Science.gov

Sample records for ozone depletion greenhouse

  1. Ozone depletion, greenhouse gases, and climate change

    NASA Technical Reports Server (NTRS)

    Mooney, Harold A.; Baker, D. James, Jr.; Bretherton, Francis P.; Burke, Kevin C.; Clark, William C.; Davis, Margaret B.; Dickinson, Robert E.; Imbrie, John; Malone, Thomas F.; Mcelroy, Michael B.

    1989-01-01

    This symposium was organized to study the unusual convergence of a number of observations, both short and long term that defy an integrated explanation. Of particular importance are surface temperature observations and observations of upper atmospheric temperatures, which have declined significantly in parts of the stratosphere. There has also been a dramatic decline in ozone concentration over Antarctica that was not predicted. Significant changes in precipitation that seem to be latitude dependent have occurred. There has been a threefold increase in methane in the last 100 years; this is a problem because a source does not appear to exist for methane of the right isotopic composition to explain the increase. These and other meteorological global climate changes are examined in detail.

  2. A New Connection Between Greenhouse Warming and Stratospheric Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Salawitch, R.

    1998-01-01

    The direct radiative effects of the build-up of carbon dioxide and other greenhouse gases have led to a gradual cooling of the stratosphere with largest changes in temperature occurring in the upper stratosphere, well above the region of peak ozone concentration.

  3. Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion, and Acid Rain.

    ERIC Educational Resources Information Center

    Dove, Jane

    1996-01-01

    Describes the results of a survey designed to ascertain details of student teachers' knowledge and misconceptions about the greenhouse effect, acid rain, and ozone layer depletion. Results indicate familiarity with the issues but little understanding of the concepts involved and many commonly held misconceptions. (JRH)

  4. Spaceship Nigeria: A Topic Study for Global Warming, Greenhouse Effect and Ozone Layer Depletion.

    ERIC Educational Resources Information Center

    Okebukola, Peter; Akpan, Ben B.

    1997-01-01

    Explains the concept of a topic study, how it meets the needs of teachers seeking to integrate their teaching, and how it is especially well suited for environmental education. Outlines curriculum for a topic study on the greenhouse effect and ozone layer depletion. (DDR)

  5. Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas

    NASA Astrophysics Data System (ADS)

    Ravishankara, A. R.

    2015-12-01

    Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.

  6. Attribution of Ozone Changes in the Near Future: Nonlinear Feedbacks between Ozone Depleting Substances and Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Meul, Stefanie; Oberländer, Sophie; Langematz, Ulrike

    2014-05-01

    In the first half of the 21st century the stratospheric burden of ozone depleting substances (ODSs) is predicted to decrease due to the regulations in the Montreal Protocol and its amendments. Concomitantly, the concentrations of well-mixed greenhouse gases (GHGs) will continue to rise. As the removal of the ODSs from the stratosphere is also affected by changes in the Brewer-Dobson Circulation, the decrease of halogens will also depend on the rate of the GHG increase. Furthermore, the increasing concentrations of the GHGs methane (CH4) and nitrous oxide (N2O) can modify the halogen-ozone chemistry. Therefore, a non-linear contribution has to be included in the attribution analysis of the ozone changes to ODS and GHG changes. In this study we detect and analyze this non-linear term in a set of appropriately defined timeslice simulations for the year 2045 with the Chemistry-Climate-Model EMAC. The causal processes of the non-linear interactions are studied in more detail by separating the relative ozone changes in the contribution from chemistry (production and loss) and transport. This allows us to identify not only feedbacks between chemistry and temperature but also between chemistry and dynamics, i.e. ozone transport.

  7. Nonlinear response of modelled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past

    NASA Astrophysics Data System (ADS)

    Meul, S.; Oberländer-Hayn, S.; Abalichin, J.; Langematz, U.

    2015-06-01

    In the recent past, the evolution of stratospheric ozone (O3) was affected by both increasing ozone depleting substances (ODSs) and greenhouse gases (GHGs). The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealised set of time slice simulations with the chemistry-climate model EMAC. Due to nonlinearity the past ozone loss is diminished throughout the stratosphere, with a maximum reduction of 1.2 % at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1 % due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4) reduces the abundance of halogen radicals significantly. The temperature-induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH) during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region but increases in the SH midlatitudes. The existence of nonlinearities implies that future ozone change due to ODS decline slightly depends on the

  8. Distinguishing the impacts of ozone-depleting substances and well-mixed greenhouse gases on Arctic stratospheric ozone and temperature trends

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Polvani, Lorenzo M.; Solomon, Susan

    2014-04-01

    Whether stratospheric cooling due to increases in well-mixed greenhouse gases (WMGHG) could increase the depletion of Arctic stratospheric ozone has been the subject of scientific and public attention for decades. Here we provide evidence that changes in the concentrations of ozone-depleting substances (ODS), not WMGHG, have been the primary driver of observed Arctic lower stratospheric trends in both ozone and temperature. We do so by analyzing polar cap ozone and temperature trends in reanalysis data: these clearly suggest that both trends are mainly driven by ODS in the lower stratosphere. This observation-based finding is supported by results from a stratosphere-resolving chemistry-climate model driven with time-varying ODS and WMGHG, specified in isolation and in combination. Taken together, these results provide strong evidence that ODS are the main driver of changes in the Arctic lower stratospheric temperatures and ozone, whereas WMGHG are the primary driver of changes in the upper stratosphere.

  9. OZONE DEPLETION AND THE AIR-SEA EXCHANGE OF GREENHOUSE AND CHEMICALLY REACTIVE TRACE GASES

    EPA Science Inventory

    One of the most important aspects of global change is that of stratospheric ozone depletion and the resulting increase in UV radiation reaching the surface of the Earth. Some 70% of the Earth surface is covered by water containing an extremely complicated milieu of organic and in...

  10. Ozone Depletion by Hydrofluorocarbons

    NASA Astrophysics Data System (ADS)

    Hurwitz, M.; Fleming, E. L.; Newman, P. A.; Li, F.; Mlawer, E. J.; Cady-Pereira, K. E.; Bailey, R.

    2015-12-01

    Hydrofluorocarbons (HFCs) are second-generation replacements for the chlorofluorocarbons (CFCs), halons and other substances that caused the 'ozone hole'. Atmospheric concentrations of HFCs are projected to increase dramatically in the coming decades. Coupled chemistry-climate simulations forced by these projections show that HFCs will impact the global atmosphere in 2050. As strong radiative forcers, HFCs modulate atmospheric temperature, thereby changing ozone-destroying catalytic cycles and enhancing the stratospheric circulation. These changes lead to a weak depletion of stratospheric ozone. Sensitivity simulations with the NASA Goddard Space Flight Center (GSFC) 2D model show that HFC-125 is the most important contributor to atmospheric change in 2050, as compared with HFC-23, HFC-32, HFC-134a and HFC-143a. Incorporating the interactions between chemistry, radiation and dynamics, for a likely 2050 climate, ozone depletion potentials (ODPs) for HFCs range from 4.3x10-4 to 3.5x10-2; previously HFCs were assumed to have negligible ODPs since these species lack chlorine or bromine atoms. The ozone impacts of HFCs are further investigated with the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). The GEOSCCM is a three-dimensional, fully coupled ocean-atmosphere model with interactive stratospheric chemistry. Sensitivity simulations in which CO2, CFC-11 and HCFC-22 are enhanced individually are used as proxies for the atmospheric response to the HFC concentrations expected by the mid-21st century. Sensitivity simulations provide quantitative estimates of the impacts of these greenhouse gases on global total ozone, and can be used to assess their effects on the recovery of Antarctic ozone.

  11. O(1D) kinetic study of key ozone depleting substances and greenhouse gases.

    PubMed

    Baasandorj, Munkhbayar; Fleming, Eric L; Jackman, Charles H; Burkholder, James B

    2013-03-28

    A key stratospheric loss process for ozone depleting substances (ODSs) and greenhouse gases (GHGs) is reaction with the O((1)D) atom. In this study, rate coefficients, k, for the O((1)D) atom reaction were measured for the following key halocarbons: chlorofluorocarbons (CFCs) CFCl3 (CFC-11), CF2Cl2 (CFC-12), CFCl2CF2Cl (CFC-113), CF2ClCF2Cl (CFC-114), CF3CF2Cl (CFC-115); hydrochlorofluorocarbons (HCFCs) CHF2Cl (HCFC-22), CH3CClF2 (HCFC-142b); and hydrofluorocarbons (HFCs) CHF3 (HFC-23), CHF2CF3 (HFC-125), CH3CF3 (HFC-143a), and CF3CHFCF3 (HFC-227ea). Total rate coefficients, kT, corresponding to the loss of the O((1)D) atom, were measured over the temperature range 217-373 K using a competitive reactive technique. kT values for the CFC and HCFC reactions were >1 × 10(-10) cm(3) molecule(-1) s(-1), except for CFC-115, and the rate coefficients for the HFCs were in the range (0.095-0.72) × 10(-10) cm(3) molecule(-1) s(-1). Rate coefficients for the CFC-12, CFC-114, CFC-115, HFC-23, HFC-125, HFC-143a, and HFC-227ea reactions were observed to have a weak negative temperature dependence, E/R ≈ -25 K. Reactive rate coefficients, kR, corresponding to the loss of the halocarbon, were measured for CFC-11, CFC-115, HCFC-22, HCFC-142b, HFC-23, HFC-125, HFC-143a, and HFC-227ea using a relative rate technique. The reactive branching ratio obtained was dependent on the composition of the halocarbon and the trend in O((1)D) reactivity with the extent of hydrogen and chlorine substitution is discussed. The present results are critically compared with previously reported kinetic data and the discrepancies are discussed. 2D atmospheric model calculations were used to evaluate the local and global annually averaged atmospheric lifetimes of the halocarbons and the contribution of O((1)D) chemistry to their atmospheric loss. The O((1)D) reaction was found to be a major global loss process for CFC-114 and CFC-115 and a secondary global loss process for the other molecules included

  12. Students' Understanding of the Greenhouse Effect, the Societal Consequences of Reducing CO2 Emissions and the Problem of Ozone Layer Depletion.

    ERIC Educational Resources Information Center

    Andersson, Bjorn; Wallin, Anita

    2000-01-01

    Contributes to the growing body of knowledge about students' conceptions and views of environmental and natural resource issues. Questions 9th and 12th grade Swedish students' understandings of the greenhouse effect, reduction of CO2 emissions, and the depletion of the ozone layer. Observes five models of the greenhouse effect that appear among…

  13. A Three-Tier Diagnostic Test to Assess Pre-Service Teachers' Misconceptions about Global Warming, Greenhouse Effect, Ozone Layer Depletion, and Acid Rain

    ERIC Educational Resources Information Center

    Arslan, Harika Ozge; Cigdemoglu, Ceyhan; Moseley, Christine

    2012-01-01

    This study describes the development and validation of a three-tier multiple-choice diagnostic test, the atmosphere-related environmental problems diagnostic test (AREPDiT), to reveal common misconceptions of global warming (GW), greenhouse effect (GE), ozone layer depletion (OLD), and acid rain (AR). The development of a two-tier diagnostic test…

  14. Concept Formation in Environmental Education: 14-Year Olds' Work on the Intensified Greenhouse Effect and the Depletion of the Ozone Layer. Research Report

    ERIC Educational Resources Information Center

    Osterlind, Karolina

    2005-01-01

    A case study is presented describing the work of three pupils in the upper level of compulsory school. The pupils were learning about the intensified greenhouse effect and the depletion of the ozone layer. In their work, the need for certain domain-specific knowledge becomes apparent; for example, understanding such concepts as photosynthesis,…

  15. Revisiting Antarctic Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  16. Ozone depletion by hydrofluorocarbons

    NASA Astrophysics Data System (ADS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Mlawer, Eli; Cady-Pereira, Karen; Bailey, Roshelle

    2015-10-01

    Atmospheric concentrations of hydrofluorocarbons (HFCs) are projected to increase considerably in the coming decades. Chemistry climate model simulations forced by current projections show that HFCs will impact the global atmosphere increasingly through 2050. As strong radiative forcers, HFCs increase tropospheric and stratospheric temperatures, thereby enhancing ozone-destroying catalytic cycles and modifying the atmospheric circulation. These changes lead to a weak depletion of stratospheric ozone. Simulations with the NASA Goddard Space Flight Center 2-D model show that HFC-125 is the most important contributor to HFC-related atmospheric change in 2050; its effects are comparable to the combined impacts of HFC-23, HFC-32, HFC-134a, and HFC-143a. Incorporating the interactions between chemistry, radiation, and dynamics, ozone depletion potentials (ODPs) for HFCs range from 0.39 × 10-3 to 30.0 × 10-3, approximately 100 times larger than previous ODP estimates which were based solely on chemical effects.

  17. Stratospheric ozone depletion

    PubMed Central

    Rowland, F. Sherwood

    2006-01-01

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  18. Stratospheric ozone depletion.

    PubMed

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  19. A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling

    NASA Astrophysics Data System (ADS)

    Manzini, E.; Steil, B.; Brühl, C.; Giorgetta, M. A.; Krüger, K.

    2003-07-01

    The sensitivity of the middle atmosphere circulation to ozone depletion and increase in greenhouse gases is assessed by performing multiyear simulations with a chemistry-climate model. Three simulations with fixed boundary conditions have been carried out: one simulation for the near-past (1960) and two simulations for the near-present (1990 and 2000) conditions, including changes in greenhouse gases, in total organic chlorine, and in average sea surface temperatures. Changes in ozone are simulated interactively by the coupled model. It is found that in the stratosphere, ozone decreases, and that in the Antarctic, the ozone hole develops in both the 1990 and the 2000 simulations but not in the 1960 simulation, as observed. The simulated temperature decreases in the stratosphere and mesosphere from the near past to the present, with the largest changes at the stratopause and at the South Pole in the lower stratosphere, in agreement with current knowledge of temperature trends. In the Arctic lower stratosphere, a cooling in March with respect to the 1960 simulation is found only for the 2000 simulation. Wave activity emerging from the troposphere is found to be comparable in the winters of the 1960 and 2000 simulations, suggesting that ozone depletion and greenhouse gases increase contribute to the 2000-1960 March cooling in the Arctic lower stratosphere. These results therefore provide support to the interpretation that the extreme low temperatures observed in March in the last decade can arise from radiative and chemical processes, although other factors cannot be ruled out. The comparison of the 1960 and 2000 simulations shows an increase in downwelling in the mesosphere at the time of cooling in the lower stratosphere (in March in the Arctic; in October in the Antarctic). The mesospheric increase in downwelling can be explained as the response of the gravity waves to the stronger winds associated with the cooling in the lower stratosphere. Planetary waves appear

  20. Cosmic-Ray Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Change

    NASA Astrophysics Data System (ADS)

    Lu, Q.-B.

    2013-07-01

    This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl4 and HCFCs), CO2, total O3, lower stratospheric temperatures and global surface temperatures. For O3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 25 % of the Antarctic O3 hole is found, while no recovery of O3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO2 concentration during 1850-1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96-0.97 is found between corrected or uncorrected global surface temperature and total

  1. United Kingdom Deriving Emissions linked to Climate Change Network: greenhouse gas and ozone depleting substance measurements from a UK network of tall towers

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran; O'Doherty, Simon; Young, Dickon; Grant, Aoife; Manning, Alistair; Simmonds, Peter; Oram, Dave; Sturges, Bill; Derwent, Richard

    2016-04-01

    Real-time, high-frequency measurement networks are essential for investigating the emissions of gases linked with climate change and stratospheric ozone depletion. These networks can be used to verify greenhouse gas (GHG) and ozone depleting substances (ODS) emission inventories for the Kyoto and Montreal Protocols. Providing accurate and reliable country- and region-specific emissions to the atmosphere are critical for reporting to the UN agencies. The United Kingdom Deriving Emissions linked to Climate Change (UK DECC) Network, operating since 2012, is distinguished by its capability to measure at high-frequency, the influence of all of the important species in the Kyoto and Montreal Protocols from the UK, Ireland and Continental Europe. Data obtained from the UK DECC network are also fed into the European Integrated Carbon Observation System (ICOS). This presentation will give an overview of the UK DECC Network, detailing the analytical techniques used to determine the suite of GHGs and ODSs, as well as the calibration strategy used within the network. Interannual results of key GHGs from the network will also be presented.

  2. Children's Models of Understanding of Two Major Global Environmental Issues (Ozone Layer and Greenhouse Effect).

    ERIC Educational Resources Information Center

    Boyes, Edward; Stanisstreet, Martin

    1997-01-01

    Aims to quantify the models that 13- and 14 year-old students hold about the causes of the greenhouse effect and ozone layer depletion. Assesses the prevalence of those ideas that link the two phenomena. Twice as many students think that holes in the ozone layer cause the greenhouse effect than think the greenhouse effect causes ozone depletion.…

  3. Policies on global warming and ozone depletion

    SciTech Connect

    Green, B.

    1987-04-01

    The recent discovery of a dramatic seasonal drop in the amount of ozone over Antarctica has catalyzed concern for protection of stratospheric ozone, the layer of gas that shields the entire planet from excess ultraviolet radiation. Conservative scientific models predict about a 5% reduction in the amount of global ozone by the middle of the next century, with large local variations. The predicted global warming from increased emissions of greenhouse gases will also have differing effects on local climate and weather conditions and consequently on agriculture. Although numerous uncertainties are associated with both ozone depletion and a global warming, there is a consensus that world leaders need to address the problems. The US Congress is now beginning to take note of the task. In this article, one representative outlines some perceptions of the problems and the policy options available to Congress.

  4. Issues in Stratospheric Ozone Depletion.

    NASA Astrophysics Data System (ADS)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  5. Ozone depletion, paradigms, and politics

    SciTech Connect

    Iman, R.L.

    1993-10-01

    The destruction of the Earth`s protective ozone layer is a prime environmental concern. Industry has responded to this environmental problem by: implementing conservation techniques to reduce the emission of ozone-depleting chemicals (ODCs); using alternative cleaning solvents that have lower ozone depletion potentials (ODPs); developing new, non-ozone-depleting solvents, such as terpenes; and developing low-residue soldering processes. This paper presents an overview of a joint testing program at Sandia and Motorola to evaluate a low-residue (no-clean) soldering process for printed wiring boards (PWBs). Such processes are in widespread use in commercial applications because they eliminate the cleaning operation. The goal of this testing program was to develop a data base that could be used to support changes in the mil-specs. In addition, a joint task force involving industry and the military has been formed to conduct a follow-up evaluation of low-residue processes that encompass the concerns of the tri-services. The goal of the task force is to gain final approval of the low-residue technology for use in military applications.

  6. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  7. Children's Models of the Ozone Layer and Ozone Depletion.

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  8. Halocarbon ozone depletion and global warming potentials

    NASA Technical Reports Server (NTRS)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  9. SCISAT to study ozone depletion

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The Canadian Space Agency's SCISAT satellite began its mission to study the depletion of the ozone layer, following a successful launch on 12 August.The goal for the atmospheric chemistry experiment, which is SCISAT's mission, is to improve the scientific understanding of the complex chemical changes occurring in the upper atmosphere, particularly in the far north, according to Canada's Minister of Industry, Allan Rock.

  10. Biomedical consequences of ozone depletion

    NASA Astrophysics Data System (ADS)

    Coohill, Thomas P.

    1994-07-01

    It is widely agreed that a portion of the earth's protective stratospheric ozone layer is being depleted. The major effect of this ozone loss will be an increase in the amount of ultraviolet radiation (UV reaching the biosphere. This increase will be completely contained within the UVB (290nm - 320nm). It is imperative that assessments be made of the effects of this additional UVB on living organisms. This requires a detailed knowledge of the UVB photobiology of these life forms. One analytical technique to aid in the approximations is the construction of UV action spectra for such important biological end-points as human skin cancer, cataracts, immune suppression; plant photosynthesis and crop yields; and aquatic organism responses to UVB, especially the phytoplankton. Combining these action spectra with the known solar spectrum (and estimates for various ozone depletion scenarios) can give rise to a series of effectiveness spectra for these parameters. This manuscript gives a first approximation, rough estimate, for the effectiveness spectra for some of these bioresponses, and a series of crude temporary values for how a 10% ozone loss would affect the above end-points. These are not intended to masquerade as final answers, but rather, to serve as beginning attempts for a process which should be continually refined. It is hoped that these estimates will be of some limited use to agencies, such as government and industry, that have to plan now for changes in human activities that might alter future atmospheric chemistry in a beneficial manner.

  11. A Three-Tier Diagnostic Test to Assess Pre-Service Teachers' Misconceptions about Global Warming, Greenhouse Effect, Ozone Layer Depletion, and Acid Rain

    NASA Astrophysics Data System (ADS)

    Ozge Arslan, Harika; Cigdemoglu, Ceyhan; Moseley, Christine

    2012-07-01

    This study describes the development and validation of a three-tier multiple-choice diagnostic test, the atmosphere-related environmental problems diagnostic test (AREPDiT), to reveal common misconceptions of global warming (GW), greenhouse effect (GE), ozone layer depletion (OLD), and acid rain (AR). The development of a two-tier diagnostic test procedure as described by Treagust constitutes the framework for this study. To differentiate a lack of knowledge from a misconception, a certainty response index is added as a third tier to each item. Based on propositional knowledge statements, related literature, and the identified misconceptions gathered initially from 157 pre-service teachers, the AREPDiT was constructed and administered to 256 pre-service teachers. The Cronbach alpha reliability coefficient of the pre-service teachers' scores was estimated to be 0.74. Content and face validations were established by senior experts. A moderate positive correlation between the participants' both-tiers scores and their certainty scores indicated evidence for construct validity. Therefore, the AREPDiT is a reliable and valid instrument not only to identify pre-service teachers' misconceptions about GW, GE, OLD, and AR but also to differentiate these misconceptions from lack of knowledge. The results also reveal that a majority of the respondents demonstrated limited understandings about atmosphere-related environmental problems and held six common misconceptions. Future studies could test the AREPDiT as a tool for assessing the misconceptions held by pre-service teachers from different programs as well as in-service teachers and high school students.

  12. Polar stratospheric clouds and ozone depletion

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  13. The Case of Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Lambright, W. Henry

    2005-01-01

    While the National Aeronautics and Space Administration (NASA) is widely perceived as a space agency, since its inception NASA has had a mission dedicated to the home planet. Initially, this mission involved using space to better observe and predict weather and to enable worldwide communication. Meteorological and communication satellites showed the value of space for earthly endeavors in the 1960s. In 1972, NASA launched Landsat, and the era of earth-resource monitoring began. At the same time, in the late 1960s and early 1970s, the environmental movement swept throughout the United States and most industrialized countries. The first Earth Day event took place in 1970, and the government generally began to pay much more attention to issues of environmental quality. Mitigating pollution became an overriding objective for many agencies. NASA's existing mission to observe planet Earth was augmented in these years and directed more toward environmental quality. In the 1980s, NASA sought to plan and establish a new environmental effort that eventuated in the 1990s with the Earth Observing System (EOS). The Agency was able to make its initial mark via atmospheric monitoring, specifically ozone depletion. An important policy stimulus in many respects, ozone depletion spawned the Montreal Protocol of 1987 (the most significant international environmental treaty then in existence). It also was an issue critical to NASA's history that served as a bridge linking NASA's weather and land-resource satellites to NASA s concern for the global changes affecting the home planet. Significantly, as a global environmental problem, ozone depletion underscored the importance of NASA's ability to observe Earth from space. Moreover, the NASA management team's ability to apply large-scale research efforts and mobilize the talents of other agencies and the private sector illuminated its role as a lead agency capable of crossing organizational boundaries as well as the science-policy divide.

  14. Record Arctic ozone depletion could occur again

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    In the winter of 2010-2011, ozone levels above the Arctic declined to record lows, creating the first Arctic ozone hole, similar to the well-known Antarctic ozone hole. Scientists believe the ozone depletion was due partly to unusually cold temperatures in the stratosphere above the Arctic, as colder stratospheric temperatures make ozone-destroying chemicals such as chlorine more active. As global climate change continues, the Arctic stratosphere is expected to get colder, but levels of ozone-destroying chemicals should decline, as emissions of these chemicals were banned by the Montreal Protocol. To try to learn more about Arctic ozone dynamics and determine whether the Arctic ozone hole is likely to recur, Sinnhuber et al. looked at satellite observations of temperature, ozone, water vapor, and chemicals that affect ozone in the Arctic atmosphere. They also used a model to determine how sensitive ozone levels are to stratospheric temperatures and chemistry. They found that their model accurately reproduced measured conditions. Their model suggests that stratospheric temperatures 1°C lower than in the 2010-2011 winter would result in locally nearly complete ozone depletion in the Arctic lower stratosphere with current levels of chemicals. A 10% reduction in ozone-depleting chemicals would be offset by a 1°C decrease in stratospheric temperatures.

  15. Scientific assessment of ozone depletion: 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past few years, there have been highly significant advances in the understanding of the impact of human activities on the Earth's stratospheric ozone layer and the influence of changes in chemical composition of the radiative balance of the climate system. Specifically, since the last international scientific review (1989), there have been five major advances: (1) global ozone decreases; (2) polar ozone; (3) ozone and industrial halocarbons; (4) ozone and climate relations; and (5) ozone depletion potentials (ODP's) and global warming potentials (GWP's). These topics and others are discussed.

  16. Impact of greenhouse gases on the Earth's ozone layer

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the

  17. The 1988 Antarctic ozone depletion - Comparison with previous year depletions

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Stolarski, Richard S.; Krueger, Arlin J.

    1989-01-01

    The 1988 spring Antarctic ozone depletion was observed by TOMS to be substantially smaller than in recent years. The minimum polar total ozone values declined only 15 percent during September 1988, compared to nearly 50 percent during September 1987. At southern midlatitudes, exceptionally high total ozone values were recorded beginning in July 1988. The total integrated southern hemispheric ozone increased rapidly during the Austral spring, approaching 1980 levels during October. The high midlatitude total ozone values were associated with a substantial increase in eddy activity as indicated by the standard deviation in total ozone in the zonal band 30-60 deg S. Mechanisms through which the increased midlatitude eddy activity could disrupt the formation of the Antarctic ozone hole are briefly discussed.

  18. The 1988 Antarctic ozone depletion: Comparison with previous year depletions

    SciTech Connect

    Schoeberl, M.R.; Stolarski, R.S.; Krueger, A.J. )

    1989-05-01

    The 1988 spring Antarctic ozone depletion was observed by TOMS to be substantially smaller than in recent years. The minimum polar total ozone values declined only 15% during September 1988 compared to nearly 50% during September 1987. At southern midlatitudes, exceptionally high total ozone values were recorded beginning in July 1988. The total integrated southern hemispheric ozone increased rapidly during the Austral spring, approaching 1980 levels during October. The high midlatitude total ozone values were associated with a substantial increase in eddy activity as indicated by the standard deviation in total ozone in the zonal band 30{degree}-60{degree}S. The standard deviation also correlates with the QBO cycling of the tropical winds. Mechanisms through which the increased midlatitude eddy activity could disrupt the formation of the Antarctic ozone hole are briefly discussed.

  19. Global Warming: Lessons from Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2010-11-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of Arkansas have developed a conceptual understanding of energy and of electromagnetism, including the electromagnetic spectrum, I devote a lecture (and a textbook section) to ozone depletion and another lecture (and section) to global warming. Humankind came together in 1986 and quickly solved, to the extent that humans can solve it, ozone depletion. We could do the same with global warming, but we haven't and as yet there's no sign that we will. The parallel between the ozone and global warming cases, and the difference in outcomes, are striking and instructive.

  20. Ozone depletion and chlorine loading potentials

    NASA Technical Reports Server (NTRS)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  1. Global Warming: Lessons from Ozone Depletion

    ERIC Educational Resources Information Center

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  2. Depletion in Antarctic ozone and associated climatic change

    SciTech Connect

    Lal, M.

    1992-03-01

    Perhaps the most significant discovery in the atmospheric sciences in the last decade has been the observation of large decreases in ozone. These losses in ozone occur during austral spring, and from 1979 the severity of the depletion increased non-monotonically until September of 1987 when the lowest column ozone amounts ever recorded were observed in Antarctica. While the surprising ozone hole in the remote icy continent of Antarctica emphasizes the potential importance and complexity of processes in the high latitude stratosphere, it also motivated this study on the nature of greenhouse effect on polar climate due to perturbations in column ozone amount in association with observed increases in other trace gases in the Antarctic atmosphere. The authors have examined the potential climatic effects of changes in the concentration of greenhouse gases on thermal structure of the Antarctic atmosphere using both steady-state and time-dependent climate models. When they incorporate the greenhouse effect of increases in methane, nitrous oxide, carbon dioxide and chlorofluorocarbons in association with decrease in ozone at the levels of maximum concentration in the radiative flux computations for the Antarctic region, the net result is a surface warming which is in fair agreement with that inferred from mean Antarctic temperature series.

  3. Concentrations of Ozone-Depleting Substances

    EPA Science Inventory

    This indicator presents trends in global concentrations of ozone-depleting substances (ODSs) from 1992 to 2009. This trend is an important environmental issue, because ODSs can deplete the atmosphere's ability to shield the Earth from harmful ultraviolet rays.

  4. Copenhagen delegates advance phaseout of ozone depleters

    SciTech Connect

    Kirschner, E.

    1992-12-09

    As expected, delegates at the United Nations Ozone Layer Conference in Copenhagen sped up ozone depleter phaseouts from the 1987 Montreal Protocol and the 1990 London amendments. The changes bring the worldwide production phaseout of chlorofluorocarbons (CFCs) and other ozone depleters in developed countries in line with U.S. and European plans announced earlier this year. Adjustments to the protocol, which are binding on the signatories, change the phaseout for CFC, carbon tetrachloride, and methyl chloroform production and consumption to January 1, 1996 from 2000. The 75% reduction of 1986 levels from CFCs by January 1, 1994 is a compromise between European pressure for an 85% cut and the US goal of 70%. Halon production is to end January 1, 1994, as anticipated. Developing countries continue to have a 10-year grace period. Friends of the Earth ozone campaign director Liz Cook counters that the phaseout dates were scheduled with concern for the chemical industry, not for the ozone layer.

  5. Correlation between cosmic rays and ozone depletion.

    PubMed

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle. PMID:19392251

  6. Ozone depletion and climate change: impacts on UV radiation.

    PubMed

    McKenzie, R L; Aucamp, P J; Bais, A F; Björn, L O; Ilyas, M; Madronich, S

    2011-02-01

    The Montreal Protocol is working, but it will take several decades for ozone to return to 1980 levels. The atmospheric concentrations of ozone depleting substances are decreasing, and ozone column amounts are no longer decreasing. Mid-latitude ozone is expected to return to 1980 levels before mid-century, slightly earlier than predicted previously. However, the recovery rate will be slower at high latitudes. Springtime ozone depletion is expected to continue to occur at polar latitudes, especially in Antarctica, in the next few decades. Because of the success of the Protocol, increases in UV-B radiation have been small outside regions affected by the Antarctic ozone hole, and have been difficult to detect. There is a large variability in UV-B radiation due to factors other than ozone, such as clouds and aerosols. There are few long-term measurements available to confirm the increases that would have occurred as a result of ozone depletion. At mid-latitudes UV-B irradiances are currently only slightly greater than in 1980 (increases less than ~5%), but increases have been substantial at high and polar latitudes where ozone depletion has been larger. Without the Montreal Protocol, peak values of sunburning UV radiation could have been tripled by 2065 at mid-northern latitudes. This would have had serious consequences for the environment and for human health. There are strong interactions between ozone depletion and changes in climate induced by increasing greenhouse gases (GHGs). Ozone depletion affects climate, and climate change affects ozone. The successful implementation of the Montreal Protocol has had a marked effect on climate change. The calculated reduction in radiative forcing due to the phase-out of chlorofluorocarbons (CFCs) far exceeds that from the measures taken under the Kyoto protocol for the reduction of GHGs. Thus the phase-out of CFCs is currently tending to counteract the increases in surface temperature due to increased GHGs. The amount of

  7. 1,2-dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E)- and (Z)- Stereoisomers

    NASA Astrophysics Data System (ADS)

    Papadimitriou, V. C.; McGillen, M. R.; Smith, S. C.; Jubb, A. M.; Portmann, R. W.; Hall, B. D.; Fleming, E. L.; Jackman, C. H.; Burkholder, J. B.

    2013-12-01

    1,2-dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) is currently used in medical applications, as inhaled non-immobilizer amnesiac, in limited quantities and has recently been considered as a potential chlorofluoro/hydrofluoro-carbon replacement compound. R-316c usage is not restricted under the Montreal Protocol, although, R-316c represents a potent ozone depleting substance and greenhouse gas. In this work, a combination of laboratory studies of infrared absorption spectra, kinetic, and photolysis processes were performed for the (E)- and (Z)- stereoisomers of R-316c to enable an evaluation of their atmospheric lifetimes, ozone depletion (ODPs) and global warming potentials (GWPs). More specifically, O(1D), OH, and O3 reaction rate coefficients, as well as UV absorption spectra, including temperature dependence, and photolysis quantum yields and stable photolysis end-products were determined. The results from these studies will be presented. R-316c lifetimes and ODPs were evaluated using a 2-D atmospheric chemical model. Both isomers of R-316c were shown to be long-lived substances, primarily removed in the stratosphere by UV photolysis, with large ODPs, >0.3. A line-by-line radiative transfer model was used to calculate radiative efficiencies and, thus, GWPs. The GWPs for both isomers are substantial, ~5000 on the 100-year time horizon. In this presentation, we highlight the need for a thorough evaluation of the atmospheric processing of proposed replacement substances prior to usage and their inevitable emission into the atmosphere. The results of such studies enable policy makers to make informed decisions.

  8. Simulation of polar ozone depletion: An update

    NASA Astrophysics Data System (ADS)

    Solomon, Susan; Kinnison, Doug; Bandoro, Justin; Garcia, Rolando

    2015-08-01

    We evaluate polar ozone depletion chemistry using the specified dynamics version of the Whole Atmosphere Community Climate Model for the year 2011. We find that total ozone depletion in both hemispheres is dependent on cold temperatures (below 192 K) and associated heterogeneous chemistry on polar stratospheric cloud particles. Reactions limited to warmer temperatures above 192 K, or on binary liquid aerosols, yield little modeled polar ozone depletion in either hemisphere. An imposed factor of three enhancement in stratospheric sulfate increases ozone loss by up to 20 Dobson unit (DU) in the Antarctic and 15 DU in the Arctic in this model. Such enhanced sulfate loads are similar to those observed following recent relatively small volcanic eruptions since 2005 and imply impacts on the search for polar ozone recovery. Ozone losses are strongly sensitive to temperature, with a test case cooler by 2 K producing as much as 30 DU additional ozone loss in the Antarctic and 40 DU in the Arctic. A new finding of this paper is the use of the temporal behavior and variability of ClONO2 and HCl as indicators of the efficacy of heterogeneous chemistry. Transport of ClONO2 from the southern subpolar regions near 55-65°S to higher latitudes near 65-75°S provides a flux of NOx from more sunlit latitudes to the edge of the vortex and is important for ozone loss in this model. Comparisons between modeled and observed total column and profile ozone perturbations, ClONO2 abundances, and the rate of change of HCl bolster confidence in these conclusions.

  9. The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling

    NASA Astrophysics Data System (ADS)

    Dennison, Fraser; McDonald, Adrian; Morgenstern, Olaf

    2015-04-01

    The aim of this study is to investigate the influence of ozone depletion and recovery on the Southern Annular Mode (SAM) and stratosphere-troposphere coupling. Using the NIWA-UKCA chemistry-climate model, we compare reference runs with forcing due to greenhouse gases and ozone depleting substances to sensitivity simulations in which ozone depleting substances are fixed at their 1960 levels. We find that ozone depletion leads to an increased frequency of extreme anomalies and increased persistence of the SAM in the stratosphere as well as stronger, more persistent stratosphere-troposphere coupling. This change in the strength of the stratosphere-troposphere coupling has implications for extended range weather forecasting. Currently the stratosphere provides an appreciable amount of predictability to the troposphere on time scales of one or two months, however we find that this effect reduces over time as stratospheric ozone recovers to pre-ozone hole levels towards the latter part of this century.

  10. NON-OZONE DEPLETING MOBILE HEAT PUMP

    EPA Science Inventory

    To address the growing environmental and logistical burden posed by continued use of Class I ozone depleting chemicals (ODCs), this co-funded Environmental Security Technology Certification Program (ESTCP) and United States Air Force (USAF) Science and Technology project sought t...

  11. Possible ozone depletions following nuclear explosions

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Turco, R. P.

    1975-01-01

    The degree of depletion of the ozone layer ensuing after delivery of strategic nuclear warheads (5000 and 10,000 Mton) due to production of nitrogen oxides is theoretically assessed. Strong depletions are calculated for 16-km and 26-km altitudes, peaking 1-2 months after detonation and lasting for three years, while a significant depletion at 36 km would peak after one year. Assuming the explosions occur between 30 and 70 deg N, these effects should be much more pronounced in this region than over the Northern Hemisphere as a whole. It is concluded that Hampson's concern on this matter (1974) is well-founded.-

  12. Contribution of some ozone depleting substances (ODS) and greenhouse gases (GHGs) on total column ozone growth at Srinagar (34°N, 74.8°E), India

    NASA Astrophysics Data System (ADS)

    Jana, P. K.; Saha, D. K.; Sarkar, D.

    2013-02-01

    A critical analysis has been made on the contribution of CFC-11, CFC-12, CFC-113, CH3Cl, CH3Br, CCl4, CH3CCl3, HCFCs, halons, WMO (World Meteorological Organization) minor constituents, CH4, N2O and water vapour to the variation of total column ozone (TCO) concentration at the station in Srinagar (34°N, 74.8°E), India from 1992 to 2003. With the implementation of Montreal Protocol, though the concentrations of CFC-11, CFC-113, CH3Cl, CH3Br, CCl4 and CH3CCl3 had decreased, the concentrations of CFC-12, HCFCs, halons, WMO minor constituents, CH4, N2O and water vapour had increased, as a result of which TCO had risen from 1992 to 2003 at the above station. The nature of yearly variations of concentrations of the above ozone depleting substances and GHGs as well as ozone has been presented. Possible explanations for build-up of TCO have also been offered.

  13. Arctic Ozone Depletion from UARS MLS Measurements

    NASA Technical Reports Server (NTRS)

    Manney, G. L.

    1995-01-01

    Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.

  14. Ozone depletion: implications for the veterinarian.

    PubMed

    Kopecky, K E

    1978-09-15

    Man has inadvertently modified the stratosphere. There is a good possibility that the ozone layer is being depleted by the use of jet aircraft (SST), chlorofluoromethane propellants, and nitrogen fertilizers. Under unpolluted conditions, the production of ozone equals its destruction. By man's intervention, however, the destruction may exceed the production. The potential outcome is increased intensity of solar ultraviolet (280-400 nm) radiation and penetration to the earth's surface of previously absorbed wavelengths below about 280 nm. The increased ultraviolet radiation would increase the likelihood of skin cancer in man and ocular squamous cell carcinoma in cattle. The climate also might be modified, possibly in an undesirable way. PMID:568617

  15. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Grooß, Jens-Uwe

    2014-04-01

    Lu's "cosmic-ray-driven electron-induced reaction (CRE) theory" is based on the assumption that the CRE reaction of halogenated molecules (e.g., chlorofluorocarbons (CFCs), HCl, ClONO2) adsorbed or trapped in polar stratospheric clouds in the winter polar stratosphere is the key step in forming photoactive halogen species that are the cause of the springtime ozone hole. This theory has been extended to a warming theory of halogenated molecules for climate change. In this comment, we discuss the chemical and physical foundations of these theories and the conclusions derived from the theories. First, it is unclear whether the loss rates of halogenated molecules induced by dissociative electron attachment (DEA) observed in the laboratory can also be interpreted as atmospheric loss rates, but even if this were the case, the impact of DEA-induced reactions on polar chlorine activation and ozone loss in the stratosphere is limited. Second, we falsify several conclusions that are reported on the basis of the CRE theory: There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1-2 years, and the reported detection of a pronounced recovery (by about 20-25%) in Antarctic total ozone measurements by the year 2010 is in error. There are also conclusions about the future development of sea ice and global sea level which are fundamentally flawed because Archimedes' principle is neglected. Many elements of the CRE theory are based solely on correlations between certain datasets which are no substitute for providing physical and chemical mechanisms causing a particular behavior noticeable in observations. In summary, the CRE theory cannot be considered as an independent, alternative mechanism for polar stratospheric ozone loss and the conclusions on recent and future surface temperature and global sea level change do not have a physical basis.

  16. The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling

    NASA Astrophysics Data System (ADS)

    Dennison, Fraser W.; McDonald, Adrian J.; Morgenstern, Olaf

    2015-07-01

    The aim of this study is to investigate the influence of ozone depletion and recovery on the Southern Annular Mode (SAM) and stratosphere-troposphere coupling. Using the National Institute of Water and Atmospheric Research-United Kingdom Chemistry and Aerosols chemistry-climate model, we compare reference runs that include forcing due to greenhouse gases and ozone-depleting substances to sensitivity simulations in which ozone-depleting substances are fixed at their 1960 levels. We find that ozone depletion leads to an increased frequency of extreme anomalies and increased persistence of the SAM in the stratosphere as well as stronger, more persistent stratosphere-troposphere coupling. Currently, the stratosphere provides an appreciable amount of predictability to the troposphere on timescales of 1 or 2 months; however, we find that this effect reduces over time as stratospheric ozone recovers to preozone hole levels toward the latter part of this century.

  17. Replacements For Ozone-Depleting Foaming Agents

    NASA Technical Reports Server (NTRS)

    Blevins, Elana; Sharpe, Jon B.

    1995-01-01

    Fluorinated ethers used in place of chlorofluorocarbons and hydrochlorofluorocarbons. Replacement necessary because CFC's and HCFC's found to contribute to depletion of ozone from upper atmosphere, and manufacture and use of them by law phased out in near future. Two fluorinated ethers do not have ozone-depletion potential and used in existing foam-producing equipment, designed to handle liquid blowing agents soluble in chemical ingredients that mixed to make foam. Any polyurethane-based foams and several cellular plastics blown with these fluorinated ethers used in processes as diverse as small batch pours, large sprays, or double-band lamination to make insulation for private homes, commercial buildings, shipping containers, and storage tanks. Fluorinated ethers proved useful as replacements for CFC refrigerants and solvents.

  18. 1,2-Dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) a potent ozone depleting substance and greenhouse gas: atmospheric loss processes, lifetimes, and ozone depletion and global warming potentials for the (E) and (Z) stereoisomers.

    PubMed

    Papadimitriou, Vassileios C; McGillen, Max R; Smith, Shona C; Jubb, Aaron M; Portmann, Robert W; Hall, Bradley D; Fleming, Eric L; Jackman, Charles H; Burkholder, James B

    2013-10-31

    were calculated using the 2-D model to be 0.46 and 0.54, respectively. Infrared absorption spectra for (E)- and (Z)-R-316c were measured at 296 K and used to estimate their radiative efficiencies (REs) and GWPs; 100-year time-horizon GWPs of 4160 and 5400 were obtained for (E)- and (Z)-R-316c, respectively. Both isomers of R-316c are shown in this work to be long-lived ozone depleting substances and potent greenhouse gases. PMID:24079521

  19. 1,2-Dichlorohexafluoro-Cyclobutane (1,2-c-C4F6Cl2, R-316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E) and (Z) stereoisomers

    NASA Technical Reports Server (NTRS)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Smith, Shona C.; Jubb, Aaron M.; Portmann, Robert W.; Hall, Bradley D.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    )-R-316c were calculated using the 2-D model to be 0.46 and 0.54, respectively. Infrared absorption spectra for (E)- and (Z)-R-316c were measured at 296 K and used to estimate their radiative efficiencies (REs) and GWPs; 100-year time-horizon GWPs of 4160 and 5400 were obtained for (E)- and (Z)-R-316c, respectively. Both isomers of R-316c are shown in this work to be long-lived ozone depleting substances and potent greenhouse gases.

  20. Stratospheric ozone depletion and animal health.

    PubMed

    Mayer, S J

    1992-08-01

    There is an increasing concern over ozone depletion and its effects on the environment and human health. However, the increase in ultraviolet-B radiation (UV-B) that would result from significant losses of ozone is also potentially harmful to animals. Any increase in disease in domestic species would not only have serious animal welfare implications but may also be economically important. The diseases which are likely to increase if ozone depletion continues include the squamous cell carcinomas of the exposed, non-pigmented areas of cats, cattle, sheep and horses. Uberreiter's syndrome in dogs is also associated with exposure to UV-B and may be expected to increase, as may the severity of conditions such as infectious keratoconjunctivitis (New Forest eye) in cattle. Aquaculture systems in which fish often have little or no protection by shading may also be at risk. Cataracts and skin lesions have been associated with the exposure of farmed fish to ultraviolet radiation and have resulted in significant losses. PMID:1529513

  1. Climatic consequences of observed ozone loss in the 1980s: Relevance to the greenhouse problem

    NASA Technical Reports Server (NTRS)

    Molnar, G. I.; Ko, M. K. W.; Zhou, S.; Sze, N. D.

    1994-01-01

    Recently published findings using satellite and ground-based observations indicate a large winter and summertime decrease in the column abundance of ozone at high and middle latitudes during the last decade. Using a simple ozone depletion profile reflecting the observed decrease in ozone column abundance, Ramaswamy et al. (1992) showed that the negative radiative forcing that results from the ozone decrease between 1979 and 1990 approximately balanced the greenhouse climate forcing due to the chlorofluorocarbons emitted during the same period. Here, we extend the forcing analyses by calculating the equilibrium surface temperature response explicitly, using an updated version of the Atmospheric and Environmental Research two-dimensional radiative-dynamical seasonal model. The calculated steady state responses suggest that the surface cooling due to the ozone depletion in the lower stratosphere offsets about 30% of the surface warming due to greenhouse gases emitted during the same decade. The temperature offset is roughly a factor of 2 larger than the corresponding offset obtained from forcing intercomparisons. This result appears to be related to the climate feedback mechanisms operating in the model troposphere, most notably that associated with atmospheric meridional heat transport. Thus a comprehensive assessment of ozone change effects on the predicted greenhouse warming cannot be accomplished based on forcing evaluations alone. Our results also show that calculations adopting a seasonally and latitudinally dependent ozone depletion profile produce a negative forcing about 50% smaller than that calculated for the depletion profile used by Ramaswamy et al. (1992).

  2. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    NASA Astrophysics Data System (ADS)

    Nuccitelli, Dana; Cowtan, Kevin; Jacobs, Peter; Richardson, Mark; Way, Robert G.; Blackburn, Anne-Marie; Stolpe, Martin B.; Cook, John

    2014-04-01

    Lu (2013) (L13) argued that solar effects and anthropogenic halogenated gases can explain most of the observed warming of global mean surface air temperatures since 1850, with virtually no contribution from atmospheric carbon dioxide (CO2) concentrations. Here we show that this conclusion is based on assumptions about the saturation of the CO2-induced greenhouse effect that have been experimentally falsified. L13 also confuses equilibrium and transient response, and relies on data sources that have been superseeded due to known inaccuracies. Furthermore, the statistical approach of sequential linear regression artificially shifts variance onto the first predictor. L13's artificial choice of regression order and neglect of other relevant data is the fundamental cause of the incorrect main conclusion. Consideration of more modern data and a more parsimonious multiple regression model leads to contradiction with L13's statistical results. Finally, the correlation arguments in L13 are falsified by considering either the more appropriate metric of global heat accumulation, or data on longer timescales.

  3. Ozone depletion: Can global action rescue the deteriorating ozone layer

    SciTech Connect

    Cooper, M.H.

    1992-04-03

    Until recently, severe depletion of the Earth's protective ozone layer - which blocks harmful solar radiation - was thought to be confined to a [open quotes]hole[close quotes] over Antarctica. But in February NASA scientists raised new concerns when they reported that the 25-mile-wide layer apparently is thinning over the Northern Hemisphere and other populated areas. Findings to be released this month may even show that a second hole has opened over northern New England, Canada, northern Europe, Russia and China. Led by the US, once complacent governments are now scrambling to accelerate the elimination of chlorofluorocarbons (CFCs) and other chemicals that destroy ozone. Their response to this global threat could provide a model for international cooperation in combating similar environmental dangers.

  4. A search for relativistic electron induced stratospheric ozone depletion

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  5. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2007.

    PubMed

    2008-01-01

    This year the Montreal Protocol celebrates its 20th Anniversary. In September 1987, 24 countries signed the Montreal Protocol on Substances that Deplete the Ozone Layer. Today 191 countries have signed and have met strict commitments on phasing out of ozone depleting substances with the result that a 95% reduction of these substances has been achieved. The Montreal Protocol has also contributed to slowing the rate of global climate change, since most of the ozone depleting substances are also effective greenhouse gases. Even though much has been achieved, the future of the stratospheric ozone layer relies on full compliance of the Montreal Protocol by all countries for the remaining substances, including methyl bromide, as well as strict monitoring of potential risks from the production of substitute chemicals. Also the ozone depleting substances existing in banks and equipment need special attention to prevent their release to the stratosphere. Since many of the ozone depleting substances already in the atmosphere are long-lived, recovery cannot be immediate and present projections estimate a return to pre-1980 levels by 2050 to 2075. It has also been predicted that the interactions of the effects of the ozone layer and that of other climate change factors will become increasingly important. PMID:18274006

  6. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  7. LINKAGE BETWEEN CLIMATE CHANGE AND STRATOSPHERIC OZONE DEPLETION

    EPA Science Inventory

    Two primary areas link the issue of stratospheric ozone depletion to global climate change: atmospheric processes and ecological processes. tmospheric processes establish a linkage through the dual roles of certain trace gases in promoting global warming and in depleting the ozon...

  8. Research on mitigation of stratospheric ozone depletion

    SciTech Connect

    Wong, A.Y. )

    1994-08-01

    Chlorine atoms released from CFCs by solar Ultraviolet (UV) radiation and from natural sources, are effective catalytic agents for the destruction of stratospheric ozone. Research into large-scale mitigation methods is based on charging the chlorine radical, converting it into negative ions of low reactivity. Generation of charges-and subsequent removal of chlorine ions by atmospheric platforms and electromagnetic waves are described. This method is generally applicable to all halogens. This research is guided by the principle that the solution should be as non-intrusive environmentally as possible; i.e. no chemicals are to be injected. The large-scale mitigation requires the process to be energy efficient and to utilize energy sources already present in the atmosphere. Because of the wide variety of remediation concepts, each is being tested using a combination of laboratory and field experiments together with computer modeling. The first laboratory demonstration of ozone depletion and subsequent recovery due to charge injection is presented. [copyright][ital American] [ital Institute] [ital of] [ital Physics

  9. International aspects of restrictions of ozone-depleting substances

    SciTech Connect

    McDonald, S.C.

    1989-10-01

    This report summarizes international efforts to protect stratospheric ozone. Also included in this report is a discussion of activities in other countries to meet restrictions in the production and use of ozone-depleting substances. Finally, there is a brief presentation of trade and international competitiveness issues relating to the transition to alternatives for the regulated chlorofluorocarbons (CFCs) and halons. The stratosphere knows no international borders. Just as the impact of reduced stratospheric ozone will be felt internationally, so protection of the ozone layer is properly an international effort. Unilateral action, even by a country that produces and used large quantities of ozone-depleting substances, will not remedy the problem of ozone depletion if other countries do not follow suit. 32 refs., 7 tabs.

  10. About ozone depletion in stratosphere over Brazil in last decade

    NASA Astrophysics Data System (ADS)

    Martin, Inácio M.; Imai, Takeshi; Seguchi, Tomio

    The depletion of stratospheric ozone, resulting from the emission of chlorofluorocarbons (CFCs), has become a major issue since 1980. The decrease in stratospheric ozone over the polar regions has been pronounced at the South Pole than at the North Pole. In mid-latitude and equatorial regions, ozone depletion becomes less important; it depends on seasonal effects and on the characteristics of a particular region. The detailed mechanism by which the polar ozone holes form is different from that for the mid-latitude thinning, but the most important process in both trends is the catalytic destruction of ozone by atomic chlorine and bromine. The main source of these halogen atoms in the stratosphere is photodissociation of CFC compounds, commonly called freons, and of bromofluorocarbon compounds known as halons. These compounds are transported into the stratosphere after being emitted at the surface. Both ozone depletion mechanisms strengthened as emissions of CFCs and halons increased [1]. Measurements of stratospheric ozone carried out on several locations in Brazil and on the South Pole in the last decade (1996-2005), using detectors placed on ground, stratospheric balloons and Earth Probe TOMS satellites, are presented here. Detailed series analysis from 1980 up to the present describes a mean ozone depletion of 4[1] http://en.wikipedia.org/wiki/Ozone/depletion.

  11. Ozone depletion: 20 Years after the alarm

    SciTech Connect

    Not Available

    1994-08-15

    Scientific curiosity in 1973 led to the challenge of determining the ultimate atmospheric fate of the chlorofluoromethanes, CFC-11 (CCl[sub 3]F) and CFC-12 (CCl[sub 2]F[sub 2]), whose presence at measurable levels in surface air had been detected only two years earlier. In retrospect, the decision to pursue the chemistry of CFC molecules to their final destruction and beyond foreordained an unusual outcome because CFCs are chemically inert and easily survive under almost all natural conditions. By midsummer 1994, the world is well on its way in transition to a CFC-free economy, although not yet to a CFC-free atmosphere. The rates of increase in atmospheric concentration for the three major CFCs (CFC-11, -12, and -113) have all slowed markedly in response to the restrictions of the revised Montreal protocol. Because of their long lifetimes, however, significant but gradually diminishing quantities of CFCs will remain in the atmosphere throughout the 21st century. Atomic chlorine will continue to be released into the stratosphere as long as CFCs persist, and ozone depletion will follow. The existence of the Montreal protocol and the agreement among industrial, governmental, and university scientists on its wisdom offers considerable promise for the handling of future global environmental problems.

  12. Observations of ozone depletion associated with solar proton events

    NASA Technical Reports Server (NTRS)

    Mcpeters, R. D.; Jackman, C. H.; Stassinopoulos, E. G.

    1981-01-01

    Ozone profiles from the solar proton events (SPE) of January and September 1971 and August 1972 were obtained after the backscattered ultraviolet (BUV) measured radiances were corrected for the direct effects of protons on the instrument. The SPE of August 1972 produced an ozone depletion of 15% at 42 km that persisted for one month in both northern and southern polar regions. This long recovery time indicates that NO(x) was produced in a quantity sufficient to alter the ozone chemistry. The two SPE in 1971 were of moderate size, but produced ozone depletions of 10-30% at 50 km with a 36 hour recovery time. This rapid recovery is consistent with the assumption that HO(x) is responsible for altering the ozone chemistry (Weeks et al., 1972). The magnitude of the observed depletion, however, exceeds that predicted by the chemical models.

  13. STRATOSPHERIC OZONE DEPLETION: A FOCUS ON EPA'S RESEARCH

    EPA Science Inventory

    In September of 1987 the United States, along with 26 other countries, signed a landmark treaty to limit and subsequently, through revisions, phase out the production of all significant ozone depleting substances. Many researchers suspected that these chemicals, especially chl...

  14. Ozone Depletion, UVB and Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    1999-01-01

    The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.

  15. Ozone depletion during solar proton events in solar cycle 21

    NASA Technical Reports Server (NTRS)

    Mcpeters, R. D.; Jackman, C. H.

    1985-01-01

    Ozone profile data from the Solar Backscattered Ultraviolet Instrument on Nimbus 7 from 1979 to the present and clear cases of ozone destruction associated with five sudden proton events (SPEs) on June 7, 1979, August 21, 1979, October 13-14, 1981, July 13, 1982, and December 8, 1982 are found. During the SPE on July 13, 1982, the largest of this solar cycle, no depletion at all at 45 km is observed, but there is a 15 percent ozone depletion at 50 km increasing to 27 percent at 55 km, all at a solar zenith angle of 85 deg. A strong variation of the observed depletion with solar zenith angle is found, with maximum depletion occurring at the largest zenith angles (near 85 deg) decreasing to near zero for angles below about 70 deg. The observed depletion is short lived, disappearing within hours of the end of the SPE.

  16. Ozone Depletion Potential of CH3Br

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Ko, Malcolm K. W.; Sze, Nien Dak; Scott, Courtney; Rodriquez, Jose M.; Weisenstein, Debra K.

    1998-01-01

    The ozone depletion potential (ODP) of methyl bromide (CH3Br) can be determined by combining the model-calculated bromine efficiency factor (BEF) for CH3Br and its atmospheric lifetime. This paper examines how changes in several key kinetic data affect BEF. The key reactions highlighted in this study include the reaction of BrO + H02, the absorption cross section of HOBr, the absorption cross section and the photolysis products of BrON02, and the heterogeneous conversion of BrON02 to HOBR and HN03 on aerosol particles. By combining the calculated BEF with the latest estimate of 0.7 year for the atmospheric lifetime of CH3Br, the likely value of ODP for CH3Br is 0.39. The model-calculated concentration of HBr (approximately 0.3 pptv) in the lower stratosphere is substantially smaller than the reported measured value of about I pptv. Recent publications suggested models can reproduce the measured value if one assumes a yield for HBr from the reaction of BrO + OH or from the reaction of BrO + H02. Although the DeAlore et al. evaluation concluded any substantial yield of HBr from BrO + HO2 is unlikely, for completeness, we calculate the effects of these assumed yields on BEF for CH3Br. Our calculations show that the effects are minimal: practically no impact for an assumed 1.3% yield of HBr from BrO + OH and 10% smaller for an assumed 0.6% yield from BrO + H02.

  17. An improved measure of ozone depletion in the Antarctic stratosphere

    NASA Astrophysics Data System (ADS)

    Huck, P. E.; Tilmes, S.; Bodeker, G. E.; Randel, W. J.; McDonald, A. J.; Nakajima, H.

    2007-06-01

    Ozone mass deficit is a commonly used index to quantify Antarctic ozone depletion. However, as currently defined, this measure is not robust with respect to reflecting chemical ozone loss within the Antarctic vortex. Therefore, in this study, a new definition of ozone mass deficit (OMD) is developed. The 220 Dobson Unit based value currently used as the threshold for ozone depletion has been replaced with a new ozone background representative of pre-ozone-hole conditions. Second, the new OMD measure is based on ozone measurements within the dynamical vortex. A simpler method is also proposed whereby calculation of the vortex edge is avoided by using the average latitude of the vortex edge (62°S) as the spatial limiting contour. An indication of the errors in OMD introduced when using this simpler approach is provided. By comparing vortex average total ozone loss (defined using the new background and limiting contour) with partial column accumulated chemical ozone loss calculated with the tracer-tracer correlation method for 1992-2004 and in more detail for 1996 and 2003, it is shown that the new OMD measure is representative of chemical ozone loss within the vortex. In addition the new criteria have been applied to the calculation of ozone hole area. The sensitivity of the new measures to uncertainties in the background have been quantified. The new ozone loss measures underestimate chemical ozone loss in highly dynamically disturbed years (2002 and 2004), and criteria for identifying these years are presented. The new measures should aid chemistry-climate model intercomparisons since ozone biases in the models are avoided.

  18. Polar stratospheric clouds and ozone depletion

    SciTech Connect

    Toon, O.B. ); Turco, R.P. )

    1991-06-01

    During the Antarctic winter, strange and often invisible clouds form in the stratosphere over the pole. These clouds of ice and frozen nitric acid play a crucial role in the chemical cycle responsible for the recent appearance of the annual ozone hole. Their chemistry removes compounds that would normally trap ozone-destroying free chlorine produced by the breakdown of CFCs. The paper describes these clouds, their formation, and the mechanisms by which these clouds help chlorine destroy ozone.

  19. The changing ozone depletion potential of N2O in a future climate

    NASA Astrophysics Data System (ADS)

    Revell, L. E.; Tummon, F.; Salawitch, R. J.; Stenke, A.; Peter, T.

    2015-11-01

    Nitrous oxide (N2O), which decomposes in the stratosphere to form nitrogen oxides (NOx), is currently the dominant anthropogenic ozone-depleting substance emitted. Ozone depletion potentials (ODPs) of specific compounds, commonly evaluated for present-day conditions, were developed for long-lived halocarbons and are used by policymakers to inform decision-making around protection of the ozone layer. However, the effect of N2O on ozone will evolve in the future due to changes in stratospheric dynamics and chemistry induced by rising levels of greenhouse gases. Despite the fact that NOx-induced ozone loss slows with increasing concentrations of CO2 and CH4, we show that ODPN2O for year 2100 varies under different scenarios and is mostly larger than ODPN2O for year 2000. This occurs because the traditional ODP approach is tied to ozone depletion induced by CFC-11, which is also sensitive to CO2 and CH4. We therefore suggest that a single ODP for N2O is of limited use.

  20. Ozone depletion: causes, potential effects and remedies.

    PubMed

    Miller, B J; Bogle, S P

    1993-05-01

    The ozone layer functions as a protective screen, filtering out most of the sun's harmful ultraviolet (UV) rays. This protective layer is located in the stratosphere between 15km and 35km above the earth's surface. Ozone is actually a form of oxygen. In the lower atmosphere, oxygen atoms commonly bond with each other in pairs. This molecule, abbreviated as O2, is the form of oxygen we need to breathe. Ozone is a more unstable and uncommon molecule made up of 3 oxygen atoms and is abbreviated O3. PMID:8320088

  1. Ozone depletion and climate change: impacts on UV radiation.

    PubMed

    Bais, A F; McKenzie, R L; Bernhard, G; Aucamp, P J; Ilyas, M; Madronich, S; Tourpali, K

    2015-01-01

    We assess the importance of factors that determine the intensity of UV radiation at the Earth's surface. Among these, atmospheric ozone, which absorbs UV radiation, is of considerable importance, but other constituents of the atmosphere, as well as certain consequences of climate change, can also be major influences. Further, we assess the variations of UV radiation observed in the past and present, and provide projections for the future. Of particular interest are methods to measure or estimate UV radiation at the Earth's surface. These are needed for scientific understanding and, when they are sufficiently sensitive, they can serve as monitors of the effectiveness of the Montreal Protocol and its amendments. Also assessed are several aspects of UV radiation related to biological effects and health. The implications for ozone and UV radiation from two types of geoengineering methods that have been proposed to combat climate change are also discussed. In addition to ozone effects, the UV changes in the last two decades, derived from measurements, have been influenced by changes in aerosols, clouds, surface reflectivity, and, possibly, by solar activity. The positive trends of UV radiation observed after the mid-1990s over northern mid-latitudes are mainly due to decreases in clouds and aerosols. Despite some indications from measurements at a few stations, no statistically significant decreases in UV-B radiation attributable to the beginning of the ozone recovery have yet been detected. Projections for erythemal irradiance (UVery) suggest the following changes by the end of the 21(st) century (2090-2100) relative to the present time (2010-2020): (1) Ozone recovery (due to decreasing ozone-depleting substances and increasing greenhouse gases) would cause decreases in UVery, which will be highest (up to 40%) over Antarctica. Decreases would be small (less than 10%) outside the southern Polar Regions. A possible decline of solar activity during the 21(st) century

  2. Antarctic springtime ozone depletion computed from temperature observations

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.; Schoeberl, Mark R.; Newman, Paul A.

    1988-01-01

    An observationally based, mechanistic dynamical model is used to simulate the decline of total ozone during September and October for the years 1979 through 1986. Vertical velocities derived from observed stratospheric temperature changes and computed radiative heating rates are used to advect an ozone mixing ratio profile during the Antarctic spring period. An early August 1982 Syowa balloonsonde ozone profile is used to initialize the computations. The model reasonably simulates the September and October changes in total ozone, considering the uncertainties in the observed data and the radiative heating. The simulated decline is found to be very sensitive to the choice of initial ozone profile and to small changes in the radiative heating. The results of this study suggest that the dynamical hypothesis of the Antarctic ozone depletion is both quantitatively credible and consistent with the observed temperature changes.

  3. The chemistry of stratospheric ozone depletion

    SciTech Connect

    Tuck, A.

    1997-01-01

    In the early 1980`s the Antarctic ozone hole was discovered. The ozone loss was 50 percent in the lower stratosphere during springtime, which is made possible by the conditions over Antarctica in winter. The absence of sunlight in the stratosphere during polar winter causes the stratospheric air column there to cool and sink, drawing air from lower latitudes into the upper stratosphere. This lower-latitude air gets closer to the Earth`s axis of rotation as it moves poleward and is accelerated by the need to conserve angular momentum to greater and greater westerly wind speeds forming a vortex bounded by the polar night jet stream. The air entering the vortex contains reactive ozone-destroying species. The observed ozone losses occurred concurrently with increases of chlorofluorocarbon increases.

  4. STRATOSPHERIC OZONE DEPLETION: IMPLICATIONS FOR MARINE ECOSYSTEMS

    EPA Science Inventory

    The stratospheric ozone layer shields the earth from biologically damaging solar ultraviolet radiation. Chlorofluorocarbons (CFCs), used in refrigerants, etc. and halons, used in fire extinguishers, escape into the lower atmosphere and migrate to the stratosphere, destroying the ...

  5. Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Chipperfield, M. P.; Montzka, S. A.; Rap, A.; Dhomse, S.; Feng, W.

    2015-03-01

    Halogens released from long-lived anthropogenic substances, such as chlorofluorocarbons, are the principal cause of recent depletion of stratospheric ozone, a greenhouse gas. Recent observations show that very short-lived substances, with lifetimes generally under six months, are also an important source of stratospheric halogens. Short-lived bromine substances are produced naturally by seaweed and phytoplankton, whereas short-lived chlorine substances are primarily anthropogenic. Here we used a chemical transport model to quantify the depletion of ozone in the lower stratosphere from short-lived halogen substances, and a radiative transfer model to quantify the radiative effects of that ozone depletion. According to our simulations, ozone loss from short-lived substances had a radiative effect nearly half that from long-lived halocarbons in 2011 and, since pre-industrial times, has contributed a total of about -0.02 W m-2 to global radiative forcing. We find natural short-lived bromine substances exert a 3.6 times larger ozone radiative effect than long-lived halocarbons, normalized by halogen content, and show atmospheric levels of dichloromethane, a short-lived chlorine substance not controlled by the Montreal Protocol, are rapidly increasing. We conclude that potential further significant increases in the atmospheric abundance of short-lived halogen substances, through changing natural processes or continued anthropogenic emissions, could be important for future climate.

  6. The Effect of Climate Change on Ozone Depletion through Changes in Stratospheric Water Vapour

    NASA Technical Reports Server (NTRS)

    Kirk-Davidoff, Daniel B.; Hintsa, Eric J.; Anderson, James G.; Keith, David W.

    1999-01-01

    Several studies have predicted substantial increases in Arctic ozone depletion due to the stratospheric cooling induced by increasing atmospheric CO2 concentrations. But climate change may additionally influence Arctic ozone depletion through changes in the water vapor cycle. Here we investigate this possibility by combining predictions of tropical tropopause temperatures from a general circulation model with results from a one-dimensional radiative convective model, recent progress in understanding the stratospheric water vapor budget, modelling of heterogeneous reaction rates and the results of a general circulation model on the radiative effect of increased water vapor. Whereas most of the stratosphere will cool as greenhouse-gas concentrations increase, the tropical tropopause may become warmer, resulting in an increase of the mean saturation mixing ratio of water vapor and hence an increased transport of water vapor from the troposphere to the stratosphere. Stratospheric water vapor concentration in the polar regions determines both the critical temperature below which heterogeneous reactions on cold aerosols become important (the mechanism driving enhanced ozone depletion) and the temperature of the Arctic vortex itself. Our results indicate that ozone loss in the later winter and spring Arctic vortex depends critically on water vapor variations which are forced by sea surface temperature changes in the tropics. This potentially important effect has not been taken into account in previous scenarios of Arctic ozone loss under climate change conditions.

  7. Ozone layer depletion simulation in an Environmental Chemistry course.

    NASA Astrophysics Data System (ADS)

    Cano, G. S.; Gavilán, I. C.; Garcia-Reynoso, J. A.; Santos, E.; Mendoza, A.; Perea, B.

    2015-12-01

    The reactions taking place between the ozone (O3) and various compounds present in the stratosphere has been studied extensively. When the balance between these reactions breakdown, destruction of ozone is favored. Here we create an experiment for and Environmental Chemistry laboratory course where students evaluate the ozone behavior by comparing its reactivity to various physical and chemical conditions; and observe the destruction of ozone by the action of halogenated compounds by means of volumetric technic. The conditions used are: (1) Ozone vs. Time; (2) Ozone + UV vs. Time; (3) Ozone + halogenated compound vs. Time; and (4) Ozone + UV + halogenated compound vs. Time. The results show that the O3 breaks down rapidly within about 25 min (Fig). They also explain the chemical reactions that occur in the destruction and generation of the ozone layer and demonstrate ozone depletion through the presence of halogenated compounds. The aim of this work is to bring the knowledge gained from theory into practice and thus the possibility of developing a critical attitude towards various environmental problems that arise today.

  8. Accord on the deepening problem of ozone depletion

    SciTech Connect

    Not Available

    1987-10-01

    In September representatives of 24 or 46 negotiating nations signed a treaty designed to freeze and eventually cut the world's consumption of chlorofluorocarbons (CFCs), a class of chemicals implicated in the depletion of the ozone layer. The treaty also calls for a freeze on halons, a class of similar ozone-depleting chemicals used primarily in fire extinguishers. Yet, even under the scenario prescribed by the treaty, a 2% loss of ozone by the mid-21st century is still forecast. At the same time as the treaty signing, scientists organized by the US National Aeronautics and Space Administration were flying airplanes into the upper reaches of the ozone layer over Antarctica. They found the ozone hole, which appears each spring, this year to be the largest yet - reflecting a 55% decrease in ozone concentration from 1979. High levels of chlorine were recorded along with low levels of ozone. The scientists also found that ozone levels could drop dramatically in the course of one day, indicating that the meteorological dynamics of the South Pole could be contributing to the loss caused by the chlorine. In the US there are signs of a movement to eliminate the use of CFCs in manufacturing the plastic foams that hold fast-food hamburgers.

  9. Effect of temperature coupling on ozone depletion prediction

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Butler, D. M.; Stolarski, R. S.

    1978-01-01

    The effects of chlorine perturbations on both the temperature and the ozone distribution in the stratosphere have been studied using a simplified radiative-photochemical model. The model solves the hydrostatic equation for total density in a self-consistent manner as the temperature is changed. Radiative coupling is found to have a significant effect on both the thermal structure and the ozone distribution, particularly in the 35-50-km region. By increasing the ClX mixing ratio by 5.0 ppbv, the temperature in this region is decreased by 5 to 10 K with a slight increase below 30 km. The local ozone depletion around 40 km due to added ClX is smaller compared with the estimate made by keeping the temperature fixed to the ambient condition. However, the integrated effect of radiative coupling is to increase the calculated column ozone depletion by 15% to 25% in this model.

  10. Ozone dynamics and snow-atmosphere exchanges during ozone depletion events at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Boylan, Patrick; Johnson, Bryan; Oltmans, Sam; Fairall, Chris; Staebler, Ralf; Weinheimer, Andrew; Orlando, John; Knapp, David J.; Montzka, Denise D.; Flocke, Frank; Frieß, Udo; Sihler, Holger; Shepson, Paul B.

    2012-10-01

    The behavior of lower atmospheric ozone and ozone exchanges at the snow surface were studied using a suite of platforms during the Ocean-Atmosphere-Sea Ice-Snow (OASIS) Spring 2009 experiment at an inland, coastal site east of Barrow, Alaska. A major objective was to investigate if and how much chemistry at the snow surface at the site contributes to springtime ozone depletion events (ODEs). Between March 8 and April 16, seven ODEs, with atmospheric ozone dropping below 1.0 ppbv, were observed. The depth of the ozone-depleted layer was variable, extending from the surface to ˜200-800 m. ODEs most commonly occurred during low wind speed conditions with flow coming from the Arctic Ocean. Two high-sensitivity ozone chemiluminescence instruments were used to accurately define the remaining sub-ppbv ozone levels during ODEs. These measurements showed variable residual ODE ozone levels ranging between 0.010 and 0.100 ppbv. During the most extended ODE, when ozone remained below 1.0 ppbv for over 78 h, these measurements showed a modest ozone recovery or production in the early afternoon hours, resulting in increases in the ozone mixing ratio of 0.100 to 0.800 ppbv. The comparison between high-sensitivity ozone measurements and BrO measured by longpath differential absorption spectroscopy (DOAS) during ODEs indicated that at low ozone levels formation of BrO is controlled by the amount of available ozone. Measurements of ozone in air drawn from below the snow surface showed depleted ozone in the snowpack, with levels consistently remaining <6 ppbv independent of above-surface ambient air concentrations. The snowpack was always a sink of ozone. Ozone deposition velocities determined from ozone surface flux measurements by eddy covariance were on the order of 0.01 cm s-1, which is of similar magnitude as ozone uptake rates found over snow at other polar sites that are not subjected to ODEs. The results from these multiple platform measurements unequivocally show that snow

  11. Fundamental differences between Arctic and Antarctic ozone depletion.

    PubMed

    Solomon, Susan; Haskins, Jessica; Ivy, Diane J; Min, Flora

    2014-04-29

    Antarctic ozone depletion is associated with enhanced chlorine from anthropogenic chlorofluorocarbons and heterogeneous chemistry under cold conditions. The deep Antarctic "hole" contrasts with the generally weaker depletions observed in the warmer Arctic. An unusually cold Arctic stratospheric season occurred in 2011, raising the question of how the Arctic ozone chemistry in that year compares with others. We show that the averaged depletions near 20 km across the cold part of each pole are deeper in Antarctica than in the Arctic for all years, although 2011 Arctic values do rival those seen in less-depleted years in Antarctica. We focus not only on averages but also on extremes, to address whether or not Arctic ozone depletion can be as extreme as that observed in the Antarctic. This information provides unique insights into the contrasts between Arctic and Antarctic ozone chemistry. We show that extreme Antarctic ozone minima fall to or below 0.1 parts per million by volume (ppmv) at 18 and 20 km (about 70 and 50 mbar) whereas the lowest Arctic ozone values are about 0.5 ppmv at these altitudes. At a higher altitude of 24 km (30-mbar level), no Arctic data below about 2 ppmv have been observed, including in 2011, in contrast to values more than an order of magnitude lower in Antarctica. The data show that the lowest ozone values are associated with temperatures below -80 °C to -85 °C depending upon altitude, and are closely associated with reduced gaseous nitric acid concentrations due to uptake and/or sedimentation in polar stratospheric cloud particles. PMID:24733920

  12. Fundamental differences between Arctic and Antarctic ozone depletion

    PubMed Central

    Solomon, Susan; Haskins, Jessica; Ivy, Diane J.; Min, Flora

    2014-01-01

    Antarctic ozone depletion is associated with enhanced chlorine from anthropogenic chlorofluorocarbons and heterogeneous chemistry under cold conditions. The deep Antarctic “hole” contrasts with the generally weaker depletions observed in the warmer Arctic. An unusually cold Arctic stratospheric season occurred in 2011, raising the question of how the Arctic ozone chemistry in that year compares with others. We show that the averaged depletions near 20 km across the cold part of each pole are deeper in Antarctica than in the Arctic for all years, although 2011 Arctic values do rival those seen in less-depleted years in Antarctica. We focus not only on averages but also on extremes, to address whether or not Arctic ozone depletion can be as extreme as that observed in the Antarctic. This information provides unique insights into the contrasts between Arctic and Antarctic ozone chemistry. We show that extreme Antarctic ozone minima fall to or below 0.1 parts per million by volume (ppmv) at 18 and 20 km (about 70 and 50 mbar) whereas the lowest Arctic ozone values are about 0.5 ppmv at these altitudes. At a higher altitude of 24 km (30-mbar level), no Arctic data below about 2 ppmv have been observed, including in 2011, in contrast to values more than an order of magnitude lower in Antarctica. The data show that the lowest ozone values are associated with temperatures below −80 °C to −85 °C depending upon altitude, and are closely associated with reduced gaseous nitric acid concentrations due to uptake and/or sedimentation in polar stratospheric cloud particles. PMID:24733920

  13. Ozone depletion at temperature warmer than TNAT in the Arctic

    NASA Astrophysics Data System (ADS)

    Pommereau, J.; Goutail, F.; Pazmino, A.; Lefevre, F.; Pitts, M. C.

    2011-12-01

    The unprecedented ozone destruction in the Arctic vortex in 2011 that extended until the end of March offers a unique opportunity for testing the relationship between temperature, responsible for heterogeneous chlorine activation on PSCs and aerosols and the amplitude of ozone loss. Indeed, as shown by the total ozone evolution in the vortex during that winter from the SAOZ network compared to passive ozone simulations from the REPROBUS CTM, most of the total 39% total ozone depletion occurred after mid-February at a rate of near 0.8% /day when relatively low temperatures were still present in the Arctic. The evolution of ozone depletion is shown to fully match that of the cumulative area of temperatures below the chlorine activation threshold weighted by vortex sunlight illumination, assuming, as shown by Drlda and Mueller (2010), that chlorine activation occurs at 195 K at the 475 K level. However, if instead, the total integrated backscatter for combined liquid aerosols/PSCs inside the vortex reported by CALIPSO or the cumulated PSC surface at 191 K aligned to STS threshold are used, PSCs are seen to disappear in early March, that is three weeks before the end of ozone depletion. The suggestion is thus that chlorine activation takes place at temperature significantly warmer than that of NAT or STS PSC formation, on binary aerosol, still present and accounted for in the integrated backscatter, but of smaller surface area. The same analyses applied to all past winters since 1994 confirms the ozone depletion at relatively warm temperature in the absence of PSC. The mechanism involved is explored by a variety of model simulations, including or not, liquid binary aerosols, NAT and STS.

  14. Detecting ozone- and greenhouse gas-driven wind trends with observational data.

    PubMed

    Lee, Sukyoung; Feldstein, Steven B

    2013-02-01

    Modeling studies suggest that Antarctic ozone depletion and, to a lesser degree, greenhouse gas (GHG) increase have caused the observed poleward shift in the westerly jet during the austral summer. Similar studies have not been performed previously with observational data because of difficulties in separating the two contributions. By applying a cluster analysis to daily ERA-Interim data, we found two 7- to 11-day wind clusters, one resembling the models' responses to GHG forcing and the other resembling ozone depletion. The trends in the clusters' frequency of occurrence indicate that the ozone contributed about 50% more than GHG toward the jet shift, supporting the modeling results. Moreover, tropical convection apparently plays an important role for the GHG-driven trend. PMID:23372010

  15. Ozone depletion, related UVB changes and increased skin cancer incidence

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    1998-03-01

    Stratospheric ozone at middle latitudes shows a seasonal variation of about +/-20%, a quasi-biennial oscillation of 1-10% range and a long-term variation in which the level was almost steady up to about 1979 and declined thereafter to the present day by about 10%. These variations are expected to be reflected in solar UVB observed at the ground, but in an opposite direction. Thus UVB should have had a long-term increase of about 10-20%, which should cause an increase in skin cancer incidence of about 20-40%. Skin cancer incidence has increased all over the world, e.g. about 90% in USA during 1974-1990. It is popularly believed that this increase in skin cancer incidence is related to the recent ozone depletion. This seems to be incorrect, for two reasons. Firstly, the observed skin cancer increase is too large (90%) compared with the expected value (40%) from ozone depletion. Secondly, cancer does not develop immediately after exposure to solar UVB. The sunburns may occur within hours; but cancer development and detection may take years, even decades. Hence the observed skin cancer increase since 1974 (no data available for earlier periods) must have occurred due to exposure to solar UVB in the 1950s and 1960s, when there was no ozone depletion. Thus, the skin cancer increase must be attributed to harmful solar UVB levels existing even in the 1960s, accentuated later not by ozone depletion (which started only much later, by 1979) but by other causes, such as a longer human life span, better screening, increasing tendencies of sunbathing at beaches, etc., in affluent societies. On the other hand, the recent ozone depletion and the associated UVB increases will certainly take their toll; only that the effects will not be noticed now but years or decades from now. The concern for the future expressed in the Montreal Protocol for reducing ozone depletion by controlling CFC production is certainly justified, especially because increased UVB is harmful to animal and

  16. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  17. 1992 ozone depletion: A response to the Pinatubo eruption

    SciTech Connect

    Not Available

    1992-12-01

    This article focuses on the debate about whether or not the Mount Pinatubo eruption affected the springtime Antarctica ozone hole. By September 1992 the ozone hole was larger and growing at a faster pace than in previous years. However, confounding factors include an abrupt shift in the position of the polar vortex, disparity between data sets from satellite and balloon data, increasingly significant ozone loses at lower altitude and increase in depletion above 25 meters. Volcanic aerosols probably contributed but the extent still is unresolved.

  18. Antarctic winter mercury and ozone depletion events over sea ice

    NASA Astrophysics Data System (ADS)

    Nerentorp Mastromonaco, M.; Gårdfeldt, K.; Jourdain, B.; Abrahamsson, K.; Granfors, A.; Ahnoff, M.; Dommergue, A.; Méjean, G.; Jacobi, H.-W.

    2016-03-01

    During atmospheric mercury and ozone depletion events in the springtime in polar regions gaseous elemental mercury and ozone undergo rapid declines. Mercury is quickly transformed into oxidation products, which are subsequently removed by deposition. Here we show that such events also occur during Antarctic winter over sea ice areas, leading to additional deposition of mercury. Over four months in the Weddell Sea we measured gaseous elemental, oxidized, and particulate-bound mercury, as well as ozone in the troposphere and total and elemental mercury concentrations in snow, demonstrating a series of depletion and deposition events between July and September. The winter depletions in July were characterized by stronger correlations between mercury and ozone and larger formation of particulate-bound mercury in air compared to later spring events. It appears that light at large solar zenith angles is sufficient to initiate the photolytic formation of halogen radicals. We also propose a dark mechanism that could explain observed events in air masses coming from dark regions. Br2 that could be the main actor in dark conditions was possibly formed in high concentrations in the marine boundary layer in the dark. These high concentrations may also have caused the formation of high concentrations of CHBr3 and CH2I2 in the top layers of the Antarctic sea ice observed during winter. These new findings show that the extent of depletion events is larger than previously believed and that winter depletions result in additional deposition of mercury that could be transferred to marine and terrestrial ecosystems.

  19. IMPACT ON OZONE ATTAINMENT OF CFC (CHLOROFLUOROCARBON) CONTROLS USED TO PREVENT FUTURE DEPLETION OF STRATOSPHERIC OZONE

    EPA Science Inventory

    The paper discusses the impact on ozone attainment of chlorofluorocarbon (CFC) controls used to prevent future depletion of stratospheric ozone. It has been decided that allocated quotas offer the most attractive approach to limiting the use of CFCs and brominated compounds (halo...

  20. Oceanic bromoform emissions weighted by their ozone depletion potential

    NASA Astrophysics Data System (ADS)

    Tegtmeier, S.; Ziska, F.; Pisso, I.; Quack, B.; Velders, G. J. M.; Yang, X.; Krüger, K.

    2015-12-01

    At present, anthropogenic halogens and oceanic emissions of very short-lived substances (VSLSs) both contribute to the observed stratospheric ozone depletion. Emissions of the long-lived anthropogenic halogens have been reduced and are currently declining, whereas emissions of the biogenic VSLSs are expected to increase in future climate due to anthropogenic activities affecting oceanic production and emissions. Here, we introduce a new approach for assessing the impact of oceanic halocarbons on stratospheric ozone by calculating their ozone depletion potential (ODP)-weighted emissions. Seasonally and spatially dependent, global distributions are derived within a case-study framework for CHBr3 for the period 1999-2006. At present, ODP-weighted emissions of CHBr3 amount up to 50 % of ODP-weighted anthropogenic emissions of CFC-11 and to 9 % of all long-lived ozone depleting halogens. The ODP-weighted emissions are large where strong oceanic emissions coincide with high-reaching convective activity and show pronounced peaks at the Equator and the coasts with largest contributions from the Maritime Continent and western Pacific Ocean. Variations of tropical convective activity lead to seasonal shifts in the spatial distribution of the trajectory-derived ODP with the updraught mass flux, used as a proxy for trajectory-derived ODP, explaining 71 % of the variance of the ODP distribution. Future climate projections based on the RCP 8.5 scenario suggest a 31 % increase of the ODP-weighted CHBr3 emissions by 2100 compared to present values. This increase is related to a larger convective updraught mass flux in the upper troposphere and increasing emissions in a future climate. However, at the same time, it is reduced by less effective bromine-related ozone depletion due to declining stratospheric chlorine concentrations. The comparison of the ODP-weighted emissions of short- and long-lived halocarbons provides a new concept for assessing the overall impact of oceanic

  1. What Could Be Causing Global Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Singer, S. Fred

    1990-01-01

    The reported decline trend in global ozone between 1970 and 1986 may be in part an artifact of the analysis; the trend value appears to depend on the time interval selected for analysis--in relation to the 11-year solar cycle. If so, then the decline should diminish as one approaches solar maximum and includes data from 1987 to 1990. If the decline is real, its cause could be the result of natural and human factors other than just chlorofluorocarbons.

  2. The recent findings of the "Scientific Assessment of Ozone Depletion: 2010" and the World Avoided by the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Scientific Assessment Panel to the Montreal Protocol

    2011-12-01

    The ozone layer is the Earth's natural sunscreen, blocking harmful solar ultraviolet radiation. In 1974, Mario Molina and F. Sherwood Rowland proposed that the ozone layer could be depleted by chlorine released from human-produced chlorofluorocarbons (CFCs). Follow-up science investigations supported this hypothesis, leading to the landmark 1987 Montreal Protocol on Substances That Deplete the Ozone Layer (a protocol to the Vienna Convention for the Protection of the Ozone Layer). One of the Montreal Protocol provisions is that science assessments on ozone depletion be written and submitted to the signatory Parties every 4 years. In this talk, I will primarily focus on the science findings from the recently published "Scientific Assessment of Ozone Depletion: 2010". This assessment is written and reviewed (multiple times) by the international science community. The 2010 assessment is the latest in a long series of reports that provide the science foundation for the Montreal Protocol. This assessment demonstrates that the Montreal Protocol is working, and that there are early signs that ozone is beginning to respond to decreasing CFC levels. There are now state-of-the-art simulations that show that the ozone layer would have been largely destroyed if CFCs had not been regulated, and therefore extreme levels of UV radiation have been avoided. The 2010 assessment also spotlights new insights into the impact of ozone depletion on surface climate, and climate impacts on ozone. However, the assessment also reveals that greenhouse gases are modifying the stratosphere and that the ozone layer will evolve into a different state than its pre-industrial values - you can't go home again.

  3. Are recent Arctic ozone losses caused by increasing greenhouse gases?

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Polvani, Lorenzo M.

    2013-08-01

    has been suggested that the Arctic ozone losses observed in recent years might be a manifestation of climate change due to increasing greenhouse gases. We here offer evidence to the contrary, by focusing on the volume of polar stratospheric clouds (VPSC), a convenient proxy for polar ozone loss whose simplicity allows for easily reproducible results. First, we analyze the time series of VPSC in three reanalysis data sets and find no statistically significant trends in VPSC-nor changes in their probability density functions-over the period 1979-2011. Second, we analyze VPSC in a stratosphere-resolving chemistry-climate model forced uniquely with increasing greenhouse gases following the A1B scenario: here too, we find no significant changes in VPSC over the entire 21st century. Taken together, these results strongly suggest that the sporadic high ozone losses in recent years have not been caused by increasing greenhouse gases.

  4. Are recent Arctic ozone losses caused by increasing greenhouse gases?

    NASA Astrophysics Data System (ADS)

    Rieder, H.; Polvani, L. M.

    2013-12-01

    It has been suggested that the Arctic ozone losses observed in recent years might be a manifestation of climate change due to increasing greenhouse gases. We here offer evidence to the contrary, by focusing on the volume of polar stratospheric clouds (VPSC), a convenient proxy for polar ozone loss whose simplicity allows for easily reproducible results. First, we analyze the time series of VPSC in three reanalysis datasets and find no statistically significant trends in VPSC - nor changes in their probability density functions - over the period 1979-2011. Second, we analyze VPSC in a stratosphere-resolving chemistry-climate model forced uniquely with increasing greenhouse gases following the A1B scenario: here too, we find no significant changes in VPSC over the entire 21st century. Taken together, these results strongly suggest that the sporadic high ozone losses in recent years have not been caused by increasing greenhouse gases.

  5. EFFECTS OF STRATOSPHERE OZONE DEPLETION ON AQUATIC ORGANISMS

    EPA Science Inventory

    As a result of stratospheric ozone depletion, UV-Bradiation (290-320 nm) leaching aquatic environments is likely to increase over the next few decades. vailable information suggests that UV-B radiation can have a variety of deleterious effects on marine and freshwater ecosystems....

  6. The biological effects of ozone depletion.

    PubMed

    Young, A R

    1997-05-01

    Thinning of the ozone layer is predicted to result in increased levels of ultraviolet (UV) B radiation at the earth's surface. This effect has been confirmed by measurements made in relatively unpolluted areas such as Antarctica, the southern part of South America and at mid-to-high latitudes in the northern hemisphere. It has been harder to show in populated northern latitudes because of a number of confounding factors, notably weather systems and low level ozone pollution. Although UVB forms only a small proportion of the UV spectrum it has potent biological effects so that a small increase in penetration of UVB to the earth's surface has profound effects on a wide range of life forms. Most attention has been paid to the effects of an increase in UVB on human health, particularly the effects on skin cancer, resistance to infectious diseases and cataract formation. However, the effects of increased levels of UVB on other parts of the ecosystem, particularly on the primary producers in aquatic and terrestrial food chains, may be of even. PMID:9519507

  7. Depletion of Arctic ozone in the winter 1990

    NASA Technical Reports Server (NTRS)

    Koike, M.; Kondo, Y.; Hayashi, M.; Iwasaka, Y.; Newman, P. A.

    1991-01-01

    Ozone mixing ratios were measured by ozonesondes on board balloons launched from Esrange, near Kiruna, Sweden (68 deg N, 20 deg E) from January 11 to February 9, 1990. The data obtained prior to a sudden warming on February 7, 1990 show that at potential temperatures between 460 and 640 K, the ozone mixing ratio just inside the polar vortex was systematically smaller than that outside, the largest difference being 29 percent at around 525 K. The ozone mixing ratio at 525 K inside the vortex decreased at a rate of about 1.5 percent per day between January 26 and February 4. The temperatures simultaneously observed were quite often low enough to allow for formation of nitric acid trihydrate particles around this altitude. Depletion of ozone due to highly perturbed chemical conditions in late January and early February is strongly suggested.

  8. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances....

  9. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances....

  10. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances....

  11. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances....

  12. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances....

  13. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...)) for the calendar year in which the sale or use occurs; and (iii) The ozone-depletion factor... 26 Internal Revenue 17 2011-04-01 2011-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following...

  14. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...)) for the calendar year in which the sale or use occurs; and (iii) The ozone-depletion factor... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following...

  15. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 17 2012-04-01 2012-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes with respect to ozone-depleting chemicals (ODCs): (1) Tax on ODCs. Section 4681(a)(1) imposes a tax...

  16. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 17 2014-04-01 2014-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes with respect to ozone-depleting chemicals (ODCs): (1) Tax on ODCs. Section 4681(a)(1) imposes a tax...

  17. [Biomedical and economic consequences of stratosphere ozone depletion].

    PubMed

    Strzhizhovskiĭ, A D

    1998-01-01

    Information on possible human health-changes associated with stratosphere ozone depletion and amplification factor (% increase of the stick rate by 1% decrease of ozone) values for acute (erythema, keratitis, cataract, immunosuppression) and chronic (skin cancer, cataract) effects of natural UV-radiation was analysed. Amplification factor (AF) values for acute UV-effects increase with degree of ozone depletion. For degrees less than 12.5% they are independent of latitude and equal to 1.9 for erythema, 1.3-1.5 for keratitis, 1.7-2.3 for cataract and 0.9-1.1 for immunosuppression. AF values for incidence of non-melanoma skin cancer are independent of age, higher in males than females, and higher for squamous cell carcinoma, than for basal cell carcinoma. Their optimal estimations for whites equal to 2.7 for basal cell and 4.6 for squamous cell carcinoma. AF values for incidence of cutaneous malignant melanoma range between 1 and 2, for melanoma mortality--between 0.3 and 2. AF values for incidence of cataract range between 0.3 and 1.2 with optimal estimations between 0.6 and 0.8. Prognosis of non-melanoma skin cancer and cataract incidences, melanoma mortality and economic loss for different scenarios of stratosphere ozone depletion are presented. PMID:9633627

  18. Human Health Effects of Ozone Depletion From Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wey, Chowen (Technical Monitor)

    2001-01-01

    This report presents EPA's initial response to NASA's request to advise on potential environmental policy issues associated with the future development of supersonic flight technologies. Consistent with the scope of the study to which NASA and EPA agreed, EPA has evaluated only the environmental concerns related to the stratospheric ozone impacts of a hypothetical HSCT fleet, although recent research indicates that a fleet of HSCT is predicted to contribute to climate warming as well. This report also briefly describes the international and domestic institutional frameworks established to address stratospheric ozone depletion, as well as those established to control pollution from aircraft engine exhaust emissions.

  19. Ozone depletion. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-04-01

    The bibliography contains citations concerning studies of atmospheric chemistry and modeling of ozone depletion in Antarctica, and the consequences of the depletion on ultraviolet radiation levels. The studies involve chemical reactions in the atmosphere, including temperature dynamics, possible changes in solar insolation, and effects of pollution from nitrogen, chloroflourocarbons, carbon dioxide, and methane. The studies involve references to observations of the ozonosphere and modeling of interactions worldwide, together with data on the sources of the natural and man-made pollutants. (Contains a minimum of 173 citations and includes a subject term index and title list.)

  20. Effects of Stratospheric Ozone Depletion the Environment and Agriculture

    NASA Astrophysics Data System (ADS)

    Ali, S. M.; Dash, Nutan Ku; Pradhan, Arjyadhara; Mishra, Sthita Prajna

    2012-09-01

    Ozone depletion results in greater amounts of UV-B radiation that had an impact on terrestrial and aquatic biogeochemical systems. Biogeochemical cycles were the complex interactions of physical, chemical, geological and biological processes that control the transport and transformation of substances in the natural environment and therefore the conditions that humans experience in Earth's system. The increased UV-B radiation impinging on terrestrial and aquatic systems, due to ozone depletion, results in changes in the trace gas exchange between the continents, oceans and the atmosphere. This had result in complex alterations to atmospheric chemistry, the global elemental cycles such as the carbon cycle, and had an impact on the survival and health of all organisms on Earth, including humans.

  1. Visualization of stratospheric ozone depletion and the polar vortex

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.

    1995-01-01

    Direct analysis of spacecraft observations of stratospheric ozone yields information about the morphology of annual austral depletion. Visual correlation of ozone with other atmospheric data illustrates the diurnal dynamics of the polar vortex and contributions from the upper troposphere, including the formation and breakup of the depletion region each spring. These data require care in their presentation to minimize the introduction of visualization artifacts that are erroneously interpreted as data features. Non geographically registered data of differing mesh structures can be visually correlated via cartographic warping of base geometries without interpolation. Because this approach is independent of the realization technique, it provides a framework for experimenting with many visualization strategies. This methodology preserves the fidelity of the original data sets in a coordinate system suitable for three-dimensional, dynamic examination of atmospheric phenomena.

  2. Ozone depletion - Ultraviolet radiation and phytoplankton biology in Antarctic waters

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Prezelin, B. B.; Baker, K. S.; Bidigare, R. R.; Boucher, N. P.; Coley, T.; Karentz, D.; Macintyre, S.; Matlick, H. A.; Menzies, D.

    1992-01-01

    The near-50-percent thinning of the stratospheric ozone layer over the Antarctic, with increased passage of mid-UV radiation to the surface of the Southern Ocean, has prompted concern over possible radiation damage to the near-surface phytoplankton communities that are the bases of Antarctic marine ecosystems. As the ozone layer thinned, a 6-week study of the marginal ice zone of the Bellingshousen Sea in the austral spring of 1990 noted sea-surface and depth-dependent ratios of mid-UV irradiance to total irradiance increased, and mid-UV inhibition of photosynthesis increased. A 6-12 percent reduction in primary production associated with ozone depletion was estimated to have occurred over the course of the present study.

  3. Heterogeneous reactions important in atmospheric ozone depletion: a theoretical perspective.

    PubMed

    Bianco, Roberto; Hynes, James T

    2006-02-01

    Theoretical studies of the mechanisms of several heterogeneous reactions involving ClONO(2), H(2)O, HCl, HBr, and H(2)SO(4) important in atmospheric ozone depletion are described, focused primarily on reactions on aqueous aerosol surfaces. Among the insights obtained is the active chemical participation of the surface water molecules in several of these reactions. The general methodology adopted allows reduction of these complex chemical problems to meaningful model systems amenable to quantum chemical calculations. PMID:16489736

  4. The Antarctic ozone depletion caused by Erebus volcano gas emissions

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Zueva, N. E.; Savelieva, E. S.; Gerasimov, V. V.

    2015-12-01

    Heterogeneous chemical reactions releasing photochemically active molecular chlorine play a key role in Antarctic stratospheric ozone destruction, resulting in the Antarctic ozone hole. Hydrogen chloride (HCl) is one of the principal components in these reactions on the surfaces of polar stratospheric clouds (PSCs). PSCs form during polar nights at extremely low temperatures (lower than -78 °C) mainly on sulfuric acid (H2SO4) aerosols, acting as condensation nuclei and formed from sulfur dioxide (SO2). However, the cause of HCl and H2SO4 high concentrations in the Antarctic stratosphere, leading to considerable springtime ozone depletion, is still not clear. Based on the NCEP/NCAR reanalysis data over the last 35 years and by using the NOAA HYSPLIT trajectory model, we show that Erebus volcano gas emissions (including HCl and SO2) can reach the Antarctic stratosphere via high-latitude cyclones with the annual average probability Pbarann. of at least ∼0.235 (23.5%). Depending on Erebus activity, this corresponds to additional annual stratospheric HCl mass of 1.0-14.3 kilotons (kt) and SO2 mass of 1.4-19.7 kt. Thus, Erebus volcano is the natural and powerful source of additional stratospheric HCl and SO2, and hence, the cause of the Antarctic ozone depletion, together with man-made chlorofluorocarbons.

  5. The relationship between skin cancers, solar radiation and ozone depletion.

    PubMed Central

    Moan, J.; Dahlback, A.

    1992-01-01

    During the period 1957-1984 the annual age-adjusted incidence rate of cutaneous malignant melanoma (CMM) increased by 350% for men and 440% for women in Norway. The annual exposure to carcinogenic sunlight in Norway, calculated by use of measured ozone levels, showed no increasing trend during the same period. Thus, ozone depletion is not a cause of the increasing trend of the incidence rates of skin cancers. The incidence rates of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) increase with decreasing latitude in Norway. The same is true for CMM in Norway, Sweden, and Finland. Our data were used to estimate the implications of a future ozone depletion for the incidence rates of skin cancer: a 10% ozone depletion was found to give rise to a 16-18% increase in the incidence rate of SCC (men and women), a 19% increase in the incidence rate of CMM for men and a 32% increase in the incidence rate of CMM for women. The difference between the numbers for men and women is almost significant and may be related to a different intermittent exposure pattern to sunlight of the two sexes. The increasing trend in the incidence rates of CMM is strongest for the trunk and lower extremities of women, followed by that for the trunk of men. The increasing incidence rates of skin cancers as well as the changing pattern of incidence on different parts of the body is most likely due to changing habits of sun exposure. Comparisons of relative densities of CMM, SCC, LMM and SCC falling per unit area of skin at different parts of the body indicate that sun exposure is the main cause of these cancer forms although other unknown factors may play significant roles as well. For the population as a whole sun exposure during vacations to sunny countries has so far been of minor importance in skin cancer induction. PMID:1616864

  6. Modeling the climate impact of Southern Hemisphere ozone depletion: The importance of the ozone data set

    NASA Astrophysics Data System (ADS)

    Young, P. J.; Davis, S. M.; Hassler, B.; Solomon, S.; Rosenlof, K. H.

    2014-12-01

    The ozone hole is an important driver of recent Southern Hemisphere (SH) climate change, and capturing these changes is a goal of climate modeling. Most climate models are driven by off-line ozone data sets. Previous studies have shown that there is a substantial range in estimates of SH ozone depletion, but the implications of this range have not been examined systematically. We use a climate model to evaluate the difference between using the ozone forcing (Stratospheric Processes and their Role in Climate (SPARC)) used by many Intergovernmental Panel on Climate Change Fifth Assessment Report (Coupled Model Intercomparison Project) models and one at the upper end of the observed depletion estimates (Binary Database of Profiles (BDBP)). In the stratosphere, we find that austral spring/summer polar cap cooling, geopotential height decreases, and zonal wind increases in the BDBP simulations are all doubled compared to the SPARC simulations, while tropospheric responses are 20-100% larger. These results are important for studies attempting to diagnose the climate fingerprints of ozone depletion.

  7. A feasibility study of methods for stopping the depletion of ozone over Antarctica

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Ways of stopping the ozone depletion in the ozone hole over Antarctica were studied. The basic objectives were: (1) to define and understand the phenomenon of the ozone hole; (2) to determine possible methods of stopping the ozone depletion; (3) to identify unknowns about the hole and possible solutions. Two basic ways of attacking the problem were identified. First is replenishment of ozone as it is being depleted. Second is elimination of ozone destroying agents from the atmosphere. The second method is a more permanent form of the solution. Elimination and replenishment methods are discussed in detail.

  8. Feasibility study of methods for stopping the depletion of ozone over Antarctica. Final report

    SciTech Connect

    Not Available

    1988-05-01

    Ways of stopping the ozone depletion in the ozone hole over Antarctica were studied. The basic objectives were: (1) to define and understand the phenomenon of the ozone hole; (2) to determine possible methods of stopping the ozone depletion; (3) to identify unknowns about the hole and possible solutions. Two basic ways of attacking the problem were identified. First is replenishment of ozone as it is being depleted. Second is elimination of ozone destroying agents from the atmosphere. The second method is a more permanent form of the solution. Elimination and replenishment methods are discussed in detail.

  9. Relative Contribution of Greenhouse Gases and Ozone Change to Temperature Trends in the Stratosphere: A Chemistry/Climate Model Study

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, A. R.; Newman, P. A.; Pawson, S.; Schoeberl, M. R.

    2006-01-01

    Long-term changes in greenhouse gases, primarily carbon dioxide, are expected to lead to a warming of the troposphere and a cooling of the stratosphere. We examine the cooling of the stratosphere and compare the contributions greenhouse gases and ozone change for the decades between 1980 and 2000. We use 150 years of simulation done with our coupled chemistry/climate model (GEOS 4 GCM with GSFC CTM chemistry) to calculate temperatures and constituents fiom,1950 through 2100. The contributions of greenhouse gases and ozone to temperature change are separated by a time-series analysis using a linear trend term throughout the period to represent the effects of greenhouse gases and an equivalent effective stratospheric chlorine (EESC) term to represent the effects of ozone change. The temperature changes over the 150 years of the simulation are dominated by the changes in greenhouse gases. Over the relatively short period (approx. 20 years) of ozone decline between 1980 and 2000 changes in ozone are competitive with changes in greenhouse gases. The changes in temperature induced by the ozone change are comparable to, but smaller than, those of greenhouse gases in the upper stratosphere (1-3 hPa) at mid latitudes. The ozone term dominates the temperature change near both poles with a negative temperature change below about 3-5 hPa and a positive change above. At mid latitudes in the upper stratosphere and mesosphere (above about 1 hPa) and in the middle stratosphere (3 to 70 ma), the greenhouse has term dominates. From about 70 hPa down to the tropopause at mid latitudes, cooling due to ozone changes is the largest influence on temperature. Over the 150 years of the simulation, the change in greenhouse gases is the most important contributor to temperature change. Ozone caused a perturbation that is expected to reverse over the coming decades. We show a model simulation of the expected temperature change over the next two decades (2006-2026). The simulation shows a

  10. Reply to "Comment on 'Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change' by Rolf Müller and Jens-Uwe Grooß"

    NASA Astrophysics Data System (ADS)

    Lu, Q.-B.

    2014-04-01

    In their Comment, Müller and Grooß continuously use problematic "observed data" and misleading arguments to make a case against our CRE mechanism of the ozone hole and CFC-warming mechanism of global climate change. They make the groundless assertion that the CRE theory cannot be considered as an independent process for ozone loss in the polar stratosphere. Their claim that the impact of the CRE mechanism on polar chlorine activation and ozone loss in the stratosphere would be limited does not agree with the observed data over the past decades. They also make many contradictory and fact-distorting arguments that "There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1-2 years, and the reported detection of a pronounced recovery (by about 20-25%) in Antarctic total ozone measurements by the year 2010 is in error." These assertions ignore and contradict a great deal of robust observed data from both laboratory and field measurements reported in the literature including their own publications. Their new argument for the photodissociation of CFCs on PSCs also contradicts their previous extraordinary efforts including the use of fabricated "ACE-FTS satellite data" to argue for no physical/chemical loss of CFCs in the winter lower polar stratosphere. Finally, they do not provide any scientific evidence to support their criticism for the no physical basis of the CFC-warming theory and its conclusions. In summary, their misleading arguments and false "data" do not change the convincing conclusion reached by robust observations in my recent paper that both the CRE mechanism and the CFC-warming mechanism not only provide new fundamental understandings of the O3 hole and global climate change but have superior predictive capabilities, compared with the conventional models.

  11. Ozone Depletion, Greenhouse Gases, and Climate Change. Proceedings of a Joint Symposium by the Board on Atmospheric Sciences and Climate and the Committee on Global Change, National Research Council (Washington, D.C., March 23, 1988).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    The motivation for the organization of this symposium was the accumulation of evidence from many sources, both short- and long-term, that the global climate is in a state of change. Data which defy integrated explanation including temperature, ozone, methane, precipitation and other climate-related trends have presented troubling problems for…

  12. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.

    PubMed

    Wilson, S R; Solomon, K R; Tang, X

    2007-03-01

    known usage and atmospheric loss processes, tropospheric concentrations of HFC-134a, the main human-made source of trifluoroacetic acid (TFA), is increasing rapidly. As HFC-134a is a potent greenhouse gas, this increasing concentration has implications for climate change. However, the risks to humans and the environment from substances, such as TFA, produced by atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are considered minimal. Perfluoropolyethers, commonly used as industrial heat transfer fluids and proposed as chlorohydrofluorocarbon (CHFC) substitutes, show great stability to chemical degradation in the atmosphere. These substances have been suggested as substitutes for CHFCs but, as they are very persistent in the atmosphere, they may be important contributors to global warming. It is not known whether these substances will contribute significantly to global warming and its interaction with ozone depletion but they should be considered for further evaluation. PMID:17344964

  13. The Effects of Volcano-Induced Ozone Depletion on Short-lived Climate Forcing in the Arctic

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2012-12-01

    Antarctic snow and decreasing solar zenith angles at higher latitudes. The second largest ozone depletion was in the Arctic at the times and places of greatest winter warming. Average ozone at four stations in Canada (43-59°N) compared to the 1961-1970 mean were 6% lower in December 2010 after the eruption of Eyjafjallajökull and 11% lower in December 2011 after the eruption of Grímsvötn. In 2012, ozone levels were still 10% lower in March and 7% lower in July. The regions and timing of this depletion are the regions and times of unusually warm temperatures and drought in North America during 2011-2012. The Dust Bowl droughts in 1934 and 1936 show a similar temporal relationship to a highly unusual sequence of five VEI=4-5 eruptions around the Pacific in 1931-1933. Major increases in global pollution were from 1950-1970 while ozone-destroying tropospheric chlorine rose from 1970 to 1994, along with ocean heat content and mean temperature. Pollution does not seem to cause an increase in warming until ozone depletion allows more UV into the lower troposphere. Pollutants decrease surface solar radiation but also reduce Arctic-snow albedo. Widespread observations imply that ozone depletion and associated photodissociation cause substantial warming. Several issues regarding the microphysics of absorption and radiation by greenhouse gases must be resolved before we can quantify their relative importance.

  14. Ozone Depletion Potentials of HCFC-123 and HCFC-124

    NASA Astrophysics Data System (ADS)

    Riepe, E. L.; Patten, K. O.; Wuebbles, D. J.

    2005-05-01

    The Montreal Protocol has phased out most chlorinated and brominated compounds because of their great efficiency in depleting ozone in the stratosphere. Compounds such as CHCl2CF3 (HCFC-123) and CHClFCF3 (HCFC-124) are being used in commercial refrigeration units and have much shorter atmospheric lifetimes than the chlorofluorocarbons they replace. Despite their small resulting Ozone Depletion Potentials (ODPs), these compounds are still currently expected to be eliminated under the existing Protocol, but there remain questions about finding suitable replacements that would not have other environmental effects. The HCFC-123 and HCFC-124 model-calculated atmospheric lifetimes of 1.3 years and 5.8 years are much shorter compared to the 45 years of CCl3F (CFC-11). In this study, we have reevaluated these compounds with an updated version of the UIUC two-dimensional chemical transport model and with the MOZART (version 3) three-dimensional chemical-transport model. The new version of the two-dimensional model gives ODPs of 0.012 and 0.0125 for HCFC-123 and HCFC-124, respectively. The ODP for HCFC-123 agrees well with previously reported values while the ODP for HCFC-124 is much smaller than earlier estimates. These analyses along with those from the three-dimensional modeling studies will be discussed in the presentation.

  15. Ozone-depleting-substance control and phase-out plan

    SciTech Connect

    Nickels, J.M.; Brown, M.J.

    1994-07-01

    Title VI of the Federal Clean Air Act Amendments of 1990 requires regulation of the use and disposal of ozone-depleting substances (ODSs) (e.g., Halon, Freon). Several important federal regulations have been promulgated that affect the use of such substances at the Hanford Site. On April 23, 1993, Executive Order (EO) 12843, Procurement Requirements and Policies for Federal Agencies for Ozone-Depleting Substances (EPA 1993) was issued for Federal facilities to conform to the new US Environmental Protection Agency (EPA) regulations implementing the Clean Air Act of 1963 (CAA), Section 613, as amended. To implement the requirements of Title VI the US Department of Energy, Richland Operations Office (RL), issued a directive to the Hanford Site contractors on May 25, 1994 (Wisness 1994). The directive assigns Westinghouse Hanford Company (WHC) the lead in coordinating the development of a sitewide comprehensive implementation plan to be drafted by July 29, 1994 and completed by September 30, 1994. The implementation plan will address several areas where immediate compliance action is required. It will identify all current uses of ODSs and inventories, document the remaining useful life of equipment that contains ODS chemicals, provide a phase-out schedule, and provide a strategy that will be implemented consistently by all the Hanford Site contractors. This plan also addresses the critical and required elements of Federal regulations, the EO, and US Department of Energy (DOE) guidance. This plan is intended to establish a sitewide management system to address the clean air requirements.

  16. Newly detected ozone-depleting substances in the atmosphere

    NASA Astrophysics Data System (ADS)

    Laube, Johannes C.; Newland, Mike J.; Hogan, Christopher; Brenninkmeijer, Carl A. M.; Fraser, Paul J.; Martinerie, Patricia; Oram, David E.; Reeves, Claire E.; Röckmann, Thomas; Schwander, Jakob; Witrant, Emmanuel; Sturges, William T.

    2014-04-01

    Ozone-depleting substances emitted through human activities cause large-scale damage to the stratospheric ozone layer, and influence global climate. Consequently, the production of many of these substances has been phased out; prominent examples are the chlorofluorocarbons (CFCs), and their intermediate replacements, the hydrochlorofluorocarbons (HCFCs). So far, seven types of CFC and six types of HCFC have been shown to contribute to stratospheric ozone destruction. Here, we report the detection and quantification of a further three CFCs and one HCFC. We analysed the composition of unpolluted air samples collected in Tasmania between 1978 and 2012, and extracted from deep firn snow in Greenland in 2008, using gas chromatography with mass spectrometric detection. Using the firn data, we show that all four compounds started to emerge in the atmosphere in the 1960s. Two of the compounds continue to accumulate in the atmosphere. We estimate that, before 2012, emissions of all four compounds combined amounted to more than 74,000 tonnes. This is small compared with peak emissions of other CFCs in the 1980s of more than one million tonnes each year. However, the reported emissions are clearly contrary to the intentions behind the Montreal Protocol, and raise questions about the sources of these gases.

  17. Modelling future changes in climate, ozone-depleting substances and ozone precursor emissions using the whole-atmosphere UM-UKCA model

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Archibald, A. T.; Maycock, A. C.; Abraham, L.; Telford, P.; Braesicke, P.; Pyle, J. A.

    2013-12-01

    Using the recently upgraded whole-atmosphere UM-UKCA chemistry-climate model, we investigate the atmospheric response to future changes in a) greenhouse gases under the RCP4.5 and 8.5 scenarios for climate change, b) ozone-depleting substances (ODS) and a recovery of the ozone layer and c) ozone precursor emissions and tropospheric oxidising capacity. In addition, we combine theses scenarios in order to explore the interactions between individual perturbations. Within this framework, the coupled stratosphere-troposphere system and whole-atmosphere chemistry allows us to study the impacts of changes in composition of the stratosphere on the troposphere and vice versa. Under a scenario for moderate climate change (RCP4.5), we find that by the year 2100: 1) the stratosphere significantly impacts the troposphere via changes in stratosphere-troposphere exchange (STE) but the chemical changes induced in the troposphere do not impact the stratosphere, 2) perturbations are linearly additive with regard to the total ozone column and tropospheric odd oxygen budget, 3) while the Brewer-Dobson circulation strengthens under climate change (with an increase in the tropical upward mass flux at 70hPa of 17%), this strengthening is offset by ozone recovery (which on its own leads to a decrease in the mass flux of 9%) and 4) the tropospheric ozone burden decreases by 10% given mitigation of its precursor emissions but this is offset by climate change and stratospheric ozone recovery (9% and 6% increases in the burden respectively).

  18. Ozone depletion at northern and southern latitudes derived from January 1979 to December 1991 Total Ozone Mapping Spectrometer data

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Mcpeters, R.; Larko, D.

    1993-01-01

    An extended version of the Nimbus 7/TOMS ozone data set from the period January 1, 1979 to December 31, 1991 is presented. It is shown that the ozone-trend data indicate that regions of enhanced ozone depletion rates have formed at middle and high latitudes during recent years. The seasonal dependence and geographical extent of the enhanced ozone-depletion rates for the Northern and Southern hemispheres are examined. The variability of the long-term ozone trend determination is discussed via consideration of the differences among 11-, 12-, and 13-yr trend calculations. The effects of the Mount Pinatubo eruption and other volcanic eruptions on the TOMS equatorial zonal average ozone measurements, and its influence on long-term trend determinations are discussed. On the basis of a determination of the aerosol phase function using TOMS data, the effect of stratospheric aerosols on determination of ozone amounts from TOMS are shown to be less than 1 percent.

  19. Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure

    NASA Astrophysics Data System (ADS)

    Meul, Stefanie; Dameris, Martin; Langematz, Ulrike; Abalichin, Janna; Kerschbaumer, Andreas; Kubin, Anne; Oberländer-Hayn, Sophie

    2016-03-01

    Future projections of tropical total column ozone (TCO) are challenging, as its evolution is affected not only by the expected decline of ozone depleting substances but also by the uncertain increase of greenhouse gas (GHG) emissions. To assess the range of tropical TCO projections, we analyze simulations with a chemistry-climate model forced by three different GHG scenarios (Representative Concentration Pathway (RCP) 4.5, RCP6.0, and RCP8.5). We find that tropical TCO will be lower by the end of the 21st century compared to the 1960s in all scenarios with the largest decrease in the medium RCP6.0 scenario. Uncertainties of the projected TCO changes arise from the magnitude of stratospheric column decrease and tropospheric ozone increase which both strongly vary between the scenarios. In the three scenario simulations the stratospheric column decrease is not compensated by the increase in tropospheric ozone. The concomitant increase in harmful ultraviolet irradiance reaches up to 15% in specific regions in the RCP6.0 scenario.

  20. Re-Evaluation of the Lifetimes of Ozone-Depleting Substances and Related Trace Gases

    NASA Astrophysics Data System (ADS)

    Reimann, Stefan; Ko, Malcolm; Newman, Paul; Strahan, Susan

    2013-04-01

    Estimating the average lifetime of a chemical in the atmosphere is crucial to understanding their current and future atmospheric concentrations. Furthermore, for ozone depleting substances (ODSs) and greenhouse gases information on their lifetimes are of paramount importance for obtaining estimates for ozone depletion and climate forcing. Because the lifetimes of ODSs are also used to predict how the future concentrations change with emissions, they also have implications on policy decisions for limiting future release of hydrochlorofluorocarbons (HCFCs) and other replacement compounds under the Montreal Protocol. During the last 25 years, various methods have been used to derive lifetimes of ODSs and values have changed accordingly. Within the last several years evidence is growing that the lifetimes of certain ODSs are possibly somewhat longer than published values. The "Lifetime of halogen source gases" activity under the World Climate Research Programme (WCRP)/Stratospheric Processes And their Role in Climate (SPARC) project has convened a working group to re-evaluate these ODS lifetimes. The goal was to estimate the numerical values for lifetimes and their uncertainties, and to quantify how the values may depend on factors such as the use of different lifetime definitions (e.g. steady-state/instantaneous lifetimes) and changing climate. First results of the report will be shown and implications will be discussed.

  1. Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere

    NASA Astrophysics Data System (ADS)

    Hu, Dingzhu; Tian, Wenshou; Xie, Fei; Wang, Chunxiao; Zhang, Jiankai

    2015-08-01

    This paper uses a state-of-the-art general circulation model to study the impacts of the stratospheric ozone depletion from 1980 to 2000 and the expected partial ozone recovery from 2000 to 2020 on the propagation of planetary waves in December, January, and February. In the Southern Hemisphere (SH), the stratospheric ozone depletion leads to a cooler and stronger Antarctic stratosphere, while the stratospheric ozone recovery has the opposite effects. In the Northern Hemisphere (NH), the impacts of the stratospheric ozone depletion on polar stratospheric temperature are not opposite to that of the stratospheric ozone recovery; i.e., the stratospheric ozone depletion causes a weak cooling and the stratospheric ozone recovery causes a statistically significant cooling. The stratospheric ozone depletion leads to a weakening of the Arctic polar vortex, while the stratospheric ozone recovery leads to a strengthening of the Arctic polar vortex. The cooling of the Arctic polar vortex is found to be dynamically induced via modulating the planetary wave activity by stratospheric ozone increases. Particularly interesting is that stratospheric ozone changes have opposite effects on the stationary and transient wave fluxes in the NH stratosphere. The analysis of the wave refractive index and Eliassen-Palm flux in the NH indicates (1) that the wave refraction in the stratosphere cannot fully explain wave flux changes in the Arctic stratosphere and (2) that stratospheric ozone changes can cause changes in wave propagation in the northern midlatitude troposphere which in turn affect wave fluxes in the NH stratosphere. In the SH, the radiative cooling (warming) caused by stratospheric ozone depletion (recovery) produces a larger (smaller) meridional temperature gradient in the midlatitude upper troposphere, accompanied by larger (smaller) zonal wind vertical shear and larger (smaller) vertical gradients of buoyancy frequency. Hence, there are more (fewer) transient waves

  2. High School and College Student Perceptions of the Ozone Depletion Problem.

    ERIC Educational Resources Information Center

    Groves, Fred; Pugh, Ava

    This paper examines the knowledge of high school biology students (n=107), undergraduate elementary education majors (n=42), and graduate students in an advanced elementary science methods course (n=22) about ozone depletion. The questionnaire used contained 30 items pertaining to ozone depletion which were divided into three subscales: (1)…

  3. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 17 2013-04-01 2013-04-01 false Taxes imposed with respect to ozone-depleting chemicals. 52.4681-1 Section 52.4681-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) ENVIRONMENTAL TAXES § 52.4681-1 Taxes imposed with respect to ozone-depleting chemicals....

  4. Children's and Adults' Knowledge and Models of Reasoning about the Ozone Layer and Its Depletion.

    ERIC Educational Resources Information Center

    Leighton, Jacqueline P.; Bisanz, Gay L.

    2003-01-01

    Examines children's and adults' knowledge of the ozone layer and its depletion, whether this knowledge increases with age, and how the ozone layer and ozone hole might be structured as scientific concepts. Uses a standardized set of questions to interview children and adults in Canada. Discusses implications of the results for health…

  5. Alternatives to ozone depleting refrigerants in test equipment

    NASA Technical Reports Server (NTRS)

    Hall, Richard L.; Johnson, Madeleine R.

    1995-01-01

    This paper describes the initial results of a refrigerant retrofit project at the Aerospace Guidance and Metrology Center (AGMC) at Newark Air Force Base, Ohio. The objective is to convert selected types of test equipment to properly operate on hydrofluorocarbon (HFC) alternative refrigerants, having no ozone depleting potential, without compromising system reliability or durability. This paper discusses the primary technical issues and summarizes the test results for 17 different types of test equipment: ten environmental chambers, two ultralow temperature freezers, two coolant recirculators, one temperature control unit, one vapor degreaser, and one refrigerant recovery system. The postconversion performance test results have been very encouraging: system capacity and input power remained virtually unchanged. In some cases, the minimum operating temperature increased by a few degrees as a result of the conversion, but never beyond AGMC's functional requirements.

  6. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  7. Ozone depletion and global warming potentials of CF3I

    SciTech Connect

    Solomon, S.; Burkholder, J.B.; Ravishankara, A.R.; Garcia, R.R. |

    1994-10-01

    Laboratory measurements of the infrared and near-ultraviolet absorption characteristics of CF3I (a potentially useful substitute for halons) are presented. Using these data together with a detailed photochemical model, it is shown that the lifetime of this gas in the sunlit atmosphere is less than a day. The chemistry of iodine in the stratosphere is evaluated, and it is shown that any iodine that reaches the stratosphere will be very effective for ozone destruction there. However, the extremely short lifetime of CF3I greatly limits its transport to the stratosphere when released at the surface, especially at midlatitudes, and the total anthropogenic surface release of CF3I is likely to be far less than that of natural iodocarbons such as CH3I on a global basis. It is highly probable that the steady-state ozone depletion potential (ODP) of CF3I for surface releases is less than 0.008 and more likely below 0.0001. Measured infrared absorption data are also combined with the lifetime to show that the 20-year global warming potential (GWP) of this gas is likely to be very small, less than 5. Therefore, this study suggests that neither the ODP nor the GWP of this gas represent significant obstacles to its use as a replacement for halons.

  8. Impact on ozone attainment of CFC (chlorofluorocarbon) controls used to prevent future depletion of stratospheric ozone

    SciTech Connect

    Harmon, D.L.; Smith, N.D.

    1988-04-01

    This paper discusses the impact on ozone attainment of chlorofluorocarbon (CFC) controls used to prevent future depletion of stratospheric ozone. It has been decided that allocated quotas offer the most-attractive approach to limiting the use of CFCs and brominated compounds (halons). This approach should provide for economically efficient reductions. It involves a minimum of administrative costs, is the most easily enforced option, and does not raise any potential legal issues that might result from other options. Control options that might be used by industry to achieve the necessary CFC reductions are evaluated in the Regulatory Impact Analysis (RIA). The most likely long-term control option which may be adopted by most application areas is a chemical substitute. With this option, it may be possible to eliminate 90% or more of the ozone-depleting CFC emissions. A variety of control options hold promise for short-term applicability. Some of the engineering controls may still be applied even after new chemical substitutes (e.g., HFC-134a and HCFC-123) are in use, since the higher cost of these substitutes may justify recovery. EPA is also considering the development of specific regulations limiting CFC and halon use for particular industries to supplement allocated quotas.

  9. Reply to "Comment on 'Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change' by Dana Nuccitelli et al."

    NASA Astrophysics Data System (ADS)

    Lu, Q.-B.

    2014-04-01

    In the Comment by Nuccitelli et al., they make many false and invalid criticisms of the CFC-warming theory in my recent paper, and claim that their anthropogenic forcings including CO2 would provide a better explanation of the observed global mean surface temperature (GMST) data over the past 50 years. First, their arguments for no significant discrepancy between modeled and observed GMST changes and for no pause in recent global warming contradict the widely accepted fact and conclusion that were reported in the recent literature extensively. Second, their criticism that the key data used in my recent paper would be "outdated" and "flawed" is untrue as these data are still used in the recent or current literature including the newest (2013) IPCC Report and there is no considerable difference between the UK Met Office HadRCUT3 and HadRCUT4 GMST datasets. The use of even more recently computer-reconstructed total solar irradiance data (whatever have large uncertainties) for the period prior to 1976 would not change any of the conclusions in my paper, where quantitative analyses were emphasized on the influences of humans and the Sun on global surface temperature after 1970 when direct measurements became available. For the latter, the solar effect has been well shown to play only a negligible role in global surface temperature change since 1970, which is identical to the conclusion made in the 2013 IPCC Report. Third, their argument that the solar effect would not play a major role in the GMST rise of 0.2°C during 1850-1970 even contradicts the data and conclusion presented in a recent paper published in their Skeptical Science by Nuccitelli himself. Fourth, their comments also indicate their lack of understandings of the basic radiation physics of the Earth system as well as of the efficacies of different greenhouse gases in affecting global surface temperature. Their listed "methodological errors" are either trivial or non-existing. Fifth, their assertion that

  10. Children's and adults' knowledge and models of reasoning about the ozone layer and its depletion

    NASA Astrophysics Data System (ADS)

    Leighton, Jacqueline P.; Bisanz, Gay L.

    2003-01-01

    As environmental concepts, the ozone layer and ozone hole are important to understand because they can profoundly influence our health. In this paper, we examined: (a) children's and adults' knowledge of the ozone layer and its depletion, and whether this knowledge increases with age' and (b) how the 'ozone layer' and 'ozone hole' might be structured as scientific concepts. We generated a standardized set of questions and used it to interview 24 kindergarten students, 48 Grade 3 students, 24 Grade 5 students, and 24 adults in university, in Canada. An analysis of participants' responses revealed that adults have more knowledge than children about the ozone layer and ozone hole, but both adults and children exhibit little knowledge about protecting themselves from the ozone hole. Moreover, only some participants exhibited 'mental models' in their conceptual understanding of the ozone layer and ozone hole. The implications of these results for health professionals, educators, and scientists are discussed.

  11. Ozone depletion continues at record levels - satellite data confirm CFCs as cause

    SciTech Connect

    1994-12-01

    In the stratosphere above the South Pole on 2 October 1994, researcher recorded ozone depletion levels nearly as large and as deep as those observed during the October 1993 record-settling depletion. In addition data gathered during the last three years by instruments on NASA`s upper Atmosphere Research Satellite, and readings from other instrumentation, have provided conclusive evidence that anthropogenic chlorine in the stratosphere causes the ozone depletion in the antarctic stratosphere. The article discusses the evidence. 2 figs.

  12. Ozone depletion, developing countries, and human rights: Seeking better ground on which to fight for protection of the ozone layer

    SciTech Connect

    Williams, V.

    1995-12-31

    I urge you not to take a complacent view of the situation. The state of depletion of the ozone layer continues to be alarming... In February, 1993, the ozone levels over North America and most of Europe were 20 percent below normal... Even now, millions of tons of CFC [chlorofluorocarbon] products are en route to their fatal stratospheric rendezvous... This exponential increase calls for increased reflection on the state of the ozone layer and calls for bold decisions.

  13. Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Ko, M. K.; Reimann, S.; Strahan, S. E.; Atlas, E. L.; Burkholder, J. B.; Chipperfield, M.; Engel, A.; Liang, Q.; Plumb, R. A.; Stolarski, R. S.

    2013-12-01

    Estimating the average lifetime of a chemical in the atmosphere is crucial to understanding its current and future atmospheric concentration. Furthermore, for both ozone depleting substances (ODSs) and greenhouse gases, information on their lifetimes is of paramount importance for obtaining future estimates for ozone depletion and climate forcing. The 'Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species', under the World Climate Research Programme/Stratospheric Processes And their Role in Climate project, was completed in August 2013. The goal was to estimate both lifetimes and uncertainties. In this presentation we will provide: 1) an overview of key aspects of the definitions of lifetimes, 2) discuss the extensively revised photochemical values and uncertainties for obtaining lifetimes, 3) show new observational and 4) modeling estimates of lifetimes, and finally, 5) show new recommendations for the steady-state atmospheric lifetimes of 27 long-lived species. New findings include: * New chemical kinetic and photochemical information on the uncertainties associated with the Lyman-a absorption cross-sections, and revisions of absorption cross-section parameterizations for several chlorofluorocarbons. * State-of-the-art chemistry-climate models (CCMs) were used to estimate lifetimes over the course of the 21st century. Projected increases of the Brewer-Dobson circulation suggest that lifetimes should be shorter during the 21st century. However, the recovery of ozone in the CCMs shows that the photolysis of many species will decline, yielding only small changes in lifetimes of most species * The CFC-11 recommended lifetime increases to 52 years from the WMO (2011) value of 45 years. The most likely range is narrowed to 43-67 years. * The 44 year steady-state lifetime of CCl4 due to atmospheric loss determined in this report is substantially longer than the 35 years from WMO (2011). However, inclusion of the land and ocean

  14. Linkages Between Ozone-depleting Substances, Tropospheric Oxidation and Aerosols

    NASA Technical Reports Server (NTRS)

    Voulgarakis, A.; Shindell, D. T.; Faluvegi, G.

    2013-01-01

    Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (-22.6mW/sq. m for CFCs and -6.7mW/sq. m for N2O) and sulfate aerosols (-3.0mW/sq. m for CFCs and +6.5mW/sq. m for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  15. Linkages between ozone-depleting substances, tropospheric oxidation and aerosols

    NASA Astrophysics Data System (ADS)

    Voulgarakis, A.; Shindell, D. T.; Faluvegi, G.

    2013-05-01

    Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (-22.6 mW m-2 for CFCs and -6.7 mW m-2 for N2O) and sulfate aerosols (-3.0 mW m-2 for CFCs and +6.5 mW m-2 for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  16. Modelling future changes in climate, ozone-depleting substances and ozone precursor emissions using the whole-atmosphere UM-UKCA model

    NASA Astrophysics Data System (ADS)

    Banerjee, Antara; Maycock, Amanda; Archibald, Alexander; Telford, Paul; Abraham, Luke; Braesicke, Peter; Pyle, John

    2014-05-01

    Using the recently upgraded whole-atmosphere UM-UKCA chemistry-climate model, we investigate the atmospheric response to future changes in a) greenhouse gases under the RCP4.5 and 8.5 scenarios for climate change, b) ozone-depleting substances (ODS) and a recovery of the ozone layer and c) ozone precursor emissions and tropospheric oxidising capacity. In addition, we combine these scenarios in order to explore the interactions between individual perturbations. Within this framework, the coupled stratosphere-troposphere system and whole-atmosphere chemistry allows us to study the impact of changes in composition of the stratosphere on the troposphere and vice versa. We find that by the year 2100: 1) the stratosphere significantly impacts the troposphere via changes in stratosphere-troposphere exchange (STE) but the chemical changes induced in the troposphere do not impact the stratosphere, 2) perturbations are linearly additive with regard to the total ozone column and tropospheric odd oxygen budget, 3) while the Brewer-Dobson Circulation strengthens under climate change (with an increase in the DJF 70hPa tropical upwards mass flux of ~20% at RCP4.5 and exceeding 30% at RCP8.5), this strengthening is offset by ozone recovery (which on its own leads to a decrease in the mass flux of ~10%) and 4) tropospheric ozone decreases given mitigation of its precursor emissions (with a 10% decrease in ozone burden) but this can be offset by climate change at both RCP4.5 and 8.5 and stratospheric ozone recovery (increasing the burden by 6-13%).

  17. Ice surface chemistry relevant to stratospheric ozone depletion

    NASA Astrophysics Data System (ADS)

    Geiger, Franz Martin

    The surface specific nonlinear laser spectroscopy method second harmonic generation (SHG) is used to investigate the heterogeneously catalyzed hydrolysis of chlorine nitrate (ClONO2) on ice, a key reaction in stratospheric ozone depletion occurring in the presence of polar stratospheric cloud (PSC) ice particles formed during the polar winter. The reaction, yielding hypochlorous acid (HOCl) and nitric acid (HNO3), is studied directly and in real time on a single crystal basal ice (Ih) surface maintained under typical conditions of the polar stratosphere. The ice crystal is kept in equilibrium with its vapor pressure. Polarization studies are consistent with the clean basal ice surface at 158K being 3m symmetric, in contrast to proposals by others that the surface is disordered. The symmetry is retained upon HNO3 adsorption; this observation disagrees with proposals by others that this could cause surface melting. A SHG spectrum from 290 to 310 nm is obtained from HOCl on ice; this spectrum resembles the electronic spectrum of HOCl and serves as an identification tool for adsorbed HOCl. HOCl adsorption onto ice is instantaneous and occurs in registry with the underlying ice lattice. Measured isothermal rate constants for HOCl desorption from ice result in an activation energy for desorption of 36 +/- 2 kJ/mol. When submonolayer amounts of ClONO2 are hydrolyzed on the ice surface, the SHG vs. time traces show no changes for hundreds of seconds, then a sigmoidal increase, and eventually a constant value. The SHG increase is related to the appearance of HOCl. Predosing experiments show that the delay times are due to autocatalysis, with the HOCl product being a possible autocatalyst. The HNO3 co-product, on the other hand, acts as a surface poison and inhibits HOCl desorption. A molecular reaction mechanism, based on one proposed by Bianco and Hynes, is presented and discussed in light of the obtained experimental data, supporting ab initio calculations, and numerical

  18. Acid rain, ozone depletion, and the climate response to pulsed Siberian Traps magmatism

    NASA Astrophysics Data System (ADS)

    Black, B. A.; Lamarque, J.; Shields, C. A.; Elkins-Tanton, L. T.; Kiehl, J. T.

    2013-12-01

    The Siberian Traps flood basalts have been invoked as a trigger for the catastrophic end-Permian mass extinction. Widespread aberrant plant remains across the Permian-Triassic boundary provide evidence that atmospheric stress contributed to the collapse in terrestrial diversity. Here, we use recent detailed estimates of magmatic degassing from the Siberian Traps to complete the first 3-D global modeling of atmospheric chemistry during eruption of a large igneous province. We also explore the effects of volcanic gases on climate. Our results show that both strongly acidic rain and global ozone collapse are possible transient consequences of episodic pyroclastic volcanism and heating of volatile-rich Siberian country rocks. We suggest that in conjunction with abrupt warming from greenhouse gas emissions, these repeated, rapidly applied atmospheric stresses directly linked Siberian magmatism to end-Permian ecological failure on land. Our comprehensive modeling describes the global distribution and severity of acid rain and ozone depletion, providing testable predictions for the geography of end-Permian environmental proxies.

  19. The Greenhouse Effect and the Destruction of the Ozone Shield: Implications for Rhetoric and Criticism.

    NASA Astrophysics Data System (ADS)

    Stoller, Martin Reid

    Rhetoric, in the Aristotelian sense of "the available means of persuasion," is a crucial, often determining component of the process of making public policy generally, and environmental policy specifically. Environmental crises which have been addressed by the governmental, industrial, and social policy -making establishments have tended to be treated in a manner similar to that in which social, political, economic, military, and other problems have been commonly treated, utilizing a traditional rhetoric, including long-proven persuasive language and arguments. Such problems as air pollution and water pollution have been, to some degree, successfully addressed in this manner. A new and fundamentally different cluster of environmental problems has recently been recognized by elements of the policy making establishment as a legitimate candidate for consideration and policy formation. These environmental problems differ from the more familiar type in a variety of ways, each of which, to a greater or lesser degree, make problematic for those activists concerned with these crises the production of an effective crisis-oriented rhetoric. This study addresses two such closely related phenomena, the Greenhouse Effect and ozone depletion, and identifies those characteristics which contribute to their rhetorical complexity. Using traditional techniques of rhetorical examination, primarily neo-Aristotelian analysis, this study demonstrates the inadequacy of current crisis-oriented rhetoric, and identifies the causes of this rhetorical ineffectiveness. The study concludes that the mediation of such crises as the Greenhouse Effect and ozone depletion cannot be significantly facilitated by traditional environmental-oriented rhetoric, and may in fact be hindered by the use of rhetoric associated with fundamentally different (i.e., easier to solve) environmental problems.

  20. Ozone depletion and UVB radiation: impact on plant DNA damage in southern South America.

    PubMed

    Rousseaux, M C; Ballaré, C L; Giordano, C V; Scopel, A L; Zima, A M; Szwarcberg-Bracchitta, M; Searles, P S; Caldwell, M M; Díaz, S B

    1999-12-21

    The primary motivation behind the considerable effort in studying stratospheric ozone depletion is the potential for biological consequences of increased solar UVB (280-315 nm) radiation. Yet, direct links between ozone depletion and biological impacts have been established only for organisms of Antarctic waters under the influence of the ozone "hole;" no direct evidence exists that ozone-related variations in UVB affect ecosystems of temperate latitudes. Indeed, calculations based on laboratory studies with plants suggest that the biological impact of ozone depletion (measured by the formation of cyclobutane pyrimidine dimers in DNA) is likely to be less marked than previously thought, because UVA quanta (315-400 nm) may also cause significant damage, and UVA is unaffected by ozone depletion. Herein, we show that the temperate ecosystems of southern South America have been subjected to increasingly high levels of ozone depletion during the last decade. We found that in the spring of 1997, despite frequent cloud cover, the passages of the ozone hole over Tierra del Fuego (55 degrees S) caused concomitant increases in solar UV and that the enhanced ground-level UV led to significant increases in DNA damage in the native plant Gunnera magellanica. The fluctuations in solar UV explained a large proportion of the variation in DNA damage (up to 68%), particularly when the solar UV was weighted for biological effectiveness according to action spectra that assume a sharp decline in quantum efficiency with increasing wavelength from the UVB into the UVA regions of the spectrum. PMID:10611381

  1. On the role of atmosphere-ocean interactions in the expected long-term changes of the Earth's ozone layer caused by greenhouse gases

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander; Dyominov, Igor

    It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone

  2. Ultraviolet B radiation was increased at ground level in scotland during a period of ozone depletion.

    PubMed

    Moseley, H; Mackie, R M

    1997-07-01

    The potentially harmful effects associated with stratospheric ozone depletion are widely acknowledged. As the ozone layer principally absorbs ultraviolet (UV) radiation of wavelengths below 290 nm, reductions in stratospheric ozone levels are likely to result in increased UVB at the earth's surface, with the risk of increased incidence of skin cancer. Measuring the sun's spectrum at ground level requires sophisticated and reliable spectral instruments. Results are reported for this for the first time in the U.K. using spectral instruments, showing a significant increase in short wavelength UV radiation at a time of depleted stratospheric ozone. If this trend increases, future ozone depletion could contribute to known risks for cutaneous malignancies of all types. PMID:9274633

  3. Midwinter start to antarctic ozone depletion: Evidence from observations and models

    SciTech Connect

    Roscoe, H.K.; Jones, A.E.; Lee, A.M.

    1997-10-03

    Measurements of total ozone at Faraday, Antarctica (65{degrees}S), by a visible spectrometer show a winter maximum. This new observation is consistent with the descent of air within the polar vortex during early winter, together with ozone depletion starting in midwinter. Chemical depletion at these latitudes in midwinter is suggested by existing satellite observations of enhanced chlorine monoxide and reduced ozone above 100 hectapascals and by reduced ozone in sonde profiles. New three-dimensional model calculations for 1994 confirm that chemical ozone depletion started in June at the sunlit vortex edge and became substantial by late July. This would not have been observed by most previous techniques, which either could not operate in winter or were closer to the Pole. 31 refs., 3 figs.

  4. UNEP REPORT, "ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: 2002 ASSESSMENT."

    EPA Science Inventory

    United Nations Environment Programme (UNEP) Report on "Environmental effects of ozone depletion and its interactions with climate change: 2002 assessment." The chapters were published in the first issue (No. 1) of the 2003 volume of journal "Photochemical & Photobiological Scien...

  5. STRATOSPHERIC OZONE DEPLETION: A FOCUS ON EPA'S RESEARCH (EPA/640/K-95/004)

    EPA Science Inventory

    This brochure describes the mechanisms of and problems associated with stratospheric ozone depletion as well as some of the Office ofResearch and Development's (ORD) associated research projects. The Office of Research and Development has pursued a multifacetedresearch program ...

  6. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2003

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. A section of this progress report focuses on the interactive effects of climate change and ozone depletion on biogeochemical cycles.

  7. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    PubMed

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate

  8. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing

    PubMed Central

    Marshall, John; Armour, Kyle C.; Scott, Jeffery R.; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G.; Bitz, Cecilia M.

    2014-01-01

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an

  9. Ozone Depletion Potential of CH3Br. Appendix H

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Sze, Nien Dak; Scott, Courtney; Rodriguez, Jose M.; Weisenstein, Debra K.; Sander, Stanley P.

    1998-01-01

    The ozone depletion potential (ODP) of methyl bromide (CH3Br) can be determined by combining the model-calculated bromine efficiency factor (BEF) for CH3Br and its atmospheric lifetime. This paper examines how changes in several key kinetic data affect BEF. The key reactions highlighted in this study include the reaction of BrO + HO2, the absorption cross section of HOBr, the absorption cross section and the photolysis products of BrONO2, and the heterogeneous conversion of BrONO2 to HOBr and HNO3 on aerosol particles. By combining the calculated BEF with the latest estimate of 0.7 year for the atmospheric lifetime of CH3Br, the likely value of ODP for CH3Br is 0.39. The model-calculated concentration of HBr (approx. 0.3 pptv) in the lower stratosphere is substantially smaller than the reported measured value of about 1 pptv. Recent publications suggested models can reproduce the measured value if one assumes a yield for HBr from the reaction of BrO + OH or from the reaction of BrO + HO2. Although the evaluation concluded any substantial yield of HBr from BrO + HO2 is unlikely, for completeness, we calculate the effects of these assumed yields on BEF for CH3Br. Our calculations show that the effects are minimal: practically no impact for an assumed 1.3% yield of HBr from BrO + OH and 10% smaller for an assumed 0.6% yield from BrO + HO2.

  10. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century.

    PubMed

    Ravishankara, A R; Daniel, John S; Portmann, Robert W

    2009-10-01

    By comparing the ozone depletion potential-weighted anthropogenic emissions of N2O with those of other ozone-depleting substances, we show that N2O emission currently is the single most important ozone-depleting emission and is expected to remain the largest throughout the 21st century. N2O is unregulated by the Montreal Protocol. Limiting future N2O emissions would enhance the recovery of the ozone layer from its depleted state and would also reduce the anthropogenic forcing of the climate system, representing a win-win for both ozone and climate. PMID:19713491

  11. Children's Use of Metaphors in Relation To Their Mental Models: The Case of the Ozone Layer and Its Depletion.

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Koulaidis, Vasilis; Christidis, Theodor

    1997-01-01

    Examines the relationship between children's use of metaphors and their mental models concerning the ozone layer and ozone layer depletion. Results indicate that the way children represent the role and depletion of ozone is strongly correlated with the types of metaphors they use while constructing and/or articulating their models. Also discusses…

  12. Southwestern Tropical Atlantic coral growth response to atmospheric circulation changes induced by ozone depletion in Antarctica

    NASA Astrophysics Data System (ADS)

    Evangelista, H.; Wainer, I.; Sifeddine, A.; Corrège, T.; Cordeiro, R. C.; Lamounier, S.; Godiva, D.; Shen, C.-C.; Le Cornec, F.; Turcq, B.; Lazareth, C. E.; Hu, C.-Y.

    2015-08-01

    Climate changes induced by stratospheric ozone depletion over Antarctica have been recognized as an important consequence of the recently observed Southern Hemisphere atmospheric circulation. Here we present evidences that the Brazilian coast (Southwestern Atlantic) may have been impacted from both winds and sea surface temperature changes derived from this process. Skeleton analysis of massive coral species living in shallow waters off Brazil are very sensitive to air-sea interactions, and seem to record this impact. Growth rates of Brazilian corals show a trend reversal that fits the ozone depletion evolution, confirming that ozone impacts are far reaching and potentially affect coastal ecosystems in tropical environments.

  13. The impact of greenhouse gases on past changes in tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Lang, C.; Waugh, D. W.; Olsen, M. A.; Douglass, A. R.; Liang, Q.; Nielsen, J. E.; Oman, L. D.; Pawson, S.; Stolarski, R. S.

    2012-12-01

    The impact of changes in the abundance of greenhouse gases (GHGs) on the evolution of tropospheric ozone (O3) between 1960 and 2005 is examined using a version of the Goddard Earth Observing System chemistry-climate model (GEOS CCM) with a combined troposphere-stratosphere chemical mechanism. Simulations are performed to isolate the relative role of increases in methane (CH4) and stratospheric ozone depleting substances (ODSs) on tropospheric O3. The 1960 to 2005 increases in GHGs (CO2, N2O, CH4, and ODSs) cause increases of around 1-8% in zonal-mean tropospheric O3 in the tropics and northern extratropics, but decreases of 2-4% in most of the southern extratropics. These O3 changes are due primarily to increases in CH4 and ODSs, which cause changes of comparable magnitude but opposite sign. The CH4-related increases in O3are similar in each hemisphere (˜6%), but the ODS-related decreases in the southern extratropics are much larger than in northern extratropics (10% compared to 2%). This results in an interhemispheric difference in the sign of past O3 change. Increases in the other GHGs (CO2 and N2O) and SSTs have only a small impact on the total burden over this period, but do cause zonal variations in the sign of changes in tropical O3 that are coupled to changes in vertical velocities and water vapor.

  14. Kindergarten Teachers' Conceptual Framework on the Ozone Layer Depletion. Exploring the Associative Meanings of a Global Environmental Issue

    NASA Astrophysics Data System (ADS)

    Daskolia, Maria; Flogaitis, Evgenia; Papageorgiou, Evgenia

    2006-04-01

    This paper reports on a study conducted among Greek kindergarten teachers aiming to explore their conceptual frameworks on a major environmental issue of our times: the ozone layer depletion. The choice of this particular issue was premised on its novelty, complexity and abstractness which present teachers with difficulties in its teaching. A free word association task was employed to identify the associative meaning of the issue among the participant teachers. The study's results revealed the existence of a simplistic, linear, cause-and-effect scheme in the teachers' conceptual frameworks, the two poles of which are "solar radiation" and "its harmful results for human health". Some of the well-known misconceptions and misunderstandings already emerged in previous research also arise in this study. Prominent among them are the deeply rooted confusion between the "ozone hole" and "greenhouse effect", a general fusion of ideas concerning all environmental problems and an overemphasis on the harmful consequences of the ozone depletion on human health. Implications for kindergarten teacher education are also discussed.

  15. The potential for ozone depletion in the Arctic polar stratosphere

    NASA Technical Reports Server (NTRS)

    Brune, W. H.; Anderson, J. G.; Toohey, D. W.; Fahey, D. W.; Kawa, S. R.; Poole, L. R.

    1991-01-01

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (CHl and ClONO2) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl2O2 thoroughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO3, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15 percent at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8 percent losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50 percent over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  16. The potential for ozone depletion in the Arctic polar stratosphere

    SciTech Connect

    Brune, W.H. ); Anderson, J.G.; Toohey, D.W. ); Fahey, D.W.; Kawa, S.R. ); Jones, R.L. ); McKenna, D.S. ); Poole, L.R. )

    1991-05-31

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. most of the available chlorine (HCl and ClONO{sub 2}) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl{sub 2}O{sub 2} throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO{sub 3}, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  17. Depletions in winter total ozone values over southern England

    NASA Technical Reports Server (NTRS)

    Lapworth, A.

    1994-01-01

    A study has been made of the recently re-evaluated time series of daily total ozone values for the period 1979 to 1992 for southern England. The series consists of measurements made at two stations, Bracknell and Camborne. The series shows a steady decline in ozone values in the spring months over the period, and this is consistent with data from an earlier decade that has been published but not re-evaluated. Of exceptional note is the monthly mean for January 1992 which was very significantly reduced from the normal value, and was the lowest so far measured for this month. This winter was also noteworthy for a prolonged period during which a blocking anticyclone dominated the region, and the possibility existed that this was related to the ozone anomaly. It was possible to determine whether the origin of the low ozone value lay in ascending stratospheric motions. A linear regression analysis of ozone value deviation against 100hPa temperature deviations was used to reduce ozone values to those expected in the absence of high pressure. The assumption was made that the normal regression relation was not affected by atmospheric anomalies during the winter. This showed that vertical motions in the stratosphere only accounted for part of the ozone anomaly and that the main cause of the ozone deficit lay either in a reduced stratospheric circulation to which the anticyclone may be related or in chemical effects in the reduced stratospheric temperatures above the high pressure area. A study of the ozone time series adjusted to remove variations correlated with meteorological quantities, showed that during the period since 1979, one other winter, that of 1982/3, showed a similar although less well defined deficit in total ozone values.

  18. Changes in tropospheric composition and air quality due to stratospheric ozone depletion.

    PubMed

    Solomon, Keith R; Tang, Xiaoyan; Wilson, Stephen R; Zanis, Prodromos; Bais, Alkiviadis F

    2003-01-01

    Increased UV-B through stratospheric ozone depletion leads to an increased chemical activity in the lower atmosphere (the troposphere). The effect of stratospheric ozone depletion on tropospheric ozone is small (though significant) compared to the ozone generated anthropogenically in areas already experiencing air pollution. Modeling and experimental studies suggest that the impacts of stratospheric ozone depletion on tropospheric ozone are different at different altitudes and for different chemical regimes. As a result the increase in ozone due to stratospheric ozone depletion may be greater in polluted regions. Attributable effects on concentrations are expected only in regions where local emissions make minor contributions. The vertical distribution of NOx (NO + NO2), the emission of volatile organic compounds and the abundance of water vapor, are important influencing factors. The long-term nature of stratospheric ozone depletion means that even a small increase in tropospheric ozone concentration can have a significant impact on human health and the environment. Trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA) are produced by the atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). TFA has been measured in rain, rivers, lakes, and oceans, the ultimate sink for these and related compounds. Significant anthropogenic sources of TFA other than degradation HCFCs and HFCs have been identified. Toxicity tests under field conditions indicate that the concentrations of TFA and CDFA currently produced by the atmospheric degradation of HFCs and HCFCs do not present a risk to human health and the environment. The impact of the interaction between ozone depletion and future climate change is complex and a significant area of current research. For air quality and tropospheric composition, a range of physical parameters such as temperature, cloudiness and atmospheric transport will modify the impact of UV-B. Changes in the

  19. Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Thompson, C. R.; Shepson, P. B.; Liao, J.; Huey, L. G.; Apel, E. C.; Cantrell, C. A.; Flocke, F.; Orlando, J.; Fried, A.; Hall, S. R.; Hornbrook, R. S.; Knapp, D. J.; Mauldin, R. L., III; Montzka, D. D.; Sive, B. C.; Ullmann, K.; Weibring, P.; Weinheimer, A.

    2014-11-01

    The springtime depletion of tropospheric ozone in the Arctic is known to be caused by active halogen photochemistry resulting from halogen atom precursors emitted from snow, ice, or aerosol surfaces. The role of bromine in driving ozone depletion events (ODEs) has been generally accepted, but much less is known about the role of chlorine radicals in ozone depletion chemistry. While the potential impact of iodine in the High Arctic is more uncertain, there have been indications of active iodine chemistry through observed enhancements in filterable iodide, probable detection of tropospheric IO, and recently, detection of atmospheric I2. Despite decades of research, significant uncertainty remains regarding the chemical mechanisms associated with the bromine-catalyzed depletion of ozone, as well as the complex interactions that occur in the polar boundary layer due to halogen chemistry. To investigate this, we developed a zero-dimensional photochemical model, constrained with measurements from the 2009 OASIS field campaign in Barrow, Alaska. We simulated a 7 day period during late March that included a full ozone depletion event lasting 3 days and subsequent ozone recovery to study the interactions of halogen radicals under these different conditions. In addition, the effects of iodine added to our base model were investigated. While bromine atoms were primarily responsible for ODEs, chlorine and iodine were found to enhance the depletion rates and iodine was found to be more efficient per atom at depleting ozone than Br. The interaction between chlorine and bromine is complex, as the presence of chlorine can increase the recycling and production of Br atoms, while also increasing reactive bromine sinks under certain conditions. Chlorine chemistry was also found to have significant impacts on both HO2 and RO2. The results of this work highlight the need for future studies on the production mechanisms of Br2 and Cl2, as well as on the potential impact of iodine in the

  20. Interactions of bromine, chlorine, and iodine photochemistry during ozone depletions in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Thompson, C. R.; Shepson, P. B.; Liao, J.; Huey, L. G.; Apel, E. C.; Cantrell, C. A.; Flocke, F.; Orlando, J.; Fried, A.; Hall, S. R.; Hornbrook, R. S.; Knapp, D. J.; Mauldin, R. L., III; Montzka, D. D.; Sive, B. C.; Ullmann, K.; Weibring, P.; Weinheimer, A.

    2015-08-01

    The springtime depletion of tropospheric ozone in the Arctic is known to be caused by active halogen photochemistry resulting from halogen atom precursors emitted from snow, ice, or aerosol surfaces. The role of bromine in driving ozone depletion events (ODEs) has been generally accepted, but much less is known about the role of chlorine radicals in ozone depletion chemistry. While the potential impact of iodine in the High Arctic is more uncertain, there have been indications of active iodine chemistry through observed enhancements in filterable iodide, probable detection of tropospheric IO, and recently, observation of snowpack photochemical production of I2. Despite decades of research, significant uncertainty remains regarding the chemical mechanisms associated with the bromine-catalyzed depletion of ozone, as well as the complex interactions that occur in the polar boundary layer due to halogen chemistry. To investigate this, we developed a zero-dimensional photochemical model, constrained with measurements from the 2009 OASIS field campaign in Barrow, Alaska. We simulated a 7-day period during late March that included a full ozone depletion event lasting 3 days and subsequent ozone recovery to study the interactions of halogen radicals under these different conditions. In addition, the effects of iodine added to our Base Model were investigated. While bromine atoms were primarily responsible for ODEs, chlorine and iodine were found to enhance the depletion rates and iodine was found to be more efficient per atom at depleting ozone than Br. The interaction between chlorine and bromine is complex, as the presence of chlorine can increase the recycling and production of Br atoms, while also increasing reactive bromine sinks under certain conditions. Chlorine chemistry was also found to have significant impacts on both HO2 and RO2, with organic compounds serving as the primary reaction partner for Cl atoms. The results of this work highlight the need for future

  1. Future chlorine-bromine loading and ozone depletion

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Ibrahim, Abdel Moneim; Sasaki, Toru; Stordal, Frode; Visconti, Guido

    1991-01-01

    The prediction of future ozone requires three elements: (1) a scenario for the net emissions of chemically and radiatively active trace gases from the land and oceans; (2) a global atmospheric model that projects the accumulation of these gases; and (3) a chemical transport model that describes the distribution of ozone for a prescribed atmospheric composition and climate. This chapter, of necessity, presents models for all three elements and focuses on the following: (1) atmospheric abundance of chlorine and bromine in the form of halocarbons; and (2) the associated perturbations to stratospheric ozone.

  2. Quasi-biennial modulation of the Antarctic ozone depletion

    NASA Technical Reports Server (NTRS)

    Lait, Leslie R.; Schoeberl, Mark R.; Newman, Paul A.

    1989-01-01

    The quasi-biennial oscillation (QBO) in total ozone and temperature has been extracted from 9 years of Total Ozone Mapping Spectrometer (TOMS) observations and National Meteorological Center (NMC) analyses. Years in which QBO-related variations in the total ozone and temperature are positive are found to correspond to years with smaller September Antarctic total ozone hole decline rates and vice versa. The QBO appears to be responsible for September decline rate deviations up to 0.4 Dobson units (DU) per day. Also, the QBO at mid-latitudes appears to be better correlated with the 30-mbar tropical QBO winds than with those at 50 mbar. Possible mechanisms that would explain these phenomena are discussed.

  3. Evolution of ozone depletion on Antarctic and sub-Antarctic regions (1979-2012)

    NASA Astrophysics Data System (ADS)

    Diaz, S. B.; Paladini, A. A.; Deferrari, G. A.; Vrsalovic, J.

    2013-08-01

    At the middle eighties, strong stratospheric ozone depletion during spring was discovered over Antarctica. Since then, the scientific community has put large efforts in performing studies directed to evaluate the magnitude and consequences of this depletion and to take the necessary measures to revert the situation to the scenarios before 1970. In 1987, the Montreal Protocol established a list of ozone depleting products and faced out policies. As consequence of these restrictions on ozone depleting substances, the ozone layer should start to recover in the 21st century. In order to study the evolution of the Antarctic ozone depletion, we analyzed the ozone hole area and mass deficit and seasonal total ozone column (TOC) minimum. We also performed a seasonal and bi-monthly analysis for TOC time series (1979-2012), at twenty Antarctic and Sub-Antarctic stations. The number of days inside the vortex (TOC below 220DU) per season (September-December) and for September-October and November-December were analyzed, fitting the time series with a second degree polynomial According to this study, ozone hole area would have peaked between 2001 and 2002 (R=0.91, p<0.01), while the minimum TOC would have occurred between 2000 and 2001(R=0.91, p<0.01). Mass deficit is only provided since 2005 and it showed a decrease since then, although ot statistically significant as consequence of the short time series. From the 20 analyzed stations, 80% showed that the number of days per season inside the vortex peaked between 2000 and 2003 and for 55% of the stations the number of days inside the vortex for September-October peaked between 1999 and 2004.

  4. Ozone depletion and UVB radiation: Impact on plant DNA damage in southern South America

    PubMed Central

    Rousseaux, M. Cecilia; Ballaré, Carlos L.; Giordano, Carla V.; Scopel, Ana L.; Zima, Ana M.; Szwarcberg-Bracchitta, Mariela; Searles, Peter S.; Caldwell, Martyn M.; Díaz, Susana B.

    1999-01-01

    The primary motivation behind the considerable effort in studying stratospheric ozone depletion is the potential for biological consequences of increased solar UVB (280–315 nm) radiation. Yet, direct links between ozone depletion and biological impacts have been established only for organisms of Antarctic waters under the influence of the ozone “hole;” no direct evidence exists that ozone-related variations in UVB affect ecosystems of temperate latitudes. Indeed, calculations based on laboratory studies with plants suggest that the biological impact of ozone depletion (measured by the formation of cyclobutane pyrimidine dimers in DNA) is likely to be less marked than previously thought, because UVA quanta (315–400 nm) may also cause significant damage, and UVA is unaffected by ozone depletion. Herein, we show that the temperate ecosystems of southern South America have been subjected to increasingly high levels of ozone depletion during the last decade. We found that in the spring of 1997, despite frequent cloud cover, the passages of the ozone hole over Tierra del Fuego (55° S) caused concomitant increases in solar UV and that the enhanced ground-level UV led to significant increases in DNA damage in the native plant Gunnera magellanica. The fluctuations in solar UV explained a large proportion of the variation in DNA damage (up to 68%), particularly when the solar UV was weighted for biological effectiveness according to action spectra that assume a sharp decline in quantum efficiency with increasing wavelength from the UVB into the UVA regions of the spectrum. PMID:10611381

  5. Microphysical Modelling of the 1999-2000 Arctic Winter. 2; Chlorine Activation and Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The effect of a range of assumptions about polar stratospheric clouds (PSCs) on ozone depletion has been assessed using at couple microphysical/photochemical model. The composition of the PSCs was varied (ternary solutions, nitric acid trihydrate, nitric acid dehydrate, or ice), as were parameters that affected the levels of denitrification and dehydration. Ozone depletion was affected by assumptions about PSC freezing because of the variability in resultant nitrification chlorine activation in all scenarios was similar despite the range of assumed PSC compositions. Vortex-average ozone loss exceeded 40% in the lower stratosphere for simulations without nitrification an additional ozone loss of 15-20% was possible in scenarios where vortex-average nitrification reached 60%. Ozone loss intensifies non-linearly with enhanced nitrification in air parcels with 90% nitrification 40% ozone loss in mid-April can be attributed to nitrification alone. However, these effects are sensitive to the stability of the vortex in springtime: nitrification only began to influence ozone depletion in mid-March.

  6. Simulation of Halocarbon Production and Emissions and Effects on Ozone Depletion

    PubMed

    Holmes; Ellis

    1997-09-01

    / This paper describes an integrated model that simulates future halocarbon production/emissions and potential ozone depletion. Applications and historical production levels for various halocarbons are discussed first. A framework is then presented for modeling future halocarbon impacts incorporating differences in underlying demands, applications, regulatory mandates, and environmental characteristics. The model is used to simulate the potential impacts of several prominent issues relating to halocarbon production, regulation, and environmental interactions, notably: changes in agricultural methyl bromide use, increases in effectiveness of bromine for ozone depletion, modifications to the elimination schedule for HCFCs, short-term expansion of CFC demand in low use compliance countries, and delays in Russian Federation compliance. Individually, each issue does not unequivocally represent a significant likely increase in long-term atmospheric halogen loading and stratospheric ozone depletion. In combination, however, these impacts could increase peak halogen concentrations and long-term integral halogen loading, resulting in higher levels of stratospheric ozone depletion and longer exposure to increased levels of UV radiation.KEY WORDS: Halocarbons; Ozone depletion; Montreal Protocol; Integrated assessment PMID:9236283

  7. Ozone depletion observed by the Airborne Submillimeter Radiometer (ASUR) during the Arctic winter 1999/2000

    NASA Astrophysics Data System (ADS)

    Bremer, Holger; von KöNig, M.; KleinböHl, A.; Küllmann, H.; Künzi, K.; Bramstedt, K.; Burrows, J. P.; Eichmann, K.-U.; Weber, M.; Goede, A. P. H.

    2002-10-01

    In the winter 1999/2000 the Airborne Submillimeter Radiometer (ASUR) participated in the Stratospheric Aerosol and Gas Experiment III Ozone Loss and Validation Experiment/Third European Stratospheric Experiment on Ozone project on board the NASA research aircraft DC-8. During three deployments in early December 1999, late January, and early March 2000, the ASUR instrument took various measurements of ozone and key species related to stratospheric ozone chemistry. After the sunlight reached the vortex region in January 2000 peak values of about 1.8 ppb ClO were measured by ASUR. There was nearly no ozone destruction observed during the period between mid December 1999 and late January 2000. As expected from ASUR observation of high chlorine activation and continuously low temperatures until mid March, significant ozone depletion was observed between late January and mid March 2000. In order to determine ozone loss it is important to separate dynamical and chemical effects. Since N2O is a good tracer due to its chemical stability in the lower stratosphere for determining ozone changes due to descent of air, ozone loss can be estimated from simultaneous measurements of ozone and N2O by ASUR. Between mid December 1999 and mid March 2000 a chemical ozone loss of about 30% (eq 1.1 ppm) in the altitude range between 19.0 and 22.2 km and of about 40% (eq 1.15 ppm) between 16.0 and 18.1 km was observed. The air masses subsided 2.1-3.2 km in the lower stratosphere due to diabatic descent in the period from mid December 1999 to mid March 2000 as derived from ASUR N2O measurements. Vortex-averaged ASUR measurements of ozone are systematical greater than results from the Global Ozone Monitoring Experiment (GOME) which has a similar vertical resolution than ASUR. This, however, has little impact on the determination of delta ozone and chemical loss estimates.

  8. Measurements of springtime Antarctic ozone depletion and development of a balloon borne ultraviolet photometer

    SciTech Connect

    Harder, J.W.

    1987-01-01

    The research described herein consists of two parts. The first part is a description of the design of a balloon borne ultraviolet photometer to measure ozone and the results of a flight using this instrument. The second part describes modifications made on the standard commercially available electrochemical ozonesonde and the results of some experiments performed both in the laboratory and during stratospheric balloon flights. Using this modified ECC system, 33 successful balloon flights were made at McMurdo Station, Antarctica during the austral spring of 1986 to study the temporal and vertical development of the so-called Antarctic Ozone Hole. Photometric measurements of ozone in the atmosphere can be accomplished by exploiting 253.65 nanometer absorption feature of ozone. Using a single light source and beam splitting optics, matched optical paths can be generated through two absorption cells. The ozonesonde data gave a very clear picture of the development of the Ozone Hole. The results can be summarized as follows: (1) Depletion occurs between about 12 and 20 km. (2) The most efficient region of ozone depletion decreases in altitude with time. Height profiles show subregions where ozone removal is highly efficient. (3) At 18 km, the ozone mixing ratio decays with a half-life of 25 days.

  9. Thomas calls stratospheric ozone depletion rate alarming; urges CFC, halon phaseout

    SciTech Connect

    Not Available

    1988-11-01

    US Environmental Protection Agency Administrator Lee M. Thomas on September 28 called for even greater efforts in halting the depletion of stratospheric ozone by asking all nations to ratify the Montreal Protocol and then move toward a complete phaseout of ozone-depleting chlorofluorocarbons (CFCs) and halons. We must go further than a 50-percent reduction in these chemicals in order to stabilize ozone levels. The Protocol has been signed by 45 nations, but still needs ratification by the European nations and the European Economic Community in order to enter into force next January. It is increasingly clear that we as a global environmental community must use the Protocol to go even further to eliminate these chemicals which damage the stratospheric-ozone layer and threaten our future.

  10. Stratospheric ozone depletion and future levels of atmospheric chlorine and bromine

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Watson, Robert T.

    1990-01-01

    The rise in atmospheric chlorine levels caused by the emission of chlorofluorocarbons and other halocarbons is thought to be the main cause of the appearance of the Antarctic ozone 'hole' in the late 1970s, and the more modest ozone depletion observed over parts of the Northern Hemisphere. Atmospheric bromine, also associated with halocarbon emissions, is believed to contribute to ozone depletion. Over the next decade, further increases in these compounds are inevitable. Model calculations show that by the end of the next century, atmospheric chlorine and bromine levels may return to those prevalent before the onset of the ozone hole, but only if more stringent regulations are applied to halocarbon production than those currently proposed.

  11. Ozone, Climate, and Global Atmospheric Change.

    ERIC Educational Resources Information Center

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  12. Effect of odd hydrogen on ozone depletion by chlorine reactions

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Cicerone, R. J.; Liu, S. C.; Chameides, W. L.

    1976-01-01

    The present paper discusses how the shape of the ozone layer changes under the influence of injected ClX for several choices of two key HOx reaction rates. The two HOx reactions are: OH + HO2 yields H2O + O2 and O + HO2 yields OH + O2. Results of calculations are presented which show that the two reaction rates determine the stratospheric concentrations of OH and HO2, and that these concentrations regulate the amount by which the stratospheric ozone column can be reduced due to injections of odd chlorine. It is concluded that the amount of ozone reduction by a given mixing ratio of ClX will remain very uncertain until the significance of several possible feedback effects involving HOx in a chlorine-polluted atmosphere are determined and measurements of the reaction rates and HOx concentrations are made at the relevant temperatures.

  13. Semi-Empirical Models of Polar Stratospheric Ozone Depletion and Their Applications

    NASA Astrophysics Data System (ADS)

    Huck, P. E.; Bodeker, G. E.; Shepherd, T. G.; Struthers, H.; Santee, M. L.; McDonald, A. J.

    2007-12-01

    Inter- and intra-annual variability in polar stratospheric ozone depletion is controlled by the interaction of gas- phase chemistry, heterogeneous chemistry, and transport. Two semi-empirical models were developed to relate the conversion of total polar stratospheric chlorine (Cly) to activated chlorine (ClOx), and to then relate the rate of ozone destruction to ClOx. The first semi-empirical model was used to calculate the daily total mass of ClOx through a given season when provided with stratospheric temperature fields and a definition of the vortex edge. The equation is a first order differential equation relating the time rate of change of ClOx to unactivated stratospheric chlorine (Cly - ClOx) multiplied by the fraction of the vortex area containing polar stratospheric clouds and the fraction of the vortex area exposed to sunlight, and to a decay term to account for conversion back to reservoir species. The second semi-empirical model relates the time rate of change of ozone mass deficit (OMD) to the mass of activated chlorine as derived from the first equation, in-situ production of ozone and a term for dynamical entrainment of ozone rich air from lower latitudes into the polar vortex. The coefficients of both equations have been derived by optimally fitting the equations to observations and/or to output from chemistry-climate models (CCMs). The coefficients from these equations capture key sensitivities in the atmosphere that determine the interaction between climate change and polar ozone depletion. Potential applications of these coefficients include intra- seasonal projection of the severity of polar ozone depletion, evaluation of pre-1980 ozone depletion and process oriented validation of CCMs.

  14. The probability distribution of the predicted CFM-induced ozone depletion. [Chlorofluoromethane

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Chang, J. S.; Bulter, D. M.

    1979-01-01

    It is argued from the central limit theorem that the uncertainty in model predicted changes of the ozone column density is best represented by a normal probability density distribution. This conclusion is validated by comparison with a probability distribution generated by a Monte Carlo technique. In the case of the CFM-induced ozone depletion, and based on the estimated uncertainties in the reaction rate coefficients alone the relative mean standard deviation of this normal distribution is estimated to be 0.29.

  15. Characterization of Surface Ozone Depletion Events in the Arctic and Sub-Arctic During TOPSE

    NASA Astrophysics Data System (ADS)

    Ridley, B. A.; Atlas, E.; Weinheimer, A.; Flocke, F.; Emmons, L.; Cinquini, L.; Montzka, D.; Walega, J.; Cantrell, C.; Eisele, F.; Mauldin, L.; Fried, A.; Wert, B.; Henry, B.; Shetter, R.; Lefer, B.; Hall, S.; Hannigan, J.; Coffey, M.; Grahek, F.; Browell, E.; Hair, J.; Butler, C.; Grant, W.; DeYoung, R.; Fenn, M.; Clayton, M.; Brackett, V.; Brasseur, L.; Harper, D.; Notari, A.; Williams, J.; Alexander, G.; Insley, G.; Moody, J.; Wimmers, A.; Snow, J.; Heikes, B.; Merrill, J.; Talbot, R.; Dibb, J.; Scheurer, E.; Seid, G.; Blake, D.; Blake, N.; Cohen, R.; Thornton, J.; Rosen, B.; Wooldridge, P.; Weber, R.; Wang, B.

    2001-05-01

    Previous studies at Alert or during the ARCTOC program have shown that removal of ozone in the Arctic surface layer occurs frequently in spring and results from catalyzed destruction by active bromine that is believed to derive from sea salt. More recent studies have shown that the snow/ice surface can also be a source of other reactive constituents such as carbonyls and reactive nitrogen. During the TOPSE aircraft study from early Feb. to mid- May, 2000, the occurrence and extent of depletion events were investigated using the NASA Langley ozone/aerosol lidar instrument (DIAL) and the distribution of photochemical constituents was studied by flying the aircraft at ~30 m altitude over the frozen ocean surface for ~30 min and sometimes longer. Ozone depletion events were observed over the Arctic Ocean on three occasions and at lower latitudes over Lancaster Sound, Baffin Bay, and Smith/Kane Bay. Ozone mixing ratios were as low as 40 pptv over the Arctic Ocean. In some cases, depletion was significant to altitudes as high as 1-2 km. For the first time a very large area depletion event was recorded by the DIAL instrument in the sub-Arctic over Hudson Bay. This event was investigated in detail using the in-situ instruments on a dedicated flight made two days later. There were many other occasions where no ozone depletion was observed during low altitude flight legs north of 58o. A comparison of constituent distributions (peroxides, HCHO, PAN, HNO3, OH, RO2, NOx, NOy, soluble bromide, CO, hydrocarbons, and aerosols) is made between the different cases of ozone depleted air masses and with the undepleted low altitude air masses.

  16. Role of the boundary layer in the occurrence and termination of the tropospheric ozone depletion events in polar spring

    NASA Astrophysics Data System (ADS)

    Cao, Le; Platt, Ulrich; Gutheil, Eva

    2016-05-01

    Tropospheric ozone depletion events (ODEs) in the polar spring are frequently observed in a stable boundary layer condition, and the end of the events occurs when there is a breakup of the boundary layer. In order to improve the understanding of the role of the boundary layer in the ozone depletion event, a one-dimensional model is developed, focusing on the occurrence and the termination period of the ozone depletion episode. A module accounting for the vertical air transport is added to a previous box model, and a first-order parameterization is used for the estimation of the vertical distribution of the turbulent diffusivity. Simulations are performed for different strengths of temperature inversion as well as for different wind speeds. The simulation results suggest that the reactive bromine species released from the underlying surface into the lowest part of the troposphere initially stay in the boundary layer, leading to an increase of the bromine concentration. This bromine accumulation causes the ozone destruction below the top of the boundary layer. After the ozone is totally depleted, if the temperature inversion intensity decreases or the wind speed increases, the severe ozone depletion event tends to transit into a partial ozone depletion event or it recovers to the normal ozone background level of 30-40 ppb. This recovery process takes about 2 h. Due to the presence of high-level HBr left from the initial occurrence of ODEs, the complete removal of ozone in the boundary layer is achieved a few days after the first termination of ODE. The time required for the recurrence of the ozone depletion in a 1000 m boundary layer is approximately 5 days, while the initial occurrence of the complete ozone consumption takes 15 days. The present model is suitable to clarify the reason for both the start and the termination of the severe ozone depletion as well as the partial ozone depletion in the observations.

  17. Role of the boundary layer in the occurrence and termination of the tropospheric ozone depletion events in polar spring

    NASA Astrophysics Data System (ADS)

    Cao, Le; Platt, Ulrich; Gutheil, Eva

    2016-05-01

    Tropospheric ozone depletion events (ODEs) in the polar spring are frequently observed in a stable boundary layer condition, and the end of the events occurs when there is a breakup of the boundary layer. In order to improve the understanding of the role of the boundary layer in the ozone depletion event, a one-dimensional model is developed, focusing on the occurrence and the termination period of the ozone depletion episode. A module accounting for the vertical air transport is added to a previous box model, and a first-order parameterization is used for the estimation of the vertical distribution of the turbulent diffusivity. Simulations are performed for different strengths of temperature inversion as well as for different wind speeds. The simulation results suggest that the reactive bromine species released from the underlying surface into the lowest part of the troposphere initially stay in the boundary layer, leading to an increase of the bromine concentration. This bromine accumulation causes the ozone destruction below the top of the boundary layer. After the ozone is totally depleted, if the temperature inversion intensity decreases or the wind speed increases, the severe ozone depletion event tends to transit into a partial ozone depletion event or it recovers to the normal ozone background level of 30-40 ppb. This recovery process takes about 2 h. Due to the presence of high-level HBr left from the initial occurrence of ODEs, the complete removal of ozone in the boundary layer is achieved a few days after the first termination of ODE. The time required for the recurrence of the ozone depletion in a 1000 m boundary layer is approximately 5 days, while the initial occurrence of the complete ozone consumption takes 15 days. The present model is suitable to clarify the reason for both the start and the termination of the severe ozone depletion as well as the partial ozone depletion in the observations.

  18. Ultraviolet radiation in the Arctic - The impact of potential ozone depletions and cloud effects

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Stamnes, Knut

    1992-01-01

    The combined effects of ozone depletions/redistributions and particulate clouds on atmospheric cheating/photolysis rates and UV radiation reaching the biosphere are investigated by means of an atmospheric radiation model. Consideration is given to four types of particulate clouds prevalent in the summertime Arctic: stratospheric aerosols, tropospheric aerosols (Arctic haze), cirrus clouds, and stratus clouds. The effects of ozone depletion and vertical redistributions of ozone are also examined. Stratus clouds are found to provide significant protection from UV radiation exposure, but while stratospheric aerosols imply increased UVB exposure, Arctic haze results in a decrease. A redistribution of ozone from the stratosphere to the troposphere tends to decrease UV exposure, but for low solar elevations an increase may occur. A 20-percent ozone depletion leads to about 0.4 K/d cooling in the lower stratosphere, while redistribution of ozone from the stratosphere to the troposphere implies a warming of about 0.015 K/d in the upper troposphere.

  19. Health impacts of climate change and ozone depletion: an ecoepidemiologic modeling approach.

    PubMed

    Martens, W J

    1998-02-01

    Anthropogenic climate changes and stratospheric ozone depletion affect human health in various ways. Current mainstream epidemiologic research methods do not appear well adapted to analyze these health impacts, which involve complex systems influenced by human interventions or simpler processes that will take place in the future. This paper discusses a different paradigm for studying the health impacts of global environmental changes and focuses on the development of integrated ecoepidemiologic models using three examples--the effect of climate change on vector-borne diseases, the effect of climate change on thermal-related mortality, and the effects of increasing ultraviolet levels because of ozone depletion on the rates of skin cancer. PMID:9539017

  20. Toward Describing the Effects of Ozone Depletion on Marine Primary Productivity and Carbon Cycling

    NASA Technical Reports Server (NTRS)

    Cullen, John J.

    1995-01-01

    This project was aimed at improved predictions of the effects of UVB and ozone depletion on marine primary productivity and carbon flux. A principal objective was to incorporate a new analytical description of photosynthesis as a function of UV and photosynthetically available radiation (Cullen et. al., Science 258:646) into a general oceanographic model. We made significant progress: new insights into the kinetics of photoinhibition were used in the analysis of experiments on Antarctic phytoplankton to generate a general model of UV-induced photoinhibition under the influence of ozone depletion and vertical mixing. The way has been paved for general models on a global scale.

  1. Prolonged Duration and Frequency of Springtime Ozone Depletion Events in the Arctic

    NASA Astrophysics Data System (ADS)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Oltmans, S. J.; Uttal, T.; Crepinsek, S.

    2013-12-01

    Surface ozone measurements have been maintained in Barrow, Alaska since the mid-1970's, this long term data set allows for analysis and research regarding the year to year variability and long term trends of tropospheric ozone in this region. Since the discovery of ozone depletion events (ODE's) in the 1980's [Oltmans , 1981] evidence has shown that there is a direct correlation between sea ice age, wind direction, and ozone depletions. As the climate continues to change, the characteristics and chemistry of the sea ice, and in turn atmosphere, will change as well. With first year sea ice now making up the majority of Arctic ice cover, younger and saltier ice is being melted each spring. Bromine and other halogens are released into the atmosphere from brine depositions on the ice surface resulting in photo chemical reactions depleting ozone at the surface. It must be considered that wind direction of air masses moving into the measurement location play a great role on the intensity and frequency of events each year. When air masses have dominant land based direction, then the depletion events are not seen. These ODE's have been steadily increasing over time, with a remarkable amount of depletion detected in 2012. Data collected from Thermo Scientific Model 49c Ozone monitors in Barrow, Alaska and Tiksi, Russia (located at 71.6 N and 71.3 N respectively to minimize solar angle differences) can be correlated with dominant wind direction, Hybrid Single Particle Langrangian Integrated Trajectory (HYSPLIT) modeling, and ice age to form an association between ODE's and winds passing over the halogen rich arctic ice. 2013 data from both arctic locations is analyzed to determine the dynamics of ozone depletions with regard to changing ice conditions and wind patterns as compared to 2012 and historical data. The data must be scrutinized with regard to the confounding variables to determine the mechanism behind the extended duration and severity of depletion events in the

  2. Simulations of Arctic ozone depletion with current and doubled levels of CO2

    NASA Technical Reports Server (NTRS)

    Butchart, Neal; Austin, John; Shine, Keith P.

    1994-01-01

    Results from idealized 3-D simulations of a dynamical-radiative-photochemical model of the stratosphere are presented for the Northern Hemisphere winter and spring. For a simulation of a quiescent winter, it is found that with current levels of CO2 only modest polar ozone depletion occurs, consistent with observations. For a second simulation with the same planetary wave amplitudes in the upper troposphere but with doubled CO2, the model predicts a northern hemisphere ozone hole comparable to that observed in Antarctica with almost complete ozone destruction at 20 km. Reasons for the marked difference between the simulations are identified.

  3. US scientists continue ozone depletion studies during the 1987-1988 austral summer

    SciTech Connect

    Not Available

    1987-09-01

    Working at Palmer Station and along the Antarctic Peninsula aboard the research ship Polar Duke, two teams of marine biologists will measure how increased exposure to ultraviolet light may be affecting the antarctic marine ecosystem. The projects are part of the US study of the annual spring depletion of ozone over Antarctica and the effects of decreased ozone levels on the environment. Data show that staring 1979 a dramatic decrease in stratospheric ozone over the southern continent occurring each austral spring. In late August or early September, a hole about the size of the United States, begins to form; the decline continues through September and October, with a recovery during November. Scientists compared contemporary measurements of the total amount of ozone above Antarctica during October to amounts measured between 1950 and the 1970s. They found that the contemporary data showed that ozone abundance had decreased by as much as about 50 percent.

  4. Terrestrial Ozone Depletion Due to a Milky Way Gamma-Ray Burst

    NASA Technical Reports Server (NTRS)

    Thomas, Brian C.; Jackman, Charles H.; Melott, Adrian L.; Laird, Claude M.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.

    2005-01-01

    Based on cosmological rates, it is probable that at least once in the last Gy the Earth has been irradiated by a gamma-ray burst in our Galaxy from within 2 kpc. Using a two-dimensional atmospheric model we have computed the effects upon the Earth's atmosphere of one such burst. A ten second burst delivering 100 kJ/sq m to the Earth results in globally averaged ozone depletion of 35%, with depletion reaching 55% at some latitudes. Significant global depletion persists for over 5 years after the burst. This depletion would have dramatic implications for life since a 50% decrease in ozone column density results in approximately three times the normal UVB flux. Widespread extinctions are likely, based on extrapolation from UVB sensitivity of modern organisms.

  5. Impact of ozone on quantity and quality of greenhouse-grown potato plants

    SciTech Connect

    Pell, E.J.; Weissberger, W.C.; Speroni, J.J.

    1980-05-01

    The impact of ozone on quality and quantity of greenhouse-grown potatoes was considered. In two experiments conducted in 1977 and 1978, 'Norland' and 'Kennebec' potato plants were grown in a conventional greenhouse. Once every 2 weeks, 10 plants of each cultivar were exposed to 387 ..mu..g/m/sup 3/ (0.20 ppm) ozone for 3 h in a controlled environment chamber. At 120 and 140 days, for 'Norland' and 'Kennebec', respectively, vines were killed and tubers were harvested. The number and weight of tubers harvested from ozonized plants decreased significantly in both cultivars. Significant decreases in total solids and increases in reducing sugars of tubers from ozone-exposed plants were identified.

  6. Impact of ozone on quantity and quality of greenhouse-grown potato plants

    SciTech Connect

    Pell, E.J.; Weissberger, W.C.; Speroni, J.J.

    1980-05-01

    The impact of ozone on quality and quantity of greenhouse-grown potatoes was considered. In two experiments conducted in 1977 and 1978, Norland and Kennebec potato plants were grown in a conventional greenhouse. Once every 2 weeks, 10 plants of each cultivar were exposed to 387 ..mu..g/m/sup 3/ (0.20 ppm) ozone for 3 h in a controlled environment chamber. At 120 and 140 days, for Norland and Kennebec, respectively, vines were killed and tubers were harvested. The number and weight of tubers harvested from ozonized plants decreased significantly in both cultivars. Significant decreases in total solids and increases in reducing sugars of tubers from ozone-exposed plants were identified.

  7. Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program

    NASA Astrophysics Data System (ADS)

    Ridley, B. A.; Atlas, E. L.; Montzka, D. D.; Browell, E. V.; Cantrell, C. A.; Blake, D. R.; Blake, N. J.; Cinquini, L.; Coffey, M. T.; Emmons, L. K.; Cohen, R. C.; Deyoung, R. J.; Dibb, J. E.; Eisele, F. L.; Flocke, F. M.; Fried, A.; Grahek, F. E.; Grant, W. B.; Hair, J. W.; Hannigan, J. W.; Heikes, B. J.; Lefer, B. L.; Mauldin, R. L.; Moody, J. L.; Shetter, R. E.; Snow, J. A.; Talbot, R. W.; Thornton, J. A.; Walega, J. G.; Weinheimer, A. J.; Wert, B. P.; Wimmers, A. J.

    2003-02-01

    During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) aircraft program, ozone depletion events (ODEs) in the high latitude surface layer were investigated using lidar and in situ instruments. Flight legs of 100 km or longer distance were flown 32 times at 30 m altitude over a variety of regions north of 58° between early February and late May 2000. ODEs were found on each flight over the Arctic Ocean but their occurrence was rare at more southern latitudes. However, large area events with depletion to over 2 km altitude in one case were found as far south as Baffin Bay and Hudson Bay and as late as 22 May. There is good evidence that these more southern events did not form in situ but were the result of export of ozone-depleted air from the surface layer of the Arctic Ocean. Surprisingly, relatively intact transport of ODEs occurred over distances of 900-2000 km and in some cases over rough terrain. Accumulation of constituents in the frozen surface over the dark winter period cannot be a strong prerequisite of ozone depletion since latitudes south of the Arctic Ocean would also experience a long dark period. Some process unique to the Arctic Ocean surface or its coastal regions remains unidentified for the release of ozone-depleting halogens. There was no correspondence between coarse surface features such as solid ice/snow, open leads, or polynyas with the occurrence of or intensity of ozone depletion over the Arctic or subarctic regions. Depletion events also occurred in the absence of long-range transport of relatively fresh "pollution" within the high latitude surface layer, at least in spring 2000. Direct measurements of halogen radicals were not made. However, the flights do provide detailed information on the vertical structure of the surface layer and, during the constant 30 m altitude legs, measurements of a variety of constituents including hydroxyl and peroxy radicals. A summary of the behavior of these constituents is made. The

  8. Persistent Polar Depletion of Stratospheric Ozone and Emergent Mechanisms of Ultraviolet Radiation-Mediated Health Dysregulation

    PubMed Central

    Dugo, Mark A.; Han, Fengxiang

    2013-01-01

    Year 2011 noted the first definable ozone “hole” in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiological stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared to the Antarctic region, increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biological rhythms in terms of taxonomically conserved photoperiod dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter the fitness and condition, while circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR induced modulations of phase I and phase II transcription factors, the aryl hydrocarbon receptor (AhR) and the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. While concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR mediated dysregulations of rhymicity

  9. Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation.

    PubMed

    Dugo, Mark A; Han, Fengxiang; Tchounwou, Paul B

    2012-01-01

    Year 2011 noted the first definable ozone "hole" in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone-depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiologic stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared with the Antarctic region, the increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe, and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biologic rhythms in terms of taxonomically conserved photoperiod-dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter fitness and condition, whereas circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR-induced modulations of phase I and II transcription factors located in skin cells, the aryl hydrocarbon receptor (AhR), and the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. Although concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR

  10. 75 FR 56858 - Use of Ozone-Depleting Substances; Removal of Essential-Use Designation (Flunisolide, etc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ..., 2010 (75 FR 19213). The document amended FDA's regulation on the use of ozone- depleting substances... 20993, 301-796-9171. SUPPLEMENTARY INFORMATION: In FR Doc. 2010-8467, appearing on page 19213, in the... Use of Ozone-Depleting Substances; Removal of Essential-Use Designation (Flunisolide,...

  11. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health.

    PubMed

    De Fabo, Edward C

    2005-12-01

    Contrary to popular belief, stratospheric ozone depletion, and the resultant increase in solar UV-B (280-320 nm), are unlikely to fully recover soon. Notwithstanding the success of the Montreal Protocol in reducing the amount of ozone destroying chemicals into the stratosphere, the life-times of these compounds are such that even with full compliance with the Protocol by all countries, it will be decades before stratospheric ozone could return to pre-1980 levels. This raises the question, therefore, of what will happen to biological processes essential to the maintenance of life on earth which are sensitive to damage by increased UV-B radiation, particularly those involved with human health? The polar regions, because of the vagaries of climate and weather, are the bellwether for stratospheric ozone depletion and will, therefore, be the first to experience impacts due to increases in solar UV-B radiation. The impacts of these are incompletely understood and cannot be predicted with certainty. While some UV-B impacts on human health are recognized, much is unknown, unclear and uncertain. Thus, this paper attempts, as a first approximation, to point out potential impacts to the health and welfare of human inhabitants of the Arctic due to increased solar UV-B radiation associated with stratospheric ozone depletion. As will be seen, much more data is critically needed before adequate risk assessment can occur. PMID:16440613

  12. Ozone Depletion at Mid-Latitudes: Coupling of Volcanic Aerosols and Temperature Variability to Anthropogenic Chlorine

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Portmann, R. W.; Garcia, R. R.; Randel, W.; Wu, F.; Nagatani, R.; Gleason, J.; Thomason, L.; Poole, L. R.; McCormick, M. P.

    1998-01-01

    Satellite observations of total ozone at 40-60 deg N are presented from a variety of instruments over the time period 1979-1997. These reveal record low values in 1992-3 (after Pinatubo) followed by partial but incomplete recovery. The largest post-Pinatubo reductions and longer-term trends occur in spring, providing a critical test for chemical theories of ozone depletion. The observations are shown to be consistent with current understanding of the chemistry of ozone depletion when changes in reactive chlorine and stratospheric aerosol abundances are considered along with estimates of wave-driven fluctuations in stratospheric temperatures derived from global temperature analyses. Temperature fluctuations are shown to make significant contributions to model calculated northern mid-latitude ozone depletion due to heterogeneous chlorine activation on liquid sulfate aerosols at temperatures near 200-210 K (depending upon water vapor pressure), particularly after major volcanic eruptions. Future mid-latitude ozone recovery will hence depend not only on chlorine recovery but also on temperature trends and/or variability, volcanic activity, and any trends in stratospheric sulfate aerosol.

  13. Ozone depletion due to the use of chlorofluorocarbon: Government and industry response. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning the response of business and government to atmospheric ozone depletion. Voluntary restrictions in the use of chlorofluorocarbons by industry and attempts to develop a substitute are examined. References cite studies of the ozone layer and the effects of aerosols worldwide, and examples of climatic models of ozone depletion. Government sponsored bans on chloroflourocarbons are examined. (Contains 250 citations and includes a subject term index and title list.)

  14. Ozone depletion due to the use of chlorofluorocarbon: Government and industry response. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the response of business and government to atmospheric ozone depletion. Voluntary restrictions in the use of chlorofluorocarbons by industry and attempts to develop a substitute are examined. References cite studies of the ozone layer and the effects of aerosols worldwide, and examples of climatic models of ozone depletion. Government sponsored bans on chloroflourocarbons are examined. (Contains 250 citations and includes a subject term index and title list.)

  15. Ozone depletion due to the use of chlorofluorocarbon: Government and industry response. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the response of business and government to atmospheric ozone depletion. Voluntary restrictions in the use of chlorofluorocarbons by industry and attempts to develop a substitute are examined. References cite studies of the ozone layer and the effects of aerosols worldwide, and examples of climatic models of ozone depletion. Government sponsored bans on chloroflourocarbons are examined. (Contains 250 citations and includes a subject term index and title list.)

  16. Substitutes for ozone depleting aerosol electrical contact cleaners and cleaner/lubricants. Technical report

    SciTech Connect

    Bevilacqua, P.; Clark, K.G.

    1996-01-24

    With the production of Class I Ozone Depleting Substances discontinued as of January 1996, it became necessary to identify suitable replacements for chlorofluorocarbon (CFC-113) and trichloroethane (TCA) based electrical contact cleaners and cleaner/lubricant products. Two hydrochlorofluorocarbon (HCFC-141b) blends were identified as substitutes and recommended for interim use.

  17. In Brief: SCISAT Studies Depletion of Ozone Layer; Healthy Corals Found in Caribbean

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The Canadian Space Agency's SCISAT satellite began its mission to study the depletion of the ozone layer, following a successful launch on 12 August. The satellite began collecting data 50 minutes after its launch.A recent underwater survey has found that several Caribbean coral reefs are in better health than had been suspected, investigators announced on 24 July.

  18. INTERACTIVE EFFECTS OF OZONE DEPLETION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    The effects of ozone depletion on global biogeochemical cycles, via increased UV-B radiation at the Earth's surface, have continued to be documented over the past 4 years. In this report we also document various effects of UV-B that interact with global climate change because the...

  19. Simulation of ozone depletion using ambient irradiance supplemented with UV lamps.

    PubMed

    Díaz, S; Camilión, C; Escobar, J; Deferrari, G; Roy, S; Lacoste, K; Demers, S; Belzile, C; Ferreyra, G; Gianesella, S; Gosselin, M; Nozais, C; Pelletier, E; Schloss, I; Vernet, M

    2006-01-01

    In studies of the biological effects of UV radiation, ozone depletion can be mimicked by performing the study under ambient conditions and adding radiation with UV-B lamps. We evaluated this methodology at three different locations along a latitudinal gradient: Rimouski (Canada), Ubatuba (Brazil) and Ushuaia (Argentina). Experiments of the effect of potential ozone depletion on marine ecosystems were carried out in large outdoor enclosures (mesocosms). In all locations we simulated irradiances corresponding to 60% ozone depletion, which may produce a 130-1900% increase in 305 nm irradiance at noon, depending on site and season. Supplementation with a fixed percentage of ambient irradiance provides a better simulation of irradiance increase due to ozone depletion than supplementation with a fixed irradiance value, particularly near sunrise and sunset or under cloudy skies. Calculations performed for Ushuaia showed that, on very cloudy days, supplementation by the square-wave method may produce unrealistic irradiances. Differences between the spectra of the calculated supplementing irradiance and the lamp for a given site and date will be a function of the time of day and may become more or less pronounced according to the biological weighting function of the effect under study. PMID:17205620

  20. LOW OZONE-DEPLETING HALOCARBONS AS TOTAL-FLOOD AGENTS: VOLUME 1. CANDIDATE SURVEY

    EPA Science Inventory

    The volume describes an effort to identify chemical fire protection and explosion prevention agents which may replace the ozone-depleting agent Halon-1301 (CF3Br). Halon-1301 is used in total-flood fire protection systems where the agent is released as a gas into an enclosed spac...

  1. Green Consciousness or Dollar Diplomacy? The British Response to the Threat of Ozone Depletion.

    ERIC Educational Resources Information Center

    Maxwell, James H.; Weiner, Sanford L.

    1993-01-01

    Discusses the British role in the regulation of believed ozone-depleting substances such as chlorofluorocarbons. Recounts the history of the British policies during the emergence of the issue from 1974-80; a period of tactical resistance from 1980-87; and a change in policy from 1987-90. (66 references) (MDH)

  2. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015

    EPA Science Inventory

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...

  3. Global Warming and Ozone Layer Depletion: STS Issues for Social Studies Classrooms.

    ERIC Educational Resources Information Center

    Rye, James A.; Strong, Donna D.; Rubba, Peter A.

    2001-01-01

    Explores the inclusion of science-technology-society (STS) education in social studies. Provides background information on global warming and the depletion of the ozone layer. Focuses on reasons for teaching global climate change in the social studies classroom and includes teaching suggestions. Offers a list of Web sites about global climate…

  4. Simulation of halocarbon production and emissions and effects on ozone depletion

    SciTech Connect

    Holmes, K.J.; Ellis, H.

    1997-09-01

    This paper describes an integrated model that simulates future halocarbon production/emissions and potential ozone depletion. Applications and historical production levels for various halocarbons are discussed first. A framework is then presented for modeling future halocarbon impacts incorporating differences in underlying demands, applications, regulatory mandates, and environmental characteristics. The model is used to simulate the potential impacts of several prominent issues relating to halocarbon production, regulation, and environmental interactions, notably changes in agricultural methyl bromide use, increases in effectiveness of bromide for ozone depletion, modifications to the elimination schedule for HCFCs, short-term expansion of CFC demand in low use compliance countries, and delays in Russian Federation compliance. Individually, each issue does not unequivocally represent a significant likely increase in long-term atmospheric halogen loading and stratospheric ozone depletion. In combination, however, these impacts could increase peak halogen concentrations and long-term integral halogen loading, resulting in higher levels of stratospheric ozone depletion and longer exposure to increased levels of UV radiation.

  5. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric ozone depletion

    SciTech Connect

    Montzka, S.A.; Butler, J.H.; Myers, R.C.

    1996-05-31

    Analyses of air sampled from remote locations across the globe reveal that tropospheric chlorine attributable to anthropogenic halocarbons peaked near the beginning of 1994 and was decreasing at a rate of 25 {+-} parts per trillion per year by mid-1995. Although bromine from halons was still increasing in mid-1995, the summed abundance of these halogens in the troposphere is decreasing. To assess the effect of this trend on stratospheric ozone, estimates of the future stratospheric abundance of ozone-depleting gases were made for mid-latitude and polar regions on the basis of these tropospheric measurements. These results suggest that the amount of reactive chlorine and bromine will reach a maximum in the stratosphere between 1997 and 1999 and will decline thereafter if limits outlined in the adjusted and amended Montreal Protocol on Substances That Deplete the Ozone Layer are not exceeded in future years. 30 refs., 4 figs., 1 tab.

  6. Selecting corporate political tactics: The Montreal Protocol on substances that deplete the ozone layer

    SciTech Connect

    Getz, K.A.

    1991-01-01

    This study examines factors influencing the choice of one set of tactics over others. The case of ozone depletion is used as the research context, and the data are drawn from US companies having a stake in this issue. A model is developed which suggests that a firm's choice of political tactics (dependent variable) is dependent on the targets of political activity and the nature of the issue of concern (independent variables), and a variety of organizational and industry factors (moderating variables). The paradigm of agency is used to systematically assess the relative importance of these factors. To test the relevance of the model, an empirical study was done. The case of the Montreal protocol on Substances That Deplete the Ozone Layer was chosen as a setting; and 551 firms directly affected by policy intended to protect the ozone layer were surveyed. There were 151 usable responses. Generally, the findings were consistent with the model.

  7. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Hartmann, Dennis L.

    1991-01-01

    Recent aircraft observations have determined the structure of polar vortices during winter and their relationship to polar ozone depletions, based on high dynamical isolation and the extremely low temperatures required for stratospheric cloud formation. The aircraft data reveal large gradients of potential vorticity and concentrations of conservative trace species at the transition from high-latitude to polar air, implying that the inward mixing of heat and constituents is strongly inhibited, and that the perturbed polar stratospheric chemistry associated with the ozone hole is isolated from the rest of the stratosphere until the vortex breaks up in late spring. It is therefore the overall polar vortex which limits the annual polar ozone depletions' maximum area-coverage.

  8. Environmental, health, and CFC (chlorofluorocarbons) substitution aspects of the ozone depletion issue

    SciTech Connect

    Van Hook, R.I.; Fairchild, P.D.; Fulkerson, W.; Perry, A.M.; Regan, J.D.; Taylor, G.E.

    1989-11-01

    In 1974 chlorofluorocarbons (CFCs) were identified as playing a major role in depleting the stratospheric ozone layer, a process which could potentially result in increasing levels of UV(B) radiation. Substantial progress has been made in the ensuing years, especially after the surprising discovery of the ozone hole in Antarctica in 1984. Investigation of this hole's development has led to improved understanding of heterogeneous gas-solid phase reaction kinetics occurring in the stratosphere, but there are still uncertainties in the developing theory of ozone depletion. The connection betwen global CFC production and stratospheric ozone depletion is plainly evident. It is also evident that the long atmospheric lifetimes of these synthetic organic chemicals lead to decadal time frames between the response on CFC emissions and the reaction of chlorine with stratospheric ozone molecules. It is generally accepted that complete CFC phaseout is required to alleviate this situation; however, even if emissions could be reduced to zero immediately, ozone depletion would continue for many decades although at a declining rate. A critical question to be addressed is that of the actual timing of the CFC phaseout. It appears to us that the decision to phase out CFCs completely (i.e., a 90% or 100% phaseout vs 50% phaseout as called for in the Montreal Protocol) is much more important than whether the phaseout occurs within the next 5 years or the next 10 years. This question is particularly important relative to the availability of tested chemical and nonchemical CFC substitutes for refrigeration and insulation purposes. 24 refs., 4 figs., 3 tabs.

  9. Improvements in total column ozone in GEOSCCM and comparisons with a new ozone-depleting substances scenario

    NASA Astrophysics Data System (ADS)

    Oman, Luke D.; Douglass, Anne R.

    2014-05-01

    The evolution of ozone is examined in the latest version of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using old and new ozone-depleting substances (ODS) scenarios. This version of GEOSCCM includes a representation of the quasi-biennial oscillation, a more realistic implementation of ozone chemistry at high solar zenith angles, an improved air/sea roughness parameterization, and an extra 5 parts per trillion of CH3Br to account for brominated very short-lived substances. Together these additions improve the representation of ozone compared to observations. This improved version of GEOSCCM was used to simulate the ozone evolution for the A1 2010 and the new Stratosphere-troposphere Processes and their Role in Climate (SPARC) 2013 ODS scenario derived using the SPARC Lifetimes Report 2013. This new ODS scenario results in a maximum Cltot increase of 65 parts per trillion by volume (pptv), decreasing slightly to 60 pptv by 2100. Approximately 72% of the increase is due to the longer lifetime of CFC-11. The quasi-global (60°S-60°N) total column ozone difference is relatively small and less than 1 Dobson unit on average and consistent with the 3-4% larger 2050-2080 average Cly in the new SPARC 2013 scenario. Over high latitudes, this small change in Cly compared to the relatively large natural variability makes it not possible to discern a significant impact on ozone in the second half of the 21st century in a single set of simulations.

  10. Improvements in Total Column Ozone in GEOSCCM and Comparisons with a New Ozone-Depleting Substances Scenario

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.

    2014-01-01

    The evolution of ozone is examined in the latest version of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using old and new ozone-depleting substances (ODS) scenarios. This version of GEOSCCM includes a representation of the quasi-biennial oscillation, a more realistic implementation of ozone chemistry at high solar zenith angles, an improved air/sea roughness parameterization, and an extra 5 parts per trillion of CH3Br to account for brominated very short-lived substances. Together these additions improve the representation of ozone compared to observations. This improved version of GEOSCCM was used to simulate the ozone evolution for the A1 2010 and the newStratosphere-troposphere Processes and their Role in Climate (SPARC) 2013 ODS scenario derived using the SPARC Lifetimes Report 2013. This new ODS scenario results in a maximum Cltot increase of 65 parts per trillion by volume (pptv), decreasing slightly to 60 pptv by 2100. Approximately 72% of the increase is due to the longer lifetime of CFC-11. The quasi-global (60degS-60degN) total column ozone difference is relatively small and less than 1Dobson unit on average and consistent with the 3-4% larger 2050-2080 average Cly in the new SPARC 2013 scenario. Over high latitudes, this small change in Cly compared to the relatively large natural variabilitymakes it not possible to discern a significant impact on ozone in the second half of the 21st century in a single set of simulations.

  11. Australian Students' Appreciation of the Greenhouse Effect and the Ozone Hole.

    ERIC Educational Resources Information Center

    Fisher, Brian

    1998-01-01

    Examines students' explanations of the greenhouse effect and the hole in the ozone layer, using a life-world and scientific dichotomy. Illuminates ideas often expressed in classrooms and sheds light on the progression in students' developing powers of explanation. Contains 17 references. (DDR)

  12. Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements

    NASA Astrophysics Data System (ADS)

    Slaper, Harry; Velders, Guus J. M.; Daniel, John S.; de Gruijl, Frank R.; van der Leun, Jan C.

    1996-11-01

    DEPLETION of the ozone layer has been observed on a global scale1, and is probably related to halocarbon emissions. Ozone depletion increases the biologically harmful solar ultraviolet radiation reaching the surface of the Earth, which leads to a variety of adverse effects, including an increase in the incidence of skin cancer. The 1985 Vienna Convention provided the framework for international restrictions on the production of ozone-depleting substances. The consequences of such restrictions have not yet been assessed in terms of effects avoided. Here we present a new method of estimating future excess skin cancer risks which is used to compare effects of a 'no restrictions' scenario with two restrictive scenarios specified under the Vienna Convention: the Montreal Protocol, and the much stricter Copenhagen Amendments. The no-restrictions and Montreal Protocol scenarios produce a runaway increase in skin cancer incidence, up to a quadrupling and doubling, respectively, by the year 2100. The Copenhagen Amendments scenario leads to an ozone minimum around the year 2000, and a peak relative increase in incidence of skin cancer of almost 10% occurring 60 years later. These results demonstrate the importance of the international measures agreed upon under the Vienna Convention.

  13. TOPICAL REVIEW: Climate change, ozone depletion and the impact on ultraviolet exposure of human skin

    NASA Astrophysics Data System (ADS)

    Diffey, Brian

    2004-01-01

    For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population.

  14. Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements.

    PubMed

    Slaper, H; Velders, G J; Daniel, J S; de Gruijl, F R; van der Leun, J C

    1996-11-21

    Depletion of the ozone layer has been observed on a global scale, and is probably related to halocarbon emissions. Ozone depletion increases the biologically harmful solar ultraviolet radiation reaching the surface of the Earth, which leads to a variety of adverse effects, including an increase in the incidence of skin cancer. The 1985 Vienna Convention provided the framework for international restrictions on the production of ozone-depleting substances. The consequences of such restrictions have not yet been assessed in terms of effects avoided. Here we present a new method of estimating future excess skin cancer risks which is used to compare effects of a 'no restrictions' scenario with two restrictive scenarios specified under the Vienna Convention: the Montreal Protocol, and the much stricter Copenhagen Amendments. The no-restrictions and Montreal Protocol scenarios produce a runaway increase in skin cancer incidence, up to a quadrupling and doubling, respectively, by the year 2100. The Copenhagen Amendments scenario leads to an ozone minimum around the year 2000, and a peak relative increase in incidence of skin cancer of almost 10% occurring 60 years later. These results demonstrate the importance of the international measures agreed upon under the Vienna Convention. PMID:8918873

  15. Climate change, ozone depletion and the impact on ultraviolet exposure of human skin.

    PubMed

    Diffey, Brian

    2004-01-01

    For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population. PMID:14971768

  16. Monitoring of singlet oxygen in the lower troposphere and processes of ozone depletion.

    NASA Astrophysics Data System (ADS)

    Iasenko, Egor; Chelibanov, Vladimir; Marugin, Alexander; Kozliner, Marat

    2016-04-01

    The processes of ozone depletion in the atmosphere are widely discussed now in a connection with the problem of a global climate changes. It is known fact that photolysis of ozone in the upper atmosphere is the source of metastable molecules of oxygen. But, metastable molecules of oxygen can be formed as a result of photo initiated heterogeneous oxidation of molecules adsorbed on the surface of natural aerosol particles. During the outdoor experiment, we observed a formation of Singlet oxygen (1Δg) at concentration level of 2 ... 5 ppb when ice crystals have been exposed to the sun light. In experiments, we used Analyzers of Singlet oxygen and Ozone (produced by JSC "OPTEC") that utilize solid-state chemiluminescence technology. We assumed that the singlet oxygen is formed in the active centers on the surface of ice crystals in the presence or absence of anthropogenic pollutants in the atmosphere. Identified efficiency of heterogeneous reaction of O2 (1Δg) formation suggests the importance of the additional channel O3 + O2 (1Δg) → 2O2 + O (3P) of atmospheric ozone removal comparable with other well known cycles of ozone depletion.

  17. In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kawa, S. R.; Woodbridge, E. L.; Tin, P.; Wilson, J. C.; Jonsson, H. H.; Dye, J. E.; Baumgardner, D.; Borrmann, S.; Toohey, D. W.

    1993-01-01

    In situ measurements of stratospheric sulphate aerosol, reactive nitrogen and chlorine concentrations at middle latitudes confirm the importance of aerosol surface reactions that convert active nitrogen to a less active, reservoir form. This makes mid-latitude stratospheric ozone less vulnerable to active nitrogen and more vulnerable to chlorine species. The effect of aerosol reactions on active nitrogen depends on gas phase reaction rates, so that increases in aerosol concentration following volcanic eruptions will have only a limited effect on ozone depletion at these latitudes.

  18. Uncertainty Analysis of Ozone-Depleting Substances: Mixing Ratios, EESC, ODPs, and GWPs

    NASA Astrophysics Data System (ADS)

    Velders, G. J.; Daniel, J. S.

    2013-12-01

    Important for the recovery of the ozone layer from depletion by ozone-depleting substances (ODSs) is the rate at which ODSs are removed from the atmosphere, that is, their lifetimes. Recently the WCRP/SPARC project conducted an assessment of lifetimes of ODSs [SPARC, 2013] and presented a new set of recommended lifetimes as well as their uncertainties. We present here a comprehensive uncertainty analysis of ODS mixing ratios, levels of equivalent effective stratospheric chlorine (EESC), radiative forcing, ozone depletion potentials (ODPs), and global warming potentials (GWPs), using the new lifetimes and their uncertainties as well as uncertainties on all other relevant parameters. Using a box model the year EESC returns to pre-1980 levels, a metric commonly used to indicate a level of recovery for ODS induced ozone depletion, is 2048 for mid-latitudes based on the new lifetimes, which is 2 years later than that based on the lifetimes from WMO [2011]. The uncertainty in this return time is much larger than this change, however. The year EESC returns to pre-1980 levels ranges from is 2038 to 2064 (95% CI) for mid-latitudes and 2060 to 2104 for the Antarctic. The largest contribution to these ranges comes from the uncertainties in the lifetimes, since the current atmospheric burden of CFCs is much larger than the amounts present in existing equipment or still being produced. The earlier end of the recovery times is comparable to the return time in a hypothetical scenario with a cease in anthropogenic ODS emissions in 2014. The upper end of the range corresponds with an extra emission of about 7 MtCFC-11-eq in 2015, or about twice the cumulative anthropogenic emissions of all ODSs from 2014 to 2050. Semi-empirical ODPs calculated using the lifetimes from SPARC [2013] are up to 25% lower than the data reported in WMO [2011] for most species, mainly as a result of the increase in the estimated lifetime of CFC-11. The ODP of Halon-2402 increases by 20%, while the only

  19. Quantification of relative contribution of Antarctic ozone depletion to increased austral extratropical precipitation during 1979-2013

    NASA Astrophysics Data System (ADS)

    Bai, Kaixu; Chang, Ni-Bin; Gao, Wei

    2016-02-01

    Attributing the observed climate changes to relevant forcing factors is critical to predicting future climate change scenarios. Precipitation observations in the Southern Hemisphere indicate an apparent moistening pattern over the extratropics during the time period 1979 to 2013. To investigate the predominant forcing factor in triggering such an observed wetting climate pattern, precipitation responses to four climatic forcing factors, including Antarctic ozone, water vapor, sea surface temperature (SST), and carbon dioxide, were assessed quantitatively in sequence through an inductive approach. Coupled time-space patterns between the observed austral extratropical precipitation and each climatic forcing factor were firstly diagnosed by using the maximum covariance analysis (MCA). With the derived time series from each coupled MCA modes, statistical relationships were established between extratropical precipitation variations and each climatic forcing factor by using the extreme learning machine. Based on these established statistical relationships, sensitivity tests were conducted to estimate precipitation responses to each climatic forcing factor quantitatively. Quantified differential contribution with respect to those climatic forcing factors may explain why the observed austral extratropical moistening pattern is primarily driven by the Antarctic ozone depletion, while mildly modulated by the cooling effect of equatorial Pacific SST and the increased greenhouse gases, respectively.

  20. A search of UARS data for ozone depletions caused by the highly relativistic electron precipitation events of May 1992

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean; Goldberg, Richard A.; Jackman, Charles H.; Chenette, D. L.; Gaines, E. E.

    1999-01-01

    Highly relativistic electron precipitation (HRE) events containing significant fluxes of electrons with E>1MeV have been predicted by models to deplete mesospheric ozone. For the electron fluxes measured during the great HRE of May 1992, depletions were predicted to occur between altitudes of 55 and 80 km, where HOx reactions cause a local minimum in the ozone number density and mixing ratio. Measurements of the precipitating electron fluxes by the particle environment monitor (PEM) tend to underestimate their intensity; thus the predictions of ozone depletion should be considered an estimate of a lower limit. Since the horizontal distribution of the electron precipitation follows the terrestrial magnetic field, it would show a distinct boundary equatorward of the L=3 magnetic shell and be readily distinguished from material that was not affected by the HRE precipitation. To search for possible ozone depletion effects, we have analyzed data from the cryogenic limb array etalon spectrometer and microwave limb sounder instruments on UARS for the above HRE. A simplified diurnal model is proposed to understand the ozone data from UARS, also illustrating the limitations of the UARS instruments for seeing the ozone depletions caused by the HRE events. This diurnal analysis limits the relative ozone depletion at around 60 km altitude to values of <10% during the very intense May 1992 event, consistent with our prediction using an improved Goddard Space Flight Center two-dimensional model.

  1. Ozone depletion. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-08-01

    The bibliography contains citations concerning studies of atmospheric chemistry and modeling of ozone depletion in Antarctica, and the consequences of the depletion on ultraviolet radiation levels. The studies involve chemical reactions in the atmosphere, including temperature dynamics, possible changes in solar insolation, and effects of pollution from nitrogen, chloroflourocarbons, carbon dioxide, and methane. The studies involve references to observations of the ozonosphere and modeling of interactions worldwide, together with data on the sources of the natural and man-made pollutants.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Ozone depletion studies. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1994-06-01

    The bibliography contains citations concerning studies of atmospheric chemistry and modeling of ozone depletion in Antarctica, and the consequences of the depletion on ultraviolet radiation levels. The studies involve chemical reactions in the atmosphere, including temperature dynamics, possible changes in solar insolation, and effects of pollution from nitrogen, chlorofluorocarbons, carbon dioxide and methane. The studies involve references to observations of the ozonosphere and modeling of interactions worldwide, together with data on the sources of the natural and man-made pollutants. (Contains a minimum of 145 citations and includes a subject term index and title list.)

  3. Ozone depletion. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning studies of atmospheric chemistry and modeling of ozone depletion in Antarctica, and the consequences of the depletion on ultraviolet radiation levels. The studies involve chemical reactions in the atmosphere, including temperature dynamics, possible changes in solar insolation, and effects of pollution from nitrogen, chloroflourocarbons, carbon dioxide, and methane. The studies involve references to observations of the ozonosphere and modeling of interactions worldwide, together with data on the sources of the natural and man-made pollutants. (Contains a minimum of 200 citations and includes a subject term index and title list.)

  4. Uncertainties in reactive uptake coefficients for solid stratospheric particles—2. Effect on ozone depletion

    NASA Astrophysics Data System (ADS)

    Carslaw, Kenneth S.; Peter, Thomas; Müller, Rolf

    Uncertainties in reactive uptake coefficients for reactions involving HCl, ClONO2 and HOCl on nitric acid trihydrate (NAT) and sulfuric acid tetrahydrate (SAT) are shown to affect modeled Arctic stratospheric ozone depletion in a photochemical box model. The main contribution to the difference arises from the reaction ClONO2 + HCl → Cl2 + HNO3 in early to mid-winter. During this period, differences in predicted HCl and ClONO2 are more than 1 ppbv for several weeks when an upper limit for solid PSC existence is assumed. Ozone depletion is greater when liquid aerosols persist through the winter compared with cases where solid particles are assumed to form.

  5. Stratospheric ozone depletion over Antarctica - Role of aerosols based on SAGE II satellite observations

    NASA Technical Reports Server (NTRS)

    Lin, N.-H.; Saxena, V. K.

    1992-01-01

    The physical characteristics of the Antarctic stratospheric aerosol are investigated via a comprehensive analysis of the SAGE II data during the most severe ozone depletion episode of October 1987. The aerosol size distribution is found to be bimodal in several instances using the randomized minimization search technique, which suggests that the distribution of a single mode may be used to fit the data in the retrieved size range only at the expense of resolution for the larger particles. On average, in the region below 18 km, a wavelike perturbation with the upstream tilting for the parameters of mass loading, total number, and surface area concentration is found to be located just above the region of the most severe ozone depletion.

  6. Model predictions of latitude-dependent ozone depletion due to aerospace vehicle operations

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Watson, V. R.; Riegel, C. A.; Maples, A. L.; Capone, L. A.

    1976-01-01

    Results are presented from a two-dimensional model of the stratosphere that simulates the seasonal movement of ozone by both wind and eddy transport, and contains all the chemistry known to be important. The calculated reductions in ozone due to NO2 injection from a fleet of supersonic transports are compared with the zonally averaged results of a three-dimensional model for a similar episode of injection. The agreement is good in the northern hemisphere, but is not as good in the southern hemisphere. Both sets of calculations show a strong corridor effect in that the predicted ozone depletions are largest to the north of the flight corridor for aircraft operating in the northern hemisphere.

  7. Model predictions of latitude-dependent ozone depletion due to supersonic transport operations

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Watson, V. R.; Woodward, H. T.; Riegel, C. A.; Capone, L. A.; Becker, T.

    1976-01-01

    Results are presented from a two-dimensional model of the stratosphere that simulates the seasonal movement of ozone by both wind and eddy transport, and contains all the chemistry known to be important. The calculated reductions in ozone due to NO2 injection from a fleet of supersonic transports are compared with the zonally averaged results of a three-dimensional model for a similar episode of injection. The agreement is good in the northern hemisphere, but is not as good in the southern hemisphere. Both sets of calculations show a strong corridor effect in that the predicted ozone depletions are largest to the north of the flight corridor for aircraft operating in the northern hemisphere.

  8. An assessment of alternatives and technologies for replacing ozone- depleting substances at DOE facilities

    SciTech Connect

    Purcell, C.W.; Miller, K.B.; Friedman, J.R.; Rapoport, R.D.; Conover, D.R.; Hendrickson, P.L. ); Koss, T.C. . Office of Environmental Guidance)

    1992-10-01

    Title VI of the Clean Air Act, as amended, mandates a production phase-out for ozone-depleting substances (ODSs). These requirements will have a significant impact on US Department of Energy (DOE) facilities. Currently, DOE uses ODSs in three major activities: fire suppression (halon), refrigeration and cooling (chlorofluorocarbons [CFCs]), and cleaning that requires solvents (CFCs, methyl chloroform, and carbon tetrachloride). This report provides basic information on methods and strategies to phase out use of ODSs at DOE facilities.

  9. Polar ozone depletion and trends as represented by the Whole Atmospheric Community Climate Model (WACCM)

    NASA Astrophysics Data System (ADS)

    Kinnison, Douglas; Solomon, Susan; Ivy, Diane; Mills, Michael; Neely, Ryan, III; Schmidt, Anja; Garcia, Rolando; Smith, Anne

    2016-04-01

    The Whole Atmosphere Community Climate Model, Version 4 (WACCM4) is a comprehensive numerical model, spanning the range of altitude from the Earth's surface to the lower thermosphere [Garcia et al., JGR, 2007; Kinnison et al., JGR, 2007; Marsh et al., J. of Climate, 2013]. WACCM4 is based on the framework of the NCAR Community Atmosphere Model, version 4 (CAM4), and includes all of the physical parameterizations of CAM4 and a finite volume dynamical core for the tracer advection. This version has a detailed representation of tropospheric and middle atmosphere chemical and physical processes. Simulations completed for the SPARC Chemistry Climate Model Initiative (CCMI), REFC1, REFC2, SENSC2, and REFC1SD scenarios are examined (see Eyring et al., SPARC Newsletter, 2013). Recent improvements in model representation of orographic gravity wave processes strongly impact temperature and therefore polar ozone depletion as well as its subsequent recovery. Model representation of volcanic events will also be shown to be important for ozone loss. Evaluation of polar ozone depletion processes (e.g., dehydration, denitrification, chemical activation) with key observations will be performed and the impact on future ozone recovery will be identified.

  10. Volcanic aerosol and ozone depletion within the Antarctic polar vortex during the austral spring of 1991

    SciTech Connect

    Deshler, T.; Adriani, A.; Gobbi, G.P.; Hofmann, D.J.; Donfrancesco, G. di; Johnson, B.J. CNR, Ist. de Fisica dell'Atmosfera, Frascati NOAA, Climate Monitoring and Diagnostics Lab., Boulder, CO ENEA, Centro Ricerche Energia Casaccia, Rome )

    1992-09-01

    In the spring of 1991 the Antarctic lower stratosphere was characterized by a layer of volcanic aerosol from the Cerro Hudson eruption. This aerosol layer was observed from McMurdo Station, Antarctica, with both lidar and balloonborne particle counters beginning around 10 September. After 20 September the aerosol was observed daily between 9 and 13 km. In this layer homogeneous nucleation of new aerosol was observed with concentrations greater than 6000/cu cm. Comparisons of scattering ratio calculated from measured particle size distributions agree best with the lidar measurements when a real index of refraction near 1.5 is used. In the past 5 years of measurements, ozone below 13 km has been relatively unchanged during the annual Antartic ozone depletion; however, in 1991 ozone below 13 km decreased at a rate of 4 - 8 ppb/day over 30 days. This change began shortly after the appearance of the volcanic aerosol, providing direct measurements correlating volcanic aerosol and ozone depletion. 16 refs.

  11. LIDAR measurements of Arctic boundary layer ozone depletion events over the frozen Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Seabrook, J. A.; Whiteway, J.; Staebler, R. M.; Bottenheim, J. W.; Komguem, L.; Gray, L. H.; Barber, D.; Asplin, M.

    2011-09-01

    A differential absorption light detection and ranging instrument (Differential Absorption LIDAR or DIAL) was installed on-board the Canadian Coast Guard Ship Amundsen and operated during the winter and spring of 2008. During this period the vessel was stationed in the Amundsen Gulf (71°N, 121-124°W), approximately 10-40 km off the south coast of Banks Island. The LIDAR was operated to obtain a continuous record of the vertical profile of ozone concentration in the lower atmosphere over the sea ice during the polar sunrise. The observations included several ozone depletion events (ODE's) within the atmospheric boundary layer. The strongest ODEs consisted of air with ozone mixing ratio less than 10 ppbv up to heights varying from 200 m to 600 m, and the increase to the background mixing ratio of about 35-40 ppbv occurred within about 200 m in the overlying air. All of the observed ODEs were connected to the ice surface. Back trajectory calculations indicated that the ODEs only occurred in air that had spent an extended period of time below a height of 500 m above the sea ice. Also, all the ODEs occurred in air with temperature below -25°C. Air not depleted in ozone was found to be associated with warmer air originating from above the surface layer.

  12. Reducing the emission of ozone depleting chemicals through use of a self-cleaning soldering process

    SciTech Connect

    Lichtenberg, L.; Martin, G.; Van Buren, P.; Iman, R.; Paffett, M.T.

    1991-12-31

    Motorola has jointed with Sandia and Los Alamos National Laboratories to perform work under a Cooperative Research and Development Agreement (CRADA) to reduce the use of CFC`s and other ozone depleting printing wiring board (PWB) cleaning solvents. This study evaluated the use of a new soldering process that uses dilute adipic acid in lieu of rosin flux. The process consumes the adipic acid in lieu of rosin flux. The process consumes the adipic acid during the soldering process and precludes the need for subsequent cleaning with ozone depleting solvents. This paper presents results from a series of designed experiments that evaluated PWB cleanliness as a function of various levels of machine control parameters. The study included a comprehensive hardware reliability evaluation, which included environmental conditioning, cleanliness testing, surface chemical analysis, surface insulation resistance testing, along with electrical, mechanical and long term storage testing. The results of this study that the new process produces quality, reliable hardware over a wide range of processing parameters. Adoption of this process, which eliminates the need for supplemental cleaning, will have a positive impact on many environmental problems, including depletion of the ozone layer.

  13. Reducing the emission of ozone depleting chemicals through use of a self-cleaning soldering process

    SciTech Connect

    Lichtenberg, L.; Martin, G.; Van Buren, P. . Government Electronics Group); Iman, R. ); Paffett, M.T. )

    1991-01-01

    Motorola has jointed with Sandia and Los Alamos National Laboratories to perform work under a Cooperative Research and Development Agreement (CRADA) to reduce the use of CFC's and other ozone depleting printing wiring board (PWB) cleaning solvents. This study evaluated the use of a new soldering process that uses dilute adipic acid in lieu of rosin flux. The process consumes the adipic acid in lieu of rosin flux. The process consumes the adipic acid during the soldering process and precludes the need for subsequent cleaning with ozone depleting solvents. This paper presents results from a series of designed experiments that evaluated PWB cleanliness as a function of various levels of machine control parameters. The study included a comprehensive hardware reliability evaluation, which included environmental conditioning, cleanliness testing, surface chemical analysis, surface insulation resistance testing, along with electrical, mechanical and long term storage testing. The results of this study that the new process produces quality, reliable hardware over a wide range of processing parameters. Adoption of this process, which eliminates the need for supplemental cleaning, will have a positive impact on many environmental problems, including depletion of the ozone layer.

  14. Simulation of increasing UV radiation as a consequence of ozone depletion

    NASA Astrophysics Data System (ADS)

    Diaz, Susana B.; Camilion, Carolina; Lacoste, Karine; Escobar, Julio; Demers, Serge; Gianesella, Sonia M. F.; Roy, Suzanne

    2003-11-01

    UV plays a key roll in several biological functions. As consequence of the ozone depletion investigations to study the effects of UV radiation on human health and terrestrial and aquatic ecosystems have been carried out in laboratories and in the field. Experiments performed in laboratories, irradiating samples with lamps often present the inconvenience that light sources do not reproduce properly the solar spectrum. Field experiments are usually carried out comparing samples exposed to ambient irradiance (normal or increased) against 100% UV-B screened samples. This scenario also differs from the real situation of normal irradiance against UV-B increased irradiance. Some authors have solved this problem performing studies under ambient conditions, simulating the ozone depletion by supplementation of the UV-B radiation with lamps. As part of the IAI CNR-26, "Enhanced Ultraviolet-B Radiation in Natural Ecosystems as an added Perturbation due to Ozone Depletion," mesocosms experiments were performed at Rimouski, Canada), Ubatuba (Brasil) and Ushuaia, Argentina) using the supplementing methodology. In this paper we introduce the design of the measurements and lamps setting and the methodology used to calculate the attenuation constant and the irradiance at the water column at the mesocosms during the experiment, emphasizing on the Ubatuba campaign.

  15. On the age of stratospheric air and ozone depletion potentials in polar regions

    NASA Technical Reports Server (NTRS)

    Pollock, W. H.; Heidt, L. E.; Lueb, R. A.; Vedder, J. F.; Mills, M. J.; Solomon, S.

    1992-01-01

    Observations of the nearly inert, man-made chlorofluorocarbon CFC-115 obtained during January 1989 are used to infer the age of air in the lower stratosphere. These observations together with estimated release rates suggest an average age of high-latitude air at pressure altitudes near 17-21 km of about 3 to 5 yr. This information is used together with direct measurements of HCFC-22, HCFC-142b, CH3Br, H-1301, H-1211, and H-2402 to examine the fractional dissociation of these species within the Arctic polar lower stratosphere compared to that of CFC-11 and hence to estimate their local ozone depletion potentials in this region. It is shown that these HCFCs are much less efficiently dissociated within the stratosphere than CFC-11, lowering their ozone depletion potentials to only about 30-40 percent of their chlorine loading potentials. In contrast, the observations of CH3Br and the Halons considered confirm that they are rapidly dissociated within the stratosphere, with important implications for their ozone depletion potentials.

  16. Substituting HCFC-22 for HFC-410A: an environmental impact trade-off between the ozone depletion and climate change regimes

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Fang, X.; Zhang, J.

    2015-12-01

    After the phase-out of hydrochlorofluorocarbons (HCFCs) as ozone-depleting substances pursuant to the requirements of the Montreal Protocol, hydrofluorocarbons (HFCs) are worldwide used as substitutes although the bulk of them are potent greenhouse gases (GHGs). Therefore, the alternation may bring side effect on global climate change. The trade-off of its environmental impacts between the ozone depletion and climate change regimes necessitates a quantification of the past and future consumption and emissions of both the original HCFCs and their alternative HFCs. Now a dilemma arise in China's RAC industry that HCFC-22, which has an ozone-depleting potential (ODP) of 0.055, has been replaced by HFC-410A, which is a blended potent GHG from respective 50% HFC-32 and HFC-125 with a global warming potential (GWP) of 1923.5. Here, we present our results of estimates of consumption and emissions of HCFC-22 and HFC-410A from 1994 to 2050. Historic emissions of HCFC-22 contributed to global total HCFCs by 4.0% (3.0%-5.6%) ODP-weighted. Projection under a baseline scenario shows future accumulative emissions of HFC-410A make up 5.9%-11.0% of global GWP-weighted HFCs emissions, and its annual contribution to national overall CO2 emissions can be 5.5% in 2050. This makes HCFC-22 and HFC-410A emissions of significant importance in ozone depletion and climate change regimes. Two mitigation scenarios were set to assess the mitigation performance under the North America Proposal and an accelerated schedule. In practice of international environmental agreement, "alternative to alternative" should be developed to avoid regrettable alternations.

  17. Heterogeneous conversion of HCl and ClONO{sub 2} during the Arctic winter 1992/1993 initiating ozone depletion

    SciTech Connect

    Notholt, J.; Gathen, P. von der; Peil, S.

    1995-06-20

    The authors report the results of studies of HCl and ClONO{sub 2} reservoir species in the arctic stratosphere during winter months by means of ground based FTIR, ozone sonde, and lidar measurements. During the winter of 1992/93 they observed strong depletion of these compounds, prior to the appearance of sunlight, which produced conditions conductive to strong ozone depletion with the first appearance of sunlight.

  18. Observations of stratospheric temperature changes coincident with the recent Antarctic ozone depletions

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Newman, Paul A.

    1988-01-01

    A high degree of correlation between the recent decline in Antarctic total ozone and cooling of the stratosphere during Austral spring has been noted in several recent studies (e.g., Sekiguchi, 1986; Angel, 1986). This study analyzes the observed temperature trends in detail, focusing on the spatial and temporal aspects of the observed cooling. Ozone losses and stratospheric cooling can be correlated for several reasons: (1) ozone losses (from an unspecified cause) will directly reduce temperatures due to decreased solar ultraviolet absorption (Shine, 1986), and/or (2) changes in both ozone and temperature structure due to modification of stratospheric circulation patterns (Mahlman and Fels, 1986). In order to scrutinize various ozone depletion scenarios, detailed information on the observed temperature changes is necessary; the goal is to provide such data. The data used are National Meteorological Center (NMC) Climate Analysis Center (CAC) derived temperatures, covering 1000 to 1 mb (0 to 48 km), for the period 1979 to 1987. Discussions on data origin and quality (assessed by extensive comparisons with radiosonde observations), along with other details of these observations, can be found in Newman and Randel (1988).

  19. 76 FR 78832 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... Food Refrigeration) F. Labeling G. Color-Coded Hoses and Piping H. Unique Fittings I. Small Containers... proposed rule (75 FR 25799). In February 2011, this blend received the designation R-441A under ASHRAE... Agency FR--Federal Register FTA--Fault-Tree Analysis GHG--greenhouse gas GWP--global warming potential...

  20. Uncertainty analysis of projections of ozone-depleting substances: mixing ratios, EESC, ODPs, and GWPs

    NASA Astrophysics Data System (ADS)

    Velders, G. J. M.; Daniel, J. S.

    2013-10-01

    The rates at which ozone depleting substances (ODSs) are removed from the atmosphere, that is, their lifetimes, are key factors for determining the rate of ozone layer recovery in the coming decades. We present here a comprehensive uncertainty analysis of future mixing ratios of ODSs, levels of equivalent effective stratospheric chlorine (EESC), ozone depletion potentials, and global warming potentials, using, among other information, the 2013 WCRP/SPARC assessment of lifetimes of ODSs and their uncertainties. The year EESC returns to pre-1980 levels, a metric commonly used to indicate a level of recovery from ODS-induced ozone depletion, is 2048 for mid-latitudes based on the lifetimes from the SPARC assessment, which is about 2 yr later than based on the lifetimes from the WMO assessment of 2011. However, the uncertainty in this return to 1980 levels is much larger than the 2 yr change. The year EESC returns to pre-1980 levels ranges from 2039 to 2064 (95% confidence interval) for mid-latitudes and 2061 to 2105 for the Antarctic spring. The primary contribution to these ranges comes from the uncertainty in the lifetimes. The earlier years of the return estimates are comparable to a hypothetical scenario in which emissions of ODSs cease in 2014. The later end of the range corresponds to a scenario containing an additional emission of about 7 Mt CFC-11-eq in 2015, which is the same as about 2 times the cumulative anthropogenic emissions of all ODSs from 2014 to 2050, or about 12 times the cumulative HCFC emissions from 2014 to 2050.

  1. Quantifying the Summertime Austral Jet Stream and Hadley Cell Response to Stratospheric Ozone and Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Gerber, E. P.; Son, S.

    2013-12-01

    The impact of anthropogenic forcing on the austral jet stream and Hadley Cell in summer is assessed across three comprehensive climate model datasets, the Chemistry Climate Model Validation Activity 2 (CCMVal2) and Coupled Model Intercomparison Projects, Phases 3 and 5 (CMIP3,5). Changes in stratospheric ozone and greenhouse gases impact the troposphere in this season, and a simple framework based on temperature trends in the lower polar stratosphere and upper tropical troposphere is developed to separate their effects. It suggests that Southern Hemisphere circulation trends are driven by changes in upper troposphere/lower stratosphere temperature gradients: the subtropical and extratropical jets respond similarly when the tropics warm or the polar stratosphere cools. The mean circulation response to greenhouse gases and ozone is fairly comparable across the three multimodel datasets; consistent with previous studies, ozone has dominated changes in recent decades, while in the future, ozone and greenhouse gases will largely offset each other. The multimodel mean perspective, however, masks considerable spread between individual models. Uncertainty resulting from differences in temperature trends is separated from differences in the circulation response to a given temperature change. Both sources of uncertainty contribute equally to model spread. Uncertainty in temperature trends is dominated by differences in the polar stratosphere, not the tropics, suggesting that reducing uncertainty in models' climate sensitivity may not narrow the spread in subtropical and extratropical circulation trends in this season. Rather, the ozone forcing must be constrained. Even if the temperature trends could be perfectly constrained, however, models' 'circulation sensitivity,' differences in the response of the circulation to the same thermal forcing, must be addressed in order to narrow spread in climate projections.

  2. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting...

  3. Ideas and perspectives: Southwestern tropical Atlantic coral growth response to atmospheric circulation changes induced by ozone depletion in Antarctica

    NASA Astrophysics Data System (ADS)

    Evangelista, Heitor; Wainer, Ilana; Sifeddine, Abdelfettah; Corrège, Thierry; Cordeiro, Renato C.; Lamounier, Saulo; Godiva, Daniely; Shen, Chuan-Chou; Le Cornec, Florence; Turcq, Bruno; Lazareth, Claire E.; Hu, Ching-Yi

    2016-04-01

    Recent Southern Hemisphere (SH) atmospheric circulation, predominantly driven by stratospheric ozone depletion over Antarctica, has caused changes in climate across the extratropics. Here, we present evidence that the Brazilian coast (southwestern Atlantic) may have been impacted from both wind and sea-surface temperature changes derived from this process. Skeleton analysis of massive coral species living in shallow waters off Brazil are very sensitive to air-sea interactions, and seem to record this impact. Growth rates of Brazilian corals show a trend reversal that fits the ozone depletion evolution, confirming that ozone impacts are far reaching and potentially affect coastal ecosystems in tropical environments.

  4. Arctic chlorine activation and ozone depletion: Comparison of chemistry transport models with satellite observations.

    NASA Astrophysics Data System (ADS)

    Grooß, J.-U.; Wegner, T.; Müller, R.; Chipperfield, M. P.; Feng, W.; Santee, M. L.

    2009-04-01

    The accurate simulation of Arctic stratospheric ozone depletion has been an issue for two decades. However, there are still notable quantitative discrepancies between the models and observations. We show results from the SLIMCAT and CLaMS 3D chemistry-transport models that differ in some aspects of simulated chlorine activation and descent in the polar vortex. Consequently, the estimates of accumulated ozone depletion in the polar vortex for these two models in cold Arctic winters still largely disagree. As shown recently by Santee et al. (JGR, 2008) using MLS and ACE data, the extent of chlorine activation for the cold Arctic winter of 2004/2005 within the basic SLIMCAT model is overestimated with the likely consequence of too much simulated ozone depletion. In contrast, the CLaMS simulation for the same winter shows too little chlorine activation compared to observations, and therefore likely too little loss. For SLIMCAT the version used by Santee et al. has been updated to replace the equilibrium treatment of NAT PSCs with a Lagrangian microphysical scheme. This leads to smaller regions of NAT particles and less denitrification, in better agreement with observations. The impact of this on the modeled extent of chlorine activation will be discussed. For CLaMS we have changed the parameterization of heterogeneous reactions on liquid aerosols from Carslaw et al. to that of Shi et al. (2001), with which chlorine activation on liquid aerosol becomes more efficient. In turn, the simulated chlorine activation agrees better with the observations. The impact of these model changes on chlorine activation and ozone loss will be assessed and remaining model-observation discrepancies will be discussed in terms of different model formulations. We will also show the impact of recent lab measurements of Cl2O2 absorption cross sections by von Hobe et al. (2009) on the simulated ozone depletion. References: von Hobe, M., F. Stroh, H. Beckers, T. Benter, and H. Willner, The UV

  5. Are chlorine-free compounds a solution for health problems caused by ozone-depleting substances?

    PubMed

    Valić, F; Beritić-Stahuljak, D

    1996-01-01

    In January 1996, the Government of Croatia and United Nations Environment Programme (UNEP) signed an agreement on the phasing out of ozone-depleting substances in Croatia, making the problem of identifying adequate substitutes a high priority. In this paper, the main ecologic characteristics of chlorine-containing fully halogenated chlorofluorocarbons (CFCs) and partially halogenated chlorofluorocarbons (HCFCs) compared with chlorine-free hydrofluorocarbons (HFCs) are presented. The data showed HCFCs to be ecologically more acceptable than CFCs, particularly regarding the ozone-depleting potential (ODP), and have therefore been proposed as substitutes for CFCs. However, although having lower ODP, long-term they could still harm the stratospheric ozone layer, and are therefore hardly acceptable. HFCs are promising substitutes which, having no chlorine, have no ODP. Six were toxicologically evaluated; three of them were found flammable. Toxicological characteristics of three nonflammable compounds (HFC 125, HFC 134a and HFC 227ea) are presented. Their toxicity, not yet completely evaluated, appears to be low. PMID:8688600

  6. Possibility of ozone depletion monitoring in conditions of opaque atmosphere using D-dosimeter

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina P.

    2002-01-01

    Variations of solar ultraviolet (UV) radiation by clouds and aerosols that have a comparable effect on UVB (280-315 nm) caused by variations in stratospheric ozone hinder accurate detecting mid-latitude UVB trends. In this connection it is desirable to use a UVB dosimeter that has at least two independent parameters, namely, a parameter responding to the integral intensity of UVB radiation and an additional one exclusively sensitive to the short wavelength variations in solar UV spectrum related to ozone depletion. The desired spectral selectivity is intrinsic in D-dosimeter that was recently introduced for an in situ monitoring of vitamin D synthetic capacity of solar UVB radiation. D-dosimeter is based on an in vitro model of vitamin D synthesis. The photoreaction rate (decay of provitamin D and formation of previtamin D) depends upon the integral UV intensity whereas maximum achievable concentration of previtamin D is solely dictated by the spectral position of the short-wave edge of solar spectrum. This makes it possible to reveal ozone depletion under conditions of opaque atmosphere when clouds and aerosols attenuate solar UV flux like a gray filter.

  7. Photoreactivation in Paramecium tetraurelia under conditions of various degrees of ozone layer depletion.

    PubMed

    Takahashi, Akihisa; Kumatani, Toshihiro; Usui, Saori; Tsujimura, Ryoko; Seki, Takaharu; Morimoto, Kouichi; Ohnishi, Takeo

    2005-01-01

    Photoreactivation (PR) is an efficient survival mechanism that helps protect cells against the harmful effects of solar-ultraviolet (UV) radiation. The PR mechanism involves photolyase, just one enzyme, and can repair DNA damage, such as cyclobutane-pyrimidine dimers (CPD) induced by near-UV/blue light, a component of sunlight. Although the balance of near-UV/blue light and far-UV light reaching the Earth's surface could be altered by the atmospheric ozone layer's depletion, experiments simulating this environmental change and its possible effects on life have not yet been performed. To quantify the strength of UVB in sunlight reaching the Earth's surface, we measured the number of CPD generated in plasmid DNA after UVB irradiation or exposure to sunlight. To simulate the increase of solar-UV radiation resulting from the ozone layer depletion, Paramecium tetraurelia was exposed to UVB and/or sunlight in clear summer weather. PR recovery after exposure to sunlight was complete at a low dose rate of 0.2 J/m2 x s, but was less efficient when the dose rate was increased by a factor of 2.5 to 0.5 J/m2 x s. It is suggested that solar-UV radiation would not influence the cell growth of P. tetraurelia for the reason of high PR activity even when the ozone concentration was decreased 30% from the present levels. PMID:15839754

  8. Considerations for evaluating ultraviolet radiation-induced genetic damage relative to Antarctic ozone depletion.

    PubMed

    Karentz, D

    1994-12-01

    Springtime ozone depletion over the Antarctic results in increased UVB in local marine environments. It has been established that decreases in primary productivity occur with decreases in ozone concentrations, but the impact of increased UVB on the functioning and stability of the ecosystem has not yet been determined. Very little has been done to evaluate the potential for genetic damage caused by the increase in UVB, and this type of damage is most significant relative to the fitness and maintenance of populations. An essential problem in evaluating genotoxic effects is the lack of appropriate techniques to sample and quantify genetic damage in field populations under ambient UVB levels. In addition, it is currently not feasible to estimate exposure levels for organisms in their natural habitats. PMID:7713036

  9. Effects of initial active chlorine concentrations on the Antarctic ozone spring depletion

    SciTech Connect

    Henderson, G.S.; Evans, W.F.J. ); McConnell, J.C. )

    1990-02-20

    Several one-dimensional model experiments have been conducted in order to simulate the observed downward trend of total ozone and the shape of ozone profiles in the Antarctic during the austral spring. The results underline the fact that the O{sub 3} depletion is quadratically sensitive to the amount of active chlorine, which the authors have expressed as the fraction (F) of CL{sub x} that is in active form by polar sunrise. For F = 1, this result is largely independent of the occurrence of heterogeneous chemistry after polar sunrise since all of the processing has already occurred. The main O{sub 3} loss is due to formation and photolysis of Cl{sub 2}O{sub 2}. By comparison, using Br{sub x} levels similar to currently measured values, it was found that the BrO + ClO reaction plays a less important role in O{sub 3} depletion. The depth of the O{sub 3} minimum in spring appears to be related to the vertical extent of the region chemically processed by polar stratospheric clouds as well as the absolute levels of active Cl{sub 2}; more extensive vertical regions result in larger bite outs of the O{sub 3} profile. This may account for the difference in O{sub 3} minimum between 1986 and 1987. Simulations involving downward vertical transports are unable to reproduce observed decreases in total O{sub 3}. The authors speculate that low trace gas mixing ratios of species such as N{sub 2}O may be remnants of the previous summer and fall conditions, rather than signatures of downward transport during the springtime ozone depletion.

  10. Calculations of increased solar UV fluxes and DUV doses due to stratospheric-ozone depletions

    SciTech Connect

    Zardecki, A.; Gerstl, S.A.W.

    1982-02-01

    Accurate radiative transfer calculations are performed in the middle ultraviolet spectral region for aerosol-loaded atmospheres with the goal of determining the solar irradiance at the ground and quantifying the irradiance perturbations due to the presence of aerosols and various ozone depletions. The extent of the increase of UV-B radiation as a function of wave-length and solar zenith angle is calculated for five model atmospheres. In addition, the damaging ultraviolet dose rates and radiation amplification factors are evaluated at different latitudes and seasons for erythemal and DNA action spectra.

  11. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    PubMed

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  12. Replacement of ozone depleting and toxic chemicals in gravimetric analysis of non-volatile residue

    NASA Technical Reports Server (NTRS)

    Arnold, G. S.; Uht, J. C.; Sinsheimer, F. B.

    1995-01-01

    The standard tests for determining nonvolatile residue accretion on spacecraft surfaces and in clean processing facilities rely on the use of halogenated solvents that are targeted for elimination because of their toxic or ozone-depleting natures. This paper presents a literature-based screening survey for candidate replacement solvents. Potential replacements were evaluated for their vapor pressure, toxicity, and solvent properties. Three likely candidates were identified: ethyl acetate, methyl acetate, and acetone. Laboratory tests are presented that evaluate the suitability of these candidate replacement solvents.

  13. Arctic chlorine monoxide observations during spring 1993 over Thule, Greenland, and implications for ozone depletion

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.; Reeves, J. M.; Emmons, L. K.; De Zafra, R. L.

    1994-01-01

    We have determined the vertical distribution of chlorine monoxide (ClO), from measurements of pressure-broadened molecular-emission spectra made over Thule, Greenland, during the 1993 Arctic spring. The measurements show a weak lower stratospheric layer of chlorine monoxide inside the vortex in late February, which was, however, significantly greater in mixing ratio than that seen in observations we made in the spring of 1992. ClO was also observed in much smaller quantities in early to mid-March 1993 when Thule was outside the vortex. The amount of ClO within the vortex was severely reduced by the time it returned over Thule in late March. This reduction occurred several weeks earlier relative to the winter solstice than the decline of ClO inside the Antarctic vortex in 1993. The enhanced Arctic lower stratospheric layer seen in late February 1993 at a nearly equivalent photochemical period, and beyond. We have calculated daily ozone loss rates, due primarily to the dimer chlorine catalytic cycle, from both sets of measurements. The vertical integral of the Arctic daily percentage ozone loss when the largest ClO levels were present, at the end of February, is found to be approximately one quarter of that in the Antarctic at a photochemical period only 1 week later. The relative weakness of daily ozone depletion, combined with the early disappearance of ClO in the Arctic, suggests that hemispheric dilution by ozone-poor air from within the Arctic vortex is unlikely to be sufficient to explain the historically extreme loss of midlatitude northern hemisphere ozone which began in 1992 and persisted throughout 1993.

  14. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: implications for human and environmental health.

    PubMed

    Madronich, S; Shao, M; Wilson, S R; Solomon, K R; Longstreth, J D; Tang, X Y

    2015-01-01

    local scale, ˙OH radicals respond rapidly to changes in UV radiation. However, on large (global) scales, models differ in their predictions by nearly a factor of two, with consequent uncertainties for estimating the atmospheric lifetime and concentrations of key greenhouse gases and air pollutants. Projections of future climate need to consider these uncertainties. No new negative environmental effects of substitutes for ozone depleting substances or their breakdown-products have been identified. However, some substitutes for the ozone depleting substances will continue to contribute to global climate change if concentrations rise above current levels. PMID:25380416

  15. Arctic Marine Boundary Layer Ozone and Mercury Depletion: a view from the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Bottenheim, J. W.

    2008-12-01

    Dramatic depletion of ozone (O3) and gaseous elementary mercury (GEM) from the marine boundary layer during the spring in Polar Regions is known to be driven by bromine atoms originating from activation of seasalt bromide. Almost all surface based measurements have been made at coastal observatories, but most of the active processing of the air is believed to occur near or at the surface of the Arctic Ocean itself. A major objective of the OASIS (Ocean Atmosphere Sea Ice and Snow) program during the International Polar Year (IPY) was therefore to make observations directly over the frozen Arctic Ocean. In the context of the OASIS-CANADA program, sponsored by the Canadian Federal Program Office of the IPY, several ocean bound projects were joined Including the French TARA expedition (2006-2008), the CFL campaign on the Canadian ice breaker CCGS Amundsen (February-April 2008), the COBRA campaign over the Hudson Bay near Kuujjuaraapik/Whapmagoostui, Quebec (February-March 2008) and the ASCOS campaign on the Swedish polar class ice breaker the Oden to the North Pole (August-September 2008). In this presentation I will summarize the observations and explore what has been learned regarding the drivers for the depletion process, such as the influence of the ambient temperature, the nature of the underlying surface, and the atmospheric stability. An important question is whether depletion in progress was observed, rather than the arrival of previously depleted air, as is generally the case at Arctic coastal observatories.

  16. Uncertainty analysis of projections of ozone-depleting substances: mixing ratios, EESC, ODPs, and GWPs

    NASA Astrophysics Data System (ADS)

    Velders, G. J. M.; Daniel, J. S.

    2014-03-01

    The rates at which ozone-depleting substances (ODSs) are removed from the atmosphere, which determine the lifetimes of these ODSs, are key factors for determining the rate of ozone layer recovery in the coming decades. We present here a comprehensive uncertainty analysis of future mixing ratios of ODSs, levels of equivalent effective stratospheric chlorine (EESC), ozone depletion potentials, and global warming potentials (GWPs), using, among other information, the 2013 WCRP/SPARC (World Climate Research Programme/Stratospheric Processes and their Role in Climate) assessment of lifetimes of ODSs and their uncertainties. The year EESC returns to pre-1980 levels, a metric commonly used to indicate a level of recovery from ODS-induced ozone depletion, is 2048 for midlatitudes and 2075 for Antarctic conditions based on the lifetimes from the SPARC assessment, which is about 2 and 4 yr, respectively, later than based on the lifetimes from the WMO (World Meteorological Organization) assessment of 2011. However, the uncertainty in this return to 1980 levels is much larger than the shift due to this change in lifetimes. The year EESC returns to pre-1980 levels ranges from 2039 to 2064 (95% confidence interval) for midlatitudes and from 2061 to 2105 for the Antarctic spring. The primary contribution to these ranges comes from the uncertainty in the lifetimes, with smaller contributions from uncertainties in other modeled parameters. The earlier years of the return estimates derived by the uncertainty analysis, i.e., 2039 for midlatitudes and 2061 for Antarctic spring, are comparable to a hypothetical scenario in which emissions of ODSs cease in 2014. The later end of the range, i.e., 2064 for midlatitudes and 2105 for Antarctic spring, can also be obtained by a scenario with an additional emission of about 7 Mt CFC-11 eq. (eq. - equivalent) in 2015, which is the same as about 2 times the projected cumulative anthropogenic emissions of all ODSs from 2014 to 2050, or about 12

  17. The effect of depletion of the earth ozone layer on the human health condition.

    PubMed

    Jankowski, J; Cader, A B

    1997-01-01

    Development of economic human activity has caused many harmful side effects which constitute an important danger for the biological life of our planet. This review discusses some aspects of the atmospheric changes and their influence on UV radiation reaching a man. The ozone-layer depletion is the result of emissions to the atmosphere chemical substances containing chlorine and bromine. Ozone, which absorbs the solar ultraviolet radiation, is a basic bio-protective filter. Degradation of the atmospheric ozone layer leads to increase of UV-level in our environment. The harmful effects of UV-radiation on live organisms constitute a danger for health of the whole human population. There is no doubt that cumulative exposure to UV radiation is important in the aetiology of skin cancer. A strong cataractogenic effect of UV radiation has been also evidenced. It is also known that the increase of UV radiation may be capable of activating viruses and reduce immunological response. The recent and predicted increase in these menaces are discussed. PMID:9575662

  18. The ozone depletion potentials on halocarbons: Their dependence of calculation assumptions

    NASA Technical Reports Server (NTRS)

    Karol, Igor L.; Kiselev, Andrey A.

    1994-01-01

    The concept of Ozone Depletion Potential (ODP) is widely used in the evaluation of numerous halocarbons and of their replacement effects on ozone, but the methods, assumptions and conditions used in ODP calculations have not been analyzed adequately. In this paper a model study of effects on ozone of the instantaneous releases of various amounts of CH3CCl3 and of CHF2Cl (HCFC-22) for several compositions of the background atmosphere are presented, aimed at understanding connections of ODP values with the assumptions used in their calculations. To facilitate the ODP computation in numerous versions for the long time periods after their releases, the above rather short-lived gases and the one-dimensional radiative photochemical model of the global annually averaged atmospheric layer up to 50 km height are used. The variation of released gas global mass from 1 Mt to 1 Gt leads to ODP value increase with its stabilization close to the upper bound of this range in the contemporary atmosphere. The same variations are analyzed for conditions of the CFC-free atmosphere of 1960's and for the anthropogenically loaded atmosphere in the 21st century according to the known IPCC 'business as usual' scenario. Recommendations for proper ways of ODP calculations are proposed for practically important cases.

  19. Depletion of the ozone layer: consequences for non-infectious human diseases.

    PubMed

    Bentham, G

    1993-01-01

    Stratospheric ozone depletion threatens to increase exposure to ultraviolet (UV) radiation which is known to be a factor in a number of diseases. There is little doubt that cumulative exposure to UV radiation is important in the aetiology of non-melanoma skin cancers. Evidence is also strong for a link with cutaneous malignant melanoma, although here it appears to be intermittent intense exposure that is most damaging. More controversial is the view that exposure to solar radiation is a significant factor in ocular damage, particularly in the formation of cataracts. Earlier studies pointing to such an effect have been criticized and alternative aetiological hypotheses have been proposed. However, other studies do show an effect of UV exposure on cortical cataract. Concern is also growing that UV may be capable of activating viruses and have immunological effects that might exacerbate infectious disease. Very worrying is the possibility that UV exposure can activate the human immunodeficiency virus which might accelerate the onset AIDS. Any such health effects that have been observed in human populations are the result of exposure to existing, naturally occurring levels of UV radiation. There is, therefore, great concern about the possible exacerbation of these impacts as a result of increased exposure to UV radiation associated with stratospheric ozone depletion. However, any assessment of the nature and scale of such impacts on human health has to deal with several major problems and these are the focus of this paper. There are uncertainties about recent trends in stratospheric ozone and problems in the prediction of future changes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8488070

  20. Detected CFCs: UV Absorption Spectra, Atmospheric Lifetimes, Global Warming and Ozone Depletion Potentials for CFC-112, CFC-112a, CFC-113a and CFC-114a

    NASA Astrophysics Data System (ADS)

    Bernard, F.; Davis, M. E.; McGillen, M.; Fleming, E. L.; Burkholder, J. B.

    2015-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting substances (ODSs) and potent greenhouse gases. Measurements have observed CFC-112 (CFCl2CFCl2), CFC-112a (CF2ClCCl3), and CFC-113a (CCl3CF3) in the atmosphere (Laube et al., 2014). The current atmospheric abundances of CFC-112 and CFC-112a are ~0.4 and ~0.06 ppt, respectively, with decreasing abundance since 1995. In contrast, CFC-113a was found to show continuous growth over the past 50 years with a current atmospheric abundance of ~0.5 ppt. The major atmospheric removal process for these compounds is expected to be UV photolysis in the stratosphere. To date there is, however, no UV absorption spectra for these compounds available in the literature. To better determine the atmospheric lifetimes and environmental impact of these CFCs, laboratory measurements of the UV absorption spectra of CFC-112, CFC-112a, CFC-113a, and CFC-114a (Cl2FCF3) between 195 and 235 nm and over the temperature range 207 to 323 K were performed. Spectrum parametrizations were developed for use in atmospheric models. Atmospheric lifetimes and ozone depletion potentials (ODPs) were calculated using the Goddard Space Flight Center 2-D atmospheric chemistry model. Infrared absorption spectra of these compounds were also measured and used to calculate their global warming potentials. The results of the laboratory measurements and model calculations will be presented. J. C. Laube et al., Newly detected ozone-depleting substances in the atmosphere, Nature Geoscience, 7, 266-269, 2014

  1. Relative roles of different types of PSC to Antarctic ozone depletion in polar spring caused by chlorine activation and denitrification

    NASA Astrophysics Data System (ADS)

    Kirner, Ole; Müller, Rolf; Khosrawi, Farah; Ruhnke, Roland

    2015-04-01

    It is well known that heterogeneous reactions on the surfaces of PSC particles and denitrification of the stratosphere are the cause for Antarctic ozone depletion in polar spring, but the relative roles of different types of PSCs is an open question. We use multi-year simulations from 2005 to 2014 of the chemistry-climate model ECHAM5/MESSy Atmospheric chemistry (EMAC) to investigate the impact that various types of PSCs have on Antarctic ozone loss. One standard and three sensitivity EMAC simulations (nudged with ERA-Interim) have been performed to evaluate the contribution of liquid, NAT and ice particles to ozone depletion in Antarctic winter and spring due to chlorine activation by heterogeneous chemistry on their surfaces. In the three sensitivity simulations, we changed the heterogeneous chemistry on PSC particles by switching on and off the chemistry on liquid, NAT and ice particles. Further sensitivity simulations are performed to evaluate the contribution of NAT to Antarctic ozone depletion through denitrification of the stratosphere. With the help of these different EMAC simulations we will show the significance of liquid, NAT and ice particles to Antarctic ozone depletion caused by chlorine activation and denitrification.

  2. Greenhouse gas impacts of declining hydrocarbon resource quality: Depletion, dynamics, and process emissions

    NASA Astrophysics Data System (ADS)

    Brandt, Adam Robert

    This dissertation explores the environmental and economic impacts of the transition to hydrocarbon substitutes for conventional petroleum (SCPs). First, mathematical models of oil depletion are reviewed, including the Hubbert model, curve-fitting methods, simulation models, and economic models. The benefits and drawbacks of each method are outlined. I discuss the predictive value of the models and our ability to determine if one model type works best. I argue that forecasting oil depletion without also including substitution with SCPs results in unrealistic projections of future energy supply. I next use information theoretic techniques to test the Hubbert model of oil depletion against five other asymmetric and symmetric curve-fitting models using data from 139 oil producing regions. I also test the assumptions that production curves are symmetric and that production is more bell-shaped in larger regions. Results show that if symmetry is enforced, Gaussian production curves perform best, while if asymmetry is allowed, asymmetric exponential models prove most useful. I also find strong evidence for asymmetry: production declines are consistently less steep than inclines. In order to understand the impacts of oil depletion on GHG emissions, I developed the Regional Optimization Model for Emissions from Oil Substitutes (ROMEO). ROMEO is an economic optimization model of investment and production of fuels. Results indicate that incremental emissions (with demand held constant) from SCPs could be 5-20 GtC over the next 50 years. These results are sensitive to the endowment of conventional oil and not sensitive to a carbon tax. If demand can vary, total emissions could decline under a transition because the higher cost of SCPs lessens overall fuel consumption. Lastly, I study the energetic and environmental characteristics of the in situ conversion process, which utilizes electricity to generate liquid hydrocarbons from oil shale. I model the energy inputs and outputs

  3. International cooperation in protection of atmospheric ozone: the Montreal Protocol on substances that deplete the ozone layer. Leonard v. B. Sutton award paper

    SciTech Connect

    Blegen, B.

    1988-01-01

    On September 14, 1987, in Montreal, Canada, 24 countries signed a landmark Protocol to the Vienna Convention for the Protection of the Ozone Layer, thereby taking a large step toward solution of the global environmental problem posed by the depletion of atmospheric ozone. The importance of this Protocol is two-fold: it serves to reduce the production of pollutants responsible for atmospheric ozone destruction, and it represents a milestone in the field of international environmental cooperation. By focusing on both these aspects of the Protocol, this article attempts to provide a thorough analysis of the ozone problem. After a summary of the scientific background of the current threat to atmospheric ozone, the article discusses the Protocol's historical background, analyzes its provisions, and highlights its significance for the field of international environmental law in general. It is hoped that this discussion will serve to demonstrate just how unique and revolutionary the Protocol is, as well as emphasize the scope and severity of the problem of atmospheric ozone depletion. 111 references.

  4. Anaerobic digestion with partial ozonation minimises greenhouse gas emission from sludge treatment and disposal.

    PubMed

    Yasui, H; Matsuhashi, R; Noike, T; Harada, H

    2006-01-01

    A novel anaerobic digestion process combined with partial ozonation on digested sludge was demonstrated for improving sludge digestion and biogas recovery by full-scale testing for 2 years and its performance was compared with a simultaneously operated conventional anaerobic digestion process. The novel process requires two essential modifications, which are ozonation for enhancing the biological degradability of sludge organics and concentrating of solids in the digester through a solid/liquid separation for extension of SRT. These modifications resulted in high VSS degradation efficiency of ca. 88%, as much as 1.3 times of methane production and more than 70% reduction in dewatered sludge cake production. Based on the performance, its energy demands and contribution for minimisation of greenhouse gas emission was evaluated throughout an entire study of sludge treatment and disposal schemes in a municipality for 130,000 p.e. The analysis indicated that the novel process with power generation from biogas would lead to minimal greenhouse gas emission because the extra energy production from the scheme was expected to cover all of the energy demand for the plant operation, and the remarkable reduction in dewatered sludge cake volumes makes it possible to reduce N2O discharge and consumption of fossil fuel in the subsequent sludge incineration processes. PMID:16605039

  5. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    SciTech Connect

    Prather, Michael J.; Hsu, Juno; Nicolau, Alex; Veidenbaum, Alex; Smith, Philip Cameron; Bergmann, Dan

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  6. OASIS-CANADA: observations of boundary layer ozone and mercury depletion from the Arctic Ocean surface

    NASA Astrophysics Data System (ADS)

    Bottenheim, J. W.; Netcheva, S.; Staebler, R.; Steffen, A.

    2009-04-01

    Dramatic depletion of ozone (O3) and gaseous elementary mercury (GEM) from the marine boundary layer during the spring in Polar Regions is known to be driven by bromine atoms originating from activation of seasalt bromide. Almost all surface based measurements have been made at coastal observatories, but much of the active processing of the air is believed to occur near or at the surface of the Arctic Ocean itself. A major objective of the OASIS (Ocean Atmosphere Sea Ice and Snow) program during the International Polar Year (IPY) was therefore to make observations directly over the frozen Arctic Ocean. In the context of the OASIS-CANADA program, sponsored by the Canadian Federal Program Office of the IPY, several ocean bound campaigns were joined including the French TARA expedition (2006-2008), the CFL campaign on the Canadian ice breaker CCGS Amundsen (February-April 2008), the COBRA campaign over the Hudson Bay near Kuujjuaraapik/Whapmagoostui, Quebec (February-March 2008), the ASCOS campaign on the Swedish polar class ice breaker Oden to the North Pole (August-September 2008), and the OASIS-09 campaign at Barrow Alaska (February-March 2009). In this presentation I will summarize the observations and explore what has been learned regarding the drivers for the depletion process, such as the influence of the ambient temperature, the nature of the underlying surface, and the atmospheric stability. An important question is whether depletion in progress was observed, rather than the arrival of previously depleted air, as is generally the case at Arctic coastal observatories.

  7. Terrestrial ozone depletion due to a Milky Way gamma-ray burst

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.

    Gamma-Ray Bursts (GRBs) are short, incredibly powerful astrophysical events which produce a flux of radiation detectable across the observable universe. A GRB within our own galaxy could cause major damage to the Earth's biosphere. Rate estimates suggest that at least one GRB has occurred within a dangerous range (about 2 kpc) in the last billion years. The gamma radiation from such a burst would quickly deplete much of the Earth's protective ozone layer, allowing an increase in solar UVB radiation reaching the surface. This radiation is harmful to life, causing sunburn and damaging DNA. In addition, NO 2 produced in the atmosphere would cause a decrease in visible sunlight reaching the surface and could cause global cooling. Nitric acid rain could stress portions of the biosphere, but the increased nitrate deposition could be helpful to land plants. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of a GRB. We have simulated bursts delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have computed DNA damage caused by increased solar UVB radiation, reduction in solar visible light due to NO 2 opacity; and deposition of nitrates through rainout of HNO 3 . For a "typical" burst in the last billion years, we find globally averaged ozone depletion up to 38%. Localized depletion reaches as much as 74%. Significant global depletion (at least 10%) persists up to about 7 years after the burst. Our results depend strongly on time of year and latitude over which the burst occurs. We find DNA damage of up to 16 times the normal annual global average, with greatest damage occurring at low to mid latitudes. We find reductions in visible sunlight of a few percent, primarily in the polar regions. Nitrate deposition similar to or slightly greater than that currently caused by lightning is also observed. We find support in our results for the hypothesis that the

  8. The human health effects of ozone depletion and interactions with climate change.

    PubMed

    Norval, M; Lucas, R M; Cullen, A P; de Gruijl, F R; Longstreth, J; Takizawa, Y; van der Leun, J C

    2011-02-01

    Depletion of the stratospheric ozone layer has led to increased solar UV-B radiation (280-315 nm) at the surface of the Earth. This change is likely to have had an impact on human exposure to UV-B radiation with consequential detrimental and beneficial effects on health, although behavioural changes in society over the past 60 years or so with regard to sun exposure are of considerable importance. The present report concentrates on information published since our previous report in 2007. The adverse effects of UV radiation are primarily on the eye and the skin. While solar UV radiation is a recognised risk factor for some types of cataract and for pterygium, the evidence is less strong, although increasing, for ocular melanoma, and is equivocal at present for age-related macular degeneration. For the skin, the most common harmful outcome is skin cancer, including melanoma and the non-melanoma skin cancers, basal cell carcinoma and squamous cell carcinoma. The incidence of all three of these tumours has risen significantly over the past five decades, particularly in people with fair skin, and is projected to continue to increase, thus posing a significant world-wide health burden. Overexposure to the sun is the major identified environmental risk factor in skin cancer, in association with various genetic risk factors and immune effects. Suppression of some aspects of immunity follows exposure to UV radiation and the consequences of this modulation for the immune control of infectious diseases, for vaccination and for tumours, are additional concerns. In a common sun allergy (polymorphic light eruption), there is an imbalance in the immune response to UV radiation, resulting in a sun-evoked rash. The major health benefit of exposure to solar UV-B radiation is the production of vitamin D. Vitamin D plays a crucial role in bone metabolism and is also implicated in protection against a wide range of diseases. Although there is some evidence supporting protective effects

  9. Ozone Depletion Due to a Milky Way Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    Thomas, B. C.; Jackman, C.; Melott, A.; Laird, C.; Stolarski, R.

    2004-12-01

    Based on cosmological rates, it is probable that at least once in the last Gy the Earth has been irradiated by a gamma-ray burst in our Galaxy from within 2 kpc. Using a two-dimensional atmospheric model we have computed the effects upon the Earth's atmosphere of such a burst. A ten second burst delivering 100 kJ/m2 to the Earth results in globally averaged ozone depletion of over 40 approaching 90 dramatic implications for life since it leads to as much as tenfold increases in solar UVB radiation at the Earth's surface. Widespread extinctions are likely, based on extrapolation from UVB sensitivity of modern organisms. This work was supported by Neil Gehrels at NASA GSFC and NASA grant NNG04GM41G.

  10. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015.

    PubMed

    2016-02-01

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change. PMID:26822392

  11. Use of ozone-depleting substances; removal of essential-use designation (flunisolide, etc.). Final rule.

    PubMed

    2010-04-14

    The Food and Drug Administration (FDA), after consultation with the Environmental Protection Agency (EPA), is amending FDA's regulation on the use of ozone-depleting substances (ODSs) in self-pressurized containers to remove the essential-use designations for flunisolide, triamcinolone, metaproterenol, pirbuterol, albuterol and ipratropium in combination, cromolyn, and nedocromil used in oral pressurized metered-dose inhalers (MDIs). The Clean Air Act requires FDA, in consultation with the EPA, to determine whether an FDA-regulated product that releases an ODS is an essential use of the ODS. FDA has concluded that there are no substantial technical barriers to formulating flunisolide, triamcinolone, metaproterenol, pirbuterol, albuterol and ipratropium in combination, cromolyn, and nedocromil as products that do not release ODSs, and therefore they will no longer be essential uses of ODSs as of the effective dates of this rule. MDIs for these active moieties containing an ODS may not be marketed after the relevant effective date. PMID:20391646

  12. Arctic tropospheric ozone depletion during spring 2008 : Source regions and transport

    NASA Astrophysics Data System (ADS)

    Koo, J.; Wang, Y.; Choi, S.; Kurosu, T. P.; Chance, K.; Weinheimer, A. J.; Ryerson, T. B.; Oltmans, S. J.; Hair, J. W.

    2009-12-01

    Ozone depletion events (ODEs) during the ARCTAS and ARCPAC experiments in spring 2008 are analyzed using backtrajectory analysis with meteorological fields simulated by the polar version of MM5. Satellite observations of BrO by OMI and GOME2 instruments are also used. We identify two common ODE source regions in the Canadian archipelagoes and north of Alaska and Siberia. The vertical distribution of backtrajectories indicates that ODEs occur mainly in the lower atmosphere. Correlation analysis suggests that ODEs at Barrow are more transport-driven than those at Alert. The combination of NASA DC-8 and NOAA WP-3D in situ observations implies a large gradient of BrO within a relatively small spatial scale; this feature was not apparent in satellite BrO measurements. The backtrajectory analysis also identifies a region with a high probability of enhanced BrO concentrations, contrary to satellite observations.

  13. Diffusion and location of hydorchloric acid in ice: Implications for polar stratosphere clouds and ozone depletion

    SciTech Connect

    Wolff, E.W.; Mulvaney, R. ); Oates, K. )

    1989-06-01

    The authors have carried out experiments to study the incorporation and movement of HCl within the structure of ice. These involved freezing HCl solutions, and observing them in a scanning electron microscope fitted with an X-ray microanalysis system. The authors are able to show that HCl is not easily incorporated into ice crystals, but is strongly partitioned towards the grain boundaries. Furthermore, the diffusion of HCl through ice crystals is slow. These results contradict the interpretation of earlier experiments. They mean that if HCl is to be available for reaction on polar stratospheric cloud particles, as required by current theories of Antarctic ozone depletion, then it must be present in some form other than a solid solution.

  14. Power and knowledge in international environmental politics: The case of stratospheric ozone depletion

    SciTech Connect

    Litfin, K.T.

    1992-01-01

    Most analyses of science in world politics suffer from the modern misreading of the relationship between knowledge and power. The availability of scientific knowledge to the relevant decision makers was a necessary condition for the negotiation of the Montreal Protocol on Substances that Deplete the Ozone Layer, but it was far from being a sufficient one. The power of science was a function of the political context in which it was debated, a context which was defined substantially by the discovery of the Antarctic ozone hole.' The prominence of knowledge-based power in at least some situations means that conventional materialist notions of power should be expanded to include a more discursive and productive conception of power. Environmental problems are not merely physical events, but informational phenomena. A case study methodology is used to develop an interactive conception of power and knowledge. A detailed study of the Montreal Protocol is offered, as well as less detailed studies of the international policy processes for acid rain and global climate change.

  15. Ozone depletion due to the use of chlorofluorocarbon: government and industry response. January 1985-March 1989 (Citations from the Biobusiness Database). Report for January 1985-March 1989

    SciTech Connect

    Not Available

    1989-04-01

    This bibliography contains citations concerning the response of business and government to atomospheric ozone depletion. Industrial concern expressed by voluntary restrictions in the use of chlorofluorocarbons and the search for a substitute is presented. Studies of the ozone layer and the effects of aerosols worldwide are presented. Climatic response to ozone depletion is included. Government sponsored bans on chloroflourocarbons are examined. (Contains 142 citations fully indexed and including a title list.)

  16. Ozone depletion due to the use of chlorofluorocarbon: Government and industry response. (Latest citations from the BioBusiness database). Published Search

    SciTech Connect

    1996-03-01

    The bibliography contains citations concerning the response of business and government to atmospheric ozone depletion. Voluntary restrictions in the use of chlorofluorocarbons by industry and attempts to develop a substitute are examined. References cite studies of the ozone layer and the effects of aerosols worldwide, and examples of climatic models of ozone depletion. Government sponsored bans on chloroflourocarbons are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Ozone depletion due to the use of chlorofluorocarbon: Government and industry response. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the response of business and government to atmospheric ozone depletion. Voluntary restrictions in the use of chlorofluorocarbons by industry and attempts to develop a substitute are examined. References cite studies of the ozone layer and the effects of aerosols worldwide, and examples of climatic models of ozone depletion. Government sponsored bans on chloroflourocarbons are examined. (Contains 250 citations and includes a subject term index and title list.)

  18. EFFECTS OF DEPLETION OF ASCORBIC ACID OR NONPROTEIN SULFYDRYLS ON THE ACUTE INHALATION TOXICITY OF NITROGEN DIOXIDE, OZONE, AND PHOSGENE

    EPA Science Inventory

    The effect of depleting lung ascorbic acid (AH2) and nonprotein sulfhydryls (NPSH) on the acute inhalation toxicity of nitrogen dioxide (N02), ozone (03), and phosgene (C0Cl2) was investigated in guinea pigs. he increase in bronchoalveolar lavage (BAL) fluid protein (an indicator...

  19. Kindergarten Teachers' Conceptual Framework on the Ozone Layer Depletion. Exploring the Associative Meanings of a Global Environmental Issue

    ERIC Educational Resources Information Center

    Daskolia, Maria; Flogaitis, Evgenia; Papageorgiou, Evgenia

    2006-01-01

    This paper reports on a study conducted among Greek kindergarten teachers aiming to explore their conceptual frameworks on a major environmental issue of our times: the ozone layer depletion. The choice of this particular issue was premised on its novelty, complexity and abstractness which present teachers with difficulties in its teaching. A free…

  20. Ozone

    SciTech Connect

    Not Available

    1988-06-01

    The author discusses the debate over whether concern about a hole in the ozone layer in Antarctic is real or science fiction. There is a growing consensus that efforts must be taken to protect the ozone layer. The issue now is not whether chlorofluorocarbons (CFCs) should be controlled and regulated but how much and how soon. The United States has urged that the production of dangerous CFCs, and any other chemicals that affect the ozone layer, be restricted immediately to current levels and that their use be reduced 95 percent over the next decade. The American position was too strong for many European nations and the Japanese. Negotiations at an international conference on the matter broke down. The breakdown is due in part to a more acute concern for environmental matters in the United States than exists in many countries. Meanwhile CFCs are linked to another environmental problem that equally threatens the world - the Greenhouse Effect. The earth is in a natural warming period, but man could be causing it to become even warmer. The Greenhouse Effect could have a catastrophic impact on mankind, although nothing has been proven yet.

  1. Questions and answers about the effects of the depletion of the ozone layer on humans and the environment.

    PubMed

    Aucamp, Pieter J

    2007-03-01

    The ozone molecule contains three atoms of oxygen and is mainly formed by the action of the ultraviolet rays of the sun on the diatomic oxygen molecules in the upper part of the Earth's atmosphere (called the stratosphere). Atmospheric pollution near the Earth's surface can form localized areas of ozone. The stratospheric ozone layer protects life on Earth by absorbing most of the harmful ultraviolet radiation from the sun. In the mid 1970s it was discovered that some manmade products destroy ozone molecules in the stratosphere. This destruction can result in damage to ecosystems and to materials such as plastics. It may cause an increase in human diseases such as skin cancers and cataracts. The discovery of the role of the synthetic ozone-depleting chemicals such as chlorofluorocarbons (CFCs) stimulated increased research and monitoring in this field. Computer models predicted a disaster if no action was taken to protect the ozone layer. Based on this research and monitoring, the nations of the world took action in 1985 with the Vienna Convention for the Protection of the Ozone Layer followed by the Montreal Protocol on Substances that Deplete the Ozone Layer in 1987. The Convention and Protocol were amended and adjusted several times as new knowledge was obtained. The Meetings of the Parties to the Montreal Protocol appointed three Assessment Panels to review the progress in scientific knowledge on their behalf. These panels are the Scientific Assessment Panel, the Technological and Economic Assessment Panel and the Environmental Effects Assessment Panel. Each panel covers a designated area and there is a natural level of overlap. The main reports of the Panels are published every four years as required by the Meeting of the Parties. All the reports have an executive summary that is distributed more widely than the main report itself. It became customary to add a set of questions and answers--mainly for non-expert readers--to the executive summaries. This

  2. A One-Dimensional Model Study of the Occurrence and the Termination of Polar Boundary-Layer Ozone Depletion Events

    NASA Astrophysics Data System (ADS)

    Cao, Le; Gutheil, Eva

    2015-04-01

    The tropospheric ozone depletion events (ODEs) in polar spring have attracted increased attention in the last thirty years. A dramatic decline of the surface ozone mixing ratio from tens of parts per billion (ppb) to less than one ppb within a few days is observed in various observation sites in polar regions. Previous studies suggest that the halogen species, especially bromine, acts as a catalyst in a chemical reaction cycle, which causes the destruction of ozone in the polar boundary layer. Moreover, a group of heterogeneous reactions with the involvement of HOBr occur on the surface of different substrates such as suspended aerosols and sea ice, leading to the activation of bromide from these substrates, and a following enhancement of the total bromine amount in the boundary layer occurs. This phenomenon is widely known as the 'bromine explosion' mechanism. However, the initiation and the termination steps of the ODEs are still not well understood. In the present study, a one-dimensional model, KINAL-T, is developed with the aim of investigating the role of the boundary layer in the occurrence and the termination of the ODEs. The 1-D model is an extension of the previous box model study1, explicitly including the vertical convection of gas. The parameterization of the vertical profile of the turbulent diffusivity from Pielke and Mahrer (1975)2 is adopted. Moreover, in the 1-D model, a bromine-related reaction scheme taken from Cao et al. (2014)1 is used, in which not only the gas phase but also the heterogeneous reactions are implemented. The simulation results show that the tropospheric ozone depletion event in a 200 m boundary layer starts after 12 days under the condition of a potential temperature gradient of 0.7 K km-1 and a wind speed of 5 m s-1. The whole depletion process of ozone takes approximately 2.5 days. The vertical profiles of ozone and bromine-containing compounds at different days are also captured. Instead of preventing the ozone from the

  3. Development of inexpensive continuous emission monitors for feedback control of combustion devices that minimize greenhouse gases, toxic emissions, and ozone damaging products

    SciTech Connect

    Funk, D.J.; Moore, D.S.; Mongia, R.K.; Tomita, E.; Hsu, F.K.; Talbot, L.; Dibble, R.W.; Lovett, J.; Yamazaki, Akira

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory. Combustion is the major cause of poor urban air quality, of depletion of the ozone layer, and a major source of the greenhouse gas, carbon dioxide. Careful control of combustor conditions is important for minimizing the effects of combustion on the environment. The authors have developed sensitive, inexpensive continuous emission monitors that will assist in direct feedback of turbine power systems and provide assurance to the public and the operators of the facilities that their facility emissions lie within the accepted bounds. These include a robust solid-state Fourier transform spectrometer for rapid gas analysis, based on the use of ferroelectric liquid crystal technology, and an infrared helium-neon probe for real time measurement of combustor air-to-fuel ratios.

  4. Contribution of liquid, NAT and ice particles to chlorine activation and ozone depletion in Antarctic winter and spring

    NASA Astrophysics Data System (ADS)

    Kirner, O.; Müller, R.; Ruhnke, R.; Fischer, H.

    2015-02-01

    Heterogeneous reactions in the Antarctic stratosphere are the cause of chlorine activation and ozone depletion, but the relative roles of different types of polar stratospheric clouds (PSCs) in chlorine activation is an open question. We use multi-year simulations of the chemistry-climate model ECHAM5/MESSy for Atmospheric Chemistry (EMAC) to investigate the impact that the various types of PSCs have on Antarctic chlorine activation and ozone loss. One standard and three sensitivity EMAC simulations have been performed. In all simulations a Newtonian relaxation technique using the ERA-Interim reanalysis was applied to simulate realistic synoptic conditions. In the three sensitivity simulations, we only changed the heterogeneous chemistry on PSC particles by switching the chemistry on liquid, nitric acid trihydrate (NAT) and ice particles on and off. The results of these simulations show that the significance of heterogeneous reactions on NAT and ice particles for chlorine activation and ozone depletion in Antarctic winter and spring is small in comparison to the significance of heterogeneous reactions on liquid particles. Liquid particles alone are sufficient to activate almost all of the available chlorine, with the exception of the upper PSC regions between 10 and 30 hPa, where temporarily ice particles show a relevant contribution. Shortly after the first PSC occurrence, NAT particles contribute a small fraction to chlorine activation. Heterogeneous chemistry on liquid particles is responsible for more than 90% of the ozone depletion in Antarctic spring in the model simulations. In high southern latitudes, heterogeneous chemistry on ice particles causes only up to 5 DU of additional ozone depletion in the column and heterogeneous chemistry on NAT particles less than 0.5 DU. The simulated HNO3, ClO and O3 results agree closely with observations from the Microwave Limb Sounder (MLS) onboard NASA's Aura satellite.

  5. The consequences for human health of stratospheric ozone depletion in association with other environmental factors.

    PubMed

    Lucas, R M; Norval, M; Neale, R E; Young, A R; de Gruijl, F R; Takizawa, Y; van der Leun, J C

    2015-01-01

    Due to the implementation of the Montreal Protocol, which has limited, and is now probably reversing, the depletion of the stratospheric ozone layer, only modest increases in solar UV-B radiation at the surface of the Earth have occurred. For many fair-skinned populations, changing behaviour with regard to exposure to the sun over the past half century - more time in the sun, less clothing cover (more skin exposed), and preference for a tan - has probably contributed more to greater levels of exposure to UV-B radiation than ozone depletion. Exposure to UV-B radiation has both adverse and beneficial effects on human health. This report focuses on an assessment of the evidence regarding these outcomes that has been published since our previous report in 2010. The skin and eyes are the organs exposed to solar UV radiation. Excessive solar irradiation causes skin cancer, including cutaneous malignant melanoma and the non-melanoma skin cancers, basal cell carcinoma and squamous cell carcinoma, and contributes to the development of other rare skin cancers such as Merkel cell carcinoma. Although the incidence of melanoma continues to increase in many countries, in some locations, primarily those with strong sun protection programmes, incidence has stabilised or decreased over the past 5 years, particularly in younger age-groups. However, the incidence of non-melanoma skin cancers is still increasing in most locations. Exposure of the skin to the sun also induces systemic immune suppression that may have adverse effects on health, such as through the reactivation of latent viral infections, but also beneficial effects through suppression of autoimmune reactivity. Solar UV-B radiation damages the eyes, causing cataracts and pterygium. UV-B irradiation of the skin is the main source of vitamin D in many geographic locations. Vitamin D plays a critical role in the maintenance of calcium homeostasis in the body; severe deficiency causes the bone diseases, rickets in children

  6. Ozone trends: A review

    NASA Astrophysics Data System (ADS)

    Staehelin, J.; Harris, N. R. P.; Appenzeller, C.; Eberhard, J.

    2001-05-01

    Ozone plays a very important role in our atmosphere because it protects any living organisms at the Earth's surface against the harmful solar UVB and UVC radiation. In the stratosphere, ozone plays a critical role in the energy budget because it absorbs both solar UV and terrestrial IR radiation. Further, ozone in the tropopause acts as a strong greenhouse gas, and increasing ozone trends at these altitudes contribute to climate change. This review contains a short description of the various techniques that provided atmospheric ozone measurements valuable for long-term trend analysis. The anthropogenic emissions of substances that deplete ozone (chlorine- and bromine-containing volatile gases) have increased from the 1950s until the second half of the 1980s. The most severe consequence of the anthropogenic release of ozone-depleting substances is the "Antarctic ozone hole." Long-term observations indicate that stratospheric ozone depletion in the southern winter-spring season over Antarctica started in the late 1970s, leading to a strong decrease in October total ozone means. Present values are only approximately half of those observed prior to 1970. In the Arctic, large ozone depletion was observed in winter and spring in some recent years. Satellite and ground-based measurements show no significant trends in the tropics but significant long-term decreasing trends in the northern and southern midlatitudes (of the order of 2-4% per decade in the period from 1970 to 1996 and an acceleration in trends in the 1980s). Ozone at northern midlatitudes decreased by -7.4±2% per decade at 40 km above mean sea level, while ozone loss was small at 30 km. Large trends were found in the lower stratosphere, -5.1±1.8% at 20 km and -7.3±4.6% at 15 km, where the bulk of the ozone resides. The possibility of a reduction in the observed trends has been discussed recently, but it is very hard to distinguish this from the natural variability. As a consequence of the Montreal Protocol

  7. Atmosphere-derived National Emissions of Ozone Depleting Substances and Substitutes for the United States

    NASA Astrophysics Data System (ADS)

    Hu, L.; Montzka, S. A.; Miller, J. B.; Andrews, A. E.; Miller, B. R.; Lehman, S.; Godwin, D.; Thoning, K. W.; Sweeney, C.; Chen, H.; Fischer, M. L.; Biraud, S.; Torn, M. S.; Mountain, M. E.; Nehrkorn, T.; Eluszkiewicz, J.; Saikawa, E.; Hall, B. D.; Elkins, J. W.; Tans, P. P.

    2014-12-01

    Chlorofluorocarbons (CFCs), halons, carbon tetrachloride (CCl4), and methyl chloroform (CH3CCl3) are strong ozone-depleting substances (ODSs). Their production and consumption have been controlled by the Montreal Protocol since 1989 in developed countries and 1999 in developing countries. Although global atmospheric burdens of some of these gases have been declining for the last decade, their emissions continue due to releases from their existing reservoirs. Hydrochlorofluorocarbons (HCFCs) are transitional substitutes for CFCs; because they also deplete stratospheric ozone, they are also controlled by the Montreal Protocol. Hydrofluorocarbons (HFCs) are replacements for CFCs and HCFCs. Due to incomplete understanding of the reservoir size and emission rates for ODSs and their substitutes, uncertainty of their national emissions from inventory-based "bottom-up" estimates is undetermined. In this study, we use our atmospheric observations from multiple surface sites and aircraft profiles across the continental US from 2008 to 2012, along with data from remote sites over the Pacific basin, to derive national emissions of ODSs and their substitutes using inverse modeling. The performance of our modeling framework and the sensitivity of derived emissions to prior fluxes and model-data mismatch errors were investigated by conducting a suite of synthetic-data experiments. Sensitivity of derived fluxes to boundary values and transport was explored in real-data inversions. Our preliminary results suggest that (1) US emissions of HCFC-22 and HCFC-142b are currently declining at faster rates than those reported by US EPA; (2) our emission estimate of HFC-134a, the most abundant HFCs in the atmosphere, is consistent with the estimate reported by US EPA, whereas our estimates for some currently minor HFCs (i.e. HFC-125 and HFC-143a) show no significant emission trends during 2008 - 2012, which is inconsistent with a 70 - 120 % increase over this period reported by US EPA; and

  8. Nocturnal Ozone Depletion Events at the Amphitrite Point Observatory on West Vancouver Island

    NASA Astrophysics Data System (ADS)

    Garner, N.; Brownsey, D. K.; Tokarek, T. W.; Ye, C. Z.; Yordanov, N. R.; Osthoff, H. D.; Schiller, C. L.; Vingarzan, R.

    2015-12-01

    Routine monitoring stations on the West coast of North America serve to monitor baseline levels of criteria pollutants such as ozone (O3) arriving from the Pacific Ocean. In Canada, the Amphitrite Point Observatory (APO) in Ucluelet on the West coast of Vancouver Island has been added to this network to provide regional baseline measurements. Recently, McKendry and coworkers have reported frequent episodes of nocturnal O3 depletion events (ODEs) at APO (range: 5-20 ppbv) that generally correlate with alongshore winds, elevated levels of carbon dioxide (CO2), and low vertical entrainment but whose cause(s) has (have) remained unclear. In this work, results from the Ozone-depleting reactions in a coastal atmosphere (ORCA) campaign, which took place at APO from July 6 - 31, 2015, are presented. In addition to the long-term measurements that include aerosol size distribution and composition measurements, mixing ratios of speciated monoterpenes (e.g., α- and β-pinene, limonene), molecular halogens (i.e., Cl2, I2), halogen oxides (i.e., OIO), plus a full suite of nitrogen oxides (including N2O5, PAN, PPN, ΣPN, ΣAN, HNO3, HONO, and ClNO2) were quantified. Synoptic conditions at the site varied greatly between nights. During westerly flow of relatively clean marine air, O3 was generally conserved at night, indicating that deposition of O3 to the ocean surface is a minor loss pathway. When the air mass originated from other sectors, episodes of nocturnal ODEs were observed on several occasions, in which mixing ratios of biogenic VOCs were enhanced. These included air masses that originated from densely forested areas to the East, air masses polluted by marine traffic emissions from the southeast, and air masses from the NW that have traveled parallel to the coastline. In this sector, the air was likely in contact with terrestrial vegetation via land-sea breeze circulations. The results suggest that nocturnal ODEs at APO are mainly driven by local or regional processes

  9. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. (Invited)

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ferreira, D.; Bitz, C. M.

    2013-12-01

    In recent decades the Arctic has been warming with sea ice disappearing. But the Antarctic has been (mainly) cooling and sea ice is growing. We argue here that inter-hemispheric asymmetries in the mean ocean circulation, with sinking in the northern north Atlantic and upwelling around Antarctica, strongly influences the surface response to GHG forcing, accelerating warming in the Arctic and delaying it in the Antarctic. Moreover, while GHG forcing has been qualitatively similar at the poles, ozone depletion only occurs in the Antarctic. The coupled atmosphere-ocean response to ozone depletion may further help to explain the Antarctic trends. A framework is presented to quantify the processes at work built around `Climate Response Functions' for GHG and Ozone-hole forcing.

  10. Evidence of the mid-latitude impact of Antarctic ozone depletion

    NASA Technical Reports Server (NTRS)

    Atkinson, Roger J.; Matthews, W. Andrew; Newman, Paul A.; Plumb, R. Alan

    1989-01-01

    Record low ozone values found over Australia and New Zealand during December 1987 following the record low Antarctic values of October 1987 are analyzed. The sudden decline of ozone amounts in midmonth rule out photochemical effects as a cause and permit the underlying processes to be investigated on a case study basis. Using data from ozone sondes, radiosondes, the Nimbus-7 total ozone mapping spectrometer, and meteorological analyses from the National Meteorological Center, it is argued that these low values resulted from transport of ozone-poor air from higher latitudes. Thus, it seems that the chemical destruction of ozone over Antarctica in early spring is having an impact on lower latitudes.

  11. Climate Throughout Geologic Time Was Cooled by Sequences of Explosive Volcanic Eruptions Forming Aerosols That Reflect and Scatter Ultraviolet Solar Radiation and Warmed by Relatively Continuous Extrusion of Basaltic Lava that Depletes Ozone, Allowing More Solar Ultraviolet Radiation to Reach Earth

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2015-12-01

    Active volcanoes of all sizes and eruptive styles, emit chlorine and bromine gases observed to deplete ozone. Effusive, basaltic volcanic eruptions, typical in Hawaii and Iceland, extrude large lava flows, depleting ozone and causing global warming. Major explosive volcanoes also deplete ozone with the same emissions, causing winter warming, but in addition eject megatons of water and sulfur dioxide into the lower stratosphere where they form sulfuric-acid aerosols whose particles grow large enough to reflect and scatter ultraviolet sunlight, causing net global cooling for a few years. The relative amounts of explosive and effusive volcanism are determined by the configuration of tectonic plates moving around Earth's surface. Detailed studies of climate change throughout geologic history, and since 1965, are not well explained by greenhouse-gas theory, but are explained quite clearly at OzoneDepletionTheory.info. Ozone concentrations vary substantially by the minute and show close relationships to weather system highs and lows (as pointed out by Dobson in the 1920s), to the height of the tropopause, and to the strength and location of polar vortices and jet streams. Integrating the effects of volcanism on ozone concentrations and the effects of ozone concentrations on synoptic weather patterns should improve weather forecasting. For example, the volcano Bárðarbunga, in central Iceland, extruded 85 km2 of basaltic lava between August 29, 2014, and February 28, 2015, having a profound effect on weather. Most surprising, more than a week before the March 4 eruption of Eyjafjallajökull in 2010, substantial amounts of ozone were released in the vicinity of the volcano precisely when surface deformation showed that magma first began moving up from sills below 4 km depth. Ozone similarly appears to have been emitted 3.5 months before the Pinatubo eruption in 1991. Readily available daily maps of ozone concentrations may allow early warning of an imminent volcanic

  12. CFC users seek exemptions from ban on ozone-depleting substances

    SciTech Connect

    Zurer, P.

    1993-08-16

    Environmental Protection Agency officials were surprised last month as the deadline passed for chlorofluorocarbon (CFC) users to ask for exemptions from the production ban that goes into effect in less than 29 months. Only a handful of CFC users petitioned EPA to put their case before the countries that are party to the Montreal Protocol on Substances That Deplete the Ozone Layer. Three major groups--as well as a few other minor users--say they must have CFCs available after the Jan. 1, 1996, phaseout deadline. The automobile industry and commercial building owners cite the turmoil and expense of switching to substitutes for existing air-conditioning and commercial building owners cite the turmoil and expense of switching to substitutes for existing air-conditioning equipment. And the pharmaceutical industry has not yet developed approved alternatives for certain medical devices. But only metered-dose inhalers, which use CFCs to propel medication directly into the lungs of patients suffering from asthma and other respiratory diseases, are likely to be deemed an exempt essential use.

  13. Precipitation of salts in freezing seawater and ozone depletion events: a status report

    NASA Astrophysics Data System (ADS)

    Morin, S.; Marion, G. M.; von Glasow, R.; Voisin, D.; Bouchez, J.; Savarino, J.

    2008-12-01

    In springtime, the polar marine boundary layer exhibits drastic ozone depletion events (ODEs), associated with elevated bromine oxide (BrO) mixing ratios. The current interpretation of this peculiar chemistry requires the existence of acid and bromide-enriched surfaces to heterogeneously promote and sustain ODEs. Sander et al. (2006) have proposed that calcium carbonate (CaCO3) precipitation in any seawater-derived medium could potentially decrease its alkalinity, making it easier for atmospheric acids such as HNO3 and H2SO4 to acidify it. We performed simulations using the state-of-the-art FREZCHEM model, capable of handling the thermodynamics of concentrated electrolyte solutions, to try to reproduce their results, and found that when ikaite (CaCO3·6H2O) rather than calcite (CaCO3) precipitates, there is no such effect on alkalinity. Given that ikaite has recently been identified in Antarctic brines (Dieckmann et al., 2008), our results show that great caution should be exercised when using the results of Sander et al. (2006), and reveal the urgent need of laboratory investigations on the actual link(s) between bromine activation and the pH of the surfaces on which it is supposed to take place at subzero temperature. In addition, the evolution of the Cl/Br ratio in the brine during freezing was computed using FREZCHEM, taking into account Br substitutions in Cl-containing salts.

  14. Health effects from stratospheric ozone depletion and interactions with climate change.

    PubMed

    de Gruijl, Frank R; Longstreth, Janice; Norval, Mary; Cullen, Anthony P; Slaper, Harry; Kripke, Margaret L; Takizawa, Yukio; van der Leun, Jan C

    2003-01-01

    The potential health effects of elevated levels of ambient UV-B radiation are diverse, and it is difficult to quantify the risks, especially as they are likely to be considerably modified by human behaviour. Nevertheless epidemiological and experimental studies have confirmed that UV radiation is a definite risk factor for certain types of cataract, with peak efficacy in the UV-B waveband. The causal link between squamous cell carcinoma and cumulative solar UV exposure has been well established. New findings regarding the genetic basis of skin cancer, including studies on genetically modified mice, have confirmed the epidemiological evidence that UV radiation contributes to the formation of basal cell carcinomas and cutaneous melanomas, For the latter, animal models have demonstrated that UV exposure at a very young age is more detrimental than exposure in adulthood. Although suppression of certain immune responses has been recognised following UV exposure, the impact of this suppression on the control of infectious and autoimmune diseases is largely unknown. However, studies on several microbial infections have indicated significant consequences in terms of symptoms or reactivation of disease. The possibility that the immune response to vaccination could be depressed by UV-B exposure is of considerable concern. Newly emerging possibilities regarding interactions between ozone depletion and global climate change further complicate the risk assessments for human health but might result in an increased incidence of cataracts and skin cancer, plus alterations in the patterns of certain categories of infectious and other diseases. PMID:12659536

  15. Second harmonic generation studies of ozone depletion reactions on ice surfaces under stratospheric conditions

    SciTech Connect

    Geiger, F.M.; Tridico, A.C.; Hicks, J.M.

    1999-09-30

    Hypochlorous acid, HOCl, an important species in the proposed heterogeneous mechanism for stratospheric ozone depletion, has been observed directly at submonolayer amounts on a single crystalline basal ice surface at 155-188 K, using the nonlinear optical method second harmonic generation. The ice is held in equilibrium with its vapor pressure. Second harmonic generation signals form 290 to 310 nm spectroscopically characterize the species and enable the authors to follow isothermal desorption kinetics in situ. HOCl desorbs as a single species with a {Delta}G*{sub des} = 48 {+-} 4 kJ/mol, close to the cohesive energy of ice itself. The lifetime of HOCl on the clean ice surface at 185 K is estimated to be 4 s and the equilibrium surface coverage at 10{sup {minus}11} Torr HOCl to be around 4 x 10{sup 11} molecules/cm{sub 2}, corresponding to about 0.1% of a monolayer. However, these same measurements performed on ice predosed with varying amounts of HNO{sub 3}show that the HOCl lifetime is lengthened by coadsorbed HNO{sub 3}, depending on the HNO{sub 3} surface density.

  16. Transmission of ultraviolet radiation in Antarctic coastal waters during springtime ozone depletion

    SciTech Connect

    Karentz, D. )

    1990-01-09

    Annual springtime ozone depletion over Antarctica has resulted in increased intensities of biologically harmful ultraviolet-B (UV-B) radiation reaching the earth's surface. This phenomenon has prompted much concern and speculation abouth the impact of elevated UV-B irradiance on Antarctic marine ecosystems, but there are limited data available to evaluate specific effects. A major obstacle is lack of information on UV-B exposure experienced by organisms within the marine environment. During the spring (Oct-Dec) of 1988, radiometry (instantaneous measurement of broad band UV-A and UV-B), actinometry (UV-B flux) and newly developed biological dosimetry biologically transmission of UV radiation within the water column (0-30 m) of Arthur Harbor (Anvers Island, Antarctic Peninsula). The dosimeter system consistently detected biologically active wavelengths of UV-B to 10 m throughout the study period and to 20 m on some sample dates, indicating that intertidal, shallow benthic and planktonic communities are exposed to biologically hazardous UV radiation.

  17. Ozone depletion. January 1987-November 1991 (Citations from the NTIS Data-Base). Rept. for Jan 87-Nov 91

    SciTech Connect

    Not Available

    1991-10-01

    The bibliography contains citations concerning studies of atmospheric chemistry and modelling of ozone depletion in Antarctica, and the consequences of the depletion on ultraviolet radiation levels. The studies involve chemical reactions in the atmosphere, including temperature dynamics, possible changes in solar insolation, and effects of pollution from nitrogen, chlorofluorocarbons, carbon dioxide and methane. The studies involve references to observations of the ozonosphere and modelling of interactions worldwide, together with data on the sources of the natural and man-made pollutants. (Contains 184 citations with title list and subject index.)

  18. Evaluation of a no-clean soldering process designed to eliminate the use of ozone depleting chemicals

    SciTech Connect

    Iman, R.L.; Armendariz, M.E.; Anderson, D.J. |; Lichtenberg, L.; Van Buren, P.; Paffett, M.T.

    1992-11-01

    The destruction of the Earth`s protective ozone layer is one of today`s largest environmental concerns. Solvent emissions released during the cleaning of printed wiring boards (PWBs) have been identified as a primary contributor to ozone destruction. No-clean soldering (sometimes referred to as self-cleaning) processes represent an ideal solution since they eliminate the need for cleaning after soldering. Elimination of solvent cleaning operations significantly reduces the emissions of ozone depleting chemicals (ODCs), reduces energy consumption, and reduces product costs. Several no-clean soldering processes have been developed over the past few years. The program`s purpose was to evaluate the no-clean soldering process and to determine if hardware produced by the process is acceptable for military applications. That is, determine if the no-clean process produces hardware that is as reliable as that soldered with the existing rosin-based flux solvent cleaning process.

  19. Investigation of the severe spring 2011 ozone depletion with measurements of ozone, NO2, and OClO at 80°N from 1999 to 2011

    NASA Astrophysics Data System (ADS)

    Adams, C.; Strong, K.; Zhao, X.; Fraser, A. C.; Mendonca, J.; Goutail, F.; Pazmino, A.; McLinden, C. A.; Manney, G. L.; Daffer, W. H.

    2011-12-01

    We will present an investigation of spring 2011 ozone depletion in the context of 11 years of measurements taken at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) by three UV-visible spectrometers from 1999 to 2011. This timeseries of ozone, NO2, and OClO is investigated in the context of dynamical parameters in the stratosphere along the approximate lines-of-sight of the instruments. In spring 2011, measurements taken both inside and outside the polar vortex stand apart from previous years. From 1-21 March 2011, the spectrometers sample air masses inside the polar vortex. During this period, OClO is clearly enhanced, indicating chlorine activation. Both ozone and NO2 measurements reach minima in the 11-year record, suggesting ozone depletion and denitrification. Furthermore, temperatures in the lower stratosphere along the lines-of-sight of the instruments reach their lowest values in the 11-year dataset. From 22 March to 2 April 2011, the spectrometers measure along the vortex edge, occasionally sampling inside the vortex. Ozone and NO2 increase to levels which are normal in the context of the 11-year data record, but decrease when the instruments sample air masses inside the vortex. On 3 April 2011, as the vortex shifts away from PEARL for the last time, NO2 and stratospheric temperatures increase sharply, reaching maxima in the 11-year dataset. This NO2 increase is investigated using a photochemical model and dynamical parameters.

  20. Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept

    NASA Astrophysics Data System (ADS)

    Huck, P. E.; Bodeker, G. E.; Kremser, S.; McDonald, A. J.; Rex, M.; Struthers, H.

    2013-03-01

    Two semi-empirical models were developed for the Antarctic stratosphere to relate the shift of species within total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2×Cl2O2 + ClO + Cl) into the active forms (here: ClOx = 2×Cl2O2 + ClO), and to relate the rate of ozone destruction to ClOx. These two models provide a fast and computationally inexpensive way to describe the inter- and intra-annual evolution of ClOx and ozone mass deficit (OMD) in the Antarctic spring. The models are based on the underlying physics/chemistry of the system and capture the key chemical and physical processes in the Antarctic stratosphere that determine the interaction between climate change and Antarctic ozone depletion. They were developed considering bulk effects of chemical mechanisms for the duration of the Antarctic vortex period and quantities averaged over the vortex area. The model equations were regressed against observations of daytime ClO and OMD providing a set of empirical fit coefficients. Both semi-empirical models are able to explain much of the intra- and inter-annual variability observed in daily ClOx and OMD time series. This proof-of-concept paper outlines the semi-empirical approach to describing the evolution of Antarctic chlorine activation and ozone depletion.

  1. Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept

    NASA Astrophysics Data System (ADS)

    Huck, P. E.; Bodeker, G. E.; Kremser, S.; McDonald, A. J.; Rex, M.; Struthers, H.

    2012-10-01

    Two semi-empirical models were developed for the Antarctic stratosphere to relate the shift of species within total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2 × Cl2O2 + ClO + Cl) into the active forms (here: ClOx = 2 × Cl2O2 + ClO), and to relate the rate of ozone destruction to ClOx. These two models provide a fast and computationally inexpensive way to describe the inter- and intra-annual evolution of ClOx and ozone mass deficit (OMD) in the Antarctic spring. The models are based on the underlying physics/chemistry of the system and capture the key chemical and physical processes in the Antarctic stratosphere that determine the interaction between climate change and Antarctic ozone depletion. They were developed considering bulk effects of chemical mechanisms for the duration of the Antarctic vortex period and quantities averaged over the vortex area. The model equations were regressed against observations of daytime ClO and OMD providing a set of empirical fit coefficients. Both semi-empirical models are able to explain much of the intra- and inter-annual variability observed in daily ClOx and OMD time series. This proof-of-concept paper outlines the semi-empirical approach to describing the evolution of Antarctic chlorine activation and ozone depletion.

  2. Antarctic ozone depletion chemistry - Reactions of N2O5 with H2O and HCl on ice surfaces

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.

    1988-01-01

    In a study concerning Antarctic ozone depletion, reactions of dinitrogen pentoxide with water and hydrochloric acid were studied on ice surfaces in a Knudsen cell flow reactor. The N2O5 reacted on ice at 185 K to form condensed-phase nitric acid (HNO3). This reaction may provide a sink for odd nitrogen, NO(x), during the polar winter, a requirement in nearly all models of Antarctic ozone depletion. The reaction of N2O5 on HCl-ice surfaces at 185 K produced gaseous nitryl chloride (ClNO2) and condensed-phase HNO3 and proceeded until all of the HCl within the ice was depleted. The ClNO2 which did not react or condense on ice at 185 K, can be readily photolyzed in the Antarctic spring to form atomic chlorine for catalytic ozone destruction cycles. The other photolysis product, gaseous nitrogen dioxide may be important in the partitioning of NO(x) between gaseous and condensed phases in the Antarctic winter.

  3. On bromine, nitrogen oxides and ozone depletion in the tropospheric plume of Erebus volcano (Antarctica)

    NASA Astrophysics Data System (ADS)

    Boichu, Marie; Oppenheimer, Clive; Roberts, Tjarda J.; Tsanev, Vitchko; Kyle, Philip R.

    2011-07-01

    Since the discovery of bromine oxide (BrO) in volcanic emissions, there has been speculation concerning its role in chemical evolution and notably ozone depletion in volcanic plumes. We report the first measurements using Differential Optical Absorption Spectroscopy (DOAS) of BrO in the tropospheric plume of the persistently degassing Erebus volcano (Antarctica). These are the first observations pertaining to emissions from an alkaline phonolitic magma. The observed BrO/SO 2 ratio of 2.5 × 10 -4 is similar to that measured at andesitic arc volcanoes. The high abundance of BrO is consistent with high abundances of F and Cl relative to sulfur in the Erebus plume. Our estimations of HBr flux and BrO production rate suggest that reactive bromine chemistry can explain a 35% loss of tropospheric O 3 observed in the Erebus plume at approximately 30 km from source ( Oppenheimer et al., 2010). Erebus also has a permanent lava lake, which could result in generation of NO x by thermal fixation of atmospheric N 2 at the hot lava surface. Any NO x emission could play a potent role in reactive bromine chemistry. However, the presence of NO 2 could not be detected in the plume, about 400 m above the lake, in our DOAS observations of 2005. Nor could we reproduce spectroscopic retrievals that reportedly identified NO 2 in DOAS observations from 2003 made of the Erebus plume ( Oppenheimer et al., 2005). Based on the NO 2 detection limit of our analysis, we can state an upper limit of the NO 2/SO 2 ratio of ≤0.012, an order of magnitude lower than previously reported. Our new result supports a rapid oxidation of NO x in the young plume and is more consistent with measurements of NO y species measured using an instrumented aircraft flying in the plume. Model simulations, tuned for Erebus, were performed to reproduce the BrO/SO 2 observed in the young plume and to investigate the impact of NO x emissions at source on the subsequent formation of BrO in the plume. They support our

  4. A general circulation model study of the climatic effect of observed stratospheric ozone depletion between 1980 and 1990

    NASA Technical Reports Server (NTRS)

    Dudek, Michael P.; Wang, Wei-Chyung; Liang, Xin-Zhong; Li, Zhu

    1994-01-01

    The total ozone mapping spectrometer (TOMS) and stratospheric aerosol and gas experiment (SAGE) measurements show a significant reduction in the stratospheric ozone over the middle and high latitudes of both hemispheres between the years 1979 and 1991 (WMO, 1992). This change in ozone will effect both the solar and longwave radiation with climate implications. However, recent studies (Ramaswamy et al., 1992; WMO, 1992) indicate that the net effect depends not only on latitudes and seasons, but also on the response of the lower stratospheric temperature. In this study we use a general circulation model (GCM) to calculate the climatic effect due to stratospheric ozone depletion and compare the effect with that due to observed increases of trace gases CO2, CH4, N2O, and CFC's for the period 1980-1990. In the simulations, we use the observed changes in ozone derived from the TOMS data. The GCM used is a version of the NCAR community climate model referenced in Wang et al. (1991). For the present study we run the model in perpetual January and perpetual July modes in which the incoming solar radiation and climatological sea surface temperatures are held constant.

  5. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of...

  6. The effects on human health from stratospheric ozone depletion and its interactions with climate change.

    PubMed

    Norval, M; Cullen, A P; de Gruijl, F R; Longstreth, J; Takizawa, Y; Lucas, R M; Noonan, F P; van der Leun, J C

    2007-03-01

    Ozone depletion leads to an increase in the ultraviolet-B (UV-B) component (280-315 nm) of solar ultraviolet radiation (UVR) reaching the surface of the Earth with important consequences for human health. Solar UVR has many harmful and some beneficial effects on individuals and, in this review, information mainly published since the previous report in 2003 (F. R. de Gruijl, J. Longstreth, M. Norval, A. P. Cullen, H. Slaper, M. L. Kripke, Y. Takizawa and J. C. van der Leun, Photochem. Photobiol. Sci., 2003, 2, pp. 16-28) is discussed. The eye is exposed directly to sunlight and this can result in acute or long-term damage. Studying how UV-B interacts with the surface and internal structures of the eye has led to a further understanding of the location and pathogenesis of a number of ocular diseases, including pterygium and cataract. The skin is also exposed directly to solar UVR, and the development of skin cancer is the main adverse health outcome of excessive UVR exposure. Skin cancer is the most common form of malignancy amongst fair-skinned people, and its incidence has increased markedly in recent decades. Projections consistently indicate a further doubling in the next ten years. It is recognised that genetic factors in addition to those controlling pigment variation can modulate the response of an individual to UVR. Several of the genetic factors affecting susceptibility to the development of squamous cell carcinoma, basal cell carcinoma and melanoma have been identified. Exposure to solar UVR down-regulates immune responses, in the skin and systemically, by a combination of mechanisms including the generation of particularly potent subsets of T regulatory cells. Such immunosuppression is known to be a crucial factor in the generation of skin cancers. Apart from a detrimental effect on infections caused by some members of the herpesvirus and papillomavirus families, the impact of UV-induced immunosuppression on other microbial diseases and vaccination

  7. Have we underestimated the role of short-lived chlorine compounds in ozone depletion?

    NASA Astrophysics Data System (ADS)

    Oram, David; Laube, Johannes; Sturges, Bill; Gooch, Lauren; Leedham, Emma; Ashfold, Matthew; Pyle, John; Abu Samah, Azizan; Moi Phang, Siew; Ou-Yang, Chang-Feng; Lin, Neng-Huei; Wang, Jia-Lin; Brenninkmeijer, Carl

    2015-04-01

    In recent years much attention has been focussed on the potential of bromine-containing VSLS (very short lived substances) to contribute to stratospheric ozone depletion. This is primarily due to the large observed discrepancy between the measured inorganic bromine in the stratosphere and the amount of bromine available from known, longer lived sources gases (halons and CH3Br). In contrast, the role of very short-lived chlorine compounds (VSLS-CL) has been considered trivial because they contribute only a few percent to the total organic chlorine in the troposphere, the majority of which is supplied by long-lived compounds such as the CFCs, HCFCs, methyl chloroform and carbon tetrachloride. However recent evidence shows that one VSLS-Cl, dichloromethane (CH2Cl2) has increased by 60% over the past decade (WMO, 2014) and has already begun to offset the long-term decline in stratospheric chlorine loading caused by the reduction in emissions of substances controlled by the Montreal Protocol. We will present new VSLS-Cl measurements from recent ground-based and aircraft campaigns in SE Asia where we have observed dramatic enhancements in a number of VSLS-Cl, including CH2Cl2. Furthermore we will demonstrate how pollution from China and the surrounding region can rapidly, and regularly, be transported across the South China Sea and subsequently uplifted to altitudes of 11-12 km, the region close to the lower TTL. This process occurs frequently during the winter monsoon season and could represent a fast and efficient mechanism for transporting short-lived compounds, and other pollutants, to the lower stratosphere.

  8. Ozone depletion in the high latitude lower stratosphere - 1979-1990

    NASA Technical Reports Server (NTRS)

    Callis, Linwood B.; Boughner, Robert E.; Natarajan, Murali; Lambeth, James D.; Baker, Daniel N.

    1991-01-01

    Archived Stratospheric Aerosol and Gas Experiment (SAGE, SAGE II) and Solar and Backscattered Ultraviolet (SBUV) data are used to examine lower stratospheric O3 variations at 50 deg latitude in both hemispheres. These data indicate that from 1979 to 1985, 73-90 percent of the total O3 changes have occurred below approximately 25 km in altitude. Significant O3 depletions (up to 15 percent) have occurred in the partial column (127-15.8 mbar) in both hemispheres with indications of a recovery after 1985. Two-dimensional model simulations of O3 changes from 1979 to 1990 have been carried out. Comparisons with O3 data are presented. Model results suggest that by 1985, significant declines in global O3 were caused by destruction by odd nitrogen associated with long-term variations in the flux of precipitating relativistic electrons (2.6 percent); solar UV flux changes (1.8 percent); the dilution effect associated with the Antarctic O3 hole (1.2 percent); and atmospheric increases in CH4, N2O, and chlorofluorocarbons (0.4 percent). Analyses of drift-corrected SBUV and Total Ozone Mapping Spectrometer data and model calculations indicate that between 1979 and 1985, reductions of 4.3 to 4.8 percent in total column O3 averaged between 65 deg S and 65 deg N have occurred. Calculations indicate a full global O3 decline of 5.2 percent (peak-to-peak) or 6 percent (annual average) between 1979 and 1985 with a partial recovery between 1985 and 1989.

  9. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion.

    PubMed

    Bernacchi, Carl J; Leakey, Andrew D B; Kimball, Bruce A; Ort, Donald R

    2011-06-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O₃]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O₃] on crop ecosystem energy fluxes and water use. Elevated [O₃] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C. PMID:21477906

  10. Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels

    NASA Astrophysics Data System (ADS)

    Delworth, Thomas L.; Zeng, Fanrong

    2014-08-01

    Precipitation in austral autumn and winter has declined over parts of southern and especially southwestern Australia in the past few decades. According to observations and climate models, at least part of this decline is associated with changes in large-scale atmospheric circulation, including a poleward movement of the westerly winds and increasing atmospheric surface pressure over parts of southern Australia. Here we use a high-resolution global climate model to analyse the causes of this rainfall decline. In our simulations, many aspects of the observed regional rainfall decline over southern and southwest Australia are reproduced in response to anthropogenic changes in levels of greenhouse gases and ozone in the atmosphere, whereas anthropogenic aerosols do not contribute to the simulated precipitation decline. Simulations of future climate with this model suggest amplified winter drying over most parts of southern Australia in the coming decades in response to a high-end scenario of changes in radiative forcing. The drying is most pronounced over southwest Australia, with total reductions in austral autumn and winter precipitation of approximately 40% by the late twenty-first century.

  11. Potential influence of iodine-containing compounds on the chemistry of the troposphere in the polar spring. I. Ozone depletion

    SciTech Connect

    Calvert, Jack G; Lindberg, Steven Eric

    2004-05-01

    Iodine in the atmosphere, identified largely by the presence of IO, is a ubiquitous component of the troposphere in coastal and oceanic areas. The role, if any, that iodine chemistry plays in the polar ozone depletion episodes is not known. These events are rationalized today largely in terms of Br2- and BrCl-initiated reactions. The potential for enhancement of ozone depletions through the presence of iodine-containing molecules (I{sub 2}, IBr, ICl, CH{sub 2}I{sub 2}, CH{sub 2}IBr, CH{sub 2}ICl, and CH{sub 3}I) is investigated in this study. Computer simulations of the homogeneous chemistry are made using a reasonably complete reaction mechanism for Br-, Cl- and I-containing species together with representative chemistry of trace gases in the clean troposphere. The extent of uncertain alternative pathways and efficiencies for OIO and I{sub 2}O{sub 2} photolyses are varied over a range of possible values to establish the sensitivity of the depletion events to these variables. The study shows that significant enhancements of the polar ozone depletion are expected when small amounts of iodine-containing compounds such as CH{sub 2}I{sub 2}, IBr, or ICl are present in a polar air mass containing representative Br{sub 2}-BrCl-trace gas mixtures. The synergistic effect of the iodine compounds results from additional halogen-atom formation from IO-IO, IO-BrO, and IO-ClO reactions. Measurements of IO and precursor iodine-containing compounds are encouraged for future polar spring studies, as well as currently acknowledged important trace species (O{sub 3}, CH{sub 2}O, BrO, Br{sub 2}, and BrCl).

  12. Prospective Primary Teachers' Understanding of Climate Change, Greenhouse Effect, and Ozone Layer Depletion

    ERIC Educational Resources Information Center

    Papadimitriou, Vasiliki

    2004-01-01

    Climate change is one of the most serious global environmental problems and for that reason there has been lately a great interest in educating pupils, the future citizens, about it. Previous research has shown that pupils of all ages and teachers hold many misconceptions and misunderstandings concerning this issue. This paper reports on research…

  13. Quantifying urban/industrial emissions of greenhouse and ozone-depleting gases based on atmospheric observations

    NASA Astrophysics Data System (ADS)

    Barnes, Diana Hart

    2000-11-01

    Background and pollution trends and cycles of fourteen trace gases over the Northeastern U.S. are inferred from continuous atmospheric observations at the Harvard Forest research station located in Petersham, Massachusetts. This site receives background `clean' air from the northwest (Canada) and `dirty' polluted air from the southwest (New York City-Washington, D.C. corridor). Mixing ratios of gases regulated by the Montreal Protocol or other policies (CO, PCE, CFC11, CFC12, CFC113, CH 3CCl3, CCl4, and Halon-1211) and of those not subject to restrictions (H2, CH4, CHCl3, TCE, N2O, and SF6) were measured over the three-year period, 1996 to 1998, every 24 minutes by a fully automated gas chromatographic instrument with electron capture detectors. Evidence for polar vortex venting is found consistently in the month of June of the background seasonal cycles. The ratio of CO and PCE enhancements borne on southwesterly winds are in excellent agreement with county-level EPA and sales-based inventories for the New York City-Washington, D.C. region. From this firm footing, we use CO and PCE as reference compounds to determine the urban/industrial source strengths for the other species. A broad historical and geographic study of emissions reveals that the international treaty has by and large been a success. Locally, despite the passing of the 1996 Montreal Protocol ban, only emissions of CFC12 and CH3CCl3 are abating. Though source strengths are waning, the sources are not spent and continued releases to the atmosphere may be expected for some years to come. For CH3CCl3, whose rate of decline is central to our understanding of atmospheric processes, we estimate that absolute concentrations may persist until around the year 2010. The long-term high frequency time series of hydrogen provided here represents the first such data set of its kind. The H2 diurnal cycle is established and explained in terms of its sources and sinks. The ratio of H2 to CO in pollution plumes is found to be a seasonal and unchanged since early automobile exhaust studies of the 1960s, despite the many restrictions placed on car emissions and fuels since that time. Based on this result, a spatial inventory of H2 emissions from fossil fuel combustion is developed at the county level for the entire Northeastern U.S.

  14. 77 FR 58035 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... the atmosphere are highly destructive to the stratospheric ozone layer. This action will provide users... History On March 18, 1994, EPA published the original rulemaking (59 FR 13044) which established the... Federal Register (FR). EPA first publishes decisions concerning substitutes that are deemed...

  15. 78 FR 24997 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... stratospheric ozone layer. This action will provide users that need specialized fire protection applications... History On March 18, 1994, EPA published the original rulemaking (59 FR 13044) which established the... preamble to the rule initially implementing the SNAP program in the Federal Register at 59 FR 13044...

  16. 77 FR 58081 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... because their emissions into the atmosphere are highly destructive to the stratospheric ozone layer. This... of Executive Order 12866 (58 FR 51735, October 4, 1993) and it is therefore not subject to review under Executive Orders 12866 and 13563 (76 FR 3821, January 21, 2011). B. Paperwork Reduction Act...

  17. Growth of soybean at midcentury tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-level concentrations of ozone are increasing as a result of anthropogenic activities. This is having a negative impact on terrestrial ecosystems around the planet, including agricultural ecosystems. Critical questions surround the impact of rising ozone on soybean (Glycine max) since this spe...

  18. Occurrence of near-surface ozone depletion in the Arctic spring strongly affected by Northern-Hemispheric climate variability

    NASA Astrophysics Data System (ADS)

    Koo, J.; Wang, Y.; Jiang, T.; Deng, Y.; Oltmans, S. J.; Solberg, S.

    2013-12-01

    In the Arctic spring, near-surface ozone can decrease to extremely low levels due to chemical removal catalyzed by halogen radicals. These ozone depletion events (ODEs) are usually accompanied by greatly enhanced surface deposition of reactive gaseous mercury. Here we show the effects of regional climate variability on Arctic ODE frequencies by analyzing surface ozone measurements at three monitoring sites (Barrow, Alert, and Zeppelinfjellet) in the past 30 years. Among the various climate variability indices, the Western Pacific (WP) index has the most significant impact. In years with high ODE frequencies at Barrow and Alert in April, the WP teleconnection pattern tends to be in its negative phase with a weakened storm track from the western Pacific to the Arctic and a strengthened subtropical jet across the Pacific, reducing transport of ozone-rich air masses from mid-latitudes to the Arctic. Analysis of the observations at Zeppelinfjellet indicates a much stronger influence of WP pattern in the 2000s than 1990s. Consequently, the WP index may be used as a proxy to assess ODE frequencies and subsequent environmental impacts in future climate projections.

  19. Heterogeneous chemistry related to Antarctic ozone depletion: Reaction of ClONO2 and N2O5 on ice surfaces

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.

    1988-01-01

    Laboratory studies of heterogeneous reactions of possible importance for Antarctic ozone depletion were performed. In particular, the reactions of chlorine nitrate (ClONO2) and dinitrogen pentoxide (N2O5) were investigated on ice and HCl/ice surfaces. These reactions occur on the surfaces of polar stratospheric clouds (PSCs) over Antarctica. One reaction transforms the stable chlorine reservoir species (ClONO2 and HCl) into photochemically active chlorine in the form of HOCl and Cl2. Condensation of HNO3 in the reactions removes odd nitrogen from the stratosphere, a requirement in nearly all models of Antarctic ozone depletion. Other reactions may also be important for Antarctic ozone depletion. Like the reactions of chlorine nitrate, these reactions deplete odd nitrogen through HNO3 condensation. In addition, one reaction converts a stable chlorine reservior species (HCl) into photochemically active chlorine (ClNO2). These reactions were studied with a modified version of a Knudsen cell flow reactor.

  20. Influence of polar stratospheric clouds on the depletion of Antarctic ozone

    NASA Technical Reports Server (NTRS)

    Salawitch, Ross J.; Wofsy, Steven C.; Mcelroy, Michael B.

    1988-01-01

    Precipitation of nitrate in polar stratospheric clouds (PSCs) can provide a significant sink for Antarctic stratospheric odd nitrogen. It is argued that the depth of the Ozone Hole is sensitive to the occurrence of temperatures below about 196 K. An increase in the prevalence of temperatures below 196 K would enhance ozone loss by increasing the spatial extent and persistence of PSCs, and by decreasing the level of HNO3 that remains following PSC evaporation. Concentrations of halogen gases in the 1960s and earlier were insufficient to support major ozone loss, even if thermal conditions were favorable.

  1. Operation Aurorozone: An experiment in sun/weather. [effects of aurorall produced X-rays on ozone depletion

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Hilsenrath, E.

    1977-01-01

    Operation Aurorozone was a highly coordinated sequence of 33 rocket flights launched from Poker Flat, Alaska, in September 1976. The effects of aurorally produced X-rays on stratospheric neutral and electrical parameters was studied. The sun/weather coupling between upper and lower regions of the atmosphere is thought to be related to these middle atmospheric parameters. The results show a consistent depletion of ozone above 1 mb during three independent auroral events, with magnitudes in excess of those expected from the measured energy radiation sources. Simultaneously, enhanced conductivity changes were observed to occur in accord with the measured ionizing radiations.

  2. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2004

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. This progress report is the 2004 update by the Environmental Effects Assessment Panel.

  3. Ozone depletion in the upper stratosphere estimated from satellite and Space Shuttle data

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Cebula, Richard P.; Jackman, Charles H.

    1992-01-01

    Shuttle Solar Backscatter Ultraviolet (SSBUV) spectrometer observations of ozone concentrations in the upper stratosphere made in October 1989 are combined here with measurements made in October 1980 by the similar SBUV instruments on NASA's Nimbus-7 satellite. It is shown that the ozone concentration near 45 km has decreased during this period by about 7 +/- 2 percent. The trend is consistent with predictions of a 2D photochemical model.

  4. Spatial- and time-explicit human damage modeling of ozone depleting substances in life cycle impact assessment.

    PubMed

    Struijs, Jaap; van Dijk, Arjan; Slaper, Harry; van Wijnen, Harm J; Velders, Guus J M; Chaplin, George; Huijbregts, Mark A J

    2010-01-01

    Depletion of the stratospheric ozone layer is mainly caused by emissions of persistent halocarbons of anthropogenic origin. The resulting increase of solar ultraviolet radiation at the Earth's surface is associated with increased exposure of humans and increased human health damage. Here we assessed the change in human health damage caused by three types of skin cancer and cataract in terms of (healthy) years of life lost per kiloton emission reduction of an ozone-depleting substance (ODS). This so-called characterization factor is used in Life Cycle Assessments (LCAs). Characterization factors are provided for the emissions of five chlorofluorocarbons, three hydrochlorofluorocarbons, three (bromine-containing) halons, carbon tetrachloride, methyl chloroform, and anthropogenic emissions of methyl bromide. We employed dynamic calculations on a global scale for this purpose, taking physical and social geographic data into account such as skin tones, population density, average age, and life expectancy. When emission rates of all ODSs in 2007 are multiplied by our characterization factors, the resulting number of years of life lost may be a factor of 5 higher than reported previously. This increase is merely explained through the global demographic development until 2100 we took into account. PMID:19958022

  5. Laboratory Investigations of Heterogeneous Chemistry Important to Ozone Depletion in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Renyi

    Results of laboratory investigations of heterogeneous chemistry important to ozone depletion in the stratosphere are presented. Thermodynamic properties (such as melting points, enthalpies of fusion, etc.) for acids which are present in the stratosphere (HCl, HNO_3 , and H_2SO_4 ) are studied using laboratory-assembled apparatus of electrical conductivity and differential thermal analysis and using a commercial differential scanning calorimeter (DSC). Vapor pressures and infrared spectra of liquid and supercooled solutions, and of liquid-solid and solid -solid coexistence mixtures for the HCl/H_2 O and H_2SO_4 /H_2O binary systems are investigated. Equilibrium constants and standard enthalpies of formation for the pure crystalline hydrates of those acids as well as their corresponding liquid compositions are determined from the vapor pressure and calorimetric data. A theoretical approach, which allows determination of vapor pressures for two adjacent hydrates in thermodynamic equilibrium and for the coexistence systems involving a hydrate and ice in a binary system, is presented in terms of chemical equilibrium principles and compared with the experimental data for thermodynamic consistence. Vapor pressures of HNO_3 and HCl over H_2SO_4 /HNO_3/H_2 O and H_2SO_4 /HCl/H_2O solutions as well as over H_2SO_4/HNO _3/HCl/H_2O solutions are also measured in order to predict incorporation of stratospheric acids into the background sulfate aerosols. From the data, the Henry's law solubility constants for those systems are determined and the equilibrium compositions of aqueous stratospheric aerosols are predicted as a function of ambient temperature and mixing ratios of H_2 O and HNO_3. The results indicate that at the low temperatures characteristic of the stratosphere at high latitudes in the winter and spring, the HNO_3 content reaches levels of the order of 10% wt in the background sulfate aerosols. The results also reveal that the amount of dissolved HCl in the

  6. A Model of the Effect of Ozone Depletion on Lower-Stratospheric Structure

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Stolarski, Richard S.; Gupta, Mohan L.; Nielsen, J. Eric; Pawson, Steven

    2005-01-01

    We have run two twenty-year integrations of a global circulation model using 1978-1980 and 1998-2000 monthly mean ozone climatologies. The ozone climatology is used solely in the radiation scheme of the model. Several key differences between the model runs will be presented. The temperature and potential vorticity (PV) structure of the lower stratosphere, particularly in the Southern Hemisphere, is significantly changed using the 1998-2000 ozone climatology. In the Southern Hemisphere summer, the lapse rate and PV-defined polar tropopauses are both at altitudes on the order of several hundred meters greater than the 1978-1980 climatological run. The 380 K potential temperature surf= is likewise at a greater altitude. The mass of the extratropical lowermost stratosphere (between the tropopause and 380 K surface) remains unchanged. The altitude differences are not observed in the Northern Hemisphere. The different ozone fields do not produce a significant change in the annual extratropical stratosphere-troposphere exchange of mass although slight variations in the spatial distribution of the exchange exist. We are also investigating a delay in the breakup of the Southern Hemisphere polar vortex due to the differing ozone climatologies.

  7. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Stephen A.; Schauffler, Sue

    2006-01-01

    The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. Herein we demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating C1 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area s variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.

  8. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2006-01-01

    The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. In this talk we will demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating 61 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area's variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.

  9. Observation of stratospheric trace gases related to ozone depletion in the Antarctic spring

    SciTech Connect

    De Zafra, R.L.; Parrish, A.; Solomon, P.; Barrett, J.W.; Connor, B.; Jaramillo, M. )

    1987-01-01

    During the first National Ozone Expedition (NOZE I), which ran from 21 August to early November 1986 at McMurdo Station, the authors made frequent measurements of chlorine monoxide (CIO), ozone (O{sub 3}), nitrous oxide (N{sub 2}O), and occasional measurements of hydrogen cyanide. Observations were made with a ground-based millimeters wave spectrometer capable of detecting and measuring the pressure broadened rotational emission lines of these molecules in the 260-280 gigahertz frequency range. The spectral bandpass and resolution of the instrument is sufficient to recover altitude distributions over a range of approximately 20-55 kilometers and to detect emission from as low as approximately 13-15 kilometers. Results are given and discussed on the levels of chlorine monoxide, nitrous oxide, and ozone found.

  10. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs).

    PubMed

    Wallington, T J; Sulbaek Andersen, M P; Nielsen, O J

    2015-06-01

    Short-chain haloolefins are being introduced as replacements for saturated halocarbons. The unifying chemical feature of haloolefins is the presence of a CC double bond which causes the atmospheric lifetimes to be significantly shorter than for the analogous saturated compounds. We discuss the atmospheric lifetimes, photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) of haloolefins. The commercially relevant short-chain haloolefins CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) have short atmospheric lifetimes (days to weeks), negligible POCPs, negligible GWPs, and ODPs which do not differ materially from zero. In the concentrations expected in the environment their atmospheric degradation products will have a negligible impact on ecosystems. CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) are environmentally acceptable. PMID:25070769

  11. Chemical Depletion of Lower Stratospheric Ozone in the 1992-1993 Northern Winter Vortex

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.; Read, W. G.; Elson, L. S.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.; O'Neill, A.; Harwood, R. S.; MacKenzie, I.; Swinbank, R.

    1994-01-01

    Satellite observations of ozone and chlorine monoxide in the Arctic lower stratosphere during winter 1992-1993 are compared with observations during other winters, observations of long-lived tracers and the evolution of the polar vortex. Chlorine in the lower stratospheric vortex during February 1993 was mostly in chemically reactive forms.

  12. Evaluating the importance of innovative heterogeneous chemistry to explain observed stratospheric ozone depletion

    SciTech Connect

    Kinnison, D.E.; Connell, P.S.

    1996-02-27

    Currently, there is a widespread search for additional heterogeneous reactions or combination of heterogeneous and homogeneous (gas-phase) reactions that could catalytically reduce ozone to observed levels. In 1992, Burley and Johnston proposed that nitrosyl sulfuric acid (NSA) NOHSO{sub 4}, is a promising heterogeneous reactant for activating HCl in sulfuric acid particles. They list several sources for producing it in the stratosphere and they carried out thermodynamic and chemical kinetic calculations at one stratospheric altitude and at one latitude. NSA has been overlooked in all previous stratospheric model calculations, even though it has been observed in stratospheric sulfate aerosols. This study makes large scale atmospheric model calculations to test the proposal by Burley and Johnston that a promising heterogeneous process for activating HCl in sulfuric acid particles is a catalytic coupled based on nitrosyl sulfuric acid (NSA). This mechanism is examined under non-volcanic and volcanic conditions representative of the recent eruption of Mt. Pinatubo. The calculations set firm limits on the range of kinetic parameters over which this heterogeneous processes would be important in the global ozone balance, and thus is a guide for where laboratory work is needed. In addition, they have derived a preliminary time-dependent integration (1980--1994) to represent the observed trend in ozone. Comparison between model-derived and the observed ozone trend will be compared.

  13. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our

  14. Effects of depletion of ascorbic acid or nonprotein sulfhydryls on the acute inhalation toxicity of nitrogen dioxide, ozone, and phosgene

    SciTech Connect

    Slade, R.; Highfill, J.W.; Hatch, G.E.

    1989-01-01

    The effect of depleting lung ascorbic acid (AH{sub 2}) and nonprotein sulfhydryls (NPSH) on the acute inhalation toxicity of nitrogen dioxide (NO{sub 2}), ozone (O{sub 3}), and phosgene (COCl{sub 2}) was investigated in guinea pigs. The increase in bronchoalveolar lavage (BAL) fluid protein (an indicator of alveolar-capillary damage leading to increased permeability) was measured 16 to 18 hr following a 4 hr exposure to the gas in animals deficient in (AH{sub 2}) or NPSH. Gas concentrations were chosen which produced low but significant increases in BAL protein. Lung (AH{sub 2}) was lowered to about 20% of control by feeding rabbit chow for 2 weeks. Lung NPSH was lowered to about 50% of control by injecting a mixture of buthionine S,R-sulfoximine (BSO) and diethylmaleate (DEM) (2.7 and 1.2 mmol/kg respectively). BSO/DEM did not affect the lung concentrations of (AH{sub 2}) or alpha-tocopherol. AH{sub 2} depletion caused a 6 fold and a 3 fold enhancement in the toxicity of 5 ppm and 10 ppm (NO{sub 2}), and a 6 fold enhancement in the toxicity of 0.5 ppm (O{sub 3}), but did not affect toxicity of 1.0 ppm (O{sub 3}). AH{sub 2} depletion did not affect phosgene toxicity (at 0.25 ppm and 0.5 ppm).

  15. UV-B radiation arising from stratospheric ozone depletion influences the pigmentation of the Antarctic moss Andreaea regularis.

    PubMed

    Newsham, K K

    2003-05-01

    Changes to the radiative environment arising from stratospheric ozone (O(3)) depletion and subsequent associations between these changes and the pigmentation of the moss Andreaea regularis were measured in late austral spring and early summer 1998 at Rothera Point on the western Antarctic Peninsula (67 degrees S, 68 degrees W). A strong relationship between O(3) column depth and the ratio of UV-B to PAR irradiance ( F(uv-b)/ F(par)) was recorded at ground level ( r(2)=92%, P<0.001). Weaker, but significant, associations between O(3) column depth and ground level unweighted and biologically effective UV-B radiation (UV-B(be)) were also found. Regression analyses indicated that F(uv-b)/ F(par) was the best predictor for concentrations of UV-B screening pigments and total carotenoids extracted from plant tissues. Concentrations of these pigments were loosely ( r(2)= ca. 30%) but significantly ( P<0.01) positively associated with F(uv-b)/ F(par). Concentrations of UV-B screening pigments were also positively associated with irradiances and daily doses of unweighted UV-B and UV-B(be) radiation. The concentrations of chlorophylls a and b were apparently unaffected by O(3) depletion. The data derived from this study suggest that changes to the radiative environment associated with stratospheric O(3) depletion influence the pigmentation of A. regularis. As a corollary, flavonoids are shown to be present in tissues of A. regularis. PMID:12721820

  16. Effects of Cosmic Rays on Atmospheric Chlorofluorocarbon Dissociation and Ozone Depletion

    SciTech Connect

    Lu, Q.-B.; Sanche, L.

    2001-08-13

    Data from satellite, balloon, and ground-station measurements show that ozone loss is strongly correlated with cosmic-ray ionization-rate variations with altitude, latitude, and time. Moreover, our laboratory data indicate that the dissociation induced by cosmic rays for CF{sub 2}Cl {sub 2} and CFCl{sub 3} on ice surfaces in the polar stratosphere at an altitude of {approx}15 km is quite efficient, with estimated rates of 4.3 x 10{sup -5} and 3.6 x 10{sup -4} s{sup -1}, respectively. These findings suggest that dissociation of chlorofluorocarbons by capture of electrons produced by cosmic rays and localized in polar stratospheric cloud ice may play a significant role in causing the ozone hole.

  17. A contribution toward understanding the biospherical significance of Antarctic ozone depletion

    NASA Technical Reports Server (NTRS)

    Lubin, Dan; Mitchell, Greg; Frederick, John E.; Alberts, Amy D.; Booth, C. R.; Lucas, Timothy; Neuschuler, David

    1992-01-01

    The paper presents and compares measurements of biologically active UV radiation made by the NSF scanning spectroradiometer (UV-monitor) at Palmer Station, Antarctica, during the Austral springs of 1988, 1989, and 1990. Column ozone abundance above Palmer Station is computed from these measurements using a multiple wavelength algorithm. Two contrasting action spectra are employed to estimate the biologically relevant dose from the spectral measurements: a standard weighting function for damage to DNA, and a new action spectrum representing the potential for photosynthesis inhibition in Antarctic phytoplankton. The former weights only UV-B wavelengths (280-320 nm) and gives the most weight to wavelengths shorter than 300 nm, while the latter includes large contributions out to 355 nm. Ozone abundances and dose-weighted irradiances provided by the NSF UV-monitor are used to derive the radiation amplification factors for both DNA- and phytoplankton-effective irradiance.

  18. Measurements of springtime Antarctic ozone depletion and development of a balloonborne ultraviolet photometer

    SciTech Connect

    Harder, J.W.

    1987-01-01

    The research described herein consists of two parts. The first part is a description of the design of a balloon-borne ultraviolet photometer to measure ozone and the result of a flight using this instrument. The second part of this thesis describes the modifications made on the standard commercially available electrochemical ozonesonde and the results of some experiments performed both in the laboratory and during stratospheric balloon flights. Using this modified ECC system, 33 successful balloon flights were made at McMurdo Station, Antarctica during the austral spring of 1986 to study the temporal and vertical development of the so-called Antarctic Ozone Hole. The results of these flights are described in detail.

  19. Evaluation of Non-Ozone-Depleting-Chemical Cleaning Methods for Space Mechanisms Using a Vacuum Spiral Orbit Rolling Contact Tribometer

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Wheeler, Donald R.; Keller, Dennis J.

    2000-01-01

    Because CFC 113, an ozone depleting chemical (ODC), can no longer be produced, alternative bearing cleaning methods must be studied. The objective of this work was to study the effect of the new cleaning methods on lubricant lifetime using a vacuum bearing simulator (spiral orbit rolling contact tribometer). Four alternative cleaning methods were studied: ultra-violet (UV) ozone, aqueous levigated alumina slurry (ALAS), super critical fluid (SCF) CO2 and aqueous Brulin 815GD. Baseline tests were done using CFC 113. Test conditions were the following: a vacuum of at least 1.3 x 10(exp -6) Pa, 440C steel components, a rotational speed of 10 RPM, a lubricant charge of between 60-75 micrograms, a perfluoropolyalkylether lubricant (Z-25), and a load of 200N (44.6 lbs., a mean Hertzian stress of 1.5 GPa). Normalized lubricant lifetime was determined by dividing the total number of ball orbits by the amount of lubricant. The failure condition was a friction coefficient of 0.38. Post-test XPS analysis was also performed, showing slight variations in post-cleaning surface chemistry. Statistical analysis of the resultant data was conducted and it was determined that the data sets were most directly comparable when subjected to a natural log transformation. The natural log life (NL-Life) data for each cleaning method were reasonably normally (statistically) distributed and yielded standard deviations that were not significantly different among the five cleaning methods investigated. This made comparison of their NL-Life means very straightforward using a Bonferroni multiple comparison of means procedure. This procedure showed that the ALAS, UV-ozone and CFC 113 methods were not statistically significantly different from one another with respect to mean NL-Life. It also found that the SCF CO2 method yielded a significantly higher mean NL-Life than the mean NL-Lives of the ALAS, UV-ozone and CFC 113 methods. It also determined that the aqueous Brulin 815GD method yielded a mean

  20. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -06%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.

  1. The GEOS Chemistry Climate Model: Implications of Climate Feedbacks on Ozone Depletion and Recovery

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Pawson, Steven; Douglass, Anne R.; Newman, Paul A.; Kawa, S. Randy; Nielsen, J. Eric; Rodriquez, Jose; Strahan, Susan; Oman, Luke; Waugh, Darryn

    2008-01-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. The first version of the model was used in the CCMVal intercomparison exercises that contributed to the 2006 WMO/UNEP Ozone Assessment. The second version incorporates the updated version of the GCM (GEOS 5) and will be used for the next round of CCMVal evaluations and the 2010 Ozone Assessment. The third version, now under development, incorporates the combined stratosphere and troposphere chemistry package developed under the Global Modeling Initiative (GMI). We will show comparison to past observations that indicate that we represent the ozone trends over the past 30 years. We will also show the basic temperature, composition, and dynamical structure of the simulations. We will further show projections into the future. We will show results from an ensemble of transient and time-slice simulations, including simulations with fixed 1960 chlorine, simulations with a best guess scenario (Al), and simulations with extremely high chlorine loadings. We will discuss planned extensions of the model to include emission-based boundary conditions for both anthropogenic and biogenic compounds.

  2. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    SciTech Connect

    Rodriguez, J.M.; Shia, R.L.; Ko, M.K.W.; Heisey, C.W.; Weistenstein, D.K. ); Miake-Lye, R.C.; Kolb, C.E. )

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. The authors have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about-1% to -0.6%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible. 15 refs., 3 figs., 1 tab.

  3. Effects of solar ultraviolet radiation on antarctic phytoplankton during springtime ozone depletion

    SciTech Connect

    Villafane, V.E.; Helbling, E.W.; Holm-Hansen, O.

    1994-12-31

    In recent years, much attention has been given to the formation of the seasonal ozone {open_quotes}hole{close_quotes} over Antarctica, with the concomitant increase in ultraviolet-B [UV-B, 280-320-nanometer (nm)] radiation levels. The enhanced UV-B radiation can be very damaging to biological systems and has been shown to cause a significant decrease in rates of primary production. This paper describes the impact of {open_quotes}normal{close_quotes} ultraviolet radiation (UVR), as well as enhanced UV-B radiation, on natural assemblages of phytoplankton as well as on just the nanoplankton fraction cells less than 20 micrometers ({mu}m). The studies also included estimation of the impact of UVR as influenced by the taxonomic composition of the phytoplankton and the mitigating effect of cellular UV-absorbing compounds. All studies were carried out at Palmer Station (64.7{degrees}S 64.1{degrees}W) on Anvers Island from early October to the end of December 1993. This period provided excellent opportunities to document the impact of enhanced UV-B radiation on phytoplankton because the ozone hole was very well developed over Palmer Station in the month of October; column ozone concentrations ranged from 140 to 220 Dobson units (DU). 10 refs, 3 figs.

  4. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -0.6%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.

  5. Ozone

    MedlinePlus

    ... Earth's surface. It shields us from the sun's ultraviolet rays. Part of the good ozone layer is ... enough good ozone, people may get too much ultraviolet radiation. This may increase the risk of skin ...

  6. Ozone

    MedlinePlus

    ... reactive form of oxygen. In the upper atmosphere, ozone forms a protective layer that shields us from the sun’s ultraviolet rays. At ground level, ozone is a harmful air pollutant and a primary ...

  7. Ozone pollution effects on the land carbon sink in the future greenhouse world

    NASA Astrophysics Data System (ADS)

    Unger, N.; Yue, X.

    2015-12-01

    Ozone pollution has huge impacts on the carbon balance in the United States, Europe and China. While terrestrial ecosystems provide an important sink for surface ozone through stomatal uptake, this process damages photosynthesis, reduces plant growth and biomass accumulation, and affects stomatal control over plant transpiration of water vapor. Effective mitigation of climate change by stabilizing atmospheric carbon dioxide concentrations requires improved understanding of ozone effects on the land carbon sink. Future effects of ozone pollution on the land carbon sink are largely unknown. We apply multiple observational datasets in combination with the Yale Interactive Terrestrial Biosphere (YIBs) model to quantify ozone vegetation damage in the present climatic state and for a broad range of possible futures. YIBs includes a mechanistic ozone damage model that affects both photosynthetic rate and stomatal conductance for low or high ozone plant sensitivity. YIBs is embedded in the NASA GISS ModelE2 global chemistry-climate model to allow a uniquely informed integration of plant physiology, atmospheric chemistry, and climate. The YIBs model has been extensively evaluated using land carbon flux measurements from 145 flux tower sites and multiple satellite products. Chronic ozone exposure in the present day reduces GPP by 11-23%, NPP by 8-16%, stomatal conductance by 8-17% and leaf area index by 2-5% in the summer time eastern United States. Similar response magnitudes are found in Europe but almost doubled damage effects occur in hotspots in eastern China. We investigate future ozone vegetation damage within the context of multiple global change drivers (physical climate change, carbon dioxide fertilization, human energy and agricultural emissions, human land use) at 2050 following the IPCC RCP2.6 and RCP8.5 scenarios. In the RCP8.5 world at 2050, growing season average GPP and NPP are reduced by 20-40% in China and 5-20% in the United States due to the global rise

  8. Ozone

    MedlinePlus

    Ozone is a gas. It can be good or bad, depending on where it is. "Good" ozone occurs naturally about 10 to 30 miles above ... the sun's ultraviolet rays. Part of the good ozone layer is gone. Man-made chemicals have destroyed ...

  9. Observation of widespread depletion of ozone in the springtime boundary layer of the central Arctic linked to mesoscale synoptic conditions

    NASA Astrophysics Data System (ADS)

    Jacobi, Hans-Werner; Morin, Samuel; Bottenheim, Jan W.

    2010-09-01

    Recurrent and episodic depletions of ozone (O3) in the atmospheric boundary layer have been observed at arctic coastal sites during springtime for the past 25 years. Additional measurements from the central Arctic Ocean in April 2003 and 2007 confirm previous observations in 1994 indicating that low (<5 nmol mol-1) O3 levels most likely represent the normal state of the boundary layer of the Arctic Ocean in springtime. Ozone mixing ratios increase sporadically to typical remote background values only during the approach of lows moving northward into the central Arctic from midlatitudes, bringing O3-rich air into the Arctic basin. During a vast majority of the observed O3 transitions related to the influence of lows, O3 mixing ratios are strongly negatively correlated to atmospheric pressure. This negative correlation is generally stronger than the correlation between O3 mixing ratios and air temperature. The observations indicate that the stable boundary layer, which is a large-scale feature of the Arctic Ocean in springtime, may regularly be void of O3 implying a shift to halogen radicals as the major oxidizing agent on the same spatial scale. The removal of O3 in the boundary layer on such a large scale may contribute to a reduction of the warming caused by tropospheric O3 in the Arctic, although the overall impact on the radiation budget is currently unknown.

  10. Some aspects of the ozone-depletion problem in the stratosphere

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Grose, W. L.

    1975-01-01

    A preliminary investigation of O3 depletion by NOx in the exhaust of an SST wake is presented. Initial calculations were made using a model employing a two-step chemistry mechanism consisting of an NOx catalytic cycle and assuming total NOx and the ratio NO/NO2 to be conserved. The results indicate O3 depletion in the wake much less severe than reported in earlier investigations which used a much larger reaction rate constant. Subsequent investigation revealed, however, that even the current O3 depletion rates appear too large. Because of the apparent deficiencies in the two-step chemical model, a model is presented with a more realistic chemical mechanism without the requirement for NO conservation. Results indicate that total NOx and initial NO/NO2 ratio play an important role in determining O3 depletion. Furthermore, only in the case of rather extreme concentrations of water vapor or unrealistically large photolysis rates is there any significant conversion of NOx to HNO3.

  11. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Clean Air Act Amendments of 1990... 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION...

  12. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Clean Air Act Amendments of 1990... 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION...

  13. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Clean Air Act Amendments of 1990... 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION...

  14. The Nature of Relationships among the Components of Pedagogical Content Knowledge of Preservice Science Teachers: "Ozone Layer Depletion" as an Example

    ERIC Educational Resources Information Center

    Kaya, Osman N.

    2009-01-01

    The purpose of this study was to explore the relationships among the components of preservice science teachers' (PSTs) pedagogical content knowledge (PCK) involving the topic "ozone layer depletion". An open-ended survey was first administered to 216 PSTs in their final year at the Faculty of Education to determine their subject matter knowledge…

  15. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  16. Spatial variation of ozone depletion rates in the springtime antarctic polar vortex

    SciTech Connect

    Yung, Y.L.; Allen, M.; Crisp, D.; Zurek, R.W.; Sander, S.P. )

    1990-05-11

    An area-mapping technique, designed to filter out synoptic perturbations of the Antarctic polar vortex such as distortion or displacement away from the pole, was applied to the Nimbus-7 TOMS (Total Ozone Mapping Spectrometer) data. This procedure reveals the detailed morphology of the temporal evolution of column O{sub 3}. The results for the austral spring of 1987 suggest the existence of a relatively stable collar region enclosing an interior that is undergoing large variations. There is tentative evidence for quasi-periodic O{sub 3} fluctuations in the collar and for upwelling of tropospheric air in late spring. A simplified photochemical model of O{sub 3} loss and the temporal evolution of the area-mapped polar O{sub 3} are used to constrain the chlorine monoxide (ClO) concentrations in the springtime Antarctic vortex. The concentrations required to account for the observed loss of O{sub 3} are higher than those previously reported by Anderson et al. but are comparable to their recently revised values. However, the O{sub 3} loss rates could be larger than deduced here because of underestimates of total O{sub 3} by TOMS near the terminator. This uncertainty, together with the uncertainties associated with measurements acquired during the Airborne Antarctic Ozone Experiment, suggests that in early spring, closer to the vortex center, there may be even larger ClO concentrations than have yet been detected.

  17. Knowledge about the Greenhouse Effect and the Effects of the Ozone Layer among Norwegian Pupils Finishing Compulsory Education in 1989, 1993, and 2005--What Now?

    ERIC Educational Resources Information Center

    Hansen, Pal J. Kirkeby

    2010-01-01

    The greenhouse effect and the effects of the ozone layer have been in the media and public focus for more than two decades. During the same period, Norwegian compulsory schools have had four national curricula. The two last-mentioned prescribe explicitly the two topics. Media and public discourse might have been sources of information causing…

  18. The Hole in the Ozone Layer.

    ERIC Educational Resources Information Center

    Hamers, Jeanne S.; Jacob, Anthony T.

    This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…

  19. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.

    PubMed

    Tang, X; Wilson, S R; Solomon, K R; Shao, M; Madronich, S

    2011-02-01

    , meteorological conditions, and anthropogenic emissions may be large, thus posing challenges for prediction and management of air quality. Aerosols composed of organic substances have a major role in both climate and air quality, and contribute a large uncertainty to the energy budget of the atmosphere. These aerosols are mostly formed via the UV-initiated oxidation of VOCs from anthropogenic and biogenic sources, although the details of the chemistry are still poorly understood and current models under-predict their abundance. A better understanding of their formation, chemical composition, and optical properties is required to assess their significance for air quality and to better quantify their direct and indirect radiative forcing of climate. Emissions of compounds containing fluorine will continue to have effects on the chemistry of the atmosphere and on climate change. The HCFCs and HFCs used as substitutes for ozone-depleting CFCs can break down into trifluoroacetic acid (TFA), which will accumulate in oceans, salt lakes, and playas. Based on historical use and projections of future uses, including new products entering the market, such as the fluoro-olefins, increased loadings of TFA in these environmental sinks will be small. Even when added to existing amounts from natural sources, risks to humans or the environment from the historical use of CFCs or continued use of their replacements is judged to be negligible. PMID:21253665

  20. More rapid polar ozone depletion through the reaction of HOCl with HCl on polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.

    1992-01-01

    The direct reaction of HOCl with HCl is shown here to play a critical part in polar ozone loss. Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere confirm that most of the available chlorine is in the form of ClO(x). But current photochemical models have difficulty converting HCl to ClO(x) rapidly enough in early spring to account fully for the observations. Here, a chemical model is used to show that the direct reaction of HOCl with HCl provides the missing mechanism. As alternative sources of nitrogen-containing oxidants have been converted in the late autumn to inactive HNO3 by known reactions on the sulfate layer aerosols, the reaction of HOCl with HCl on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HCl.

  1. Spatial variation of ozone depletion rates in the springtime Antarctic polar vortex

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.; Allen, Mark; Crisp, David; Zurek, Richard W.; Sander, Stanley P.

    1990-01-01

    An area-mapping technique, designed to filter out synoptic perturbations of the Antarctic polar vortex such as distortion or displacement away from the pole, was applied to the Nimbus-7 TOMS (Total Ozone Mapping Spectrometer) data. This procedure reveals the detailed morphology of the temporal evolution of column O3. The results for the austral spring of 1987 suggest the existence of a relatively stable collar region enclosing an interior that is undergoing large variations. A simplified photochemical model of O3 loss and the temporal evolution of the area-mapped polar O3 are used to constrain the chlorine monoxide (ClO) concentrations in the springtime Antarctic vortex. The O3 loss rates could be larger than deduced here because of underestimates of total O3 by TOMS near the terminator.

  2. Arctic Ozone Depletion Observed by UARS MLS During the 1994-95 Winter

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Santee, M. L.; Read, W. G.; Flower, D. A.; Jarnot, R. F.; Zurek, R. W.

    1996-01-01

    During the unusually cold 1994-95 Arctic winter, the Microwave Limb Sounder observed enhanced chlorine monoxide (ClO) in late Dec and throughout Feb and early Mar. Late Dec ClO was higher than during any of the previous 3 years, consistent with the colder early winter. Between late Dec 1994 and early Feb 1995, 465 K (about 50 hPa) vortex-averaged ozone (03) decreased by about 15%, with local decreases of about 30%; additional local decreases of about 5% were seen between early Feb and early Mar. Transport calculations indicate that vortex-averaged chemical loss between late Dec and early Feb was about 20% at 465 K, with about 1/4 of that masked by downward transport of O3. This Arctic chemical O3 loss is not readily detectable in MLS column O3 data.

  3. Direct observation of ClO from chlorine nitrate photolysis. [as mechanism of polar ozone depletion

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Moore, Teresa A.; Okumura, Mitchio

    1992-01-01

    Chlorine nitrate photolysis has been investigated with the use of a molecular beam technique. Excitation at both 248 and 193 nanometers led to photodissociation by two pathways, ClONO2 yields ClO + NO2 and ClONO2 yields Cl + NO3, with comparable yields. This experiment provides a direct measurement of the ClO product channel and consequently raises the possibility of an analogous channel in ClO dimer photolysis. Photodissociation of the ClO dimer is a critical step in the catalytic cycle that is presumed to dominate polar stratospheric ozone destruction. A substantial yield of ClO would reduce the efficiency of this cycle.

  4. Contributions of a Tunable Diode Laser Instrument (ATLAS) to the Stratospheric Ozone Depletion Question

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Russell, Philip B. (Technical Monitor)

    1994-01-01

    The Airborne Tunable Laser Absorption Spectrometer - ATLAS - was designed and built at the NASA Ames Research Center and operates on the NASA ER-2 high altitude research aircraft. ATLAS has taken part in a number of important polar and mid-latitude research campaigns, since 1987, focused on various aspects of stratospheric ozone chemistry and dynamics. The chief measurement carried out by the ATLAS second harmonic diode laser spectrometer is of the important atmospheric tracer N2O. Using N2O as an inert tracer we have been able to gain significant new information on polar vortex dynamics and on the correlations of several important long-lived tracers in the stratosphere. The correlation of N2O with NOy (total reactive nitrogen) has been shown to be linear for a great variety of unperturbed stratospheric conditions, and the breakdown of this correlation has been used to detect denitrification by PSCs in the polar vortex, especially in the Antarctic spring. Denitrification is an important step in the process of ozone hole formation in the austral spring. Correlations of N2O with CFCs and CH4 have led to improved estimates of atmospheric lifetimes of these important molecules. Finally the correlation of N2O with CO2, the latter now being measured with great precision by a new instrument on the ER-2, has led to a significant new tool for studying horizontal and vertical mixing in the lower stratosphere, a tool which is very useful in assessing the potential effects of high speed civil transport aircraft in the lower stratosphere. A new, light-weight version of ATLAS is currently being built for unmanned high altitude aircraft, specifically the new Perseus vehicle. We will give a brief description of this effort.

  5. Multimodel Estimates of Atmospheric Lifetimes of Long-lived Ozone-Depleting Substances: Present and Future

    NASA Technical Reports Server (NTRS)

    Chipperfield, M. P.; Liang, Q.; Strahan, S. E.; Morgenstern, O.; Dhomse, S. S.; Abraham, N. L.; Archibald, A. T.; Bekki, S.; Braesicke, P.; Di Genova, G.; Fleming, E. L.; Hardiman, S. C.; Iachetti, D.; Jackman, C. H.; Kinnison, D. E.; Marchand, M.; Pitari, G.; Pyle, J. A.; Rozanov, E.; Stenke, A.; Tummon, F.

    2014-01-01

    We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in the MBC value does not necessarily match a model's own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modeled rates of ascent and horizontal mixing in the tropical midlower stratosphere. The model runs have been used to compute instantaneous and steady state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s, and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modeled lifetimes is small. For future assessments of stratospheric ozone, use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate

  6. Multimodel estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future

    NASA Astrophysics Data System (ADS)

    Chipperfield, M. P.; Liang, Q.; Strahan, S. E.; Morgenstern, O.; Dhomse, S. S.; Abraham, N. L.; Archibald, A. T.; Bekki, S.; Braesicke, P.; Di Genova, G.; Fleming, E. L.; Hardiman, S. C.; Iachetti, D.; Jackman, C. H.; Kinnison, D. E.; Marchand, M.; Pitari, G.; Pyle, J. A.; Rozanov, E.; Stenke, A.; Tummon, F.

    2014-03-01

    We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in the MBC value does not necessarily match a model's own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modeled rates of ascent and horizontal mixing in the tropical midlower stratosphere. The model runs have been used to compute instantaneous and steady state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s, and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modeled lifetimes is small. For future assessments of stratospheric ozone, use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate.

  7. Guarding Embryo Development of Zebrafish by Shell Engineering: A Strategy to Shield Life from Ozone Depletion

    PubMed Central

    Wang, Ben; Liu, Peng; Tang, Yanyan; Pan, Haihua; Xu, Xurong; Tang, Ruikang

    2010-01-01

    Background The reduced concentration of stratospheric ozone results in an increased flux of biologically damaging mid-ultraviolet radiation (UVB, 280 to 320 nm) reaching earth surfaces. Environmentally relevant levels of UVB negatively impact various natural populations of marine organisms, which is ascribed to suppressed embryonic development by increased radiation. Methodology/Principal Findings Inspired by strategies in the living systems generated by evolution, we induce an extra UVB-adsorbed coat on the chorion (eggshell surrounding embryo) of zebrafish, during the blastula period. Short and long UV exposure experiments show that the artificial mineral-shell reduces the UV radiation effectively and the enclosed embryos become more robust. In contrast, the uncoated embryos cannot survive under the enhanced UVB condition. Conclusions We suggest that an engineered shell of functional materials onto biological units can be developed as a strategy to shield lives to counteract negative changes of global environment, or to provide extra protection for the living units in biological research. PMID:20376356

  8. Evidence for Arctic Ozone Depletion in Late February and early March 1994

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Zurek, R. W.; Froidevaux, L.; Waters, J. W.

    1995-01-01

    Significant chemical ozone (O3 ) loss in the 1993-94 Arctic winter occurred mainly during an unusually late cold spell of approximately 10 days in late Feb/early Mar. Over the 30 d period studied (including the cold spell), observed vortex-averaged O3 at 465 K (approximately 40 hPa) decreased by approximately 10%. New three-dimensional, diabatic trajectory calculations show that this observed decrease represents only about half of the net chemical loss (approximately 20%) during the 30 day period. The resupply of lower stratospheric O3 by transport in Feb 1994 was considerably greater than in 1993, when transport masked only about a quarter of the chemical loss in Feb/Mar. The net estimated chemical loss over 30 days in 1994 was comparable to that over the same 30 days in 1993, but mainly occurred at a faster rate during the brief cold spell. These results highlight the impact of Arctic interannual variability on the relative roles of chemistry and dynamics in O3 evolution during recent Arctic winters.

  9. Link Winds: A visual data analysis system and its application to the atmospheric ozone depletion problem

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.; Berkin, Andrew L.

    1995-01-01

    The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration system resulting from a NASA Jet Propulsion Laboratory (JPL) program of research into the application of graphical methods for rapidly accessing, displaying, and analyzing large multi variate multidisciplinary data sets. Running under UNIX it is an integrated multi-application executing environment using a data-linking paradigm to dynamically interconnect and control multiple windows containing a variety of displays and manipulators. This paradigm, resulting in a system similar to a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but leads to a highly intuitive, easy-to-learn user interface. It provides great flexibility in rapidly interacting with large masses of complex data to detect trends, correlations, and anomalies. The system, containing an expanding suite of non-domain-specific applications, provides for the ingestion of a variety of data base formats and hard -copy output of all displays. Remote networked workstations running LinkWinds may be interconnected, providing a multiuser science environment (MUSE) for collaborative data exploration by a distributed science team. The system is being developed in close collaboration with investigators in a variety of science disciplines using both archived and real-time data. It is currently being used to support the Microwave Limb Sounder (MLS) in orbit aboard the Upper Atmosphere Research Satellite (UARS). This paper describes the application of LinkWinds to this data to rapidly detect features, such as the ozone hole configuration, and to analyze correlations between chemical constituents of the atmosphere.

  10. The municipal solid waste landfill as a source of ozone-depleting substances in the United States and United Kingdom

    NASA Astrophysics Data System (ADS)

    Hodson, E. L.; Martin, D.; Prinn, R. G.

    2009-10-01

    This study provides observation-based national estimates of CFC-11, CFC-12, CFC-113, and 1,1,1-trichloroethane emissions for the United States (US) and United Kingdom (UK) from municipal solid waste (MSW) landfills. The scarcity of national estimates has lead to the assumption that a significant fraction of the lingering ozone-depleting substance (ODS) emissions, which have been detected in industrialized countries, could be emitted from landfills. Spatial coverage was achieved through sampling at seven landfills in Massachusetts and through data provided by nine UK landfills. Linear least square regressions of recovered ODS vs. CH4 were used in combination with national estimates of landfill CH4 emissions to estimate 2006 national US and UK ODS landfill emissions. The ODS landfill emission estimates were then compared to recent estimates of total US and UK ODS emissions. US ODS landfill emissions were 0.4%-0.9% (0.006-0.09 Gg/year) of total US emissions. UK ODS landfill emission estimates were 1% (0.008 Gg/year) and 6% (0.03 Gg/year) of total UK CFC-11 and CFC-12 emissions, respectively. This indicates that landfills are only a minor source of lingering ODS emissions in the US, but may be more significant for CFC-12 emissions in the UK. The implications are that the majority of current ODS emissions in industrialized countries are likely coming from equipment still in use.

  11. The municipal solid waste landfill as a source of ozone-depleting substances in the United States and United Kingdom

    NASA Astrophysics Data System (ADS)

    Hodson, E. L.; Martin, D.; Prinn, R. G.

    2010-02-01

    This study provides observation-based national estimates of CFC-11, CFC-12, CFC-113, and 1,1,1-trichloroethane emissions for the United States (US) and United Kingdom (UK) from municipal solid waste (MSW) landfills. The scarcity of national estimates has lead to the assumption that a significant fraction of the lingering ozone-depleting substance (ODS) emissions, which have been detected in industrialized countries, could be emitted from landfills. Spatial coverage was achieved through sampling at seven landfills in Massachusetts and through data provided by nine UK landfills. Linear least square regressions of recovered ODS vs. CH4 were used in combination with national estimates of landfill CH4 emissions to estimate 2006 national US and UK ODS landfill emissions. The ODS landfill emission estimates were then compared to recent estimates of total US and UK ODS emissions. US ODS landfill emissions are 0.4%-1% (0.006-0.09 Gg/year) of total US emissions. UK ODS landfill emission estimates are 1% (0.008 Gg/year) and 6% (0.03 Gg/year) of total UK CFC-11 and CFC-12 emissions, respectively. This indicates that landfills are only a minor source of lingering ODS emissions in the US, but may be more significant for CFC-12 emissions in the UK. The implication is that the majority of current ODS emissions in industrialized countries is likely coming from equipment still in use.

  12. Possible impacts of ozone depletion on trophic interactions and biogenic vertical carbon flux in the Southern Ocean

    SciTech Connect

    Marchant, H.J.; Davidson, A.

    1992-03-01

    Among the most productive region of the Southern Ocean is the marginal ice edge zone that trails the retreating ice edge in spring and early summer. The timing of this near-surface phytoplankton bloom coincides with seasonal stratospheric ozone depletion when UV irradiance is reportedly as high as in mid-summer. Recent investigations indicate that antarctic marine phytoplankton are presently UV stressed. The extent to which increasing UV radiation diminishes the ability of phytoplankton to fix C02 and/or leads to changes in their species composition is equivocal. The colonial stage in the life cycle of the alga Phaeocystis pouchetii is one of the major components of the bloom. The authors have found that this alga produces extracellular products which are strongly UV-B absorbing. When exposed to increasing levels of UV-B radiation, survival of antarctic colonial Phaeocystis was significantly greater than colonies of this species from temperate waters and of the single-celled stage of its life cycle which produces no UV-B-absorbing compounds. Phaeocystis is apparently a minor dietary component of Antarctic krill, Euphausia superba, and its nutritional value to crustacea is reportedly low. Phytoplankton, principally diatoms, together with fecal pellets and molted exoskeletons of grazers contribute most of the particulate carbon flux from the euphotic zone to deep water.

  13. Evaluation of no-clean solder process designed to eliminate the use of ozone-depleting chemicals

    SciTech Connect

    Paffett, M.T.; Farr, J.D.; Rogers, Y.C.; Hutchinson, W.B.

    1993-10-01

    This paper summarizes the LANL contributions to a joint Motorola/SNLA/LANL cooperative research and development agreement study on the reliability of an alternative solder process that is intended to reduce or eliminate the use of ozone-depleting chemicals in the manufacture of printed wire boards (PWBs). This process is termed self-cleaning because of the nature of the thermal chemistry associated with the adipic and formic acid components used in place of traditional solder rosin fluxes. Traditional rosin fluxes used in military electronic hardware applications are cleaned (by requirement) using chlorofluorohydrocarbons. The LANL contribution centers around analytical determination of PWB cleanliness after soldering using the self-cleaning method. Results of these analytical determinations involving primarily surface analysis of boards following temperature, temperature and humidity, and long-term storage testing are described with representative data. It is concluded that the self-cleaning process leaves behind levels of solid residue that are visually and analytically observable using most of these surface analysis techniques. The materials compatibility of electronic components soldered using the self-cleaning soldering process is more fully described in the project report issued by SNLA that encompasses the complete project with statistical lifetime and accelerated aging studies. Analytical surface specificity and suggestions for further work are also given.

  14. Atmospheric science. Ozone and climate change.

    PubMed

    Karoly, David J

    2003-10-10

    Over the past 40 years, Southern Hemisphere circumpolar westerly winds have strengthened. In his Perspective, Karoly highlights the modeling study by Gillett and Thompson, who show that these observed Southern Hemisphere climate changes in spring and summer can be explained as a response to stratospheric ozone depletion over Antarctica. The observed strengthening of the circumpolar westerlies in winter is less likely to be the response to springtime Antarctic ozone depletion, but may be due in part to increasing atmospheric greenhouse gases. Understanding the different causes and practical impacts of these trends in Southern Hemisphere circulation is an important next step for climate researchers. PMID:14551423

  15. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants.

    PubMed

    Xiong, F S; Day, T A

    2001-02-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O(2) evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations. PMID:11161031

  16. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview.

    PubMed

    Rozema, Jelte; Boelen, Peter; Blokker, Peter

    2005-10-01

    Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially, (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution. PMID:16005756

  17. The influence of ozone forcing on blocking in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Dennison, Fraser; McDonald, Adrian; Morgenstern, Olaf

    2016-04-01

    We investigate the influence of ozone depletion and recovery on blocking in the Southern Hemisphere. Blocking events are identified using a persistent positive anomaly method applied to 500hPa geopotential height. Using the NIWA-UKCA chemistry-climate model, we compare reference runs including forcing due to greenhouse gases and ozone depleting substances to sensitivity simulations in which ozone depleting substances are fixed at their 1960 abundances and other sensitivity simulations with greenhouse gases fixed at their 1960 abundances. We find that during summer ozone depletion leads to an increased frequency of blocking in the South Atlantic while having little effect in the South Pacific. Blocking events in the South Atlantic are shown to follow positive anomalies in the stratospheric Southern Annular Mode (SAM) index; this is not the case for South Pacific blocking events. This difference would seem to explain the change in blocking frequency as during summer, in the model and in reality ozone depletion pushes the SAM towards its positive polarity. Similarly, ozone recovery, having the opposite influence on the SAM, leads to a reduction in blocking frequency in the South Atlantic, although this is somewhat counteracted by the effect of increasing greenhouse gases

  18. The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Solomon, A.; Polvani, L. M.; Smith, K. L.; Abernathey, R. P.

    2015-07-01

    Observations show robust changes in the circulation, temperature, and salinity of the Southern Ocean in recent decades. To what extent these changes are related to the formation of the ozone hole in the late twentieth century is an open question. Using a comprehensive chemistry-climate Earth system model, we contrast model runs with varying and with fixed surface concentrations of ozone depleting substances (ODS) from 1955 to 2005. In our model, ODS cause the majority of the summertime changes in surface wind stress which, in turn, induce a clear poleward shift of the ocean's meridional overturning circulation. In addition, more than 30% of the model changes in the temperature and salinity of the Southern Ocean are caused by ODS. These findings offer unambiguous evidence that increased concentrations of ODS in the late twentieth century are likely to have been been an important driver of changes in the Southern Ocean.

  19. Uncertainty propagation in a stratospheric model. I - Development of a concise stratospheric model. II - Monte Carlo analysis of imprecisions due to reaction rates. [for ozone depletion prediction

    NASA Technical Reports Server (NTRS)

    Rundel, R. D.; Butler, D. M.; Stolarski, R. S.

    1978-01-01

    The paper discusses the development of a concise stratospheric model which uses iteration to obtain coupling between interacting species. The one-dimensional, steady-state, diurnally-averaged model generates diffusion equations with appropriate sources and sinks for species odd oxygen, H2O, H2, CO, N2O, odd nitrogen, CH4, CH3Cl, CCl4, CF2Cl2, CFCl3, and odd chlorine. The model evaluates steady-state perturbations caused by injections of chlorine and NO(x) and may be used to predict ozone depletion. The model is used in a Monte Carlo study of the propagation of reaction-rate imprecisions by calculating an ozone perturbation caused by the addition of chlorine. Since the model is sensitive to only 10 of the more than 50 reaction rates considered, only about 1000 Monte Carlo cases are required to span the space of possible results.

  20. Temporal trends and spatial variations of ozone-depleting substances (ODS) in the Pearl River Delta (PRD) region, southern China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Blake, Donald; Simpson, Isobel

    2014-05-01

    Long-term observation of mixing ratios of ozone-depleting substances (ODS) in ambient air can help to assess the implementation of the Montreal Protocol and Its Amendments in regional and national scales. Here we present our measurement of ODS such as CFCs, HCFCs, halons and other halocarbons in ambient air since 2000 in the Pearl River Delta (PRD) region, one of the most densely populated and highly industrialized regions that was supposed to be a hotspot for ODS emission in China. These halocarbons in the PRD region were found to have 5-348% enhancements when compared to their global background levels. CFC-12 and CFC-11 in the region, for example, were 37-56% and 12-43%, respectively, above their global background levels. CFC replacement compounds showed even larger enhancements. In average mixing ratios of HCFC-22, HCFC-141b, and HCFC-142b were 89%, 87%, and 86% above their background levels of 148 ppt, 12.1 ppt, and 12.1 ppt in the year of 2000, respectively; and 72%, 125%, and 52% over their background levels of 205 ppt, 20.2 ppt, and 20.0 ppt in the year of 2009, respectively. During 2000-2009, CFCs in the PRD region showed decline trends with the decreasing rates of -3.0, -5.9, and -9.4 ppt/yr for CFC-12, CFC-11, and CFC-113, respectively; these rates were faster than that at the global background sites, which were -0.91, -2.12, and -0.69 ppt/yr, respectively. The CFCs substitutes HCFC-22, HCFC-141b, and HCFC-142b, however, showed increasing trends with the increasing rates of 8.0, 2.6, and 0.9 ppt/yr, respectively. HFC-134a, a refrigerant used for mobile air conditioning, showed rapid increase with a rate of 15 ppt/yr from 2000 to 2009 in the region. As for other halocarbons, methyl chloroform and carbon tetrachloride decreased with rates of 21 and 1 ppt/yr during the period. The mixing ratios of methyl chloride in the region showed unusual rapid increase at a rate of 64 ppt/yr when compared to its increasing rate of 1.3 ppt/yr at the global background

  1. Analysis of the eight-year trend in ozone depletion from empirical models of solar backscattered ultraviolet instrument degradation

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Hudson, R. D.; Serafino, G.

    1990-01-01

    Arguments are presented showing that the basic empirical model of the solar backscatter UV (SBUV) instrument degradation used by Cebula et al. (1988) in their analysis of the SBUV data is likely to lead to an incorrect estimate of the ozone trend. A correction factor is given as a function of time and altitude that brings the SBUV data into approximate agreement with the SAGE, SME, and Dobson network ozone trends. It is suggested that the currently archived SBUV ozone data should be used with caution for periods of analysis exceeding 1 yr, since it is likely that the yearly decreases contained in the archived data are too large.

  2. Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion.

    PubMed

    de Gruijl, F R; Van der Leun, J C

    1994-10-01

    The wavelength dependency of carcinogenesis is an important factor in risk assessments pertaining to sources of ultraviolet radiation, the most important of which is the sun. This wavelength dependency cannot be measured directly in humans, but it has been measured in hairless mice, and represented in an action spectrum. An estimate of the action spectrum for humans can be produced by correcting for differences in epidermal transmission between mice and humans. This carcinogenic action spectrum for humans resembles the action spectrum for ultraviolet-induced erythema (sunburn), and results in small adjustments of earlier estimates of the effects of a stratospheric ozone depletion on skin cancer incidences. PMID:8083043

  3. Effect of Ultraviolet-B (280 to 320 nm) Radiation on Blue-Green Algae (Cyanobacteria), Possible Biological Indicators of Stratospheric Ozone Depletion

    PubMed Central

    Newton, J. W.; Tyler, D. D.; Slodki, M. E.

    1979-01-01

    The effect of ultraviolet-B (280 to 320 nm) irradiation on physiological activities of Anabaena flos-aquae and the water fern Azolla caroliniana has been studied under conditions where lethal effects of irradiation are absent. Nitrogenase activity, measured as acetylene reduction, specifically declined during irradiation with low levels of ultraviolet-B, whereas other physiological activities were unaffected. These findings indicate that measurement of acetylene reduction by cyanobacteria may serve as a specific, sensitive biochemical assay to assess environmental ultraviolet-B effects due to depletion of stratospheric ozone. PMID:16345396

  4. The global climate of September-November 1990: ENSO-like warming in the western Pacifc and strong ozone depletion over Antarctica

    SciTech Connect

    Mo, K.C. )

    1993-07-01

    During the September-November (SON) 1990 season, some conditions continued to evolve toward an ENSO warm episode in the tropical western Pacific. Sea surface temperature anomalies were found in the central equatorial Pacific and the oceanic thermocline along the equator remained deeper than normal. However, seasonal mean convection did not show any characteristics of a warm episode. For the third straight season, above-normal temperatures were observed over much of the land mass in the Northern hemisphere. In the Antarctic stratosphere, ozone depletion in the polar region was the second largest since 1958. 10 refs., 20 figs., 1 tab.

  5. Ozone-Depleting Gases in the Atmosphere: Results From 28 Years of Measurements by the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL)

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Elkins, J. W.; Montzka, S. A.; Butler, J. H.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Moore, F. L.; Nance, J. D.; Romashkin, P. A.; Thompson, T. M.

    2005-12-01

    Back in 1978, NOAA/CMDL initiated the weekly filling of flasks at CMDL observatories in Alaska, Hawaii, American Samoa, and Antarctica for analyses of CFC-11, CFC-12 and N2O in the home laboratory. A decade later, each observatory was outfitted with an automated gas chromatograph to make routine, in situ measurements of these three source gases plus methyl chloroform and carbon tetrachloride. Both measurement programs are ongoing, having expanded over the years to include methyl halides and substitutes for regulated halocarbons, to presently account for 95% of the total burden of long-lived Cl and Br believed to enter the stratosphere. These long-term monitoring data have been assimilated into temporal records of the global tropospheric burdens of ozone-depleting chlorine and bromine which are critical input to models that predict future trends in stratospheric ozone. Other information pivotal to ozone projections, such as the atmospheric lifetimes of source gases, stratospheric entry values for total chlorine and total bromine, and identification of the stratospheric sink regions for long-lived source gases, has been gained from in situ measurements by NOAA/CMDL instruments aboard NASA high-altitude aircraft (ER-2 and WB-57) and balloons since 1991. Though CMDL's routine monitoring activities provide important historical records of halogenated source gases in the atmosphere, significant inaccuracies in ozone projections may propagate from the uncertain estimates of impending emissions of ozone-depleting gases. Scenarios of future halocarbon emissions require substantial assumptions about past and pending compliance with the Montreal Protocol, and the sizes and release rates of existing global reservoirs (banks) of halocarbons. Recent work by CMDL has focused on quantifying halocarbon bank emission rates in Russia, the USA, and Canada through geographically extensive measurements aboard trains and low-altitude aircraft. The USA and Canada results indicate that

  6. An analysis of the oxidation potential of the South Pole boundary layer and the influence of stratospheric ozone depletion

    NASA Astrophysics Data System (ADS)

    Jones, Anna E.; Wolff, Eric W.

    2003-09-01

    The summertime atmospheric boundary layer over the South Pole has recently been shown to be highly oxidizing, with greater concentrations of NO and OH than previously expected. The source of NO has been attributed to photolysis of nitrate impurities in the snowpack, with elevated OH from the reaction NO + HO2. However, the Antarctic troposphere is not currently in a "natural" state, being subject nowadays to greatly increased incidences of ultraviolet (UV) radiation each spring. Here we analyze the long-term record of surface ozone at the South Pole (1975-2001), to look for evidence of a changing oxidation potential. Daily averaged surface ozone concentrations during spring and early summer now regularly exceed the maximum concentration of the previous winter, while in the 1970s and 1980s this was not the case. This suggests that the proposed springtime ozone source is greater nowadays than before. Such a feature is consistent with increases in UV radiation accompanying the springtime stratospheric ozone hole. Model calculations show that the rate of nitrate photolysis in the South Pole snowpack has increased significantly since the onset of the ozone hole, such that production of NO2 in November has increased by 43% between the late 1960s and the late 1990s. It thus appears that the South Pole boundary layer is more highly oxidizing nowadays than under conditions before the onset of the ozone hole.

  7. Antarctic ozone depletion chemistry: reactions of N/sub 2/O/sub 5/ with H/sub 2/O and HCl on ice surfaces

    SciTech Connect

    Tolbert, M.A.; Rossi, M.J.; Golden, D.M.

    1988-05-20

    The reactions of dinitrogen pentoxide (N/sub 2/O/sub 5/) with H/sub 2/O and hydrochloric acid (HCl) were studied on ice surfaces in a Knudsen cell flow reactor. The N/sub 2/O/sub 5/ reacted on ice at 185 K to form condensed-phase nitric acid (HNO/sub 3/). This reaction may provide a sink for odd nitrogen (NO/sub x/) during the polar winter, a requirement in nearly all models of Antarctic ozone depletion. A lower limit to the sticking coefficient, ..gamma.., for N/sub 2/O/sub 5/ on ice is 1 x 10/sup -3/. Moreover, N/sub 2/O/sub 5/ reacted on HCl-ice surfaces at 185 K, with ..gamma.. greater than 3 x 10/sup -3/. This reaction, which produced gaseous nitryl chloride (ClNO/sub 2/) and condensed-phase HNO/sub 3/, proceeded until all of the HCl within the ice was depleted. The ClNO/sub 2/, which did not react or condense on ice at 185 K, can be readily photolyzed in the Antarctic spring to form atomic chlorine for catalytic ozone destruction cycles. The other photolysis product, gaseous nitrogen dioxide (NO/sub 2/), may be important in the partitioning of NO/sub x/ between gaseous and condensed phases in the Antarctic winter. 17 references, 3 figures.

  8. The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during Springtime ozone depletion in Antarctica.

    PubMed

    Ruhland, Christopher T; Xiong, Fusheng S; Clark, W Dennis; Day, Thomas A

    2005-01-01

    We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm) on the growth, biomass production and phenylpropanoid concentrations of Deschampsia antarctica during the springtime ozone depletion season at Palmer Station, along the Antarctic Peninsula. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B either by 83% (reduced UV-B) or by 12% (near-ambient UV-B) over the 63 day experiment (7 November 1998-8 January 1999) when ozone depletion averaged 17%. Plants growing under near-ambient UV-B had 41% and 40% lower relative growth rates and net assimilation rates, respectively, than those under reduced UV-B. The former plants produced 50% less total biomass as a result of having 47% less aboveground biomass. The reduction in aboveground biomass was a result of a 29% lower leaf elongation rate resulting in shorter leaves and 59% less total leaf area in plants grown under reduced UV-B. p-Coumaric, caffeic and ferulic acids were the major hydroxycinnamic acids, and luteolin derivatives were the major flavonoids in both insoluble and soluble leaf extracts. Concentrations of insoluble p-coumaric and caffeic acid and soluble ferulic acids were 38%, 48% and 60% higher, respectively, under near-ambient UV-B than under reduced UV-B. There were no UV-B effects on concentrations of insoluble or soluble flavonoids. PMID:15689180

  9. Observation of NO(x) Enhancement and Ozone Depletion in the Northern and Southern hemispheres after the October-November 2003 Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Lopez-Puertas, M.; Funke, B.; Gil-Lopez, S.; vonClarmann, T.; Stiller, G. P.; Hoepfner, M.; Kellmann, S.; Fischer, H.; Jackman, C. H.

    2005-01-01

    The large solar storms in October-November 2003 produced enormous solar proton events (SPEs) where high energetic particles reached the Earth and penetrated into the middle atmosphere in the polar regions. At this time, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was observing the atmosphere in the 6-68 km altitude range. MIPAS observations of NO(x) (NO+NO2) and O3 of the period from 25 October to 14 November 2003 are the first global measurements of NO(x) species, covering both the summer (daylight) and winter (dark) polar regions during an SPE. Very large values of NO(x) in the upper stratosphere of 180 ppbv (parts per billion by volume) have been measured, and a large asymmetry in Northern and Southern polar cap NO(x) enhancements was found. Arctic mean polar cap (>60 deg) NO(x) enhancements of 20 to 70 ppbv between 40 to 60 km lasted for at least two weeks, while the Antarctic mean NO(x) enhancement was between 10 and 35 ppbv and was halved after two weeks. Ozone shows depletion signatures associated with both HO(x) (H+OH+HO2) and NO(x) enhancements but at different time scales. Arctic lower mesospheric (upper stratospheric) ozone is reduced by 50-70% (30-40%) for about two weeks The large solar storms in October-November 2003 produced after the SPEs. A smaller ozone depletion signal was observed in the Antarctic atmosphere. After the locally produced Arctic middle and upper stratospheric as well as mesospheric NO(x) enhancement, large amounts of NO(x) were observed until the end of December. These are explained by downward transport processes.

  10. Cloud acidity and acidic deposition in the lower troposphere and ozone depletion in the Antarctic stratosphere: Modeling and data analysis regarding the role of atmospheric aerosol

    SciTech Connect

    Lin, Nenghuei.

    1991-01-01

    This study focused on the role of atmospheric aerosols in determining the cloud acidity and acidic deposition in the lower troposphere and the ozone depletion in the Antarctic stratosphere. For the former, a cloud chemistry model is developed to study the in-cloud chemistry and acidity in cloud droplets. The cloud chemistry model includes the absorption of trace gases, the oxidation of aqueous phase SO{sub 2}, and the scavenging of atmospheric aerosols. A new scheme is developed to differentiate the acidity and chemical composition distributing in individual cloud droplets. The above cloud chemistry model is incorporated into a two-layer flow model in order to investigate the effects of mountain waves on the cloud acidity. Using the three-year database acquired at Mt. Mitchell site, the in-cloud chemistry and acidic deposition through dry, wet and cloud deposition pathways are investigated. The in-cloud scavenging of submicron aerosols such as sulfates and nitrates is parameterized as a function of cloud deposition rate. The deposition fluxes of sulfur (S) compounds are found primarily contributed by cloud capture mechanism followed by incident precipitation and dry deposition. A comparison of deposition estimates at Mt. Mitchell with those at other sites shows that the sulfate deposition at sites exceeding 1,200 m MSL in elevation in Bavaria (Germany) and eastern USA is almost identical within error limits. The features of the Antarctic stratospheric aerosols during the ozone depletion episode of October 1987 are investigated based on the SAGE 2 (Stratospheric Aerosol and Gas Experiment 2) data. The study focuses on (1) inferring the aerosol size spectrum using a modified randomized minimization-search-technique (RMST), and (2) investigating the vertical, zonal and columnar averages of aerosol properties, together with the ozone concentration.

  11. Variations in radiation and photolysis rates in the southern midlatitudes due to ozone depletion over the Antarctica

    NASA Astrophysics Data System (ADS)

    López Comí, Laura; Morgenstern, Olaf; Zeng, Guang; Masters, Sarah L.

    2013-04-01

    Lauder (45° S, 170° E), a research station located on the South Island of New Zealand, is a clean-air atmospheric observatory representative of southern mid-latitudes. Long-term records of various atmospheric chemical compounds have been measured here for up to three decades. We assess observations of selected atmospheric chemical species, including ozone, and their variability throughout the recording period. By utilizing these observational data and a photolysis scheme (FAST-JX) we will address how changes in the total ozone column and in aerosols at Lauder affect radiation and photolysis rates of different species. The results serve as a stepping stone towards constructing a single-column photolysis model for Lauder constrained with profiles of stable species (e.g. ozone, methane, CO, HCHO, halogen compounds, etc) measured at Lauder to derive variations and trends of shorter-lived species. One of our targets will be changes in the tropospheric oxidizing capacity in the Southern Hemisphere.

  12. Coupled evolution of BrOx-ClOx-HOx-NOx chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer

    NASA Astrophysics Data System (ADS)

    Evans, M. J.; Jacob, D. J.; Atlas, E.; Cantrell, C. A.; Eisele, F.; Flocke, F.; Fried, A.; Mauldin, R. L.; Ridley, B. A.; Wert, B.; Talbot, R.; Blake, D.; Heikes, B.; Snow, J.; Walega, J.; Weinheimer, A. J.; Dibb, J.

    2003-02-01

    Extensive chemical characterization of ozone (O3) depletion events in the Arctic boundary layer during the TOPSE aircraft mission in March-May 2000 enables analysis of the coupled chemical evolution of bromine (BrOx), chlorine (ClOx), hydrogen oxide (HOx) and nitrogen oxide (NOx) radicals during these events. We project the TOPSE observations onto an O3 chemical coordinate to construct a chronology of radical chemistry during O3 depletion events, and we compare this chronology to results from a photochemical model simulation. Comparison of observed trends in ethyne (oxidized by Br) and ethane (oxidized by Cl) indicates that ClOx chemistry is only active during the early stage of O3 depletion (O3 > 10 ppbv). We attribute this result to the suppression of BrCl regeneration as O3 decreases. Formaldehyde and peroxy radical concentrations decline by factors of 4 and 2 respectively during O3 depletion and we explain both trends on the basis of the reaction of CH2O with Br. Observed NOx concentrations decline abruptly in the early stages of O3 depletion and recover as O3 drops below 10 ppbv. We attribute the initial decline to BrNO3 hydrolysis in aerosol, and the subsequent recovery to suppression of BrNO3 formation as O3 drops. Under halogen-free conditions we find that HNO4 heterogeneous chemistry could provide a major NOx sink not included in standard models. Halogen radical chemistry in the model can produce under realistic conditions an oscillatory system with a period of 3 days, which we believe is the fastest oscillation ever reported for a chemical system in the atmosphere.

  13. 75 FR 19213 - Use of Ozone-Depleting Substances; Removal of Essential-Use Designation (Flunisolide, etc.)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... the Federal Register (72 FR 32030) (the proposed rule), proposing to remove the essential-use... generally called the stratospheric ozone layer. Once in the stratosphere, CFCs are gradually broken down by..., including CFCs. 1. The 1978 Rules In the Federal Register of March 17, 1978 (43 FR 11301), FDA and...

  14. New observations of a large concentration of ClO in the springtime lower stratosphere over Antarctica and its implications for ozone-depleting chemistry

    NASA Technical Reports Server (NTRS)

    De Zafra, R. L.; Jaramillo, M.; Barrett, J.; Emmons, L. K.; Solomon, P. M.

    1989-01-01

    New measurements of stratospheric chlorine monoxide (ClO) were made at McMurdo Station, Antarctica, during the austral spring of 1987. Rotational emission line spectroscopy, employing a ground-based detector, was used to determine mixing ratio profiles over the range about 17-45 km. A spectral band pass double that was used for similar measurements in 1986 allowed an improvement to be made in the definition of the anomalous low-altitude stratospheric ClO layer associated with springtime ozone depletion. A peak mixing ratio of 1.6 + or - 0.4 parts per billion by volume (ppbv) (95 percent confidence level) was found at 19.5 + or - 1 km at midday during the period September 20-24, 1987. The observed peak mixing ratio and diurnal behavior are discussed in relation to chemical depletion theories. Calculations indicate that the large observed ClO concentration provides an efficient closure for a catalytic Cl cycle through the ClO dimer mechanism, yielding good agreement with various observed features of O3 depletion.

  15. Environmental optimization of continuous flow ozonation for urban wastewater reclamation.

    PubMed

    Rodríguez, Antonio; Muñoz, Iván; Perdigón-Melón, José A; Carbajo, José B; Martínez, María J; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto

    2012-10-15

    Wastewater samples from the secondary clarifier of two treatment plants were spiked in the microgram-to-tens-of-microgram per liter range with diuron (herbicide), ibuprofen and diclofenac (anti-inflammatory drugs), sulfamethoxazole and erythromycin (antibiotics), bezafibrate and gemfibrozil (lipid regulators), atenolol (β-blocker), carbamazepine (anti-epileptic), hydrochlorothiazide (diuretic), caffeine (stimulant) and N-acetyl-4-amino-antipiryne, a metabolite of the antipyretic drug dypirone. They were subsequently ozonated in continuous flow using 1.2L lab-scale bubble columns. The concentration of all spiking compounds was monitored in the outlet stream. The effects of varying ozone input, expressed as energy per unit volume, and water flow rate, and of using single or double column were studied in relation to the efficiency of ozone usage and the ratio of pollutant depletion. The ozone dosage required to treat both wastewaters with pollutant depletion of >90% was in the 5.5-8.5 mg/L range with ozone efficiencies greater than 80% depending on the type of wastewater and the operating conditions. This represented 100-200 mol of ozone transferred per mole of pollutant removed. Direct and indirect environmental impacts of ozonation were assessed according to Life Cycle Assessment, a technique that helped identify the most effective treatments in terms of potential toxicity reduction, as well as of toxicity reduction per unit mass of greenhouse-gas emissions, which were used as an indicator of environmental efficiency. A trade-off between environmental effectiveness (toxicity reduction) and greenhouse-gas emissions was observed since maximizing toxicity removal led to higher greenhouse-gas emissions, due to the latter's relatively high ozone requirements. Also, there is an environmental trade-off between effectiveness and efficiency. Our results indicate that an efficient use of ozone was not compatible with a full pollutant removal. PMID:22922131

  16. Stratospheric ozone depletion between 1979 and 1992: implications for biologically active ultraviolet-B radiation and non-melanoma skin cancer incidence.

    PubMed

    Madronich, S; de Gruijl, F R

    1994-05-01

    The depletion of stratospheric ozone (O3) has predictable implications for increases in biologically damaging solar ultraviolet-B radiation (UVB, 280-320 nm) reaching the earth's surface. A radiative transfer analysis of satellite-based O3 measurements between January 1979 and December 1992 shows that surface UVB levels increased substantially at all latitudes except the tropics, if other factors such as cloud cover and local pollutant levels have remained constant over this period. Exposure to UVB radiation is known to induce basal cell and squamous cell skin cancers, and dose-response relationships derived from epidemiological data can be combined with the UVB enhancements to estimate the seasonal and latitudinal distribution of future expected increases in the incidence of these cancers. PMID:8041809

  17. Sensitivity of the surface responses of an idealized AGCM to the timing of imposed ozone depletion-like polar stratospheric cooling

    NASA Astrophysics Data System (ADS)

    Sheshadri, Aditi; Plumb, R. Alan

    2016-03-01

    An idealized atmospheric general circulation model (AGCM) is used to investigate the sensitivity of model responses to the timing of imposed polar stratospheric cooling, intended to mimic the radiative effects of ozone depletion. The model exhibits circulation responses to springtime cooling that qualitatively match both observations and the responses of comprehensive chemistry climate models. The model's surface response is sensitive to the timing of the cooling, with the onset becoming delayed with later cooling, but with the termination occurring at similar times, suggesting that the meteorology plays an important role. The model's responses do not match the latitudinal structure of the leading annular mode; rather, the response described by the second empirical orthogonal function plays a substantial role, in addition to the first. It is suggested that the imposed cooling, when it delays the final warming, results in an extended period of lower stratospheric variability, which could be an important factor in producing realistic surface responses.

  18. Analytical Method for the Detection of Ozone Depleting Chemicals (ODC) in Commercial Products Using a Gas Chromatograph with an Electron Capture Detector (GC-ECD)

    SciTech Connect

    Lee, Richard N.; Dockendorff, Brian P.; Wright, Bob W.

    2008-08-01

    This document describes an analytical procedure that was developed for the trace level detection of residual ozone depleting chemicals (ODC) associated with the manufacture of selected commercial products. To ensure the United States meets it obligation under the Montreal Protocol, Congress enacted legislation in 1989 to impose an excise tax on electronic goods imported into the United States that were produced with banned chemicals. This procedure was developed to technically determine if residual ODC chemicals could be detected on electronic circuit boards. The analytical method utilizes a “purge and trap” technique followed by gas chromatography with electron capture detection to capture and analyze the volatile chemicals associated with the matrix. The method describes the procedure, the hardware, operating conditions, calibration, and quality control measures in sufficient detail to allow the capability to be replicated. This document corresponds to internal Standard Operating Procedure (SOP) EFL-130A, Rev 4.

  19. Is the Ozone Hole over Your Classroom?

    ERIC Educational Resources Information Center

    Cordero, Eugene C.

    2002-01-01

    Reports on a survey of first year university science students regarding their understanding of the ozone layer, ozone depletion, and the effect of ozone depletion on Australia. Suggests that better teaching resources for environmental issues such as ozone depletion and global warming are needed before improvements in student understanding can be…

  20. Heterogeneous reactions of N2O5 with H2O and HCl on ice surfaces - Implications for Antarctic ozone depletion

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    1988-01-01

    This paper reports on the measurements of reaction probabilities for heterogeneous reaction of N2O5 with H2O and HCl on ice surfaces at 195 K, using a fast-flow reactor coupled with a quadrupole mass spectrometer. The reaction probability for N2O5 on pure-water ice was found to be 0.028 + or - 0.011, with nitric acid in the solid phase as the sole product. In the presence of HCl in ice, the probability of N2O5 reaction was enhanced (to 0.037); the reaction produced, besides solid-phase nitric acid, ClNO2 and ClONO which were released into the gas phase within a few milliseconds. The latter two compounds can be readily photolyzed in the austral spring to form active chlorine which would remove stratospheric ozone. It is suggested that, since the polar stratospheric clouds are believed to contain HCl-ice mixture on the surface, the reactions of N2O5 on H2O/HCl particles is a major factor in the Antarctic springtime ozone depletion.

  1. Effect of stratospheric ozone depletion and enhanced ultraviolet radiation on marine bacteria at Palmer Station, Antarctica in the early austral spring.

    PubMed

    Pakulski, J Dean; Kase, Jason P; Meador, Jarah A; Jeffrey, Wade H

    2008-01-01

    We investigated the interactions between ozone-depleted air masses and subsequent changes in UVB on marine bacterial abundance and production at Palmer Station, Antarctica from September to November 1999. During periods of low total column ozone (TCO), bacterial cell concentrations declined by 57%. Photoinhibition of bacterial [(3)H]-leucine (Leu) and [(3)H]-thymidine (TdR) incorporation due to UVB was greatest during periods of low TCO in September and early October. During diel ( approximately 28 h) exposure experiments, light treatment samples exhibited >75-100% inhibition of TdR incorporation by mid-afternoon. Leu incorporation exhibited maximum inhibition (50-100%) at sunset and early evening hours. Leu and TdR incorporation in light treatment samples did not exhibit recovery during subsequent periods of darkness. Bacterial Leu and TdR incorporation rates were inversely related to Setlow Dose during a period of recovery from low TCO. These data further suggested a threshold exposure below which bacterial Leu and TdR incorporation recovered rapidly. Recovery of bacterial production after acute Setlow Dose exposures lagged recovery of TCO and was linearly related to TCO measured 2 days previously. This lag in recovery may have resulted from the energetically expensive repair of UVR-induced DNA damage acquired during periods of low TCO. PMID:18173723

  2. Understanding differences in upper stratospheric ozone response to changes in chlorine and temperature as computed using CCMVal-2 models

    NASA Astrophysics Data System (ADS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-08-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as coupled chemistry-climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary among models for scenarios for ozone depleting substances (ODSs) and greenhouse gases. Photochemical processes control the upper stratospheric ozone level, and there is broad agreement among CCMs in that ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. There are quantitative differences in the ozone sensitivity to chlorine and temperature. We obtain insight into differences in sensitivity by examining the relationship between the upper stratospheric seasonal cycles of ozone and temperature as produced by fourteen CCMs. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Analysis reveals differences in simulated temperature, ozone and reactive nitrogen that lead to differences in the relative importance of ozone loss processes and are most obvious when chlorine levels are close to background. Differences in the relative importance of loss processes underlie differences in simulated sensitivity of ozone to composition change. This suggests 1) that the multimodel mean is not a best estimate of the sensitivity of upper stratospheric ozone to changes in ODSs and temperature; and 2) that the spread of values is not an appropriate measure of uncertainty.

  3. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  4. Ozone Hole Over Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Total Ozone Mapping Spectrometer (TOMS) show the progressive depletion of ozone over Antarctica from 1979 to 1999. This 'ozone hole' has extended to cover an area as large as 10.5 million square miles in September 1998. The previous record of 10.0 million square miles was set in 1996. The Antarctic ozone hole develops each year between late August and early October. Regions with higher levels of ozone are shown in red. NASA and NOAA instruments have been measuring Antarctic ozone levels since the early 1970s. Large regions of depleted ozone began to develop over Antarctica in the early 1980s. Ozone holes of substantial size and depth are likely to continue to form during the next few years, scientists hope to see a reduction in ozone loss as levels of ozone-destroying CFCs (chlorofluorocarbons) are gradually reduced. Credit: Images by Greg Shirah, NASA Goddard Space Flight Center Scientific Visualization Studio

  5. Role of Methane in Antarctic Stratospheric Ozone Recovery

    NASA Astrophysics Data System (ADS)

    Calvo, Natalia; Kinnison, Douglas E.; Marsh, Daniel R.; Garcia, Rolando R.; Palmeiro, Froila

    2014-05-01

    Observational and modeling studies have shown the impact of changes in Antarctic stratospheric ozone on tropospheric climate in austral spring and summer. In the future, effects of increasing greenhouse gases and ozone depleting substances oppose each other. Projections show potential impact of ozone recovery on precipitation, carbon uptake in the Southern Hemisphere ocean, Antarctic ice sheets and Southern Hemisphere sea ice. In order to quantify properly the tropospheric impacts of ozone recovery, future Antarctic ozone changes in the upper troposphere lower stratosphere region and the role (if any) of increasing greenhouse gases in ozone recovery need to be evaluated. To do so, we use the National Center for Atmospheric Research's Community Earth System Model, CESM, with the high-top version of the atmospheric component, CESM(WACCM), which is a fully coupled chemistry climate model. Three climate change scenarios (RCP2.6, RCP4.5 and RCP8.5) of 3 simulations each from 2005 to 2065 are analyzed. In scenario RCP2.6, the largest ozone recovery is simulated in October and November at 50hPa and it is followed by the largest response in temperature in November and December at 70hPa. While the response in RCP4.5 in ozone and temperature is almost identical to that in RCP2.6 in the upper troposphere and lower stratosphere region, scenario RCP8.5 shows significantly stronger ozone recovery and warming than the other two scenarios, particularly in November and December at 70hPa in ozone and 100hPa in temperature. We show that this is due to larger amounts of methane in RCP8.5 compared to the other two scenarios, which reduces catalytic ozone loss locally. Differences across scenarios in advection of ozone from the source region in the tropical stratosphere do not play a significant role.

  6. Polar ozone

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Grose, W. L.; Jones, R. L.; Mccormick, M. P.; Molina, Mario J.; Oneill, A.; Poole, L. R.; Shine, K. P.; Plumb, R. A.; Pope, V.

    1990-01-01

    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed.

  7. Synthetic greenhouse gases to decline if Montreal Protocol amended

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-07-01

    The Montreal Protocol, an international treaty designed to reduce the release into the atmosphere of ozone-depleting gases such as hydrochlorofluorocarbons and chlorofluorocarbons, has been successful since its implementation in the late 1980s. However, related greenhouse gases, such as hydrofluorocarbons (HFCs), have increased in concentration in the atmosphere since then. HFCs, along with other synthetic greenhouse gases (SGHGs), account for a radiative forcing almost 20% as large as that due to the increase in carbon dioxide (CO2) since the preindustrial era.

  8. In-situ measurements of chlorine activation, nitric acid redistribution and ozone depletion in the Antarctic lower vortex aboard the German research aircraft HALO during TACTS/ESMVal

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Gottschaldt, Klaus-Dirk; Ziereis, Helmut; Hoor, Peter; Bozem, Heiko; Müller, Stefan; Zahn, Andreas; Schlager, Hans; Oelhaf, Hermann; Sinnhuber, Björn-Martin; Dörnbrack, Andreas

    2016-04-01

    In-situ measurements of stratospheric chlorine compounds are rare and exhibit the potential to gain insight into small scale mixing processes where stratospheric air masses of different origin and history interact. In addition, the relationship with chemically stable trace gases helps to identify regions that have been modified by chemical processing on polar stratospheric clouds. To this end, in-situ measurements of ClONO2, HCl, HNO3, NOy, N2O and O3 have been performed in the Antarctic Polar Vortex in September 2012 aboard the German research aircraft HALO (High Altitude and Long Rang research aircraft) during the TACTS/ESMVal (Transport and Composition in the UTLS/Earth System Model Validation) mission. With take-off and landing in Capetown, HALO sampled vortex air with latitudes down to 65°S, at altitudes between 8 and 14.3 km and potential temperatures between 340 and 390 K. Before intering the vortex at 350 K potential temperature, HALO additionally sampled mid-latitude stratospheric air. The trace gas distributions at the edge of the Antarctic polar vortex show distinct signatures of processed upper stratospheric vortex air and chemically different lower stratospheric / upper tropospheric air. Diabatic descend of the vortex transports processed air into the lower stratosphere. Here small scale filaments of only a few kilometers extension form at the lower vortex boundary due to shear stress, ultimately leading to transport and irreversible mixing. Comparison of trace gas relationships with those at the beginning of the polar winter reveals substantial chlorine activation, ozone depletion de- and renitrification with high resolution. Furthermore, the measurements are compared to the chemistry climate models EMAC and supported by ECMWF analysis. Finally, we compare the Antarctic measurements with new measurements of ClONO2, HCl and HNO3 aboard HALO obtained during the Arctic mission POLSTRACC (POLar STratosphere in a Changing Climate) based in Kiruna (Sveden

  9. Understanding Differences in Upper Stratospheric Ozone Response to Changes in Chlorine and Temperature as Computed Using CCMVal Models

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-01-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as chemistry and climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary for projections of changes in ozone depleting substances (ODSs) and greenhouse gases. In the upper stratosphere photochemical processes control ozone level, and ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. Simulations agree broadly but there are quantitative differences in the sensitivity of ozone to chlorine and to temperature. We obtain insight into these differences in sensitivity by examining the relationship between the upper stratosphere annual cycle of ozone and temperature as produced by a suite of models. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Differences in sensitivity are traced to differences in simulated temperature, ozone and reactive nitrogen when chlorine levels are close to background. This work shows that differences in the importance of specific processes underlie differences in simulated sensitivity of ozone to composition change. This suggests a) the multi-model mean is not a best estimate of the sensitivity of upper ozone to changes in ODSs and temperature; b) the spread of values is not an appropriate measure of uncertainty.

  10. The Total Ozone Series of Arosa: History, Homogenization and new results using statistical extreme value theory

    NASA Astrophysics Data System (ADS)

    Staehelin, J.; Rieder, H. E.; Maeder, J. A.; Ribatet, M.; Davison, A. C.; Stübi, R.

    2009-04-01

    Atmospheric ozone protects the biota living at the Earth's surface from harmful solar UV-B and UV-C radiation. The global ozone shield is expected to gradually recover from the anthropogenic disturbance of ozone depleting substances (ODS) in the coming decades. The stratospheric ozone layer at extratropics might significantly increase above the thickness of the chemically undisturbed atmosphere which might enhance ozone concentrations at the tropopause altitude where ozone is an important greenhouse gas. At Arosa, a resort village in the Swiss Alps, total ozone measurements started in 1926 leading to the longest total ozone series of the world. One Fery spectrograph and seven Dobson spectrophotometers were operated at Arosa and the method used to homogenize the series will be presented. Due to its unique length the series allows studying total ozone in the chemically undisturbed as well as in the ODS loaded stratosphere. The series is particularly valuable to study natural variability in the period prior to 1970, when ODS started to affect stratospheric ozone. Concepts developed by extreme value statistics allow objective definitions of "ozone extreme high" and "ozone extreme low" values by fitting the (daily mean) time series using the Generalized Pareto Distribution (GPD). Extreme high ozone events can be attributed to effects of ElNino and/or NAO, whereas in the chemically disturbed stratosphere high frequencies of extreme low total ozone values simultaneously occur with periods of strong polar ozone depletion (identified by statistical modeling with Equivalent Stratospheric Chlorine times Volume of Stratospheric Polar Clouds) and volcanic eruptions (such as El Chichon and Pinatubo).

  11. Detection and Attribution of the Recovery of Polar Ozone

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, E. R.; Douglass, A. R.; Nielsen, J. E.; Pawson, S.; Stolarski, R. S.

    2008-01-01

    The Antarctic ozone hole develops each year and culminates by early spring (late September - early October). The severity of the hole has been assessed from satellites using the minimum total ozone value from the October monthly mean (depth of the hole), calculating the average area coverage during this September-October period, and by estimating ozone mass deficit. Profile information shows that ozone is completely destroyed in the 14-2 1 km layer by early October. Ozone is mainly destroyed by halogen (chlorine and bromine) catalytic cycles, and these losses are modulated by temperature variations. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Both models and projections of ozone depleting substances (ODSs) into the 21St century reveal that polar ozone levels should recover in the 2060- 2070 period. In this talk, we will review current projections of polar ozone recovery. Using models and ODs projections, we explore both the past, near future (2008-2025), and far future (> 2025) levels of polar ozone. Finally, we will discuss various factors that complicate recovery such as greenhouse gas changes (e.g., cooling in the upper stratosphere) and the acceleration of the Brewer-Dobson circulation.

  12. Effects of a polar stratosphere cloud parameterization on ozone depletion due to stratospheric aircraft in a two-dimensional model

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.; Jackman, Charles H.

    1994-01-01

    A parameterization of Type 1 and 2 polar stratospheric cloud (PSC) formation is presented which is appropriate for use in two-dimensional (2-D) photochemical models of the stratosphere. The calculations of PSC frequency of occurrence and surface area density uses climatological temperature probability distributions obtained from National Meteorological Center data to avoid using zonal mean temperatures, which are not good predictors of PSC behavior. The parameterization does not attempt to model the microphysics of PSCs. The parameterization predicts changes in PSC formation and heterogeneous processing due to perturbations of stratospheric trace constituents. It is therefore useful in assessing the potential effects of a fleet of stratospheric aircraft (high speed civil transports, or HSCTs) on stratospheric composition. the model calculated frequency of PSC occurrence agrees well with a climatology based on stratospheric aerosol measurement (SAM) 2 observations. PSCs are predicted to occur in the tropics. Their vertical range is narrow, however, and their impact on model O3 fields is small. When PSC and sulfate aerosol heterogeneous processes are included in the model calculations, the O3 change for 1980 - 1990 is in substantially better agreement with the total ozone mapping spectrometer (TOMS)-derived O3 trend than otherwise. The overall changes in model O3 response to standard HSCT perturbation scenarios produced by the parameterization are small and tend to decrease the model sensitivity to the HSCT perturbation. However, in the southern hemisphere spring a significant increase in O3 sensitivity to HSCT perturbations is found. At this location and time, increased PSC formation leads to increased levels of active chlorine, which produce the O3 decreases.

  13. Effects of a polar stratospheric cloud parameterization on ozone depletion due to stratospheric aircraft in a two-dimensional model

    SciTech Connect

    Considine, D.B.; Douglass, A.R.; Jackman, C.H.

    1994-09-20

    A parameterization of Type 1 and 2 polar stratospheric cloud (PSC) formation is presented which is appropriate for use in two-dimensional (2-D) photochemical models of the stratosphere. The calculation of PSC frequency of occurrence and surface area density uses climatological temperature probability distributions obtained from National Meteorological Center data to avoid using zonal mean temperatures, which are not good predictors of PSC behavior. The parameterization does not attempt to model the microphysics of PSCs. The parameterization predicts changes in PSC formation and heterogeneous processing due to perturbations of stratospheric trace constituents. It is therefore useful in assessing the potential effects of a fleet of stratospheric aircraft (high speed civil transports, or HSCTs) on stratospheric composition. The model calculated frequency of PSC occurrence agrees well with a climatology based on stratospheric aerosol measurement (SAM) II observations. PSCs are predicted to occur in the tropics. Their vertical range is narrow, however, and their impact on model O{sub 3} fields is small. When PSC and sulfate aerosol heterogeneous processes are included in the model calculations, the O{sub 3} change for 1980-1990 is in substantially better agreement with the total ozone mapping spectrometer (TOMS) - derived O{sub 3} trend than otherwise. However, significant discrepancies in the northern midlatitudes remain. The overall changes in model O{sub 3} response to standard HSCT perturbation scenarios produced by the parameterization are small and tend to decrease the model sensitivity to the HSCT perturbation. However, in the southern hemisphere spring a significant increase in O{sub 3} sensitivity to HSCT perturbations is found. At this location and time, increased PSC formation leads to increased levels of active chlorine, which produce the O{sub 3} decrease. 38 refs., 13 figs., 3 tabs.

  14. Ozone: What Would It Be Like to Live in a World Where the Sun Was Dangerous?

    ERIC Educational Resources Information Center

    Clearing, 1992

    1992-01-01

    Defines ozone layer and the meaning, evidence, causes, and significance of ozone depletion. Summarizes solutions to the problem of ozone depletion and government action concerning the issue. Graphically depicts ozone depletion, global ozone loss, and how ozone is destroyed. Provides a lesson plan and listing for additional educational resources.…

  15. Delayed climate change in the Southern Hemisphere induced by stratospheric ozone recovery, as projected by the CMIP5 models (Invited)

    NASA Astrophysics Data System (ADS)

    Polvani, L. M.; Barnes, E. A.

    2013-12-01

    Stratospheric ozone is expected to recover in the second half of this century, due to the regulation of ozone depleting substances by the Montreal Protocol. Targeted modeling studies have suggested that the climate response to ozone recovery will greatly oppose the climate response to increasing greenhouse-gases (GHG); owever, the extent of this cancellation remains unclear, as few such studies are available. Here, we analyze the much larger set of models participating in the Coupled Model Intercomparison Project, phase 5 (CMIP5), all of which include stratospheric ozone depletion and recovery. We show that the closing of the ozone hole will cause a delay in summer-time (DJF) Southern Hemisphere climate change, between now and mid-century. Specifically, we find that the position of the jet stream, the width of the subtropical dry-zones, the seasonality of surface temperatures, and sea ice concentrations all exhibit significantly reduced summer-time trends over the first half of the 21st Century as a consequence of ozone recovery. Beyond mid-century, forcing from GHG emissions begins to dominate the climate response. We also compare the relative influences of future GHG emissions and historic ozone depletion, and find that the simulated DJF tropospheric circulation changes in the Southern Hemisphere between 1965-2005 -- driven primarily by ozone depletion -- are larger than the projected changes in any future scenario over the entire 21st Century.

  16. The Future of the Stratosphere and the Ozone Layer

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Oman, L.; Pawson, S.; Fleming, E. L.; Li, F.; Jackman, C. H.

    2014-12-01

    Stratospheric ozone has been slightly depleted (2-4 % globally) by emissions of ozone depleting substances (ODSs). The landmark 1987 Montreal Protocol led to the end of most these ODS emissions, and total levels of ODSs have been declining since the late 1990s. The interim replacements for these ODSs were hydroclorofluorocarbons (HCFCs), but these HCFCs have also now been regulated. The period in which stratospheric change has been dominated by CFC-induced ozone loss (the "CFC era") is now coming to an end, as a period begins when the impacts of stratospheric circulation and chemistry changes induced by Greenhouse Gas increases (the "GHG era"). The stratosphere GHG-era will be characterized by continued decreases of ODSs and increases of CO2, N2O, and CH4. In this talk, we will describe how these factors will modify stratospheric ozone levels and the basic stratospheric climatology: CO2 and CH4 increases will increase stratospheric ozone, while N2O increases will decrease stratospheric ozone. In particular, GHG increases and the associated warming of the troposphere will modify stratospheric transport and cool the upper stratosphere. We will quantitatively show the contributions by various GHGs to these changes and the specifics of the chemical, dynamical, and radiative changes. Further, we will show how the stratosphere evolves under future GHG projections from the various Representative Concentration Pathways, illustrating the different changes in stratospheric ozone caused by the concurrent radiative, chemical and dynamical impacts of GHG changes.

  17. Impact to usaf from national and international restrictions on use of ozone-depleting substances. Final report, May 1990-April 1991

    SciTech Connect

    McCarson, T.D.; Tapscott, R.E.

    1995-04-01

    The objective of this project was to assess the impact on the U.S. Air Force (USAF) of national and international restrictions on the production and use of chlorofluorocarbons (CFCs), halons, and other substances believed to contribute to stratospheric ozone depletion. The Montreal Protocol (a United Nations agreement) and the U.S. Clean Air Act Amendments of 1990 place restrictions on the production and use of CFCs and halons with eventual phaseout of production by the year 2000. CFCs are widely used as refrigerants, cleaning solvents, sterilants, foam-blowing agents, and aerosol propellants. Halons are used primarily as fire and explosion suppression agents. The USAF uses CFCs and halons extensively in a variety of ways, many of which are critical to combat operations and capabilities. This project provides an assessment of the technologies for replacements or alternatives to the CFCs and halons being phased out and the resultant impact on USAF mission capabilities. Recommendations are made for actions necessary to mitigate the impact of CFC and halon production and use restrictions.

  18. Rotational Spectroscopy of Newly Detected Atmospheric Ozone Depleters: CF_3CH_2Cl, CF_3CCl_3, and CF_2ClCCl_3

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Bialkowska-Jaworska, Ewa; Pszczólkowski, Lech; Uriarte, Iciar; Ecija, Patricia; Basterretxea, Francisco J.; Cocinero, Emilio J.

    2015-06-01

    In a recent study of unpolluted air samples from Tasmania and of deep firn snow in Greenland four previously overlooked ozone-depleting substances have been identified. These compounds started to emerge in the atmosphere in the 1960s, and two: CF_3CCl_3 (CFC-113a) and CF_3CH_2Cl (HCHF-133a) continue to accumulate in the atmosphere. Three of the four compounds have non-zero dipole moments and are amenable to study by rotational spectroscopy, establishing the basis for analytic applications. Relatively limited studies have been reported for CF_3CH_2Cl and CF_3CCl_3, while CF_2ClCCl_3 has not yet been studied by this technique. We presently report extensive results obtained for all three compounds, resulting from concerted application of supersonic expansion FTMW spectroscopy in chirped pulse and cavity modes, and room-temperature MMW spectroscopy. Among the plentiful results, we have been able to resolve and fit the complex nuclear quadrupole hyperfine splitting. J.C.Laube, et al., Nature Geoscience 7, 266 (2014). Ogata, et al., J. Mol. Struct. 144, 1 (1986). R.Holm, et al., Z. Naturforsch. 23a, 1040 (1968). J.H.Carpenter et al., J. Mol. Spectrosc. 154, 207 (1992); P.J.Seo et al., J. Mol. Spectrosc. 169, 58 (1995).

  19. Acute inhalation toxicity evaluation of a 93:7 mixture of perfluoro-2-butene and 1-bromopropane, a replacement candidate for ozone depleting substances. Interim report, July--August 1997

    SciTech Connect

    Feldmann, M.L.; Leahy, H.F.; Vinegar, A.

    1997-10-01

    The DoD requires the development of toxicity profiles for chemical substitute candidates proposed to replace ozone depleting substances such as chloro- and fluorocarbons and halons. A 93:7 mixture of perfluoro-2-butene and 1-bromopropane was identified as a possible replacement candidate for ozone-depleting fire extinguishants. An acute inhalation toxicity test utilizing male and female Fischer 344 rats was performed on this test material. No deaths occurred in any of the rats exposed to 5.3 mg/L of the 93:7 perfluoro-2-butene and 1-bromopropane mixture. Body weights of male and female rats during the subsequent 14-day observation period were unaffected by treatment. The test material did not produce acute toxicity via the inhalation route.

  20. Quantifying Uncertainty in Projections of Stratospheric Ozone Over the 21st Century

    NASA Technical Reports Server (NTRS)

    Charlton-Perez, A. J.; Hawkins, E.; Eyring, V.; Cionni, I.; Bodeker, G. E.; Kinnison, D. E.; Akiyoshi, H.; Frith, S. M.; Garcia, R.; Gettelman, A.; Lamarque, J. F.; Nakamura, T.; Pawson, S.; Yamashita, Y.; Bekki, S.; Braesicke, P.; Chipperfield, M. P.; Dhomse, S.; Marchand, M.; Mancini, E.; Morgenstern, O.; Pitari, G.; Plummer, D.; Pyle, J. A.; Rozanov, E.

    2010-01-01

    Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an ensemble of opportunity of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for 10 ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21 st century, up-to and after the time when ozone concentrations 15 return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.

  1. Exhaust emissions of volatile organic compounds of powered two-wheelers: effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation.

    PubMed

    Costagliola, M Antonietta; Murena, Fabio; Prati, M Vittoria

    2014-01-15

    Powered two-wheeler (PTW) vehicles complying with recent European type approval standards (stages Euro 2 and Euro 3) were tested on chassis dynamometer in order to measure exhaust emissions of about 25 volatile organic compounds (VOCs) in the range C1-C7, including carcinogenic compounds as benzene and 1,3-butadiene. The fleet consists of a moped (engine capacity ≤ 50 cm(3)) and three fuel injection motorcycles of different engine capacities (150, 300 and 400 cm(3)). Different driving conditions were tested (US FPT cycle, constant speed). Due to the poor control of the combustion and catalyst efficiency, moped is the highest pollutant emitter. In fact, fuel injection strategy and three way catalyst with lambda sensor are able to reduce VOC motorcycles' emission of about one order of magnitude with respect to moped. Cold start effect, that is crucial for the assessment of actual emission of PTWs in urban areas, was significant: 30-51% of extra emission for methane. In the investigated speed range, moped showed a significant maximum of VOC emission factor at minimum speed (10 km/h) and a slightly decreasing trend from 20 to 60 km/h; motorcycles showed on the average a less significant peak at 10 km/h, a minimum at 30-40 km/h and then an increasing trend with a maximum emission factor at 90 km/h. Carcinogenic VOCs show the same pattern of total VOCs. Ozone Formation Potential (OFP) was estimated by using Maximum Incremental Reactivity scale. The greatest contribution to tropospheric ozone formation comes from alkenes group which account for 50-80% to the total OFP. VOC contribution effect on greenhouse effect is negligible with respect to CO2 emitted. PMID:24095967

  2. Impacts of the production and consumption of biofuels on stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Revell, Laura E.; Bodeker, Greg E.; Huck, Petra E.; Williamson, Bryce E.

    2012-05-01

    Biofuels are becoming increasingly popular sources of renewable energy as economic pressures and environmental consequences encourage the use of alternatives to fossil fuels. However, growing crops destined for use as biofuels incurs large N2O emissions associated with the use of nitrogen-based fertilizers. Besides being a greenhouse gas, N2O is also the primary source of stratospheric NOx (NO + NO2) which leads to stratospheric ozone depletion. In this paper, the potential effects on the ozone layer of a large-scale shift away from fossil fuel use to biofuels consumption over the 21st century are examined. Under such a scenario, global-mean column ozone decreases by 2.6 DU between 2010 and 2100 in contrast to a 0.7 DU decrease under a control simulation (the IPCC SRES B1 scenario for greenhouse gases) and a 9.1 DU increase under the more commonly used SRES A1B scenario. Two factors cause the decrease in ozone in the biofuels simulation: 1) large N2O emissions lead to faster rates of the ozone-depleting NOx cycles and; 2) reduced CO2 emissions (due to less fossil fuel burning) lead to relatively less stratospheric cooling over the 21st century, which decreases ozone abundances. Reducing CO2 emissions while neglecting to reduce N2O emissions could therefore be damaging to the ozone layer.

  3. Options to Accelerate Ozone Recovery: Ozone and Climate Benefits

    NASA Technical Reports Server (NTRS)

    Fleming, E. L.; Daniel, J. S.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-01-01

    The humankind or anthropogenic influence on ozone primarily originated from the chlorofluorocarbons and halons (chlorine and bromine). Representatives from governments have met periodically over the years to establish international regulations starting with the Montreal Protocol in 1987, which greatly limited the release of these ozone-depleting substances (DDSs). Two global models have been used to investigate the impact of hypothetical reductions in future emissions of ODSs on total column ozone. The investigations primarily focused on chlorine- and bromine-containing gases, but some computations also included nitrous oxide (N2O). The Montreal Protocol with ODS controls have been so successful that further regulations of chlorine- and bromine-containing gases could have only a fraction of the impact that regulations already in force have had. if all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional ODS restrictions. Chlorine- and bromine-containing gases and nitrous oxide are also greenhouse gases and lead to warming of the troposphere. Elimination of N 20 emissions would result in a reduction of radiative forcing of 0.23 W/sq m in 2100 than presently computed and destruction of the CFC bank would produce a reduction in radiative forcing of 0.005 W/sq m in 2100. This paper provides a quantitative way to consider future regulations of the CFC bank and N 20 emissions

  4. Climate impact of stratospheric ozone recovery

    NASA Astrophysics Data System (ADS)

    Bekki, S.; Rap, A.; Poulain, V.; Dhomse, S.; Marchand, M.; Lefevre, F.; Forster, P. M.; Szopa, S.; Chipperfield, M. P.

    2013-06-01

    stratospheric ozone depletion has acted to cool the Earth's surface. As the result of the phase-out of anthropogenic halogenated compounds emissions, stratospheric ozone is projected to recover and its radiative forcing (RF-O3 ~ -0.05 W/m2 presently) might therefore be expected to decay in line with ozone recovery itself. Using results from chemistry-climate models, we find that, although model projections using a standard greenhouse gas scenario broadly agree on the future evolution of global ozone, they strongly disagree on RF-O3 because of a large model spread in ozone changes in a narrow (several km thick) layer, in the northern lowermost stratosphere. Clearly, future changes in global stratospheric ozone cannot be considered an indicator of its overall RF. The multi-model mean RF-O3 estimate for 2100 is +0.06 W/m2 but with a range such that it could remain negative throughout this century or change sign and reach up to ~0.25 W/m2.

  5. Model evaluation of the radiative and temperature effects of the ozone content changes in the global atmosphere of 1980's

    NASA Technical Reports Server (NTRS)

    Karol, Igor L.; Frolkis, Victor A.

    1994-01-01

    Radiative and temperature effects of the observed ozone and greenhouse gas atmospheric content changes in 1980 - 1990 are evaluated using the two-dimensional energy balance radiative-convective model of the zonally and annually averaged troposphere and stratosphere. Calculated radiative flux changes for standard conditions quantitatively agree with their estimates in WMO/UNEP 1991 review. Model estimates indicate rather small influence of ozone depletion in the lower stratosphere on the greenhouse tropospheric warming rate, being more significant in the non-tropical Southern Hemisphere. The calculated cooling of the lower stratosphere is close to the observed temperature trends there in the last decade.

  6. Ozone Trend Detectability

    NASA Technical Reports Server (NTRS)

    Campbell, J. W. (Editor)

    1981-01-01

    The detection of anthropogenic disturbances in the Earth's ozone layer was studied. Two topics were addressed: (1) the level at which a trend in total ozoning is detected by existing data sources; and (2) empirical evidence in the prediction of the depletion in total ozone. Error sources are identified. The predictability of climatological series, whether empirical models can be trusted, and how errors in the Dobson total ozone data impact trend detectability, are discussed.

  7. The contribution of ozone to future stratospheric temperature trends

    NASA Astrophysics Data System (ADS)

    Maycock, A. C.

    2016-05-01

    The projected recovery of ozone from the effects of ozone depleting substances this century will modulate the stratospheric cooling due to CO2, thereby affecting the detection and attribution of stratospheric temperature trends. Here the impact of future ozone changes on stratospheric temperatures is quantified for three representative concentration pathways (RCPs) using simulations from the Fifth Coupled Model Intercomparison Project (CMIP5). For models with interactive chemistry, ozone trends offset ~50% of the global annual mean upper stratospheric cooling due to CO2 for RCP4.5 and 20% for RCP8.5 between 2006-2015 and 2090-2099. For RCP2.6, ozone trends cause a net warming of the upper and lower stratosphere. The misspecification of ozone trends for RCP2.6/RCP4.5 in models that used the International Global Atmospheric Chemistry (IGAC)/Stratosphere-troposphere Processes and their Role in Climate (SPARC) Ozone Database causes anomalous warming (cooling) of the upper (lower) stratosphere compared to chemistry-climate models. The dependence of ozone chemistry on greenhouse gas concentrations should therefore be better represented in CMIP6.

  8. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    NASA Astrophysics Data System (ADS)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  9. Stratospheric ozone: a major (long neglected) anthropogenic forcing of the climate system

    NASA Astrophysics Data System (ADS)

    Polvani, L. M.

    2013-03-01

    As a consequence of the Montreal Protocol, the depletion stratospheric ozone by CFCs, which occurred primarily in the last decades of the 20th Century, has noticeably slowed down in recent years. For instance, the ozone hole in 2012 has been measured to be the smallest in 20 years. In view of this, it has long been thought that the ozone hole is a ``solved problem.'' What has not been appreciated until very recently is that the large man-made perturbation of stratospheric ozone has had profound consequences on the climate system in the Southern Hemisphere. In fact, a lot of evidence is now at hand strongly suggesting that ozone depletion, not increasing greenhouse gases, have been been the major driver of observed atmospheric circulation changes in the Southern Hemisphere in the second half of the 20th Century. Furthermore, climate models robustly show that the closing of the ozone hole in the next half century will actually oppose the impact of increasing greenhouse gases, and project large cancellations between these two anthropogenic forcings resulting in greatly reduced future trends in the Southern Hemisphere.

  10. OZONE PRODUCTION EFFICIENCY AND NOX DEPLETION IN AN URBAN PLUME: INTERPRETATION OF FIELD OBSERVATIONS AND IMPLICATIONS FOR EVALUATING O3-NOX-VOC SENSITIVITY

    EPA Science Inventory

    Ozone production efficiency (OPE) can be defined as the number of ozone (O3) molecules photochemically produced by a molecule of NOx (NO + NO2) before it is lost from the NOx - O3 cycle. Here, we consider observational and modeling techniques to evaluate various operational defi...

  11. Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.

  12. The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after fly-by. [with attention to ozone depletion by SST exhaust plumes

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1974-01-01

    An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.

  13. Past changes in the vertical distribution of ozone - Part 1: Measurement techniques, uncertainties and availability

    NASA Astrophysics Data System (ADS)

    Hassler, B.; Petropavlovskikh, I.; Staehelin, J.; August, T.; Bhartia, P. K.; Clerbaux, C.; Degenstein, D.; De Mazière, M.; Dinelli, B. M.; Dudhia, A.; Dufour, G.; Frith, S. M.; Froidevaux, L.; Godin-Beekmann, S.; Granville, J.; Harris, N. R. P.; Hoppel, K.; Hubert, D.; Kasai, Y.; Kurylo, M. J.; Kyrölä, E.; Lambert, J.-C.; Levelt, P. F.; McElroy, C. T.; McPeters, R. D.; Munro, R.; Nakajima, H.; Parrish, A.; Raspollini, P.; Remsberg, E. E.; Rosenlof, K. H.; Rozanov, A.; Sano, T.; Sasano, Y.; Shiotani, M.; Smit, H. G. J.; Stiller, G.; Tamminen, J.; Tarasick, D. W.; Urban, J.; van der A, R. J.; Veefkind, J. P.; Vigouroux, C.; von Clarmann, T.; von Savigny, C.; Walker, K. A.; Weber, M.; Wild, J.; Zawodny, J. M.

    2014-05-01

    Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information for each data set is also given.

  14. SI2N overview paper: ozone profile measurements: techniques, uncertainties and availability

    NASA Astrophysics Data System (ADS)

    Hassler, B.; Petropavlovskikh, I.; Staehelin, J.; August, T.; Bhartia, P. K.; Clerbaux, C.; Degenstein, D.; De Mazière, M.; Dinelli, B. M.; Dudhia, A.; Dufour, G.; Frith, S. M.; Froidevaux, L.; Godin-Beekmann, S.; Granville, J.; Harris, N. R. P.; Hoppel, K.; Hubert, D.; Kasai, Y.; Kurylo, M. J.; Kyrölä, E.; Lambert, J.-C.; Levelt, P. F.; McElroy, C. T.; McPeters, R. D.; Munro, R.; Nakajima, H.; Parrish, A.; Raspollini, P.; Remsberg, E. E.; Rosenlof, K. H.; Rozanov, A.; Sano, T.; Sasano, Y.; Shiotani, M.; Smit, H. G. J.; Stiller, G.; Tamminen, J.; Tarasick, D. W.; Urban, J.; van der A, R. J.; Veefkind, J. P.; Vigouroux, C.; von Clarmann, T.; von Savigny, C.; Walker, K. A.; Weber, M.; Wild, J.; Zawodny, J.

    2013-11-01

    Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground- and satellite-based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information is for each data set is also given.

  15. Past Changes in the Vertical Distribution of Ozone Part 1: Measurement Techniques, Uncertainties and Availability

    NASA Technical Reports Server (NTRS)

    Hassler, B.; Petropavlovskikh, I.; Staehelin, J.; August, T.; Bhartia, P. K.; Clerbaux, C.; Degenstein, D.; Maziere, M. De; Dinelli, B. M.; Dudhia, A.; Dufour, G.; Frith, S. M.; Froidevaux, L.; Godin-Beekmann, S.; Granville, J.; Harris, N. R. P.; Hoppel, K.; Hubert, D.; Kasai, Y.; Kurylo, M. J.; Kyrola, E.; Lambert, J.-C.; Levelt, P. F.; McElroy, C. T.; McPeters, R. D.; Munro, R.; Nakajima, H.; Parrish, A.; Raspollini, P.; Remsberg, E. E.; Rosenlof, K. H.; Rozanov, A.; Sano, T.; Sasano, Y.; Shiotani, M.; Zawodny, J. M.

    2014-01-01

    Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information for each data set is also given.

  16. Stratospheric ozone, global warming, and the principle of unintended consequences--an ongoing science and policy success story.

    PubMed

    Andersen, Stephen O; Halberstadt, Marcel L; Borgford-Parnell, Nathan

    2013-06-01

    In 1974, Mario Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer that protects Earth from harmful ultraviolet radiation. In the decade after scientists documented the buildup and long lifetime of CFCs in the atmosphere; found the proof that CFCs chemically decomposed in the stratosphere and catalyzed the depletion of ozone; quantified the adverse effects; and motivated the public and policymakers to take action. In 1987, 24 nations plus the European Community signed the Montreal Protocol. Today, 25 years after the Montreal Protocol was agreed, every United Nations state is a party (universal ratification of 196 governments); all parties are in compliance with the stringent controls; 98% of almost 100 ozone-depleting chemicals have been phased out worldwide; and the stratospheric ozone layer is on its way to recovery by 2065. A growing coalition of nations supports using the Montreal Protocol to phase down hydrofluorocarbons, which are ozone safe but potent greenhouse gases. Without rigorous science and international consensus, emissions of CFCs and related ozone-depleting substances (ODSs) could have destroyed up to two-thirds of the ozone layer by 2065, increasing the risk of causing millions of cancer cases and the potential loss of half of global agricultural production. Furthermore, because most, ODSs are also greenhouse gases, CFCs and related ODSs could have had the effect of the equivalent of 24-76 gigatons per year of carbon dioxide. This critical review describes the history of the science of stratospheric ozone depletion, summarizes the evolution of control measures and compliance under the Montreal Protocol and national legislation, presents a review of six separate transformations over the last 100 years in refrigeration and air conditioning (A/C) technology, and illustrates government-industry cooperation in continually improving the environmental performance of motor vehicle A/C. PMID

  17. Mechanisms and Feedbacks Causing Changes in Upper Stratospheric Ozone in the 21st Century

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Waugh, D. W.; Kawa, S. R.; Stolarski, R. S.; Douglass, A. R.; Newman, P. A.

    2009-01-01

    Stratospheric ozone is expected to increase during the 21st century as the abundance of halogenated ozone-depleting substances decrease to 1960 values. However, climate change will likely alter this "recovery" of stratospheric ozone by changing stratospheric temperatures, circulation, and abundance of reactive chemical species. Here we quantity the contribution of different mechanisms to changes in upper stratospheric ozone from 1960 to 2100 in the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM), using multiple linear regression analysis applied to simulations using either Alb or A2 greenhouse gas (GHG) scenarios. In both these scenarios upper stratospheric ozone has a secular increase over the 21st century. For the simulation using the Alb GHG scenario, this increase is determined by the decrease in halogen amounts and the greenhouse gas induced cooling, with roughly equal contributions from each mechanism. There is a larger cooling in the simulation using the A2 GHG scenario, but also enhanced loss from higher NOy and HOx concentrations, which nearly offsets the increase due to cooler temperatures. The resulting ozone evolutions are similar in the A2 and Alb simulations. The response of ozone due to feedbacks from temperature and HOx changes, related to changing halogen concentrations, are also quantified using simulations with fixed halogen concentrations.

  18. Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Maycock, A. C.; Archibald, A. T.; Abraham, N. L.; Telford, P.; Braesicke, P.; Pyle, J. A.

    2015-11-01

    A stratosphere-resolving configuration of the Met Office's Unified Model (UM) with the United Kingdom Chemistry and Aerosols (UKCA) scheme is used to investigate the atmospheric response to changes in (a) greenhouse gases and climate, (b) ozone-depleting substances (ODSs) and (c) non-methane ozone precursor emissions. A suite of time-slice experiments show the separate, as well as pairwise, impacts of these perturbations between the years 2000 and 2100. Sensitivity to uncertainties in future greenhouse gases and aerosols is explored through the use of the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The results highlight an important role for the stratosphere in determining the annual mean tropospheric ozone response, primarily through stratosphere-troposphere exchange of ozone (STE). Under both climate change and reductions in ODSs, increases in STE offset decreases in net chemical production, leading to overall increases in the tropospheric ozone burden. This opposes the effects of projected decreases in ozone precursors through measures to improve air quality, which act to reduce the ozone burden. The global tropospheric lifetime of ozone (τO3) does not change significantly under climate change at RCP4.5, but it decreases at RCP8.5. This opposes the increases in τO3 simulated under reductions in both ODSs and ozone precursor emissions. The additivity of the changes in ozone is examined by comparing the sum of the responses in the single-forcing experiments to those from equivalent combined-forcing experiments. Whilst the ozone responses to most forcing combinations are found to be approximately additive, non-additive changes are found in both the stratosphere and troposphere when a large climate forcing (RCP8.5) is combined with the effects of ODSs.

  19. Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100

    NASA Astrophysics Data System (ADS)

    Banerjee, Antara; Maycock, Amanda C.; Archibald, Alexander T.; Abraham, N. Luke; Telford, Paul; Braesicke, Peter; Pyle, John A.

    2016-03-01

    A stratosphere-resolving configuration of the Met Office's Unified Model (UM) with the United Kingdom Chemistry and Aerosols (UKCA) scheme is used to investigate the atmospheric response to changes in (a) greenhouse gases and climate, (b) ozone-depleting substances (ODSs) and (c) non-methane ozone precursor emissions. A suite of time-slice experiments show the separate, as well as pairwise, impacts of these perturbations between the years 2000 and 2100. Sensitivity to uncertainties in future greenhouse gases and aerosols is explored through the use of the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The results highlight an important role for the stratosphere in determining the annual mean tropospheric ozone response, primarily through stratosphere-troposphere exchange (STE) of ozone. Under both climate change and reductions in ODSs, increases in STE offset decreases in net chemical production and act to increase the tropospheric ozone burden. This opposes the effects of projected decreases in ozone precursors through measures to improve air quality, which act to reduce the ozone burden. The global tropospheric lifetime of ozone (τO3) does not change significantly under climate change at RCP4.5, but it decreases at RCP8.5. This opposes the increases in τO3 simulated under reductions in ODSs and ozone precursor emissions. The additivity of the changes in ozone is examined by comparing the sum of the responses in the single-forcing experiments to those from equivalent combined-forcing experiments. Whilst the ozone responses to most forcing combinations are found to be approximately additive, non-additive changes are found in both the stratosphere and troposphere when a large climate forcing (RCP8.5) is combined with the effects of ODSs.

  20. The Greenhouse effect: impacts of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation.

    PubMed

    Krupa, S V; Kickert, R N

    1989-01-01

    There is a fast growing and an extremely serious international scientific, public and political concern regarding man's influence on the global climate. The decrease in stratospheric ozone (O3) and the consequent possible increase in ultraviolet-B (UV-B) is a critical issue. In addition, tropospheric concentrations of 'greenhouse gases' such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are increasing. These phenomena, coupled with man's use of chlorofluorocarbons (CFCs), chlorocarbons (CCs), and organo-bromines (OBs) are considered to result in the modification of the earth's O3 column and altered interactions between the stratosphere and the troposphere. A result of such interactions could be the global warming. As opposed to these processes, tropospheric O3 concentrations appear to be increasing in some parts of the world (e.g. North America). Such tropospheric increases in O3 and particulate matter may offset any predicted increases in UV-B at those locations. Presently most general circulation models (GCMs) used to predict climate change are one- or two-dimensional models. Application of satisfactory three-dimensional models is limited by the available computer power. Recent studies on radiative cloud forcing show that clouds may have an excess cooling effect to compensate for a doubling of global CO2 concentrations. There is a great deal of geographic patchiness or variability in climate. Use of global level average values fails to account for this variability. For example, in North America: 1. there may be a decrease in the stratospheric O3 column (1-3%); however, there appears to be an increase in tropospheric O3 concentrations (1-2%/year) to compensate up to 20-30% loss in the total O3 column; 2. there appears to be an increase in tropospheric CO2, N2O and CH4 at the rate of roughly 0.8%, 0.3% and 1-2%, respectively, per year; 3. there is a decrease in erythemal UV-B; and 4. there is a cooling of tropospheric air temperature due to

  1. Elementary Pre-Service Teacher Perceptions of the Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Groves, Fred H.; Pugh, Ava F.

    1999-03-01

    Environmental issues are an important topic both in national news, and in science education. Previous studies revealed that students hold many misconceptions relating to such issues as global warming, ozone depletion, and acid rain. This article expands on earlier work by Boyes et al. to examine pre-service teachers' views about these issues, especially global warming and the related term, the greenhouse effect, and the effect of their views on elementary student performance. Results support the findings of Boyes et al. that elementary education majors hold many misconceptions about these environmental issues, and these can effect their teaching of these topics in elementary classes.

  2. Ozone crisis

    SciTech Connect

    Roan, S.

    1989-01-01

    The author presents an account of the depletion of the atmosphere's ozone layer since the discovery of the phenomenon 15 years ago. The book recounts the flight to ban chlorofluorocarbons (CFC's) and describes the science, the people, and the politics involved, up to the March 1988 international treaty restricting CFC production. It surveys the media's coverage, describes the struggle for remedies, and offers a prognosis for the future.

  3. Polar Ozone Workshop. Abstracts

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1988-01-01

    Results of the proceedings of the Polar Ozone Workshop held in Snowmass, CO, on May 9 to 13, 1988 are given. Topics covered include ozone depletion, ozonometry, polar meteorology, polar stratospheric clouds, remote sensing of trace gases, atmospheric chemistry and dynamical simulations.

  4. Saving Our Ozone Shield.

    ERIC Educational Resources Information Center

    Lacoste, Beatrice

    1992-01-01

    Discusses the introduction and continued use of chlorofluorocarbons (CFCs) as related to stratospheric ozone depletion. Presents the characteristics of CFCs conducive to the chemical reaction with ozone, the history of CFC use and detection of related environmental problems, health hazards, and alternatives to CFC use. (MCO)

  5. Antarctic Ozone Hole, 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  6. Ozone in the Atmosphere: I. The Upper Atmosphere.

    ERIC Educational Resources Information Center

    Phillips, Paul S.

    1990-01-01

    Research concerning the role of stratospheric ozone and the effect of chlorofluorocarbons on stratospheric ozone are discussed. The consequences of global ozone depletion are projected. The Montreal Protocol is reviewed. (CW)

  7. On the size of the Antarctic ozone hole

    NASA Astrophysics Data System (ADS)

    Newman, Paul A.; Kawa, S. Randolph; Nash, Eric R.

    2004-11-01

    A primary estimate of the severity of the Antarctic ozone hole is its size. The size is calculated from the area contained by total column ozone values less than 220 Dobson Units (DU) during September-October. The 220-DU value is used because it is lower than pre-1980 observed ozone values, and because it is in the strong ozone gradient region. We quantitatively show that the ozone hole size is primarily sensitive to effective stratospheric chlorine trends, and secondarily to the year-to-year variations in temperatures near the edge of the polar vortex. Temperatures are in turn sensitive to variations in tropospheric planetary wave forcing of the Southern Hemisphere stratosphere. Currently the average hole size reaches approximately 25 million km2 each spring. Slow decreases of ozone depleting substances will only result in a decrease of about 1 million km2 by 2015. This slow size decrease will be obscured by large dynamically forced year-to-year variations of 4 million km2 (1σ), and possibly delayed by greenhouse gas cooling of the Antarctic stratosphere.

  8. Stratospheric ozone depletion and plant-insect interactions: Effects of UVB radiation on foliage quality of Citrus jambhiri for Trichoplusia ni

    SciTech Connect

    McCloud, E.S.; Berenbaum, M.R. )

    1994-03-01

    Projected decreases in stratospheric ozone may result in increases in shortwave ultraviolet (UVB) irradiation at the earth's surface. Furanocoumarins, phototoxic compounds found in Citrus jambhiri foliage, increase in concentration when these plans are grown under enhanced UVB. Survivorship schedules of Trichoplusia ni (Lepidoptera: Noctuidae) caterpillars reared on plants in the presence and absence of enhanced UVB regimes differ significantly; larvae develop more slowly in early life when reared on plants exposed to increased UVB. This same developmental pattern is observed when T. ni larvae are reared on artificial diets amended with ecologically appropriate amounts of furanocoumarins. Thus, anthropogenically derived changes in stratospheric ozone and concomitant changes in UV light quality at the earth's surface may influence ecological interactions between insects and their host plants by altering secondary metabolism and hence foliage quality for herbivores.

  9. Modelling trends in tropical column ozone with the UKCA chemistry-climate model

    NASA Astrophysics Data System (ADS)

    Keeble, James; Bednarz, Ewa; Banerjee, Antara; Abraham, Luke; Harris, Neil; Maycock, Amanda; Pyle, John

    2016-04-01

    Trends in tropical column ozone under a number of different emissions scenarios are explored with the UM-UKCA coupled chemistry climate model. A transient 1960-2100 simulation was run following the RCP6 scenario. Tropical averaged (10S-10N) total column ozone values decrease from the 1970s, reaching a minimum around 2000, and return to their 1980 values around 2040, consistent with the use and emission of ozone depleting substances, and their later controls under the Montreal Protocol. However, when the total column is subdivided into three partial columns, extending from the surface to the tropopause, the tropopause to 30km, and 30km to 50km, significant differences to the total column trend are seen. Modelled tropospheric column values increase from 1960-2000 before remaining steady throughout the 21st Century. Lower stratospheric column values decrease rapidly from 1960-2000, remain steady until 2050 before slowly decreasing to 2100, never recovering to their 1980s values. Upper stratospheric values decrease from 1960-2000, before rapidly increasing throughout the 21st Century, recovering to 1980s values by ~2020 and are significantly increased above the 1980s values by 2100. Using a series of idealised model simulations with varying concentrations of greenhouse gases and ozone depleting substances, we assess the physical processes driving the partial column response in the troposphere, lower stratosphere and upper stratosphere, and assess how these processes change under different emissions scenarios. Finally, we present a simple, linearised model for predicting tropical column ozone values based on greenhouse gas and ozone depleting substance scenarios.

  10. Knowledge about the 'Greenhouse Effect': have college students improved?

    NASA Astrophysics Data System (ADS)

    Jeffries, Helen; Stanisstreet, Martin; Boyes, Edward

    2001-02-01

    The prevalence of the ideas of Year I undergraduate biology students about the consequences, causes and cures of the 'greenhouse effect' was determined using a closed-form questionnaire, and the results compared with a parallel study undertaken nearly 10 years ago. Many of the students in the present study were unaware of the potential effect of global warming on the distribution of crop pests, or that ground level ozone acts as a 'greenhouse gas'. Prevalent misconceptions were that global warming is caused by increased penetration of solar radiation, that it is connected with holes in the ozone layer, that it would result in increased skin cancer, and that use of unleaded petrol would reduce it. There appeared to be a general conflation of thinking about global warming and ozone layer depletion. Despite an increased certainty about the existence and effects of global warming among experts, the results are broadly similar to, and certainly no better than, those obtained with an equivalent group of students in a previous study, suggesting that despite media publicity and inclusion of the issue of global warming in the formal curriculum, insecure knowledge and misconceptions persist.

  11. One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light.

    PubMed

    Hwang, Kuo Chu; Sagadevan, Arunachalam

    2014-12-19

    Nitric acid oxidation of cyclohexane accounts for ~95% of the worldwide adipic acid production and is also responsible for ~5 to 8% of the annual worldwide anthropogenic emission of the ozone-depleting greenhouse gas nitrous oxide (N2O). Here we report a N2O-free process for adipic acid synthesis. Treatment of neat cyclohexane, cyclohexanol, or cyclohexanone with ozone at room temperature and 1 atmosphere of pressure affords adipic acid as a solid precipitate. Addition of acidic water or exposure to ultraviolet (UV) light irradiation (or a combination of both) dramatically enhances the oxidative conversion of cyclohexane to adipic acid. PMID:25525242

  12. Ensemble simulations of the role of the stratosphere in the attribution of northern extratropical tropospheric ozone variability

    NASA Astrophysics Data System (ADS)

    Hess, P.; Kinnison, D.; Tang, Q.

    2015-03-01

    Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4-NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953-2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30-90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 h

  13. Long-term Ozone Changes and Associated Climate Impacts in CMIP5 Simulations

    NASA Technical Reports Server (NTRS)

    Eyring, V.; Arblaster, J. M.; Cionni, I.; Sedlacek, J.; Perlwitz, J.; Young, P. J.; Bekki, S.; Bergmann, D.; Cameron-Smith, P.; Collins, W. J.; Faluvegi, G.; Gottschaldt, K.-D.; Horowitz, L. W.; Kinnison, D. E.; Lamarque, J.-F.; Marsh, D. R.; Saint-Martin, D.; Shindell, D. T.; Sudo, K.; Szopa, S.; Watanabe, S.

    2013-01-01

    Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (approximately 20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to approximately 10DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.

  14. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    NASA Astrophysics Data System (ADS)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  15. A new aspect of the coupled ozone and nitrous oxide, and its implications for longterm changes in these two greenhouse gases

    NASA Astrophysics Data System (ADS)

    Prasad, S.

    The two greenhouses, N2O and O3 are currently thought to be quite independent, excepting that O(1D) from O3 photodissociation in the Hartley -Huggins band destroys N2O. A meta-analysis of the most recent and highly accurate laboratory determinations of the N2O quantum yields in UV (266 nm) photolysis of O3/O2/N2 mixtures (at 100 torr ≤ pressure ≤ 900 torr) shows that N2O is a byproduct of the way O3 shields the biosphere from the lethal ultraviolet. Thus, the two greenhouse gases, O3 and N2O, may not be truly independent in their origins; an increase in the atmospheric O3 may cause some increase in the N2O as well and complicate the estimation of the greenhouse effects of these two gages. These new developments will be discussed and the need of further laboratory studies will be identified.

  16. 20th Century Trends in the H2O2 Ice Core Record From West Antarctica: Contributions From Accumulation Variability and Stratospheric Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; Stewart, R. W.; McConnell, J. R.; Bales, R. C.

    2005-12-01

    An array of centennial-scale ice core records of hydrogen peroxide (H2O2) was recently developed using shallow cores drilled at 24 different locations across the West Antarctic Ice Sheet (WAIS). H2O2 is a major atmospheric oxidant that is closely linked to chemical feedback mechanisms controlling the composition of the atmosphere. Ice core records of H2O2 offer the potential to reconstruct past changes in the oxidation capacity of the atmosphere if the processes controlling deposition and long-term preservation are quantitatively understood. Comparison of the 1900-50 with the 1950-2000 time period shows in all cores increases of >40% in mean H2O2 during the latter half of the 20th century. Atmospheric concentration, seasonal timing and rate of snow accumulation, as well as the site temperature largely determine the amount of H2O2 preserved in an ice core. Sensitivities of the long-term H2O2 record to changes in annual accumulation and temperature quantified with a semi-empirical deposition model suggest that interannual variability in H2O2 is dominated by the accumulation signal under the current WAIS temperature regime. However, observed trends can only be explained in part by changes in accumulation rate and timing. Recent field and model experiments in West Antarctica showed a negative correlation between stratospheric ozone and summer levels of atmospheric H2O2. Using the NASA-Goddard Flight Center (GSFC) point photochemical model the magnitude of atmospheric H2O2 enhancement due to changes in surface UV radiation over the past decades was estimated and compared to the H2O2 residual not accounted for by the deposition model. We suggest that part of the observed H2O2 increase in the core record is due to the occurrence of the spring time ozone hole since the 1970s.

  17. When will Antarctic ozone begin to recover?

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-01-01

    Emissions of ozone-depleting substances have declined over recent decades, but it takes time for the ozone layer to recover. Regular measurements of ozone levels above the South Pole now stretch back 25 years. Hassler et al. analyzed these recorded ozone data to assess changes in ozone loss rates. Consistent with previous studies, they found that ozone loss rates have been stable over the past 15 years, neither increasing nor decreasing. However, they predict that, assuming future atmospheric dynamics are similar to today's, ozone loss rates will begin to decline noticeably between 2017 and 2021. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD016353, 2011)

  18. Pulling Results Out of Thin Air: Four Years of Ozone and Greenhouse Gas Measurements by the Alpha Jet Atmospheric Experiment (AJAX)

    NASA Technical Reports Server (NTRS)

    Yates, Emma

    2015-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) has been measuring atmospheric ozone, carbon dioxide, methane and meteorological parameters from near the surface to 8000 m since January 2011. The main goals are to study photochemical ozone production and the impacts of extreme events on western US air quality, provide data to support satellite observations and aid in the quantification of emission sources e.g. wildfires, urban outflow, diary and oil and gas. The aircraft is based at Moffett Field and flies multiple times a month to sample vertical profiles at selected sites in California and Nevada, providing long-term data records at these sites. AJAX is also uniquely positioned to launch with short notice sampling flights in rapid response to extreme events e.g. the 2013 Yosemite Rim fire. This talk will focus on the impacts of vertical transport on surface air quality, and investigation of emission sources from diaries and wildfires.

  19. Ozone and TFA impacts in North America from degradation of 2,3,3,3-Tetrafluoropropene (HFO-1234yf), a potential greenhouse gas replacement.

    PubMed

    Luecken, Deborah J; L Waterland, Robert; Papasavva, Stella; Taddonio, Kristen N; Hutzell, William T; Rugh, John P; Andersen, Stephen O

    2010-01-01

    We use a regional-scale, three-dimensional atmospheric model to evaluate U.S. air quality effects that would result from replacing HFC-134a in automobile air conditioners in the U.S. with HFO-1234yf. Although HFO-1234yf produces tropospheric ozone, the incremental amount is small, averaging less than 0.01% of total ozone formed during the simulation. We show that this production of ozone could be compensated for by a modest improvement in air conditioner efficiency. Atmospheric decomposition of HFO-1234yf produces trifluoroacetic acid (TFA), which is subject to wet and dry deposition. Deposition and concentrations of TFA are spatially variable due to HFO-1234yf's short atmospheric lifetime, with more localized peaks and less global transport when compared to HFC-134a. Over the 2.5 month simulation, deposition of TFA in the continental U.S. from mobile air conditioners averages 0.24 kg km(-2), substantially higher than previous estimates from all sources of current hydrofluorocarbons. Automobile air conditioning HFO-1234yf emissions are predicted to produce concentrations of TFA in Eastern U.S. rainfall at least double the values currently observed from all sources, natural and man-made. Our model predicts peak concentrations in rainfall of 1264 ng L(-1), a level that is 80x lower than the lowest level considered safe for the most sensitive aquatic organisms. PMID:19994849

  20. Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.

    2014-04-01

    There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.

  1. The ozone backlash

    SciTech Connect

    Taubes, G.

    1993-06-11

    While evidence for the role of chlorofluorocarbons in ozone depletion grows stronger, researchers have recently been subjected to vocal public criticism of their theories-and their motives. Their understanding of the mechanisms of ozone destruction-especially the annual ozone hole that appears in the Antarctic-has grown stronger, yet everywhere they go these days, they seem to be confronted by critics attacking their theories as baseless. For instance, Rush Limbaugh, the conservative political talk-show host and now-best-selling author of The Way Things Ought to Be, regularly insists that the theory of ozone depletion by CFCs is a hoax: bladerdash and poppycock. Zoologist Dixy Lee Ray, former governor of the state of Washington and former head of the Atomic Energy Commission, makes the same argument in her book, Trashing the Planet. The Wall Street Journal and National Review have run commentaries by S. Fred Singer, a former chief scientists for the Department of Transportation, purporting to shoot holes in the theory of ozone depletion. Even the June issue of Omni, a magazine with a circulation of more than 1 million that publishes a mixture of science and science fiction, printed a feature article claiming to expose ozone research as a politically motivated scam.

  2. Ozone crisis: The 15 year evolution of a sudden global emergency

    SciTech Connect

    Roan, S.L.

    1989-01-01

    Sharon L. Roan, a science journalist, has written an informative and insightful account of how stratospheric ozone depletion has come to be recognized as a global environmental issue of critical importance. Starting with the analytical work of Rowland and Molina in the early 1970s - their findings first identified chlorofluorocarbon (CFC) release as a threat to the ozone layer - Roan traces in a lively and highly readable fashion the ensuing 15 years of scientific research and debate, political controversy, industrial skepticism and tactics, and, finally, a reasonable degree of international consensus. The author recounts some of the milestones in the ozone story, with settings as varied as university laboratories, industrial meetings, congressional hearings, scientific expeditions to the Antarctic and Arctic, and the series of international negotiating sessions culminating in the Montreal Protocol in 1987. But, as Roan states, the ozone issue remains very much unfinished; even the 50-percent CFC reduction mandated by the Montreal agreement is believed to be wholly inadequate now. Evidence of a more rapid ozone depletion than was earlier estimated suggests that a total CFC ban is the only defensible response. Dealing with the economic burden such a ban may impose on poor countries is a policy challenge that will also confront the United States if we restrict carbon dioxide emissions to mitigate greenhouse warming.

  3. Another deep Antarctic ozone hole

    SciTech Connect

    Kerr, R.A.

    1990-10-19

    Again in 1990, drastic depletion of stratospheric ozone over the South Pole has been measured, in August 140 Dobson units, far below the 220 Dobson units typically seen over Antarctica. This extensive destruction of ozone is determined to be brought about by sunshine acting in combination with the chlorine released from chlorofluorohydrocarbons (CFCs) by icy stratospheric clouds. It is concluded that CFC concentrations have now reached a level that will almost totally destroy the ozone in the lower stratosphere in most years.

  4. A case of severe neurotoxicity associated with exposure to 1-bromopropane, an alternative to ozone-depleting or global-warming solvents.

    PubMed

    Samukawa, Makoto; Ichihara, Gaku; Oka, Nobuyuki; Kusunoki, Susumu

    2012-09-10

    Health hazard alerts to 1-bromopropane, an alternative to ozone layer-damaging organic solvents, have been issued by some countries. Herein, we report a new case of 1-bromopropane-induced neurotoxicity. A 43-year-old male industrial worker developed muscle weakness, pain, numbness, and gait disturbance. Neurological examination indicated sensory ataxic neuropathy associated with mild impairment of upper motor neurons. He had used 1-bromopropane as a cleaning agent for metal parts at his workplace without appropriate protection. The serum bromide level was elevated at the onset of clinical manifestations. Histopathologic examination of sural nerve biopsy showed axonal damage. Under the tentative diagnosis of 1-bromopropane toxicity, he was kept away from exposure to the solvent. This resulted in gradual improvement of symptoms, recovery of motor function, and resolution of sensory deficits. The diagnosis of 1-bromopropane neurotoxicity in this case was based on details of the work environment, the clinical course, and laboratory and pathologic findings. To our knowledge, this is the first report that describes nerve biopsy findings in a human case. PMID:22893012

  5. Trashing the planet. [How Science can help us deal with environmental problems such as acid rain, depletion of the ozone, and nuclear waste (among other things)

    SciTech Connect

    Ray, D.L.; Guzzo, L.

    1990-01-01

    The authors use a common sense approach to their goals of clarifying environmental issues, separating fact from factoid, unmaking the dooms-crying opponents of all progress, and re-establishing a sense of reason and balance with respect to the environment, modern technology and science. The introductory section is a discussion of man, technology, and the environment. The authors point out the three major problem areas in the interface between science, the media, and the public: anxiety, factoids, and misinterpretation. They also discuss the reality of the economic and technological changes from the good old days. The second section of the book focuses on four major environmental issues: the greenhouse effect; acid rain; pesticides; and chemical toxins (asbestos, PCB, dioxin). In the third section the authors present a broad approach to the nuclear issues facing us: understanding of radiation; nuclear medicine; nuclear power; and nuclear waste. Finally the book concludes with a section of environmentalism and the future. The authors discuss political environmental activism, governmental actions, and global prospective. They also list four common sense approaches for ordinary citizens: pressure on the legislative branch of government; refusal to listen to the just in case argument; keeping a sense of perspective; and realizing that humans have the responsibility to be good stewards while at the same time they cannot live without altering the earth. At the end of the book there is a sizable section of endnotes and referenced citations.

  6. Ten years of continuous observations of stratospheric ozone depleting gases at Monte Cimone (Italy)--comments on the effectiveness of the Montreal Protocol from a regional perspective.

    PubMed

    Maione, M; Giostra, U; Arduini, J; Furlani, F; Graziosi, F; Lo Vullo, E; Bonasoni, P

    2013-02-15

    Halogenated gases potentially harmful to the stratospheric ozone layer are monitored worldwide in order to assess compliance with the Montreal Protocol requiring a phase out of these compounds on a global scale. We present the results of long term (2002-2011) continuous observation conducted at the Mt. Cimone GAW Global Station located on the highest peak of the Italian Northern Apennines, at the border of two important regions: the Po Valley (and the Alps) to the North and the Mediterranean Basin to the South. Bi-hourly air samples of CFC-12, CFC-11, CFC-114, CFC-115, H-1211, H-1301, methyl chloroform, carbon tetrachloride, HCFC-22, HCFC-142b, HCFC-124 and methyl bromide are collected and analysed using a gas chromatograph-mass spectrometer, providing multi annual time series. In order to appreciate the effectiveness of the Montreal Protocol from a regional perspective, trends and annual growth rates of halogenated species have been calculated after identification of their baseline values. A comparison with results from other international observation programmes is also presented. Our data show that the peak in the atmospheric mixing ratios of four chlorofluorocarbons, two halons and two chlorocarbons has been reached and all these species now show a negative atmospheric trend. Pollution episodes are still occurring for species like halon-1211, methyl chloroform and carbon tetrachloride, indicating fresh emissions from the site domain which could be ascribed both to fugitive un-reported uses of the compounds and/or emissions from banks. For the hydrofluorocarbons changes in the baseline are affected by emissions from fast developing Countries in East Asia. Fresh emissions from the site domain are clearly declining. Methyl bromide, for which the Mediterranean area is an important source region, shows, in a generally decreasing trend, an emission pattern that is not consistent with the phase-out schedule of this compound, with a renewed increase in the last two

  7. 76 FR 41747 - Protection of Stratospheric Ozone: Extension of Global Laboratory and Analytical Use Exemption...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... that Deplete the Ozone Layer. The exemption allows persons in the United States to produce and import... further information about EPA's Stratospheric Ozone Protection regulations, the science of ozone layer... Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) is the international agreement...

  8. Unprecedented Arctic ozone loss in 2011.

    PubMed

    Manney, Gloria L; Santee, Michelle L; Rex, Markus; Livesey, Nathaniel J; Pitts, Michael C; Veefkind, Pepijn; Nash, Eric R; Wohltmann, Ingo; Lehmann, Ralph; Froidevaux, Lucien; Poole, Lamont R; Schoeberl, Mark R; Haffner, David P; Davies, Jonathan; Dorokhov, Valery; Gernandt, Hartwig; Johnson, Bryan; Kivi, Rigel; Kyrö, Esko; Larsen, Niels; Levelt, Pieternel F; Makshtas, Alexander; McElroy, C Thomas; Nakajima, Hideaki; Parrondo, Maria Concepción; Tarasick, David W; von der Gathen, Peter; Walker, Kaley A; Zinoviev, Nikita S

    2011-10-27

    Chemical ozone destruction occurs over both polar regions in local winter-spring. In the Antarctic, essentially complete removal of lower-stratospheric ozone currently results in an ozone hole every year, whereas in the Arctic, ozone loss is highly variable and has until now been much more limited. Here we demonstrate that chemical ozone destruction over the Arctic in early 2011 was--for the first time in the observational record--comparable to that in the Antarctic ozone hole. Unusually long-lasting cold conditions in the Arctic lower stratosphere led to persistent enhancement in ozone-destroying forms of chlorine and to unprecedented ozone loss, which exceeded 80 per cent over 18-20 kilometres altitude. Our results show that Arctic ozone holes are possible even with temperatures much milder than those in the Antarctic. We cannot at present predict when such severe Arctic ozone depletion may be matched or exceeded. PMID:21964337

  9. Quantitative characterization of the Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Ito, T.; Sakoda, Y.; Matsubara, K.; Takao, T.; Akagi, K.; Watanabe, Y.; Shibata, S.; Naganuma, H.

    1994-01-01

    The long-term evolution of the Antarctic ozone hole is studied based on the TOMS data and the JMA data-set of stratospheric temperature in relation with the possible role of polar stratospheric clouds (PSC's). The effective mass of depleted ozone in the ozone hole at its annual mature stage reached a historical maximum of 55 Mt in 1991, 4.3 times larger than in 1981. The ozone depletion rate during 30 days before the mature ozone hole does not show any appreciable long-term trend but the interannual fluctuations do, ranging from 0.169 to 0.689 Mt/day with the average of 0.419 Mt/day for the period of 1979 - 1991. The depleted ozone mass has the highest correlation with the region below 195 K on the 30 mb surface in June, whereas the ozone depletion rate correlates most strongly with that in August. The present result strongly suggests that the long-term evolution of the mature ozone hole is caused both by the interannual change of the latitudinal coverage of the early PSC's, which may control the latitude and date of initiation of ozone decrease, and by that of the spatial coverage of the mature PSC's which may control the ozone depletion rate in the Antarctic spring.

  10. Ozone and Interdisciplinary Science Teaching--Learning to Address the Things That Count Most.

    ERIC Educational Resources Information Center

    Hobson, Art

    1993-01-01

    Presents the ozone depletion story as an excellent case study for the integration of science-related social issues into the college science curriculum. Describes the history of ozone depletion and efforts to remedy the problem. Provides a lecture outline on ozone depletion. Discusses integrating other science-related interdisciplinary topics in…

  11. 76 FR 77909 - Protection of Stratospheric Ozone: Extension of the Laboratory and Analytical Use Exemption for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... Protocol on Substances that Deplete the Ozone Layer. The exemption allows the production and import of... science of ozone layer depletion, and other related topics. SUPPLEMENTARY INFORMATION: Section 553(d) of... Laboratory and Analytical Use Exemption The Montreal Protocol on Substances that Deplete the Ozone...

  12. Comment on "the effects on human health from stratospheric ozone depletion and its interactions with climate change" by M. Norval, A. P. Cullen, F. R. de Gruijl, J. Longstreth, Y. Takizawa, R. M. Lucas, F. P. Noonan and J. C. van der Leun, Photochem. Photobiol. Sci., 2007, 6, 232.

    PubMed

    Grant, William B; Moan, Johan; Reichrath, Jörg

    2007-08-01

    An increase in solar ultraviolet-B (UVB) radiation reaching the earth's surface is an important consequence of stratospheric ozone depletion. UVB has important effects on human health, both beneficial and harmful. Recent research has found that solar UVB reduces the risk of over 20 types of cancer, respiratory diseases caused by viruses, autoimmune diseases, and, likely, several other diseases, in addition to the well-known effects on bone diseases. On the other hand, solar UVB is an important risk factor for non-melanoma skin cancer and cataracts. Human epidemiological studies have provided evidence that solar UVA may be a more important risk factor for melanoma than UVB. If this result is correct, melanoma risk is not related to ozone depletion. We consider the net effect of solar UVB on human health to be beneficial at or near current levels. PMID:17668123

  13. There's a Hole in My Greenhouse Effect.

    ERIC Educational Resources Information Center

    Fisher, Brian W.

    1998-01-01

    Presents the results of a study that elucidates children's developing powers of explanation as they relate to global warming and ozone depletion. Discusses the results using charts and provides questions from the questionnaire used in the study. (DDR)

  14. Ozone Layer Educator's Guide.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This guide has been developed through a collaborative effort involving the U.S. Environmental Protection Agency (EPA), the National Oceanic and Atmospheric Administration (NOAA), and the National Aeronautics and Space Administration (NASA). It is part of an ongoing commitment to ensure that the results of scientific research on ozone depletion are…

  15. Seasonal variability of surface ozone in Korea

    NASA Astrophysics Data System (ADS)

    Wie, J.; Moon, B. K.; Choi, H.

    2015-12-01

    Tropospheric ozone around East Asia include Korea impacts on air quality and climate, and has been increased with rapid economic growth. To better understanding, we analyzed seasonal variability of tropospheric ozone simulated by using GEOS-Chem. Surface ozone concentration in Korea has double peaks in April and September. Tropospheric ozone increases primarily associated with westerly wind anomaly in spring, with warming in summer and autumn, and with cloud depletion in winter. Surface ozone in spring elevated after mature-phase El Niño winters. Key words: surface ozone, seasonal variability, Korea, East Asia Acknowledgements This work was supported by Korea Ministry of Environment as "Climate Change Correspondence Program."

  16. Ozonation of Canadian Athabasca asphaltene

    NASA Astrophysics Data System (ADS)

    Cha, Zhixiong

    Application of ozonation in the petrochemical industry for heavy hydrocarbon upgrading has not been sufficiently explored. Among heavy hydrocarbons, asphaltenes are the heaviest and the most difficult fractions for analysis and treatment. Therefore, ozonation of asphaltenes presents an interesting application in the petrochemical industry. Commercial application of ozonation in the petrochemical industry has three obstacles: availability of an ozone-resistant and environmentally friendly solvent, the precipitation of ozonation intermediates during reaction, and recovery of the solvent and separation of the ozonation products. Preliminary ozonation of Athabasca oil sands asphaltene in nonparticipating solvents encountered serious precipitation of the ozonation intermediates. The precipitated intermediates could be polymeric ozonides and intermolecular ozonides or polymeric peroxides. Because the inhomogeneous reaction medium caused low ozone efficiency, various participating solvents such as methanol and acetic acid were added to form more soluble hydroperoxides. The mass balance results showed that on average, one asphaltene molecule reacted with 12 ozone molecules through the electrophilic reaction and the subsequent decomposition of ozonation intermediates generated acetone extractable products. GC/MS analysis of these compounds indicated that the free radical reactions could be important for generation of volatile products. The extensively ozonated asphaltene in the presence of participating solvents were refluxed with methanol to generate more volatile products. GC/MS analysis of the methanol-esterified ozonation products indicated that most volatile products were aliphatic carboxylic acid esters generated through cleavage of substituents. Reaction kinetics study showed that asphaltene ozonation was initially a diffusion rate-controlled reaction and later developed to a chemical reaction rate-controlled reaction after depletion of the reactive aromatic sites

  17. Solar-absorption measurements of ozone from two ground based FTIR sites

    NASA Astrophysics Data System (ADS)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Blumenstock, Thomas; Hase, Frank; Gisi, Michael

    2013-04-01

    Ozone reduces the amount of ultraviolet light entering earths atmosphere and continuous monitoring of total ozone column especially in higher latitudes has been a major task since the discovery of the stratospheric ozone depletion. As tropospheric ozone is a main greenhouse gas, monitoring of ozone in the lower atmosphere and also in the tropics gains importance. Tropospheric ozone also plays an important role in air quality and high levels of ozone in the boundary layer affects the public health. Ozone is produced through a complicated path of photochemistry processes from volatile organic compounds and nitrogen oxides (NOx)[1]. In large cities, these ozone precursors are mainly emitted from anthropogenic activities and in Mexico City the ozone concentration frequently exceedes the local standard for air quality (e.g. on 80% of the days of the year 2002)[2]. Since May 2012 high resolution Fourier transform infrared solar absorption spectra have been used for determining the total column and profile of ozone at the high altitude remote site Altzomoni (19°.12`N, 98°.65`E) located 60 km southeast of Mexico City at 4000 m a.s.l. These measurements are complemented with solar absorption spectra recorded with a moderate resolution FTIR spectrometer at the UNAM campus in Mexcio City (19°25`N, 99°10`W, 2240 m a.s.l.). The vertical profiles and total columns of ozone are inferred from solar spectra by using the retrieval code PROFFIT. The results are compared with simulations of the Whole Atmosphere Community Climate Model (WACCM) and other correlative data. The ozone column amount in the polluted mixing layer of Mexico City is estimated from the intercomparison of measurements at the urban and remote sites and discussed. [1] Tie, X.; Brasseur, G.; Ying, Z. Impact of Model Resolution on Chemical Ozone Formation in Mexico City: Application of the Wrf-Chem Model. Atmospheric Chemistry and Physics. 2010, 10, 8983-8995. [2] McKinley, G.; Zuk, M.; Hojer, M.; Avalos, M

  18. Der gegenwärtige Stand des Ozon-Problems

    NASA Astrophysics Data System (ADS)

    Fabian, Peter

    1980-03-01

    The atmospheric minor constituents relevant to the ozone layer and their photochemistry are discussed. Mechanisms of a possible anthropogenic depletion of the ozone layer due to supersonic aircraft, nuclear weapons, nitrogen fertilizers, and chlorofluoromethanes, and natural depletion processes due to solar and cosmic effects, are reviewed. There have been considerable revisions to predicted ozone depletion rates due to newly determined reaction rate data and more realistic models.

  19. How do changes in the stratospheric circulation impact ozone?

    NASA Astrophysics Data System (ADS)

    Garny, Hella; Dameris, Martin; Bodeker, Greg; Grewe, Volker; Stenke, Andrea

    2010-05-01

    The Brewer-Dobson circulation (BDC) and tropical upwelling in the lower stratosphere are predicted to increase with increasing greenhouse gas (GHG) concentrations by most climate models and chemistry-climate models (CCMs). This change in the meridional circulation is likely to alter the transport of trace gases, and in particular ozone. In addition, ozone is affected by other processes such as changes in stratospheric temperatures that act to change the reaction rates of ozone-relevant chemistry. These climate-change related modifications of the ozone amount and distribution are superimposed on the depletion and recovery of the ozone layer due to stratospheric halogen loading. To assess the recovery of ozone correctly, it is important to understand the processes that affect ozone in a changing climate. In this study, multiple transient numerical simulations and complementary sensitivity studies with the E39CA CCM are used to disentangle the direct effect of changes in GHG concentrations, the indirect effect of GHG-induced sea surface temperature (SST) changes, and changes in CFC concentrations. It is shown that the increase in tropical upwelling is driven by the changes in SSTs rather than by the direct radiative effect of increased GHG concentrations. Therefore, the sensitivity simulations that separate the direct effect of increased amounts of GHGs and the indirect effect via increased SSTs can be used to separate the impact of the increase in tropical upwelling and the impact of stratospheric cooling on ozone. It is shown that the changes in the meridional circulation cause weak negative trends in the tropical lower stratosphere and associated positive trends in the extra-tropical lower stratosphere. Stratospheric cooling, on the other hand, causes a broad increase in ozone in the stratosphere. To study the processes that lead to changes in the ozone distribution in more detail, different diagnostics that can separate the changes in chemistry (production or

  20. Radiative forcing perturbation due to observed increases in tropospheric ozone at Hohenpeissenberg

    NASA Technical Reports Server (NTRS)

    Wang, Wei-Chyung; Bojkov, Rumen D.; Zhuang, Yi-Cheng

    1994-01-01

    The effect on surface temperature due to changes in atmospheric O3 depends highly on the latitude where the change occurs. Previous sensitivity calculations indicate that ozone changes in the upper troposphere and lower stratosphere are more effective in causing surface temperature change (Wang et al., 1980). Long term ground-based observations show that tropospheric ozone, especially at the tropopause region, has been increasing at middle and high latitudes in the Northern Hemisphere (NATO, 1988; Quadrennial Ozone Symposium, 1992). These increases will enhance the greenhouse effect and increase the radiative forcing to the troposphere-surface system, which is opposite to the negative radiative forcing calculated from the observed stratospheric ozone depletion recently reported in WMO (1992). We used more than two thousands regularly measured ozonesondes providing reliable vertical O3 distribution at Hohenpeissenberg (47N; 11E) for the 1967-1990 to study the instantaneous solar and longwave radiative forcing the two decades 1971-1990 and compare the forcing with those caused by increasing CO2, CH4, N2O, and CFCs. Calculations are also made to compare the O3 radiative forcing between stratospheric depletion and tropospheric increase. Results indicate that the O3 changes will induce a positive radiative forcing dominated by tropospheric O3 increase and the magnitude of the forcing is comparable to that due to CO2 increases during the two decades. The significant implications of the tropospheric O3 increase to the global climate are discussed.