonium. When the volumetric exchange ratio between EGSB and SBR was controlled at 57% with the influent pH at 6-8, 74.38-83.65% of NH(4)(+)-N, 72.68-83.12% of total nitrogen (TN) and 88.34-98.86% of COD were removed in a range of 200-4,500 mg/L COD and 40-90 mg/L NH(4)(+)-N respectively. TN removal by anammox and shortcut denitrification was 26.35-58.64 and 0-32.80% of the removed nitrogen, respectively. The results showed that the contribution of anammox gradually decreased with an increase in the C/N ratio of influent, whereas the reverse was true for shortcut denitrification. The COD removal by methanogenesis was 70.89-98.79% of the removed COD, and increased with increasing C/N ratio. PMID:24135114

  2. Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters

    USGS Publications Warehouse

    Fuller, C.C.; Davis, J.A.

    1989-01-01

    Chemical and biological processes have important roles in the transport and cycling of trace elements in natural waters, but their complex interactions are often not well understood. Trace-element concentrations may, for example, be controlled by adsorption-desorption reactions at mineral surfaces, with the equilibrium strongly influenced by pH. Variations in pH due to photosynthetic activity should result in concentration fluctuations as the adsorption-desorption equilibrium shifts with pH. To investigate these interactions, we have studied the effect of diurnal cycling of pH on dissolved arsenate in a perennial stream contaminated with arsenic. As expected, a diurnal cycle in arsenate concentration was observed, but surprisingly, the arsenate cycle lags several hours behind the pH cycle. Laboratory experiments show that the lag results from a slow approach to sorption equilibrium. Our observations demonstrate that the coupling of photosynthesis and sorption processes may have an important influence on the cycling of many trace elements and emphasize the importance of understanding sorption kinetics in modelling these processes.

  3. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process.

    PubMed

    Deng, Shihai; Li, Desheng; Yang, Xue; Zhu, Shanbin; Xing, Wei

    2016-03-01

    Nitrogen pollution in ground and surface water significantly affects the environment and its organisms, thereby leading to an increasingly serious environmental problem. Such pollution is difficult to degrade because of the lack of carbon sources. Therefore, an electrochemical and biological coupling process (EBCP) was developed with a composite catalytic biological carrier (CCBC) and applied in a pilot-scale cylindrical reactor to treat wastewater with a carbon-to-nitrogen (C/N) ratio of 2. The startup process, coupling principle, and dynamic feature of the EBCP were examined along with the effects of hydraulic retention time (HRT), dissolved oxygen (DO), and initial pH on nitrogen removal. A stable coupling system was obtained after 51 days when plenty of biofilms were cultivated on the CCBC without inoculation sludge. Autotrophic denitrification, with [Fe(2+)] and [H] produced by iron-carbon galvanic cells in CCBC as electron donors, was confirmed by equity calculation of CODCr and nitrogen removal. Nitrogen removal efficiency was significantly influenced by HRT, DO, and initial pH with optimal values of 3.5 h, 3.5 ± 0.1 mg L(-1), and 7.5 ± 0.1, respectively. The ammonia, nitrate, and total nitrogen (TN) removal efficiencies of 90.1 to 95.3 %, 90.5 to 99.0 %, and 90.3 to 96.5 % were maintained with corresponding initial concentrations of 40 ± 2 mg L(-1) (NH3-N load of 0.27 ± 0.01 kg NH3-N m(-3) d(-1)), 20 ± 1 mg L(-1), and 60 ± 2 mg L(-1) (TN load of 0.41 ± 0.02 kg TN m(-3) d(-1)). Based on the Eckenfelder model, the kinetics equation of the nitrogen transformation along the reactor was N e  = N 0 exp (-0.04368 h/L(1.8438)). Hence, EBCP is a viable method for advanced low C/N ratio wastewater treatment. PMID:26564190

  4. Structural factors controlling inter-plate coupling and earthquake rupture process

    NASA Astrophysics Data System (ADS)

    Kodaira, S.

    2007-05-01

    Recent availability of a large number of ocean bottom seismographs (OBSs), a large volume of air-gun array and a long streamer cable for academics provide several new findings of lithospheric scale structures in subduction seismogenic zones. JAMSTEC has acquired long-offset seismic data using a super-densely deploy OBS (i.e. 1 - 5 km spacing OBSs along 100 - 500 km long profiles) in the Nankai seismogeinc zone, SW. Japan, since 1999. Long-offset multichannel seismic (MCS) data by a two-ship experiment, as well as conventional 2D MCS data, have been also acquired at a part of the profiles. Some of those profiles have been designed as combined onshore - offshore profiles for imaging a land-ocean transition zone. One of the most striking findings is an image of several scales of subducted seamounts/ridges in the Nankai trough seismogenic zone. We detected the subducted seamount/ridges, which are 50 - 100 km wide, distributing from near trough axis to ~ 40 km deep beneath the Japanese island. From a point of seismogenic process, an important aspect is that those structures are strongly correlated with slip zones of magnitude 8-class earthquakes, i.e.; subducted seamounts/ridge control the rupture propagations. Moreover, the most recent seismic study crossing the segmentation boundary between M=8 class earthquakes detected a high seismic velocity body forming a strongly coupled patch at the segmentation boundary. The numerical simulation incorporating all those structures explained the historic rupture patterns, and shows the occurrence of a giant earthquake along the entire Nankai trough, a distance of over 600 km long (Mw=8.7). The growth processes of a rupture revealed from the simulation are; 1) prior to the giant earthquake, a small slow event (or earthquake) occurs near the segmentation boundary, 2) this accelerates a very slow slip (slower than the plate convergent rate), at the strong patch, which reduces a degree of coupling, 3) then a rupture easily propagates

  5. Next Generation Ecosystem Experiment: Quantification and prediction of coupled processes in the terrestrial Arctic system

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Hinzman, L. D.; Graham, D. E.; Liang, L.; Norby, R.; Riley, W. J.; Rogers, A.; Rowland, J. C.; Thornton, P. E.; Torn, M. S.; Wilson, C. J.; Wullschleger, S. D.; NGEE Scientific Team

    2011-12-01

    Predicting the evolution of Arctic ecosystems to a changing climate is complicated by the many interactions and feedbacks that occur within and between components of the system. A new DOE Biological and Environmental Research project, called the Next-Generation Ecosystem Experiments (NGEE) is being initiated to address "how does permafrost degradation in a warming Arctic, and the associated changes in landscape evolution, hydrology, soil biogeochemical processes, and plant community succession, affect feedbacks to the climate system?". A multi-disciplinary team will use observations, experiments, and simulations carried out from the pore to the landscape scales to address these questions. We will combine field research (performed around thermokarst features in Alaska on the North Slope and Seward Peninsula), laboratory research using a variety of approaches and techniques, and remote sensing observations to improve modeling capabilities for high-latitude systems. Our research is organized into four interrelated 'Challenges' to quantify: (1) environmental controls on permafrost degradation and its influence on hydrological state, stocks, fluxes and pathways; (2) mechanisms that drive structural and functional responses of the tundra plant community to changing resource availability; (3) controls, mechanisms and rates driving biodegradation of soil organic matter; and (4) the impact of permafrost degradation on ecosystem albedo, energy partitioning and total climate forcing. Coordinated data acquisition will be performed using a variety of commonly-used terrestrial ecosystem characterization approaches as well as novel molecular microbiological, geophysical, isotopic and synchrotron techniques. These datasets will be used in parallel with models to identify the key controls on coupled geomechanical, hydrological, soil biogeochemical, vegetation and land-surface processes, as well as the manifestation of these coupled processes over a broad range of space and time

  6. Two-dimensional spectroscopy: An approach to distinguish Förster and Dexter transfer processes in coupled nanostructures

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Knorr, Andreas; Richter, Marten

    2015-04-01

    The linear and two-dimensional coherent optical spectra of Coulomb-coupled quantum emitters are discussed with respect to the underlying coupling processes. We present a theoretical analysis of the two different resonance energy transfer mechanisms between coupled nanostructures: Förster and Dexter interaction. Our investigation shows that the features visible in optical spectra of coupled quantum dots can be traced back to the nature of the underlying coupling mechanism (Förster or Dexter). Therefore, we discuss how the excitation transfer pathways can be controlled by choosing particular laser polarizations and mutual orientations of the quantum emitters in coherent two-dimensional spectroscopy. In this context, we analyze to what extent the delocalized double-excitonic states are bound to the optical selection rules of the uncoupled system.

  7. Control of coupling mass balance error in a process-based numerical model of surface-subsurface flow interaction

    NASA Astrophysics Data System (ADS)

    Fiorentini, Marcello; Orlandini, Stefano; Paniconi, Claudio

    2015-07-01

    A process-based numerical model of integrated surface-subsurface flow is analyzed in order to identify, track, and reduce the mass balance errors affiliated with the model's coupling scheme. The sources of coupling error include a surface-subsurface grid interface that requires node-to-cell and cell-to-node interpolation of exchange fluxes and ponding heads, and a sequential iterative time matching procedure that includes a time lag in these same exchange terms. Based on numerical experiments carried out for two synthetic test cases and for a complex drainage basin in northern Italy, it is shown that the coupling mass balance error increases during the flood recession limb when the rate of change in the fluxes exchanged between the surface and subsurface is highest. A dimensionless index that quantifies the degree of coupling and a saturated area index are introduced to monitor the sensitivity of the model to coupling error. Error reduction is achieved through improvements to the heuristic procedure used to control and adapt the time step interval and to the interpolation algorithm used to pass exchange variables from nodes to cells. The analysis presented illustrates the trade-offs between a flexible description of surface and subsurface flow processes and the numerical errors inherent in sequential iterative coupling with staggered nodal points at the land surface interface, and it reveals mitigation strategies that are applicable to all integrated models sharing this coupling and discretization approach.

  8. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    NASA Astrophysics Data System (ADS)

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-04-01

    Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO

  9. Experimental and Computational Studies of Coupled Geomechanical and Hydrologic Processes in Wellbore Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Mori, H.; Porter, M. L.; Lewis, K. C.; Kelkar, S.

    2013-12-01

    Potential leakage from wells is an important issue in the protection of groundwater resources, CO2 sequestration, and hydraulic fracturing. The first defense in all of these applications is a properly constructed well with adequate Portland cement that effectively isolates the subsurface. The chief threat for such wells is mechanical disruption of the cement, cement/steel, or cement/caprock interfaces. This can occur through wellbore operations that pressurize/depressurize the steel tubing or create temperature transients (e.g., injection, production, hydraulic fracturing, and mechanical testing) as well as reservoir-scale stresses (e.g., filling or depletion of the reservoir) and tectonic stresses (e.g., the mobility of salt). However, there is relatively limited information available on the hydrologic consequences of such processes. Toward this end, we discuss recent experiments and computational models of coupled geomechanical and hydrologic processes in wellbore systems. Triaxial coreflood experiments with tomography were conducted on synthetic wellbore systems including cement-steel, rock-cement and rock-cement-steel composites. The aim of the experiments was to induce stresses through application of axial loads in order to create defects within the cement or at the cement/steel or cement/rock interface. High injection fluid pressures (supercritical CO2 × brine) were applied to the base of the initially impermeable composites. Mechanical failure resulted in creation of permeability, which was measured as a function of time (allowing for the possibility of Portland cement to deform and modify permeability). In addition, fracture patterns were characterized using x-ray tomography. We used the computer code FEHM to study coupled hydrologic and mechanical processes in the near-wellbore environment. The wellbore model was developed as a wedge within a radially symmetric 3D volume. The grid elements consist of the steel casing, the casing-cement interface, the

  10. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    SciTech Connect

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus

  11. Coupled finite element-Monte Carlo simulation of microstructure and texture evolution during thermomechanical processing

    SciTech Connect

    Radhakrishnan, B.; Sarma, G.; Zacharia, T.

    1998-11-01

    A novel simulation technique for predicting the microstructure and texture evolution during thermomechanical processing is presented. The technique involves coupling a finite element microstructural deformation model based on crystal plasticity with a Monte Carlo simulation of recovery and recrystallization. The finite element model captures the stored energy and the crystallographic orientation distributions in the deformed microstructure. The Monte Carlo simulation captures the microstructural evolution associated with recovery and recrystallization. A unique feature of the Monte Carlo simulation is that it treats recrystallization as a heterogeneous subgrain growth process, thus providing the natural link between nucleation and growth phenomena, and quantifying the role of recovery in these phenomena. Different nucleation mechanisms based on heterogeneous subgrain growth as well as strain induced boundary migration are automatically included in the recrystallization simulation. The simulations are shown to account for the extent of prior deformation on the microstructure and kinetics of recrystallization during subsequent annealing. The simulations also capture the influence of the presence of cube orientations in the initial microstructure, and the operation of non-octahedral slip during deformation of fcc polycrystals, on the recrystallization texture.

  12. Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas

    NASA Astrophysics Data System (ADS)

    Hamann, Enrico; Post, Vincent; Kohfahl, Claus; Prommer, Henning; Simmons, Craig T.

    2015-11-01

    Numerical modeling approaches with varying complexity were explored to investigate coupled groundwater flow and geochemical processes in saline basins. Long-term model simulations of a playa system gain insights into the complex feedback mechanisms between density-driven flow and the spatiotemporal patterns of precipitating evaporites and evolving brines. Using a reactive multicomponent transport model approach, the simulations reproduced, for the first time in a numerical study, the evaporite precipitation sequences frequently observed in saline basins ("bull's eyes"). Playa-specific flow, evapoconcentration, and chemical divides were found to be the primary controls for the location of evaporites formed, and the resulting brine chemistry. Comparative simulations with the computationally far less demanding surrogate single-species transport models showed that these were still able to replicate the major flow patterns obtained by the more complex reactive transport simulations. However, the simulated degree of salinization was clearly lower than in reactive multicomponent transport simulations. For example, in the late stages of the simulations, when the brine becomes halite-saturated, the nonreactive simulation overestimated the solute mass by almost 20%. The simulations highlight the importance of the consideration of reactive transport processes for understanding and quantifying geochemical patterns, concentrations of individual dissolved solutes, and evaporite evolution.

  13. Plasma Characteristics Using Superimposed Dual Frequency Inductively Coupled Plasma Source for Next Generation Device Processing.

    PubMed

    Lee, Seung Min; Lee, Chul Hee; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kyong Nam

    2015-11-01

    U-shaped inductively coupled plasma (ICP) source was investigated as a linear plasma source for the next generation roll-to-toll flexible display processing. For the radio frequency power to the source, the dual frequency composed of 13.56 MHz and 2 MHz was used and the effect of dual frequency to the U-shaped ICP source on the plasma density, electron temperature, and plasma uniformity was investigated. As the operating condition, 200 mTorr Ar was used without operating turbo pumps. The use of superimposed dual frequency composed of 13.56 MHz + 2 MHz instead the single frequency of 13.56 MHz increased the plasma density slightly at the same total power. In addition, the addition of 2 MHz rf power to 0.4 kW while maintaining 1 kW 13.56 MHz rf power not only decreased electron temperature but also improved both the plasma uniformity and the process uniformity measured by photoresist etching. Therefore, by using the dual frequency to the U-shaped ICP source, not only the plasma density but also plasma uniformity could be improved in addition to the decrease of possible damage to the substrate. PMID:26726573

  14. Rocket experiment in a coupling process between neutral atmosphere and plasma

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Liu, H.; Abe, T.; Ono, T.; Otsuka, Y.; Saito, A.; Yamamoto, M.; Yamamoto, M. Y.

    Rocket experiment is carried out to investigate a coupling process between neutral atmosphere and plasma of thermosphere and ionosphere at Kagoshima Space Center KSC of JAXA The rocket launch window is in the evening of July 31 - August 15 2007 Momentum transfer through collisional process of the neutral atmosphere and the plasma is a basic problem of atmospheric circulation and super rotation in the low latitude thermosphere and a medium scale traveling ionospheric disturbance MS-TID occurring in the mid-latitude ionosphere but the direct observation is not yet performed In the rocket experiment we observe plasma drift velocity plasma density and temperature and its fluctuations electric field magnetic field and neutral wind The neutral winds are estimated from the movements of Lithium clouds which are released at altitudes between 150km and 300km and scatter sunlight by resonance scattering with wavelength of 670 nm The Lithium clouds are observed by CCD imagers on ground The plan of rocket experiment ground observation system and science objectives are presented

  15. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    NASA Astrophysics Data System (ADS)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  16. A coupled thermodynamic/kinetic model for diffusional processes in superalloys

    SciTech Connect

    Matan, N.; Winand, H.M.A.; Carter, P.; Karunaratne, M.; Bogdanoff, P.D.; Reed, R.C.

    1998-08-10

    A coupled thermodynamic/kinetic model for diffusional processes in superalloys is described. Use is made of the generalized force-flux equations, and therefore an accurate knowledge of thermodynamical properties of the system is a prerequisite for the calculations. Calculations can be earned out in either the lattice-fixed (Kirkendall) or the mass-invariant (Matano) frame. In order to model transformations, e.g., involving the {gamma} and {gamma}{prime} phases, the concept of an interface sub-system is introduced. The numerical accuracy and stability associated with the treatment of the moving boundary is shown to be comparable to more traditional analyses which incorporate the Murray-Landis transformation. The results from the simulations are compared with experimental information, which includes (1) concentration profiles, (2) movement of inert markers and (3) observations of porosity formation. Particular attention is paid to the simulation of Ni-Al-Cr interdiffusion in the f.c.c. phase, for which reliable thermodynamic and kinetic information is available. Similar comparisons have been made for precipitation reactions involving the {gamma}{prime} phase, although the available information is very sparse. Observations made on a number of Ni-Ni{sub 3}(Al,Ti) couples can be simulated with a reasonable degree of accuracy. Particular advantages of the method are (1) the interface between phases is treated in a novel way, which avoids numerical difficulties arising from the estimation of concentration gradients at phase boundaries, (2) it can be readily extended to multicomponent systems, and (3) the treatment of the Kirkendall drift of vacancies. It is clear that there is a great need for experimentation aimed at deducing kinetic data, e.g., diffusional mobilities, particularly for the {gamma}{prime} phase.

  17. Comprehensive Representation of Hydrologic and Geomorphic Process Coupling in Numerical Models: Internal Dynamics and Basin Evolution

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, E.; Vivoni, E. R.; Ivanov, V. Y.; Bras, R. L.

    2005-12-01

    Landscape morphology has an important control on the spatial and temporal organization of basin hydrologic response to climate forcing, affecting soil moisture redistribution as well as vegetation function. On the other hand, erosion, driven by hydrology and modulated by vegetation, produces landforms over geologic time scales that reflect characteristic signatures of the dominant land forming process. Responding to extreme climate events or anthropogenic disturbances of the land surface, infrequent but rapid forms of erosion (e.g., arroyo development, landsliding) can modify topography such that basin hydrology is significantly influenced. Despite significant advances in both hydrologic and geomorphic modeling over the past two decades, the dynamic interactions between basin hydrology, geomorphology and terrestrial ecology are not adequately captured in current model frameworks. In order to investigate hydrologic-geomorphic-ecologic interactions at the basin scale we present initial efforts in integrating the CHILD landscape evolution model (Tucker et al. 2001) with the tRIBS hydrology model (Ivanov et al. 2004), both developed in a common software environment. In this talk, we present preliminary results of the numerical modeling of the coupled evolution of basin hydro-geomorphic response and resulting landscape morphology in two sets of examples. First, we discuss the long-term evolution of both the hydrologic response and the resulting basin morphology from an initially uplifted plateau. In the second set of modeling experiments, we implement changes in climate and land-use to an existing topography and compare basin hydrologic response to the model results when landscape form is fixed (e.g. no coupling between hydrology and geomorphology). Model results stress the importance of internal basin dynamics, including runoff generation mechanisms and hydrologic states, in shaping hydrologic response as well as the importance of employing comprehensive

  18. Investigating redox processes under diffusive and advective flow conditions using a coupled omics and synchrotron approach

    NASA Astrophysics Data System (ADS)

    Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.

    2015-12-01

    FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.

  19. Coupled Biogeochemical and Hydrologic Processes Governing Arsenic Mobility Within Sediments of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Kocar, B. D.; Polizzotto, M. L.; Ying, S. C.; Benner, S. G.; Sampson, M.; Fendorf, S.

    2008-12-01

    Weathering of As-bearing rocks in the Himalayas has resulted in the transport of sediments down major river systems such as the Brahmaputra, Ganges, Red, Irrawaddy, and Mekong. Groundwater in these river basins commonly has As concentrations exceeding the World Health Organization's recommended drinking water limit (10 μg L-1) by more than an order of magnitude. Coupling of hydrology and biogeochemical processes underlies the elevated concentrations of As in these aquifers, necessitating studies that allow their deconvolution. Furthermore, to fully elucidate the biogeochemical mechanisms of sedimentary As release, the thermodynamic favorability of controlling biogeochemical reactions must be considered. We therefore used a combination of spectroscopic and wet chemical measurements to resolve the dominant processes controlling As release and transport in surficial soils/sediments within an As-afflicted field area of the Mekong delta. Based on these measurements, we assess the thermodynamic potential for As, Fe, and S reduction to transpire--major processes influencing As release and mobility. Our results illustrate that clay (0-12m deep) underlying oxbow and wetland environments are subjected to continuously reducing conditions due to ample carbon input and saturated conditions. Ensuing reductive mobilization of As from As-bearing Fe (hydr)oxides results in its migration to the underlying sandy aquifer (>12 m deep). Reactive transport modeling using PHREEQC and MIN3P, constrained with chemical and hydrologic field measurements, provides a calibrated illustration of As release and transport occurring within the clays underlying organic-rich, permanently inundated locations. These areas provide sufficient As to the aqueous phase for widespread contamination of the aquifer, and release is predicted to occur for several thousand years prior to depletion of As from the solid phase.

  20. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  1. A fast readout and processing electronics for photon counting intensified charge-coupled device

    NASA Astrophysics Data System (ADS)

    Bergamini, P.; Bonelli, G.; Tanzi, E. G.; Uslenghi, M.; Poletto, L.; Tondello, G.

    2000-04-01

    The design features and the performances of a prototype photon counting imaging detector, being developed for the international ultraviolet (UV) space mission Spectrum UV, are presented. The photon counter is an intensified charge coupled device (ICCD) in which photon events, generating an electron cascade through a high gain microchannel plate (MCP) stack, are transduced, via a phosphor screen and a fiber optics reducer, into a 3×3 pixel2, quasi-Gaussian charge distributions on a 15×15 μm2,512×512 pixel2 format CCD matrix. The CCD is read out in the frame-transfer mode at a pixel rate of 19.75 MHz, and its output data flow is acquired serially as to generate a 3×3 pixel2 event sash that sweeps dynamically the CCD matrix at the 50.6 ns rate of the readout clock. Each and every event sash is searched for the presence of events whose charge content lie within proper limits and satisfy a given set of morphological rules, i.e., a single peak charge profile. The centroid coordinates of identified events are determined with subpixel accuracy (up to a 210 bin/pixel) and subsequently stored as photon list coordinate pairs. The data acquisition and processing system is based on field programmable gate array technology and is capable of satisfying the requirements of real-time operation. The modular construction of the data acquisition and processing electronics provides a great deal of flexibility for supporting advancements in CCD readout techniques (multiple output and higher clocking speed) and of MCPs (larger formats, smaller pore, and higher dynamic range). The results of the performance verification of the data acquisition and processing system integrated with a laboratory ICCD prototype are presented and discussed.

  2. Interactions of solutes and streambed sediment. 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport.

    USGS Publications Warehouse

    Bencala, K.E.

    1984-01-01

    Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solute-streambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. -from Author

  3. Process Coupling Between Mineral Transformation and U Speciation in Acid Waste Weathered Sediments

    NASA Astrophysics Data System (ADS)

    Perdrial, N.; Kanematsu, M.; Wang, G.; Um, W.; O'Day, P. A.; Chorover, J.

    2013-12-01

    The need for better prediction of contaminant transport motivates multi-faceted lines of inquiry to build a strong bridge between molecular- and field-scale information. At Hanford (WA), millions of liters of U-containing acidic wastes have been discharged to the soil. In order to predict reactive contaminant migration in the soil, it is necessary to determine the process coupling that occurs between mineral transformation and uranium speciation in these acid-uranium waste weathered sediments. Furthermore, we seek to establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. Unweathered Hanford sediments were reacted for 365 days with acidic (pH 3), uranium bearing waste solutions in batch experiments. The presence and absence of phosphate in the waste as a control on uranium speciation was also investigated. At dedicated reaction times (7, 14, 30, 90, 180 and 365 days) solid and solution chemistry were analyzed to determine weathering trajectories and contaminant speciation. As observed by XRD and U-EXAFS, when present, PO4 exerted a strong controls over uranium speciation at all pH with the rapid precipitation of meta-ankoleite [K(UO2PO4).3H2O] and near complete immobilization of U. Over prolonged reaction time, however, small fractions of boltwoodite [K(UO2)(HSiO4).3H2O] increased in PO4-high U systems. When PO4 was excluded from the reaction systems, U speciation was indirectly controlled by the pH of the reactant solution and its effect on primary mineral weathering. In this case, U immobilization remained limited with 25 to 50% of the uranium precipitated as becquerelite ([Ca(UO2)6O4(OH)6.3H2O] or the K equivalent - compreignacite) and suspected boltwoodite. Differences between the systems are attributed to process coupling between acid chemistry and U geochemistry. Carbonate weathering contributed to rapidly buffer the pH to pH 7-8 in the absence of PO4 and to 6-7 in its presence

  4. Theory of proton-coupled electron transfer in energy conversion processes.

    PubMed

    Hammes-Schiffer, Sharon

    2009-12-21

    Proton-coupled electron transfer (PCET) reactions play an essential role in a broad range of energy conversion processes, including photosynthesis and respiration. These reactions also form the basis of many types of solar fuel cells and electrochemical devices. Recent advances in the theory of PCET enable the prediction of the impact of system properties on the reaction rates. These predictions may guide the design of more efficient catalysts for energy production, including those based on artificial photosynthesis and solar energy conversion. This Account summarizes the theoretically predicted dependence of PCET rates on system properties and illustrates potential approaches for tuning the reaction rates in chemical systems. A general theoretical formulation for PCET reactions has been developed over the past decade. In this theory, PCET reactions are described in terms of nonadiabatic transitions between the reactant and product electron-proton vibronic states. A series of nonadiabatic rate constant expressions for both homogeneous and electrochemical PCET reactions have been derived in various well-defined limits. Recently this theory has been extended to include the effects of solvent dynamics and to describe ultrafast interfacial PCET. Analysis of the rate constant expressions provides insight into the underlying physical principles of PCET and enables the prediction of the dependence of the rates on the physical properties of the system. Moreover, the kinetic isotope effect, which is the ratio of the rates for hydrogen and deuterium, provides a useful mechanistic probe. Typically the PCET rate will increase as the electronic coupling and temperature increase and as the total reorganization energy and equilibrium proton donor-acceptor distance decrease. The rate constant is predicted to increase as the driving force becomes more negative, rather than exhibit turnover behavior in the inverted region, because excited vibronic product states associated with low

  5. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    SciTech Connect

    Chen, Li; He, Ya-Ling; Kang, Qinjun; Tao, Wen-Quan

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.

  6. A coupling kinetics model for pollutant release and transport in the process of landfill settlement.

    PubMed

    Zhao, Ying; Xue, Qiang; Liu, Lei

    2012-10-01

    A coupling kinetics model is developed to simulate the release and transport of landfill leachate pollutants in a deformable municipal solid waste landfill by taking into account of landfill settlement, seepage of leachate water, hydrolyse of insoluble and degradable organic pollutants in solid phase, biodegradation of soluble and degradable organic pollutants in solid phase and aqueous one, growth of aerobic and anaerobic microorganism, and consumption of dissolved oxygen. The release and transport of organic pollutants and microorganisms in landfills in the process of landfill settlement was simulated by considering no hydraulic effect. Simulation results demonstrated that the interaction between landfill settlement and the release, transport and biodegradation of landfill leachate pollutants was significant. Porosity and saturated hydraulic conductivity were not constants because of the landfill settlement, which affected the release, transport and biodegradation of landfill leachate pollutants, and furthermore acted on the landfill settlement. The simulation results accorded with the practical situation, which preliminarily verified the reliability of the mathematical model and the numerical program in this paper. PMID:23202755

  7. The dissipated energy of electrode surfaces: Temperature jumps from coupled transport processes

    SciTech Connect

    Bedeaux, D.; Ratkje, S.K.

    1996-03-01

    Nonequilibrium thermodynamics for surfaces has been applied to the electrode surfaces of an electrochemical cell. It is shown that the temperature of the surface differs from that of the adjacent electrolyte and electrode, and that a temperature jump exists across the surface. mathematical expressions are derived for the temperature profiles of two cells at steady-state conditions. Methods for estimating transport coefficients for the coupled transport processes at the electrode surface are discussed. Possible numerical results for the temperature profile, the overpotential, and the dissipated energy are reported. The results reflect the relative importance of heat conductivities, electric conductivities, and the Peltier coefficients for the electrode surface phenomena in combination with bulk properties. Significant temperature jumps may occur at normal electrolysis conditions 10{sup 3} to 10{sup 4} A/m, and for temperature jump coefficients which are smaller than 10{sup 3} J/s K{sup 2} m{sup 2}. The overpotential may have contributions from the Peltier coefficients for the surface larger than the ohmic contribution. The method of analysis gives new information useful for heat control of electrochemical cells, electrode kinetic studies, and interpretation of overpotentials.

  8. Some characteristics of midlatitude F layer storms generated by thermosphere-plasmasphere coupling processes

    SciTech Connect

    Miller, N.J.

    1983-01-01

    In this dissertation, calculations are interpreted that have been made to describe stormtime variations in equinoctial dayside plasma parameters when the variations are primarily caused by processes dependent upon collisional coupling between the thermosphere and the plasmasphere. The calculations are made with a computer model formed by linking two theoretical models: a pre-existing thermospheric model that describes dayside variations in thermospheric parameters during stormtime heating of the thermosphere; a plasmaspheric model which was developed to describe dayside plasmaspheric variations caused by the thermospheric variations described by the thermospheric model and by variations in a magnetospheric electric field. Both portions of the computerized storm model solve partial differential equations describing conservation of species, momentum, and energy by replacing dependent variables with expansions in time series. The thermospheric portion of the storm model solves for variations in gas temperature, horizontal wind velocity, and densities of atomic oxygen and molecular nitrogen while the plasmaspheric portion of the storm model solves for variations in ion densities of oxygen and hydrogen, ion fluxes and electrons, and heat fluxes through ions and electrons. Other calculations that have been used to describe variations in thermospheric and plasmaspheric parameters are summarized and the advantages and limitations of the model calculations used to obtain results presented in this dissertation are noted.

  9. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: fundamentals.

    PubMed

    Diestler, D J

    2012-03-22

    The Born-Oppenheimer (BO) description of electronically adiabatic molecular processes predicts a vanishing electronic flux density (j(e)), =1/2∫dR[Δ(b) (x;R) - Δ(a) (x;R)] even though the electrons certainly move in response to the movement of the nuclei. This article, the first of a pair, proposes a quantum-mechanical "coupled-channels" (CC) theory that allows the approximate extraction of j(e) from the electronically adiabatic BO wave function . The CC theory is detailed for H(2)(+), in which case j(e) can be resolved into components associated with two channels α (=a,b), each of which corresponds to the "collision" of an "internal" atom α (proton a or b plus electron) with the other nucleus β (proton b or a). The dynamical role of the electron, which accommodates itself instantaneously to the motion of the nuclei, is submerged in effective electronic probability (population) densities, Δ(α), associated with each channel (α). The Δ(α) densities are determined by the (time-independent) BO electronic energy eigenfunction, which depends parametrically on the configuration of the nuclei, the motion of which is governed by the usual BO nuclear Schrödinger equation. Intuitively appealing formal expressions for the electronic flux density are derived for H(2)(+). PMID:22103768

  10. A Coupling Kinetics Model for Pollutant Release and Transport in the Process of Landfill Settlement

    PubMed Central

    Zhao, Ying; Xue, Qiang; Liu, Lei

    2012-01-01

    A coupling kinetics model is developed to simulate the release and transport of landfill leachate pollutants in a deformable municipal solid waste landfill by taking into account of landfill settlement, seepage of leachate water, hydrolyse of insoluble and degradable organic pollutants in solid phase, biodegradation of soluble and degradable organic pollutants in solid phase and aqueous one, growth of aerobic and anaerobic microorganism, and consumption of dissolved oxygen. The release and transport of organic pollutants and microorganisms in landfills in the process of landfill settlement was simulated by considering no hydraulic effect. Simulation results demonstrated that the interaction between landfill settlement and the release, transport and biodegradation of landfill leachate pollutants was significant. Porosity and saturated hydraulic conductivity were not constants because of the landfill settlement, which affected the release, transport and biodegradation of landfill leachate pollutants, and furthermore acted on the landfill settlement. The simulation results accorded with the practical situation, which preliminarily verified the reliability of the mathematical model and the numerical program in this paper. PMID:23202755

  11. An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems

    USGS Publications Warehouse

    Palguta, Jennifer; Williams, Colin F.; Ingebritsen, Steven E.; Hickman, Stephen H.; Sonnenthal, Eric

    2011-01-01

    Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation is to successfully replicate observations from a series of hydrothermal laboratory experiments [Morrow et al., 2001] using the code TOUGHREACT. The laboratory experiments carried out by Morrow et al. [2001] measure permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core samples. Initial permeability and temperature values used in our simulations reflect these experimental conditions and range from 6.13 × 10−20 to 1.5 × 10−17 m2 and 150 to 300 °C, respectively. The primary mineralogy of the model rock is plagioclase (40 vol.%), K-feldspar (20 vol.%), quartz (30 vol.%), and biotite (10 vol.%). The simulations are constrained by the requirement that permeability, relative mineral abundances, and fluid chemistry agree with experimental observations. In the models, the granite core samples are represented as one-dimensional reaction domains. We find that the mineral abundances, solute concentrations, and permeability evolutions predicted by the models are consistent with those observed in the experiments carried out by Morrow et al. [2001] only if the mineral reactive surface areas decrease with increasing clay mineral abundance. This modeling approach suggests the importance of explicitly incorporating changing mineral surface areas into reactive transport models.

  12. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    SciTech Connect

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  13. Density-fitted singles and doubles coupled cluster on graphics processing units

    SciTech Connect

    Sherrill, David; Sumpter, Bobby G; DePrince, III, A. Eugene

    2014-01-01

    We adapt an algorithm for singles and doubles coupled cluster (CCSD) that uses density fitting (DF) or Cholesky decomposition (CD) in the construction and contraction of all electron repulsion integrals (ERI s) for use on heterogeneous compute nodes consisting of a multicore CPU and at least one graphics processing unit (GPU). The use of approximate 3-index ERI s ameliorates two of the major difficulties in designing scientific algorithms for GPU s: (i) the extremely limited global memory on the devices and (ii) the overhead associated with data motion across the PCI bus. For the benzene trimer described by an aug-cc-pVDZ basis set, the use of a single NVIDIA Tesla C2070 (Fermi) GPU accelerates a CD-CCSD computation by a factor of 2.1, relative to the multicore CPU-only algorithm that uses 6 highly efficient Intel core i7-3930K CPU cores. The use of two Fermis provides an acceleration of 2.89, which is comparable to that observed when using a single NVIDIA Kepler K20c GPU (2.73).

  14. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube

    SciTech Connect

    Tao, Y.B.; He, Y.L.

    2010-10-15

    A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

  15. Fission yeast switches mating type by a replication-recombination coupled process.

    PubMed

    Arcangioli, B; de Lahondès, R

    2000-03-15

    Fission yeast exhibits a homothallic life cycle, in which the mating type of the cell mitotically alternates in a highly regulated fashion. Pedigree analysis of dividing cells has shown that only one of the two sister cells switches mating type. It was shown recently that a site- and strand-specific DNA modification at the mat1 locus precedes mating-type switching. By tracking the fate of mat1 DNA throughout the cell cycle with a PCR assay, we identified a novel DNA intermediate of mating-type switching in S-phase. The time and rate of appearance and disappearance of this DNA intermediate are consistent with a model in which mating-type switching occurs through a replication-recombination coupled pathway. Such a process provides experimental evidence in support of a copy choice recombination model in Schizosaccharomyces pombe mating-type switching and is reminiscent of the sister chromatid recombination used to complete replication in the presence of certain types of DNA damage. PMID:10716938

  16. Modeling permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Rapaka, S.; Kelkar, S.; Zyvoloski, G.; Pawar, R. J.

    2010-12-01

    The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of a geothermal reservoir. Rock deformation and in-situ stress changes induced by injected fluids can enhance the permeability and accessible surface area of the geothermal formation, while simultaneously increasing the likelihood of premature thermal breakthrough. Hence, the ability to accurately model the fracture-stress interaction in the presence of variations in temperature and fluid pressure is critical in effective reservoir development and management strategies. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled thermal-hydrological-mechanical processes during multi-phase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method. The first example studies the role played by thermal and pore-pressure effects in enhancing the permeability in the near-wellbore region. In the second example, we will study permeability enhancement due to shear stresses farther away from the wellbore.

  17. Interface-coupled dissolution-precipitation processes during acidic weathering of multicomponent minerals

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Encarnacion; King, Helen E.; Patiño-López, Luis D.; Putnis, Christine V.; Geisler, Thorsten; Rodriguez-Navarro, Carlos M.; Putnis, Andrew

    2015-04-01

    The chemical weathering of carbonate and silicate minerals on the Earth's surface controls important geochemical processes such as erosion rates and soil formation, ore genesis or climate evolution. The dissolution of most of these minerals is typically incongruent, and results in the formation of surface coatings (altered layers, also known as leached layers). These coatings may significantly affect mineral dissolution rates over geological timescales, and therefore a great deal of research has been conducted on them. However, the mechanism of leached layer formation is a matter of vigorous debate. Here we report on an in situ atomic force microscopy (AFM) and real-time Mach-Zehnder phase-shift interferometry (PSI) study of the dissolution of wollastonite, CaSiO3, and dolomite, CaMg(CO3)2, as an example of surface coating formation during acidic weathering of multicomponent minerals. Our in situ results provide clear direct experimental evidence that leached layers are formed in a tight interface-coupled two-step process: stoichiometric dissolution of the pristine mineral surfaces and subsequent precipitation of a secondary phase (silica in the case of wollastonite, or hydrated magnesium carbonate in the case of dolomite) from a supersaturated boundary layer of fluid in contact with the mineral surface. This occurs despite the bulk solution remaining undersaturated with respect to the secondary phase. The validation of such a mechanism given by the results reported here completely changes the conceptual framework concerning the mechanism of chemical weathering, and differs significantly from the concept of preferential leaching of cations postulated by most currently accepted incongruent dissolution models.

  18. Magnetosphere-Ionosphere Coupling Processes in the Ionospheric Trough Region During Substorms

    NASA Astrophysics Data System (ADS)

    Zou, S.; Moldwin, M.; Nicolls, M. J.; Ridley, A. J.; Coster, A. J.; Yizengaw, E.; Lyons, L. R.; Donovan, E.

    2013-12-01

    The ionospheric troughs are regions of remarkable electron density depression at the subauroral and auroral latitudes, and are categorized into the mid-latitude trough or high-latitude trough, depending on their relative location to the auroral oval. Substorms are one fundamental element of geomagnetic activity, during which structured field-aligned currents (FACs) and convection flows develop in the subauroral and auroral ionosphere. The auroral/trough region is expected to experience severe electron density variations during substorms. Accurate specification of the trough dynamics during substorms and understanding its relationship with the structured FACs and convection flows are of important practical purpose, including providing observational foundations for assessing the attendant impact on navigation and communication. In addition, troughs are important since they map to magnetospheric boundaries allowing the remote sensing of magnetosphere-ionosphere coupling processes. In this talk, we discuss the dynamics of the mid-latitude and high-latitude troughs during substorms based on multi-instrument observations. Using GPS total electron content (TEC) data, we characterize the location and width of the mid-latitude trough through the substorm lifecycle and compare them with existing trough empirical models. Using a combination of incoherent scattering radar (ISR), GPS TEC, auroral imager and a data assimilative model, we investigate the relationship between the high-latitude trough and FACs as well as convection flows. The high-latitude trough is found to be collocated with a counter-clockwise convection flow vortex east of the Harang reversal region, and downward FACs as part of the substorm current system are suggested to be responsible for the high-latitude trough formation. In addition, complex ionospheric electron temperature within the high-latitude trough is found, i.e., increase in the E region while decrease in the F region. We discuss possible

  19. Scaling of coupled dilatancy-diffusion processes in space and time

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Bell, A. F.; Meredith, P. G.; Brantut, N.; Heap, M.

    2012-04-01

    Coupled dilatancy-diffusion processes resulting from microscopically brittle damage due to precursory cracking have been observed in the laboratory and suggested as a mechanism for earthquake precursors. One reason precursors have proven elusive may be the scaling in space: recent geodetic and seismic data placing strong limits on the spatial extent of the nucleation zone for recent earthquakes. Another may be the scaling in time: recent laboratory results on axi-symmetric samples show both a systematic decrease in circumferential extensional strain at failure and a delayed and a sharper acceleration of acoustic emission event rate as strain rate is decreased. Here we examine the scaling of such processes in time from laboratory to field conditions using brittle creep (constant stress loading) to failure tests, in an attempt to bridge part of the strain rate gap to natural conditions, and discuss the implications for forecasting the failure time. Dilatancy rate is strongly correlated to strain rate, and decreases to zero in the steady-rate creep phase at strain rates around 10-9 s-1 for a basalt from Mount Etna. The data are well described by a creep model based on the linear superposition of transient (decelerating) and accelerating micro-crack growth due to stress corrosion. The model produces good fits to the failure time in retrospect using the accelerating acoustic emission event rate, but in prospective tests on synthetic data with the same properties we find failure-time forecasting is subject to systematic epistemic and aleatory uncertainties that degrade predictability. The next stage is to use the technology developed to attempt failure forecasting in real time, using live streamed data and a public web-based portal to quantify the prospective forecast quality under such controlled laboratory conditions.

  20. Incorporating Ecosystem Processes Controlling Carbon Balance Into Models of Coupled Human-Natural Systems

    NASA Astrophysics Data System (ADS)

    Currie, W.; Brown, D. G.; Brunner, A.; Fouladbash, L.; Hadzick, Z.; Hutchins, M.; Kiger, S. E.; Makino, Y.; Nassauer, J. I.; Robinson, D. T.; Riolo, R. L.; Sun, S.

    2012-12-01

    A key element in the study of coupled human-natural systems is the interactions of human populations with vegetation and soils. In human-dominated landscapes, vegetation production and change results from a combination of ecological processes and human decision-making and behavior. Vegetation is often dramatically altered, whether to produce food for humans and livestock, to harvest fiber for construction and other materials, to harvest fuel wood or feedstock for biofuels, or simply for cultural preferences as in the case of residential lawns with sparse trees in the exurban landscape. This alteration of vegetation and its management has a substantial impact on the landscape carbon balance. Models can be used to simulate scenarios in human-natural systems and to examine the integration of processes that determine future trajectories of carbon balance. However, most models of human-natural systems include little integration of the human alteration of vegetation with the ecosystem processes that regulate carbon balance. Here we illustrate a few case studies of pilot-study models that strive for this integration from our research across various types of landscapes. We focus greater detail on a fully developed research model linked to a field study of vegetation and soils in the exurban residential landscape of Southeastern Michigan, USA. The field study characterized vegetation and soil carbon storage in 5 types of ecological zones. Field-observed carbon storage in the vegetation in these zones ranged widely, from 150 g C/m2 in turfgrass zones, to 6,000 g C/m2 in zones defined as turfgrass with sparse woody vegetation, to 16,000 g C/m2 in a zone defined as dense trees and shrubs. Use of these zones facilitated the scaling of carbon pools to the landscape, where the areal mixtures of zone types had a significant impact on landscape C storage. Use of these zones also facilitated the use of the ecosystem process model Biome-BGC to simulate C trajectories and also

  1. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    NASA Astrophysics Data System (ADS)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial

  2. Tyrosine analogues for probing proton-coupled electron transfer processes in peptides and proteins.

    PubMed

    Nara, Susheel J; Valgimigli, Luca; Pedulli, Gian Franco; Pratt, Derek A

    2010-01-20

    A series of amino acids analogous to tyrosine, but differing in the physicochemical properties of the aryl alcohol side chain, have been prepared and characterized. These compounds are expected to be useful in understanding the relationships between structure, thermodynamics, and kinetics in long-range proton-coupled electron transfer processes in peptides and proteins. Systematic changes in the acidity, redox potential, and O-H bond strength of the tyrosine side chain could be induced upon substituting the phenol for pyridinol and pyrimidinol moieties. Further modulation was possible by introducing methyl and t-butyl substitution in the position ortho to the phenolic hydroxyl. The unnatural amino acids were prepared by Pd-catalyzed cross-coupling of the corresponding halogenated aryl alcohol protected as their benzyl ethers with an organozinc reagent derived from N-Boc L-serine carboxymethyl ester. Subsequent debenzylation by catalytic hydrogenation yielded the tyrosine analogues in good yield. Spectrophotometric titrations revealed a decrease in tyrosine pK(a) of ca. 1.5 log units per included nitrogen atom, along with a corresponding increase in the oxidation (peak) potentials of ca. 200 mV, respectively. All told, the six novel amino acids described here have phenol-like side chains with pK(a)'s that span a range of 7.0 to greater than 10, and an oxidation (peak) potential range of greater than 600 mV at and around physiological pH. Radical equilibration EPR experiments were carried out to reveal that the O-H bond strengths increase systematically upon nitrogen incorporation (by ca. 0.5-1.0 kcal/mol), and radical stability and persistence increase systematically upon introduction of alkyl substitution in the ortho positions. The EPR spectra of the aryloxyl radicals derived from tyrosine and each of the analogues could be determined at room temperature, and each featured distinct spectral properties. The uniqueness of their spectra will be helpful in discerning

  3. Higher-Order Equation-of-Motion Coupled-Cluster Methods for Ionization Processes

    SciTech Connect

    Kamiya, Muneaki; Hirata, So

    2006-08-21

    Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both {alpha} and {beta} and ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N{sub 2} and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH{sup +} and NH{sup +} radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the {tilde A} {sup 2}{Sigma}{sup -} state of NH{sup +}+ are predicted to be 1285, 1723, and 1705 cm{sup -1} by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm{sup -1}. The small adiabatic energy separation (observed 0.04 eV) between the {tilde X} {sup 2}II and {tilde a} {sup 4}{sigma}{sup -} states of NH{sup +} also requires IP-EOM-CCSDTQ for a quantitative

  4. Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers

    SciTech Connect

    Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

    2014-09-30

    This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of

  5. Studying coupled hydrological and micro-biological processes by means of tracer injections and mathematical models

    NASA Astrophysics Data System (ADS)

    Worman, A.; Kjellin, J. P.; Lindahl, A.; Johansson, H.

    2005-05-01

    To throw light on coupled hydrological, chemical and microbiological processes in treatment wetlands, this study uses both radioactive water and reactive tracers. A tracer mixture consisting of tritiated water, P-32 in the form of PO4- and N-15 in the form of N2O was injected to the 2.6 hectare large Ekeby wetland, Sweden. From the breakthrough curves of tritium, the mean residence time of water in pond 1 can be estimated to be about 3 to 3.5 days. The total injected activity of phosphorus was 17.98 GBq and about 13.73 GBq was recovered at the outlet during the investigation period ending 10 days and 16 hours after the start of the injection. This implies that 24% of the phosphate solution was removed in the November - December period in which the experiment was performed. The total injected amount of N-15 was 42.1 grams and 29.6 grams was retained at the effluent. This means that 30% of the nitrogen was either retained in the wetland or removed due to denitrification. An analysis of regular monitoring data shows that the annual removal rate in the entire wetland (each flow line passes two ponds in series) is about 50% for total phosphorus and 25% for total nitrogen. Probably, the most important mechanism for this removal is adsorption onto particulate matter and deposition. Analyses of vegetation material indicate that a certain (minor) fraction was adsorbed to submersed and emerging macrophytes, like Elodera Canadensis, Thypa sp. (Cattail) and Glyceria sp. (Manna grass). A 2D mathematical model for both water flow and solute transport could explain the N-transport through the wetland. The model accounts for the rate-limited exchange with bed sediments and denitrification in the water and bed sediment. Independent batch tests indicate a particularly high microbiological activity in the bed sediments. The rate-limited exchange with the bed limits also the denitrification capacity of the wetland.

  6. Mechanism of the cathodic process coupled to the oxidation of iron monosulfide by dissolved oxygen.

    PubMed

    Duinea, Mădălina I; Costas, Andreea; Baibarac, Mihaela; Chiriță, Paul

    2016-04-01

    This study investigated the mechanism of iron monosulfide (FeS) oxidation by dissolved oxygen (O2(aq)). Synthetic FeS was reacted with O2(aq) for 6days and at 25°C. We have characterized the initial and reacted FeS surface using Scanning Electron Microscopy coupled with Energy Dispersive X-ray (SEM/EDX) analysis, Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). It was found that during the aqueous oxidation of FeS new solid phases (disulfide, polysulfide, elemental sulfur, ferric oxyhydroxides and Fe3O4) develop on the mineral surface. The results of potentiodynamic polarization experiments show that after 2days of FeS electrode immersion in oxygen bearing solution (OBS) at initial pH 5.1 and 25°C the modulus of cathodic Tafel slopes dramatically decreases, from 393mV/dec to 86mV/dec. This decrease is ascribed to the change of the mechanism of electron transfer from cathodic sites to O2 (mechanism of cathodic process). The oxidation current densities (jox) indicate that mineral oxidative dissolution is not inhibited by pH increase up to 6.7. Another conclusion, which emerges from the analysis of jox, is that the dissolved Fe(3+) does not intermediate the aqueous oxidation of FeS. The results of electrochemical impedance spectroscopy (EIS) show that after 2days of contact between electrode and OBS the properties of FeS/water interface change. From the analysis of the EIS, FTIR spectroscopy, Raman spectroscopy and SEM/EDX data we can conclude that the change of FeS/water interface properties accompanies the formation of new solid phases on the mineral surface. The new characteristics of the surface layer and FeS/water interface do not cause the inhibition of mineral oxidation. PMID:26773612

  7. Microstructural Analysis of Coupled Mechanical and Chemical Diagenetic Processes in Deformation Bands in Sandstone

    NASA Astrophysics Data System (ADS)

    O'Brien, C. M.; Eichhubl, P.; Elliott, S. J.

    2015-12-01

    Deformation bands in sandstone and other porous rock have been shown to act as barriers or baffles to fluid flow. Changes in flow properties are related to microscale textural changes that occur within the deformation bands through coupled mechanical and chemical diagenetic processes. Microscale textures relating to flow properties, such as brittle grain deformation, preferred cementation, and the entrainment of fines within bands can be studied using scanning electron microscopy (SEM) imaging techniques. Conventional techniques for imaging deformation bands by SEM involve using mechanically polished thin sections. However, mechanical polishing can cause induced sample damage that limits microstructural observations. To mitigate sample damage, we use large-area and cross-sectional Ar ion beam milling to prepare deformation band samples for SEM imaging. These techniques preserve sample integrity allowing the imaging of cement and pore textures at submicron resolution. In an ion milled deformation band from the Entrada sandstone, we observe delicate euhedral quartz crystals that precipitated after band formation. In the same band, broken grain fragments that occupy space between larger framework grains are angular in shape, suggesting that they still bear freshly broken surfaces, not dulled and rounded by grain dissolution and cement overgrowth. The lack of widespread isopachous cement on grain fragments, and the observation, instead, of isolated slender quartz cement prisms indicates that cementation in these bands is highly localized. These localized cement growths increase roughness in the pore walls, increasing surface area and tortuosity in the flow pathway through the band. This may reduce permeability in the band without completely occluding flow pathways and pore connections within the bands.

  8. Plasmid R1 Conjugative DNA Processing Is Regulated at the Coupling Protein Interface▿

    PubMed Central

    Mihajlovic, Sanja; Lang, Silvia; Sut, Marta V.; Strohmaier, Heimo; Gruber, Christian J.; Koraimann, Günther; Cabezón, Elena; Moncalián, Gabriel; de la Cruz, Fernando; Zechner, Ellen L.

    2009-01-01

    Selective substrate uptake controls initiation of macromolecular secretion by type IV secretion systems in gram-negative bacteria. Type IV coupling proteins (T4CPs) are essential, but the molecular mechanisms governing substrate entry to the translocation pathway remain obscure. We report a biochemical approach to reconstitute a regulatory interface between the plasmid R1 T4CP and the nucleoprotein relaxosome dedicated to the initiation stage of plasmid DNA processing and substrate presentation. The predicted cytosolic domain of T4CP TraD was purified in a predominantly monomeric form, and potential regulatory effects of this protein on catalytic activities exhibited by the relaxosome during transfer initiation were analyzed in vitro. TraDΔN130 stimulated the TraI DNA transesterase activity apparently via interactions on both the protein and the DNA levels. TraM, a protein interaction partner of TraD, also increased DNA transesterase activity in vitro. The mechanism may involve altered DNA conformation as TraM induced underwinding of oriT plasmid DNA in vivo (ΔLk = −4). Permanganate mapping of the positions of duplex melting due to relaxosome assembly with TraDΔN130 on supercoiled DNA in vitro confirmed localized unwinding at nic but ruled out formation of an open complex compatible with initiation of the TraI helicase activity. These data link relaxosome regulation to the T4CP and support the model that a committed step in the initiation of DNA export requires activation of TraI helicase loading or catalysis. PMID:19767437

  9. Coupled Environmental Processes in the Mojave Desert and Implications for ET Covers as Stable Landforms

    SciTech Connect

    D. Shafer; M. Y oung; S. Zitzer; E. McDonald; T. Caldwell

    2006-01-18

    Monolayer evapotranspiration (ET) covers are the baseline method for closure of disposal sites for low-level radioactive waste (LLW), mixed LLW, and transuranic (TRU) waste at the Nevada Test Site (NTS). The regulatory timeline is typically 1,000 years for LLW and 10,000 years for TRU waste. Covers for such waste have different technical considerations than those with shorter timelines because they are subject to environmental change for longer periods of time, and because the environmental processes are often coupled. To evaluate these changes, four analog sites (approximately 30, 1,000 to 2,000, 7,000 to 12,500, and 125,000 years in age) on the NTS were analyzed to address the early post-institutional control period (the youngest site), the 1,000-year compliance period for disposal of LLW, and the 10,000-year period for TRU waste. Tests included soil texture, structure, and morphology; surface soil infiltration and hydraulic conductivity; vegetation and faunal surveys; and literature reviews. Separate measurements were made in plant undercanopy and intercanopy areas. The results showed a progressive increase in silt and clay content of surface soils with age. Changes in soil texture and structure led to a fivefold decline in saturated hydraulic conductivity in intercanopy areas, but no change in undercanopies, which were subject to bioturbation. These changes may have been responsible for the reduction in total plant cover, most dramatically in intercanopy areas, primarily because more precipitation either runs off the site or is held nearer to the surface where plant roots are less common. The results suggest that covers may evolve over longer timeframes to stable landforms that minimize the need for active maintenance.

  10. Feedback regulation of the spc operon in Escherichia coli: translational coupling and mRNA processing.

    PubMed Central

    Mattheakis, L C; Nomura, M

    1988-01-01

    The spc operon of Escherichia coli encodes 10 ribosomal proteins in the order L14, L24, L5, S14, S8, L6, L18, S5, L30, and L15. This operon is feedback regulated by S8, which binds near the translation start site of L5 and inhibits translation of L5 directly and that of the distal genes indirectly. We constructed plasmids carrying a major portion of the spc operon genes under lac transcriptional control. The plasmids carried a point mutation in the S8 target site which abolished regulation and resulted in overproduction of plasmid-encoded ribosomal proteins upon induction. We showed that alteration of the AUG start codon of L5 to UAG decreased the synthesis rates of plasmid-encoded distal proteins, as well as L5, by approximately 20-fold, with a much smaller (if any) effect on mRNA synthesis rates, indicating coupling of the distal cistrons' translation with the translation of L5. This conclusion was also supported by experiments in which S8 was overproduced in trans. In this case, there was a threefold reduction in the synthesis rates of chromosome-encoded L5 and the distal spc operon proteins, but no decrease in the mRNA synthesis rate. These observations also suggest that transcription from ribosomal protein promoters may be special, perhaps able to overcome transcription termination signals. We also analyzed the state of ribosomal protein mRNA after overproduction of S8 in these experiments and found that repression of ribosomal protein synthesis was accompanied by stimulation of processing (and degradation) of spc operon mRNA. The possible role of mRNA degradation in tightening the regulation is discussed. Images PMID:3049533

  11. Evaluation of a coupled dispersion and aerosol process model against measurements near a major road

    NASA Astrophysics Data System (ADS)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Ketzel, M.; Kukkonen, J.

    2007-02-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible at this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic vapour of 1012 molecules cm-3 was shown to be in a disagreement with the measured particle size evolution, while the modelling runs with the

  12. Multi-segment and multi-ply overlapping process of multi coupled activities based on valid information evolution

    NASA Astrophysics Data System (ADS)

    Wang, Zhiliang; Wang, Yunxia; Qiu, Shenghai

    2013-01-01

    Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the additional cost. Although the downstream task information dependence to the upstream task is already considered in the current researches, but the design process overall iteration caused by the information interdependence between activities is hardly discussed; especially the impact on the design process' overall iteration from the valid information accumulation process. Secondly, most studies only focus on the single overlapping process of two activities, rarely take multi-segment and multi-ply overlapping process of multi coupled activities into account; especially the inherent link between product development time and cost which originates from the overlapping process of multi coupled activities. For the purpose of solving the above problems, as to the insufficiency of the accumulated valid information in overlapping process, the function of the valid information evolution (VIE) degree is constructed. Stochastic process theory is used to describe the design information exchange and the valid information accumulation in the overlapping segment, and then the planning models of the single overlapping segment are built. On these bases, by analyzing overlapping processes and overlapping features of multi-coupling activities, multi-segment and multi-ply overlapping planning models are built; by sorting overlapping processes and analyzing the construction of these planning models, two conclusions are obtained: (1) As to multi-segment and multi-ply overlapping of multi coupled activities, the total decrement of the task set development time is the sum of the time decrement caused by basic overlapping segments, and minus the sum of the time increment caused by multiple overlapping segments; (2) the total increment of development cost is the sum of the cost

  13. Modeling Coupled Processes for Multiphase Fluid Flow in Mechanically Deforming Faults

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Pike, D. Q.

    2011-12-01

    Modeling of coupled hydrological-mechanical processes in fault zones is critical for understanding the long-term behavior of fluids within the shallow crust. Here we utilize a previously developed cellular-automata (CA) model to define the evolution of permeability within a 2-D fault zone under compressive stress. At each time step, the CA model calculates the increase in fluid pressure within the fault at every grid cell. Pressure surpassing a critical threshold (e.g., lithostatic stress) causes a rupture in that cell, and pressure is then redistributed across the neighboring cells. The rupture can cascade through the spatial domain and continue across multiple time steps. Stress continues to increase and the size and location of rupture events are recorded until a percolating backbone of ruptured cells exists across the fault. Previous applications of this model consider uncorrelated random fields for the compressibility of the fault material. The prior focus on uncorrelated property fields is consistent with development of a number of statistical physics models including percolation processes and fracture propagation. However, geologic materials typically express spatial correlation and this can have a significant impact on the results of the pressure and permeability distributions. We model correlation of the fault material compressibility as a multiGaussian random field with a correlation length defined as the full-width at half maximum (FWHM) of the kernel used to create the field. The FWHM is varied from < 0.001 to approximately 0.47 of the domain size. The addition of spatial correlation to the compressibility significantly alters the model results including: 1) Accumulation of larger amounts of strain prior to the first rupture event; 2) Initiation of the percolating backbone at lower amounts of cumulative strain; 3) Changes in the event size distribution to a combined power-law and exponential distribution with a smaller power; and 4) Evolution of the

  14. A numerical study of synchronization in the process of biochemical substance exchange in a diffusively coupled ring of cells

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Balaž, Igor; Arsenić, Ilija

    2013-04-01

    In this paper we numerically investigate a model of a diffusively coupled ring of cells. To model the dynamics of individual cells we propose a map with cell affinity, which is a generalization of the logistic map. First, the basic features of a one-cell system are studied in terms of the Lyapunov exponent, Kolmogorov complexity and Sample Entropy. Second, the notion of observational heterarchy, which is a perpetual negotiation process between different levels of the description of a phenomenon, is reviewed. After these preliminaries, we study how the active coupling induced by the consideration of the observational heterarchy modifies the synchronization property of the model with N=100 cells. It is shown numerically that the active coupling enhances synchronization of biochemical substance exchange in several different conditions of cell affinity.

  15. Oxygen Sensitivity of Anammox and Coupled N-Cycle Processes in Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Jensen, Marlene M.; Contreras, Sergio; Revsbech, Niels Peter; Lam, Phyllis; Günter, Marcel; LaRoche, Julie; Lavik, Gaute; Kuypers, Marcel M. M.

    2011-01-01

    Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ∼0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O2) on anammox, NH3 oxidation and NO3− reduction in 15N-labeling experiments with varying O2 concentrations (0–25 µmol L−1) in the Namibian and Peruvian OMZs. Our results show that O2 is a major controlling factor for anammox activity in OMZ waters. Based on our O2 assays we estimate the upper limit for anammox to be ∼20 µmol L−1. In contrast, NH3 oxidation to NO2− and NO3− reduction to NO2− as the main NH4+ and NO2− sources for anammox were only moderately affected by changing O2 concentrations. Intriguingly, aerobic NH3 oxidation was active at non-detectable concentrations of O2, while anaerobic NO3− reduction was fully active up to at least 25 µmol L−1 O2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O2-sensitivity of anammox itself, and not by any effects of O2 on the tightly coupled pathways of aerobic NH3 oxidation and NO3− reduction. With anammox bacteria in the marine environment being active at O2 levels ∼20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling. PMID:22216239

  16. Pulsed Cl2/Ar inductively coupled plasma processing: 0D model versus experiments

    NASA Astrophysics Data System (ADS)

    Despiau-Pujo, E.; Brihoum, M.; Bodart, P.; Darnon, M.; Cunge, G.

    2014-11-01

    Comparisons between measurements and spatially-averaged (0D) simulations of low-pressure Ar and Cl2 pulsed-plasmas in an industrial inductively coupled reactor are reported. Our analysis focuses on the impact of the pulsing parameters (frequency f, duty cycle dc) on the chemical reactivity of the plasma and on the ion fluxes to the walls. Charged particle densities and ion fluxes are highly modulated when the plasma is pulsed at 1 kHz < f < 20 kHz. In rare gas Ar plasmas, the ion flux rise time is short (50 μs), therefore the dc has almost no influence on the ion flux value during the pulse. By contrast, in molecular electronegative Cl2 plasmas, both the value and rise/decay time of the ion flux during the on and off-periods depend strongly on the dc. This is because in Cl2 both the plasma chemistry and electronegativity depend on the dc. During the off-period, the electron density drops much faster than the negative ion density, leading to a large increase in plasma electronegativity. A minimum afterglow time (75 µs) is required for an ion-ion plasma to form and for the sheath to collapse, exposing the walls and wafers to a negative ion flux. The positive ion flux is 3 to 10 times smaller in Cl2 than in Ar for the same operating conditions. In contrast with charged species, the radical (Cl) kinetics are slow and thus the radical density is hardly modulated for f > 1 kHz. However, the dc strongly influences the Cl2/Cl density ratio and is an excellent knob for controlling the plasma chemical reactivity: the higher the dc the higher the Cl density. The trends and quantities in the 0D simulation are in close agreement with experiments. This proves the capacity of global models to reproduce the fundamental features of pulsed plasmas in simple chemistries and to assist the development of pulsed processes.

  17. Deformation Processes In SE Tibet: How Coupled Are The Surface And The Deeper Lithosphere? (Invited)

    NASA Astrophysics Data System (ADS)

    Zeitler, P. K.; Meltzer, A.

    2010-12-01

    We all like to cite the Himalayan collision as a type example of continent-continent collision, and the region has been used as a natural laboratory by a considerable number of diverse investigations. Southeastern Tibet and the Lhasa Block provide an interesting case to consider in this context. Surrounding portions of the Himalayan-Tibet system have been and are being intensely deformed, whereas the Andean-arc lithosphere of the Lhasa Block has remained enigmatically unscathed. High elevations throughout much of the terrane are fairly uniform but the eastern and western portions of block have experienced very different degrees of exhumation. Regions that experienced more exhumation have thinner crustal thicknesses, with the results that that Moho is warped up with respect to the surface. Thicker, less-exhumed portions of the Lhasa Block currently are underlain by what is inferred to be eclogitized lower crust, but this eclogitization is not seen where exhumation is significant. Beneath SE Tibet, subduction of the Indian lithosphere has been complicated, with tomographic imaging showing variations in mantle structure that do not register with the strike of surface features. Adjacent to the Lhasa Block, the Namche Barwa-Gyala metamorphic massif demonstrates a strong coupling between shallower crustal flow and localized erosion that is significant for the evolution of the Lhasa Block in the way that this feature controls base level for the upper Tsangpo drainage and thus the erosional driver for the system. More broadly, a weak lower crust and lower-crustal flow have been invoked by many workers to explain aspects of the region’s deformation patterns and topography. Thus it would seem that in SE Tibet, mid-to-upper crustal, lower-crustal, and whole-lithosphere processes all have the potential to either impact Earth-surface dynamics or be impacted by them. This leads to a number of questions about the 4D nature and scale of compensation, controls on the evolution of

  18. Semiclassical analysis of the electron-nuclear coupling in electronic non-adiabatic processes

    NASA Astrophysics Data System (ADS)

    Agostini, Federica; Min, Seung Kyu; Gross, E. K. U.

    2015-10-01

    In the context of the exact factorization of the electron-nuclear wave function, the coupling between electrons and nuclei beyond the adiabatic regime is encoded (i) in the time-dependent vector and scalar potentials and (ii) in the electron-nuclear coupling operator. The former appear in the Schroedinger-like equation that drives the evolution of the nuclear degrees of freedom, whereas the latter is responsible for inducing non-adiabatic effects in the electronic evolution equation. As we have devoted previous studies to the analysis of the vector and scalar potentials, in this paper we focus on the properties of the electron-nuclear coupling operator, with the aim of describing a numerical procedure to approximate it within a semiclassical treatment of the nuclear dynamics.

  19. Barrier distribution from 28Si+154Sm quasielastic scattering: Coupling effects in the fusion process

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Behera, B. R.; Jhingan, A.; Nayak, B. K.; Dubey, R.; Sharma, Priya; Thakur, Meenu; Mahajan, Ruchi; Saneesh, N.; Banerjee, Tathagata; Khushboo; Kumar, A.; Mandal, S.; Saxena, A.; Sugathan, P.; Rowley, N.

    2016-05-01

    Barrier distribution for the 28Si+154Sm system has been extracted from large angle quasielastic scattering measurement to investigate the role of various channel couplings on fusion dynamics. The coupled channel calculations, including the collective excitation of the target and projectile, are observed to reproduce the experimental BD rather well. It seems that the role of neutron transfer, relative to collective excitation, is in fact weak in the 28Si+154Sm system even though it has positive Q-value for neutron transfer channels.

  20. Good Vibrations: Cross-Frequency Coupling in the Human Nucleus Accumbens during Reward Processing

    ERIC Educational Resources Information Center

    Cohen, Michael X.; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E.; Sturm, Volker; Schlaepfer, Thomas E.

    2009-01-01

    The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of…

  1. THE COUPLED TRICKLING FILTER-ACTIVATED SLUDGE PROCESS: DESIGN AND PERFORMANCE

    EPA Science Inventory

    A case history report was prepared on the upgrading of the Livermore, California, Water Reclamation Plant from a conventional trickling filter plant with tertiary oxidation ponds to a coupled trickling filter-activated sludge plant producing a nitrified effluent low in BOD5, susp...

  2. Understanding the systematic air temperature biases in a coupled climate system model through a process-based decomposition method

    NASA Astrophysics Data System (ADS)

    Ren, R.-C.; Yang, Yang; Cai, Ming; Rao, Jian

    2015-10-01

    A quantitative attribution analysis is performed on the systematic atmospheric temperature biases in a coupled climate system model (flexible global ocean-atmosphere-land system model, spectral version 2) in reference to the European Center for Medium-Range Weather Forecasts, Re-analysis Interim data during 1979-2005. By adopting the coupled surface-atmosphere climate feedback response analysis method, the model temperature biases are related to model biases in representing the radiative processes including water vapor, ozone, clouds and surface albedo, and the non-radiative processes including surface heat fluxes and other dynamic processes. The results show that the temperature biases due to biases in radiative and non-radiative processes tend to compensate one another. In general, the radiative biases tend to dominate in the summer hemisphere, whereas the non-radiative biases dominate in the winter hemisphere. The temperature biases associated with radiative processes due to biases in ozone and water vapor content are the main contributors to the total temperature bias in the tropical and summer stratosphere. The overestimated surface albedo in both polar regions always results in significant cold biases in the atmosphere above in the summer season. Apart from these radiative biases, the zonal-mean patterns of the temperature biases in both boreal winter and summer are largely determined by model biases in non-radiative processes. In particular, the stronger non-radiative process biases in the northern winter hemisphere are responsible for the relatively larger `cold pole' bias in the northern winter polar stratosphere.

  3. Estimation of Electron Temperature and Frequency Components in a Dual Frequency Capacitively-Coupled Plasma Processing Reactor

    NASA Astrophysics Data System (ADS)

    Ito, Toru; Mo, Yun; Masahiro, Horigome

    2008-10-01

    The measurement of electron temperature in RF plasma sources with Langmuir probes is difficult because of the influence of rf noise. We attempted to estimate the electron temperature in a capacitively-coupled plasma processing reactor with a Surface Wave Probe [1] which employs microwaves. We also estimated the frequency spectrum with the sensitive PAP [1, 2]. We measured the harmonics which appeared in the bulk plasma for various experimental conditions in the dual-frequency [60 MHz and 2MHz] capacitively-coupled plasma processing reactor. We estimated RF power spectra for several experimental conditions like RF power [500-2000W], gas pressure [3-20Pa], and gas species [Ar, CF4]. The measurement results suggest the existence of energy transport among several frequency spectrum. [1ex] [1] K. Nakamura, M. Ohata, and H. Sugai: J. Vac. Sci. Technol. A 21, 325 (2003). [0pt] [2] T. Shirakawa and H. Sugai : Jpn. J. Appl. Phys. 32, 5129 (1993).

  4. Coupled terrestrial-glacier-fjord-ocean processes in the Gulf of Alaska and Greenland (Invited)

    NASA Astrophysics Data System (ADS)

    Winsor, P.; Truffer, M.

    2013-12-01

    We present coupled terrestrial-glacier-fjord-ocean system response to changes in forcing from the Gulf of Alaska focusing on the role of glacier runoff on the Alaska Coastal Current. These highly coupled systems remain severely under sampled in time and space, and point to the need for improved sampling techniques of the nearshore environment. We also present detailed measurements from western Greenland consisting of ice-strengthened satellite-tracked surface drifters equipped with CTDs covering the upper 15 m of the ocean deployed in concert with SST surface drifters, ADCPs and shipboard CTD data. This unique data set highlight the complexity of circulation and upper ocean heat and salt content in narrow glacially-dominated fjords.

  5. Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes

    NASA Astrophysics Data System (ADS)

    Min, Seung Kyu; Agostini, Federica; Gross, E. K. U.

    2015-08-01

    We present a novel quantum-classical approach to nonadiabatic dynamics, deduced from the coupled electronic and nuclear equations in the framework of the exact factorization of the electron-nuclear wave function. The method is based on the quasiclassical interpretation of the nuclear wave function, whose phase is related to the classical momentum and whose density is represented in terms of classical trajectories. In this approximation, electronic decoherence is naturally induced as an effect of the coupling to the nuclei and correctly reproduces the expected quantum behavior. Moreover, the splitting of the nuclear wave packet is captured as a consequence of the correct approximation of the time-dependent potential of the theory. This new approach offers a clear improvement over Ehrenfest-like dynamics. The theoretical derivation presented in this Letter is supported by numerical results that are compared to quantum mechanical calculations.

  6. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    SciTech Connect

    Ivetić, T.B.; Finčur, N.L.; Đačanin, Lj. R.; Abramović, B.F.; Lukić-Petrović, S.R.

    2015-02-15

    Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.

  7. Coupled processes of fluid flow, solute transport, and geochemical reactions in reactive barriers

    SciTech Connect

    Kim, Jeongkon; Schwartz, Franklin W.; Xu, Tianfu; Choi, Heechul, and Kim, In S.

    2004-01-02

    A complex pattern of coupling between fluid flow and mass transport develops when heterogeneous reactions occur. For instance, dissolution and precipitation reactions can change a porous medium's physical properties, such as pore geometry and thus permeability. These changes influence fluid flow, which in turn impacts the composition of dissolved constituents and the solid phases, and the rate and direction of advective transport. Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of differences in density, dissolution precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between the solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. In addition, a new permeability relationship is implemented in TOUGHREACT to examine the effects of geochemical reactions and density difference on plume migration in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  8. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    PubMed Central

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-01-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW. PMID:27485470

  9. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-08-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW.

  10. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves.

    PubMed

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-01-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW. PMID:27485470

  11. Coupling microbial catabolic actions with abiotic redox processes: a new recipe for persistent organic pollutant (POP) removal.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Nam, In-Hyun; Chang, Yoon-Seok

    2013-01-01

    The continuous release of toxic persistent organic pollutants (POPs) into the environment has raised a need for effective cleanup methods. The tremendous natural diversity of microbial catabolic mechanisms suggests that catabolic routes may be applied to the remediation of POP-contaminated fields. A large number of the recalcitrant xenobiotics have been shown to be removable via the natural catabolic mechanisms of microbes, and detailed biochemical studies of the catabolic methods, together with the development of sophisticated genetic engineering, have led to the use of synthetic microbes for the bioremediation of POPs. However, the steric effects of substituted halogen moieties, microbe toxicity, and the low bioavailability of POPs still deteriorate the efficiency of removal strategies based on natural and synthetic catabolic mechanisms. Recently, abiotic redox processes that induce rapid reductive dehalogenation, hydroxyl radical-based oxidation, or electron shuttling have been reasonably coupled with microbial catabolic actions, thereby compensating for the drawbacks of biotic processes in POP removal. In this review, we first compare the pros and cons of individual methodologies (i.e., the natural and synthetic catabolism of microbes and the abiotic processes involving zero-valent irons, advanced oxidation processes, and small organic stimulants) for POP removal. We then highlight recent trends in coupling the biotic-abiotic methodologies and discuss how the processes are both feasible and superior to individual methodologies for POP cleanup. Cost-effective and environmentally sustainable abiotic redox actions could enhance the microbial bioremediation potential for POPs. PMID:23153459

  12. Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs

    SciTech Connect

    Kelkar, Sharad

    2011-01-01

    The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

  13. Final Progress Report: Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Cometabolism

    SciTech Connect

    Crawford, Ronald L; Paszczynski, Andrzej J

    2010-02-19

    Our goal within the overall project is to demonstrate the presence and abundance of methane monooxygenases (MMOs) enzymes and their genes within the microbial community of the Idaho National Laboratory (INL) Test Area North (TAN) site. MMOs are thought to be the primary catalysts of natural attenuation of trichloroethylene (TCE) in contaminated groundwater at this location. The actual presence of the proteins making up MMO complexes would provide direct evidence for its participation in TCE degradation. The quantitative estimation of MMO genes and their translation products (sMMO and pMMO proteins) and the knowledge about kinetics and substrate specificity of MMOs will be used to develop mathematical models of the natural attenuation process in the TAN aquifer. The model will be particularly useful in prediction of TCE degradation rate in TAN and possibly in the other DOE sites. Bacteria known as methanotrophs produce a set of proteins that assemble to form methane monooxygenase complexes (MMOs), enzymes that oxidize methane as their natural substrate, thereby providing a carbon and energy source for the organisms. MMOs are also capable of co-metabolically transforming chlorinated solvents like TCE into nontoxic end products such as carbon dioxide and chloride. There are two known forms of methane monooxygenase, a membrane-bound particulate form (pMMO) and a cytoplasmic soluble form (sMMO). pMMO consists of two components, pMMOH (a hydroxylase comprised of 47-, 27-, and 24-kDa subunits) and pMMOR (a reductase comprised of 63 and 8-kDa subunits). sMMO consists of three components: a hydroxylase (protein A-250 kDa), a dimer of three subunits (α2β2γ2), a regulatory protein (protein B-15.8 kDa), and a reductase (protein C-38.6 kDa). All methanotrophs will produce a methanol dehydrogenase to channel the product of methane oxidation (methanol) into the central metabolite formaldehyde. University of Idaho (UI) efforts focused on proteomic analyses using mass

  14. Tensile property of a hot work tool steel prepared by biomimetic coupled laser remelting process with different laser input energies

    NASA Astrophysics Data System (ADS)

    Wang, Chuanwei; Zhou, Hong; Zhang, Zhihui; Zhao, Yu; Zhang, Peng; Cong, Dalong; Meng, Chao; Tan, Fuxing

    2012-09-01

    Coupled with the biomimetic principle, a hot work tool steel (4Cr5MoSiV1) was manufactured using a laser with different input energies. Results of tensile tests confirmed that the biomimetic coupled laser remelting (BCLR) process had an advance effect on improving the strength and ductility of 4Cr5MoSiV1 steel simultaneously. Microstructure examinations demonstrated that a fine microstructure along with nano scale carbide was acquired in the BCLR units, which produced an accumulative contribution of grain refinement, precipitation strengthening and a mixed microstructure. Based on the well distribution of the BCLR units, the beneficial effect of stress transfer from the matrix to the units on tensile property was also analyzed.

  15. Constructive Invariant Coupling Method Applications For Statistical Data Analysis And Effective Decision Rule Synthesis In Digital Image Processing Problems

    NASA Astrophysics Data System (ADS)

    Nechval, Nicolai A.

    1983-03-01

    Some digital image processing problem types, such as sorting, reference comparison, classification, remote sensing, monitoring and quickest adaptive detection of image "disorders" are dealt with. Principal fundamental problems to be solved here are: 1) selection of informative features, and 2) as full as possible extraction of useful information out of data and its effective use. A solution approach is suggested for the above problems, based on the concept of invariant "coupling" of unknown parameters by some data functions, and integration or summation for these invariant "couplings". Here, on the one hand, it appears possible to derive a synthesis procedure for effective statistical decision rules which are not strictly dominated by any other decision rules with respect to specified loss functions, and, on the other hand, the decision rules per se are readily implementable on digital computers. Some new results have been obtained, showing the highest effectivity to be achieved when handling small data volumes. Several examples are presented.

  16. Convergent-close-coupling calculations for excitation and ionization processes of electron-hydrogen collisions in Debye plasmas

    SciTech Connect

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor

    2010-11-15

    Electron-hydrogen scattering in weakly coupled hot-dense plasmas has been investigated using the convergent-close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe the plasma screening effects. The target structure, excitation dynamics, and ionization process change dramatically as the screening is increased. Excitation cross sections for the 1s{yields}2s,2p,3s,3p,3d and 2s{yields}2p,3s,3p,3d transitions and total and total ionization cross sections for the scattering from the 1s and 2s states are presented. Calculations cover the energy range from thresholds to high energies (250 eV) for various Debye lengths. We find that as the screening increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  17. Coupled modeling of biospheric and chemical weathering processes at the continental scale

    NASA Astrophysics Data System (ADS)

    Roelandt, C.; GoddéRis, Y.; Bonnet, M.-P.; Sondag, F.

    2010-06-01

    In this contribution, a reactive-transport model describing weathering in soil profiles and at the watershed scale is coupled to a dynamic global vegetation model to calculate the dissolved load of continental waters on a 0.5° latitude × 0.5° longitude grid. The so-called Biosphere-Weathering at the Catchment Scale (B-WITCH) model is applied to the Orinoco watershed (South America). We show that B-WITCH is able to reproduce the main cation composition of the surface waters over the watershed. Sensitivity tests demonstrate that clay mineral reactivities are key factors controlling the calculated discharge of dissolved species. More specifically, our simulations show that the dissolution and precipitation rates of clay minerals in the weathering profiles are strongly intertwined, and that this coupling must be accurately described when modeling the weathering fluxes at the continental scale. A second set of sensitivity tests show that, for the tropical environment, land plants control the total base cation discharge through their impact on the soil hydrology, rather than through enhanced soil CO2 pressures. Indeed, the complete removal of the continental vegetation leads to an increase in the dissolved fluxes to the ocean by 80% because of the collapse in the evapotranspiration, resulting in a more efficient drainage of the weathering profiles. On the other hand, neglecting the root respiration and setting the soil CO2 pressure to the atmospheric level forces the total base cation discharge to decrease by only 20%.

  18. Modeled near-field environment porosity modifications due to coupled thermohydrologic and geochemical processes

    SciTech Connect

    Glassley, W. E.; Nitao, J. J.

    1998-10-30

    Heat deposited by waste packages in nuclear waste repositories can modify rock properties by instigating mineral dissolution and precipitation along hydrothermal flow pathways. Modeling this reactive transport requires coupling fluid flow to permeability changes resulting from dissolution and precipitation. Modification of the NUFT thermohydrologic (TH) code package to account for this coupling in a simplified geochemical system has been used to model the time- dependent change in porosity, permeability, matrix and fracture saturation, and temperature in the vicinity of waste-emplacement drifts, using conditions anticipated for the potential Yucca Mountain repository. The results show, within a few hundred years, dramatic porosity reduction approximately 10 m above emplacement drifts. Most of this reduction is attributed to deposition of solute load at the boiling front, although some of it also results from decreasing temperature along the flow path. The actual distribution of the nearly sealed region is sensitive to the time- dependent characteristics of the thermal load imposed on the environment and suggests that the geometry of the sealed region can be engineered by managing the waste-emplacement strategy.

  19. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants.

    PubMed

    Martínez, F; López-Muñoz, M J; Aguado, J; Melero, J A; Arsuaga, J; Sotto, A; Molina, R; Segura, Y; Pariente, M I; Revilla, A; Cerro, L; Carenas, G

    2013-10-01

    The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L(-)(1) and a rejected flux highly concentrated (in the range of 16-25 mg L(-)(1) and 18-32 mg L(-)(1) of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L(-)(1) of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants. PMID:23863375

  20. Coupled-channel treatment of Isobaric Analog Resonances in (p,p') Capture Processes

    SciTech Connect

    Thompson, I J; Arbanas, Goran

    2013-01-01

    With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in gamma-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the nonorthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p g)

  1. Coupled-channel Treatment of Isobaric Analog Resonances in (p,p‧) Capture Processes

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Arbanas, G.

    2014-04-01

    With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in γ-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the non-orthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p'γ) coincidence data exists.

  2. Planarized process for resonant leaky-wave coupled phase-locked arrays of mid-IR quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Kirch, J. D.; Boyle, C.; Sigler, C.; Mawst, L. J.; Botez, D.; Zutter, B.; Buelow, P.; Schulte, K.; Kuech, T.; Earles, T.

    2015-03-01

    On-chip resonant leaky-wave coupling of quantum cascade lasers (QCLs) emitting at 8.36 μm has been realized by selective regrowth of interelement layers in curved trenches, defined by dry and wet etching. The fabricated structure provides large index steps (Δn = 0.10) between antiguided-array element and interelement regions. In-phase-mode operation to 5.5 W front-facet emitted power in a near-diffraction-limited far-field beam pattern, with 4.5 W in the main lobe, is demonstrated. A refined fabrication process has been developed to produce phased-locked antiguided arrays of QCLs with planar geometry. The main fabrication steps in this process include non-selective regrowth of Fe:InP in interelement trenches, defined by inductive-coupled plasma (ICP) etching, a chemical polishing (CP) step to planarize the surface, non-selective regrowth of interelement layers, ICP selective etching of interelement layers, and non-selective regrowth of InP cladding layer followed by another CP step to form the element regions. This new process results in planar InGaAs/InP interelement regions, which allows for significantly improved control over the array geometry and the dimensions of element and interelement regions. Such a planar process is highly desirable to realize shorter emitting wavelength (4.6 μm) arrays, where fabrication tolerance for single-mode operation are tighter compared to 8 μm-emitting devices.

  3. Unsupportive partner behaviors, social-cognitive processing, and psychological outcomes in couples coping with early stage breast cancer.

    PubMed

    Manne, Sharon; Kashy, Deborah A; Siegel, Scott; Myers Virtue, Shannon; Heckman, Carolyn; Ryan, Danielle

    2014-04-01

    This study examined associations between partner unsupportive behaviors, social and cognitive processing, and adaptation in patients and their spouses using a dyadic and interdependent analytic approach. Women with early stage breast cancer (N = 330) and their spouses completed measures of partner unsupportive behavior, maladaptive social (holding back sharing concerns) and cognitive processing (mental disengagement and behavioral disengagement), and global well-being and cancer distress. Results indicated that both individuals' reports of unsupportive partner behavior were associated with their own holding back and their partners' holding back. Similar actor and partner effects were found between unsupportive behavior and behavioral disengagement. However, both patients' and partners' mental disengagement were associated only with their own unsupportive behavior. Together, holding back, mental disengagement, and behavioral disengagement accounted for one third of the association between partner unsupportive behavior and well-being and one half of the association between partner unsupportive behavior and intrusive thoughts. These results suggest that couples' communication and processing of cancer should be viewed from a dyadic perspective because couples' perceptions of one another's unsupportive behaviors may have detrimental effects on both partners' social and cognitive processing as well as their adaptation. PMID:24611691

  4. Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective

    NASA Astrophysics Data System (ADS)

    Worni, Raphael; Huggel, Christian; Clague, John J.; Schaub, Yvonne; Stoffel, Markus

    2014-11-01

    Glacial lake outburst floods (GLOFs) are highly mobile mixtures of water and sediment that occur suddenly and are capable of traveling tens to hundreds of kilometers with peak discharges and volumes several orders of magnitude larger than those of normal floods. They travel along existing river channels, in some instances into populated downstream regions, and thus pose a risk to people and infrastructure. Many recent events involve process chains, such as mass movements impacting glacial lakes and triggering dam breaches with subsequent outburst floods. A concern is that effects of climate change and associated increased instability of high mountain slopes may exacerbate such process chains and associated extreme flows. Modeling tools can be used to assess the hazard of potential future GLOFs, and process modeling can provide insights into complex processes that are difficult to observe in nature. A number of numerical models have been developed and applied to simulate different types of extreme flows, but such modeling faces challenges stemming from a lack of process understanding and difficulties in measuring extreme flows for calibration purposes. Here we review the state of knowledge of key aspects of modeling GLOFs, with a focus on process cascades. Analysis and simulation of the onset, propagation, and potential impact of GLOFs are based on illustrative case studies. Numerical models are presently available for simulating impact waves in lakes, dam failures, and flow propagation but have been used only to a limited extent for integrated simulations of process cascades. We present a spectrum of case studies from Patagonia, the European Alps, central Asia, and the Himalayas in which we simulate single processes and process chains of past and potential future events. We conclude that process understanding and process chain modeling need to be strengthened and that research efforts should focus on a more integrative treatment of processes in numerical models.

  5. OGS#PETSc approach for robust and efficient simulations of strongly coupled hydrothermal processes in EGS reservoirs

    NASA Astrophysics Data System (ADS)

    Watanabe, Norihiro; Blucher, Guido; Cacace, Mauro; Kolditz, Olaf

    2016-04-01

    A robust and computationally efficient solution is important for 3D modelling of EGS reservoirs. This is particularly the case when the reservoir model includes hydraulic conduits such as induced or natural fractures, fault zones, and wellbore open-hole sections. The existence of such hydraulic conduits results in heterogeneous flow fields and in a strengthened coupling between fluid flow and heat transport processes via temperature dependent fluid properties (e.g. density and viscosity). A commonly employed partitioned solution (or operator-splitting solution) may not robustly work for such strongly coupled problems its applicability being limited by small time step sizes (e.g. 5-10 days) whereas the processes have to be simulated for 10-100 years. To overcome this limitation, an alternative approach is desired which can guarantee a robust solution of the coupled problem with minor constraints on time step sizes. In this work, we present a Newton-Raphson based monolithic coupling approach implemented in the OpenGeoSys simulator (OGS) combined with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library. The PETSc library is used for both linear and nonlinear solvers as well as MPI-based parallel computations. The suggested method has been tested by application to the 3D reservoir site of Groß Schönebeck, in northern Germany. Results show that the exact Newton-Raphson approach can also be limited to small time step sizes (e.g. one day) due to slight oscillations in the temperature field. The usage of a line search technique and modification of the Jacobian matrix were necessary to achieve robust convergence of the nonlinear solution. For the studied example, the proposed monolithic approach worked even with a very large time step size of 3.5 years.

  6. MI Coupling Processes in the Regions of Diffuse Aurora: Magnetospheric Outlook

    NASA Astrophysics Data System (ADS)

    Khazanov, George V.; Glocer, Alex; Sibeck, David

    2016-04-01

    In this talk we present the solution of the Boltzmann-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora. The calculation includes the affiliated production of secondary electrons and their energy interplay in the magnetosphere and two conjugated ionospheres. This solution starts with the primary injection of plasma sheet electrons via both electron cyclotron harmonic waves and whistler mode chorus waves to the loss cone, and includes their subsequent multiple atmospheric reflections between the two magnetically conjugated ionospheres. It is demonstrated that magnetosphere-ionosphere coupling is the key element in the formation of electron distribution function in the region of diffuse aurora at the magnetospheric altitudes.

  7. Magnetosheath dawn-dusk asymmetries and their impact on solar wind - magnetosphere coupling processes

    NASA Astrophysics Data System (ADS)

    Dimmock, Andrew; Pulkkinen, Tuija; Nykyri, Katariina

    2016-07-01

    Through simulated and experimental investigations it is well established that from a statistical standpoint, the majority of plasma properties in the magnetosheath are asymmetric between the dawn (quasi-parallel) and dusk (quasi-perpendicular) flanks. To investigate this, we have compiled a 5 year database comprising of THEMIS magnetosheath measurements which are adjusted for boundary motion, planetary aberration, and changes in the upstream solar wind state. We quantify numerous asymmetries, determine their dependency on solar wind parameters, and show that coupling to solar wind properties vary between different asymmetries. In addition, using a combination our statistical data and local Hall MHD simulations, we show that magnetosheath dawn-dusk asymmetries play a role in the efficiency of the Kelvin Helmholtz Instability and its associated plasma transport. We also discuss the global impact from magnetosheath asymmetries on magnetospheric plasma conditions such as asymmetries reported in the cold dense plasma sheet.

  8. Coupled land-ocean-atmosphere processes and South asian monsoon variability.

    PubMed

    Meehl, G A

    1994-10-14

    Results from a global coupled ocean-atmosphere climate model and a model with specified tropical convective heating anomalies show that the South Asian monsoon was an active part of the tropical biennial oscillation (TBO). Convective heating anomalies over Africa and the western Pacific Ocean associated with the TBO altered the simulated pattern of atmospheric circulation for the Northern Hemisphere winter mid-latitude over Asia. This alteration in the mid-latitude circulation maintained temperature anomalies over South Asia through winter and helped set up the land-sea temperature contrast for subsequent monsoon development. South Asian snow cover contributed to monsoon strength but was symptomatic of the larger scale alteration in the mid-latitude atmospheric circulation pattern. PMID:17771448

  9. Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing.

    PubMed

    Souza, Mario C M M; Barea, Luis A M; Vallini, Felipe; Rezende, Guilherme F M; Wiederhecker, Gustavo S; Frateschi, Newton C

    2014-05-01

    Single microring resonators have been used in applications such as wavelength multicasting and microwave photonics, but the dependence of the free spectral range with ring radius imposes a trade-off between the required GHz optical channel spacing, footprint and power consumption. We demonstrate four-channel all-optical wavelength multicasting using only 1 mW of control power, with converted channel spacing of 40-60 GHz. Our device is based on a compact embedded microring design fabricated on a scalable SOI platform. The coexistence of close resonance spacing and high finesse (205) in a compact footprint is possible due to enhanced quality factors (30,000) resulting from the embedded configuration and the coupling-strength dependence of resonance spacing, instead of ring size. In addition, we discuss the possibility of achieving continuously mode splitting from a single-notch resonance up to 40 GHz. PMID:24921744

  10. Uniformity of internal linear-type inductively coupled plasma source for flat panel display processing

    NASA Astrophysics Data System (ADS)

    Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Lim, Jong Tae; Yeom, Geun Young

    2008-02-01

    The variation in plasma uniformity over an extremely large size inductively coupled plasma (ICP) source of 2750×2350mm2 was examined. An internal linear-type antenna called "double comb-type antenna" was used as the ICP source. A plasma density of ˜1.4×1011/cm3 could be obtained at 5mTorr Ar by applying 10kW rf power to the source at a frequency of 13.56MHz. An increase in rf power from 1to10kW improved the plasma uniformity over a substrate area of 2300×2000mm2 from 18.1% to 11.4%. The improvement in uniformity of the internal ICP source was attributed to the increase in plasma density near the wall.

  11. Starch extraction process coupled to protein recovery from leguminous tuberous roots (Pachyrhizus ahipa).

    PubMed

    Díaz, Andrea; Dini, Cecilia; Viña, Sonia Z; García, María A

    2016-11-01

    The objective of this work was to fit together the starch extraction from Pachyrhizus ahipa roots and the recovery of the proteins present in these storage organs, making an improved use of this novel raw material. The replacement of water by buffer PO4(-3)/NaCl as solvent in the first extraction steps improved protein extraction without lowering the starch yield. The starches obtained from the traditional and the proposed methods exhibited some differences in appearance and technological and thermal properties, which were endorsed to the adjustment in the methodology of extraction rather than to the use of buffer as solvent. Thus, P. ahipa starch obtaining procedure could be coupled to protein extraction with a minimum change in the methodology. This innovation did not significantly shift the characteristics of the starch obtained and allowed to obtain a protein yield of 135.7mg BSA equivalent protein/100g of fresh roots. PMID:27516269

  12. Simulating the coupling between atmosphere ocean processes and the planktonic ecosystem during SERIES

    NASA Astrophysics Data System (ADS)

    Steiner, N.; Denman, K.; McFarlane, N.; Solheim, L.

    2006-10-01

    We have developed a 1-D atmosphere-ocean-biogeochemical model to investigate the coupling between atmosphere-ocean exchanges and the planktonic ecosystem during the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES) in 2002. The atmospheric Single Column Model (SCM) is based on the Canadian Centre for Climate Modelling and Analysis (CCCma) Atmospheric General Circulation Model (AGCM). The ocean component employs the General Ocean Turbulence Model (GOTM). A seven-component ecosystem model is embedded in GOTM, which includes nitrogen, organic and inorganic carbon, silica and oxygen cycling. We use observations from SERIES combined with atmospheric reanalysis data to initiate and force the coupled physical model. We found that atmospheric temperatures and humidities are higher and the stratification more stable if nudged to National Centre of Environmental Prediction (NCEP) rather than to European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis data. Doubling the vertical resolution in the atmosphere improved the representation of mixing and the thermal structure, affecting cloudiness and radiative fluxes at the ocean surface as well as planetary boundary layer heights and gas dispersion in the lower atmosphere. From observed ocean-surface dimethyl sulphide (DMS) concentrations (outside the patch) we simulated DMS dispersion in the atmospheric boundary layer by applying a first-order loss term, with turnover times ranging from 1 to 4 days. During SERIES, shallow boundary-layer heights that occurred when DMS production was highest prevented dispersion into the atmosphere beyond several 100 m. Finally, successive model runs with iron fertilization starting on June 25, July 10 and 25 showed that the general nature of the response to iron enrichment at OSP (SERIES) is robust, but the strength as well as length of the response depend strongly on short-term atmospheric conditions (wind and radiative fluxes).

  13. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    SciTech Connect

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H.

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  14. Three-dimensional approach using two coupled models for description of hydrological and biogeochemical processes at the catchment scale

    NASA Astrophysics Data System (ADS)

    Plesca, Ina; Kraft, Philipp; Haas, Edwin; Klatt, Steffen; Butterbach-Bahl, Klaus; Frede, Hans-Georg; Breuer, Lutz

    2014-05-01

    Hydrological and biogeochemical transport through changing landscapes has been well described during the past years in literature. However, the uncertainties of combined water quality and water quantity models are still challenging, both due to a lack in process understanding as well to spatiotemporal heterogeneity of environmental conditions driving the processes. In order to reduce the uncertainty in water quality and runoff predictions at the catchment scale, a variety of different model approaches from empirical-conceptual to fully physical and process based models have been developed. In this study we present a new modelling approach for the investigation of hydrological processes and nutrient cycles, with a focus on nitrogen in a small catchment from Hessen, Germany. A hydrological model based on the model toolbox Catchment Modelling Framework (CMF) has been coupled with the process based biogeochemical model LandscapeDNDC. States, fluxes and parameters are exchanged between the models at high temporal and spatial resolution using the Python scripting language in order to obtain a 3-dimensional model application. The transport of water and nutrients through the catchment is modelled using a 3D Richards/Darcy approach for subsurface fluxes, a kinematic wave approach for surface runoff and a Penman-Monteith based calculation of evapotranspiration. Biogeochemical processes are modelled by Landscape-DNDC, including plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification and associated nitrous oxide emissions. The interactions and module connectivity between the two coupled models, as well as the model application on a 3.7 km² catchment with the runoff results and nitrogen quantification will be presented in this study.

  15. Salicylic acid degradation by advanced oxidation processes. Coupling of solar photoelectro-Fenton and solar heterogeneous photocatalysis.

    PubMed

    Garza-Campos, Benjamin; Brillas, Enric; Hernández-Ramírez, Aracely; El-Ghenymy, Abdellatif; Guzmán-Mar, Jorge Luis; Ruiz-Ruiz, Edgar J

    2016-12-01

    A 3.0 L solar flow plant with a Pt/air-diffusion (anode/cathode) cell, a solar photoreactor and a photocatalytic photoreactor filled with TiO2-coated glass spheres has been utilized to couple solar photoelectro-Fenton (SPEF) and solar heterogeneous photocatalysis (SPC) for treating a 165mgL(-1) salicylic acid solution of pH 3.0. Organics were destroyed by OH radicals formed on the TiO2 photocatalyst and at the Pt anode during water oxidation and in the bulk from Fenton's reaction between added Fe(2+) and cathodically generated H2O2, along with the photolytic action of sunlight. Poor salicylic acid removal and mineralization were attained using SPC, anodic oxidation with electrogenerated H2O2 (AO-H2O2) and coupled AO-H2O2-SPC. The electro-Fenton process accelerated the substrate decay, but with low mineralization by the formation of byproducts that are hardly destroyed by OH. The mineralization was strongly increased by SPEF due to the photolysis of products by sunlight, being enhanced by coupled SPEF-SPC due to the additional oxidation by OH at the TiO2 surface. The effect of current density on the performance of both processes was examined. The most potent SPEF-SPC process at 150mAcm(-2) yielded 87% mineralization and 13% current efficiency after consuming 6.0AhL(-1). Maleic, fumaric and oxalic acids detected as final carboxylic acids were completely removed by SPEF and SPEF-SPC. PMID:26947802

  16. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik

    2016-06-01

    The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.

  17. Constraints on the axion-electron coupling for solar axions produced by a Compton process and bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Derbin, A. V.; Kayunov, A. S.; Muratova, V. V.; Semenov, D. A.; Unzhakov, E. V.

    2011-01-01

    The search for solar axions produced by Compton (γ+e-→e-+A) and bremsstrahlunglike (e-+Z→Z+e-+A) processes has been performed. The axion flux in both cases depends on the axion-electron coupling constant. The resonant excitation of the low-lying nuclear level of Tm169 was looked for: A+Tm169→Tm*169→Tm169+γ (8.41 keV). The Si(Li) detector and Tm169 target installed inside the low-background setup were used to detect 8.41 keV γ rays. As a result, a new model-independent restriction on the axion-electron and the axion-nucleon couplings was obtained: gAe×|gAN0+gAN3|≤2.1×10-14. In the model of the hadronic axion this restriction corresponds to the upper limit on the axion-electron coupling and on the axion mass gAe×mA≤3.1×10-7eV (90% C.L.). The limits on the axion mass are mA≤105eV and mA≤1.3keV for the Dine-Fischler-Srednicki-Zhitnitskii- and Kim-Shifman-Vainstein-Zakharov-axion models, correspondingly (90% C.L.).

  18. Coupled Molecular Switching Processes in Ordered Mono- and Multilayers of Stimulus-Responsive Rotaxanes on Gold Surfaces

    PubMed Central

    2015-01-01

    Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effects. PMID:25782057

  19. A 3D partial-equilibrium model to simulate coupled hydrogeological, microbiological, and geochemical processes in subsurface systems

    NASA Astrophysics Data System (ADS)

    Phanikumar, M. S.; McGuire, Jennifer T.

    2004-06-01

    This paper reports the development and application of a three-dimensional multi-component reactive transport model (BGTK) to simulate a wide range of biogeochemical processes in subsurface environments. The model can handle both equilibrium and kinetically controlled reactions and is based on the well tested modular models RT3D [Clement et al., 1998] and PHREEQC-2 [Parkhurst and Appelo, 1999]. Here we describe the details of the new coupled model and demonstrate its capabilities using test problems involving microbial transport in a laboratory column and redox zonation in a contaminated aquifer.

  20. The decision-making process of genetically at-risk couples considering preimplantation genetic diagnosis: initial findings from a grounded theory study.

    PubMed

    Hershberger, Patricia E; Gallo, Agatha M; Kavanaugh, Karen; Olshansky, Ellen; Schwartz, Alan; Tur-Kaspa, Ilan

    2012-05-01

    Exponential growth in genomics has led to public and private initiatives worldwide that have dramatically increased the number of procreative couples who are aware of their ability to transmit genetic disorders to their future children. Understanding how couples process the meaning of being genetically at-risk for their procreative life lags far behind the advances in genomic and reproductive sciences. Moreover, society, policy makers, and clinicians are not aware of the experiences and nuances involved when modern couples are faced with using Preimplantation Genetic Diagnosis (PGD). The purpose of this study was to discover the decision-making process of genetically at-risk couples as they decide whether to use PGD to prevent the transmission of known single-gene or sex-linked genetic disorders to their children. A qualitative, grounded theory design guided the study in which 22 couples (44 individual partners) from the USA, who were actively considering PGD, participated. Couples were recruited from June 2009 to May 2010 from the Internet and from a large PGD center and a patient newsletter. In-depth semi-structured interviews were completed with each individual partner within the couple dyad, separate from their respective partner. We discovered that couples move through four phases (Identify, Contemplate, Resolve, Engage) of a complex, dynamic, and iterative decision-making process where multiple, sequential decisions are made. In the Identify phase, couples acknowledge the meaning of their at-risk status. Parenthood and reproductive options are explored in the Contemplate phase, where 41% of couples remained for up to 36 months before moving into the Resolve phase. In Resolve, one of three decisions about PGD use is reached, including: Accepting, Declining, or Oscillating. Actualizing decisions occur in the Engage phase. Awareness of the decision-making process among genetically at-risk couples provides foundational work for understanding critical processes

  1. A process-based evapotranspiration model incorporating coupled soil water-atmospheric controls

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Kirchner, James

    2016-04-01

    Despite many efforts to develop evapotranspiration models (in the framework of the Penman-Monteith equation) with improved parametrizations of various resistance terms to water vapor transfer into the atmosphere, evidence suggests that estimates of evapotranspiration and its partitioning are prone to bias. Much of this bias could arise from the exclusion of surface hydro-thermal properties and of physical interactions close to the surface where heat and water vapor fluxes originate. Recent progress has been made in mechanistic modeling of surface-turbulence interactions, accounting for localized heat and mass exchange rates from bare soil surfaces covered by protruding obstacles. We seek to extend these results partially vegetated surfaces, to improve predictive capabilities and accuracy of remote sensing techniques quantifying evapotranspiration fluxes. The governing equations of liquid water, water vapor, and energy transport dynamics in the soil-plant-atmosphere system are coupled to resolve diffusive vapor fluxes from isolated pores (plant stomata and soil pores) across a near-surface viscous sublayer, explicitly accounting for pore-scale transport mechanisms and environmental forcing. Preliminary results suggest that this approach offers unique opportunities for directly linking transport properties in plants and adjacent bare soil with resulting plant transpiration and localized bare soil evaporation rates. It thus provides an essential building block for interpreting and upscaling results to field and landscape scales for a range of vegetation cover and atmospheric conditions.

  2. Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials

    SciTech Connect

    Liu, Chongxuan; Liu, Yuanyuan; Kerisit, Sebastien N.; Zachara, John M.

    2015-09-01

    This manuscript provides a review of pore-scale researches in literature including experimental and numerical approaches, and scale-dependent behavior of geochemical and biogeochemical reaction rates in heterogeneous porous media. A mathematical equation that can be used to predict the scale-dependent behavior of geochemical reaction rates in heterogeneous porous media has been derived. The derived effective rate expression explicitly links the effective reaction rate constant to the intrinsic rate constant, and to the pore-scale variations in reactant concentrations in porous media. Molecular simulations to calculate the intrinsic rate constants were provided. A few examples of pore-scale simulations were used to demonstrate the application of the equation to calculate effective rate constants in heterogeneous materials. The results indicate that the deviation of effective rate constant from the intrinsic rate in heterogeneous porous media is caused by the pore-scale distributions of reactants and their correlation, which are affected by the pore-scale coupling of reactions and transport.

  3. Beta oscillations and reward processing: Coupling oscillatory activity and hemodynamic responses.

    PubMed

    Mas-Herrero, Ernest; Ripollés, Pablo; HajiHosseini, Azadeh; Rodríguez-Fornells, Antoni; Marco-Pallarés, Josep

    2015-10-01

    Diverse cortical and subcortical regions are synergically engaged during reward processing. Previous studies using time-frequency decomposition of Electroencephalography (EEG) data have revealed an increase of mid-frontal beta oscillatory activity (BOA) after reward delivery, which could be a potential mechanism in the coordination of the different areas engaged during reward processing. In order to evaluate this hypothesis, twenty subjects performed a monetary gambling paradigm in two separate sessions (EEG and fMRI). Time-frequency oscillatory EEG data and fMRI activity were fused using Joint Independent Component Analysis (ICA). The present results showed that mid-frontal BOA elicited by monetary gains is associated with the engagement of a fronto-striatal-hippocampal network previously involved in reward-related memory enhancement, supporting the role of this activity during reward processing. PMID:26070260

  4. Close coupling of pre- and post-processing vision stations using inexact algorithms

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Hsien V.; Sherkat, Nasser; Thomas, Peter D.

    1996-02-01

    Work has been reported using lasers to cut deformable materials. Although the use of laser reduces material deformation, distortion due to mechanical feed misalignment persists. Changes in the lace patten are also caused by the release of tension in the lace structure as it is cut. To tackle the problem of distortion due to material flexibility, the 2VMethod together with the Piecewise Error Compensation Algorithm incorporating the inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy technique, are developed. A spring mounted pen is used to emulate the distortion of the lace pattern caused by tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is possible to monitor the scalloping process and generate on-line information for the artificial intelligence engines. This overcomes the problems of lace distortion due to the trimming process. Applying the algorithms developed, the system can produce excellent results, much better than a human operator.

  5. Chilly Hilly - coupling models of landscape evolution and subsurface thermal processes

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Anderson, R. S.

    2014-12-01

    Many hillslope processes - physical, chemical, and biological - depend on subsurface temperature and water availability. As the subsurface temperature field varies both in space and through climate cycles, the dominant processes of mobile regolith production and transport and the rate at which they act will vary. These processes include the chemical weathering of minerals, cracking of rocks through frost action and tree roots, presence and impact of vegetation on soil cohesion, location and activity of burrowing and trampling animals, frost creep, and solifluction. In order to explore the interplay between these processes across a landscape and over geologic time, we develop a pseudo-three-dimensional subsurface thermal model within the Landlab landscape evolution modeling framework, driven by an associated spatially explicit radiative surface boundary condition. We begin with the analytical solution for conduction in a medium with uniform thermal properties and progress to a numerical model that acknowledges variable material properties, water content, and phase change. At the surface we incorporate spatial and temporal variations in incoming short-wave radiation due to elevation, latitude, aspect, shading and orbital variations. Outgoing long-wave radiation is taken to depend on the surface temperature and may be modified by allowing back-radiation from the atmosphere. With these tools we target variations in regolith production and motion over the long timescales on which hillslopes evolve. We implement a basic parameterization of temperature-dependent chemical and physical weathering linked to mobile regolith generation. We incorporate multiple regolith transport processes including heave, creep, solifluction, tree throw, and animal burrowing. We incorporate material tracking to trace the chemical evolution of regolith as it moves downslope. Our intention is not to parameterize all operative processes, but to include sufficient detail to identify how the

  6. Partial nitritation of swine wastewater in view of its coupling with the anammox process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial nitritation (PN) of swine wastewater was investigated in a sequencing batch reactor (SBR) using a high performance nitrifying sludge (HPNS). Characteristics of the wastewater used were low content of biodegradable organic carbon and high alkalinity-to-ammonium ratio. Process temperature was ...

  7. Simulating Sediment Transport Processes in San Francisco Bay Using Coupled Hydrodynamic, Wave, and Sediment Transport Models

    NASA Astrophysics Data System (ADS)

    Bever, A. J.; MacWilliams, M.

    2012-12-01

    Under the conceptual model of sediment transport in San Pablo Bay, a sub-embayment of San Francisco Bay, proposed by Krone (1979), sediment typically enters San Pablo Bay during large winter and spring flows and is redistributed during summer conditions through wind wave resuspension and transport by tidal currents. A detailed understanding of how the waves and tides redistribute sediment within San Francisco Bay is critical for predicting how future sea level rise and a reduction in the sediment supply to the Bay will impact existing marsh and mudflat habitat, tidal marsh restoration projects, and ongoing maintenance dredging of the navigation channels. The three-dimensional UnTRIM San Francisco Bay-Delta Model was coupled with the Simulating WAves Nearshore (SWAN) wave model and the SediMorph morphological model, to develop a three-dimensional hydrodynamic, wind wave, and sediment transport model of the San Francisco Bay and the Sacramento-San Joaquin Delta. Numerical simulations of sediment resuspension due to tidal currents and wind waves and the subsequent transport of this sediment by tidal currents are used to quantify the spatial and temporal variability of sediment fluxes on the extensive shoals in San Pablo Bay under a range of tidal and wind conditions. The results demonstrate that suspended sediment concentration and sediment fluxes within San Pablo Bay are a complex product of tides and waves interacting spatially throughout the Bay, with concentrations responding to local resuspension and sediment advection. Sediment fluxes between the San Pablo Bay shoals and the deeper channel are highest during spring tides, and are elevated for up to a week following wave events, even though the greatest influence of the wave event occurs abruptly.

  8. Physical processes in a coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.; Stephens, J. A.; Harris, C.

    2015-09-01

    Whitsand Bay and Plymouth Sound are located in the southwest of England. The Bay and Sound are separated by the ∼2-3 km-wide Rame Peninsula and connected by ∼10-20 m-deep English Channel waters. Results are presented from measurements of waves and currents, drogue tracking, surveys of salinity, temperature and turbidity during stratified and unstratified conditions, and bed sediment surveys. 2D and 3D hydrodynamic models are used to explore the generation of tidally- and wind-driven residual currents, flow separation and the formation of the Rame eddy, and the coupling between the Bay and the Sound. Tidal currents flow around the Rame Peninsula from the Sound to the Bay between approximately 3 h before to 2 h after low water and form a transport path between them that conveys lower salinity, higher turbidity waters from the Sound to the Bay. These waters are then transported into the Bay as part of the Bay-mouth limb of the Rame eddy and subsequently conveyed to the near-shore, east-going limb and re-circulated back towards Rame Head. The Simpson-Hunter stratification parameter indicates that much of the Sound and Bay are likely to stratify thermally during summer months. Temperature stratification in both is pronounced during summer and is largely determined by coastal, deeper-water stratification offshore. Small tidal stresses in the Bay are unable to move bed sediment of the observed sizes. However, the Bay and Sound are subjected to large waves that are capable of driving a substantial bed-load sediment transport. Measurements show relatively low levels of turbidity, but these respond rapidly to, and have a strong correlation with, wave height.

  9. Capturing poromechanical coupling effects of the reactive fracturing process in porous rock via a DEM-network model

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing

    2016-04-01

    Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I

  10. Multi-Objective Optimization of Hole Drilling Electrical Discharge Micromachining Process Using Grey Relational Analysis Coupled with Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Porwal, R. K.; Yadava, V.; Ramkumar, J.

    2013-10-01

    Optimization of performance characteristics and quality characteristics during hole drilling-electrical discharge micromachining (HD-EDMM) is necessarily multi-objective in nature and needs considerable attention for finding preferred operating values and levels for a desired output responses. A hybrid method comprising of grey relational analysis (GRA) coupled with principal component analysis (PCA) is used in this paper for the determination of preferred combination of input parameters of HD-EDMM for maximization of material removal rate and minimization of other three output parameters such as tool wear rate, hole taper and hole overcut simultaneously. The micromachining parameters used are gap voltage at six levels, capacitance of capacitor at three levels and spindle speed at three levels. Eighteen sets of experiments are conducted as per L18 orthogonal array and GRA coupled with PCA is used for finding optimal parameter combination of the HD-EDMM process. Optimal combination of the process parameters for the multi-performance characteristics of the HD-EDMM has been found as gap voltage 140 V, capacitance of capacitor 10 nF, and 110 rpm of tool electrode.

  11. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    SciTech Connect

    Lee, Jin-Won; Lee, Yun-Seong Chang, Hong-Young; An, Sang-Hyuk

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.

  12. Coupled Model for Carbon Partitioning from Martensite into Austenite During the Quenching Process in Fe-C Steels

    NASA Astrophysics Data System (ADS)

    Liu, Peixing; Zhu, Bin; Wang, Yilin; Zhang, Yisheng

    2016-08-01

    In this paper, a coupled model for carbon partitioning from martensite into austenite during the quenching process in Fe-C steels is constructed where the carbon is permitted to partition while the martensite is continuously forming. A diffusion model of carbon at the `martensite/austenite interface' is created where the interface does not move during the carbon partitioning process, and the driving force for carbon partitioning originates from the chemical potential difference. The results show that the martensitic transformation and carbon partitioning affect each other, and that the cooling rate between the martensite start temperature ( M s) and room temperature has a major effect on the volume fraction of the final retained austenite. The simulation results are shown to be in good agreement with experiments.

  13. Analysis of Dissociation—Recombination Processes for the CO2 Molecule with the Spin—Orbit Coupling Taken into Account

    NASA Astrophysics Data System (ADS)

    Ibraguimova, L. B.; Minaev, B. F.

    2016-03-01

    The dissociation CO2( X 1Σ) + M → CO( X 1Σ) + O(3P) + M and recombination CO( X 1Σ) + O(3P) + M → CO2( X 1Σ) + M processes are considered with the spin—orbit coupling taken into account in the ground and several excited states of the CO2 molecule. Because of the specific features of mutual position of potential energy surfaces of the CO2 molecule in the ground and several excited states and the large values of spin—orbit interaction matrix elements, which causes the quantum nonadiabatic transition of the molecule from one state to another, these processes become effectively spin-allowed and the rate constants for the nonadiabatic reactions have large values. The proposed dissociation and recombination mechanisms include reactions involving singlet—triplet crossings.

  14. Treatment of artificial soybean wastewater anaerobic effluent in a continuous aerobic-anaerobic coupled (CAAC) process with excess sludge reduction.

    PubMed

    Wang, Jun; Li, Xiaoxia; Fu, Weichao; Wu, Shihan; Li, Chun

    2012-12-01

    In this study, treatment of artificial soybean wastewater anaerobic effluent was studied in a continuous aerobic-anaerobic coupled (CAAC) process. The focus was on COD and nitrogen removal as well as excess sludge reduction. During the continuous operation without reflux, the COD removal efficiency was 96.5% at the optimal hydraulic retention time (HRT) 1.3 days. When HRT was shortened to 1.0 day, reflux from anaerobic zone to moving bed biofilm reactor (MBBR) was introduced. The removal efficiencies of COD and TN were 94.4% and 76.0% at the optimal reflux ratio 30%, respectively. The sludge yield coefficient of CAAC was 0.1738, the simultaneous removal of COD and nitrogen with in situ sludge reduction could be achieved in this CAAC process. The sludge reduction mechanism was discussed by soluble components variation along the water flow. PMID:23073101

  15. Fundamentals of planar-type inductively coupled thermal plasmas on a substrate for large-area material processing

    NASA Astrophysics Data System (ADS)

    Tial, Mai Kai Suan; Irie, Hiromitsu; Maruyama, Yuji; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo

    2016-07-01

    In this work, the fundamentals of planar-type Ar inductively coupled thermal plasmas (ICTPs) with oxygen molecular gas on a substrate have been studied. Previously, aiming at large-area material processing, we developed a planar-type ICTP torch with a rectangular quartz vessel instead of a conventional cylindrical tube. For the adoption of such planar-type ICTP to material processing, it is necessary to sustain the ICTP with molecular gases on a substrate stably and uniformly. To determine the uniformity of the ICTP formed on the substrate, spectroscopic observation was carried out at 3 mm above the substrate. Results showed that the radiation intensities of specified O atomic lines were almost uniformly detected along the surface of the substrate. This means that excited O atoms, which are important radicals for thermal plasma oxidation, are present in the planar-type ICTP uniformly on the substrate.

  16. Coupled Model for Carbon Partitioning from Martensite into Austenite During the Quenching Process in Fe-C Steels

    NASA Astrophysics Data System (ADS)

    Liu, Peixing; Zhu, Bin; Wang, Yilin; Zhang, Yisheng

    2016-05-01

    In this paper, a coupled model for carbon partitioning from martensite into austenite during the quenching process in Fe-C steels is constructed where the carbon is permitted to partition while the martensite is continuously forming. A diffusion model of carbon at the `martensite/austenite interface' is created where the interface does not move during the carbon partitioning process, and the driving force for carbon partitioning originates from the chemical potential difference. The results show that the martensitic transformation and carbon partitioning affect each other, and that the cooling rate between the martensite start temperature (M s) and room temperature has a major effect on the volume fraction of the final retained austenite. The simulation results are shown to be in good agreement with experiments.

  17. Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process.

    PubMed

    Khan, Mohammad Danish; Abdulateif, Huda; Ismail, Iqbal M; Sabir, Suhail; Khan, Mohammad Zain

    2015-01-01

    Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5-8.0, 27(±2°C and 10.6-18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery. PMID:26496083

  18. Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process

    PubMed Central

    Khan, Mohammad Danish; Abdulateif, Huda; Ismail, Iqbal M.; Sabir, Suhail; Khan, Mohammad Zain

    2015-01-01

    Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5–8.0, 27(±2°C and 10.6–18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery. PMID:26496083

  19. Modeling and Simulation of Plasmonic Lithography Process with Coupling Between Electromagnetic Wave Model, Phase Field Model and Heat Transfer Model

    NASA Astrophysics Data System (ADS)

    Chao, Ion Hong

    Plasmonic lithography may become a mainstream nano-fabrication technique in the future. Experimental results show that feature size with 22 nm resolution can be achieved by plasmonic lithography [1]. In Pan's experiment, a plasmonic lens is used to focus the laser energy with resolution much higher than the diffraction limit and thereby create features in the thermally sensitive material layer. The energy transport mechanisms are still not fully understood in the plasmonic lithography process. In order to predict the lithography resolution and explore the energy transport mechanisms involved in the process, customized electromagnetic wave and heat transfer models were developed in COMSOL. Parametric studies on both operating parameters and material properties were performed to optimize the lithography process. The parametric studies showed that the lithography process can be improved by either reducing the thickness of the phase change material layer or using a material with smaller real refractive index for that layer. Moreover, a phase field model was also developed in COMSOL to investigate the phase separation mechanism involved in creating features in plasmonic lithography. By including the effect of bond energy in this model, phase separation was obtained from the phase field model under isothermal conditions with speed much faster than the classical diffusion theory can predict. Mathematical transformation was applied to the phase field model, which was necessary for solving numerical issues to obtain the result of complete phase separation. Under isothermal conditions, the phase field model confirmed the fact that the speed of phase separation is determined by both particle mobility and thermodynamic driving force. The fast phase separation in the phase change material is mainly due to strong thermodynamic driving force from the bond energy. The phase field model was coupled with a heat transfer model to simulate phase separation under laser pulse heating

  20. Health, Trust, or “Just Understood”: Explicit and Implicit Condom Decision-Making Processes Among Black, White, and Interracial Same-Sex Male Couples

    PubMed Central

    Campbell, Chadwick K.; Gómez, Anu Manchikanti; Dworkin, Shari; Wilson, Patrick A.; Grisham, Kirk; McReynolds, Jaih; Vielehr, Peter; Hoff, Colleen

    2013-01-01

    Among gay and bisexual men, primary partners are a leading source of HIV infection. Trust, intimacy, and advancements in HIV treatment may impact same-sex male couples’ decisions to engage in unprotected anal intercourse (UAI). This qualitative study explored how Black, White and interracial couples discussed, and made decisions regarding condoms. Qualitative interviews were conducted with 48 same-sex male couples in the New York and San Francisco metropolitan areas. Stratified purposive sampling was used to include Black (n = 16), White (n = 17), and interracial (Black-White) (n = 15) couples. Twenty-six couples were concordant HIV-negative and 22 were HIV-discordant. Interviews were recorded, transcribed, coded, and analyzed using a grounded theory approach. Some couples described explicit processes, which involved active discussion, while others described implicit processes, where condom-use decisions occurred without any explicit discussion. These processes also differed by race and HIV status. Black couples tended to report condom-use as “just understood.” White, HIV-discordant couples decided not to use condoms, with some identifying the HIV-positive partner’s suppressed viral load and high CD4 count as deciding factors. After an unplanned episode of UAI, White, HIV-negative couples tended to discontinue condom use while Black HIV-negative couples decided to revert to using condoms. HIV prevention efforts focused on same-sex, male couples must consider the explicit/implicit nature of condom decision-making processes. Understanding differences in these processes and considering relationship dynamics, across race and HIV status, can promote the development of innovative couple–level, HIV prevention interventions. PMID:23912774

  1. Coupled map model for spatio-temporal processing in the olfactory bulb

    NASA Astrophysics Data System (ADS)

    de Almeida, L.; Idiart, M.; Quillfeldt, J. A.

    2007-02-01

    Odor processing in the animal olfactory system is still an open problem in modern neuroscience. It is a common understanding that the spatial code provided by the activity distribution of the olfactory receptor cells (ORC) due the presence of an odorant is transformed into a spatio-temporal code in the mitral cell (MC) layer in the case of mammals, or the projection neurons (PN) in the case of insects, that is decoded later along the neural path. The putative role of the spatio-temporal coding is to disambiguate the stimulus putting it in a more robust representation that allows odor separation, categorization, and recognition. Oscillations due to lateral inhibition among MC's (or PN's) may play an important part in the code as well as neural adaptation. To shed some light on their possible role in the olfaction processing, we study the properties of a simple network model. Upon the presentation of a random distributed input it respond with a rich spatio-temporal structure where two distinct phases are observed. We discuss their properties and implications in information processing.

  2. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    NASA Astrophysics Data System (ADS)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  3. Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate.

    PubMed

    Oumar, Dia; Patrick, Drogui; Gerardo, Buelna; Rino, Dubé; Ihsen, Ben Salah

    2016-10-01

    In this research paper, a combination of biofiltration (BF) and electrocoagulation (EC) processes was used for the treatment of sanitary landfill leachate. Landfill leachate is often characterized by the presence of refractory organic compounds (BOD/COD < 0.13). BF process was used as secondary treatment to remove effectively ammonia nitrogen (N-NH4 removal of 94%), BOD (94% removed), turbidity (95% removed) and phosphorus (more than 98% removed). Subsequently, EC process using magnesium-based anode was used as tertiary treatment. The best performances of COD and color removal from landfill leachate were obtained by applying a current density of 10 mA/cm(2) through 30 min of treatment. The COD removal reached 53%, whereas 85% of color removal was recorded. It has been proved that the alkalinity had a negative effect on COD removal during EC treatment. COD removal efficiencies of 52%, 41% and 27% were recorded in the presence of 1.0, 2.0 and 3.0 g/L of sodium bicarbonate (NaHCO3), respectively. Hydroxide ions produced at the cathode electrode reacted with the bicarbonate ions to form carbonates. The presence of bicarbonates in solution hampered the increase in pH, so that the precipitation of magnesium hydroxides could not take place to effectively remove organic pollutants. PMID:27420170

  4. Scaling-up parameters for site restoration process using surfactant-enhanced soil washing coupled with wastewater treatment by Fenton and Fenton-like processes.

    PubMed

    Bandala, Erick R; Cossio, Horacio; Sánchez-Lopez, Adriana D; Córdova, Felipe; Peralta-Herández, Juan M; Torres, Luis G

    2013-01-01

    Estimation of scaling-up parameters for a site restoration process using a surfactant-enhanced soil washing (SESW) process followed by the application of advanced oxidation processes (Fenton and photo-Fenton) was performed. For the SESW, different parameters were varied and the soil washing efficiency for pesticide (2,4-D) removal assessed. The resulting wastewater was treated using the Fenton reaction in the absence and presence of ultraviolet (UV) radiation for pesticide removal. Results showed that agitation speed of 1550 rpm was preferable for the best pesticide removal from contaminated soil. It was possible to wash contaminated soils with different soil concentrations; however the power drawn was higher as the soil concentration increased. Complete removal of the pesticide and the remaining surfactant was achieved using different reaction conditions. The best degradation conditions were for the photo-Fenton process using [Fe(II)] = 0.3 mM; [H2O2] = 4.0 mM where complete 2,4-D and sodium dodecylsulfate (SDS) removal was observed after 8 and 10 minutes of reaction, respectively. Further increase in the hydrogen peroxide or iron salt concentration did not show any improvement in the reaction rate. Kinetic parameters, i.e. reaction rate constant and scaling-up parameters, were determined. It was shown that, by coupling both processes (SESW and AOPs), it is possible the restoration of contaminated sites. PMID:23530350

  5. Monolithic integration of high bandwidth waveguide coupled Ge photodiode in a photonic BiCMOS process

    NASA Astrophysics Data System (ADS)

    Lischke, S.; Knoll, D.; Zimmermann, L.

    2015-03-01

    Monolithic integration of photonic functionality in the frontend-of-line (FEOL) of an advanced microelectronics technology is a key step towards future communication applications. This combines photonic components such as waveguides, couplers, modulators, and photo detectors with high-speed electronics plus shortest possible interconnects crucial for high-speed performance. Integration of photonics into CMOS FEOL is therefore in development for quite some time reaching 90nm node recently [1]. However, an alternative to CMOS is high-performance BiCMOS, offering significant advantages for integrated photonics-electronics applications with regard to cost and RF performance. We already presented results of FEOL integration of photonic components in a high-performance SiGe:C BiCMOS baseline to establish a novel, photonic BiCMOS process. Process cornerstone is a local-SOI approach which allows us to fabricate SOI-based, thus low-loss photonic components in a bulk BiCMOS environment [2]. A monolithically integrated 10Gbit/sec Silicon modulator with driver was shown here [3]. A monolithically integrated 25Gbps receiver was presented in [4], consisting of 200GHz bipolar transistors and CMOS devices, low-loss waveguides, couplers, and highspeed Ge photo diodes showing 3-dB bandwidth of 35GHz, internal responsivity of more than 0.6A/W at λ= 1.55μm, and ~ 50nA dark current at 1V. However, the BiCMOS-given thermal steps cause a significant smearing of the Germanium photo diodes doping profile, limiting the photo diode performance. Therefore, we introduced implantation of non-doping elements to overcome such limiting factors, resulting in photo diode bandwidths of more than 50GHz even under the effect of thermal steps necessary when the diodes are integrated in a high performance BiCMOS process.

  6. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    SciTech Connect

    Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi; Houseworth, Jim

    2015-07-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  7. The LBT-AdOpt arbitrator: coordinating many loosely coupled processes

    NASA Astrophysics Data System (ADS)

    Fini, Luca; Tosetti, Fabio; Busoni, Lorenzo; Puglisi, Alfio; Xompero, Marco

    2008-08-01

    The LBT-AdOpt Supervisor is a collection of software processes which control the operations on the set of devices which make up the Adaptive Optics subsystem. The Arbitrator is the software component which coordinates the operations of the Supervisor in order to support operations at the telescope in reply to requests issued by the Instrument Control Software. In this paper we describe the architecture of the Arbitrator, based on an extremely modular, extensible and maintainable approach, designed using object-oriented techniques, that include intensive use of classes, exception handling and design patterns, as well as a clear division of tasks.

  8. Signatures of Förster and Dexter transfer processes in coupled nanostructures for linear and two-dimensional coherent optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Richter, Marten

    2015-03-01

    In this manuscript, we study the impact of the two Coulomb induced resonance energy transfer processes, Förster and Dexter coupling, on the spectral signatures obtained by double quantum coherence spectroscopy. We show that the specific coupling characteristics allow us to identify the underlying excitation transfer mechanism by means of specific signatures in coherent spectroscopy. Therefore, we control the microscopic calculated coupling strength of spin preserving and spin flipping Förster transfer processes by varying the mutual orientation of the two quantum emitters. The calculated spectra reveal the optical selection rules altered by Förster and Dexter coupling between two semiconductor quantum dots. We show that Dexter coupling between bright and dark two-exciton states occurs.

  9. Multidimensional treatment of stochastic solvent dynamics in photoinduced proton-coupled electron transfer processes: sequential, concerted, and complex branching mechanisms.

    PubMed

    Soudackov, Alexander V; Hazra, Anirban; Hammes-Schiffer, Sharon

    2011-10-14

    A theoretical approach for the multidimensional treatment of photoinduced proton-coupled electron transfer (PCET) processes in solution is presented. This methodology is based on the multistate continuum theory with an arbitrary number of diabatic electronic states representing the relevant charge distributions in a general PCET system. The active electrons and transferring proton(s) are treated quantum mechanically, and the electron-proton vibronic free energy surfaces are represented as functions of multiple scalar solvent coordinates corresponding to the single electron and proton transfer reactions involved in the PCET process. A dynamical formulation of the dielectric continuum theory is used to derive a set of coupled generalized Langevin equations of motion describing the time evolution of these collective solvent coordinates. The parameters in the Langevin equations depend on the solvent properties, such as the dielectric constants, relaxation time, and molecular moment of inertia, as well as the solute properties. The dynamics of selected intramolecular nuclear coordinates, such as the proton donor-acceptor distance or a torsional angle within the PCET complex, may also be included in this formulation. A surface hopping method in conjunction with the Langevin equations of motion is used to simulate the nonadiabatic dynamics on the multidimensional electron-proton vibronic free energy surfaces following photoexcitation. This theoretical treatment enables the description of both sequential and concerted mechanisms, as well as more complex processes involving a combination of these mechanisms. The application of this methodology to a series of model systems corresponding to collinear and orthogonal PCET illustrates fundamental aspects of these different mechanisms and elucidates the significance of proton vibrational relaxation and nonequilibrium solvent dynamics. PMID:22010706

  10. A high-order language for a system of closely coupled processing elements

    NASA Technical Reports Server (NTRS)

    Feyock, S.; Collins, W. R.

    1986-01-01

    The research reported in this paper was occasioned by the requirements on part of the Real-Time Digital Simulator (RTDS) project under way at NASA Lewis Research Center. The RTDS simulation scheme employs a network of CPUs running lock-step cycles in the parallel computations of jet airplane simulations. Their need for a high order language (HOL) that would allow non-experts to write simulation applications and that could be implemented on a possibly varying network can best be fulfilled by using the programming language Ada. We describe how the simulation problems can be modeled in Ada, how to map a single, multi-processing Ada program into code for individual processors, regardless of network reconfiguration, and why some Ada language features are particulary well-suited to network simulations.

  11. Constraints on the axion-electron coupling for solar axions produced by a Compton process and bremsstrahlung

    SciTech Connect

    Derbin, A. V.; Kayunov, A. S.; Muratova, V. V.; Semenov, D. A.; Unzhakov, E. V.

    2011-01-15

    The search for solar axions produced by Compton ({gamma}+e{sup -}{yields}e{sup -}+A) and bremsstrahlunglike (e{sup -}+Z{yields}Z+e{sup -}+A) processes has been performed. The axion flux in both cases depends on the axion-electron coupling constant. The resonant excitation of the low-lying nuclear level of {sup 169}Tm was looked for: A+{sup 169}Tm{yields}{sup 169}Tm{sup *}{yields}{sup 169}Tm+{gamma} (8.41 keV). The Si(Li) detector and {sup 169}Tm target installed inside the low-background setup were used to detect 8.41 keV {gamma} rays. As a result, a new model-independent restriction on the axion-electron and the axion-nucleon couplings was obtained: g{sub Ae}x|g{sub AN}{sup 0}+g{sub AN}{sup 3}|{<=}2.1x10{sup -14}. In the model of the hadronic axion this restriction corresponds to the upper limit on the axion-electron coupling and on the axion mass g{sub Ae}xm{sub A{<=}}3.1x10{sup -7} eV (90% C.L.). The limits on the axion mass are m{sub A{<=}}105 eV and m{sub A{<=}}1.3 keV for the Dine-Fischler-Srednicki-Zhitnitskii- and Kim-Shifman-Vainstein-Zakharov-axion models, correspondingly (90% C.L.).

  12. Incorporating 3-D Subsurface Hydrologic Processes within the Community Land Surface Model (CLM): Coupling PFLOTRAN and CLM

    NASA Astrophysics Data System (ADS)

    Bisht, G.; Mills, R. T.; Hoffman, F. M.; Thornton, P. E.; Lichtner, P. C.; Hammond, G. E.

    2011-12-01

    Numerous studies have shown a positive soil moisture-rainfall feedback through observational data, as well as, modeling studies. Spatial variability of topography, soils, and vegetation play a significant role in determining the response of land surface states (soil moisture) and fluxes (runoff, evapotranspirtiaon); but their explicit accounting within Land Surface Models (LSMs) is computa- tionally expensive. Additionally, anthropogenic climate change is altering the hydrologic cycle at global and regional scales. Characterizing the sensitivity of groundwater recharge is critical for understanding the effects of climate change on water resources. In order to explicitly represent lateral redistribution of soil moisture and unified treatment of the unsaturated-saturated zone in the subsurface within the CLM, we propose coupling PFLOTRAN and CLM. PFLOTRAN is a parallel multiphase-multicomponent subsurface reactive flow and transport code for modeling subsurface processes and has been devel- oped under a DOE SciDAC-2 project. PFLOTRAN is written in Fortran 90 using a modular, object-oriented approach. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). The PFLOTRAN model is capable of simulating fluid flow through porous media with fluid phases of air, water, and supercritical CO2. PFLOTRAN has been successfully employed on up to 131,072 cores on Jaguar, the massively parallel Cray XT4/XT5 at ORNL, for problems composed of up to 2 billion degrees of freedom. In this work, we will present a strategy of coupling the two models, CLM and PFLOTRAN, along with a few preliminary results obtained from the coupled model.

  13. Multiparameter Estimation in Voltammetry When an Electron Transfer Process Is Coupled to a Chemical Reaction.

    PubMed

    Simonov, Alexandr N; Morris, Graham P; Mashkina, Elena; Bethwaite, Blair; Gillow, Kathryn; Baker, Ruth E; Gavaghan, David J; Bond, Alan M

    2016-05-01

    Estimation of thermodynamic and kinetic parameters in electrochemical studies is usually undertaken via comparison of the experimental results with theory based on a model that mimics the experiment. The present study examines the credibility of transient d.c. and a.c. voltammetric theory-experiment comparisons for recovery of the parameters needed to model the ubiquitous mechanism when an electron transfer (E) reaction is followed by a chemical (C) step in the EC process ([Formula: see text]). The data analysis has been undertaken using optimization methods facilitated in some cases by grid computing. These techniques have been applied to the simulated (5% noise added) and experimental (reduction of trans-stilbene) voltammograms to assess the capabilities of parameter recovery of E(0) (reversible potential for the E step), k(0) (heterogeneous electron transfer rate constant at E(0)), α (charge transfer coefficient for the E step), and k(f) and k(b) (forward and backward rate constants for the C step) under different kinetic regimes. The advantages provided by the use of a.c. instead of d.c. voltammetry and data optimization methods over heuristic approaches to "experiment"-theory comparisons are discussed, as are the limitations in the efficient recovery of a unique set of parameters for the EC mechanism. In the particular experimental case examined herein, results for the protonation of the electrochemically generated stilbene dianion demonstrate that, notwithstanding significant advances in experiment and theory of voltammetric analysis, reliable recovery of the parameters for the EC mechanism with a fast chemical process remains a stiff problem. PMID:27041344

  14. Real-time control of ion density and ion energy in chlorine inductively coupled plasma etch processing

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Hung; Leou, Keh-Chyang; Lin, Chaung; Lin, Tsan-Lang; Tseng, Chih-Wei; Tsai, Chuen-Horng

    2003-07-01

    In this study, we have experimentally demonstrated the real-time closed-loop control of both ion density and ion energy in a chlorine inductively coupled plasma etcher. To measure positive ion density, the trace rare gases-optical emission spectroscopy is used to measure the chlorine positive ion density. An rf voltage probe is adopted to measure the root-mean-square rf voltage on the electrostatic chuck which is linearly dependent on sheath voltage. One actuator is a 13.56 MHz rf generator to drive the inductive coil seated on a ceramic window. The second actuator is also a 13.56 MHz rf generator to power the electrostatic chuck. The closed-loop controller is designed to compensate for process drift, process disturbance, and pilot wafer effect and to minimize steady-state error of plasma parameters. This controller has been used to control the etch process of unpatterned polysilicon. The experimental results showed that the closed-loop control had a better repeatability of plasma parameters compared with open-loop control. The closed-loop control can eliminate the process disturbance resulting from reflected power. In addition, experimental results also demonstrated that closed-loop control has a better reproducibility in etch rate as compared with open-loop control.

  15. Modeling Coupled Thermal-Hydrological-Chemical Processes in the Unsaturated Fractured Rock of Yucca Mountain, Nevada: Heterogeneity and Seepage

    SciTech Connect

    S. Mukhopadhyay; E.L. Donnenthal; N. Spycher

    2006-07-17

    An understanding of processes affecting seepage into emplacement tunnels is needed for correctly predicting the performance of underground radioactive waste repositories. It has been previously estimated that the capillary and vaporization barriers in the unsaturated fractured rock of Yucca Mountain are enough to prevent seepage under present day infiltration conditions. It has also been thought that a substantially elevated infiltration flux will be required to cause seepage after the thermal period is over. While coupled thermal-hydrological-chemical (THC) changes in Yucca Mountain host rock due to repository heating has been previously investigated, those THC models did not incorporate elements of the seepage model. In this paper, we combine the THC processes in unsaturated fractured rock with the processes affecting seepage. We observe that the THC processes alter the hydrological properties of the fractured rock through mineral precipitation and dissolution. We show that such alteration in the hydrological properties of the rock often leads to local flow channeling. We conclude that such local flow channeling may result in seepage under certain conditions, even with nonelevated infiltration fluxes.

  16. Extending the Range of Organic Compounds that Can Be Destroyed Using the Process of Adsorption Coupled with Electrochemical Regeneration - 13054

    SciTech Connect

    Brown, Nigel; Lodge, Mike; Hilton, Linda; Adams, Alex; Vaudey, Claire-Emilie; Toulemonde, Valerie

    2013-07-01

    The nuclear industry is not a provider of oils and solvents but uses them in motors, equipment and even in chemical processes to extract valuable products. Currently, for old and contaminated oils and solvents, techniques still exist, such as incineration, but not all the oils and solvents are compatible with this technique because the activities of some components inside the oils are too high to be accepted at the incineration facility. For these oils, an alternative technique needs to be found for treatment. A process developed for water treatment using a technique of adsorption coupled with electrochemical regeneration has been investigated to assess its capability to treat these organic wastes. One of the strengths of the process is its flexibility and adaptation to different compositions of oils. This point is important because, in the AREVA case, there are a lot of small volumes of old oils which need to be re-characterized. It takes time and money to do it especially when oils are contaminated; this is one reason why the technique is interesting to investigate. Tests have been performed with different oils coming from different sites to test the feasibility. Results demonstrate the destruction of a range of organics with regeneration energy requirements of 13.4 - 68.7 kWh/l and offer confidence for the future potential of the process. (authors)

  17. Alteration of Fractured Rocks Due to Coupled Chemical and Mechanical Processes: High-Resolution Simulations and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Ameli, Pasha

    Engineering activities such as enhanced geothermal energy production and improved oil recovery techniques are heavily dependent on the permeability of the subsurface, while others such as CO2 sequestration and nuclear waste disposal rely on the efficiency of rock formations as transport barriers. In either case fractures provide the main pathways for fluid flow and transport, especially in rocks with lower matrix porosity. Laboratory experiments aimed at quantifying the chemo-mechanical responses of fractures have shown a range of results, some of which contradict simple conceptual models. For example, under conditions favoring mineral dissolution, where one would expect an overall increase in permeability, experiments show that permeability increases under some conditions and decreases under others. Recent experiments have attempted to link these core-scale observations to the relevant small-scale processes occurring within fractures. Results suggest that the loss of mechanical strength in asperities due to chemical alteration may cause non-uniform deformation and alteration of fracture apertures. However, due to the lack of direct micro-scale measurements of the coupled chemical and mechanical processes that lead to alteration of contacting fracture surfaces, our ability to predict the long-term evolution of fractures is still limited. To explore the processes that control permeability evolution, I developed a computational model that uses micro-scale surface roughness and explicitly couples dissolution and elastic deformation to calculate local alterations in fracture aperture under chemical and mechanical stresses. A depth-averaged algorithm of fracture flow is used to model reactive transport and chemical alteration of the fracture surfaces. Then, I deform the resulting altered fracture-surfaces using an algorithm that calculates the elastic deformation. The results of the model are compared with flow-through experiments conducted on fractured limestone. The

  18. An efficient numerical simulation of coupled thermal-hydro-mechanical process in CO2 leakage through fractured caprocks

    NASA Astrophysics Data System (ADS)

    Wu, Y. S.; Huang, Z.; Winterfeld, P. H.

    2014-12-01

    The safety of CO2 sequestration in geological formations relies on the integrity of the caprock. However, the elevated fluid pressure during CO2 injection changes the stress states in the caprock, and may lead to reactivate pre-existing fractures or even fracture the caprock. It is necessary to develop an efficient and practical monitor technology to detect and identify CO2 leakage pathways. To this end, we should understand the transport behavior of CO2 coupled with geomechanical effects during injection. In this work, we first developed an efficient parallel fully-coupled thermal-hydro-mechanical simulator to model CO2 transport in geological formations. The numerical model was verified through classical problems with analytical solutions. Then, based on this simulator, we investigated the fluid flow behavior when CO2 leakage occurs through fluid-driven fracturing zones. We proposed an implicit, physics-based model to simulate the fluid-driven fracturing process by using several practical correlations, including fracturing pressure functions, porosity/permeability-stress relationships, which can be obtained by lab experiments. A set of numerical simulations have been conducted by considering various scenarios, such as different injection rates, locations and distributions of fracture zones, and initial fracture permeability. The numerical results show that there are several characteristics can be used to detect CO2 leakage pathways, and it is possible to develop an advanced inverse modeling and monitoring technology to identify leakage locations, times and rates using measured pressure data of permanent downhole gauges and our simulator.

  19. [Rapid Start-up of Simultaneous Nitrification and Denitrification Coupled Phosphorus Removal Process and Its Performing Characteristics].

    PubMed

    Leng, Lu; Xin, Xin; Lu, Hang; Tang, Ya-nan; Wan, Li-hua; Guo, Jun-yuan; Cheng, Qing-feng

    2015-11-01

    In this study, simultaneous nitrification and denitrification (SND) coupled Phosphorus removal process through gradually decreasing DO concentration was investigated by treating wastewater with a low COD/TN ratio (C/N = 3 : 1-4: 1) in a sequencing batch reactor (SBR) inoculated with aerobic granular sludge (AGS). Successful SND coupled Phosphorus phenomenon occurred after 20d at the DO concentration of 0.50-1.0 mg x L(-1). In the following 40 days, the average removal rates of COD, NH4(+) -N, TN and TP were 84.84% , 93.51%, 77.06% and 85.69%, and the NO3(-) -N and NO2(-) -N average accumulations in the effluent were only 4.01 mg x L(-1) and 3.17 mg x L(-1), respectively. The AGS had complete forms and good settling performances, and the sludge volume index (SVI) was about 55.22 mL x g(-1) at the end of starting-up stage. The results of different nitrogen sources showed that the removal rate of TN was in the order of NH4(+) -N > NO2(-) -N > NO3(-) -N, and the removal rate of TP was in the order of NO3(-) -N > NO2(-) -N > NH4(+) -N. The nitrogen and phosphorus removal of wastewater were mainly realized by simultaneous nitrification and denitrification and denitrifying phosphorus removal, respectively. PMID:26911007

  20. Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process.

    PubMed

    Lohner, Svenja T; Becker, Dirk; Mangold, Klaus-Michael; Tiehm, Andreas

    2011-08-01

    This article for the first time demonstrates successful application of electrochemical processes to stimulate sequential reductive/oxidative microbial degradation of perchloroethene (PCE) in mineral medium and in contaminated groundwater. In a flow-through column system, hydrogen generation at the cathode supported reductive dechlorination of PCE to cis-dichloroethene (cDCE), vinyl chloride (VC), and ethene (ETH). Electrolytically generated oxygen at the anode allowed subsequent oxidative degradation of the lower chlorinated metabolites. Aerobic cometabolic degradation of cDCE proved to be the bottleneck for complete metabolite elimination. Total removal of chloroethenes was demonstrated for a PCE load of approximately 1.5 μmol/d. In mineral medium, long-term operation with stainless steel electrodes was demonstrated for more than 300 days. In contaminated groundwater, corrosion of the stainless steel anode occurred, whereas DSA (dimensionally stable anodes) proved to be stable. Precipitation of calcareous deposits was observed at the cathode, resulting in a higher voltage demand and reduced dechlorination activity. With DSA and groundwater from a contaminated site, complete degradation of chloroethenes in groundwater was obtained for two months thus demonstrating the feasibility of the sequential bioelectro-approach for field application. PMID:21678913

  1. Geophysical Monitoring of Coupled Microbial and Geochemical Processes During Stimulated Subsurface Bioremediation

    SciTech Connect

    Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.; Druhan, Jennifer L.; Arntzen, Evan V.; N'Guessan, A. Lucie; Long, Philip E.; Hubbard, Susan S.; Banfield, Jillian F.

    2009-08-05

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1 Hz) andwasdependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.

  2. Effects of coupled structural and diagenetic processes on deformation localization and flow properties of deformation bands in sandstone

    NASA Astrophysics Data System (ADS)

    Elliott, Sara; Eichhubl, Peter; Landry, Chris

    2014-05-01

    Deformation bands tend to restrict flow perpendicular to the bands through the combined effects of porosity reduction, mechanical grain size reduction, and preferred cementation relative to the adjacent host rock. Thus, deformation bands may impart a permeability anisotropy to reservoir rocks. Deformation bands that occur in association with reservoir scale faults can impact reservoir-scale fluid flow and fault seal behavior. Using a combination of textural imaging including SEM-based cathodoluminescence imaging, compositional analysis, and lab petrophysics, this study is designed to (1) assess the effects of coupled chemical and mechanical processes leading to deformation localization in deformation bands and (2) to quantify the effect of these processes on single and multiphase fluid flow. While the effects of mechanical processes including grain translation, rotation, and breakage have been described in detail, chemical reactions affecting flow properties have received less attention. Such chemical reactions include the precipitation of carbonate and quartz cement, dissolution and albitization of feldspar, and the neoformation and infiltration of clay minerals. It is shown that the mechanical process of deformation localization is strongly controlled by chemical processes including pre-kinematic pore-filling cement, syn-kinematic cement filling intra- and transgranular fractures, and stress-enhanced dissolution reactions. Prekinematic cements reduce the strength contrast between grain and aggregate thus favoring deformation localization into narrow, well defined deformation bands. Prekinematic cementation and compaction may even favor thoroughgoing opening mode fractures and prevent localization of deformation into deformation band. Synkinematic cements within deformation bands will result in local strain hardening of bands and thus oppose further deformation localization with increasing strain. Examples will be presented from the Mesozoic clastic sequence of

  3. Processes affecting remanence in oxy-exsolved titanomagnetite: the role of pseudo-single domain grains and interaction coupling

    NASA Astrophysics Data System (ADS)

    Church, N. S.; Kasama, T.; Dunin-Borkowski, R.; Harrison, R. J.

    2011-12-01

    While single-domain and multidomain remanence are mature theories and are well supported by experiment, natural mineral samples may be influenced by processes that are not incorporated in these models. Particles exhibiting pseudo-single domain (PSD) behavior are frequently inferred using measurements such as Day et al. plots and first-order reversal curve diagrams of igneous and sedimentary rocks containing magnetite or greigite, yet an analogous model for PSD remanence is lacking, limiting the use of such samples as paleomagnetic recorders as well as quantitative characterisation of the magnetic grains. The role of interactions-magnetostatic or exchange-is similarly poorly understood in all but the simplest systems. This study presents direct observations of remanence states in mineral intergrowths which will be used to discuss the nature of the PSD state and systems with interacting particles and phases: questions of relevance both to paleomagnetists and the wider physics community. This study applies electron holography to synthetic titanomagnetite samples that reproduce grains that have undergone high-temperature oxidation, commonly observed in igneous rocks. The oxy-exsolved samples are dominated by submicron titanomagnetite grains intergrown with lamellae of titanohematite, which may be either paramagnetic, permitting the study of PSD behavior and magnetostatic interactions, or antiferromagnetic or ferrimagnetic, where exchange coupling can be a significant influence. Holography of magnetite and paramagnetic titanohematite shows that the PSD state can vary widely as a function of the applied field and the geometry of phases, including uniform magnetization and vortex states predicted by micromagnetic simulations. Particles that are uniformly magnetized may show strong magnetostatic interactions and can show a variety of switching mechanisms, including non-uniform rotation and domain walls spanning large regions of interacting particles. These observations

  4. Smart Frameworks and Self-Describing Models: Model Metadata for Automated Coupling of Hydrologic Process Components (Invited)

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.

    2013-12-01

    Model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System) and ESMF (Earth System Modeling Framework) have developed mechanisms that allow heterogeneous sets of process models to be assembled in a plug-and-play manner to create composite "system models". These mechanisms facilitate code reuse, but must simultaneously satisfy many different design criteria. They must be able to mediate or compensate for differences between the process models, such as their different programming languages, computational grids, time-stepping schemes, variable names and variable units. However, they must achieve this interoperability in a way that: (1) is noninvasive, requiring only relatively small and isolated changes to the original source code, (2) does not significantly reduce performance, (3) is not time-consuming or confusing for a model developer to implement, (4) can very easily be updated to accommodate new versions of a given process model and (5) does not shift the burden of providing model interoperability to the model developers, e.g. by requiring them to provide their output in specific forms that meet the input requirements of other models. In tackling these design challenges, model framework developers have learned that the best solution is to provide each model with a simple, standardized interface, i.e. a set of standardized functions that make the model: (1) fully-controllable by a caller (e.g. a model framework) and (2) self-describing. Model control functions are separate functions that allow a caller to initialize the model, advance the model's state variables in time and finalize the model. Model description functions allow a caller to retrieve detailed information on the model's input and output variables, its computational grid and its timestepping scheme. If the caller is a modeling framework, it can compare the answers to these queries with similar answers from other process models in a collection and then automatically call framework

  5. TOPO-EUROPE: The geoscience of coupled deep Earth-surface processes

    NASA Astrophysics Data System (ADS)

    Cloetingh, S. A. P. L.; Ziegler, P. A.; Bogaard, P. J. F.; Andriessen, P. A. M.; Artemieva, I. M.; Bada, G.; van Balen, R. T.; Beekman, F.; Ben-Avraham, Z.; Brun, J.-P.; Bunge, H. P.; Burov, E. B.; Carbonell, R.; Facenna, C.; Friedrich, A.; Gallart, J.; Green, A. G.; Heidbach, O.; Jones, A. G.; Matenco, L.; Mosar, J.; Oncken, O.; Pascal, C.; Peters, G.; Sliaupa, S.; Soesoo, A.; Spakman, W.; Stephenson, R. A.; Thybo, H.; Torsvik, T.; de Vicente, G.; Wenzel, F.; Wortel, M. J. R.; Topo-Europe Working Group

    2007-07-01

    TOPO-EUROPE addresses the 4-D topographic evolution of the orogens and intra-plate regions of Europe through a multidisciplinary approach linking geology, geophysics, geodesy and geotechnology. TOPO-EUROPE integrates monitoring, imaging, reconstruction and modelling of the interplay between processes controlling continental topography and related natural hazards. Until now, research on neotectonics and related topography development of orogens and intra-plate regions has received little attention. TOPO-EUROPE initiates a number of novel studies on the quantification of rates of vertical motions, related tectonically controlled river evolution and land subsidence in carefully selected natural laboratories in Europe. From orogen through platform to continental margin, these natural laboratories include the Alps/Carpathians-Pannonian Basin System, the West and Central European Platform, the Apennines-Aegean-Anatolian region, the Iberian Peninsula, the Scandinavian Continental Margin, the East-European Platform, and the Caucasus-Levant area. TOPO-EUROPE integrates European research facilities and know-how essential to advance the understanding of the role of topography in Environmental Earth System Dynamics. The principal objective of the network is twofold. Namely, to integrate national research programs into a common European network and, furthermore, to integrate activities among TOPO-EUROPE institutes and participants. Key objectives are to provide an interdisciplinary forum to share knowledge and information in the field of the neotectonic and topographic evolution of Europe, to promote and encourage multidisciplinary research on a truly European scale, to increase mobility of scientists and to train young scientists. This paper provides an overview of the state-of-the-art of continental topography research, and of the challenges to TOPO-EUROPE researchers in the targeted natural laboratories.

  6. Coupled Hydrological and Geochemical Processes Governing the Fate and Transport of Radionuclides and Toxic Metals in the Hanford Vadose Zone

    SciTech Connect

    Mayes, M.A.; Jardine, P.M.; Fendorf, S.E.; Pace, M.N.; Yin, X.; Mehlhorn, T.L.; Zachara, J.M.

    2003-03-27

    At the D.O.E. Hanford Reservation, accelerated migration of radionuclides has been observed in the vadose zone underlying the tank farms. Our goal is to provide an improved understanding and predictive capability of the coupled hydrogeochemical mechanisms responsible for observed migration. Our approach is to perform a suite of experiments ranging from novel surface interrogation techniques (e.g., XAS) to miscible displacement experiments on disturbed and undisturbed sediments from the Hanford, Plio-Pleistocene and Ringold formations. Results indicate during unsaturated conditions hydrologic processes governing transport are a strong function of sediment layering in the Hanford and Ringold formations. The transport of radionuclides and toxic metals (U, Cr(VI), Cs, Sr and Co) is influenced by reactive geochemical nonequilibrium, sedimentary mineralogy and solution chemistry. This research will provide new insights into how physical and mineralogical heterogeneities (e.g. stratification, pore regime connectivity, mineral composition along flowpaths) influence contaminant retardation and degree of geochemical nonequilibrium during transport.

  7. The PERC{trademark} process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment

    SciTech Connect

    Blutke, A.S.; Vavruska, J.S.; Serino, J.F.

    1996-12-31

    Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC){trademark} treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC{trademark} treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream`s form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment.

  8. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review.

    PubMed

    Martínez-Huitle, Carlos A; Rodrigo, Manuel A; Sirés, Ignasi; Scialdone, Onofrio

    2015-12-23

    Traditional physicochemical and biological techniques, as well as advanced oxidation processes (AOPs), are often inadequate, ineffective, or expensive for industrial water reclamation. Within this context, the electrochemical technologies have found a niche where they can become dominant in the near future, especially for the abatement of biorefractory substances. In this critical review, some of the most promising electrochemical tools for the treatment of wastewater contaminated by organic pollutants are discussed in detail with the following goals: (1) to present the fundamental aspects of the selected processes; (2) to discuss the effect of both the main operating parameters and the reactor design on their performance; (3) to critically evaluate their advantages and disadvantages; and (4) to forecast the prospect of their utilization on an applicable scale by identifying the key points to be further investigated. The review is focused on the direct electrochemical oxidation, the indirect electrochemical oxidation mediated by electrogenerated active chlorine, and the coupling between anodic and cathodic processes. The last part of the review is devoted to the critical assessment of the reactors that can be used to put these technologies into practice. PMID:26654466

  9. Results From an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-08-02

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level.

  10. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  11. Uncertainties in coupled thermal-hydrological processes associated with the Drift Scale Test at Yucca Mountain, Nevada.

    PubMed

    Mukhopadhyay, S; Tsang, Y W

    2003-01-01

    Understanding thermally driven coupled hydrological, mechanical, and chemical processes in unsaturated fractured tuff is essential for evaluating the performance of the potential radioactive waste repository at Yucca Mountain, Nevada. The Drift Scale Test (DST), intended for acquiring such an understanding of these processes, has generated a huge volume of temperature and moisture redistribution data. Sophisticated thermal-hydrological (TH) conceptual models have yielded a good fit between simulation results and those measured data. However, some uncertainties in understanding the TH processes associated with the DST still exist. This paper evaluates these uncertainties and provides quantitative estimates of the range of these uncertainties. Of particular interest for the DST are the uncertainties resulting from the unmonitored loss of vapor through an open bulkhead of the test. There was concern that the outcome from the test might have been significantly altered by these losses. Using alternative conceptual models, we illustrate that predicted mean temperatures from the DST are within 1 degrees C of the measured mean temperatures through the first 2 years of heating. The simulated spatial and temporal evolution of drying and condensation fronts is found to be qualitatively consistent with measured saturation data. Energy and mass balance computation shows that no more than 13% of the input energy is lost because of vapor leaving the test domain through the bulkhead. The change in average saturation in fractures is also relatively small. For a hypothetical situation in which no vapor is allowed to exit through the bulkhead, the simulated average fracture saturation is not qualitatively different enough to be discerned by measured moisture redistribution data. This leads us to conclude that the DST, despite the uncertainties associated with open field testing, has provided an excellent understanding of the TH processes. PMID:12714312

  12. The effect of dielectric top lids on materials processing in a low frequency inductively coupled plasma (LF-ICP) reactor

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Chan, C. S.; Xu, L.; Xu, S.

    2014-08-01

    The advent of the plasma revolution began in the 1970's with the exploitation of plasma sources for anisotropic etching and processing of materials. In recent years, plasma processing has gained popularity, with research institutions adopting projects in the field and industries implementing dry processing in their production lines. The advantages of utilizing plasma sources would be uniform processing over a large exposed surface area, and the reduction of toxic emissions. This leads to reduced costs borne by manufacturers which could be passed down as consumer savings, and a reduction in negative environmental impacts. Yet, one constraint that plagues the industry would be the control of contaminants in a plasma reactor which becomes evident when reactions are conducted in a clean vacuum environment. In this work, amorphous silicon (a-Si) thin films were grown on glass substrates in a low frequency inductively coupled plasma (LF-ICP) reactor with a top lid made of quartz. Even though the chamber was kept at high vacuum ( 10-4 Pa), it was evident through secondary ion mass spectroscopy (SIMS) and Fourier-transform infra-red spectroscopy (FTIR) that oxygen contaminants were present. With the aid of optical emission spectroscopy (OES) the contaminant species were identified. The design of the LF-ICP reactor was then modified to incorporate an Alumina (Al2O3) lid. Results indicate that there were reduced amounts of contaminants present in the reactor, and that an added benefit of increased power transfer to the plasma, improving deposition rate of thin films was realized. The results of this study is conclusive in showing that Al2O3 is a good alternative as a top-lid of an LF-ICP reactor, and offers industries a solution in improving quality and rate of growth of thin films.

  13. How do how internal and external processes affect the behaviors of coupled marsh mudflat systems; infill, stabilize, retreat, or drown?

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.

    2013-12-01

    Intertidal coastal environments are prone to changes induced by sea level rise, increases in storminess, and anthropogenic disturbances. It is unclear how changes in external drivers may affect the dynamics of low energy coastal environments because their response is non-linear, and characterized by many thresholds and discontinuities. As such, process-based modeling of the ecogeomorphic processes underlying the dynamics of these ecosystems is useful, not only to predict their change through time, but also to generate new hypotheses and research questions. Here, a three-point dynamic model was developed to investigate how internal and external processes affect the behavior of coupled marsh mudflat systems. The model directly incorporates ecogeomorphological feedbacks between wind waves, salt marsh vegetation, allochthonous sediment loading, tidal flat vegetation and sea level rise. The model was applied to examine potential trajectories of salt marshes on the Eastern seaboard of the United States, including those in the Plum Island Ecosystems (PIE), Virginia Coast Reserve (VCR) and Georgia Coastal Ecosystems (GCE) long term ecological research (LTER) sites. While these sites are undergoing similar rates of relative sea level rise (RSLR), they have distinct differences in site specific environmental drivers including tides, wind waves, allochthonous sediment supply and the presence or absence of seagrass. These differences lead to the emergence of altered behaviors in the coupled salt marsh-tidal flat system. For marsh systems without seagrass or significant riverine sediment supply, conditions similar to those at PIE, results indicated that horizontal and vertical marsh evolution respond in opposing ways to wave induced processes. Marsh horizontal retreat is triggered by large mudflats and strong winds, whereas small mudflats and weak winds reduce the sediment supply to the salt marsh, decreasing its capability to keep pace with sea level rise. Marsh expansion and

  14. Prediction of Coupled Thermal, Hydrological and Chemical Processes at the Proposed Yucca Mountain Nuclear Waste Repository: An Integrated Approach

    SciTech Connect

    N. Spycher; E. Sonnenthal; T. Kneafsey; P. Dobson

    2003-10-17

    An integrated modeling approach was developed to investigate long-term coupled thermal, hydrological, and chemical (THC) processes that could take place around nuclear waste emplacement tunnels (drifts). The approach involves the development of process models, followed by numerical implementation and validation against field and laboratory experiments before conducting long-term predictive simulations. An outcome of this work was the refinement and validation of an existing reactive transport numerical code for applications specific to the geologic storage of nuclear waste. The model was applied to the case of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada, to evaluate the chemistry of waters potentially seeping into drifts and the effect of water-rock interaction on long-term hydrological behavior around the repository. At liquid saturations significantly larger than residual, no extreme pH or salinity values were predicted. Mineral precipitation around drifts consists mainly of silica with minor calcite, trace zeolites and clays. The effect of mineral precipitation on flow depends largely on initial fracture porosity, and results in negligible to significant diversion of percolation around the drift. Further analyses of model uncertainty are under way to improve confidence in model results.

  15. Recovery of salts from ion-exchange regeneration streams by a coupled nanofiltration-membrane distillation process.

    PubMed

    Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge

    2015-01-01

    Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater. PMID:26177408

  16. Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L.

    PubMed

    van der Kant, Rik; Fish, Alexander; Janssen, Lennert; Janssen, Hans; Krom, Sabine; Ho, Nataschja; Brummelkamp, Thijn; Carette, Jan; Rocha, Nuno; Neefjes, Jacques

    2013-08-01

    Late endosomes and lysosomes are dynamic organelles that constantly move and fuse to acquire cargo from early endosomes, phagosomes and autophagosome. Defects in lysosomal dynamics cause severe neurodegenerative and developmental diseases, such as Niemann-Pick type C disease and ARC syndrome, yet little is known about the regulation of late endosomal fusion in a mammalian system. Mammalian endosomes destined for fusion need to be transported over very long distances before they tether to initiate contact. Here, we describe that lysosomal tethering and transport are combined processes co-regulated by one multi-protein complex: RAB7-RILP-ORP1L. We show that RILP directly and concomitantly binds the tethering HOPS complex and the p150(Glued) subunit of the dynein motor. ORP1L then functions as a cholesterol-sensing switch controlling RILP-HOPS-p150(Glued) interactions. We show that RILP and ORP1L control Ebola virus infection, a process dependent on late endosomal fusion. By combining recruitment and regulation of both the dynein motor and HOPS complex into a single multiprotein complex, the RAB7-RILP-ORP1L complex efficiently couples and regulates the timing of microtubule minus-end transport and fusion, two major events in endosomal biology. PMID:23729732

  17. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    SciTech Connect

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D.

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  18. An efficient semi-analytical method for modeling strongly coupled diffusion and deformation processes in layered poroelastic media

    NASA Astrophysics Data System (ADS)

    Wang, R.; Kuempel, H.

    2003-12-01

    From poroelasticity theory we know that fluid diffusion will induce matrix deformation and vice versa. In practice, well known phenomena for such coupled processes are, for example, occurrence of seismo-tectonically induced groundwater fluctuations, land subsidence as a result of fluid extraction from subsurface reservoirs, production-induced surface strain near the vicinity of wells, reservoir- or injection-induced seismicity. Modeling of deformation and pore-pressure data that have been observed near the surface can help to image the dynamics and to assess the hydraulic properties of subsurface aquifers. We here present a semi-analytical Haskell propagator method to fully handle linear poroelastic problems in a multilayered half-space. Our method is a powerful tool for various reasons: (1) It is faster than traditional numerical schemes when respective discretization of the object region is chosen and solutions are sought for single locations only; (2) a problem is easily formulated, as only a set of five poroelastic parameters per layer plus the layers' thicknesses need to be specified; (3) the method is highly flexible, as forcing functions of point injection, single force (e.g., surface loading), double couple dislocation (earthquakes), etc. may be readily incorporated; (4) the so-called loss-of-precision problem of the original propagator algorithm has been fully overcome using the orthonormalization technique. The effectiveness of the new tool has been demonstrated by modeling pump-induced near-surface tilt data obtained at a test site near Sopron in western Hungary. The results show that the hydraulic diffusivity of the shallow subsurface aquifer can be assessed with an accuracy better than half an order of magnitude, if other elastic parameters and the geometry (depth and thickness) of the water-bearing formations are sufficiently known from, for example, bore-log records. Moreover, the present method can be applied to model induced seismicity based on the

  19. An electrostatic shielding-based coupled electrodialysis/electrodeionization process for removal of cobalt ions from aqueous solutions.

    PubMed

    Dermentzis, K I; Davidis, A E; Dermentzi, A S; Chatzichristou, C D

    2010-01-01

    Electrode graphite powder beds were interposed between anode and cathode as intermediate electrodes inside an electrolytic setup. Due to electrostatic shielding they eliminate the applied electric field and therefore stop the electromigration of ions within their mass. It was found that the intermediate electrodes can act as ionic current sinks-ion concentrating compartments and therefore cause a new type of a membrane-less electrodialysis/electrodeionization process. The proposed electrostatic shielding based coupled electrodialysis/electrodeionization treatment of synthetic cobalt plating rinse water containing 300 mg L(-1) Co(2 + ) ions produced a low-volume Co(2 + ) concentrate which could be recycled to the electroplating bath for reuse and a diluate containing 43.8 mg L(-1) Co(2 + ) ions. The diluate was then used as feed in the subsequent electrostatic shielding electrodeionization process which produced pure water with a cobalt ion concentration less than 0.1 mg L(-1). The current efficiency was 22-29%, the enrichment factor 13.5-26.1, the current density 20-40 A m(-2) and the flow rate 1.54 × 10(-4)-4.06 × 10(-4) dm(3) s(-1). The proposed membrane free electrostatic shielding electrodialysis/electrodeionization process could be developed into a new alternative electrochemical method of cobalt or other heavy metal removal and water purification and recycling from industrial effluents laden with heavy metals. PMID:20962412

  20. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  1. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CFWs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999). In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  2. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  3. Infrasound and Seismic Observation of the Hayabusa Reentry: Burst Signals and Air-to-Ground Coupling Process

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Hiramatsu, Y.; Yamamoto, M.; Furumoto, M.; Fujita, K.

    2012-12-01

    The Hayabusa, the world's first sample-return minor body explorer, reentered the Earth's atmosphere on June 13, 2010. This was the third direct reentry event from the interplanetary transfer orbit to the Earth at a velocity of over 11.2 km/s, and was the world's first case of a direct reentry of the spacecraft itself from the interplanetary transfer orbit. This was the very good and rare opportunity to study bolide class meteor phenomena by various aspects. Multi-site ground observations of the Hayabusa reentry were carried out in the Woomera Prohibited Area, Australia (Fujita et al., 2011). The observations were configured with optical imaging, spectroscopies, and shockwave detection with infrasound and seismic sensors. At three main stations (GOS2, GOS2A, and GOS2B), we installed small aperture infrasound/seismic arrays, as well as three single component seismic sub stations (GOS2B-sub1, to GOS2B-sub3) (Yamamoto et al., 2011; Ishihara et al., 2012). The infrasound and seismic sensors clearly recorded sonic-boom-type shockwaves from the Hayabusa sample return capsule (Ishihara et al., 2012). In addition, following capsule signal, lots of signals that probably correspond shockwave from disrupted fragments of spacecraft and energetic bursts of the spacecraft were also recorded (Yamamoto et al., 2011). In this study, we analyze signals generated by hypersonic motion of the disrupted fragments and energetic burst of the spacecraft. In addition, we examine the air-to-ground coupling process by comparing the waveforms computed by finite difference scheme with the actual ones. At all three arrayed main stations, after the capsule's shockwave arrival, we detect multiple shockwave signals by both infrasound and seismic sensors. For some of these signals arrive within 10 seconds after capsule's signal, we can identify one to one correspondence with optically tracked disrupted fragments of the spacecraft. Far after the capsule's signal, we also detect some arrivals of wave

  4. Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Moridis, George J.

    2013-10-01

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermo-poro-mechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully account for leak-off in all directions during hydraulic fracturing. We first test the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  5. Development of the T+M coupled flow–geomechanical simulator to describe fracture propagation and coupled flow–thermal–geomechanical processes in tight/shale gas systems

    SciTech Connect

    Kim, Jihoon; Moridis, George J.

    2013-10-01

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  6. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Quantum Information Processing in An Array of Fiber Coupled Cavities

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zou, Jian; Shao, Bin

    2010-04-01

    We consider a fiber coupled cavity array. Each cavity is doped with a single two-level atom. By treating the atom-cavity systems as combined polaritonic qubits, we can transform it into a polaritonic qubit-qubit array in the dispersive regime. We show that the four fiber coupled cavity open chain and ring can both generate the four qubit W state and cluster state, and can both transfer one and two qubit arbitrary states. We also discuss the dynamical behaviors of the four fiber coupled cavity array with unequal couplings.

  7. Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales

    SciTech Connect

    Clement, T Prabhakar; Barnett, Mark O; Zheng, Chunmiao; Jones, Norman L

    2010-05-05

    DE-FG02-06ER64213: Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales Investigators: T. Prabhakar Clement (PD/PI) and Mark O. Barnett (Auburn), Chunmiao Zheng (Univ. of Alabama), and Norman L. Jones (BYU). The objective of this project was to develop scalable modeling approaches for predicting the reactive transport of metal contaminants. We studied two contaminants, a radioactive cation [U(VI)] and a metal(loid) oxyanion system [As(III/V)], and investigated their interactions with two types of subsurface materials, iron and manganese oxyhydroxides. We also developed modeling methods for describing the experimental results. Overall, the project supported 25 researchers at three universities. Produced 15 journal articles, 3 book chapters, 6 PhD dissertations and 6 MS theses. Three key journal articles are: 1) Jeppu et al., A scalable surface complexation modeling framework for predicting arsenate adsorption on goethite-coated sands, Environ. Eng. Sci., 27(2): 147-158, 2010. 2) Loganathan et al., Scaling of adsorption reactions: U(VI) experiments and modeling, Applied Geochemistry, 24 (11), 2051-2060, 2009. 3) Phillippi, et al., Theoretical solid/solution ratio effects on adsorption and transport: uranium (VI) and carbonate, Soil Sci. Soci. of America, 71:329-335, 2007

  8. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.

    PubMed

    Ma, Yifei; Kim, Daekyoung; Jang, Haegyu; Cho, Sung Min; Chae, Heeyeop

    2014-12-01

    Low-temperature graphene was synthesized at 400 degrees C with inductively coupled plasma chemical vapor deposition (PECVD) process. The effects of plasma power and flow rate of various carbon containing precursors and hydrogen on graphene properties were investigated with optical emission spectroscopy (OES). Various radicals monitored by OES were correlated with graphene film properties such as sheet resistance, I(D)/I(G) ratio of Raman spectra and transparency. C2H2 was used as a main precursor and the increase of plasma power enhanced intensity of carbon (C2) radical OES intensity in plasma, reduced sheet resistance and increased transparency of graphene films. The reduced flow rate of C2H2 decreased sheet resistance and increased transparency of graphene films in the range of this study. H2 addition was found to increase sheet resistance, transparency and attributed to reduction of graphene grain and etching graphene layers. OES analysis showed that C2 radicals contribute to graphite networking and sheet resistance reduction. TEM and AFM were applied to provide credible information that graphene had been successfully grown at low temperature. PMID:25971011

  9. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999).

  10. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    SciTech Connect

    Rutqvist, Jonny; Barr, Deborah; Birkholzer, Jens T.; Fujisaki, Kiyoshi; Kolditz, Olf; Liu, Quan-Shen; Fujita, tomoo; Wang, Wenqing; Zhang, Cheng-Yuan

    2008-10-23

    This paper presents an international, multiple-code, simulation study of coupled thermal, hydrological, and mechanical (THM) processes and their effect on permeability and fluid flow in fractured rock around heated underground nuclear waste emplacement drifts. Simulations were conducted considering two types of repository settings: (a) open emplacement drifts in relatively shallow unsaturated volcanic rock, and (b) backfilled emplacement drifts in deeper saturated crystalline rock. The results showed that for the two assumed repository settings, the dominant mechanism of changes in rock permeability was thermal-mechanically-induced closure (reduced aperture) of vertical fractures, caused by thermal stress resulting from repository-wide heating of the rock mass. The magnitude of thermal-mechanically-induced changes in permeability was more substantial in the case of an emplacement drift located in a relatively shallow, low-stress environment where the rock is more compliant, allowing more substantial fracture closure during thermal stressing. However, in both of the assumed repository settings in this study, the thermal-mechanically-induced changes in permeability caused relatively small changes in the flow field, with most changes occurring in the vicinity of the emplacement drifts.

  11. Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis.

    PubMed

    Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Fang, Fang; Li, Wen-Wei; Zeng, Raymond J; Tong, Zhong-Hua; Yu, Han-Qing

    2011-01-01

    Soluble microbial products (SMPs) present a major part of residual chemical oxygen demand (COD) in the effluents from biological wastewater treatment systems, and the SMP formation is greatly influenced by a variety of process parameters. In this study, response surface methodology (RSM) coupled with grey relational analysis (GRA) method was used to evaluate the effects of substrate concentration, temperature, NH(4)(+)-N concentration and aeration rate on the SMP production in batch activated sludge reactors. Carbohydrates were found to be the major component of SMP, and the influential priorities of these factors were: temperature>substrate concentration > aeration rate > NH(4)(+)-N concentration. On the basis of the RSM results, the interactive effects of these factors on the SMP formation were evaluated, and the optimal operating conditions for a minimum SMP production in such a batch activated sludge system also were identified. These results provide useful information about how to control the SMP formation of activated sludge and ensure the bioreactor high-quality effluent. PMID:20832838

  12. Investigation of pharmaceuticals in processed animal by-products by liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    Nácher-Mestre, Jaime; Ibáñez, María; Serrano, Roque; Boix, Clara; Bijlsma, Lubertus; Lunestad, Bjørn Tore; Hannisdal, Rita; Alm, Martin; Hernández, Félix; Berntssen, Marc H G

    2016-07-01

    There is an on-going trend for developing more sustainable salmon feed in which traditionally applied marine feed ingredients are replaced with alternatives. Processed animal products (PAPs) have been re-authorized as novel high quality protein ingredients in 2013. These PAPs may harbor undesirable substances such as pharmaceuticals and metabolites which are not previously associated with salmon farming, but might cause a potential risk for feed and food safety. To control these contaminants, an analytical strategy based on a generic extraction followed by ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) using quadrupole time-of-flight mass analyzer (QTOF MS) was applied for wide scope screening. Quality control samples, consisting of PAP commodities spiked at 0.02, 0.1 and 0.2 mg/kg with 150 analytes, were injected in every sample batch to verify the overall method performance. The methodology was applied to 19 commercially available PAP samples from six different types of matrices from the EU animal rendering industry. This strategy allows assessing possible emergent risk exposition of the salmon farming industry to 1005 undesirables, including pharmaceuticals, several dyes and relevant metabolites. PMID:27058915

  13. Modeling of the Weld Shape Development During the Autogenous Welding Process by Coupling Welding Arc with Weld Pool

    NASA Astrophysics Data System (ADS)

    Dong, Wenchao; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    2010-10-01

    A numerical model of the welding arc is coupled to a model for the heat transfer and fluid flow in the weld pool of a SUS304 stainless steel during a moving GTA welding process. The described model avoids the use of the assumption of the empirical Gaussian boundary conditions, and at the same time, provides reliable boundary conditions to analyze the weld pool. Based on the two-dimensional axisymmetric numerical modeling of the argon arc, the heat flux to workpiece, the input current density, and the plasma drag stress are obtained. The arc temperature contours, the distributions of heat flux, and current density at the anode are in fair agreement with the reported experimental results. Numerical simulation and experimental studies to the weld pool development are carried out for a moving GTA welding on SUS304 stainless steel with different oxygen content from 30 to 220 ppm. The calculated result show that the oxygen can change the Marangoni convection from outward to inward direction on the liquid pool surface and make the wide shallow weld shape become narrow deep one. The calculated result for the weld shape and weld D/W ratio agrees well with the experimental one.

  14. Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unicellular Cyanobacterium

    PubMed Central

    Vinh, Nguyen X.; Viswanathan, Ganesh A.; Chetty, Madhu; Wangikar, Pramod P.

    2015-01-01

    Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 (henceforth Cyanothece), temporally separate the oxygen sensitive nitrogen fixation from oxygen evolving photosynthesis not only under diurnal cycles (LD) but also in continuous light (LL). However, recent reports demonstrate that the oscillations in LL occur with a shorter cycle time of ~11 h. We find that indeed, majority of the genes oscillate in LL with this cycle time. Genes that are upregulated at a particular time of day under diurnal cycle also get upregulated at an equivalent metabolic phase under LL suggesting tight coupling of various cellular events with each other and with the cell’s metabolic status. A number of metabolic processes get upregulated in a coordinated fashion during the respiratory phase under LL including glycogen degradation, glycolysis, oxidative pentose phosphate pathway, and tricarboxylic acid cycle. These precede nitrogen fixation apparently to ensure sufficient energy and anoxic environment needed for the nitrogenase enzyme. Photosynthetic phase sees upregulation of photosystem II, carbonate transport, carbon concentrating mechanism, RuBisCO, glycogen synthesis and light harvesting antenna pigment biosynthesis. In Synechococcus elongates PCC 7942, a non-nitrogen fixing cyanobacteria, expression of a relatively smaller fraction of genes oscillates under LL condition with the major periodicity being 24 h. In contrast, the entire cellular machinery of Cyanothece orchestrates coordinated oscillation in anticipation of the ensuing metabolic phase in both LD and LL. These results may have important implications in understanding the timing of various cellular events and in engineering cyanobacteria for biofuel production. PMID:25973856

  15. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    PubMed

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. PMID:27003794

  16. Light out-coupling enhancement of organic light emitting devices using nano-structured substrate produced by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Gupta, Nidhi; Grover, Rakhi; Mehta, D. S.; Saxena, K.

    2015-07-01

    We report significant enhancement in light out-coupling efficiency of organic light-emitting devices (OLEDs) using a nano-structured substrate by rapid thermal processing (RTP). On the backside of the indium tin oxide (ITO) coated glass substrate a thin film of magnesium fluoride (MgF2) was coated by thermal evaporation. Nano-structured films of MgF2 and ITO were then produced by RTP on both sides of the glass substrate. Bottom-emitting OLEDs were fabricated on the ITO-coated glass substrate with α-NPD as the hole transport layer, Alq3 as the emissive layer, and LiF and aluminum as the cathode. On the backside of the glass substrate nano-structured MgF2 were fabricated by RTP. Experimental results of enhancement of electroluminescent intensity (EL) with and without nano-structured films are presented. Results of EL intensity of OLED are also compared with the uniform MgF2 film coated on the backside of the substrate. It was found that the enhancement of EL intensity is much higher in the case of nano-porous MgF2 film than in the case of uniform MgF2 coated on the backside of the glass substrate.

  17. Inductively coupled plasma etch of DUV MoSi photomasks: a designed study of etch chemistries and process results

    NASA Astrophysics Data System (ADS)

    Constantine, Chris; Johnson, David J.; Westerman, Russell J.; Hourd, Andrew C.

    1998-12-01

    The continuing requirements for high resolution, critical dimension control and linearity on photomasks necessitates highly anisotropic and uniform etching of the absorber material. Plasma etching has seen strong increases in popularity to improve the above mentioned requirements. Also recently popular is the inclusion of Embedded Phase Shift materials such as Molybdenum Silicide (MoSi); these materials allow for an engineered 180 degree shift in the phase of the exposure light at the wafer pane, affording enhanced contrast at the edges of a line or feature. This article studies the effect of ICP-based plasma conditions on the CD Uniformity, MoSi etch rate and post-etch Quartz roughness of 6 X 6 DUV MoSi Embedded Phase Shift mask structures through use of carefully Designed Experiments. This Design of Experiment (DOE) makes it possible to screen plasma chemistry, optimize resultant plasma parameters and present an overlayed Simultaneous Solution which is used as a centerpoint for Device Plate etch tuning. The high plasma density, independent ion energy control and low pressure operation of Inductively Coupled Plasmas make this technology well suited to minimizing undercut of the MoSi and affords a vehicle for the realization of a zero-basis etch process.

  18. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation.

    PubMed

    Wang, Yue; Chiu, Sheng-Yi; Ho, Shih-Hsin; Liu, Zhuo; Hasunuma, Tomohisa; Chang, Ting-Ting; Chang, Kuan-Fu; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-08-01

    Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate-mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate-amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate-contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES-2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85-90%), which is very suitable for bio-alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES-2168 has a high potential to serve as a feedstock for subsequent biofuels conversion. PMID:27312599

  19. An efficient proton-coupled electron-transfer process during oxidation of ferulic acid by horseradish peroxidase: coming full cycle.

    PubMed

    Derat, Etienne; Shaik, Sason

    2006-10-25

    Quantum mechanics/molecular mechanics calculations were utilized to study the process of oxidation of a native substrate (ferulic acid) by the active species of horseradish peroxidase (Dunford, H. B. Heme Peroxidases; Wiley-VCH: New York, 1999), Compound I and Compound II, and the manner by which the enzyme returns to its resting state. The results match experimental findings and reveal additional novel features. The calculations demonstrate that both oxidation processes are initiated by a proton-coupled electron-transfer (PCET) step, in which the active species of the enzyme participate only as electron-transfer partners, while the entire proton-transfer event is being relayed from the substrate to and from the His42 residue by a water molecule (W402). The reason for the observed (Henriksen, A; Smith, A. T.; Gajhede, M. J. Biol. Chem. 1999, 274, 35005-35011) similar reactivities of Compound I and Compound II toward ferulic acid is that the reactive isomer of Compound II is the, hitherto unobserved, Por(*)(+)Fe(III)OH isomer that resembles Compound I. The PCET mechanism reveals that His42 and W402 are crucial moieties and they determine the function of the HRP enzyme and account for its ability to perform substrate oxidation (Poulos, T. L. Peroxidases and Cytochrome P450. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 4, pp 189). In view of the results, the possibility of manipulating substrate oxidation by magnetic fields is an intriguing possibility. PMID:17044722

  20. Comprehensive View of the Human Mating Process Among Young Couples in Isfahan-Iran: An Explanatory Mixed-Method Study

    PubMed Central

    Merghati Khoei, Effat; Ziaei, Tayebe; Salehi, Mehrdad; Farajzadegan, Ziba

    2013-01-01

    Background: Heterosexual relationship is the main component of mate selection. Regardless of the importance of mate favorites, little is known about exact valued criteria in potential mates. Objectives: This study was designed to comprehensively explain the theoretical view of the human mating process. Materials and Methods: This was as an explanatory mixed–method study. The first phase was a cross-sectional quantitative study with two Farsi-modified versions of instruments: preferences concerning potential mates and factors of choosing a mate; content analysis was the second phase. The quantitative phase of this study consisted of 202 dating couples, decided to get married. The qualitative phase consisted of 28 participants who acquired the extreme scores (highest and lowest) in the first phase. Results: Average age of marriage for women and men was 23.04 and 26.41 respectively; the actual age difference was 3.37 years (women younger than men). The results of this study in support of evolution-based theory explained that, age is a preference and choosing an older husband and a younger wife is due to having reproductive capacity. Also, they mentioned that appearance is necessary for men because of sexual attraction, not as a prediction for the next generation appearance. In both phases of this study, both genders had a strong emphasis on “chastity” in a potential mate. Results showed that, men preferred a mate who was a good housewife, capable of cooking, and women preferred a mate with “Good earning capacity”, “Good financial prospect” “university education”, “Favorable social status” and “Industriousness”. Conclusions: The results confirmed that for a comprehensive view in human mating process, we need a combined theoretical approach as well as qualitative and quantitative study to explore the real meaning of each preference in a mate. PMID:24693380

  1. Experimental Investigation of Fracture Aperture Evolution Under Coupled Thermo-Hydro-Mechanical-Chemical Processes Encountered in Enhanced Geyhermal Systems

    NASA Astrophysics Data System (ADS)

    Ghazanfari, E.

    2015-12-01

    The success and sustainability of an Enhance Gethermal System (EGS) reservoir depends strongly on the permeability of its fracture network. Several processes affect the permeability of the system, including thermo, hydro, mechanical and chemical processes. These processes interact with one another temporally and contribute to the evolution of permeability within an EGS reservoir during normal operation. This study attempts to experimentally investigate the fracture aperture evolution under coupled processes in EGS reservoir. Granite specimens extracted from the Barre Granite quarry (Barre, Vermont) were used in the experiments. The artificially fractured core rock specimens were scanned using X-Ray Micro- CT and steady-state flow-through experiments were performed on the fractured specimens using high pressure/temperature servo-hydraulic operated system (Autolab 1500). The rock specimens were subjected to 30 MPa of confining pressure and 5 MPa of static internal pore pressure and Temperature of 120 °C. After 24 hours of equilibration, the flow of deionized water was initiated through the artificial fracture at a rate of 0.000351 ml/min for 40 days, during which effluent samples were collected for ICP-MS analysis and fracture permeability was monitored using upstream and downstream pore pressures. Upon termination of the experiments, the core rocks were scanned again to investigate the changes in fracture aperture and dissolution/precipitation of minerals at different sections of the core rock. The experimental results demonstrated that fracture surface asperities initially prop the fracture open, but upon introduction to deionized water, the asperities dissolve and the fracture aperture closes, resulting in decreased permeability. In most experiments, fracture aperture decreased steadily with the presumed dissolution of fracture surface asperities up to 30 days and then a decrease of upstream pore pressure was observed, which might be explained by etching

  2. Coupled physical/biogeochemical modeling including O2-dependent processes in the Eastern Boundary Upwelling Systems: application in the Benguela

    NASA Astrophysics Data System (ADS)

    Gutknecht, E.; Dadou, I.; Le Vu, B.; Cambon, G.; Sudre, J.; Garçon, V.; Machu, E.; Rixen, T.; Kock, A.; Flohr, A.; Paulmier, A.; Lavik, G.

    2013-06-01

    The Eastern Boundary Upwelling Systems (EBUS) contribute to one fifth of the global catches in the ocean. Often associated with Oxygen Minimum Zones (OMZs), EBUS represent key regions for the oceanic nitrogen (N) cycle. Important bioavailable N loss due to denitrification and anammox processes as well as greenhouse gas emissions (e.g, N2O) occur also in these EBUS. However, their dynamics are currently crudely represented in global models. In the climate change context, improving our capability to properly represent these areas is crucial due to anticipated changes in the winds, productivity, and oxygen content. We developed a biogeochemical model (BioEBUS) taking into account the main processes linked with EBUS and associated OMZs. We implemented this model in a 3-D realistic coupled physical/biogeochemical configuration in the Namibian upwelling system (northern Benguela) using the high-resolution hydrodynamic ROMS model. We present here a validation using in situ and satellite data as well as diagnostic metrics and sensitivity analyses of key parameters and N2O parameterizations. The impact of parameter values on the OMZ off Namibia, on N loss, and on N2O concentrations and emissions is detailed. The model realistically reproduces the vertical distribution and seasonal cycle of observed oxygen, nitrate, and chlorophyll a concentrations, and the rates of microbial processes (e.g, NH4+ and NO2- oxidation, NO3- reduction, and anammox) as well. Based on our sensitivity analyses, biogeochemical parameter values associated with organic matter decomposition, vertical sinking, and nitrification play a key role for the low-oxygen water content, N loss, and N2O concentrations in the OMZ. Moreover, the explicit parameterization of both steps of nitrification, ammonium oxidation to nitrate with nitrite as an explicit intermediate, is necessary to improve the representation of microbial activity linked with the OMZ. The simulated minimum oxygen concentrations are driven by

  3. A progress report for the large block test of the coupled thermal-mechanical-hydrological-chemical processes

    SciTech Connect

    Lin, W.; Wilder, D.G.; Blink, J.

    1994-10-01

    This is a progress report on the Large Block Test (LBT) project. The purpose of the LBT is to study some of the coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near field of a nuclear waste repository under controlled boundary conditions. To do so, a large block of Topopah Spring tuff will be heated from within for about 4 to 6 months, then cooled down for about the same duration. Instruments to measure temperature, moisture content, stress, displacement, and chemical changes will be installed in three directions in the block. Meanwhile, laboratory tests will be conducted on small blocks to investigate individual thermal-mechanical, thermal-hydrological, and thermal-chemical processes. The fractures in the large block will be characterized from five exposed surfaces. The minerals on fracture surfaces will be studied before and after the test. The results from the LBT will be useful for testing and building confidence in models that will be used to predict TMHC processes in a repository. The boundary conditions to be controlled on the block include zero moisture flux and zero heat flux on the sides, constant temperature on the top, and constant stress on the outside surfaces of the block. To control these boundary conditions, a load-retaining frame is required. A 3 x 3 x 4.5 m block of Topopah Spring tuff has been isolated on the outcrop at Fran Ridge, Nevada Test Site. Pre-test model calculations indicate that a permeability of at least 10{sup -15} m{sup 2} is required so that a dryout zone can be created within a practical time frame when the block is heated from within. Neutron logging was conducted in some of the vertical holes to estimate the initial moisture content of the block. It was found that about 60 to 80% of the pore volume of the block is saturated with water. Cores from the vertical holes have been used to map the fractures and to determine the properties of the rock. A current schedule is included in the report.

  4. Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis.

    PubMed

    Li, Chao; Ren, Hongqiang; Yin, Erqin; Tang, Siyuan; Li, Yi; Cao, Jiashun

    2015-06-01

    Aiming to efficiently dispose printing and dyeing wastewater with "high organic nitrogen and aromatic compounds, but low carbon source quality", the reinforced anaerobic hydrolysis-denitrification coupling process, based on improved UASB reactors and segregated collection-disposition strategy, was designed and applied at the pilot scale. Results showed that the coupling process displayed efficient removal for these two kinds of pollutants (nitrogen and aromatics), since the concentration of NH3-N (shortened as ρ (NH3-N)) < 8 mg/L, ρ (TN) < 15 mg/L with long-term stability for the effluent, and both species and abundances of aromatics reduced greatly by UASBs according to GC-MS. Microbial community analysis by PCR-DGGE showed that Bacteroidetes and Alphaproteobacteria were the dominant communities in the bioreactors and some kinds of VFAs-producing, denitrifying and aromatic ring opening microorganisms were discovered. Further, the nirK and bcrA genes quantification also indicated the coupling process owned outstanding denitrification and aromatic compound-degrading potential, which demonstrates that the coupling process owns admirable applicability for this kind of wastewater treatment. PMID:25613804

  5. Rearrangement of stresses in fault zones - detecting major issues of coupled hydraulic-mechanical processes with relevance to geothermal applications

    NASA Astrophysics Data System (ADS)

    Ziefle, G.

    2014-09-01

    The South German Molasse Basin provides favourable conditions for geothermal plants. Nevertheless, micro-seismic events occur in the vicinity of the geothermal Unterhaching Gt2 well and seem to be caused by the geothermal plant. The injection and production are located in an existing fault system. The majority of seismic events takes place at a horizontal distance of 500 m or less of the borehole. However, none of the seismic events are located in the injection reservoir but in fact at a significantly greater depth. A deeper process understanding of the interacting thermal-hydraulic-mechanical effects in the vicinity of the well is desired. This article presents a significantly simplified 2-D model, investigating interactions of the stress field in the vicinity of the geothermal well and movements in the fault system. This might be of special interest, as the operation of the geothermal plant might lead to changes in the material and fracture properties on the one hand and in the equilibrium state on the other. A detailed description of the model, as well as various parameter studies, is presented. It can be seen that boundary conditions such as direction of the stress field in relation to the fault system, geometry of the fault system and parameters of the fractures have a significant influence on stresses in the proximity of the geothermal well. A variation in the spatial stress field in some parts of the fault system is to be expected. For the chosen assumptions the dimension of this variation is about 25% of the assumed stresses. Future work on this model might focus on the characteristics of the fault system, as well as on the influence of the coupled thermal-hydraulic-mechanical effects.

  6. A Natural Analogue for Thermal-Hydrological-Chemical Coupled Processes at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada

    SciTech Connect

    Bill Carey; Gordon Keating; Peter C. Lichtner

    1999-08-01

    Dike and sill complexes that intruded tuffaceous host rocks above the water table are suggested as natural analogues for thermal-hydrologic-chemical (THC) processes at the proposed nuclear waste repository at Yucca Mountain, Nevada. Scoping thermal-hydrologic calculations of temperature and saturation profiles surrounding a 30-50 m wide intrusion suggest that boiling conditions could be sustained at distances of tens of meters from the intrusion for several thousand years. This time scale for persistence of boiling is similar to that expected for the Yucca Mountain repository with moderate heat loading. By studying the hydrothermal alteration of the tuff host rocks surrounding the intrusions, insight and relevant data can be obtained that apply directly to the Yucca Mountain repository and can shed light on the extent and type of alteration that should be expected. Such data are needed to bound and constrain model parameters used in THC simulations of the effect of heat produced by the waste on the host rock and to provide a firm foundation for assessing overall repository performance. One example of a possible natural analogue for the repository is the Paiute Ridge intrusive complex located on the northeastern boundary of the Nevada Test Site, Nye County, Nevada. The complex consists of dikes and sills intruded into a partially saturated tuffaceous host rock that has stratigraphic sequences that correlate with those found at Yucca Mountain. The intrusions were emplaced at a depth of several hundred meters below the surface, similar to the depth of the proposed repository. The tuffaceous host rock surrounding the intrusions is hydrothermally altered to varying extents depending on the distance from the intrusions. The Paiute Ridge intrusive complex thus appears to be an ideal natural analogue of THC coupled processes associated with the Yucca Mountain repository. It could provide much needed physical and chemical data for understanding the influence of heat

  7. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    SciTech Connect

    Niu, Hongsen

    1995-02-10

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T{sub e}) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n{sub e}) is in the range 10{sup 8}--10{sup 10} {sup {minus}cm }at the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} near the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10{sup 4}--10{sup 5} downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z{sup 2} intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z{sup 2} fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

  8. A self-consistent synthesis description of magnetosphere-ionosphere coupling and scale-dependent auroral process using shear Alfvén wave

    NASA Astrophysics Data System (ADS)

    Yoshikawa, A.; Amm, O.; Vanhamäki, H.; Fujii, R.

    2011-08-01

    In order to correctly describe the dynamical behavior of the magnetosphere-ionosphere (MI) coupling system and the scale-dependent auroral process, we develop a synthesis formulation that combines the process of (1) the inverse Walen separation of MHD disturbance into parallel- and antiparallel-propagating shear Alfvén wave to the ambient magnetic field, (2) the shear Alfvén wave reflection process including (3) the scale-dependent electrostatic coupling process through the linearized Knight relation, (4) two-layer ionosphere model, and (5) dynamic conductance variations. A novel procedure that applies the inverse Walen relation to the incompressional MHD disturbances at the inner boundary of the MHD region enables to extract the component of the shear Alfvén wave incident to the ionosphere. The extracted incident electric field supplies an electromotive force for the generation of the MI coupling system, and the reflected electric field is generated such that it totally satisfies the synthesis MI-coupling equation. A three-dimensional ionospheric current system is represented by a two-layer model in which the Pedersen and the Hall current are confined in the separated layers, which are connected by field-aligned currents driven by the linear current-voltage relation between two layers. Hence, our scheme possibly reproduces two types of the scale-dependent MI-decoupling process of the perpendicular potential structure: due to the parallel potential drop at the auroral acceleration region and the other due to the parallel potential differences inside the ionosphere. Our newly formulation may be well suited for description of scale-dependent auroral process and mesoscale ionospheric electrodynamics interlocked with the dynamical development of magnetospheric processes.

  9. Total Synthesis of Macrocarpines D and E via an Enolate-Driven Copper-Mediated Cross-Coupling Process: Replacement of Catalytic Palladium with Copper Iodide.

    PubMed

    Rahman, M Toufiqur; Deschamps, Jeffrey R; Imler, Gregory H; Schwabacher, Alan W; Cook, James M

    2016-09-01

    An enolate driven copper-mediated cross-coupling process enabled cheaper and greener access to the key pentacyclic intermediates required for the enantiospecific total synthesis of a number of C-19 methyl substituted sarpagine/macroline indole alkaloids. Replacement of palladium (60-68%) with copper iodide (82-89%) resulted in much higher yields. The formation of an unusual 7-membered cross-coupling product was completely inhibited by using TEMPO as a radical scavenger. Further functionalization led to the first enantiospecific total synthesis of macrocarpines D and E. PMID:27526647

  10. Process simulation for a new conceptual design of LNG terminal coupling NGL recovery and LNG re-gasification for maximum energy savings

    NASA Astrophysics Data System (ADS)

    Muqeet, Mohammed A.

    With the high demands of shale gas and promising development of LNG terminals, a lot of research has focused towards the process development for effective recovery of C2+ hydrocarbons (NGL). Shale gas requires a large amount of cold energy to cool down and recover the NGL; and the LNG re-gasification process requires a lot of heat energy to evaporate for NGL recovery. Thus, coupling the shale gas NGL recovery process and LNG re-gasification process, for utilizing the cold energy from LNG re-gasification process to assist NGL recovery from shale gas has significant economic benefits on both energy saving and high value product recovery. Wang et al. developed new conceptual design of such coupled process in 2013 and later Wang and Xu developed an optimal design considering uncertainties in 2014. This work deals with process simulation of both these designs and the feasibility of the process is verified. A steady state model is developed based on the plant design proposed by Wang et al. using Aspen plusRTM and then a dynamic model of the process is developed using Aspen dynamicsRTM. An effective control strategy is developed and the flexibility of the dynamic model is examined by giving disturbances in the shale gas feed. A comparison is made between the two proposed design and the prospects of the design for real plant scenario is discussed.

  11. Interface-coupled dissolution-precipitation processes allow a photonic crystal to replace an ionic crystal along lattice planes

    NASA Astrophysics Data System (ADS)

    Liesegang, Moritz; Milke, Ralf

    2015-04-01

    of fossil shells replaced by opal-A reveals clues for the understanding of structural and chemical reorganization mechanisms behind silica pseudomorphism. Fundamental knowledge about the highly selective replacement process is absent so far, impeding an adequate interpretation of the observations. The replacement of calcitic shells by amorphous silica spheres (~300 nm in size) is a unique example for the transformation of an ionic to a photonic crystal accompanied by a large size contrast of ions and spheres, respectively, but preserving lattice planes. The observed replication of polysynthetic twinning and cleavage planes of calcite by opal-A spheres indicates that silicification occurs via dissolution of shell material and immediate precipitation of amorphous silica. This follows the interface-coupled dissolution-precipitation mechanism model (Putnis and Putnis, 2007), but requires some modification to allow for open space necessary to form spheres in the 100s-nm size range with a core-shell structure. While sphere growth by a gravitational ordering process is implausible, we assume that the ordered array of monodisperse spheres forms via layer-by-layer deposition. References: Putnis A. and Putnis C.V. (2007), J. Solid State Chem., 180, 1783-1786

  12. Autonomous Studies of Coupled Physical-Biogeochemical Processes- Lessons from NAB08 and Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Lee, Craig; D'Asaro, Eric; Perry, Mary Jane

    2013-04-01

    Motivated by the increasing application of autonomous sensors to physical, biological and biogeochemical investigations at the submesoscale, we examine techniques developed during the 2008 North Atlantic Bloom Experiment (NAB08), review successes, failures, and lessons learned, and offer perspectives on how these approaches might evolve in response to near-term shifts in scientific goals and technological advances. NAB08 exploited the persistence of autonomous platforms coupled with the extensive capabilities of a ship-based sampling program to investigate the patch-scale physics, biogeochemistry and community dynamics of a spring phytoplankton bloom. Autonomous platforms (Seagliders following a heavily-instrumented Lagrangian float) collected measurements in a quasi-Lagrangian frame, beginning before bloom initiation and extending well past its demise. This system of autonomous instruments resolved variability at the patch scale while also providing the persistence needed to follow bloom evolution. Biological and biogeochemical measurements were conducted from R/V Knorr during the bloom. An aggressive protocol for sensor calibration and proxy building bridged the ship-based and autonomous efforts, leveraging the intensive but sparse ship-based measurements onto the much more numerous autonomous observations. The combination of sampling in the patch-following frame, persistent, autonomous surveys and focused, aggressive calibration and proxy building produced robust, quantitative estimates of physical and biogeochemical processes. For example, budgets of nitrate, dissolved oxygen and particulate organic carbon (POC) following the patch were used to estimate net community production (NCP) and apparent POC export. Net community production was 805 mmol C?m-2 during the main bloom, with apparent POC export of 564 mmol C?m-2 and 282 mmol C?m-2 lost due to net respiration (70%) and apparent export (30%) on the day following bloom termination. Thus, POC export of roughly

  13. Implications for post-comminution processes in subglacial suspended sediment using coupled radiogenic strontium and neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Clinger, Anna E.; Aciego, Sarah M.; Stevenson, Emily I.; Arendt, Carli A.; Robbins, Mark J.

    2016-04-01

    Enhanced physical weathering rates in subglacial systems promote high levels of comminution, transport, and deposition of fine-grained sediment within the subglacial drainage network. The impact of shifts in sediment loads from variations in meltwater flux, and their effects on downstream ecosystems, remains poorly quantified and places a fundamental importance on our ability to characterize subglacial depositional environments. Here, for the first time, we assess the seasonal evolution of the subglacial suspended sediment using coupled radiogenic strontium (87Sr/86Sr) and neodymium (143Nd/144Nd) isotopic ratios with elemental ratios and in situ measurements. Weathering rates in fluvial and riverine systems have been traditionally assessed using radiogenic isotopic tracers: 143Nd/144Nd ratios relate to the crustal age whereas 87Sr/86Sr ratios relate to age and preferential mineral dissolution. Thus relative shifts in these ratios will allow us to characterize distinct sediment transport networks. We apply this technique to the Lemon Creek Glacier (LCG), Alaska, USA, and to the Athabasca Glacier (AG), Alberta, CA. At the LCG, the 143Nd/144Nd values range from εNd of - 4.6 (0.9) to - 8.7 (0.2), which suggests a poorly mixed sediment flux. However, the greatest period of variability may correlate with the drainage of a supraglacial lake and suggests caution should be exerted in time-scale 143Nd/144Nd provenance studies that may be affected by climatic disturbances. In contrast, limited variation is observed within the AG 143Nd/144Nd seasonal record. A consistent, direct relation between the Rb/Sr elemental ratio and the 87Sr/86Sr ratio proves interesting as it enables us to unravel incongruent weathering trends in the radiogenic Sr record. Correlation between the 87Sr/86Sr and total discharge suggests that the process is partially controlled by mantling of the bedrock, which can be detected using post-comminution ages. While the subglacial structure may be enabled by

  14. The Effect of Temperature and Carbon to Hematite Ratio on the Formation of Cementite During the Couple of STMA and Partial Melting Processes

    NASA Astrophysics Data System (ADS)

    Soleymani, Amir Peyman; Panjepour, Masoud; Meratian, Mahmood

    2016-04-01

    In this research, the role of the couple of simultaneous thermal-mechanical activation (STMA) and partial melting (PM) processes in the carbothermic reduction of hematite and cementite formation was studied. For this purpose, the STMA process was performed for 6 hours at 1073 K (800 °C) on the mixture of hematite and graphite with stoichiometry ratio (22 wt pct C) in argon atmosphere in the first stage, and then this process was coupled to the PM process at 1453 K (1180 °C) for 25 minutes. The results obtained showed that the percentage of cementite phase in the product of the STMA process was only about 24 wt pct and after carrying out the PM process, this value reached 77 wt pct in the final product. In the second stage, the effect of the ratio of the parameters of carbon to hematite on the initial mixture (1:1, 1:25, and 1:5 times the stoichiometry ratio) and STMA process temperature [1073 K, 1123 K, and 1173 K (800 °C, 850 °C, and 900 °C)] was studied. The results were indicative of the fact that by an increase in the ratio of carbon to hematite and at STMA temperature, the percentage of cementite in the final product obtained from the PM process significantly increased. In fact, the specimens obtained from the couple of the STMA and PM processes with a carbon to hematite ratio of 1.5:1 at 1073 K (800 °C) and that of 1.25:1 at 1173 K (900 °C) showed the greatest percentage of cementite. The mechanism regarding the processes showed that by controlling the amount and manner of free carbon distribution in the STMA product based on the parameters of the ratio of carbon to hematite and temperature, it was possible to obtain pure cementite. Therefore, the couple of STMA and PM processes can also be brought up as a new method in the production of pure cementite.

  15. Coupled Geochemical and Hydrological Processes Governing the Fate and Transport of Radionuclides and Toxic Metals Beneath the Hanford Tank Farms

    SciTech Connect

    Scott Fendorf; Phil Jardine

    2006-07-21

    The goal of this research was to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration and immobilization of radionuclides and toxic metals in the badose zone beneath the Hanford Tank Farms.

  16. Mathematical Modeling of Heat Transfer in Mold Copper Coupled with Cooling Water During the Slab Continuous Casting Process

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Chen, Dengfu; Long, Haijun; Long, Mujun; Lv, Kui

    2014-12-01

    The heat transfer in mold copper plays an important role in the solidification behavior of steel. In this study, a three-dimensional heat transfer model coupled with flow behavior of the cooling water was established to analyze the temperature field of the copper and water slots. And this model was verified by the measured temperature rise of cooling water at the inlet and outlet of slots. The advantages of this model were obtained by comparing it with Dittus-Boelter model and the Sleicher-Rouse model, which did not consider the flow of water. The results show that the Dittus-Boelter model has the highest temperature and that the coupled model has the lowest temperature. Moreover, the coupled model includes calculation of the temperature and velocity field of the cooling water inside the slots. This temperature information is very helpful for predicting the water boiling in the slots. In addition, the coupled model shows that the temperature, heat flux, and heat transfer coefficient around the water slot wall are different from the conventional models.

  17. Depression: The Differing Narratives of Couples in Couple Therapy

    ERIC Educational Resources Information Center

    Rautiainen, Eija-Liisa; Aaltonen, Jukka

    2010-01-01

    How does the spouse of a person with depression take part in constructing narratives of depression in couple therapy? In this study we examined couples' ways of co-constructing narratives of depression in couple therapy. Three couple therapy processes were chosen for the study, one spouse in each couple having been referred to an outpatient clinic…

  18. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  19. Three-phase Coupling of Air, Droplets and Fibers for the Spray Molding Manufacturing Process of Polyurethane-Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Diffo, P.; Wulf, P.; Breuer, M.

    2011-09-01

    In the present paper the authors present a multiphase flow simulation model of the interaction of a droplet-laden air flow with flexible fibers. This highly complex flow is occurring during a manufacturing process of fiber reinforced polyurethane based composites, where the liquid plastic polyurethane (PUR) is sprayed with air assistance in a tool form or on a substrate. Simultaneously chopped fibers are laterally inserted in the polyurethane-air spray cone for wetting before the entire mixture deposits on the substrate, where it starts curing. This investigation aims to compute the statistical fiber orientation and density distribution in the final composite, which will help modeling its anisotropic material properties. It is presumed that the final position and orientation of a fiber on a substrate results from its dynamics and coupled interactions with air, PUR-droplets and other fibers within the spray cone. Therefore, we present a new approach simplifying the multiply coupled interaction of the three phases. In this paper a model of the process is built, that computes the transient, 4-way-coupled behavior of the air-liquid droplets mixture with the CFD code ANSYS Fluent and the 1-way-air- and 1-way-droplet-coupled dynamics of the fibers with an extra code called FIDYST. Two approaches for the coupling of fibers with the air-droplets-mixture are presented: One considers the mixture as a pseudo-fluid ("homogenization"), the other computes a force for each of the phases separately, wherein the average momentum transfer for the fiber-droplet collision is estimated based on the probability of local collision events.

  20. State-dependent changes of prefrontal-posterior coupling in the context of affective processing: susceptibility to humor.

    PubMed

    Papousek, Ilona; Reiser, Eva M; Weiss, Elisabeth M; Fink, Andreas; Samson, Andrea C; Lackner, Helmut K; Schulter, Günter

    2013-06-01

    The aim of the present study was to examine whether interindividual differences in the coupling or decoupling of prefrontal and posterior cortices during the exposure to social-emotional information may predict an individual's positive emotional responsiveness. Susceptibility to humor was assessed in a behavioral paradigm several weeks after the EEG recordings. State-dependent changes of prefrontal-posterior EEG beta coherence were recorded during stimulation with other people's auditory expressions of cheerfulness and sadness. Greater decreases of coherence during the stimulation with positive affect expressions prospectively predicted greater positive emotional responsiveness, indicated by higher amusement ratings in response to cartoons and higher scores in a questionnaire measure of exhilarability. Greater increases of coherence during the stimulation with negative affect expressions did not predict perceived funniness but were related to shorter response latencies to the amusement ratings. The results further support the notion that a more loose prefrontal-posterior coupling may be related to loosening of control of the prefrontal cortex over incoming emotional information and, thus, to a propensity to deeper emotional involvement and a greater impact of perceptual input, whereas increased prefrontal-posterior coupling may be related to strong control and the propensity to protect oneself from becoming emotionally affected. PMID:23208750

  1. Enhancement of aerosol responses to changes in emissions over East Asia by gas-oxidant-aerosol coupling and detailed aerosol processes

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.

    2016-06-01

    We quantify the responses of aerosols to changes in emissions (sulfur dioxide, black carbon (BC), primary organic aerosol, nitrogen oxides (NOx), and volatile organic compounds) over East Asia by using simulations including gas-oxidant-aerosol coupling, organic aerosol (OA) formation, and BC aging processes. The responses of aerosols to NOx emissions are complex and are dramatically changed by simulating gas-phase chemistry and aerosol processes online. Reduction of NOx emissions by 50% causes a 30-40% reduction of oxidant (hydroxyl radical and ozone) concentrations and slows the formation of sulfate and OA by 20-30%. Because the response of OA to changes in NOx emissions is sensitive to the treatment of emission and oxidation of semivolatile and intermediate volatility organic compounds, reduction of the uncertainty in these processes is necessary to evaluate gas-oxidant-aerosol coupling accurately. Our simulations also show that the sensitivity of aerosols to changes in emissions is enhanced by 50-100% when OA formation and BC aging processes are resolved in the model. Sensitivity simulations show that the increase of NOx emissions from 1850 to 2000 explains 70% (40%) of the enhancement of aerosol mass concentrations (direct radiative effects) over East Asia during that period through enhancement of oxidant concentrations and that this estimation is sensitive to the representation of OA formation and BC aging processes. Our results demonstrate the importance of simultaneous simulation of gas-oxidant-aerosol coupling and detailed aerosol processes. The impact of NOx emissions on aerosol formation will be a key to formulating effective emission reduction strategies such as BC mitigation and aerosol reduction policies in East Asia.

  2. Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator

    NASA Astrophysics Data System (ADS)

    Liu, A.-Peng; Cheng, Liu-Yong; Chen, Li; Su, Shi-Lei; Wang, Hong-Fu; Zhang, Shou

    2014-02-01

    We investigate the input-output process with nitrogen-vacancy (NV) centers fixed on the surface of microtoroidal resonators (MTRs) with quantized whispering-gallery modes (WGMs). We demonstrate a photon-NV hybrid controlled phase flip (CPF) gate in decoherence-free subspace (DFS) with the input-output process. Efficient schemes of entanglement generation and quantum state transfer (QST) in DFS are proposed. Our schemes removed the requirements of high-Q and strongly coupling for the physical systems, and DFS encoding makes our schemes immune to collective dephasing. The experimental feasibility and challenge are discussed by considering the current experimental technology.

  3. Impact of Scale-Dependent Coupled Processes on Solute Fate and Transport in the Critical Zone: Case Studies Involving Inorganic and Radioactive Contaminants

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Gentry, R. W.

    2011-12-01

    Soil, the thin veneer of matter covering the Earths surface that supports a web of living diversity, is often abused through anthropogenic inputs of toxic waste. This subsurface regime, coupled with life sustaining surface water and groundwater is known as the "Critical Zone". The disposal of radioactive and toxic organic and inorganic waste generated by industry and various government agencies has historically involved shallow land burial or the use of surface impoundments in unsaturated soils and sediments. Presently, contaminated sites have been closing rapidly and many remediation strategies have chosen to leave contaminants in-place. As such, contaminants will continue to interact with the geosphere and investigations on long term changes and interactive processes is imperative to verify risks. In this presentation we provide a snap-shot of subsurface science research from the past 25 y that seeks to provide an improved understanding and predictive capability of multi-scale contaminant fate and transport processes in heterogeneous unsaturated and saturated environments. Investigations focus on coupled hydrological, geochemical, and microbial processes that control reactive contaminant transport and that involve multi-scale fundamental research ranging from the molecular scale (e.g. synchrotrons, electron sources, arrays) to in situ plume interrogation strategies at the macroscopic scale (e.g. geophysics, field biostimulation, coupled processes monitoring). We show how this fundamental research is used to provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at contaminated sites to (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention.

  4. Rapid and undamaged analysis of crude and processed Radix Scrophulariae by Fourier transform infrared spectroscopy coupled with soft independent modeling of class analogy

    PubMed Central

    Zhu, Huiping; Cao, Gang; Cai, Hao; Cai, Baochang; Hu, Jue

    2014-01-01

    Objective: The main objective of this work is to determine the feasibility of identification of crude and processed Radix Scrophulariae using the Fourier transform infrared spectroscopy couple with soft independent modeling of class analogy (FT-IR-SIMCA). Materials and Methods: A total of 50 different crude Radix Scrophulariae was used to product processed ones. The spectra were acquired by FT-IR spectroscopy using a diffuse reflectance fiber optic probe. For the multivariate analysis, SIMCA was used. Results showed that FT-IR-SIMCA was useful to discriminate the processed Radix Scrophulariae samples from crude samples. These samples could be successfully classified by SIMCA. Results: In all cases, the recognition and rejection rates were 97.8% and 100%, respectively. When testing with the blind sample that was picked out from the chosen samples, the accuracy was up to 90%. Conclusion: It means that the methodology is capable of accurately separating processed Radix Scrophulariae from crude samples. PMID:25210313

  5. A novel mechanism of bisphenol A removal during electro-enzymatic oxidative process: chain reactions from self-polymerization to cross-coupling oxidation.

    PubMed

    Li, Haitao; Zhao, He; Liu, Chenming; Li, Yuping; Cao, Hongbin; Zhang, Yi

    2013-08-01

    The catalyzed removal of bisphenol A (BPA) by a horseradish peroxidase (HRP) cathode in the presence of humic acid (HA) was investigated. At an optimal condition, the removal of BPA achieved 100% within 2min reaction. In the electro-enzymatic process, products were analyzed by high performance liquid chromatography with diode array detector (HPLC-DAD) and high performance size exclusion chromatography (HPSEC). HPLC-DAD results showed that BPA was oxidized into self-polymers and then self-polymers as important intermediate products decreased and disappeared. HPSEC results showed the order of molecular weight (MW): HA+BPA cross-coupling products>HA self-coupling products>initial HA. According to above results, a novel mechanism of BPA transformation in the presence of HA was proposed in electro-enzymatic process. In summary, under oxidation of in situ hydrogen peroxide on HRP electrode, the BPA first are polymerized into self-polymers, and then, the polymers may be incorporated into HA matrix and finally larger MW of BPAn-HA might be formed. The presence of HA can provide chain reactions from BPA self-polymerization to cross-coupling oxidation. Therefore, in the presence of HA, the electro-enzymatic oxidation is an effective way to improve BPA removal. PMID:23732003

  6. Multiscale modeling of nanostructured ZnO based devices for optoelectronic applications: Dynamically-coupled structural fields, charge, and thermal transport processes

    NASA Astrophysics Data System (ADS)

    Abdullah, Abdulmuin; Alqahtani, Saad; Nishat, Md Rezaul Karim; Ahmed, Shaikh; SIU Nanoelectronics Research Group Team

    Recently, hybrid ZnO nanostructures (such as ZnO deposited on ZnO-alloys, Si, GaN, polymer, conducting oxides, and organic compounds) have attracted much attention for their possible applications in optoelectronic devices (such as solar cells, light emitting and laser diodes), as well as in spintronics (such as spin-based memory, and logic). However, efficiency and performance of these hybrid ZnO devices strongly depend on an intricate interplay of complex, nonlinear, highly stochastic and dynamically-coupled structural fields, charge, and thermal transport processes at different length and time scales, which have not yet been fully assessed experimentally. In this work, we study the effects of these coupled processes on the electronic and optical emission properties in nanostructured ZnO devices. The multiscale computational framework employs the atomistic valence force-field molecular mechanics, models for linear and non-linear polarization, the 8-band sp3s* tight-binding models, and coupling to a TCAD toolkit to determine the terminal properties of the device. A series of numerical experiments are performed (by varying different nanoscale parameters such as size, geometry, crystal cut, composition, and electrostatics) that mainly aim to improve the efficiency of these devices. Supported by the U.S. National Science Foundation Grant No. 1102192.

  7. The measurement of sucrose concentration by two-tapered all-fiber Mach-Zehnder interferometer employing different coupling structures and manufacture processes

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Wang, Hsin-Wen; Hsu, Yi-Cheng

    2016-08-01

    The sucrose concentration measurement and characteristics of light coupling taper structure on sensitivity with various fabrication processes of taper structure for all-fiber Mach-Zehnder interferometer (AFMZI) are presented. Using fusion splicer with electrical discharge, the standard single-mode fiber is employed to be fabricated as conical coupling/decoupling taper structure. The basic two fabrication processes are designed as single fusion-stretching (SFS), multiple fusions without stretching (MF). The third advanced process is composed of SFS and multiple fusions without stretching processes, and called multiple fusions with single stretching (MFSS). Various types of coupling/decoupling taper structures were fabricated based on the three kinds of fabrication processes. The effects of geometry shape including taper waist, taper angle, and sensing length on sensing sensitivity of AFMZIs are estimated. The modifications of fiber core and cladding induced by thermal effect affect the refractive index distributions and shapes of taper structure. The effects of refractive index changes of fiber core and cladding on sensing sensitivity are also discussed. The AFMZI was tested by measuring aqueous sucrose solution of refractive index unit (RIU) from 1.333 to 1.420 RIU. The optical spectrums are measured by a spectrometer. The spectrum dip shifts and sensing sensitivity was measured and calculated, respectively. As shown in results, sensing sensitivities of AFMZIs of taper structure fabricated by MFSS and multiple fusions without stretching processing are generally higher than SFS. The reasons could be aimed on materials modification through thermal effect on blurring fiber core-cladding interface and proper taper angle of taper structure. The more homogeneous refractive index distribution on fiber core-cladding interface, the more detecting light power decoupled through core-cladding interface to interact with exterior environment and enhance the sensing sensitivity

  8. The measurement of sucrose concentration by two-tapered all-fiber Mach-Zehnder interferometer employing different coupling structures and manufacture processes

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Wang, Hsin-Wen; Hsu, Yi-Cheng

    2016-07-01

    The sucrose concentration measurement and characteristics of light coupling taper structure on sensitivity with various fabrication processes of taper structure for all-fiber Mach-Zehnder interferometer (AFMZI) are presented. Using fusion splicer with electrical discharge, the standard single-mode fiber is employed to be fabricated as conical coupling/decoupling taper structure. The basic two fabrication processes are designed as single fusion-stretching (SFS), multiple fusions without stretching (MF). The third advanced process is composed of SFS and multiple fusions without stretching processes, and called multiple fusions with single stretching (MFSS). Various types of coupling/decoupling taper structures were fabricated based on the three kinds of fabrication processes. The effects of geometry shape including taper waist, taper angle, and sensing length on sensing sensitivity of AFMZIs are estimated. The modifications of fiber core and cladding induced by thermal effect affect the refractive index distributions and shapes of taper structure. The effects of refractive index changes of fiber core and cladding on sensing sensitivity are also discussed. The AFMZI was tested by measuring aqueous sucrose solution of refractive index unit (RIU) from 1.333 to 1.420 RIU. The optical spectrums are measured by a spectrometer. The spectrum dip shifts and sensing sensitivity was measured and calculated, respectively. As shown in results, sensing sensitivities of AFMZIs of taper structure fabricated by MFSS and multiple fusions without stretching processing are generally higher than SFS. The reasons could be aimed on materials modification through thermal effect on blurring fiber core-cladding interface and proper taper angle of taper structure. The more homogeneous refractive index distribution on fiber core-cladding interface, the more detecting light power decoupled through core-cladding interface to interact with exterior environment and enhance the sensing sensitivity

  9. High power coupled midinfrared free-electron-laser oscillator scheme as a driver for up-frequency conversion processes in the x-ray region

    NASA Astrophysics Data System (ADS)

    Tecimer, M.

    2012-02-01

    In this paper we present a high-gain free-electron-laser (FEL) oscillator scheme composed of two oscillators that are ideally coupled unidirectionally, with the coupled signal power flowing from the master to the amplifier oscillator. Electron bunches driving the oscillators are in perfect synchronization with the optical pulses building up within the respective cavities. The scheme is applied to a 100 MeV range superconducting energy recovery linac FEL. The computed mJ level, ultrashort pulse (<10cycles) output in the midinfrared region indicates the potential of the proposed FEL oscillator scheme in driving up-frequency conversion processes in the x-ray region, enabling tunable, high average brightness, attosecond scale coherent soft/hard x-ray sources.

  10. How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump

    PubMed Central

    Toyoshima, Chikashi; Norimatsu, Yoshiyuki; Iwasawa, Shiho; Tsuda, Takeo; Ogawa, Haruo

    2007-01-01

    Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum is the best-studied member of the P-type or E1/E2 type ion transporting ATPases. It has been crystallized in seven different states that cover nearly the entire reaction cycle. Here we describe the structure of this ATPase complexed with phosphate analogs BeF3− and AlF4− in the absence of Ca2+, which correspond to the E2P ground state and E2∼P transition state, respectively. The luminal gate is open with BeF3− and closed with AlF4−. These and the E1∼P·ADP analog crystal structures show that a two-step rotation of the cytoplasmic A-domain opens and closes the luminal gate through the movements of the M1–M4 transmembrane helices. There are several conformational switches coupled to the rotation, and the one in the cytoplasmic part of M2 has critical importance. In the second step of rotation, positioning of one water molecule couples the hydrolysis of aspartylphosphate to closing of the gate. PMID:18077416

  11. Radar study of coupling processes between mid-latitude ionospheric E and F regions based on the FERIX experiment

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Aoki, Yuichi; Saito, Susumu

    In the ionosphere, conductivity parallel to the geomagnetic field is so high that such polarization electric fields are easily mapped along the field line for several hundred kilometers. Field aligned irregularities (FAIs) in the E- and F- regions are expected to be electromagnetically coupled. We conducted FERIX (F- and E- Region Ionosphere Coupling Study) 2 observation campaign in 2007. We located a portable radar at Sakata to observe E-region FAI (E-FAI), while the MU radar in Shigaraki observed F-region FAI (F-FAI). We applied the radar imaging technique for both radars, and studied the horizontal structures of both E- and F- regions FAIs in more detail. We also operated a bistatic receiving site at Maze, Niigata to expand observation region of the LTPR. We found that the F-FAI shows northwest-southeast wavefront with small structures of 20-30 km. E-FAI were enhanced and showed northwest-southwest wavefront structures when F-FAI echoes were observed by the MU radar. The radar imaging observations revealed that smaller echo patches of E-FAI tend to appear at the edge of, or surrounding area of the F-FAI echoes.

  12. Ensemble forecasts of monthly catchment rainfall out to long lead times by post-processing coupled general circulation model output

    NASA Astrophysics Data System (ADS)

    Schepen, Andrew; Wang, Q. J.

    2014-11-01

    Monthly streamflow forecasts with long lead time are being sought by water managers in Australia. In this study, we take a first step towards a monthly streamflow modelling approach by harnessing a coupled ocean-atmosphere general circulation model (CGCM) to produce monthly rainfall forecasts for three catchments across Australia. Bayesian methodologies are employed to produce forecasts based on CGCM raw rainfall forecasts and also CGCM sea surface temperature forecasts. The Schaake Shuffle is used to connect forecast ensemble members of individual months to form ensemble monthly time series forecasts. Monthly forecasts and three-monthly forecasts of rainfall are assessed for lead times of 0-6 months, based on leave-one-year-out cross-validation for 1980-2010. The approach is shown to produce well-calibrated ensemble forecasts that source skill from both the atmospheric and ocean modules of the CGCM. Although skill is generally low, moderate skill scores are observed in some catchments for lead times of up to 6 months. In months and catchments where there is limited skill, the forecasts revert to climatology. Thus the forecasts developed can be considered suitable for continuously forecasting time series of streamflow to long lead times, when coupled with a suitable monthly hydrological model.

  13. CLMT2 user's guide: A Coupled Model for Simulation of HydraulicProcesses from Canopy to Aquifer Version 1.0

    SciTech Connect

    Pan, Lehua

    2006-07-26

    CLMT2 is designed to simulate the land-surface andsubsurface hydrologic response to meteorological forcing. This modelcombines a state-of-the-art land-surface model, the NCAR Community LandModel version 3 (CLM3), with a variably saturated groundwater model, theTOUGH2, through an internal interface that includes flux and statevariables shared by the two submodels. Specifically, TOUGH2, in itssimulation, uses infiltration, evaporation, and root-uptake rates,calculated by CLM3, as source/sink terms; CLM3, in its simulation, usessaturation and capillary pressure profiles, calculated by TOUGH2, asstate variables. This new model, CLMT2, preserves the best aspects ofboth submodels: the state-of-the-art modeling capability of surfaceenergy and hydrologic processes from CLM3 (including snow, runoff,freezing/melting, evapotranspiration, radiation, and biophysiologicalprocesses) and the more realistic physical-process-based modelingcapability of subsurface hydrologic processes from TOUGH2 (includingheterogeneity, three-dimensional flow, seamless combining of unsaturatedand saturated zone, and water table). The preliminary simulation resultsshow that the coupled model greatly improved the predictions of the watertable, evapotranspiration, and surface temperature at a real watershed,as evaluated using 18 years of observed data. The new model is also readyto be coupled with an atmospheric simulation model, representing one ofthe first models that are capable to simulate hydraulic processes fromtop of the atmosphere to deep-ground.

  14. Progress Towards Coupled Simulation of Surface/Subsurface Hydrologic Processes and Terrestrial Ecosystem Dynamics Using the Community Models PFLOTRAN and CLM

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Bisht, G.; Karra, S.; Hoffman, F. M.; Hammond, G. E.; Kumar, J.; Painter, S.; Thornton, P. E.; Lichtner, P. C.

    2012-12-01

    Accurately simulating regional water cycle dynamics is challenging because of strong soil moisture-rainfall feedbacks and large uncertainties associated with vegetation and energy interactions. Earth system models of today cannot accurately capture such interactions, because current-generation land surface models (LSMs) 1) do not explicitly represent the fine-scale spatial variability of topography, soils, and vegetation that play a significant role in determining the response of hydrologic states (soil moisture) and fluxes (interception, infiltration, runoff, evapotranspiration) and 2) over-simplify or completely omit some key physical processes, such as lateral flow of water and heat, surface-subsurface interactions, realistic groundwater-vadose zone interactions, and freeze-thaw dynamics. Capturing such processes is critically important for predicting regional precipitation, vegetation productivity, and the disposition of carbon stored in potentially vulnerable permafrost under scenarios of climate change. Towards this end, we have added coupled surface water-groundwater interactions to the the open-source, massively parallel flow and reactive transport model PFLOTRAN, and have been developing a framework for coupling PFLOTRAN with the Community Land Model (CLM). PFLOTRAN is an open-source (LGPL-licensed) code -- with a growing community of users -- developed for simulation of multiscale, multiphase, multicomponent subsurface flow and reactive transport problems on machines ranging from laptops to leadership-class supercomputers. It has been applied in studies of contaminant fate and transport, geologic CO2 sequestration, and geothermal energy production, among others, and has been run using up to 262,144 processor cores on Jaguar, the Cray XK6 supercomputer at Oak Ridge National Laboratory. We have recently added a surface flow component in PFLOTRAN that is integrated with the subsurface. The underlying solver framework employed allows significant flexibility

  15. High-energy negative ion beam obtained from pulsed inductively coupled plasma for charge-free etching process

    NASA Astrophysics Data System (ADS)

    Vozniy, O. V.; Yeom, G. Y.

    2009-06-01

    Negative ions in conventional inductively coupled plasma are often more chemically active than positive ions (for example, in CF4 or SF6 plasmas), but inconveniently they are trapped inside the sheath and cannot be used for high-energy surface etching in sources with a grid-type acceleration system. In this work we describe a method of positive and negative ion extraction that allows the energy and flux of oppositely charged particles to be varied independently. Then by scattering the ions off from a metal surface, it is possible to form a high-energy beam of neutrals from the negative ions by using the low-energy positive component of the beam current for better charge compensation.

  16. The Madden-Julian oscillation wind-convection coupling and the role of moisture processes in the MM5 model

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Weare, Bryan C.; Gustafson, William I.

    2010-08-01

    The Madden-Julian oscillation (MJO) produced by a mesoscale model is investigated using standardized statistical diagnostics. Results show that upper- and lower-level zonal winds display the correct MJO structure, phase speed (8 m s-1) and space-time power spectrum. However, the simulated free atmosphere moisture, outgoing longwave radiation and precipitation do not exhibit any clear MJO signal. Yet, the boundary layer moisture, moist static energy and atmospheric instability, measured using a moist static energy instability index, have clear MJO signals. A significant finding is the ability of the model to simulate a realistic MJO phase speed in the winds without reproducing the MJO wind-convection coupling or a realistic propagation in the free atmosphere water vapor. This study suggests that the convergence of boundary layer moisture and the discharge and recharge of the moist static energy and atmospheric instability may be responsible for controlling the speed of propagation of the MJO circulation.

  17. The Madden-Julian oscillation wind-convection coupling and the role of moisture processes in the MM5 model

    NASA Astrophysics Data System (ADS)

    Monier, E.; Weare, B. C.; Gustafson, W. I.

    2009-12-01

    The Madden-Julian oscillation (MJO) produced by a mesoscale model is investigated using standardized statistical diagnostics. Results show that upper- and lower-level zonal winds display the correct MJO structure, phase speed (8 m/s) and space-time power spectrum. However, the simulated free atmosphere moisture, outgoing longwave radiation and precipitation do not exhibit any clear MJO signal. Yet, the boundary layer moisture, moist static energy and atmospheric instability, measured using a moist static energy instability index, have clear MJO signals. A significant finding is the ability of the model to simulate a realistic MJO phase speed in the winds without reproducing the MJO wind-convection coupling or a realistic propagation in the free atmosphere water vapor. This study suggests that the convergence of boundary layer moisture and the discharge and recharge of the moist static energy and atmospheric instability may be responsible for controlling the speed of propagation of the MJO circulation.

  18. Touch as an interpersonal emotion regulation process in couples' daily lives: the mediating role of psychological intimacy.

    PubMed

    Debrot, Anik; Schoebi, Dominik; Perrez, Meinrad; Horn, Andrea B

    2013-10-01

    Interpersonal touch seems to promote physical health through its effects on stress-sensitive parameters. However, less is known about the psychological effects of touch. The present study investigates associations between touch and romantic partners' affective state in daily life. We hypothesized that this association is established by promoting the recipient's experience of intimacy. Both partners of 102 dating couples completed an electronic diary 4 times a day during 1 week. Multilevel analyses revealed that touch was associated with enhanced affect in the partner. This association was mediated by the partner's psychological intimacy. Touch was also associated with intimacy and positive affect in the actor. Finally, participants who were touched more often during the diary study week reported better psychological well-being 6 months later. This study provides evidence that intimate partners benefit from touch on a psychological level, conveying a sense of strengthened bonds between them that enhances affect and well-being. PMID:23885034

  19. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  20. FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR

    SciTech Connect

    Fish, Richard H.; Brinckman, Frederick E.; Jewett, Kenneth L.

    1981-07-01

    Inorganic arsenic and organoarsenic compounds were speciated in seven oil shale retort and process waters, including samples from simulated, true and modified in situ processes, using a high performance liquid chromatograph automatically coupled to a graphite furnace atomic absorption detector. The molecular forms of arsenic at ppm levels (({micro}g/mL) in these waters are identified for the first time, and shown to include arsenate, methylarsonic acid and phenylarsonic acid. An arsenic-specific fingerprint chromatogram of each retort or process water studied has significant impliestions regarding those arsenical species found and those marginally detected, such as dimethylarsinic acid and the suspected carcinogen arsenite. The method demonstrated suggests future means for quantifying environmental impacts of bioactive organometal species involved in oil shale retorting technology.

  1. Coupling of histone methylation and RNA processing by the nuclear mRNA cap-binding complex.

    PubMed

    Li, Zicong; Jiang, Danhua; Fu, Xing; Luo, Xiao; Liu, Renyi; He, Yuehui

    2016-01-01

    In eukaryotes, genes are transcribed into pre-mRNAs that are subsequently processed into mature mRNAs by adding a 5'-cap and a 3'-polyA tail and splicing introns. Pre-mRNA processing involves their binding proteins and processing factors, whereas gene transcription often involves chromatin modifiers. It has been unclear how the factors involved in chromatin modifications and RNA processing function in concert to control mRNA production. Here, we show that in Arabidopsis thaliana, the evolutionarily conserved nuclear mRNA cap-binding complex (CBC) forms multi-protein complexes with a conserved histone 3 lysine 4 (H3K4) methyltransferase complex called COMPASS-like and a histone 3 lysine 36 (H3K36) methyltransferase to integrate active histone methylations with co-transcriptional mRNA processing and cap preservation, leading to a high level of mature mRNA production. We further show that CBC is required for H3K4 and H3K36 trimethylation, and the histone methyltransferases are required for CBC-mediated mRNA cap preservation and efficient pre-mRNA splicing at their target loci, suggesting that these factors are functionally interdependent. Our study reveals novel roles for histone methyltransferases in RNA-processing-related events and provides mechanistic insights into how the 'downstream' RNA CBC controls eukaryotic gene transcription. PMID:27249350

  2. A coupled model of TiN inclusion growth in GCr15SiMn during solidification in the electroslag remelting process

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Cheng, Guo-guang; Li, Shi-jian; Zhao, Min; Feng, Gui-ping; Li, Tao

    2015-12-01

    TiN inclusions observed in an ingot produced by electroslag remelting (ESR) are extremely harmful to GCr15SiMn steel. Therefore, accurate predictions of the growth size of these inclusions during steel solidification are significant for clean ESR ingot production. On the basis of our previous work, a coupled model of solute microsegregation and TiN inclusion growth during solidification has been established. The results demonstrate that compared to a non-coupled model, the coupled model predictions of the size of TiN inclusions are in good agreement with experimental results using scanning electron microscopy with energy disperse spectroscopy (SEM-EDS). Because of high cooling rate, the sizes of TiN inclusions in the edge area of the ingots are relatively small compared to the sizes in the center area. During the ESR process, controlling the content of Ti in the steel is a feasible and effective method of decreasing the sizes of TiN inclusions.

  3. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    NASA Astrophysics Data System (ADS)

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-02-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L-1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show

  4. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate

  5. Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Rihani, Jehan F.; Maxwell, Reed M.; Chow, Fotini K.

    2010-12-01

    This work investigates the role of terrain and subsurface heterogeneity on the interactions between groundwater dynamics and land surface energy fluxes using idealized simulations. A three-dimensional variably saturated groundwater code (ParFlow) coupled to a land surface model (Common Land Model) is used to account for both vertical and lateral water and pressure movement. This creates a fully integrated approach, coupling overland and subsurface flow while having an explicit representation of the water table and all land surface processes forced by atmospheric data. Because the water table is explicitly represented in these simulations, regions with stronger interaction between water table depth and the land surface energy balance (known as critical zones) can be identified. This study uses simple terrain and geologic configurations to demonstrate the importance of lateral surface and subsurface flows in determining land surface heat and moisture fluxes. Strong correlations are found between the land surface fluxes and water table depth across all cases, including terrain shape, subsurface heterogeneity, vegetation type, and climatological region. Results show that different land forms and subsurface heterogeneities produce very different water table dynamics and land surface flux responses to atmospheric forcing. Subsurface formation and properties have the greatest effect on the coupling between the water table and surface heat and moisture fluxes. Changes in landform and land surface slope also have an effect on these interactions by influencing the fraction of rainfall contributing to overland flow versus infiltration. This directly affects the extent of the critical zone with highest coupling strength along the hillside. Vegetative land cover, as seen in these simulations, has a large effect on the energy balance at the land surface but a small effect on streamflow and water table dynamics and thus a limited impact on the land surface-subsurface interactions

  6. Evaluation of Mixed-mode Integral Invariant for Polymer Material Trough The Couple Experimental-Numerical Process

    NASA Astrophysics Data System (ADS)

    Meite, M.; Pop, O.; Dubois, F.; Absi, J.

    2010-06-01

    Usually the element of real structures is subject of the mixed mode loadings. This fact can be explained by the elements geometry and the loading orientations. In this case the propagation of the eventual cracks is characterised by the mixed mode kinematics. In order to characterize the fracture process in mixed mode it’s necessary to separate the fracture process in order to evaluate the influence of each mode. Our study is limited to plane configurations. The mixed mode is considered as an association of opening and shear modes. The mixed mode fracture is evaluated trough the experimental tests using the SEN specimen for different mixed mode ratios. The fracture process separation is operated by the invariant integral Mθ. Moreover, our study regroups an experimental and a numerical approaches.

  7. Type Ia Supernovae as Sites of the p-process: Two-dimensional Models Coupled to Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Travaglio, C.; Röpke, F. K.; Gallino, R.; Hillebrandt, W.

    2011-10-01

    Beyond Fe, there is a class of 35 proton-rich nuclides, between 74Se and 196Hg, called p-nuclei. They are bypassed by the s and r neutron capture processes and are typically 10-1000 times less abundant than the s- and/or r-isotopes in the solar system. The bulk of p-isotopes is created in the "gamma processes" by sequences of photodisintegrations and beta decays in explosive conditions in both core collapse supernovae (SNe II) and in Type Ia supernovae (SNe Ia). SNe II contribute to the production of p-nuclei through explosive neon and oxygen burning. However, the major problem in SN II ejecta is a general underproduction of the light p-nuclei for A < 120. We explore SNe Ia as p-process sites in the framework of a two-dimensional SN Ia delayed detonation model as well as pure deflagration models. The white dwarf precursor is assumed to have reached the Chandrasekhar mass in a binary system by mass accretion from a giant/main-sequence companion. We use enhanced s-seed distributions, with seeds directly obtained from a sequence of thermal pulse instabilities both in the asymptotic giant branch phase and in the accreted material. We apply the tracer-particle method to reconstruct the nucleosynthesis by the thermal histories of Lagrangian particles, passively advected in the hydrodynamic calculations. For each particle, we follow the explosive nucleosynthesis with a detailed nuclear reaction network for all isotopes up to 209Bi. We select tracers within the typical temperature range for p-process production, (1.5-3.7) × 109 K, and analyze in detail their behavior, exploring the influence of different s-process distributions on the p-process nucleosynthesis. In addition, we discuss the sensitivity of p-process production to parameters of the explosion mechanism, taking into account the consequences on Fe and alpha elements. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A = 120 and the heavy-p nuclei, at quite flat average

  8. Nicotine, alcohol and cocaine coupling to reward processes via endogenous morphine signaling: the dopamine-morphine hypothesis.

    PubMed

    Stefano, George B; Bianchi, Enrica; Guarna, Massimo; Fricchione, Gregory L; Zhu, Wei; Cadet, Patrick; Mantione, Kirk J; Casares, Federico M; Kream, Richard M; Esch, Tobias

    2007-06-01

    Pleasure is described as a state or feeling of happiness and satisfaction resulting from an experience that one enjoys. We examine the neurobiological factors underlying reward processes and pleasure phenomena. With regard to possible negative effects of pleasure, we focus on addiction and motivational toxicity. Pleasure can serve cognition, productivity and health, but simultaneously promotes addiction and other negative behaviors. It is a complex neurobiological phenomenon, relying on reward circuitry or limbic activity. These processes involve dopaminergic signaling. Moreover, nicotine, cocaine and alcohol appear to exert their pleasure providing action via endogenous morphinergic mechanisms. Natural rewarding activities are necessary for survival and appetitive motivation, usually governing beneficial biological behaviors like eating, sex and reproduction. Social contacts can further facilitate the positive effects exerted by pleasurable experiences. However, artificial stimulants can be detrimental, since flexibility and normal control of behavior are deteriorated. Additionally, addictive drugs are capable of directly acting on reward pathways, now, in part, via endogenous morphine processes. PMID:17534245

  9. TYPE Ia SUPERNOVAE AS SITES OF THE p-PROCESS: TWO-DIMENSIONAL MODELS COUPLED TO NUCLEOSYNTHESIS

    SciTech Connect

    Travaglio, C.; Gallino, R.; Roepke, F. K.; Hillebrandt, W. E-mail: claudia.travaglio@b2fh.org

    2011-10-01

    Beyond Fe, there is a class of 35 proton-rich nuclides, between {sup 74}Se and {sup 196}Hg, called p-nuclei. They are bypassed by the s and r neutron capture processes and are typically 10-1000 times less abundant than the s- and/or r-isotopes in the solar system. The bulk of p-isotopes is created in the 'gamma processes' by sequences of photodisintegrations and beta decays in explosive conditions in both core collapse supernovae (SNe II) and in Type Ia supernovae (SNe Ia). SNe II contribute to the production of p-nuclei through explosive neon and oxygen burning. However, the major problem in SN II ejecta is a general underproduction of the light p-nuclei for A < 120. We explore SNe Ia as p-process sites in the framework of a two-dimensional SN Ia delayed detonation model as well as pure deflagration models. The white dwarf precursor is assumed to have reached the Chandrasekhar mass in a binary system by mass accretion from a giant/main-sequence companion. We use enhanced s-seed distributions, with seeds directly obtained from a sequence of thermal pulse instabilities both in the asymptotic giant branch phase and in the accreted material. We apply the tracer-particle method to reconstruct the nucleosynthesis by the thermal histories of Lagrangian particles, passively advected in the hydrodynamic calculations. For each particle, we follow the explosive nucleosynthesis with a detailed nuclear reaction network for all isotopes up to {sup 209}Bi. We select tracers within the typical temperature range for p-process production, (1.5-3.7) x 10{sup 9} K, and analyze in detail their behavior, exploring the influence of different s-process distributions on the p-process nucleosynthesis. In addition, we discuss the sensitivity of p-process production to parameters of the explosion mechanism, taking into account the consequences on Fe and alpha elements. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A = 120 and the heavy-p nuclei, at

  10. Numerical Simulation Of Steel Plate Bending Process Using Stationary Laser Beam By A Coupled Finite Element Thermal Mechanical Analysis

    SciTech Connect

    Kheloufi, Karim; Amara, El Hachemi

    2008-09-23

    We analyze the deformation induced by focusing a CW high power laser beam on stainless steel plate. A non-linear 3D finite element approach is used to simulate the thermo-elastoplastic deformation, the heat conduction, and stresses. Material properties including density, yield stress, Young modulus, specific heat, and thermal expansion coefficient are considered as temperature-dependent. The effect of heating time on transient temperatures, stresses, strains and bending angles during the process is studied, and the process parameters affecting the bending angles were also investigated.

  11. Process coupling and control over the response of net ecosystem CO2 exchange to climate variability and insect disturbance in subalpine forests of the Western US

    NASA Astrophysics Data System (ADS)

    Monson, R. K.; Moore, D. J.; Trahan, N. A.; Scott-Denton, L.; Burns, S. P.; Hu, J.; Bowling, D. R.

    2011-12-01

    Following ten years of studies in subalpine forest ecosystems of the Western US, we have concluded that the tight coupling between gross primary productivity (GPP) and the autotrophic component of soil respiration (Ra) drives responses of net ecosystem CO2 exchange (NEE) to climate variability and insect disturbance. This insight has been gained through long-term eddy flux observations, manipulative plot experiments, analyses of dynamics in the stable isotope compositions of CO2 and H2O, and chamber gas-exchange measurements. Using past observations from these studies, we deployed model-data assimilation techniques and forecast weather/climate modeling to estimate how the coupling between GPP and Ra is likely to affect future (Year 2100) dynamics in NEE. The amount of winter snow and its melting dynamics in the spring represents the dominant control over interannual variation in GPP. Using the SIPNET ecosystem process model, combined with knowledge about the stable isotope content of different water sources, we estimated that approximately 75% of growing season GPP is coupled to the use of snowmelt water, whereas approximately 25% is coupled to summer rain. The tight coupling between GPP and winter snow pack drives a similar tight coupling between soil respiration (Rs) and winter snow pack. Manipulation of snow pack on forest plots has shown that Rs increases with increased snow pack, and this effect disappears when trees are girdled, which stops the transfer of GPP to roots and the soil rhizosphere. Higher-than-normal winter snowpacks cause the carbon isotope ratios of soil-respired CO2 to be depleted in 13C, reflecting a signal of lower photosynthetic water-use efficiency in the GPP that is transferred to the soil rhizosphere. Large-scale forest disturbance due to catastrophic tree mortality from mountain pine beetle attack causes an initial (2-3 year) reduction in Rs, which is attributable to the loss of GPP and its effect on Ra. This near-term reduction in Rs

  12. Strategic Coupling of Advanced Induction Heating with Magnetic Field Processing Technologies Provides Innovative Solutions for Elevated Industries Demands

    SciTech Connect

    Ludtka, Mackiewicz-Ludtka; Pfaffmann, George; Ludtka, Gerard Michael

    2013-01-01

    Industry s relentless pursuit of product performance improvements is now challenging the capability of available/existing Thermal processing technologies, i.e., Heat Treating. In fact, the EPA-mandated requirement for light-weighting vehicles underscores the urgent US need for achieving higher product strength improvements.

  13. Fundamental processes in the expansion, energization, and coupling of single- and multi-Ion plasmas in space: Laboratory simulation experiments

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Bateman, T. T.

    1996-01-01

    We have conducted a laboratory investigation into the physics of plasma expansions and their associated energization processes. We studied single- and multi-ion plasma processes in self-expansions, and included light and heavy ions and heavy/light mixtures to encompass the phenomenological regimes of the solar and polar winds and the AMPTE and CRRES chemical release programs. The laboratory experiments provided spatially-distributed time-dependent measurements of total plasma density, temperature, and density fluctuation power spectra with the data confirming the long-theorized electron energization process in an expanding cloud - a result that was impossible to determine in spaceborne experiments (as e.g., in the CRRES program). These results provided the missing link in previous laboratory and spaceborne programs. confirming important elements in our understanding of such solar-terrestrial processes as manifested in expanding plasmas in the solar wind (e.g., CMES) and in ionospheric outflow in plasmaspheric fluctuate refilling after a storm. The energization signatures were seen in an entire series of runs that varied the ion species (Ar', Xe', Kr' and Ne'), and correlative studies included spectral analyses of electrostatic waves collocated with the energized electron distributions. In all cases wave energies were most intense during the times in which the suprathermal populations were present, with wave intensity increasing with the intensity of the suprathermal electron population. This is consistent with theoretical expectations wherein the energization process is directly attributable to wave particle interactions. No resonance conditions were observed, in an overall framework in which the general wave characteristics were broadband with power decreasing with increasing frequency.

  14. Coupling between pore water fluxes, structural heterogeneity, and biogeochemical processes controls contaminant mobility, bioavailability, and toxicity in sediments

    NASA Astrophysics Data System (ADS)

    Xie, M.; Fetters, K.; Jarrett, B.; Yuen, J.; Cadoux, C.; EI-Natour, M.; Packman, A. I.; Gaillard, J.; Burton, G.

    2012-12-01

    Sediments can serve as both sinks and sources of contaminants in aquatic systems. Contaminants are typically not sequestered permanently in sediments, and instead release slowly to the water column, posing an ongoing threat to aquatic ecosystems and human health. Many processes, including hydrodynamic transport, sediment diagenesis, and bioturbation regulate the behavior and effects of contaminants in sediments. While many of these processes have been studied individually, it is extremely important to understand how they interact to control the form, flux and toxicity of metals in sediments. We used well-defined experimental mesocosms to investigate the effects of hydrodynamic and biological processes on the redistribution of metals between sediments, pore water and overlying water, associated changes in metals speciation, and resulting bioavailability and toxicity to benthic organisms. Metals speciation was evaluated in deposited and resuspended particles using x-ray absorption spectroscopy. We also used time-lapse photography and oxygen optode imaging to evaluate how bioturbation and bioirrigation control sediment structure, sediment mixing process, and oxygen delivery to sediments. In the extremely fine sediments used here, local contaminant fluxes are mainly dominated by diffusion, but episodic bioturbation and resuspension cause extreme variability in contaminant flux and increases oxidation of reduced sediments. Metals contamination substantially reduced bioturbation by indwelling organisms. Sediment resuspension decreased survival and increased tissue burden of epi-benthic organisms. Bioturbation mixed sediments as deep as several centimeters, while associated bioirrigation through worm burrows delivered oxygen over an order of magnitude deeper than local diffusion. These results show that it is important to understand how local transport processes, sediment chemistry, and biological activity interact to control rates and patterns of metals speciation and

  15. Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed M.; Kollet, Stefan J.

    2008-05-01

    The impact of three-dimensional subsurface heterogeneity in the saturated hydraulic conductivity on hillslope runoff generated by excess infiltration (so-called Hortonian runoff) is examined. A fully coupled, parallel subsurface-overland flow model is used to simulate runoff from an idealized hillslope. Ensembles of correlated, Gaussian random fields of saturated hydraulic conductivity are used to create uncertainty in spatial structure. A large number of cases are simulated in a parametric manner with the variance of the hydraulic conductivity varied over orders of magnitude. These cases include rainfall rates above, equal and below the geometric mean of the hydraulic conductivity distribution. These cases are also compared to theoretical representations of runoff production based on simple assumptions regarding (1) the rainfall rate and the value of hydraulic conductivity in the surface cell using a spatially-indiscriminant approach; and (2) a percolation-theory type approach to incorporate so-called runon. Simulations to test the ergodicity of hydraulic conductivity on hillslope runoff are also performed. Results show that three-dimensional stochastic representations of the subsurface hydraulic conductivity can create shallow perching, which has an important effect on runoff behavior that is different than previous two-dimensional analyses. The simple theories are shown to be very poor predictors of the fraction of saturated area that might runoff due to excess infiltration. It is also shown that ergodicity is reached only for a large number of integral scales (˜30) and not achieved for cases where the rainfall rate is less than the geometric mean of the saturated hydraulic conductivity.

  16. Finite element method for simulating coupled thermo-hydro-mechanical processes in discretely fractured porous media and application to enhanced geothermal reservoir analysis

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Wong, L.; Bloecher, G.; Cacace, M.; Kolditz, O.

    2012-12-01

    We present our recent development of the finite element method (FEM) for simulating coupled thermo-hydro-mechanical (THM) processes in discretely fractured porous media and an application to geothermal reservoir modeling for the research test site Gross Schoenebeck in Germany operated by the GFZ German Research Centre for Geosciences. Numerical analysis of multi-physics problems in fractured rocks is important for various geotechnical applications. In particular for enhanced geothermal reservoirs where induced fractures and possibly natural fault systems dominate the system behavior, explicit modeling of those characteristic fractures (i.e. discrete fracture models) is essential to get more detailed understanding of in-situ processes and reliable estimations of heat extraction from those deep reservoirs. However, as fractures are mechanical discontinuities, it is difficult to solve the problems using continuity based numerical methods such as the FEM. Currently, equivalent porous medium or multiple continuum model approaches are often only the way to model fractured rocks with the FEM. The authors have recently developed lower-dimensional interface elements (LIEs) for modeling mechanics-involved coupled processes with pre-existing fractures (Watanabe et al. 2012 IJNME). The method does not require any double nodes unlike conventional interface elements. Moreover, for coupled problems, the approach allows for the use of a single mesh for both mechanical and other related processes such as flow and transport. All the code developments have been carried out within the scientific open source project OpenGeoSys (www.opengeosys.net) (Kolditz et al. 2012 EES). Using both traditional and new simulation techniques, a geothermal reservoir model for the research test site Gross Schoenebeck has been developed. Unstructured meshing of the complex faulted reservoir including both rock matrix and fracture elements has been conducted using recently developed automatic

  17. Graphics processing unit aided highly stable real-time spectral-domain optical coherence tomography at 1375 nm based on dual-coupled-line subtraction

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2013-04-01

    We have proposed and demonstrated a highly stable spectral-domain optical coherence tomography (SD-OCT) system based on dual-coupled-line subtraction. The proposed system achieved an ultrahigh axial resolution of 5 μm by combining four kinds of spectrally shifted superluminescent diodes at 1375 nm. Using the dual-coupled-line subtraction method, we made the system insensitive to fluctuations of the optical intensity that can possibly arise in various clinical and experimental conditions. The imaging stability was verified by perturbing the intensity by bending an optical fiber, our system being the only one to reduce the noise among the conventional systems. Also, the proposed method required less computational complexity than conventional mean- and median-line subtraction. The real-time SD-OCT scheme was implemented by graphics processing unit aided signal processing. This is the first reported reduction method for A-line-wise fixed-pattern noise in a single-shot image without estimating the DC component.

  18. Multiple-Code BenchMaek Simulation Stidy of Coupled THMC Processes IN the EXCAVATION DISTURBED ZONE Associated with Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; X. Feng; J. Hudson; L. Jing; A. Kobayashi; T. Koyama; P.Pan; H. Lee; M. Rinne; E. Sonnenthal; Y. Yamamoto

    2006-05-08

    An international, multiple-code benchmark test (BMT) study is being conducted within the international DECOVALEX project to analyze coupled thermal, hydrological, mechanical and chemical (THMC) processes in the excavation disturbed zone (EDZ) around emplacement drifts of a nuclear waste repository. This BMT focuses on mechanical responses and long-term chemo-mechanical effects that may lead to changes in mechanical and hydrological properties in the EDZ. This includes time-dependent processes such as creep, and subcritical crack, or healing of fractures that might cause ''weakening'' or ''hardening'' of the rock over the long term. Five research teams are studying this BMT using a wide range of model approaches, including boundary element, finite element, and finite difference, particle mechanics, and elasto-plastic cellular automata methods. This paper describes the definition of the problem and preliminary simulation results for the initial model inception part, in which time dependent effects are not yet included.

  19. Reductive immobilization of U(VI) in Fe(III) oxide-reducing subsurface sediments: Analysis of coupled microbial-geochemical processes in experimental reactive transport systems

    SciTech Connect

    Roden, Eric E.; Urrutia, Matilde M.; Barnett, Mark O.; Lange, Clifford r.

    2002-12-06

    Although the fundamental microbiological and geochemical processes underlying the potential use of dissimilatory metal-reducing bacteria (DMRB) to create subsurface redox barriers for immobilization of uranium and other redox-sensitive metal/radionuclide contaminants are well-understood (Lovley et al., 1991; Gorby and Lovley, 1992; Lovley and Phillips, 1992; Lovley, 1995; Fredrickson et al., 2000; Wielinga et al., 2000; Wielinga et al., 2001), several fundamental scientific questions need to be addressed in order to understand and predict how such treatment procedures would function under in situ conditions in the subsurface. These questions revolve around the dynamic interactions between hydrologic flux and the coupled microbial-geochemical processes which are likely to occur within a redox barrier treatment zone.

  20. Fundamental of a Planar Type of Inductively Coupled Thermal Plasma (ICTP) on a Substrate for a Large-area Materials Processings

    NASA Astrophysics Data System (ADS)

    Suantial, Maikai; Akao, Mika; Irie, Hiromitsu; Maruyama, Yuji; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo; Kanazawa University Team

    2015-09-01

    In this paper, the fundamental of a planar type Ar inductively coupled thermal plasmas (ICTP) with oxygen molecular gas have been studied on a substrate. Previously, we have developed a planar-ICTP torch with a rectangular quartz vessel with an air core coil or a ferrite core coil instead of a cylindrical tube for a large-area materials processing. For adoption of such a planar-ICTP to material processings, it needs to sustain the ICTP with molecular gases on a substrate stably. To consider the uniformity of the ICTP formed on the substrate, spectroscopic observation was carried out at 3 mm above the substrate. Results showed that the radiation intensities of specified O atomic lines were almost uniformly detected along the surface of the substrate. This means that O excited atoms, which are important radicals for thermal plasma oxidation, are present in planar-ICTP uniformly on the substrate.

  1. Fundamental study of Ti feedstock evaporation and the precursor formation process in inductively coupled thermal plasmas during TiO2 nanopowder synthesis

    NASA Astrophysics Data System (ADS)

    Kodama, Naoto; Tanaka, Yasunori; Kita, K.; Ishisaka, Y.; Uesugi, Y.; Ishijima, T.; Sueyasu, S.; Nakamura, K.

    2016-08-01

    Two-dimensional spectroscopic observations were conducted for an inductively coupled thermal plasma (ICTP) torch during TiO2 nanopowder synthesis. The feedstock was injected intermittently into the ICTP torch to investigate the Ti feedstock evaporation process clearly and to elucidate the formation process of precursor species. Spatiotemporal distributions of Ti atomic lines and TiO spectra were observed simultaneously inside the plasma torch with the observation system developed. The observation results showed that the injected Ti feedstock was evaporated to form high-density Ti atomic vapour in the torch, and that the generated Ti atomic vapour is transported and diffused by gas flow and the density gradient. In addition, TiO molecular vapour was generated almost simultaneously around the on-axis region in the torch.

  2. A Fully Coupled Simulation and Optimization Scheme for the Design of 3D Powder Injection Molding Processes

    SciTech Connect

    Ayad, G.; Barriere, T.; Gelin, J. C.; Liu, B.

    2007-05-17

    The paper is concerned with optimization and parametric identification of Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders parts by solid state diffusion. In the first part, one describes an original methodology to optimize the injection stage based on the combination of Design Of Experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometer curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization for manufacturing of a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  3. Mountain-Scale Coupled Thermal-Hydrological-Chemical Processes Around the Potential Nuclear Waste Repository at Yucca Mountain

    SciTech Connect

    E. Sonnenthal; C. Haukwa; N. Spycher

    2001-06-04

    The objectives of this study were to evaluate the thermal-hydrological-chemical (THC) effects on flow and geochemistry in the unsaturated zone (UZ) at Yucca Mountain at a mountain scale. The major THC processes important in the UZ are (1) mineral precipitation/dissolution affecting flow and transport to and from the potential repository, and (2) changes in the compositions of gas and liquid that may seep into drifts.

  4. Modeling coupled thermal-hydrological-chemical processes in theunsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity andseepage

    SciTech Connect

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2005-07-15

    An understanding of processes affecting seepage intoemplacement tunnels is needed for correctly predicting the performance ofunderground radioactive waste repositories. It has been previouslyestimated that the capillary and vaporization barriers in the unsaturatedfractured rock of Yucca Mountain are enough to prevent seepage underpresent day infiltration conditions. It has also been thought that asubstantially elevated infiltration flux will be required to causeseepage after the thermal period is over. While coupledthermal-hydrological-chemical (THC) changes in Yucca Mountain host rockdue to repository heating has been previously investigated, those THCmodels did not incorporate elements of the seepage model. In this paper,we combine the THC processes in unsaturated fractured rock with theprocesses affecting seepage. We observe that the THC processes alter thehydrological properties of the fractured rock through mineralprecipitation and dissolution. We show that such alteration in thehydrological properties of the rock often leads to local flow channeling.We conclude that such local flow channeling may result in seepage undercertain conditions, even with nonelevated infiltrationfluxes.

  5. Climate Change and Runoff Statistics: a Process Study for the Rhine Basin using a coupled Climate-Runoff Model

    NASA Astrophysics Data System (ADS)

    Kleinn, J.; Frei, C.; Gurtz, J.; Vidale, P. L.; Schär, C.

    2003-04-01

    The consequences of extreme runoff and extreme water levels are within the most important weather induced natural hazards. The question about the impact of a global climate change on the runoff regime, especially on the frequency of floods, is of utmost importance. In winter-time, two possible climate effects could influence the runoff statistis of large Central European rivers: the shift from snowfall to rain as a consequence of higher temperatures and the increase of heavy precipitation events due to an intensification of the hydrological cycle. The combined effect on the runoff statistics is examined in this study for the river Rhine. To this end, sensitivity experiments with a model chain including a regional climate model and a distributed runoff model are presented. The experiments are based on an idealized surrogate climate change scenario which stipulates a uniform increase in temperature by 2 Kelvin and an increase in atmospheric specific humidity by 15% (resulting from unchanged relative humidity) in the forcing fields for the regional climate model. The regional climate model CHRM is based on the mesoscale weather prediction model HRM of the German Weather Service (DWD) and has been adapted for climate simulations. The model is being used in a nested mode with horizontal resolutions of 56 km and 14 km. The boundary conditions are taken from the original ECMWF reanalysis and from a modified version representing the surrogate scenario. The distributed runoff model (WaSiM) is used at a horizontal resolution of 1 km for the whole Rhine basin down to Cologne. The coupling of the models is provided by a downscaling of the climate model fields (precipitaion, temperature, radiation, humidity, and wind) to the resolution of the distributed runoff model. The simulations cover the period of September 1987 to January 1994 with a special emphasis on the five winter seasons 1989/90 until 1993/94, each from November until January. A detailed validation of the control

  6. Tropical Indian Ocean surface salinity bias in Climate Forecasting System coupled models and the role of upper ocean processes

    NASA Astrophysics Data System (ADS)

    Parekh, Anant; Chowdary, Jasti S.; Sayantani, Ojha; Fousiya, T. S.; Gnanaseelan, C.

    2016-04-01

    In the present study sea surface salinity (SSS) biases and seasonal tendency over the Tropical Indian Ocean (TIO) in the coupled models [Climate Forecasting System version 1 (CFSv1) and version 2 (CFSv2)] are examined with respect to observations. Both CFSv1 and CFSv2 overestimate SSS over the TIO throughout the year. CFSv1 displays improper SSS seasonal cycle over the Bay of Bengal (BoB), which is due to weaker model precipitation and improper river runoff especially during summer and fall. Over the southeastern Arabian Sea (AS) weak horizontal advection associated with East Indian coastal current during winter limits the formation of spring fresh water pool. On the other hand, weaker Somali jet during summer results for reduced positive salt tendency in the central and eastern AS. Strong positive precipitation bias in CFSv1 over the region off Somalia during winter, weaker vertical mixing and absence of horizontal salt advection lead to unrealistic barrier layer during winter and spring. The weaker stratification and improper spatial distribution of barrier layer thickness (BLT) in CFSv1 indicate that not only horizontal flux distribution but also vertical salt distribution displays large discrepancies. Absence of fall Wyrtki jet and winter equatorial currents in this model limit the advection of horizontal salt flux to the eastern equatorial Indian Ocean. The associated weaker stratification in eastern equatorial Indian Ocean can lead to deeper mixed layer and negative Sea Surface Temperature (SST) bias, which in turn favor positive Indian Ocean Dipole bias in CFSv1. It is important to note that improper spatial distribution of barrier layer and stratification can alter the air-sea interaction and precipitation in the models. On the other hand CFSv2 could produce the seasonal evolution and spatial distribution of SSS, BLT and stratification better than CFSv1. However CFSv2 displays positive bias in evaporation over the whole domain and negative bias in

  7. Pure & crystallized 2D Boron Nitride sheets synthesized via a novel process coupling both PDCs and SPS methods

    PubMed Central

    Yuan, Sheng; Linas, Sébastien; Journet, Catherine; Steyer, Philippe; Garnier, Vincent; Bonnefont, Guillaume; Brioude, Arnaud; Toury, Bérangère

    2016-01-01

    Within the context of emergent researches linked to graphene, it is well known that h-BN nanosheets (BNNSs), also referred as 2D BN, are considered as the best candidate for replacing SiO2 as dielectric support or capping layers for graphene. As a consequence, the development of a novel alternative source for highly crystallized h-BN crystals, suitable for a further exfoliation, is a prime scientific issue. This paper proposes a promising approach to synthesize pure and well-crystallized h-BN flakes, which can be easily exfoliated into BNNSs. This new accessible production process represents a relevant alternative source of supply in response to the increasing need of high quality BNNSs. The synthesis strategy to prepare pure h-BN is based on a unique combination of the Polymer Derived Ceramics (PDCs) route with the Spark Plasma Sintering (SPS) process. Through a multi-scale chemical and structural investigation, it is clearly shown that obtained flakes are large (up to 30 μm), defect-free and well crystallized, which are key-characteristics for a subsequent exfoliation into relevant BNNSs. PMID:26843122

  8. Pure & crystallized 2D Boron Nitride sheets synthesized via a novel process coupling both PDCs and SPS methods

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Linas, Sébastien; Journet, Catherine; Steyer, Philippe; Garnier, Vincent; Bonnefont, Guillaume; Brioude, Arnaud; Toury, Bérangère

    2016-02-01

    Within the context of emergent researches linked to graphene, it is well known that h-BN nanosheets (BNNSs), also referred as 2D BN, are considered as the best candidate for replacing SiO2 as dielectric support or capping layers for graphene. As a consequence, the development of a novel alternative source for highly crystallized h-BN crystals, suitable for a further exfoliation, is a prime scientific issue. This paper proposes a promising approach to synthesize pure and well-crystallized h-BN flakes, which can be easily exfoliated into BNNSs. This new accessible production process represents a relevant alternative source of supply in response to the increasing need of high quality BNNSs. The synthesis strategy to prepare pure h-BN is based on a unique combination of the Polymer Derived Ceramics (PDCs) route with the Spark Plasma Sintering (SPS) process. Through a multi-scale chemical and structural investigation, it is clearly shown that obtained flakes are large (up to 30 μm), defect-free and well crystallized, which are key-characteristics for a subsequent exfoliation into relevant BNNSs.

  9. A Online NIR Sensor for the Pilot-Scale Extraction Process in Fructus Aurantii Coupled with Single and Ensemble Methods

    PubMed Central

    Pan, Xiaoning; Li, Yang; Wu, Zhisheng; Zhang, Qiao; Zheng, Zhou; Shi, Xinyuan; Qiao, Yanjiang

    2015-01-01

    Model performance of the partial least squares method (PLS) alone and bagging-PLS was investigated in online near-infrared (NIR) sensor monitoring of pilot-scale extraction process in Fructus aurantii. High-performance liquid chromatography (HPLC) was used as a reference method to identify the active pharmaceutical ingredients: naringin, hesperidin and neohesperidin. Several preprocessing methods and synergy interval partial least squares (SiPLS) and moving window partial least squares (MWPLS) variable selection methods were compared. Single quantification models (PLS) and ensemble methods combined with partial least squares (bagging-PLS) were developed for quantitative analysis of naringin, hesperidin and neohesperidin. SiPLS was compared to SiPLS combined with bagging-PLS. Final results showed the root mean square error of prediction (RMSEP) of bagging-PLS to be lower than that of PLS regression alone. For this reason, an ensemble method of online NIR sensor is here proposed as a means of monitoring the pilot-scale extraction process in Fructus aurantii, which may also constitute a suitable strategy for online NIR monitoring of CHM. PMID:25875194

  10. Quantitation of carbon in oil shale process wastewaters: coulometry coupled with ultraviolet-peroxydisulfate and high-temperature oxidation

    SciTech Connect

    Langlois, G.W.; Jones, B.M.; Sakaji, R.H.; Daughton, C.G.

    1984-07-01

    Wastewaters from the production of synfuels, in particular oil shale retort waters, present several major problems to various instrument configurations designed for carbon analysis. A carbon analyzer was fabricated from commercially available oxidation and detection units. Carbon oxidation occurred in an ultraviolet (UV) photochemical reactor using acid peroxydisulfate; quantitation of the evolved carbon dioxide was accomplished with an automatic coulometric titrator. This new design eliminated the problems of (1) instrument downtime caused by fouling of high-temperature combustion catalysts and corrosion of furnace combustion tubes, (2) limited linear dynamic range and upper detection limit (namely, infrared detection), and (3) frequent detector calibration (namely, infrared and flame ionization detection). The UV-persulfate/coulometric titration carbon analyzer was compared statistically with a high-temperature combustion system that is suitable for use with an ASTM method on the basis of (1) the accuracy and precision of recovery of total dissolved carbon (TDC) and dissolved organic carbon (DOC) for nitrogen heterocycles, which were of primary interest because of their preponderance in oil shale process waters and their reported resistance to certain oxidation methods, and (2) the precision of TDC and DOC determinations for nine oil shale process wastewaters. Several qualitative considerations are discussed for both analyzers, including ease of operation, instrument downtime, and maintenance costs. 35 references, 7 figures, 5 tables.

  11. Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources

    SciTech Connect

    Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

    2009-02-01

    The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to

  12. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs.

    PubMed

    Planque, M; Arnould, T; Dieu, M; Delahaut, P; Renard, P; Gillard, N

    2016-09-16

    Sensitive detection of food allergens is affected by food processing and foodstuff complexity. It is therefore a challenge to detect cross-contamination in food production that could endanger an allergic customer's life. Here we used ultra-high performance liquid chromatography coupled to tandem mass spectrometry for simultaneous detection of traces of milk (casein, whey protein), egg (yolk, white), soybean, and peanut allergens in different complex and/or heat-processed foodstuffs. The method is based on a single protocol (extraction, trypsin digestion, and purification) applicable to the different tested foodstuffs: chocolate, ice cream, tomato sauce, and processed cookies. The determined limits of quantitation, expressed in total milk, egg, peanut, or soy proteins (and not soluble proteins) per kilogram of food, are: 0.5mg/kg for milk (detection of caseins), 5mg/kg for milk (detection of whey), 2.5mg/kg for peanut, 5mg/kg for soy, 3.4mg/kg for egg (detection of egg white), and 30.8mg/kg for egg (detection of egg yolk). The main advantage is the ability of the method to detect four major food allergens simultaneously in processed and complex matrices with very high sensitivity and specificity. PMID:27554027

  13. Changes of the metal composition in German white wines through the winemaking process. A study of 63 elements by inductively coupled plasma-mass spectrometry.

    PubMed

    Castiñeira Gómez, Maria del Mar; Brandt, Rolf; Jakubowski, Norbert; Andersson, Jan T

    2004-05-19

    Elemental patterns are often used for the classification or identification of the origin of wines. A prerequisite is that the concentration of the elements is not strongly influenced by the addition of different substances such as yeast and fining products during the winemaking process. Inductively coupled plasma-mass spectrometry (ICP-MS) has been used in this study to determine in total 63 elements (including some nonmetals and the rare earth elements) in five German white wines from five regions of origin. The whole winemaking process was studied, from the must to the ready wine. Microwave acid digestion was used for sample preparation, and indium was added as internal standard for a semiquantitative analysis. Two winemaking processes were compared: with the addition of clarifying agents (bentonites) before and after the fermentation. The concentration of only a few elements such as Li, B, Mg, Ca, Rb, Cs, and Pb seems to be constant throughout the whole winemaking process (changes of <+/-50%) and are independent of the time of addition of the bentonites. When bentonites are added before fermentation, the concentration of other elements, such as V, Co, and Fe, remains constant. If bentonites are added after fermentation, the concentration of some other elements such as Sr, Zn, and Mn is nearly unaffected. These elements are therefore robust elements for origin studies in German white wines. PMID:15137840

  14. Modeling of Coupled Thermo-Hydro-Mechanical Processes with Links to Geochemistry Associated with Bentonite-Backfilled Repository Tunnels in Clay Formations

    NASA Astrophysics Data System (ADS)

    Rutqvist, Jonny; Zheng, Liange; Chen, Fei; Liu, Hui-Hai; Birkholzer, Jens

    2014-01-01

    This paper presents simulation results related to coupled thermal-hydraulic-mechanical (THM) processes in engineered barrier systems (EBS) and clay host rock, in one case considering a possible link to geochemistry. This study is part of the US DOE Office of Nuclear Energy's used fuel disposition campaign, to investigate current modeling capabilities and to identify issues and knowledge gaps associated with coupled THMC processes and EBS-rock interactions associated with repositories hosted in clay rock. In this study, we simulated a generic repository case assuming an EBS design with waste emplacement in horizontal tunnels that are back-filled with bentonite-based swelling clay as a protective buffer and heat load, derived for one type of US reactor spent fuel. We adopted the Barcelona basic model (BBM) for modeling of the geomechanical behavior of the bentonite, using properties corresponding to the FEBEX bentonite, and we used clay host rock properties derived from the Opalinus clay at Mont Terri, Switzerland. We present results related to EBS host-rock interactions and geomechanical performance in general, as well as studies related to peak temperature, buffer resaturation and thermally induced pressurization of host rock pore water, and swelling pressure change owing to variation of chemical composition in the EBS. Our initial THM modeling results show strong THM-driven interactions between the bentonite buffer and the low-permeability host rock. The resaturation of the buffer is delayed as a result of the low rock permeability, and the fluid pressure in the host rock is strongly coupled with the temperature changes, which under certain circumstances could result in a significant increase in pore pressure. Moreover, using the BBM, the bentonite buffer was found to have a rather complex geomechanical behavior that eventually leads to a slightly nonuniform density distribution. Nevertheless, the simulation shows that the swelling of the buffer is functioning to

  15. A coupled model of the airborne and surface concentration of radionuclides considering the resuspension-deposition process

    NASA Astrophysics Data System (ADS)

    Ichige, Hiroyuki; Hatano, Yuko; Onda, Yuichi

    2014-05-01

    We propose a new model of estimating the long-term behavior of both the airborne and the surface concentrations of radionuclides in the vicinity of 30 km of Fukushima plant. Our model consists of the following simultaneous equations: δC- = viδC-+ ΛupS - ΛdownC - ΛdecC (1) δt δxi δS- = - Λ S + Λ C - Λ S, (2) δt up down env where C is the airborne concentration of a specific nuclide, S the surface concentration, the suffix i is 1 or 2 (2 dimensional), v the effective wind velocity which migrates the radionuclides in the air, Λup the rate constant of resuspension process, Λdown of deposition process, Λdec the decay constant, and Λenv is the rate constant of the surface concentration decrease due to environmental factors such as runoff, washoff, infiltrations, and the vegetation effects. These equations are based on our former study (Hatano and Hatano, 1997; Hatano et al., 1998) which successfully reproduce the long-term decrease of airborne concentration of the Chernobyl data such as Cs-137, Cs-134, Ce-144, and Ru-106 over nearly a decade. The first equation of the present study is essentially the same as our previous studies, besides that we added a new term for deposition. The second equation is newly added in the present study which describes the behavior of the surface concentration. In Fukushima case, we found that the radiation risk is much higher than the airborne concentration. That is why we add the second equation. Since the new model requires parameter values of Λs we need to estimate these values from actual data. In order to do so, we apply the method of inverse problem and thereby estimate the values. We also do the spectral analysis of the dose rate (mainly from Cs-137, -134) and study if it is possible to estimate the resuspended amount from the ground surface.

  16. Dynamics of coupled ice-ocean system in the marginal ice zone: Study of the mesoscale processes and of constitutive equations for sea ice

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1984-01-01

    This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.

  17. An Annular Lipid Belt Is Essential for Allosteric Coupling and Viral Inhibition of the Antigen Translocation Complex TAP (Transporter Associated with Antigen Processing)*

    PubMed Central

    Eggensperger, Sabine; Fisette, Olivier; Parcej, David; Schäfer, Lars V.; Tampé, Robert

    2014-01-01

    The transporter associated with antigen processing (TAP) constitutes a focal element in the adaptive immune response against infected or malignantly transformed cells. TAP shuttles proteasomal degradation products into the lumen of the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. Here, the heterodimeric TAP complex was purified and reconstituted in nanodiscs in defined stoichiometry. We demonstrate that a single heterodimeric core-TAP complex is active in peptide binding, which is tightly coupled to ATP hydrolysis. Notably, with increasing peptide length, the ATP turnover was gradually decreased, revealing that ATP hydrolysis is coupled to the movement of peptide through the ATP-binding cassette transporter. In addition, all-atom molecular dynamics simulations show that the observed 22 lipids are sufficient to form an annular belt surrounding the TAP complex. This lipid belt is essential for high affinity inhibition by the herpesvirus immune evasin ICP47. In conclusion, nanodiscs are a powerful approach to study the important role of lipids as well as the function, interaction, and modulation of the antigen translocation machinery. PMID:25305015

  18. Interfacial processes studied by coupling electrochemistry at the polarised liquid-liquid interface with in situ confocal Raman spectroscopy.

    PubMed

    Poltorak, Lukasz; Dossot, Manuel; Herzog, Grégoire; Walcarius, Alain

    2014-12-28

    Interfacial processes controlled by ion transfer voltammetry at the interface between two immiscible electrolyte solutions were studied by in situ Raman spectroscopy. Raman spectra of the interface between a 5 mM NaCl aqueous solution and 10 mM bis(triphenyl-phosphoranydieneammonium) tetrakis(4-chlorophenyl)borate in 1,2-dichloroethane were recorded at open circuit potential and at various interfacial potential differences. At open-circuit potential, Raman peaks assigned to vibrational modes of 1,2-dichloroethane are clearly visible and peaks of weak intensity are measured for the organic electrolyte ions. When a negative interfacial potential difference is applied, the intensity of the peaks of the cation of the organic electrolyte increases, confirming its transfer induced by the interfacial potential difference applied. The electrochemically assisted generation of mesoporous silica deposits was then followed by in situ confocal Raman spectroscopy. The condensation of mesoporous silica was controlled by the transfer of cetyltrimethylammonium (CTA(+)) ions to an aqueous phase containing hydrolysed silanes. The transfer of CTA(+) at the interface was monitored in situ by confocal Raman spectroscopy, and formation of silica was observed. PMID:25377062

  19. Optimization of Surface Roughness Parameters of Al-6351 Alloy in EDC Process: A Taguchi Coupled Fuzzy Logic Approach

    NASA Astrophysics Data System (ADS)

    Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar

    2016-06-01

    This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.

  20. MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.

    2013-01-01

    A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton

  1. On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean-atmosphere-land system

    SciTech Connect

    Ma, Hsi-Yen; Mechoso, C. R.; Xue, Yongkang; Xiao, Heng; Neelin, David; Ji, Xuan

    2013-11-15

    The impact of global tropical climate to perturbations in land surface processes (LSP) are evaluated using perturbations given by different LSP representations of continental-scale in a global climate model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that LSP processes such as interactive soil moisture and vegetation biophysical processes have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific. To explore the mechanisms for such impact, different LSP representations are confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. We find that the largest impact is mainly from LSP perturbations over the tropical African continent. The impact is through anomalous convective heating in tropical Africa due to changes in the surface heat fluxes, which in turn affect basinwide teleconnections in the Pacific through equatorial wave dynamics. The modifications in the equatorial Pacific climate are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as effect of ocean memory. Our results further suggest that correct representations of land surface processes, land use change and the associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty when performing future climate projections under different climate change scenarios.

  2. Deep Crustal Magma Conduits, Diabase Internal Structure, and Coupled Hydrothermal Processes in Mesozoic Basins of Eastern North America

    NASA Astrophysics Data System (ADS)

    Ryan, M. P.; Ingerov, A.; Daniels, D. L.; Carr, P. M.; Elliott, G.; Fox, L.; Pierce, H. A.; Sutphin, D. M.

    2004-05-01

    Gettysburg basin has been interpreted from wavelength-filtered aeromagnetic data processing. Lopoliths may be solitary, intersecting, or ``nested'' in concentrically-arranged groups. Collectively, the Gettysburg basin is intruded by some 8 major diabase complexes. Contemporary compartmentalization and fracture flow. Relatively low permeability diabase (10-17}processes. Finite element simulations of hydrothermal flow around and through diabase-compartmentalized basins define the geometric relations promoting subsurface fluid flow and include the roles played by sheets, lopoliths, and en-echelon--arranged dike complexes in regulating aqueous fluid leakage across basins.

  3. Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions.

    PubMed

    Mousseau, James J; Charette, André B

    2013-02-19

    , which led to the first description of a direct copper-catalyzed alkenylation onto an electron-deficient arene. This particular directing group offers two advantages: (1) it can be easily appended and removed to reveal the desired pyridine target, and (2) it can be incorporated in a cascade process in the preparation of pharmacologically relevant 2-pyrazolo[1,5-a]pyridines. This work has solved some of the challenges in the direct arylation of nonheterocyclic arenes, including reversing the reactivity often observed with such transformations. Readily convertible directing groups were applied to facilitate the transformation. We also demonstrated that iron can promote intermolecular arylations effectively and that the omission of any metal still permits intramolecular arylation reactions. Lastly, we recently discovered a nickel-catalyzed intramolecular arylation of sp(3) C-H bonds. Our mechanistic investigations of these processes have elucidated radical pathways, opening new avenues in future direct C-H functionalization reactions. PMID:23098328

  4. Electrokinetic treatment of polluted soil at pilot level coupled to an advanced oxidation process of its wastewater

    NASA Astrophysics Data System (ADS)

    Ochoa, B.; Ramos, L.; Garibay, A.; Pérez-Corona, M.; Cuevas, M. C.; Cárdenas, J.; Teutli, M.; Bustos, E.

    2016-02-01

    Soil contaminated with hydrocarbons is a current problem of great importance. These contaminants may be toxic, can retain water and block gas exchange with the atmosphere, which produces a poor-quality soil unsuitable for ecological health. Electroremediation is among the treatments for the removal of such contaminants. In this research, a pilot-level electroremediation test was applied using a circular arrangement of electrodes with a Ti cathode at the middle of the cell surrounded by six IrO2-Ta2O5 | Ti anodes. The presence of an NaOH electrolyte helps to develop the electromigration and electro-osmosis of gasoline molecules (at 1126 mg kg-1) surrounded by Na+ ions. The hydrocarbons are directed towards the cathode and subsequently removed in an aqueous Na+ - hydrocarbon solution, and the -OH migrates to the anode. During electrokinetic treatment, the physicochemical characteristics of the soil close to either the cathode or anode and at the half-cell were evaluated during the three weeks of treatment. During that time, more than 80% of hydrocarbons were removed. Hydrocarbons removed by the electrokinetic treatment of gasoline-polluted soil were collected in a central wastewater compartment and subsequently treated with a Fenton-type advanced oxidation process. This achieved more than 70% mineralization of the hydrocarbons to CO2 and H2O within 1.5 h; its low toxicity status was verified using the Deltatox® kit test. With this approach, the residual water complied with the permissible limits of COD, pH, and electrical conductivity for being discharged into water bodies, according to Mexican norm NOM-001-SEMARNAT-1996.

  5. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    USGS Publications Warehouse

    Alexander, R.B.; Böhlke, J.K.; Boyer, E.W.; David, M.B.; Harvey, J.W.; Mulholland, P.J.; Seitzinger, S.P.; Tobias, C.R.; Tonitto, C.; Wollheim, W.M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  6. Coupling of gene expression in medial prefrontal cortex and nucleus accumbens after neonatal ventral hippocampal lesions accompanies deficits in sensorimotor gating and auditory processing in rats

    PubMed Central

    Swerdlow, Neal R.; Powell, Susan B.; Breier, Michelle R.; Hines, Samantha R.; Light, Gregory A.

    2013-01-01

    Background After neonatal ventral hippocampal lesions (NVHLs), adult rats exhibit evidence of neural processing deficits relevant to schizophrenia, including reduced prepulse inhibition (PPI) of acoustic startle and impaired sensory processing. In intact rats, the regulation of PPI by the ventral hippocampus (VH) is mediated via interactions with medial prefrontal cortex (mPFC) and nucleus accumbens (NAC). We assessed PPI, auditory-evoked responses and expression of 7 schizophrenia-related genes in mPFC and NAC, in adult rats after sham- or real NVHLs. Methods Male inbred Buffalo (BUF) rat pups (d7; n=36) received either vehicle or ibotenic acid infusion into the VH. PPI and auditory-evoked dentate gyrus local field potentials (LFPs) were measured on d56 and d66, respectively. Brains were processed for RT-PCR measures of mPFC and NAC Comt, Erbb4, Grid2, Ncam1, Slc1a2, Nrg1 and Reln. Results NVHL rats exhibited significant deficits in PPI (p=0.005) and LFPs (p<0.015) proportional to lesion size. Sham vs. NVHL rats did not differ in gene expression levels in mPFC or NAC. As we previously reported, multiple gene expression levels were highly correlated within- (mean r's≈0.5), but not across-brain regions (mean r's≈0). However, for three genes – Comt, Slc1a2 and Ncam1 – after NVHLs, expression levels became significantly correlated, or “coupled,” across the mPFC and NAC (p's < 0.03, 0.002 and 0.05, respectively), and the degree of “coupling” increased with VH lesion size. Conclusions After NVHLs that disrupt PPI and auditory processing, specific gene expression levels suggest an abnormal functional coupling of the mPFC and NAC. This model of VH-mPFC-NAC network dysfunction after NVHLs may have implications for understanding the neural basis for PPI- and related sensory processing deficits in schizophrenia patients. PMID:23810830

  7. On the importance of coupled THM processes to predict the long-term response of a generic salt repository for high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.

    2013-12-01

    Salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its ability to creep and heal fractures generated by excavation and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste (such as spent fuel) and we consider a generic salt repository with in-drift emplacement of waste packages and subsequent backfill of the drifts with run-of-mine crushed salt. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created. In order to evaluate the integrity of the natural and engineered barriers over the long-term, it is important to consider the coupled effects of the thermal, hydraulic and mechanical processes that take place. In particular, the results obtained so far show how the porosity reduction of the crushed salt affects the saturation and pore pressure evolution throughout the repository, both in time and space. Such compaction is induced by the stress and temperature regime within the natural salt. Also, transport properties of the host rock are modified not only by thermo-mechanically and hydraulically-induced damaged processes, but also by healing/sealing of existing fractures. In addition, the THM properties of the backfill evolve towards those of the natural salt during the compaction process. All these changes are based on dedicated laboratory experiments and on theoretical considerations [1-3]. Different scenarios are modeled and compared to evaluate the relevance of different processes from the perspective of effective nuclear waste repositories. The sensitivity of the results to some parameters, such as capillarity, is also addressed. The simulations are conducted using an updated version of the TOUGH2-FLAC3D simulator, which is based on a sequential explicit method to couple flow and geomechanics [4]. A new capability for large strains and creep

  8. A versatile approach to Ullmann C-N couplings at room temperature: new families of nucleophiles and electrophiles for photoinduced, copper-catalyzed processes.

    PubMed

    Ziegler, Daniel T; Choi, Junwon; Muñoz-Molina, José María; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2013-09-01

    The use of light to facilitate copper-catalyzed cross-couplings of nitrogen nucleophiles can enable C-N bond formation to occur under unusually mild conditions. In this study, we substantially expand the scope of such processes, establishing that this approach is not limited to reactions of carbazoles with iodobenzene and alkyl halides. Specifically, we demonstrate for the first time that other nitrogen nucleophiles (e.g., common pharmacophores such as indoles, benzimidazoles, and imidazoles) as well as other electrophiles (e.g., hindered/deactivated/heterocyclic aryl iodides, an aryl bromide, an activated aryl chloride, alkenyl halides, and an alkynyl bromide) serve as suitable partners. Photoinduced C-N bond formation can be achieved at room temperature using a common procedure with an inexpensive catalyst (CuI) that does not require a ligand coadditive and is tolerant of moisture and a variety of functional groups. PMID:23968565

  9. Annual and semi-annual variability in the lower and upper atmosphere-ionosphere coupling processes by observations from Abastumani (41.75 N, 42.82 E)

    NASA Astrophysics Data System (ADS)

    Didebulidze, G. G.; Todua, M.; Javakhishvili, G.

    2015-12-01

    The importance of annual and semi-annual variability in the long-term variations of the ionosphere F2 layer parameters (NmF2, hmF2), the hydroxyl OH bands, the oxygen green 557.7 nm and red 630.0 line intensities observed from Abastumani is noted. The amplitudes of the semi-annual variations of these upper atmosphere-ionosphere parameters with maxima at equinoctial months depend on the value of the planetary geomagnetic Ap index, also observed in the inter-annual distribution of the total ozone content (TOC) and cloud covering over this region of South Caucasus. The observed dependence of semi-annual variations of these parameters on Ap index indicated possible influence of cosmic factors on the lower and upper atmosphere-ionosphere coupling processes.

  10. Numerical Simulation of Tuff Dissolution and Precipitation Experiments: Validation of Thermal-Hydrologic-Chemical (THC) Coupled-Process Modeling

    NASA Astrophysics Data System (ADS)

    Dobson, P. F.; Kneafsey, T. J.

    2001-12-01

    to evaluate larger-scale silica sealing observed in a portion of the Yellowstone geothermal system, a natural analog for the precipitation-experiment processes.

  11. Process controllability of inductively coupled plasma-enhanced reactive sputter deposition for the fabrication of amorphous InGaZnOx channel thin-film transistors

    NASA Astrophysics Data System (ADS)

    Takenaka, Kosuke; Nakata, Keitaro; Otani, Hirofumi; Osaki, Soichiro; Uchida, Giichiro; Setsuhara, Yuichi

    2016-01-01

    The process controllability of inductively coupled plasma-enhanced reactive sputter deposition for the fabrication of amorphous InGaZnOx (a-IGZO) channel thin-film transistors (TFTs) was investigated. a-IGZO film deposition with the addition of H2 gas was performed using a plasma-assisted reactive sputtering system to control the oxidation process during a-IGZO film formation by balancing the oxidation and reduction reactions. Optical emission spectroscopy measurements indicate the possibility for the oxidation reaction to be inhibited by a decrease in the density of oxygen atoms and the reduction effect of hydrogen during a-IGZO film deposition due to the addition of H2 gas. The characteristics of TFTs fabricated using a-IGZO films deposited with a plasma-enhanced magnetron sputtering deposition system were investigated. The results indicate the possibility of expanding the process window by controlling the balance between oxidation and reduction with the addition of H2 gas. TFTs with a-IGZO films that were deposited with the addition of H2 gas exhibited good performance with a field-effect mobility (μFE) of 15.3 cm2 V-1 s-1 and a subthreshold gate voltage swing (S) of 0.48 V decade-1.

  12. Reconfigured, close-coupled reconfigured, and Wyodak coal integrated two-stage coal liquefaction process materials from the Wilsonville facility: Chemical and toxicological evaluation

    SciTech Connect

    Wright, C.W.

    1987-03-01

    This document reports the results of the chemical analysis and toxicological testing of process materials sampled during the operation of the Advanced Coal Liquefaction Research and Development Facility (Wilsonville, AL) in the reconfigured, integrated (RITSL run No. 247), the close-coupled, reconfigured, integrated (CCRITSL run No. 249), and the Wyodak coal integrated (ITSL run No. 246) two-stage liquefaction operating modes. Chemical methods of analysis included proton nuclear magnetic resonance spectroscopy, adsorption column chromatography, high resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological evaluation of the process materials included a histidine reversion assay for microbial mutagenicity, an initiation/promotion assay for tumorigenicity in mouse skin, and an aquatic toxicity assay using Daphnia magna. The results of these analyses and tests are compared to the previously reported results derived from the Illinois No. 6 coal ITSL and nonintegrated two-stage liquefaction (NTSL) process materials from the Wilsonville facility. 21 refs., 13 figs., 21 tabs.

  13. Quantifying the dynamic coupling of hydrologic and biogeochemical processes in stream ecosystems: examples from streams in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Lyons, W. B.; Gooseff, M. N.; Koch, J. C.; Neupauer, R.; Cozzetto, K.; Bencala, K.; Cullis, J. D.

    2014-12-01

    While continuous monitoring of stream flow and stream temperature has been a widely used resource for some time, currently there is great potential to expand continuous monitoring to include important water quality parameters such as nutrients and dissolved organic material. In many systems distinguishing between watershed and stream ecosystem controls can be challenging, and the usefulness of such monitoring can be enhanced by application of quantitative models to interpret observed patterns. The glacial meltwater streams of the McMurdo Dry Valleys, Antarctica, are surrounded by large expanses of patterned ground devoid of plants. In contrast, many streams have thriving cyanobacterial mats that are freeze-dried through the winter and begin photosynthesis with the onset of flow. Thus, the daily signal in terms of biogeochemical processes controlling water quality is generated within the stream. As part of the McMurdo Dry Valleys Long Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering of major ions, microbial cycling of nitrogen species, and streams temperature regulation. We have also adapted modelling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models are relevant to understanding the role of in-stream processes in diverse stream systems where watershed processes also contribute to observed patterns.

  14. [Comparative proteomics study of different processing technology for pilose antler using iTRAQ technology coupled with 2D LC-MS].

    PubMed

    Jin, Meng-ya; Dong, Ling; Luo, Yuan-ming; Yu, Li; Mo, Mei; Hou, Cheng-bo; Li, Zhi-yuan

    2015-12-01

    This study was designed to use iTRAQ technology coupled with 2D LC-MS/MS to study the comparative proteomics of different processing technology for pilose antler. 1015 proteins were identified with 2D LC combined with MOLDI TOF/TOF mass spectrometry. Comparative analysis with Protein Pilot (Version 4.5) revealed that 87 proteins were changed (P ≤ 0.05, the ratio of > 1.50 or < 0.60 as the threshold selection of difference proteins), of which 24 were up regulated and 33 were down regulated in the traditional frying process (TFP) compared with the fresh pilose antler (P ≤ 0.05). 7 significant different proteins (P ≤ 0.001), most of these significantly changed proteins were found to be involved in calcium ion binding and ATP binding associated with human healthy. Freeze drying with protective agent (FDP) (Trehalose) can improve the content of significantly different proteins (P ≤ 0.001) including Collagen alpha-1 (XII) chain (COL12A1) and Collagen alpha-1 (II) chain (COL2A1). The significant function involves in platelets activating, maintenance of spermatogonium, and disorder expression in tumor cells. The functional annotation by Hierarchical clustering and GO (gene ontology) showed that the main molecule functions of the proteins significantly changed in these processes were involved in binding (52.7%), catalytic (25.3%), structural molecule and transporter (6.6%). PMID:27169289

  15. Results from an International Simulation Study on Coupled Thermal,Hydrological, and Mechanical (THM) Processes near Geological NuclearWaste Repositories

    SciTech Connect

    Rutqvist, Jonny; Rutqvist, J.; Barr, D.; Birkholzer, J.T.; Chijimatsu, M.; Kolditz, O.; Liu, Q.-S; Oda, Y.; Wang, W.; Zhang, C.-Y.

    2007-10-23

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level.

  16. Close-coupled Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies. Final report, [October 1, 1988--July 31, 1993

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Popper, G.A.; Stalzer, R.H.; Smith, T.O.

    1993-06-01

    This is the final report of a four year and ten month contract starting on October 1, 1988 to July 31, 1993 with the US Department of Energy to study and improve Close-Coupled Catalytic Two-Stage Direct Liquefaction of coal by producing high yields of distillate with improved quality at lower capital and production costs in comparison to existing technologies. Laboratory, Bench and PDU scale studies on sub-bituminous and bituminous coals are summarized and referenced in this volume. Details are presented in the three topical reports of this contract; CTSL Process Bench Studies and PDU Scale-Up with Sub-Bituminous Coal-DE-88818-TOP-1, CTSL Process Bench Studies with Bituminous Coal-DE-88818-TOP-2, and CTSL Process Laboratory Scale Studies, Modelling and Technical Assessment-DE-88818-TOP-3. Results are summarized on experiments and studies covering several process configurations, cleaned coals, solid separation methods, additives and catalysts both dispersed and supported. Laboratory microautoclave scale experiments, economic analysis and modelling studies are also included along with the PDU-Scale-Up of the CTSL processing of sub-bituminous Black Thunder Mine Wyoming coal. During this DOE/HRI effort, high distillate yields were maintained at higher throughput rates while quality was markedly improved using on-line hydrotreating and cleaned coals. Solid separations options of filtration and delayed coking were evaluated on a Bench-Scale with filtration successfully scaled to a PDU demonstration. Directions for future direct coal liquefaction related work are outlined herein based on the results from this and previous programs.

  17. Understanding the interplays between Earth's shallow- and deep- rooted processes through global, quantitative model of the coupled brittle-lithosphere/viscous mantle system

    NASA Astrophysics Data System (ADS)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2016-04-01

    The volume of geophysical datasets has grown substantially, over recent decades. Our knowledge of continental evolution has increased due to advances in interpreting the records of orogeny and sedimentation. Ocean-floor observations now allow one to resolve past plate motions (e.g. in the North Atlantic and Indian Ocean over the past 20 Myr) at temporal resolutions of about 1 Myr. Altogether, these ever-growing datasets permit reconstructing the past evolution of Earth's lithospheric plates in greater detail. This is key to unravelling the dynamics of geological processes, because plate motions and their temporal changes are a powerful probe into the evolving force balance between shallow- and deep-rooted processes. However, such a progress is not yet matched by the ability to quantitatively model past plate-motion changes and, therefore, to test hypotheses on the dominant controls. The main technical challenge is simulating the rheological behaviour of the lithosphere/mantle system, which varies significantly from viscous to brittle. Traditionally computer models for viscous mantle flow and on the one hand, and for the motions of the brittle lithosphere on the other hand, have been developed separately. Coupling of these two independent classes of models has been accomplished only for neo-tectonic scenarios and with some limitations as to accounting for the impact of time-evolving mantle-flow and lithospheric slabs. Here we present results in this direction that permit simulating the coupled plates/mantle system through geological time. We build on previous work aimed at coupling two sophisticated codes for mantle flow and lithosphere dynamics: TERRA and SHELLS. TERRA is a global spherical finite-element code for mantle convection. It has been developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. SHELLS is a thin-sheet finite-element code for lithosphere dynamics, developed by

  18. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment.

    PubMed

    Song, Jinhui; Zhou, Jun; Wang, Zhong Lin

    2006-08-01

    This paper presents the experimental observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of converting mechanical energy into electricity at nanoscale. By deflecting a wire/belt using a conductive atomic force microscope tip in contact mode, the energy is first created by the deflection force and stored by piezoelectric potential, and later converts into piezoelectric energy. The mechanism of the generator is a result of coupled semiconducting and piezoelectric properties of ZnO. A piezoelectric effect is required to create electric potential of ionic charges from elastic deformation; semiconducting property is necessary to separate and maintain the charges and then release the potential via the rectifying behavior of the Schottky barrier at the metal-ZnO interface, which serves as a switch in the entire process. The good conductivity of ZnO is rather unique because it makes the current flow possible. This paper demonstrates a principle for harvesting energy from the environment. The technology has the potential of converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessels) into electric energy that may be sufficient for self-powering nanodevices and nanosystems in applications such as in situ, real-time, and implantable biosensing, biomedical monitoring, and biodetection. PMID:16895352

  19. Detection by coupled LC-photodiode array detection and high-resolution Orbitrap MS of dimethyl and diethyl yellow dyes used illegally in processed soymilk curd.

    PubMed

    Fang, Mingchih; Tsai, Chia-Fen; Kuo, Ching-Hao; Cheng, Hwei-Fang

    2015-01-01

    An efficient non-target dye-screening system consisting of a liquid chromatography photodiode array coupled with a high-resolution mass spectrometer (HRMS) is described. Visible absorption spectroscopy assisted in locating the peak of an unknown dye in HRMS chromatograms which allowed the accurate molecular weight of the unknown to be obtained. In a study of the adulteration of processed soymilk curd (tofu) with dimethyl yellow, an unexpected unknown dye was discovered. The compound was further purified by gel permeation chromatography and identified by HRMS and proton nuclear magnetic resonance (NMR) as diethyl yellow (solvent yellow 56). This is the first time that diethyl yellow has been reported in foods. The authentic diethyl yellow was then purchased and used as a quantitative standard. Tofu products and their ingredients associated with tofu processing were surveyed. Analysis showed the source of diethyl yellow could be traced to emulsifiers used as ingredient in tofu products. Surveillance work found the concentrations of diethyl yellow ranged from several μg kg(-1) (ppb) in the tofu products to up to hundreds of mg kg(-1) (ppm) in the emulsifiers. PMID:26076046

  20. Profiling and analysis of multiple compounds in rhubarb decoction after processing by wine steaming using UHPLC-Q-TOF-MS coupled with multiple statistical strategies.

    PubMed

    Zhu, Tingting; Liu, Xiao; Wang, Xiaoli; Cao, Gang; Qin, Kunming; Pei, Ke; Zhu, Hui; Cai, Hao; Niu, Minjie; Cai, Baochang

    2016-08-01

    Rhubarb is one of the most popular traditional Chinese medicines and has been used for thousands of years in many Asian countries. Prepared rhubarb is obtained by steaming raw rhubarb with glutinous rice wine until it turned black in appearance both inside and outside. After processing, the therapeutic effects of prepared rhubarb change a lot. To find out the exact compound changes of the chemical profile in a decoction of rhubarb after processing and to clarify the material basis of the changed therapeutic effects, an ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry method coupled with automated data analysis software and statistical strategy was developed. As a result, 63 peaks in raw rhubarb and 54 peaks in prepared rhubarb were detected, and a total of 45 chemical compounds were identified. The analysis data were subjected to a principle component analysis and a t-test. Based on the results, 16 peaks were found to be the main contributors to the significant difference (p < 0.05) between raw and prepared rhubarb. Compared with raw rhubarb, the content of 15 components in prepared rhubarb was lower, while only rhein (1,8-dihydroxy-3-carboxy anthraquinone) showed a higher intensity. PMID:27291339

  1. The problems of solar-terrestrial coupling and new processes introduced to the physics of the ionosphere from the physics of atomic collisions

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergei

    2010-05-01

    Further progress in research of solar-terrestrial coupling requires better understanding of solar variability influence on the ionosphere. The most powerful manifestations of solar variability are solar flares and geomagnetic storms. During a flare EUV/X-ray irradiations are completely absorbed in the ionosphere producing SID. During geomagnetic storms precipitations of electrons with energy of several keV (and to a lesser extent protons precipitations) from radiation belts and geomagnetosphere produce additional ionization and low latitude auroras. Considering the physics of ionosphere during the last several decades we have been taking into account three novel processes well known in the physics of atomic collisions. These are Auger effect [S. V. Avakyan, The consideration of Auger processes in the upper atmosphere of Earth. In Abstracts of paper presented at the Tenth scien. and techn. Conf. of young specialists of S.I. Vavilov State Optical Institute, 1974, 29-31.], multiple photoionization of upper, valence shell [S.V. Avakyan, The source of O++ ions in the upper atmosphere, 1979, Cosmic Res, 17, 942 - 943] and Rydberg excitation of all the components of upper atmosphere [S.V. Avakyan, The new factor in the physics of solar - terrestrial relations - Rydberg atomic and molecules states. Conf. on Physics of solar-terrestrial relationships, 1994, Almaty, 3 - 5]. In the present paper the results of bringing these new processes in the ionospheric physics are discussed and also its possible role in the physics of solar-terrestrial coupling is considered. Involving these processes to the model estimations allowed us for the first time to come to the following important conclusions: - Auger electrons play the determinant role at the formation of energy spectrum of photoelectrons and secondary auroral electrons at the range above 150 eV; - double photoionization of the outer shell of the oxygen atom (by a single photon) plays a dominant role in the formation of

  2. Absorption Spectroscopy, Emissive Properties, and Ultrafast Intersystem Crossing Processes in Transition Metal Complexes: TD-DFT and Spin-Orbit Coupling.

    PubMed

    Daniel, Chantal

    2016-01-01

    Absorption spectroscopy, emissive properties, and ultrafast intersystem crossing processes in transition metal complexes are discussed in the light of recent developments in time-dependent density functional theory (TD-DFT), spin-orbit coupling (SOC) effects, and non-adiabatic excited states dynamics. Methodological highlights focus on spin-orbit and vibronic couplings and on the recent strategies available for simulating ultra-fast intersystem crossings (ISC).The role of SOC in the absorption spectroscopy of third-row transition metal complexes is illustrated by two cases studies, namely Ir(III) phenyl pyridine and Re(I) carbonyl bipyridine complexes.The problem of luminescence decay in third-row transition metal complexes handled by TD-DFT linear and quadratic response theories including SOC is exemplified by three studies: (1) the phosphorescence of Ir(III) complexes from the lowest triplet state; (2) the emissive properties of square planar Pt(II) complexes with bidentate and terdentate ligands characterized by low-lying metal-to-ligand-charge-transfer (MLCT) and metal-centered (MC) states; and (3) the ultra-fast luminescence decay of Re(I) carbonyl bipyridine halides via low-lying singlet and triplet charge transfer states delocalized over the bipyridine and the halide ligands.Ultrafast ISC occurring in spin crossover [Fe (bpy)3]2+, in [Ru (bpy)3]2+, and [Re (Br)(CO)3(bpy] complexes are deciphered thanks to recent developments based on various approaches, namely non-radiative rate theory within the Condon approximation, non-adiabatic surface hopping molecular dynamics, and quantum wave packet dynamics propagation. PMID:26129697

  3. Helix coupling

    DOEpatents

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  4. Helix coupling

    DOEpatents

    Ginell, William S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  5. On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean-atmosphere-land system

    NASA Astrophysics Data System (ADS)

    Ma, H.; Mechoso, C. R.; Xue, Y.; Xiao, H.; Neelin, J.; Ji, X.

    2013-12-01

    An evaluation is presented of the impact on tropical climate of continental-scale perturbations given by different representations of land surface processes (LSP) in a general circulation model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that such perturbations have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific Ocean. To explore the mechanisms for such impact, model experiments are performed with different LSP representations confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. The largest impact found over the tropical Pacific is mainly from perturbations in the tropical African continent where convective heating anomalies associated with perturbed surface heat fluxes trigger global teleconnections through equatorial wave dynamics. In the equatorial Pacific, the remote impacts of the convection anomalies are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as by the effects of ocean memory. LSP perturbations over South America and Asia-Australia have much weaker global impacts. The results further suggest that correct representations of LSP, land use change, and associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty of future climate projections with global climate models under various climate change scenarios. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA

  6. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    NASA Astrophysics Data System (ADS)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  7. Denitrification-coupled iron(ii) oxidation: a key process regulating the fate and transport of nitrate, phosphate, and arsenic in a wastewater-contaminated aquifer

    USGS Publications Warehouse

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Hart, C. P.

    2008-01-01

    Denitrification in the subsurface is often viewed as a heterotrophic process. However, some denitrifiers can also utilize inorganic electron donors. In particular, Fe(II), which is common in many aquifers, could be an important reductant for contaminant nitrate. Anoxic iron oxidation would have additional consequences, including decreased mobility for species like arsenic and phosphate, which bind strongly to hydrous Fe(III) oxide. A study was conducted in a wastewater contaminant plume on Cape Cod to assess the potential for denitrification- coupled Fe(II) oxidation. Previous changes in wastewater disposal upgradient of the study area had resulted in nitrate being transported into a portion of the anoxic zone of the plume and decreased concentrations of Fe(II), phosphate, and arsenic. A series of anoxic tracers (groundwater + nitrate + bromide) were injected into the unaffected, Fe(II)-containing zone under natural gradient conditions. Denitrification was stimulated within 1 m of transport (4 days) for both low and high (100 & 1000 μM) nitrate additions, initially producing stiochiometric quantities of nitrous oxide (>300 μM N) and trace amounts of nitrite. Subsequent injections at the same site reduced nitrate even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and this was accompanied by an increase in colloidal Fe(III) and decreases in pH, total arsenic, and phosphate concentrations. All plume constituents returned to background levels several weeks after the tracer tests were completed. Groundwater microorganisms collected on filters during the tracer test rapidly and immediately reduced nitrite and oxidized Fe(II) in 3-hr laboratory incubations. Several pure cultures of Fe(II)-oxidizing denitrifying bacteria were isolated from core material and subsequently characterized. All of the isolates were mixotrophic, simultaneously oxidizing organic carbon and Fe

  8. Denitrification-Coupled Iron(II) Oxidation: A Key Process Regulating the Fate and Transport of Nitrate, Phosphate, and Arsenic in a Wastewater-Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    Smith, R. L.; Kent, D. B.; Repert, D. A.; Hart, C. P.

    2007-12-01

    Denitrification in the subsurface is often viewed as a heterotrophic process. However, some denitrifiers can also utilize inorganic electron donors. In particular, Fe(II), which is common in many aquifers, could be an important reductant for contaminant nitrate. Anoxic iron oxidation would have additional consequences, including decreased mobility for species like arsenic and phosphate, which bind strongly to hydrous Fe(III) oxide. A study was conducted in a wastewater contaminant plume on Cape Cod to assess the potential for denitrification- coupled Fe(II) oxidation. Previous changes in wastewater disposal upgradient of the study area had resulted in nitrate being transported into a portion of the anoxic zone of the plume and decreased concentrations of Fe(II), phosphate, and arsenic. A series of anoxic tracers (groundwater + nitrate + bromide) were injected into the unaffected, Fe(II)-containing zone under natural gradient conditions. Denitrification was stimulated within 1 m of transport (4 days) for both low and high (100 & 1000 μM) nitrate additions, initially producing stiochiometric quantities of nitrous oxide (>300 μM N) and trace amounts of nitrite. Subsequent injections at the same site reduced nitrate even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and this was accompanied by an increase in colloidal Fe(III) and decreases in pH, total arsenic, and phosphate concentrations. All plume constituents returned to background levels several weeks after the tracer tests were completed. Groundwater microorganisms collected on filters during the tracer test rapidly and immediately reduced nitrite and oxidized Fe(II) in 3-hr laboratory incubations. Several pure cultures of Fe(II)-oxidizing denitrifying bacteria were isolated from core material and subsequently characterized. All of the isolates were mixotrophic, simultaneously oxidizing organic carbon and Fe

  9. Detection of radiation-induced hydrocarbons in Camembert irradiated before and after the maturing process-comparison of florisil column chromatography and on-line coupled liquid chromatography-gas chromatography

    SciTech Connect

    Schulzki, G.; Spiegelberg, A.; Schreiber, G.A.

    1995-02-01

    The influence of the maturing process on the detection of radiation-induced volatile hydrocarbons in the fat of Camembert has been investigated. Two analytical methods for separation of the hydrocarbon fraction from the lipid were applied: Florisil column chromatography with subsequent gas chromatographic-mass spectrometric (GC-MS) determination as well as on-line coupled liquid chromatography-GC-MS. The maturing process had no influence on the detection of radiation-induced volatiles. Comparable results were achieved with both analytical methods. However, preference is given to the more effective on-line coupled LC-GC method. 17 refs., 5 figs., 2 tabs.

  10. Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, southern China

    NASA Astrophysics Data System (ADS)

    Liu, Dianbing; Wang, Yongjin; Cheng, Hai; Edwards, R. Lawrence; Kong, Xinggong; Li, Ting-Yong

    2016-05-01

    The paleoclimate application of speleothem δ13C is influenced by site-specific processes. Here we present four stalagmite δ13C records from two caves in southern China, covering early and late Marine Isotope Stage (MIS) 3 and the Holocene, to investigate the spatio-temporal pattern of calcite δ13C changes and the relationship with Asian monsoon (AM) variability. In each growth period, precessional- to millennial-scale changes are clear in the δ18O record. In contrast, millennial variability is absent in the δ13C record, which characterizes persistent centennial oscillations. However, centennial-scale δ18O variations agree well with those of δ13C, with a larger amplitude in δ13C changes (about twice that of δ18O). This suggests that soil humidity balance associated with regional hydrological circulations is important for these centennial δ13C changes, although evaporation-related kinetic fractionation can induce concurrent enrichments in δ18O and δ13C. In frequency, the detrended δ18O and δ13C records are coupled at a periodicity of about 300 yr during the last glacial period and 150 yr during the Holocene. Those centennial-scale δ13C variations are generally consistent with Greenland temperature variability, indicating a climate response over broad regions. Thus, strong co-variation of δ18O and δ13C records should have a climatic origin, even if it is amplified by kinetic effects.

  11. Single-step fabrication process of 1-D photonic crystals coupled to nanocolumnar TiO2 layers to improve DSC efficiency.

    PubMed

    González-García, L; Colodrero, S; Míguez, H; González-Elipe, A R

    2015-11-30

    The present work proposes the use of a TiO2 electrode coupled to a one-dimensional photonic crystal (1DPC), all formed by the sequential deposition of nanocolumnar thin films by physical vapor oblique angle deposition (PV-OAD), to enhance the optical and electrical performance of DSCs while transparency is preserved. We demonstrate that this approach allows building an architecture combining a non-dispersive 3 µm of TiO2 electrode and 1 µm TiO2-SiO2 1DPC, both columnar, in a single-step process. The incorporation of the photonic structure is responsible for a rise of 30% in photovoltaic efficiency, as compared with a transparent cell with a single TiO2 electrode. Detailed analysis of the spectral dependence of the photocurrent demonstrates that the 1DPC improves light harvesting efficiency by both back reflection and optical cavity modes confinement within the TiO2 films, thus increasing the overall performance of the cell. PMID:26698810

  12. A fast and efficient adaptive parallel ray tracing based model for thermally coupled surface radiation in casting and heat treatment processes

    NASA Astrophysics Data System (ADS)

    Fainberg, J.; Schaefer, W.

    2015-06-01

    A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples.

  13. Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, southern China

    NASA Astrophysics Data System (ADS)

    Liu, Dianbing; Wang, Yongjin; Cheng, Hai; Edwards, R. Lawrence; Kong, Xinggong; Li, Ting-Yong

    2016-05-01

    The paleoclimate application of speleothem δ13C is influenced by site-specific processes. Here we present four stalagmite δ13C records from two caves in southern China, covering early and late Marine Isotope Stage (MIS) 3 and the Holocene, to investigate the spatio-temporal pattern of calcite δ13C changes and the relationship with Asian monsoon (AM) variability. In each growth period, precessional- to millennial-scale changes are clear in the δ18O record. In contrast, millennial variability is absent in the δ13C record, which characterizes persistent centennial oscillations. However, centennial-scale δ18O variations agree well with those of δ13C, with a larger amplitude in δ13C changes (about twice that of δ18O). This suggests that soil humidity balance associated with regional hydrological circulations is important for these centennial δ13C changes, although evaporation-related kinetic fractionation can induce concurrent enrichments in δ18O and δ13C. In frequency, the detrended δ18O and δ13C records are coupled at a periodicity of about 300 yr during the last glacial period and 150 yr during the Holocene. Those centennial-scale δ13C variations are generally consistent with Greenland temperature variability, indicating a climate response over broad regions. Thus, strong co-variation of δ18O and δ13C records should have a climatic origin, even if it is amplified by kinetic effects.

  14. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair.

    PubMed

    Nakazawa, Yuka; Sasaki, Kensaku; Mitsutake, Norisato; Matsuse, Michiko; Shimada, Mayuko; Nardo, Tiziana; Takahashi, Yoshito; Ohyama, Kaname; Ito, Kosei; Mishima, Hiroyuki; Nomura, Masayo; Kinoshita, Akira; Ono, Shinji; Takenaka, Katsuya; Masuyama, Ritsuko; Kudo, Takashi; Slor, Hanoch; Utani, Atsushi; Tateishi, Satoshi; Yamashita, Shunichi; Stefanini, Miria; Lehmann, Alan R; Yoshiura, Koh-ichiro; Ogi, Tomoo

    2012-05-01

    UV-sensitive syndrome (UV(S)S) is a genodermatosis characterized by cutaneous photosensitivity without skin carcinoma. Despite mild clinical features, cells from individuals with UV(S)S, like Cockayne syndrome cells, are very UV sensitive and are deficient in transcription-coupled nucleotide-excision repair (TC-NER), which removes DNA damage in actively transcribed genes. Three of the seven known UV(S)S cases carry mutations in the Cockayne syndrome genes ERCC8 or ERCC6 (also known as CSA and CSB, respectively). The remaining four individuals with UVSS , one of whom is described for the first time here, formed a separate UV(S)S-A complementation group; however, the responsible gene was unknown. Using exome sequencing, we determine that mutations in the UVSSA gene (formerly known as KIAA1530) cause UV(S)S-A. The UVSSA protein interacts with TC-NER machinery and stabilizes the ERCC6 complex; it also facilitates ubiquitination of RNA polymerase IIo stalled at DNA damage sites. Our findings provide mechanistic insights into the processing of stalled RNA polymerase and explain the different clinical features across these TC-NER–deficient disorders. PMID:22466610

  15. Scalable quantum computation via a coherent state input-output process in a low-Q cavity in the atom-cavity intermediate coupling region

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Wang, Chuan; Wang, Tie-Jun; Zhang, Ru

    2013-12-01

    We propose a basic scheme to construct a hybrid controlled phase-flip (CPF) gate between a flying pulse qubit and a stationary atomic qubit, assisted by a cavity input-output process for a low-Q cavity in the atom-cavity intermediate coupling region. The qubits can be encoded on the coherent states and ground states of the single-trapped L-level atom, respectively. We present a theoretical model of the hybrid CPF gate, whose basic strategy is to control the reflectivity of the input coherent optical pulse to obtain a phase shift conditioned by the different internal atomic states by adjusting the parameters of the cavity quantum electrodynamics (CQED) system. The resulting basic scheme can be used to construct nonlocal gates between remote atomic qubits confined in spatially separated cavities, and also for the generation of an atomic cluster state. The performance and experimental feasibilities of the proposed scheme indicate that it is robust against practical noise and feasible with current technologies. Thus, our scheme is applicable for use in large-scale quantum computation.

  16. [Investigation of effect and process of nitric oxide removal in rotating drum biofilter coupled with absorption by Fe(II) (EDTA)].

    PubMed

    Chen, Jun; Yang, Xuan; Yu, Jian-Ming; Jiang, Yi-Feng; Chen, Jian-Meng

    2012-02-01

    In order to accelerate the NO removal efficiency, a novel and effective system was developed for the complete treatment of NO from flue gases. The system features NO absorption by Fe(II) (EDTA) and biological denitrification in a rotating drum biofilter (RDB) so as to promote biological reduction. The experimental results show that a moderate amount of Fe(II) (EDTA) was added to the nutrient solution to improve the mass transfer efficiency of NO from gas to liquid, with the concomitant formation of nitrosyl complex Fe(II) (EDTA)-NO. Under the experimental conditions of rotational speed was at 0.5 r x min(-1), EBRT of 57.7 s, temperature was at 30 degrees C, pH was 7-8, with the increasing concentration of Fe(II) (EDTA) was from 0 mg x L(-1) to 500 mg x L(-1), the NO removal efficiency was improved from 61.1% to 97.6%, and the elimination capacity was from 16.2 g (m3 x h)(-1) to 26.7 g (m3 x h)(-1). In order to simulate the denitrifying process of waste gas containing NO by using RDB coupled with Fe(II) (EDTA) absorption, a tie-in equation of NO removal and the Fe(II) (EDTA) concentration added in RDB was established. The experimental NO removal efficiency change tendency agrees fairly with that predicted by the proposed equation. PMID:22509594

  17. Light-bias coupling erase process for non-volatile zinc tin oxide TFT memory with a nickel nanocrystals charge trap layer

    NASA Astrophysics Data System (ADS)

    Li, Jeng-Ting; Liu, Li-Chih; Ke, Po-Hsien; Chen, Jen-Sue; Jeng, Jiann-Shing

    2016-03-01

    A nonvolatile charge trapping memory is demonstrated on a thin film transistor (TFT) using a solution processed ultra-thin (~7 nm) zinc tin oxide (ZTO) semiconductor layer with an Al2O3/Ni-nanocrystals (NCs)/SiO2 dielectric stack. A positive threshold voltage (V TH) shift of 7 V is achieved at gate programming voltage of 40 V for 1 s but the state will not be erased by applying negative gate voltage. However, the programmed V TH shift can be expediently erased by applying a gate voltage of  -10 V in conjunction with visible light illumination for 1 s. It is found that the sub-threshold swing (SS) deteriorates slightly under light illumination, indicating that photo-ionized oxygen vacancies (V\\text{o}+ and/or V\\text{o}++ ) are trapped at the interface between Al2O3 and ZTO, which assists the capture of electrons discharged from the Ni NCs charge trapping layer. The light-bias coupling action and the role of ultra-thin ZTO thickness are discussed to elucidate the efficient erasing mechanism.

  18. Effects of Coupled Structural and Diagenetic Processes on Deformation Localization and Fluid Flow Properties in Sandstone Reservoirs of the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Elliott, S. J.; Eichhubl, P.; Landry, C. J.

    2014-12-01

    Fluid flow tends to be restricted perpendicular to deformation bands through the combined effects of mechanical grain size reduction, porosity loss, and preferred cementation relative to the adjacent host rock. Deformation bands that occur in association with reservoir scale faults can impact reservoir-scale fluid flow and fault seal behavior, potentially imparting a permeability anisotropy to reservoir rocks. We use a combination of Hg-intrusion porosimetry, high-resolution 2D-image analysis of pore size distributions, and detailed compositional analyses obtained from integrating petrographic and SEM-based imaging techniques, including SEM-cathodoluminescence, backscattered electron imaging, and energy-dispersive X-ray spectroscopy, to (1) assess the effects of coupled chemical and mechanical processes leading to deformation localization within various detrital compositions [Cedar Mesa, Navajo, and Entrada sandstones] and (2) to quantify the effect of these processes on single and multiphase fluid flow as a function of host rock properties, structural position, and deformation band textural and diagenetic properties. Within each sample, bands of differing kinematic properties and structural style, i.e. shear bands, shear enhanced compaction bands etc., were identified and pre-kinematic pore-filling cements, as well as syn- and post-kinematic cements including various clay minerals, were distinguished for both the host rock and associated deformation bands. Although the deformation bands display a variety of textures and diagenetic attributes, initial petrophysical results suggest that the flow properties - permeability and capillary pressure curves - of the bands in the formations studied are very similar. However, both individual and clustered deformation bands of the Navajo Sandstone contain open or partially cemented cross-cutting fractures that could act as flow pathways across the deformation bands.

  19. A spin-orbit coupling study on the spin inversion processes in the direct methane-to-methanol conversion by FeO+

    NASA Astrophysics Data System (ADS)

    Shiota, Yoshihito; Yoshizawa, Kazunari

    2003-04-01

    Possible spin inversion processes in the direct conversion of methane to methanol by the bare FeO+ complex are discussed by means of spin-orbit coupling (SOC) calculations. This reaction proceeds via two transition states (TSs) in the following way; FeO++CH4→FeO+(CH4)→[TS1]→HO-Fe+-CH3→[TS2]→Fe+(CH3OH)→Fe++CH3OH. B3LYP density functional theory calculations show that the potential energies in the quartet and sextet states lie close and involve three crossing seams that can provide a chance of spin-forbidden transition. The spin-forbidden transition leads to a significant decrease in the barrier heights of TS1 and TS2 that correspond to the hydrogen atom abstraction and the methyl shift, respectively. To evaluate the spin-forbidden transition in the reaction pathway, the SOC matrix elements are calculated along the intrinsic reaction coordinate of the reaction. The SOC analysis along the IRC is useful to look at how the FeO+/CH4 reacting system changes its spin multiplicity between the sextet and quartet surfaces. The strength of the SOC between the low-lying quartet state and the sextet state is 133.6 cm-1 in the reactant complex FeO+(CH4), 21.4 cm-1 in the hydroxo intermediate HO-Fe+-CH3, and 0.3 cm-1 in the product complex Fe+(CH3OH). Since the SOC value decreases along the oxidation process, the ease of spin inversion probability is the first crossing seam, the second crossing seam, and the third crossing seam, in this order.

  20. A General Coupled Mathematical Model of Electromagnetic Phenomena, Two-Phase Flow, a