Science.gov

Sample records for p-e hysteresis loop

  1. Random Hysteresis Loops

    E-print Network

    Gioia Carinci

    2013-12-01

    Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order $N^{2/3}$, with $N$ the size of the system, the "critical" hysteresis loop becomes random.

  2. Design of experiment for hysteresis loops measurement

    NASA Astrophysics Data System (ADS)

    Tu?ková, Michaela; Harman, Radoslav; Tu?ek, Pavel; Tu?ek, Ji?í

    2014-11-01

    Hysteresis loop measurements are frequently used to assess the magnetic quality of a nanomaterial under an external magnetic field. Based on the values of the hysteresis parameters, it is possible to decide whether the nanomaterial meets requirements of a given application. In this work, we present a new approach to the measurement of the hysteresis loop based on the theory of optimal experimental design. We show that the maximin efficient design leads to a reduction in the measurements costs when compared to the standard equispaced measurement design. Moreover, a significantly higher accuracy in the estimation of hysteresis parameters is reached within a broad range of plausible values. The functionality of the proposed approach is successfully tested considering real experimental data obtained from the hysteresis loop measurements of the ?-Fe2O3 phase. The measurement procedure can be easily adapted to any magnetic nanomaterial for which the values of its hysteresis parameters are to be determined.

  3. Theory of the hysteresis loop in ferromagnets 

    E-print Network

    Lyuksyutov, Igor F.; Nattermann, T.; Pokrovsky, Valery L.

    1999-01-01

    are much less known. There are only few articles devoted to the HL in ultrathin ferromagnetic films,10,11,7?9 though the hysteresis effects have been found as a side effect in many others ~see, for example, Refs. 12 and 13!. Critical exponents found...-1829/99/59~6!/4260~13!/$15.00 loop in ferromagnets v* , College Station, Texas 77843-4242 n a?t zu Ko?ln, 50937, Ko?ln, Germany , 24 rue Lhomond 75231, Paris Cedex 05, France y , College Station, Texas 77843-4242 l Physics, Moscow, Russia y 1998! a in alternating magnetic...

  4. Circuit measures hysteresis loop areas at 30 Hz

    NASA Technical Reports Server (NTRS)

    Hoffman, C.; Spilo, D.

    1967-01-01

    Analog circuit measures hysteresis loop areas as a function of time during fatigue testing of specimens subjected to sinusoidal tension-compression stresses at a frequency of Hz. When the sinusoidal stress signal is multiplied by the strain signal, the dc signal is proportional to hysteresis loop area.

  5. Understanding the Hysteresis Loop Conundrum in Pharmacokinetic / Pharmacodynamic Relationships

    PubMed Central

    Louizos, Christopher; Yáñez, Jaime A.; Forrest, Laird; Davies, Neal M.

    2015-01-01

    Hysteresis loops are phenomena that sometimes are encountered in the analysis of pharmacokinetic and pharmacodynamic relationships spanning from pre-clinical to clinical studies. When hysteresis occurs it provides insight into the complexity of drug action and disposition that can be encountered. Hysteresis loops suggest that the relationship between drug concentration and the effect being measured is not a simple direct relationship, but may have an inherent time delay and disequilibrium, which may be the result of metabolites, the consequence of changes in pharmacodynamics or the use of a non-specific assay or may involve an indirect relationship. Counter-clockwise hysteresis has been generally defined as the process in which effect can increase with time for a given drug concentration, while in the case of clockwise hysteresis the measured effect decreases with time for a given drug concentration. Hysteresis loops can occur as a consequence of a number of different pharmacokinetic and pharmacodynamic mechanisms including tolerance, distributional delay, feedback regulation, input and output rate changes, agonistic or antagonistic active metabolites, uptake into active site, slow receptor kinetics, delayed or modified activity, time-dependent protein binding and the use of racemic drugs among other factors. In this review, each of these various causes of hysteresis loops are discussed, with incorporation of relevant examples of drugs demonstrating these relationships for illustrative purposes. Furthermore, the effect that pharmaceutical formulation has on the occurrence and potential change in direction of the hysteresis loop, and the major pharmacokinetic / pharmacodynamic modeling approaches utilized to collapse and model hysteresis are detailed. PMID:24735761

  6. Triangular Current: Method for Measuring Hysteresis Loops of Ferroelectric Capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Ding-Yeong; Chang, Chun-Yen

    2004-09-01

    In this paper, we present a triangular current (TC) method for measuring the hysteresis loops of Pb(Zr,Ti)O3 capacitors prepared on Pt/Ta/SiO2/Si substrates. Like the constant current (CC) method, this method is a current source mode method for obtaining hysteresis loops. By applying a triangular charging current to a specimen, a measured voltage profile, which is almost noiseless and smooth in the high-field region, is obtained and its hysteresis curve can be determined using integral calculus to convert the charging current to charge. Under various charging conditions, the similarity of the obtained hysteresis curves implies that the step charging current and number of steps do not affect the measured results. Moreover, the parasitic effect of the probe setup is found to possibly increase the maximum polarization of the ferroelectric capacitor as the area of the capacitor is reduced. The TC method can be utilized to determine the parasitic capacitance of the probe setup and then can easily determine the corrected hysteresis loops of small capacitors. These findings reveal that the TC method constitutes a new method for measuring the hysteresis loops of ferroelectric capacitors.

  7. Completely inverted hysteresis loops: Inhomogeneity effects or experimental artifacts

    SciTech Connect

    Song, C. Cui, B.; Pan, F.; Yu, H. Y.

    2013-11-14

    Completely inverted hysteresis loops (IHL) are obtained by the superconducting quantum interference device with large cooling fields (>10 kOe) in (La,Sr)MnO{sub 3} films with self-assembled LaSrMnO{sub 4}, an antiferromagnetic interface. Although the behaviours of measured loops show many features characteristic to the IHL, its origin, however, is not due to the exchange coupling between (La,Sr)MnO{sub 3}/LaSrMnO{sub 4}, an often accepted view on IHL. Instead, we demonstrate that the negative remanence arises from the hysteresis of superconducting coils, which drops abruptly when lower cooling fields are utilized. Hence the completely inverted hysteresis loops are experimental artifacts rather than previously proposed inhomogeneity effects in complicated materials.

  8. Loading-unloading hysteresis loop of randomly rough adhesive contacts

    E-print Network

    Giuseppe Carbone; Elena Pierro; Giuseppina Recchia

    2015-11-28

    In this paper we investigate the loading and unloading behavior of soft solids in adhesive contact with randomly rough profiles. The roughness is assumed to be described by a self-affine fractal on a limited range of wave-vectors. A spectral method is exploited to generate such randomly rough surfaces. The results are statistically averaged, and the calculated contact area and applied load are shown as a function of the penetration, for loading and unloading conditions. We found that the combination of adhesion forces and roughness leads to a hysteresis loading-unloading loop. This shows that energy can be lost simply as a consequence of roughness and van der Waals forces, as in this case a large number of local energy minima exist and the system may be trapped in metastable states. We numerically quantify the hysteretic loss and assess the influence of the surface statistical properties and the energy of adhesion on the hysteresis process.

  9. ac dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops

    NASA Astrophysics Data System (ADS)

    Yang, S. M.; Jo, J. Y.; Kim, T. H.; Yoon, J.-G.; Song, T. K.; Lee, H. N.; Marton, Z.; Park, S.; Jo, Y.; Noh, T. W.

    2010-11-01

    We investigated the pinning dominated domain-wall dynamics under an ac field by studying the frequency (f) dependence of hysteresis loops of a uniaxial ferroelectric (FE) system. We measured the fully saturated polarization-electric field (P-E) hysteresis loops of high-quality epitaxial 100-nm-thick PbZr0.2Ti0.8O3 capacitors at various f (5-2000 Hz) and temperatures T (10-300 K). We observed that the coercive field EC is proportional to f? with two scaling regions, which was also reported earlier in magnetic systems [T. A. Moore and J. A. C. Bland, J. Phys.: Condens. Matter 16, R1369 (2004), 10.1088/0953-8984/16/46/R03and references therein]. In addition, we observed that the two scaling regions of EC vs f exist at all measured T . We found that the existence of the two scaling regions should come from a dynamic crossover between the creep and flow regimes of the FE domain-wall motions. By extending the theory of Nattermann , which was originally proposed for impure magnet systems [T. Nattermann, V. Pokrovsky, and V. M. Vinokur, Phys. Rev. Lett. 87, 197005 (2001)10.1103/PhysRevLett.87.197005], to the disordered FE systems, we obtained analytical expressions for the dynamic crossovers between the relaxation and creep, and between the creep and flow regimes. By comparing with the experimental data from our fully saturated P-E hysteresis loop measurements, we could construct a T-E dynamic phase diagram with f as a parameter for hysteretic FE domain dynamics in the presence of an ac field.

  10. Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy

    SciTech Connect

    Kim, Yunseok; Yang, J.-C.; Chu, Ying Hao; Yu, Pu; Lu, X.; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    The dependence of on-field and off-field hysteresis loop shape in Piezoresponse Force Microscopy (PFM) on driving voltage, Vac, is explored. A nontrivial dependence of hysteresis loop parameters on measurement conditions is observed. The strategies to distinguish between paraelectric and ferroelectric states with small coercive bias and separate reversible hysteretic and non-hysteretic behaviors are suggested. Generally, measurement of loop evolution with Vac is a necessary step to establish the veracity of PFM hysteresis measurements.

  11. Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour of

    E-print Network

    Bath, University of

    Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour is proved for integral equations of convo- lution type which contain hysteresis nonlinearities. On the basis-dimensional system in the forward path and a hysteresis nonlinearity in the feedback path. These sta- bility criteria

  12. Cumulative growth of minor hysteresis loops in the Kolmogorov model

    SciTech Connect

    Meilikhov, E. Z. Farzetdinova, R. M.

    2013-01-15

    The phenomenon of nonrepeatability of successive remagnetization cycles in Co/M (M = Pt, Pd, Au) multilayer film structures is explained in the framework of the Kolmogorov crystallization model. It is shown that this model of phase transitions can be adapted so as to adequately describe the process of magnetic relaxation in the indicated systems with 'memory.' For this purpose, it is necessary to introduce some additional elements into the model, in particular, (i) to take into account the fact that every cycle starts from a state 'inherited' from the preceding cycle and (ii) to assume that the rate of growth of a new magnetic phase depends on the cycle number. This modified model provides a quite satisfactory qualitative and quantitative description of all features of successive magnetic relaxation cycles in the system under consideration, including the surprising phenomenon of cumulative growth of minor hysteresis loops.

  13. Bistability threshold inside hysteresis loop of nonlinear fiber Bragg gratings.

    PubMed

    Yosia, Yosia; Ping, Shum; Chao, Lu

    2005-06-27

    We show the Cross Phase Modulation (XPM) effect between CW probe that operates in bistability region and strong Gaussian pump in a Fiber Bragg Grating (FBG) by Implicit 4th Order Runge-Kutta Method. The XPM effect results in three unique nonlinear switching behaviors of the probe transmission depending on the pump peak intensity and its Full Width Half Maximum (FWHM) value. From this observation, we offer the FBG three potential nonlinear switching applications in all-optical signal processing domain as: a step-up all-optical switching, an all-optical inverter, and an all-optical limiter. The bistability threshold that determines the nonlinear switching behaviors of probe transmission after Gaussian pump injection is defined numerically and shown to be equivalent to the unstable state inside hysteresis loop. PMID:19498502

  14. Simple models for dynamic hysteresis loops calculation: Application to hyperthermia optimization

    E-print Network

    Carrey, J; Respaud, M

    2010-01-01

    To optimize the heating properties of magnetic nanoparticles (MNPs) in magnetic hyperthermia applications, it is necessary to calculate the area of their hysteresis loops in an alternating magnetic field. The three types of theories suitable to describe the hysteresis loops of MNPs are presented and compared to numerical simulations: equilibrium functions, Stoner-Wohlfarth model based theories (SWMBTs) and linear response theory (LRT). Suitable formulas to calculate the hysteresis area of major cycles are deduced from SWMBTs and from numerical simulations; the domain of validity of the analytical formula is explicitly studied. In the case of minor cycles, the hysteresis area calculations are based on the LRT. A perfect agreement between LRT and numerical simulations of hysteresis loops is obtained. The domain of validity of the LRT is explicitly studied. Formulas to calculate the hysteresis area at low field valid for any anisotropy of the MNP are proposed. Numerical simulations of the magnetic field dependen...

  15. Magnetic biasing of a ferroelectric hysteresis loop in a multiferroic orthoferrite.

    PubMed

    Tokunaga, Y; Taguchi, Y; Arima, T; Tokura, Y

    2014-01-24

    In a multiferroic orthoferrite Dy0.7Tb0.3FeO3, which shows electric-field-(E-)driven magnetization (M) reversal due to a tight clamping between polarization (P) and M, a gigantic effect of magnetic-field (H) biasing on P-E hysteresis loops is observed in the case of rapid E sweeping. The magnitude of the bias E field can be controlled by varying the magnitude of H, and its sign can be reversed by changing the sign of H or the relative clamping direction between P and M. The origin of this unconventional biasing effect is ascribed to the difference in the Zeeman energy between the +P and -P states coupled with the M states with opposite sign. PMID:24484164

  16. Construction of hysteresis loops of single domain elements and coupled permalloy ring arrays by magnetic force microscopy

    E-print Network

    Grütter, Peter

    Construction of hysteresis loops of single domain elements and coupled permalloy ring arrays, the hysteresis loop is constructed by counting the percentage of switched elements imaged at remanence. Their hysteresis loop is obtained by MFM imaging at a field between the switching fields of these two states

  17. Modeling of the interleaved hysteresis loop in the measurements of rotational core losses

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Pillay, Pragasen

    2016-01-01

    The measurement of core losses in machine laminations reveals a fundamental difference between rotational and pulsating types. Rotational core losses under rotating fields decrease at high flux density, while pulsating losses keep increasing steadily. Experimental analyses of loss components Px and Py in x and y directions with rotating fields show that the loss decreases in one loss component and sometimes attains negative values. Tracking the evolution of hysteresis loops along this loss component discloses a peculiar behavior of magnetic hysteresis, where the loop changes its path from counterclockwise to clockwise within a cycle of magnetization process, the so called interleaved hysteresis loop. This paper highlights a successful procedure for modeling the interleaved hysteresis loop in the measurement of rotational core losses in electrical machine laminations using the generalized Prandtl-Ishlinskii (PI) model. The efficiency of the proposed model is compared to Preisach model. Results and conclusion of this work are of importance toward building an accurate model of rotational core losses.

  18. Inside the hysteresis loop: Multiplicity of internal states in confined fluids Alexander V. Neimark,* Peter I. Ravikovitch, and Aleksey Vishnyakov

    E-print Network

    Muzzio, Fernando J.

    Inside the hysteresis loop: Multiplicity of internal states in confined fluids Alexander V. Neimark of metastable states and capillary condensation hysteresis of a Lennard-Jones fluid in cylindrical pores inside the hysteresis loop. The region of multiple states is bounded by the states of zero

  19. Steps in the hysteresis loops of a high-spin molecule Jonathan R. Friedman and M. P. Sarachik

    E-print Network

    Friedman, Jonathan R.

    Steps in the hysteresis loops of a high-spin molecule Jonathan R. Friedman and M. P. Sarachik Corporation, Webster, New York 14580 We report the first observation of steps in the hysteresis loop of a high of 3 K, hysteresis is observed3,5 and slow exponential relaxation of the magneti- zation has been found

  20. Reduction of Major and Minor Hysteresis Loops in a Piezoelectric Juan Manuel Cruz-Hernandez and Vincent Hayward

    E-print Network

    Hayward, Vincent

    Reduction of Major and Minor Hysteresis Loops in a Piezoelectric Actuator Juan Manuel Cruz and minor hysteresis loops using an operator termed a phaser which shifts the phase of a periodic signal by an amount . For periodic inputs, hysteresis can be approximated by a phaser with a negative phase shift

  1. Material Data Representation of Hysteresis Loops for Hastelloy X Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Alam, Javed; Berke, Laszlo; Murthy, Pappu L. N.

    1993-01-01

    The artificial neural network (ANN) model proposed by Rumelhart, Hinton, and Williams is applied to develop a functional approximation of material data in the form of hysteresis loops from a nickel-base superalloy, Hastelloy X. Several different ANN configurations are used to model hysteresis loops at different cycles for this alloy. The ANN models were successful in reproducing the hysteresis loops used for its training. However, because of sharp bends at the two ends of hysteresis loops, a drift occurs at the corners of the loops where loading changes to unloading and vice versa (the sharp bends occurred when the stress-strain curves were reproduced by adding stress increments to the preceding values of the stresses). Therefore, it is possible only to reproduce half of the loading path. The generalization capability of the network was tested by using additional data for two other hysteresis loops at different cycles. The results were in good agreement. Also, the use of ANN led to a data compression ratio of approximately 22:1.

  2. Study of the fast photoswitching of spin crossover nanoparticles outside and inside their thermal hysteresis loop

    SciTech Connect

    Galle, G.; Degert, J.; Freysz, E.; Etrillard, C.; Letard, J.-F.; Guillaume, F.

    2013-02-11

    We have studied the low spin to high spin phase transition induced by nanosecond laser pulses outside and within the thermal hysteresis loop of the [Fe(Htrz){sub 2} trz](BF{sub 4}){sub 2}-H{sub 2}O spin crossover nanoparticles. We demonstrate that, whatever the temperature of the compound, the photo-switching is achieved in less than 12.5 ns. Outside the hysteresis loop, the photo-induced high spin state remains up to 100 {mu}s and then relaxes. Within the thermal hysteresis loop, the photo-induced high spin state remains as long as the temperature of the sample is kept within the thermal loop. A Raman study indicates that the photo-switching can be completed using single laser pulse excitation.

  3. Intrinsic Hysteresis Loops Calculation of BZT Thin Films

    NASA Astrophysics Data System (ADS)

    Hikam, M.; Adnan, S. R.

    2014-04-01

    The Landau Devonshire (LK) simulation is utilized to calculate the intrinsic hysteresis properties of Barium Zirconium Titanate (BZT) doped by Indium and Lanthanum. A Delphi program run on Windows platform is used to facilitate the calculation. The simulation is very useful to calculate and understand the Gibbs free energy and the relationship between spontaneous polarization and electric field.

  4. Efficient hysteresis loop simulations of nanoparticle assemblies beyond the uniaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Tamion, Alexandre; Bonet, Edgar; Tournus, Florent; Raufast, Cécile; Hillion, Arnaud; Gaier, Oksana; Dupuis, Véronique

    2012-04-01

    We propose a modified Stoner-Wohlfarth model combined with the geometrical approach of the coherent rotation of magnetization for simulating the hysteresis loops of an assembly of magnetic nanoparticles. The temperature and the size distribution are taken into account. This combined model enables the computation of hysteresis loops at low temperatures for assemblies of particles having an arbitrary type of anisotropy. The applicability of this model for fitting experimental data is discussed and results are compared to the zero-field-cooled and field-cooled fits. As an application, the hysteresis loops measured on Co clusters embedded in carbon and germanium matrices are fitted revealing unambiguously the presence of a biaxial anisotropy.

  5. Scaling Behavior of Barkhausen Avalanches along the Hysteresis loop in Nucleation-Mediated Magnetization Reversal Process

    SciTech Connect

    Im, Mi-Young; Fischer, Peter; Kim, D.-H.; Shin, S.-C.

    2008-10-14

    We report the scaling behavior of Barkhausen avalanches for every small field step along the hysteresis loop in CoCrPt alloy film having perpendicular magnetic anisotropy. Individual Barkhausen avalanche is directly observed utilizing a high-resolution soft X-ray microscopy that provides real space images with a spatial resolution of 15 nm. Barkhausen avalanches are found to exhibit power-law scaling behavior at all field steps along the hysteresis loop, despite their different patterns for each field step. Surprisingly, the scaling exponent of the power-law distribution of Barkhausen avalanches is abruptly altered from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the field step is close to the coercive field. The contribution of coupling among adjacent domains to Barkhausen avalanche process affects the sudden change of the scaling behavior observed at the coercivity-field region on the hysteresis loop of CoCrPt alloy film.

  6. Exchange bias measurement methodologies and the role of hysteresis loop asymmetry

    NASA Astrophysics Data System (ADS)

    Hovorka, Ondrej; Berger, Andreas; Friedman, Gary

    2007-03-01

    The phenomenon of exchange bias refers to the observation of a hysteresis loop field shift in ferromagnetic-antiferromagnetic (AFM) compound structures [1] and in all-ferromagnetic bilayer systems [2]. The exchange bias effect is typically quantified by determining the sum of the coercive fields from a hysteresis loop. Such a two-point (TP) measurement is, however, unambiguous only for time reversal symmetric hysteresis loops [3]. To account for the loop asymmetry, frequently observed in experiments, we recently proposed an alternative characterization scheme, called the center of mass method (CM) [3]. In the present study, we correlate the differences between TP and CM methods and the hysteresis loop asymmetry, using measurement data obtained from the all-ferromagnetic bilayer system, which are supported by model calculation results. We find the loop asymmetry to be a reliable indicator for the ambiguity of the conventional TP method. We will also discuss the applicability of the CM method to conventional AFM structures. [1] A. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552 (1999). [2] A. Berger et. al., Appl. Phys. Lett. 85, 1571 (2004). [3] O. Hovorka et. al., Appl. Phys. Lett. 89, 142513 (2006).

  7. Hysteresis loop behaviors of ferroelectric thin films: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    M. Bedoya-Hincapié, C.; H. Ortiz-Álvarez, H.; Restrepo-Parra, E.; J. Olaya-Flórez, J.; E. Alfonso, J.

    2015-11-01

    The ferroelectric response of bismuth titanate Bi4Ti3O12 (BIT) thin film is studied through a Monte Carlo simulation of hysteresis loops. The ferroelectric system is described by using a Diffour Hamiltonian with three terms: the electric field applied in the z direction, the nearest dipole–dipole interaction in the transversal (x–y) direction, and the nearest dipole–dipole interaction in the direction perpendicular to the thin film (the z axis). In the sample construction, we take into consideration the dipole orientations of the monoclinic and orthorhombic structures that can appear in BIT at low temperature in the ferroelectric state. The effects of temperature, stress, and the concentration of pinned dipole defects are assessed by using the hysteresis loops. The results indicate the changes in the hysteresis area with temperature and stress, and the asymmetric hysteresis loops exhibit evidence of the imprint failure mechanism with the emergence of pinned dipolar defects. The simulated shift in the hysteresis loops conforms to the experimental ferroelectric response. Project sponsored by the research departments of the Universidad Nacional de Colombia DIMA and DIB under Project 201010018227-“Crecimiento y caracterización eléctrica y estructural de películas delgadas de BixTiyOz producidas mediante Magnetrón Sputtering” and Project 12920-“Desarrollo teóricoexperimental de nanoestructuras basadas en Bismuto y materiales similares” and “Bisnano Project.”

  8. Domain Dynamics in Piezoresponse Force Spectroscopy: Quantitative Deconvolution and Hysteresis Loop Fine Structure

    SciTech Connect

    Bdikin, Igor; Kholkin, Andrei; Morozovska, A. N.; Svechnikov, S. V.; Kim, S.-H.; Kalinin, Sergei V

    2008-01-01

    Domain dynamics in the Piezoresponse Force Spectroscopy (PFS) experiment is studied using the combination of local hysteresis loop acquisition with simultaneous domain imaging. The analytical theory for PFS signal from domain of arbitrary cross-section and length is developed for the analysis of experimental data on Pb(Zr,Ti)O3 polycrystalline films. The results suggest formation of oblate domain at early stage of the nucleation and growth, consistent with efficient screening of depolarization field. The fine structure of the hysteresis loop is shown to be related to the observed jumps in the domain geometry during domain wall propagation (nanoscale Barkhausen jumps), indicative of strong domain-defect interactions.

  9. Investigation of the Temperature Hysteresis Phenomenon of a Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem; Cheung, Mark K.

    1999-01-01

    The temperature hysteresis phenomenon of a Loop Heat Pipe (LHP) was experimentally investigated. The temperature hysteresis was identified by the fact that the operating temperature depends upon not only the imposed power but also the previous history of the power variation. The temperature hysteresis could impose limitations on the LHP applications since the LHP may exhibit different steady-state operating temperatures at a given power input even when the condenser sink temperature remains unchanged. In order to obtain insight to this phenomenon, a LHP was tested at different elevations and tilts by using an elaborated power profile. A hypothesis was suggested to explain the temperature hysteresis. This hypothesis explains well the experimental observations. Results of this study provide a better understanding of the performance characteristics of the LHPS.

  10. Nonhysteretic behavior inside the hysteresis loop of VO2 and its possible application in infrared imaging

    E-print Network

    Luryi, Serge

    the opportunities NHBs present for infrared imaging technology based on resistive microbolometers. It is possible. INTRODUCTION Technology providing for infrared IR imaging ability, of which night vision is the most obviousNonhysteretic behavior inside the hysteresis loop of VO2 and its possible application in infrared

  11. Dipole spring ferroelectrics in superlattice SrTiO3/BaTiO3 thin films exhibiting constricted hysteresis loops

    E-print Network

    Chen, Long-Qing

    hysteresis loops Pingping Wu, Xingqiao Ma, Yulan Li, Venkatraman Gopalan, and Long-Qing Chen Citation: Appl hysteresis loops Pingping Wu,1,2,a) Xingqiao Ma,1 Yulan Li,3 Venkatraman Gopalan,2 and Long-Qing Chen2 1)3 superlattice film constrained by a GdScO3 substrate. A constricted ferroelectric hysteresis loop was observed

  12. Simulations of magnetic hysteresis loops at high temperatures

    SciTech Connect

    Plumer, M. L.; Whitehead, J. P.; Fal, T. J.; Ek, J. van; Mercer, J. I.

    2014-09-28

    The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Our results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.

  13. Damping measurements of laminated composite materials and aluminum using the hysteresis loop method

    NASA Astrophysics Data System (ADS)

    Abramovich, H.; Govich, D.; Grunwald, A.

    2015-10-01

    The damping characteristics of composite laminates made of Hexply 8552 AGP 280-5H (fabric), used for structural elements in aeronautical vehicles, have been investigated in depth using the hysteresis loop method and compared to the results for aluminum specimens (2024 T351). It was found that the loss factor, ?, obtained by the hysteresis loop method is linearly dependent only on the applied excitation frequency and is independent of the preloading and the stress amplitudes. For the test specimens used in the present tests series, it was found that the damping of the aluminum specimens is higher than the composite ones for longitudinal direction damping, while for bending vibrations the laminates exhibited higher damping values.

  14. Magnetic Study of Martensitic Transformation in Austenitic Stainless Steel by Low Field Hysteresis Loops Analysis

    SciTech Connect

    Zhang Lefu; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki; Mumtaz, Khalid; Ara, Katsuyuki; Sato, Masaya

    2005-04-09

    Magnetic method has been used to evaluate the volume percentage of {alpha}' martensitic phase in austenitic stainless steels by measuring saturation magnetization, and it is said to be a candidate NDE method. However, nondestructive detection of saturation magnetization without high magnetic field is difficult. In the current work, we present a NDE method for evaluating the magnetic properties of strain induced {alpha}' martensitic phase. Low field hysteresis loops of an austenitic stainless steels type SUS 304 after cold rolling were measured by using a yoke sensor. The results show that the initial permeability {mu}i and the relative coercive field Hcl calculated by low field hysteresis loop analysis keep monotonic relation with saturation magnetization and coercive force measured by VSM, respectively. By this method, it is possible to characterize the volume content and particle properties of {alpha}' martensitic phase in stainless steels.

  15. Magnetic Study of Martensitic Transformation in Austenitic Stainless Steel by Low Field Hysteresis Loops Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Lefu; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki; Mumtaz, Khalid; Ara, Katsuyuki; Sato, Masaya

    2005-04-01

    Magnetic method has been used to evaluate the volume percentage of ?' martensitic phase in austenitic stainless steels by measuring saturation magnetization, and it is said to be a candidate NDE method. However, nondestructive detection of saturation magnetization without high magnetic field is difficult. In the current work, we present a NDE method for evaluating the magnetic properties of strain induced ?' martensitic phase. Low field hysteresis loops of an austenitic stainless steels type SUS 304 after cold rolling were measured by using a yoke sensor. The results show that the initial permeability ?i and the relative coercive field Hcl calculated by low field hysteresis loop analysis keep monotonic relation with saturation magnetization and coercive force measured by VSM, respectively. By this method, it is possible to characterize the volume content and particle properties of ?' martensitic phase in stainless steels.

  16. Domain Dynamics in Piezoresponse Force Microscopy: Quantitative Deconvolution and Hysteresis Loop Fine Structure

    SciTech Connect

    Bdikin, Igor; Kholkin, Andrei; Morozovska, A. N.; Svechnikov, S. V.; Kim, S.-H.; Kalinin, Sergei V

    2008-01-01

    Domain dynamics in the Piezoresponse Force Spectroscopy (PFS) experiment is studied using the combination of local hysteresis loop acquisition with simultaneous domain imaging. The analytical theory for PFS signal from domain of arbitrary cross-section is developed and used for the analysis of experimental data on Pb(Zr,Ti)O3 polycrystalline films. The results suggest formation of oblate domain at early stage of the domain nucleation and growth, consistent with efficient screening of depolarization field within the material. The fine structure of the hysteresis loop is shown to be related to the observed jumps in the domain geometry during domain wall propagation (nanoscale Barkhausen jumps), indicative of strong domain-defect interactions.

  17. Diffraction hysteresis loop modelisation in transverse magneto-optical Kerr effect

    NASA Astrophysics Data System (ADS)

    Vial, Alexandre; Van Labeke, Daniel

    1998-07-01

    We theoretically study the diffraction of light by a magneto-optical grating for the transverse magneto-optical Kerr effect (TMOKE) case when the magnetization runs from saturation in one direction to saturation in the opposite direction. We use a vectorial theory of diffraction based on a perturbative approximation to the Rayleigh-Fano method, which leads to analytical formulae. We plot diffraction hysteresis loops (DHL) for several diffracted harmonics. We show that for a particular angle of incidence, the loop corresponding to one diffracted harmonic is flat.

  18. Asymmetric hysteresis loops and smearing of the dielectric anomaly at the transition temperature due to space charges in ferroelectric thin films

    E-print Network

    Alpay, S. Pamir

    Asymmetric hysteresis loops and smearing of the dielectric anomaly at the transition temperature a displacement of the polarization versus the electric field hysteresis loops, particularly along the electric of a spatial, continuous distribution of space charge on the hysteresis response and phase transition

  19. Preparation and investigation of sputtered vanadium dioxide films with large phase-transition hysteresis loops

    NASA Astrophysics Data System (ADS)

    Zhang, Huafu; Wu, Zhiming; He, Qiong; Jiang, Yadong

    2013-07-01

    Vanadium dioxide (VO2) films with large phase-transition hysteresis loops were fabricated on glass substrates by reactive direct current (DC) magnetron sputtering in Ar/O2 atmosphere and subsequent in situ annealing process in pure oxygen. The crystal structure, chemical composition, morphology and metal-insulator transition (MIT) properties of the deposited films were investigated. The results reveal that the films show a polycrystalline nature with a (0 1 1) preferred orientation and consist of small spheroidal nanoparticles. All the deposited VO2 films show large hysteresis loops due to the small density of nucleating defects and the large interfacial energies, which are determined by the characteristics of the particles in the films, namely the small transversal grain size and the spheroidal shape. The film comprising the smallest spheroidal nanoparticles not only shows a large hysteresis width of 36.3 °C but also shows a low transition temperature of 32.2 °C upon cooling. This experiment facilitates the civilian applications of the VO2 films on glass substrates in optical storage-type devices.

  20. Proximity effect induced magnetoresistance hysteresis loops in a topological insulator/YIG heterostructure

    NASA Astrophysics Data System (ADS)

    Montazeri, Mohammad; Lang, Murong; Onbasli, Mehmet C.; Kou, Xufeng; He, Liang; Ross, Caroline A.; Wang, Kang L.

    2014-03-01

    We experimentally demonstrate the proximity effect induced hysteretic magnetoresistance in an 8 quintuple layers of Bi2Se3 films grown on Gallium Gadolinium Garnet (GGG) (111) substrates with a 50 nm Yttrium Iron Garnet (YIG) buffer layer by molecular beam epitaxy. With in-plane and out-of-plane magnetic field, square wave shaped and butterfly shaped resistance hysteresis loops can be observed up to 25 K, respectively. The relationship between the hysteretic MR curves and the magnetic switching of the YIG will be discussed in the context of a proximity effect between the YIG and the TI.

  1. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    SciTech Connect

    Ehrmann, Andrea; Blachowicz, Tomasz

    2014-08-15

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  2. Double hysteresis loops and large negative and positive electrocaloric effects in tetragonal ferroelectrics.

    PubMed

    Wu, Hong-Hui; Zhu, Jiaming; Zhang, Tong-Yi

    2015-10-01

    Phase field modelling and thermodynamic analysis are employed to investigate depolarization and compression induced large negative and positive electrocaloric effects (ECEs) in ferroelectric tetragonal crystalline nanoparticles. The results show that double-hysteresis loops of polarization versus electric field dominate at temperatures below the Curie temperature of the ferroelectric material, when the mechanical compression exceeds a critical value. In addition to the mechanism of pseudo-first-order phase transition (PFOPT), the double-hysteresis loops are also caused by the abrupt rise of macroscopic polarization from the abc phase to the c phase or the sudden fall of macroscopic polarization from the c phase to the abc phase when the temperature increases. This phenomenon is called the electric-field-induced-pseudo-phase transition (EFIPPT) in the present study. Similar to the two types of PFOPTs, the two types of EFIPPTs cause large negative and positive ECEs, respectively, and give the maximum absolute values of negative and positive adiabatic temperature change (ATC ?T). The temperature associated with the maximum absolute value of negative ATC ?T is lower than that associated with the maximum positive ATC ?T. Both maximum absolute values of ATC ?Ts change with the variation in the magnitude of an applied electric field and depend greatly on the compression intensity. PMID:26307461

  3. Experimental and simulation of magnetic hysteresis loops of [Co3(pyz)(HPO4)2F2

    NASA Astrophysics Data System (ADS)

    Lee, S. F.; Chang, C. R.; Yang, J. S.; Lii, K. H.; Lee, M. D.; Yao, Y. D.

    2004-06-01

    Pure phase of [Co3(pyz)(HPO4)2F2] crystal powder was successfully synthesized. The structure consisted of neutral sheets of [Co3(HPO4)2F2], which were pillared through pyrazine ligand to form three-dimensional frameworks. Below 20 K, the magnetic hysteresis loops showed a ferromagnetic part superimposed with an antiferromagnetic (AF) part. With increasing field magnitude, the AF part showed sharp steps at 5 kOe. Micromagnetic simulation, taking into account the Co ions as AF coupled sublattices and as suggested by the negative Weiss temperature extrapolated by the inverse susceptibility versus temperature behavior, explained the hysteresis loops the temperature dependence qualitatively.

  4. On the benefits of hysteresis effects for closed-loop separation control using plasma actuation

    NASA Astrophysics Data System (ADS)

    Benard, N.; Cattafesta, L. N.; Moreau, E.; Griffin, J.; Bonnet, J. P.

    2011-08-01

    Flow separation control by a non-thermal plasma actuator is considered for a NACA 0015 airfoil at a chord Reynolds number of 1.9 × 105. Static hysteresis in the lift coefficient is demonstrated for increasing and then decreasing sinusoidal voltage amplitude supplying a typical single dielectric barrier discharge actuator at the leading edge of the model. In addition to these open-loop experiments, unsteady surface pressure signals are examined for transient processes involving forced reattachment and natural separation. The results show that strong pressure oscillations in the relatively slow separation process, compared to reattachment, precede the ultimate massive flow separation. To enhance the contrast between the parts of the signal related to the attached flow and those related to the incipient separation, RMS estimate of filtered values of Cp is used to define a flow separation predictor that is implemented in feedback control. Two simple controllers are proposed, one based on a predefined threshold of the unsteady Cp and another that utilizes the flow separation predictor to identify incipient separation. The latter effectively leverages the hysteresis in the post-stall regime to reduce the electrical power consumed by the actuator while maintaining continuously attached flow.

  5. Article surveillance magnetic marker having an hysteresis loop with large Barkhausen discontinuities

    DOEpatents

    Humphrey, Floyd B. (Bradfordwoods, PA)

    1987-01-01

    A marker for an electronic article surveillance system is disclosed comprising a body of magnetic material with retained stress and having a magnetic hysteresis loop with a large Barkhausen discontinuity such that, upon exposure of the marker to an external magnetic field whose field strength in the direction opposing the instantaneous magnetic polarization of the marker exceeds a predetermined threshold value, there results a regenerative reversal of the magnetic polarization of the marker. An electronic article surveillance system and a method utilizing the marker are also disclosed. Exciting the marker with a low frequency and low field strength, so long as the field strength exceeds the low threshold level for the marker, causes a regenerative reversal of magnetic polarity generating a harmonically rich pulse that is readily detected and easily distinguished.

  6. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of ?-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single ?-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  7. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of ?-iron containing nonmagnetic particles

    DOE PAGESBeta

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single ?-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore »on the magnetization reversal behavior and the magnetic properties.« less

  8. Modeling for Fatigue Hysteresis Loops of Carbon Fiber-Reinforced Ceramic-Matrix Composites under Multiple Loading Stress Levels

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-05-01

    In this paper, the fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under multiple loading stress levels considering interface wear has been investigated using micromechanical approach. Under fatigue loading, the fiber/matrix interface shear stress decreases with the increase of cycle number due to interface wear. Upon increasing of fatigue peak stress, the interface debonded length would propagate along the fiber/matrix interface. The difference of interface shear stress existed in the new and original debonded region would affect the interface debonding and interface frictional slipping between the fiber and the matrix. Based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading, the interface slip lengths, i.e., the interface debonded length, interface counter-slip length and interface new-slip length, are determined by fracture mechanics approach. The fatigue hysteresis loops models under multiple loading stress levels have been developed. The effects of single/multiple loading stress levels and different loading sequences on fatigue hysteresis loops have been investigated. The fatigue hysteresis loops of unidirectional C/SiC composite under multiple loading stress levels have been predicted.

  9. Nondestructive indication of plastic deformation of cold-rolled stainless steel by magnetic minor hysteresis loops measurement

    NASA Astrophysics Data System (ADS)

    Vértesy, G.; Mészáros, I.; Tomáš, I.

    2005-01-01

    Cold-rolled austenitics stainless steel samples were non-destructively characterized by means of sets of magnetic minor hysteresis loops. The flat samples were magnetized by an attached yoke, and reliable parameters were obtained from the series of minor loops, without magnetic saturation of the samples. It was found, that some magnetic quantities, well known to be closely connected to the samples' structure variation, especially relative coercivity and remanent induction, could be distinguished even more sensitively from minor loops, than from the major one.

  10. The magnetization process: Hysteresis

    NASA Technical Reports Server (NTRS)

    Balsamel, Richard

    1990-01-01

    The magnetization process, hysteresis (the difference in the path of magnetization for an increasing and decreasing magnetic field), hysteresis loops, and hard magnetic materials are discussed. The fabrication of classroom projects for demonstrating hysteresis and the hysteresis of common magnetic materials is described in detail.

  11. Physical motivations of the constitutive relations for ferroelectric ceramics and the existence of butterfly and hysteresis loops

    SciTech Connect

    Chen, P.J.

    1982-01-01

    The responses of ferroelectric ceramics can be quite complex depending on the physical processes to which they are subjected. Their mechanical, electromechanical and dielectric properties depend on domain switching, dipole dynamics and phase transformation which can be caused by external stimuli such as mechanical and electrical loadings, and temperature variations. A theory, taking into account the effects of domain switching and dipole dynamics, has been formulated, and in its present stage of development is sufficient to characterize various observable resonses. Specifically, a special case of the theory predicts the nature of the butterfly and hysteresis loops. The butterfly and hysteresis loops are manifestations of the mechanical, electro-mechanical and dielectric responses due to domain switching produced by cyclic electric fields. Comparisons of the predictions of the theory with experimental results are made in a pseudo one dimensional context.

  12. Ferroeletricity and Double Hysteresis Loop Behavior in Even-Numbered n-Nylons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongbo; Zhu, Lei; Litt, Morton

    2015-03-01

    Ferroelectric (FE) property in odd-numbered n-nylons has been known for a long time. In comparison, even-numbered n-nylons are claimed to be non-ferroelectric due to their non-polar crystalline structure, where the direction of hydrogen bonded dipoles alternates. Nevertheless, in this presentation, FE property is discovered in even n-nylons, and it is related to the mesomorphic crystalline structure formed via quenching and/or stretching. Although there was an earlier claim maintaining that FE behavior in melt-quenched nylon 6 was due to the amorphous phase, the conclusion is debatable and the understanding of the FE mechanism is still lacking. We find that poorly bonded amide dipoles, which result from the defective crystalline mesophase, play an important role in the FE behavior of nylon 12. In this mesophase, the chain conformation is smectic-like, twisted, and the hydrogen bonds are randomized. Therefore, this mesophase is abundant in defects and poorly bonded dipoles, which can easily flip under electric field. In addition, the hydrogen-bonded amides can serve as pinning points and induce double hysteresis loop behavior. This understanding illustrates that FE in even n-nylons originates from the defective crystalline phase rather than the amorphous region. NSF (DMR0907580).

  13. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization

    NASA Astrophysics Data System (ADS)

    Carrey, J.; Mehdaoui, B.; Respaud, M.

    2011-04-01

    To optimize the heating properties of magnetic nanoparticles (MNPs) in magnetic hyperthermia applications, it is necessary to calculate the area of their hysteresis loops in an alternating magnetic field. The separation between "relaxation losses" and "hysteresis losses" presented in several articles is artificial and criticized here. The three types of theories suitable for describing hysteresis loops of MNPs are presented and compared to numerical simulations: equilibrium functions, Stoner-Wohlfarth model based theories (SWMBTs), and a linear response theory (LRT) using the Néel-Brown relaxation time. The configuration where the easy axis of the MNPs is aligned with respect to the magnetic field and the configuration of a random orientation of the easy axis are both studied. Suitable formulas to calculate the hysteresis areas of major cycles are deduced from SWMBTs and from numerical simulations; the domain of validity of the analytical formula is explicitly studied. In the case of minor cycles, the hysteresis area calculations are based on the LRT. A perfect agreement between the LRT and numerical simulations of hysteresis loops is obtained. The domain of validity of the LRT is explicitly studied. Formulas are proposed to calculate the hysteresis area at low field that are valid for any anisotropy of the MNP. The magnetic field dependence of the area is studied using numerical simulations: it follows power laws with a large range of exponents. Then analytical expressions derived from the LRT and SWMBTs are used in their domains of validity for a theoretical study of magnetic hyperthermia. It is shown that LRT is only pertinent for MNPs with strong anisotropy and that SWMBTs should be used for weakly anisotropic MNPs. The optimum volume of MNPs for magnetic hyperthermia is derived as a function of material and experimental parameters. Formulas are proposed to allow to the calculation of the optimum volume for any anisotropy. The maximum achievable specific absorption rate (SAR) is calculated as a function of the MNP anisotropy. It is shown that an optimum anisotropy increases the SAR and reduces the detrimental effects of the size distribution of the MNPs. The optimum anisotropy is simple to calculate; it depends only on the magnetic field used in the hyperthermia experiments and the MNP magnetization. The theoretical optimum parameters are compared to those of several magnetic materials. A brief review of experimental results as well as a method to analyze them is proposed. This study helps in the determination of suitable and unsuitable materials for magnetic hyperthermia and provides accurate formulas to analyze experimental data. It is also aimed at providing a better understanding of magnetic hyperthermia to researchers working on this subject.

  14. A New Model Based on Adaptation of the External Loop to Compensate the Hysteresis of Tactile Sensors.

    PubMed

    Sánchez-Durán, José A; Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A

    2015-01-01

    This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes. PMID:26501279

  15. A New Model Based on Adaptation of the External Loop to Compensate the Hysteresis of Tactile Sensors

    PubMed Central

    Sánchez-Durán, José A.; Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A.

    2015-01-01

    This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes. PMID:26501279

  16. Dipole spring ferroelectrics in superlattice SrTiO3/BaTiO3 thin films exhibiting constricted hysteresis loops

    SciTech Connect

    Wu, Pingping; Ma, Xingqiao; Li, Yulan; Gopalan, Venkatraman; Chen , L.Q.

    2012-03-01

    Ferroelectric superlattice heterostructures have recently been explored for potential applications in electronic devices. In this letter we employed the phase-field approach to simulate the domain structure and switching of a (BaTiO3)8/(SrTiO3)3 superlattice film constrained by a GdScO3 substrate. A constricted ferroelectric hysteresis loop was observed with a high saturation polarization but a small coercive field. The shape of the hysteresis loop is understood by analyzing the ferroelectric polarization distributions during switching. It is demonstrated that the constricted loop show a similar mechanism to the exchange coupling effect in magnetic multilayers.

  17. Double-loop hysteresis in tetragonal KTa0.58Nb0.42O3 correlated to recoverable reorientations of the asymmetric polar domains

    NASA Astrophysics Data System (ADS)

    Tian, Hao; Yao, Bo; Tan, Peng; Zhou, Zhongxiang; Shi, Guang; Gong, Dewei; Zhang, Rui

    2015-03-01

    KTa1-xNbxO3 single crystals are typically regarded as normal ferroelectrics. Such crystals are thought to undergo a paraelectric-ferroelectric phase transition from the cubic to the tetragonal phase where generally a single hysteresis loop is expected. Nevertheless, a double-loop hysteresis is clearly observed in the tetragonal phase of KTa0.58Nb0.42O3. Our investigations reveal further that the double loop exhibits good ergodicity during changes in temperature under various applied electric fields. The origin of this unusual double-loop hysteresis in tetragonal KTa0.58Nb0.42O3 is revealed with the recoverable reorientation of the asymmetric polar domains.

  18. Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles

    NASA Astrophysics Data System (ADS)

    Mehdaoui, B.; Carrey, J.; Stadler, M.; Cornejo, A.; Nayral, C.; Delpech, F.; Chaudret, B.; Respaud, M.

    2012-01-01

    The influence of a transverse static magnetic field on the magnetic hyperthermia properties is studied on a system of large-losses ferromagnetic FeCo nanoparticles. The simultaneous measurement of the high-frequency hysteresis loops and of the temperature rise provides an interesting insight into the losses and heating mechanisms. A static magnetic field of only 40 mT is enough to cancel the heating properties of the nanoparticles, a result reproduced using numerical simulations of hysteresis loops. These results cast doubt on the possibility to perform someday magnetic hyperthermia inside a magnetic resonance imaging setup.

  19. Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.

    PubMed

    Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A

    2015-11-01

    We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings. PMID:26560566

  20. Characterization of electrocaloric properties by indirect estimation and direct measurement of temperature-electric field hysteresis loops

    NASA Astrophysics Data System (ADS)

    Maiwa, Hiroshi

    2015-10-01

    The electrocaloric properties of Pb(Zr,Ti)O3(PZT)-based and Ba(Zr,Ti)O3 ceramics and Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) crystals were investigated by the indirect estimation and direct measurement of temperature-electric field (T-E) hysteresis loops. The measured T-E loops showed a similar shape to strain-electric field (s-E) loops. The adiabatic temperature change ?T due to electrocaloric effects was estimated from the polarization change of these samples. ?Ts of 0.48 and 0.66 K were estimated for the (Pb,La)(Zr,Ti)O3 (PLZT)(9.1/65/35) ceramics and PMN-PT crystals under a field of 30 kV/cm, respectively. The measured temperature changes ?Ts in these samples upon the release of the electric field from 30 kV/cm to zero were 0.39 and 0.36 K, respectively.

  1. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples : a useful setup for magnetic hyperthermia applications

    E-print Network

    Connord, V; Tan, R P; Carrey, J; Respaud, M

    2014-01-01

    A low-cost and simple setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An AMF in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of MNPs for magnetic hyperthermia applications.

  2. Double hysteresis loop induced by defect dipoles in ferroelectric Pb(Zr{sub 0.8}Ti{sub 0.2})O{sub 3} thin films

    SciTech Connect

    Pu Yunti; Zhu Jiliang; Zhu Xiaohong; Luo Yuansheng; Wang Mingsong; Li Xuhai; Liu Jing; Zhu Jianguo; Xiao Dingquan

    2011-02-15

    Pb(Zr{sub 0.8}Ti{sub 0.2})O{sub 3} (PZT80/20) thin films were deposited on the Pt(111)/Ti/SiO{sub 2}/Si(100) substrates by RF magnetron sputtering. Mainly perovskite crystalline phase with highly (202)-preferred orientation, determined by x-ray diffraction, was formed in the lead zirconate titanate (PZT)(80/20) thin films. Polarization measurements of the unannealed and aged films showed a clear double hysteresis loop. However, the double hysteresis loop phenomenon was greatly suppressed in the PZT thin films annealed under pure oxygen, and thus they exhibited larger remnant polarization (P{sub r} = 6.3 {mu}C/cm{sup 2}). The related mechanism for the appearance of constricted and double hysteresis loops was investigated to be associated with the realignment and disassociation of defect dipoles via oxygen octahedral rotations or oxygen vacancy diffusion. The butterfly-shaped C-V characteristic curve with a valley gave further evidence for double hysteresis loop characteristic in the unannealed and aged PZT thin films.

  3. Abstract: Present ferroelectric (FE) capacitor models mostly rely on continuous hysteresis loop characteristics of FE materials. Our experimental results show that this approach overestimates

    E-print Network

    Gulak, P. Glenn

    Abstract: Present ferroelectric (FE) capacitor models mostly rely on continuous hysteresis loop-model. The model mainly consists of two nonlinear capacitors, corresponding to the two different polarization states of an FE capacitor. I. INTRODUCTION Ferroelectric (FE) capacitors have long been recognized

  4. Abstract: Present ferroelectric (FE) capacitor models mostly rely on continuous hysteresis loop characteristics of FE materials. Our experimental results show that this approach overestimates

    E-print Network

    Sheikholeslami, Ali

    Abstract: Present ferroelectric (FE) capacitor models mostly rely on continuous hysteresis loop­model. The model mainly consists of two nonlinear capacitors, corresponding to the two different polarization states of an FE capacitor. I. INTRODUCTION Ferroelectric (FE) capacitors have long been recognized

  5. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—A useful setup for magnetic hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Connord, V.; Mehdaoui, B.; Tan, R. P.; Carrey, J.; Respaud, M.

    2014-09-01

    A setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An alternating magnetic field in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops, and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of magnetic nanoparticles for magnetic hyperthermia applications.

  6. Dipole spring ferroelectrics in superlattice SrTiO3/BaTiO3 thin films exhibiting constricted hysteresis loops

    SciTech Connect

    Wu, Pingping; Ma, Xingqiao; Li, Yulan; Gopalan, Venkatraman; Chen , L.Q.

    2012-03-01

    Ferroelectric superlattice heterostructures have recently been explored for potential applications in electronic devices. In this letter we employed the phase-field approach to simulate the domain structure and switching of a (BaTiO3)8/(SrTiO3)3 superlattice film constrained by a GdScO3 substrate. A constricted ferroelectric hysteresis loop was observed with a high saturation polarization but a small coercive field. The shape of the hysteresis loop is understood by analyzing the ferroelectric polarization distributions during switching. It is demonstrated that the multilayers stack behave as dipole spring ferroelectric, named in analogy to exchange spring magnets in magnetic multilayers that show similar loops.

  7. Experiments on snap buckling, hysteresis and loop formation in twisted rods.

    E-print Network

    Neukirch, Sébastien

    of D) can cause it to throw a loop (hockling). If the initial twist is high enough, then further D the displacements are controlled and the corresponding forces and moments remain passive. The two pertinent control. It is through D and R that the force T (po

  8. Template-free synthesis of Nd0.1Bi0.9FeO3 nanotubes with large inner diameter and wasp-waisted hysteresis loop

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Wang, S. Y.; Wang, X.; Xu, X. L.; Gao, J.; Liu, W. F.

    2015-08-01

    One-dimensional (1D) nanotubes of Nd0.1Bi0.9FeO3 (NBFO) with an inner diameter of ˜50 nm were synthesized via sol-gel based electrospinning without template assistant. The phases, morphologies, crystalline structures, and magnetic properties of these 1D nanostructures were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and SQUID, respectively. It was found that the calcination condition plays a crucial role in determining the morphologies and the magnetic properties. Interestingly, these 1D NBFO nanotubes exhibit wasp-waisted magnetic hysteresis with a lower coercivity and larger saturation magnetization, which were prevalent in natural rocks and artificial composite materials. The origin of these wasp-waisted hysteresis loops was discussed.

  9. Hysteresis in the Sky

    E-print Network

    Choudhury, Sayantan

    2015-01-01

    Hysteresis is a phenomenon occurring naturally in several magnetic and electric materials in condensed matter physics. When applied to cosmology, aka cosmological hysteresis, has interesting and vivid implications in the scenario of a cyclic bouncy universe. Most importantly, this physical prescription can be treated as an alternative proposal to inflationary paradigm. Cosmological hysteresis is caused by the asymmetry in the equation of state parameter during expansion and contraction phase of the universe, due to the presence of a single scalar field. This process is purely thermodynamical in nature, results in a non-vanishing hysteresis loop integral $(\\oint pdV)$ in cosmology. When applied to variants of modified gravity models -1) Dvali-Gabadadze-Porrati (DGP) brane world gravity, 2) Cosmological constant dominated Einstein gravity, 3) Loop Quantum Gravity (LQG), 4) Einstien-Gauss-Bonnet brane world gravity and 5) Randall Sundrum single brane world gravity (RSII), under certain circumstances, this phenom...

  10. M P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E J Mathematical Physics Electronic Journal

    E-print Network

    de Veciana, Gustavo

    M P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E JM P E J Mathematical Physics Electronic Journal ISSN 1086. Bellissard Rotation numbers for Jacobi matrices with matrix entries Hermann Schulz-Baldes Mathematisches

  11. Anomalous Hall effect with giant hysteresis loop in La0.67Sr0.33MnO3| SrRuO3 superlattices

    NASA Astrophysics Data System (ADS)

    Shiomi, Y.; Handa, Y.; Kikkawa, T.; Saitoh, E.

    2015-07-01

    We report anomalous Hall effects exhibiting a hysteresis loop as large as about 10 T in a ferromagnetic superlattice comprising La0.67Sr0.33MnO3 and SrRuO3 layers. The superlattices grown by pulsed laser deposition exhibit a strong antiferromagnetic interlayer coupling below 110 K, where both La0.67Sr0.33MnO3 and SrRuO3 layers show anomalous Hall effects. With increasing magnetic-field strength, the anomalous Hall resistivity in the superlattices changes its sign depending on the magnetization directions of the La0.67Sr0.33MnO3 and SrRuO3 layers. As a consequence of competition among the antiferromagnetic interlayer coupling, the Zeeman effect, and magnetic anisotropies, the width of the hysteresis loop in the anomalous Hall resistivity in the superlattices becomes larger than 8 T at 10 K, clearly greater than those observed in La0.67Sr0.33MnO3 and SrRuO3 single layer films.

  12. Scaling Behavior of Amplitude-Dependent Ferroelectric Hysteresis Loops in an Epitaxial PbZr0.2Ti0.8O3 Thin Film

    SciTech Connect

    Yang, Sang Mo; Jang, S. Y.; Kim, T. H.; Kim, Hun-Ho; Lee, Ho Nyung; Yoon, J. -G.

    2011-01-01

    We investigated the scaling behavior of ferroelectric (FE) hysteresis loops as a function of the applied field amplitude (E{sub 0}) in a high-quality epitaxial PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} (PZT) thin film. We observed that the areas of the polarization-electric field hysteresis loops (A) followed the scaling law A {proportional_to} E{sub 0}{sup {alpha}}, with the exponent {alpha} = 0.45 {+-} 0.01. This result is in excellent agreement with the theoretical prediction of {alpha} by the two-dimensional Ising model. In addition, we found that the coercive field (E{sub C}) showed E{sub C} {proportional_to} E{sub 0}{sup {gamma}} with the exponent {gamma} = 0.28 {+-} 0.01. We attribute this relationship to the difference in the sweep rate of the field amplitude E{sub 0}. From the obtained {gamma} value, the growth dimension of FE domains is found to be about 1.68 in our epitaxial PZT thin film.

  13. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  14. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loop for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  15. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Xu, Ke; Jiang, Weilin; Droubay, Timothy; Ramuhalli, Pradeep; Edwards, Danny; Johnson, Bradley R.; McCloy, John

    2015-12-01

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversal curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.

  16. Ab initio study of pressure stabilized NiTi allotropes: Pressure-induced transformations and hysteresis loops

    NASA Astrophysics Data System (ADS)

    Holec, David; Friák, Martin; Dlouhý, Antonín; Neugebauer, Jörg

    2011-12-01

    Changes in stoichiometric NiTi allotropes induced by hydrostatic pressure have been studied employing density functional theory. By modeling the pressure-induced transitions in a way that imitates quasistatic pressure changes, we show that the experimentally observed B19' phase is (in its bulk form) unstable with respect to another monoclinic phase, B19''. The lower symmetry of the B19'' phase leads to unique atomic trajectories of Ti and Ni atoms (that do not share a single crystallographic plane) during the pressure-induced phase transition. This uniqueness of atomic trajectories is considered a necessary condition for the shape memory ability. The forward and reverse pressure-induced transition B19' ? B19'' exhibits a hysteresis that is shown to originate from hitherto unexpected complexity of the Born-Oppenheimer energy surface.

  17. Thermo-magnetic history effects in the giant magnetostriction across the first-order transition and minor hysteresis loops modeling in Fe0.955Ni0.045Rh alloy.

    PubMed

    Manekar, Meghmalhar; Sharma, V K; Roy, S B

    2012-05-30

    Results of temperature- and magnetic field-dependent strain measurements across the first-order antiferromagnetic to ferromagnetic phase transition in Fe(0.955)Ni(0.045)Rh are presented. Distinct thermal and magnetic field hystereses are observed in the measured strain across the phase transition. The minor hysteresis loops inside the hysteretic regime across the temperature-driven transition are modeled using the Preisach model of hysteresis. The applicability of the Preisach model to explain the general features of minor hysteresis loops is discussed for a disorder influenced first-order transition. The minor hysteresis loops show the property of retaining the memory of the starting or end point of the temperature cycle followed within the hysteretic region. A larger temperature excursion within the hysteretic region wipes out the memory of a smaller temperature cycle which contains one of the extrema of the larger cycle. The end-point memory and the wiping-out property of the minor hysteresis loops can be described quite well within the Preisach model, irrespective of the temperature history followed to reach a particular starting point. Thermo-magnetic history effects across the magnetic field-induced transition are explained, which will enable the choice of the starting point of an experimental cycle in the field-temperature phase space so as to achieve the desired functionality. Our results highlight the necessity to understand the influence of disorder on a first-order phase transition so as to achieve a repeatable performance of materials whose functionalities are based on such a transition. PMID:22543692

  18. Hysteresis in the Sky

    E-print Network

    Sayantan Choudhury; Shreya Banerjee

    2015-06-11

    Hysteresis is a phenomenon occurring naturally in several magnetic and electric materials in condensed matter physics. When applied to cosmology, aka cosmological hysteresis, has interesting and vivid implications in the scenario of a cyclic bouncy universe. Most importantly, this physical prescription can be treated as an alternative proposal to inflationary paradigm. Cosmological hysteresis is caused by the asymmetry in the equation of state parameter during expansion and contraction phase of the universe, due to the presence of a single scalar field. This process is purely thermodynamical in nature, results in a non-vanishing hysteresis loop integral $(\\oint pdV)$ in cosmology. When applied to variants of modified gravity models -1) Dvali-Gabadadze-Porrati (DGP) brane world gravity, 2) Cosmological constant dominated Einstein gravity, 3) Loop Quantum Gravity (LQG), 4) Einstien-Gauss-Bonnet brane world gravity and 5) Randall Sundrum single brane world gravity (RSII), under certain circumstances, this phenomenon leads to the increase in amplitude of the consecutive cycles and to a universe with older and larger successive cycles, provided we have physical mechanisms to make the universe bounce and turnaround. This inculcates an arrow of time in a dissipationless cosmology. Remarkably, this phenomenon appears to be widespread in several cosmological potentials in variants of modified gravity background, which we explicitly study for- i) Hilltop, ii) Natural and iii) Colemann-Weinberg potentials, in this paper. Semi-analytical analysis of these models, for different potentials with minimum/minima, show that the conditions which creates a universe with an ever increasing expansion, depend on the signature of the hysteresis loop integral $(\\oint pdV)$ as well as on the variants of model parameters.

  19. Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, S. T.; Ma, Y. Q.; Zheng, G. H.; Dai, Z. X.

    2015-04-01

    Well-dispersed uniform cobalt ferrite nanoparticles were synthesized by thermal decomposition of a metal-organic salt in organic solvent with a high boiling point. Some of the nanoparticles were diluted in a SiO2 matrix and then the undiluted and diluted samples were characterized and their magnetic behavior explored. The undiluted and diluted samples exhibited maximum coercivity Hc of 23 817 and 15 056 Oe at 10 K, respectively, which are the highest values reported to date, and the corresponding ratios of remanence (Mr) to saturation (Ms) magnetization (Mr/Ms) were as high as 0.85 and 0.76, respectively. Interestingly, the magnetic properties of the samples changed at 200 K, which was observed in magnetic hysteresis M(H) loops and zero-field cooling curves as well as the temperature dependence of Hc, Mr/Ms, anisotropy, dipolar field, and the magnetic grain size. Below 200 K, both samples have large effective anisotropy, which arises from the surface spins, resulting in large Hc and Mr/Ms. Above 200 K, the effective anisotropy decreases because there is no contribution from surface spins, while the dipolar interaction increases, resulting in small Hc and Mr/Ms. Our results indicate that strong anisotropy and weak dipolar interaction tend to increase Hc and Mr/Ms, and also clarify that the jumps around H = 0 in M(H) loops can be attributed to the reorientation of surface spins. This work exposes the underlying mechanism in nanoscale magnetic systems, which should lead to improved magnetic performance.

  20. Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles.

    PubMed

    Xu, S T; Ma, Y Q; Zheng, G H; Dai, Z X

    2015-04-21

    Well-dispersed uniform cobalt ferrite nanoparticles were synthesized by thermal decomposition of a metal-organic salt in organic solvent with a high boiling point. Some of the nanoparticles were diluted in a SiO2 matrix and then the undiluted and diluted samples were characterized and their magnetic behavior explored. The undiluted and diluted samples exhibited maximum coercivity Hc of 23,817 and 15,056 Oe at 10 K, respectively, which are the highest values reported to date, and the corresponding ratios of remanence (Mr) to saturation (Ms) magnetization (Mr/Ms) were as high as 0.85 and 0.76, respectively. Interestingly, the magnetic properties of the samples changed at 200 K, which was observed in magnetic hysteresis M(H) loops and zero-field cooling curves as well as the temperature dependence of Hc, Mr/Ms, anisotropy, dipolar field, and the magnetic grain size. Below 200 K, both samples have large effective anisotropy, which arises from the surface spins, resulting in large Hc and Mr/Ms. Above 200 K, the effective anisotropy decreases because there is no contribution from surface spins, while the dipolar interaction increases, resulting in small Hc and Mr/Ms. Our results indicate that strong anisotropy and weak dipolar interaction tend to increase Hc and Mr/Ms, and also clarify that the jumps around H = 0 in M(H) loops can be attributed to the reorientation of surface spins. This work exposes the underlying mechanism in nanoscale magnetic systems, which should lead to improved magnetic performance. PMID:25787852

  1. Entropic dynamical hysteresis in a driven system

    NASA Astrophysics Data System (ADS)

    Mondal, Debasish; Das, Moupriya; Ray, Deb Shankar

    2012-03-01

    We show that the application of a time periodic field driving a Brownian particle between the two lobes of a two-dimensional bilobal enclosure results in a hysteresis loop in the variation of integrated probability of residence of the particle as a function of the field. The confinement of the particle is characterized by symmetry breaking of the hysteresis loop, and the area of the loop exhibits a turnover with variation of frequency of the field. This dynamical hysteresis is geometry controlled, entropic in nature, and amenable to theoretical analysis with a two-state model.

  2. Cosmological Hysteresis and the Cyclic Universe

    E-print Network

    Varun Sahni; Aleksey Toporensky

    2012-07-03

    A Universe filled with a homogeneous scalar field exhibits `Cosmological hysteresis'. Cosmological hysteresis is caused by the asymmetry in the equation of state during expansion and contraction. This asymmetry results in the formation of a hysteresis loop: $\\oint pdV$, whose value can be non-vanishing during each oscillatory cycle. For flat potentials, a negative value of the hysteresis loop leads to the increase in amplitude of consecutive cycles and to a universe with older and larger successive cycles. Such a universe appears to possess an arrow of time even though entropy production is absent and all of the equations respect time-reversal symmetry ! Cosmological hysteresis appears to be widespread and exists for a large class of scalar field potentials and mechanisms for making the universe bounce. For steep potentials, the value of the hysteresis loop can be positive as well as negative. The expansion factor in this case displays quasi-periodic behaviour in which successive cycles can be both larger as well as smaller than previous ones. This quasi-regular pattern resembles the phenomenon of BEATS displayed by acoustic systems. Remarkably, the expression relating the increase/decrease in oscillatory cycles to the quantum of hysteresis appears to be model independent. The cyclic scenario is extended to spatially anisotropic models and it is shown that the anisotropy density decreases during successive cycles if the hysteresis loop is negative.

  3. A magnetic hysteresis model

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Henretty, Debra A.

    1995-01-01

    The Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) will be deployed from the Space Shuttle and used as a target for a Shuttle-mounted laser. It will be a cylindrical satellite with several corner cube reflectors on the ends. The center of mass of the cylinder will be near one end, and aerodynamic torques will tend to align the axis of the cylinder with the spacecraft velocity vector. Magnetic hysteresis rods will be used to provide passive despin and oscillation-damping torques on the cylinder. The behavior of the hysteresis rods depends critically on the 'B/H' curves for the combination of materials and rod length-to-diameter ratio ('l-over-d'). These curves are qualitatively described in most Physics textbooks in terms of major and minor 'hysteresis loops'. Mathematical modeling of the functional relationship between B and H is very difficult. In this paper, the physics involved is not addressed, but an algorithm is developed which provides a close approximation to empirically determined data with a few simple equations suitable for use in computer simulations.

  4. Hysteresis behaviors of a spin-1 anisotropic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Ak?nc?, Ümit

    2016-01-01

    The hysteresis behaviors of anisotropic S-1 Heisenberg model have been studied within the effective field theory with two spin cluster. After giving the phase diagrams, the effect of the crystal field and anisotropy in the exchange interaction on the hysteresis loops has been determined. One important finding is the observation of double hysteresis loops in the low temperature and negative crystal field region. Double hysteresis loops disappear as the exchange anisotropy decreases. This behavior has been investigated carefully and physical explanation has also been given briefly.

  5. Modeling and Scaling of Hysteresis in Magnetic Materials. Frequency, Pick of Induction and Temperature Dependence

    E-print Network

    Krzysztof Z. Sokalski

    2015-10-15

    Recently introduced model of magnetic hysteresis was extended into set of the following features: frequency, pick of induction and temperature of specimen. Group theoretical classification of hysteresis loops' sets is presented. An effect analogous to the Zeeman splitting has been revealed in the set of the all hysteresis loops.

  6. Modeling and Scaling of Hysteresis in Magnetic Materials. Frequency, Pick of Induction and Temperature Dependence

    E-print Network

    Sokalski, Krzysztof Z

    2015-01-01

    Recently introduced model of magnetic hysteresis was extended into set of the following features: frequency, pick of induction and temperature of specimen. Group theoretical classification of hysteresis loops' sets is presented. An effect analogous to the Zeeman splitting has been revealed in the set of the all hysteresis loops.

  7. Hysteresis behavior of Blume-Capel model on a cylindrical Ising nanotube

    NASA Astrophysics Data System (ADS)

    Canko, Osman; Ta?k?n, Ferhat; Argin, Kamil; Erdinç, Ahmet

    2014-04-01

    We have investigated Blume-Capel model on a cylindrical Ising nanotube by using the effective field theory with correlations. Hysteresis loops, magnetic susceptibility and coercivities have been calculated numerically for ferromagnetic and antiferromagnetic cases. When interactions are low between the core and shell sites, double and triple hysteresis loops can be seen in the system for ferro- and antiferromagnetic interactions, respectively. The effect of temperature has been examined on hysteresis loops and dependencies of coercivity based on temperature are depicted.

  8. Hysteresis and nucleation in condensed matter

    E-print Network

    Yuri Mnyukh

    2011-03-11

    The physical origin of hysteresis in condensed matter had not been previously identified. The current "science of hysteresis" is useful, but limited by phenomenological modeling. This article fills the void by revealing the exclusive cause of the hysteresis in structural, ferromagnetic and ferroelectric phase transitions, as well as upon magnetization in magnetic fields and polarization in electric fields. This exclusive cause is nucleation lags. The lags are inevitable due to the nucleation specifics, far from the classical "random fluctuation" model. A major assumption that spin orientation is determined by the orientation of its carrier explains why ferromagnetic transitions and magnetization in magnetic fields materialize by structural rearrangements at interfaces, as well as why magnetization by "rotation" is impossible. Formation of the structural and ferromagnetic hysteresis loops is considered in detail.

  9. Chaos-induced dynamical hysteresis: Energetic and entropic barriers

    NASA Astrophysics Data System (ADS)

    Das, Moupriya; Ray, Deb Shankar

    2013-03-01

    We consider periodically driven dynamical systems with energetic and entropic barriers in the presence of deterministic noise. Due to the relaxational delay, the response of the system lags behind the applied field and exhibits dynamical hysteresis manifested in the nonvanishing area of the response-function-field loop. It is demonstrated that the hysteresis loop area satisfies a scaling law with exponents that depend on the nature of the barrier.

  10. Hysteresis during Cycling of Nickel Hydroxide Active Material Venkat Srinivasan,a,

    E-print Network

    Weidner, John W.

    Hysteresis during Cycling of Nickel Hydroxide Active Material Venkat Srinivasan,a, *,c John W, Berkeley, California 94720, USA The nickel hydroxide electrode is known to exhibit a stable hysteresis loop electronically July 31, 2001. Hysteresis is a characteristic of a system in which a change in the direction

  11. Dynamic hysteresis control of lift on a pitching wing

    NASA Astrophysics Data System (ADS)

    Williams, David R.; An, Xuanhong; Iliev, Simeon; King, Rudibert; Reißner, Florian

    2015-05-01

    Dynamic hysteresis appearing in the lift force during pitching maneuvers is distinctly different from conventional static hysteresis. The size and shape of dynamic hysteresis loops are dependent on the degree of flow attachment, the dimensionless pitching frequency, and two time delays associated with the flow separation process. A linearized version of the Goman-Khrabrov model is derived and shown to capture the dynamic hysteresis characteristics when the pitching amplitude is small. Closed-loop control using a linearized version of the Goman-Khrabrov model is demonstrated, which incorporates a disturbance model into the feed-forward controller. The controller is shown to reduce the dynamic hysteresis during periodic pitching, step-up and step-down maneuvers, and quasi-random pitching maneuvers.

  12. Efficient Computational Model of Hysteresis

    NASA Technical Reports Server (NTRS)

    Shields, Joel

    2005-01-01

    A recently developed mathematical model of the output (displacement) versus the input (applied voltage) of a piezoelectric transducer accounts for hysteresis. For the sake of computational speed, the model is kept simple by neglecting the dynamic behavior of the transducer. Hence, the model applies to static and quasistatic displacements only. A piezoelectric transducer of the type to which the model applies is used as an actuator in a computer-based control system to effect fine position adjustments. Because the response time of the rest of such a system is usually much greater than that of a piezoelectric transducer, the model remains an acceptably close approximation for the purpose of control computations, even though the dynamics are neglected. The model (see Figure 1) represents an electrically parallel, mechanically series combination of backlash elements, each having a unique deadband width and output gain. The zeroth element in the parallel combination has zero deadband width and, hence, represents a linear component of the input/output relationship. The other elements, which have nonzero deadband widths, are used to model the nonlinear components of the hysteresis loop. The deadband widths and output gains of the elements are computed from experimental displacement-versus-voltage data. The hysteresis curve calculated by use of this model is piecewise linear beyond deadband limits.

  13. Revisiting the hysteresis effect in surface energy budgets

    NASA Astrophysics Data System (ADS)

    Sun, Ting; Wang, Zhi-Hua; Ni, Guang-Heng

    2013-05-01

    The hysteresis effect in diurnal cycles of net radiation Rn and ground heat flux G0 has been observed in many studies, while the governing mechanism remains vague. In this study, we link the phenomenology of hysteresis loops to the wave phase difference between the diurnal evolutions of various terms in the surface energy balance. Rn and G0 are parameterized with the incoming solar radiation and the surface temperature as two control parameters of the surface energy partitioning. The theoretical analysis shows that the vertical water flux W and the scaled ratio As*>/AT* (net shortwave radiation to outgoing longwave radiation) play crucial roles in shaping hysteresis loops of Rn and G0. Comparisons to field measurements indicate that hysteresis loops for different land covers can be well captured by the theoretical model, which is also consistent with Camuffo-Bernadi formula. This study provides insight into the surface partitioning and temporal evolution of the energy budget at the land surface.

  14. Hysteresis in Metal Hydrides.

    ERIC Educational Resources Information Center

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  15. Cosmological hysteresis and the cyclic universe

    NASA Astrophysics Data System (ADS)

    Sahni, Varun; Toporensky, Aleksey

    2012-06-01

    A universe filled with a homogeneous scalar field exhibits “cosmological hysteresis.” Cosmological hysteresis is caused by the asymmetry in the equation of state during expansion and contraction. This asymmetry results in the formation of a hysteresis loop: ?pdV, whose value can be nonvanishing during each oscillatory cycle. For flat potentials, a negative value of ?pdV leads to the increase in amplitude of consecutive cycles and to a universe with older and larger successive cycles. Such a universe appears to possess an arrow of time even though entropy production is absent and all of the equations respect time-reversal symmetry. Cosmological hysteresis appears to be widespread and exists for a large class of scalar-field potentials and mechanisms for making the universe bounce. For steep potentials, the value of ?pdV can be positive as well as negative. The expansion factor in this case displays quasiperiodic behavior in which successive cycles can be both larger as well as smaller than previous ones. This quasiregular pattern resembles the phenomenon of beats displayed by acoustic systems. Remarkably, the expression relating the increase or decrease in oscillatory cycles to the quantum of hysteresis appears to be model independent. The cyclic scenario is extended to spatially anisotropic models and it is shown that the anisotropy density decreases during successive cycles if ?pdV is negative.

  16. Shape fluctuation-induced dynamic hysteresis

    NASA Astrophysics Data System (ADS)

    Das, Moupriya; Mondal, Debasish; Ray, Deb Shankar

    2012-03-01

    We consider a system of Brownian particles confined in a two-dimensional bilobal enclosure whose walls are driven in time periodically by an external perturbation. The response of the particles under shape modulation is characterized by a relaxational delay which results in a non-vanishing area of the response function—field loop, response function being the integrated probability of residence of the particles in any of the lobes. This phenomenon is an entropic analogue of dynamical hysteresis, which vanishes in the quasi-static limit. The hysteresis loop area depends on temperature, strength of modulating field, and the geometrical parameters of the enclosure and exhibits a turnover as a function of frequency of the field.

  17. Elucidation of Conformational Hysteresis on a Giant DNA

    E-print Network

    Chwen-Yang Shew; Yuji Higuchi; Kenichi Yoshikawa

    2007-05-04

    The conformational behavior of a giant DNA mediated by condensing agents in the bulk solution has been investigated through experimental and theoretical approaches. Experimentally, a pronounced conformational hysteresis is observed for folding and unfolding processes, by increasing and decreasing the concentration of condensing agent PEG (Polyethylene glycol), respectively. To elucidate the observed hysteresis, a semiflexible chain model is studied by using Monte Carlo simulations for the coil-globule transition. In the simulations, the hysteresis loop emerges for stiff enough chains, indicating distinct pathways for folding and unfolding processes. Also, our results show that globular state is thermodynamically more stable than coiled state in the hysteresis loop. Our findings suggest that increasing chain stiffness may reduce the chain conformations relevant to the folding pathway, which impedes the folding process.

  18. Orientational hysteresis in swarms of active particles in external field

    E-print Network

    Romensky, Maksym

    2015-01-01

    Structure and ordering in swarms of active particles have much in common with condensed matter systems like magnets or liquid crystals. A number of important characteristics of such materials can be obtained via dynamic tests such as hysteresis. In this work, we show that dynamic hysteresis can be observed also in swarms of active particles and possesses similar properties to the counterparts in magnetic materials. To study the swarm dynamics, we use computer simulation of the active Brownian particle model with dissipative interactions. The swarm is confined to a narrow linear channel and one-dimensional polar order parameter is measured. In an oscillating external field, the order parameter demonstrates dynamic hysteresis with the shape of the loop and its area varying with the amplitude and frequency of the applied field, swarm density and the noise intensity. We measure the scaling exponents for the hysteresis loop area, which can be associated with the controllability of the swarm. Although the exponents...

  19. Step-induced magnetic-hysteresis anisotropy in ferromagnetic thin films D. Zhao, Feng Liu,a)

    E-print Network

    Simons, Jack

    Step-induced magnetic-hysteresis anisotropy in ferromagnetic thin films D. Zhao, Feng Liu,a) D. L; accepted for publication 15 November 2001 We investigate the quasistatic magnetic hysteresis. The simulated hysteresis loops show a strong anisotropy: the coercive field is the largest when the external

  20. Dynamic hysteresis features in a two-dimensional mixed Ising system

    NASA Astrophysics Data System (ADS)

    Erta?, Mehmet; Keskin, Mustafa

    2015-08-01

    The dynamic hysteresis features in a two-dimensional mixed spin (1 , 3 / 2) Ising system are studied by using the within the effective-field theory with correlations based on Glauber-type stochastic. The dynamic phase transition temperatures and dynamic hysteresis curves are obtained for both the ferromagnetic and antiferromagnetic interactions. It is observed that the dynamic hysteresis loop areas increase when the reduced temperatures increase, and the dynamic hysteresis loops disappear at certain reduced temperatures. The thermal behaviors of the coercivity and remanent magnetizations are also investigated. The results are compared with some theoretical and experimental works and found in a qualitatively good agreement.

  1. Dynamical hysteresis in a self-oscillating polymer gel

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Das, Moupriya; Ray, Deb Shankar

    2012-08-01

    An ionic polymer gel may undergo rhythmical swelling-deswelling kinetics induced by chemical oscillation. We demonstrate that the gel admits of dynamical hysteresis, which is manifested in the non-vanishing area of the response function—concentration (of reaction substrate) hysteresis loop, the response function being the integrated probability of residence of the polymer in any one of the swelled or deswelled states. The loop area depends on temperature and exhibits a turnover as a function of the strength of thermal noise—a phenomenon reminiscent of stochastic resonance. The numerical simulations agree well with our proposed analytical scheme.

  2. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    PubMed Central

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-01-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650

  3. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  4. Wetting Hysteresis at the Molecular Scale

    NASA Technical Reports Server (NTRS)

    Jin, Wei; Koplik, Joel; Banavar, Jayanth R.

    1996-01-01

    The motion of a fluid-fluid-solid contact line on a rough surface is well known to display hysteresis in the contact angle vs. velocity relationship. In order to understand the phenomenon at a fundamental microscopic level, we have conducted molecular dynamics computer simulations of a Wilhelmy plate experiment in which a solid surface is dipped into a liquid bath, and the force-velocity characteristics are measured. We directly observe a systematic variation of force and contact angle with velocity, which is single-valued for the case of an atomically smooth solid surface. In the microscopically rough case, however, we find (as intuitively expected) an open hysteresis loop. Further characterization of the interface dynamics is in progress.

  5. Adsorption hysteresis in nanopores Alexander V. Neimark,* Peter I. Ravikovitch, and Aleksey Vishnyakov

    E-print Network

    Muzzio, Fernando J.

    Adsorption hysteresis in nanopores Alexander V. Neimark,* Peter I. Ravikovitch, and Aleksey the modeling results and the experimental hysteresis loops formed by the adsorption-desorption isotherms- ized by a typical step in adsorption isotherms and, in the vast majority of systems, is associated

  6. PHYSICAL REVIEW E 90, 042103 (2014) Avalanches and hysteresis in frustrated superconductors and XY spin glasses

    E-print Network

    Müller, Markus

    2014-01-01

    PHYSICAL REVIEW E 90, 042103 (2014) Avalanches and hysteresis in frustrated superconductors and XY October 2014) We study avalanches along the hysteresis loop of long-range interacting spin glasses becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze

  7. The New P.E.

    ERIC Educational Resources Information Center

    Vandertie, Joan; Corner, Amy B.; Corner, Kevin J.

    2012-01-01

    Marana Middle School in Tucson, Ariz., scrapped its traditional P.E. program that emphasized team sports and shifted to a program that focuses on lifetime fitness, student choice in activities, and nutrition and health education. The program also includes student leadership development and informal community service. As a result, Marana students…

  8. Inverse Compensation for Ferromagnetic Hysteresis Ralph C. Smith Rick Zrostlik

    E-print Network

    in Scientific Computation Etrema Products, Inc. North Carolina State University 2500 North Loop Drive Raleigh addresses the validation of an energy­ based inverse compensator for hysteresis in ferromag­ netic applications. In this paper, an ODE model based on magnetostatic energy principles is employed to characterize

  9. Rheological hysteresis in soft glassy materials

    E-print Network

    Thibaut Divoux; Vincent Grenard; Sébastien Manneville

    2012-12-05

    The nonlinear rheology of a soft glassy material is captured by its constitutive relation, shear stress vs shear rate, which is most generally obtained by sweeping up or down the shear rate over a finite temporal window. For a huge amount of complex fluids, the up and down sweeps do not superimpose and define a rheological hysteresis loop. By means of extensive rheometry coupled to time-resolved velocimetry, we unravel the local scenario involved in rheological hysteresis for various types of well-studied soft materials. We introduce two observables that quantify the hysteresis in macroscopic rheology and local velocimetry respectively, as a function of the sweep rate \\delta t^{-1}. Strikingly, both observables present a robust maximum with \\delta t, which defines a single material-dependent timescale that grows continuously from vanishingly small values in simple yield stress fluids to large values for strongly time-dependent materials. In line with recent theoretical arguments, these experimental results hint at a universal timescale-based framework for soft glassy materials, where inhomogeneous flows characterized by shear bands and/or pluglike flow play a central role.

  10. SMA pseudo-elastic hysteresis with tension-compression asymmetry: explicit simulation based on elastoplasticity models

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Ming; Wang, Zhao-Ling; Xiao, Heng

    2015-11-01

    SMA pseudo-elastic hysteresis with tension-compression asymmetry at finite deformation may be simulated by finite elastoplastic J 2-flow models with nonlinear combined hardening, in a direct, explicit sense with no reference to any phase variables. To this goal, a novel method of treating tension-compression asymmetry is proposed, and the hardening moduli are determined directly from any two given pairs of single-variable functions shaping non-symmetric hysteresis loops in uniaxial tension and compression so that the combined hardening model thus established can automatically exactly give rise to any given shapes of non-symmetric hysteresis loops. Numerical examples show good agreement with test data.

  11. Orientational hysteresis in swarms of active particles in external field

    NASA Astrophysics Data System (ADS)

    Romensky, M.; Lobaskin, V.

    2015-07-01

    Structure and ordering in swarms of active particles have much in common with condensed matter systems like magnets or liquid crystals. A number of important characteristics of such materials can be obtained via dynamic tests such as hysteresis. In this work, we show that dynamic hysteresis can be observed also in swarms of active particles and possesses similar properties to the counterparts in magnetic materials. To study the swarm dynamics, we use computer simulations of the active Brownian particle model with dissipative interactions. The swarm is confined to a narrow linear channel and the one-dimensional polar order parameter is measured. In an oscillating external field, the order parameter demonstrates dynamic hysteresis with the shape of the loop and its area varying with the amplitude and frequency of the applied field, swarm density and the noise intensity. We measure the scaling exponents for the hysteresis loop area, which can be associated with the controllability of the swarm. Although the exponents are non-universal and depend on the system's parameters, their limiting values can be predicted using a generic model of dynamic hysteresis. We also discuss similarities and differences between the swarm ordering dynamics and two-dimensional magnets.

  12. Orientational hysteresis in swarms of active particles in external field

    E-print Network

    Maksym Romensky; Vladimir Lobaskin

    2015-05-28

    Structure and ordering in swarms of active particles have much in common with condensed matter systems like magnets or liquid crystals. A number of important characteristics of such materials can be obtained via dynamic tests such as hysteresis. In this work, we show that dynamic hysteresis can be observed also in swarms of active particles and possesses similar properties to the counterparts in magnetic materials. To study the swarm dynamics, we use computer simulations of the active Brownian particle model with dissipative interactions. The swarm is confined to a narrow linear channel and the one-dimensional polar order parameter is measured. In an oscillating external field, the order parameter demonstrates dynamic hysteresis with the shape of the loop and its area varying with the amplitude and frequency of the applied field, swarm density and the noise intensity. We measure the scaling exponents for the hysteresis loop area, which can be associated with the controllability of the swarm. Although the exponents are non-universal and depend on the system's parameters, their limiting values can be predicted using a generic model of dynamic hysteresis. We also discuss similarities and differences between the swarm ordering dynamics and two-dimensional magnets.

  13. A simple model of hysteresis behavior using spreadsheet analysis

    NASA Astrophysics Data System (ADS)

    Ehrmann, A.; Blachowicz, T.

    2015-01-01

    Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.

  14. Hysteresis Parameter Identification with Limited Experimental Data

    E-print Network

    Iyer, Ram Venkataraman

    1 Hysteresis Parameter Identification with Limited Experimental Data Ram V. Iyer and Matthew E-- The Preisach operator and its variants have been successfully used in the modeling of hysteresis observed-- Hysteresis, Preisach Operator, Density function Identification, Constrained least squares, Electro

  15. Hysteresis of Freedericksz transition in confined light beams

    SciTech Connect

    Ledney, M. F. Tarnavsky, A. S.

    2010-03-15

    The effect of the transverse confinement of an incident light beam on the hysteresis of light-induced Freedericksz transition in a nematic liquid crystal cell is considered. The thresholds of the orientational instability of the director with an increase and decrease in the light beam's intensity are calculated numerically in relation to its transverse size. The hysteresis loop width is shown to change nonmonotonically with an increase in the transverse dimension. In contrast to a homogeneous light beam, the hysteresis existence region is determined not only by the parameter (K{sub 3} - K{sub 1})/K{sub 3} but also by the parameter K{sub 2}/K{sub 3}. With an increase in the transverse beam size, the critical values of the parameter (K{sub 3} - K{sub 1})/K{sub 3} increase, while those of the parameter K{sub 2}/K{sub 3} decrease.

  16. An Energy-Based Hysteresis Model for Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Calkins, F. T.; Smith, R. C.; Flatau, A. B.

    1997-01-01

    This paper addresses the modeling of hysteresis in magnetostrictive transducers. This is considered in the context of control applications which require an accurate characterization of the relation between input currents and strains output by the transducer. This relation typically exhibits significant nonlinearities and hysteresis due to inherent properties of magnetostrictive materials. The characterization considered here is based upon the Jiles-Atherton mean field model for ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. As demonstrated through comparison with experimental data, the magnetization model very adequately quantifies both major and minor loops under various operating conditions. The combined model can then be used to accurately characterize output strains at moderate drive levels. The advantages to this model lie in the small number (six) of required parameters and the flexibility it exhibits in a variety of operating conditions.

  17. Sinusoidal input describing function for hysteresis followed by elementary backlash

    NASA Technical Reports Server (NTRS)

    Ringland, R. F.

    1976-01-01

    The author proposes a new sinusoidal input describing function which accounts for the serial combination of hysteresis followed by elementary backlash in a single nonlinear element. The output of the hysteresis element drives the elementary backlash element. Various analytical forms of the describing function are given, depending on the a/A ratio, where a is the half width of the hysteresis band or backlash gap, and A is the amplitude of the assumed input sinusoid, and on the value of the parameter representing the fraction of a attributed to the backlash characteristic. The negative inverse describing function is plotted on a gain-phase plot, and it is seen that a relatively small amount of backlash leads to domination of the backlash character in the describing function. The extent of the region of the gain-phase plane covered by the describing function is such as to guarantee some form of limit cycle behavior in most closed-loop systems.

  18. Mach, methodology, hysteresis and economics

    NASA Astrophysics Data System (ADS)

    Cross, R.

    2008-11-01

    This methodological note examines the epistemological foundations of hysteresis with particular reference to applications to economic systems. The economy principles of Ernst Mach are advocated and used in this assessment.

  19. Domain-wall motion in random potential and hysteresis modeling

    SciTech Connect

    Pasquale, M.; Basso, V.; Bertotti, G.; Jiles, D.C.; Bi, Y.

    1998-06-01

    Two different approaches to hysteresis modeling are compared using a common ground based on energy relations, defined in terms of dissipated and stored energy. Using the Preisach model and assuming that magnetization is mainly due to domain-wall motion, one can derive the expression of magnetization along a major loop typical of the Jiles{endash}Atherton model and then extend its validity to cases where mean-field effects and reversible contributions are present. {copyright} {ital 1998 American Institute of Physics.}

  20. Barkhausen discontinuities and hysteresis of ferromagnetics: New stochastic approach

    SciTech Connect

    Vengrinovich, Valeriy

    2014-02-18

    The magnetization of ferromagnetic material is considered as periodically inhomogeneous Markov process. The theory assumes both statistically independent and correlated Barkhausen discontinuities. The model, based on the chain evolution-type process theory, assumes that the domain structure of a ferromagnet passes successively the steps of: linear growing, exponential acceleration and domains annihilation to zero density at magnetic saturation. The solution of stochastic differential Kolmogorov equation enables the hysteresis loop calculus.

  1. Hysteresis of misaligned hard-soft grains

    NASA Astrophysics Data System (ADS)

    Wan, X. L.; Zhao, G. P.; Zhang, X. F.; Xia, J.; Zhang, X. C.; Morvan, F. J.

    2016-01-01

    The demagnetization process in hard/soft multilayer systems has been investigated systematically within a self-contained micromagnetic model when a deviation angle ? between the easy axis and the applied field exists. Hysteresis loops, spin distributions and energy products have been calculated with a finite hard layer thickness th. Both remanence and coercivity of the multilayer system decrease as ? increases, leading to a significant decrease of the maximum energy product. A 30° deviation of the easy axis could result in a drop of the maximum energy product by more than 60%, which offers a possible explanation on the large discrepancy between the experimental and theoretical energy products. The effect of the finite hard layer thickness on the demagnetization process is important, which can only be ignored when th is large enough.

  2. Hysteresis Phenomenon in Heat-Voltage Curves of Polypyrrole-Coated Electrospun Nanofibrous and Regular Fibrous Mats

    NASA Astrophysics Data System (ADS)

    Oroumei, Azam; Tavanai, Hossein; Morshed, Mohammad

    2015-07-01

    This article verifies the hysteresis phenomenon in heat-voltage curves of polypyrrole-coated electrospun nanofibrous and regular fibrous mats. A third-order polynomial model fits the heat-voltage data better than a second-order polynomial model. It was also observed that the hysteresis loop area of nanofibrous and regular fibrous mats increases with decreasing fiber diameter. Moreover, the curvature of the hysteresis loops is significantly affected by the fiber diameter. In fact, the slope of the curvatures increases with decreasing fiber diameter.

  3. First-order phase transition and anomalous hysteresis of Bose gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Daisuke; Ozaki, Takeshi; Sá de Melo, Carlos A. R.; Danshita, Ippei

    2013-09-01

    We study the first-order quantum phase transitions of Bose gases in optical lattices. A special emphasis is placed on an anomalous hysteresis behavior, in which the phase transition occurs in a unidirectional way and a hysteresis loop does not form. We first revisit the hardcore Bose-Hubbard model with dipole-dipole interactions on a triangular lattice to analyze accurately the ground-state phase diagram and the hysteresis using the cluster mean-field theory combined with cluster-size scaling. Details of the anomalous hysteresis are presented. We next consider the two-component and spin-1 Bose-Hubbard models on a hypercubic lattice and show that the anomalous hysteresis can emerge in these systems as well. In particular, for the former model, we discuss the experimental feasibility of the first-order transitions and the associated hysteresis. We also explain an underlying mechanism of the anomalous hysteresis by means of the Ginzburg-Landau theory. From the given cases, we conclude that the anomalous hysteresis is a ubiquitous phenomenon of systems with a phase region of lobe shape that is surrounded by the first-order boundary.

  4. Order parameters and hysteresis behavior of a ferromagnetic Blume-Capel thin film: The role of the crystal field interactions

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf

    2014-03-01

    As a complementary work of a recent study (Physica B 433 (2014) 96), ferromagnetic thin films in simple cubic lattice structure described by a spin-1 Blume-Capel Hamiltonian have been considered within the framework of effective-field theory (EFT). Thermal variations of bulk and surface order parameters (i.e. magnetization and quadrupolar moments), as well as hysteresis loops in the presence of modified surface interactions, and crystal fields have been examined. We have found that depending on the type of the phase transition (i.e. ordinary or extraordinary), bulk and surface order parameters may exhibit fairly non-monotonous and quite exotic profiles. Regarding the bulk and surface hysteresis loops, at a fixed set of system parameters, both the bulk and surface hysteresis loops exhibit the same coercivity whereas remanence of a bulk (surface) loop is greater than that of a surface (bulk) loop in ordinary (extraordinary) case.

  5. Theory of molecular hysteresis switch

    NASA Astrophysics Data System (ADS)

    Kozhushner, Mortko; Oleynik, Ivan

    2006-03-01

    Molecular hysteresis switching has been recently observed in a series of experiments that measured the I-V spectrum of bipyridyl-dinitro oligophenylene-ethylene dithiol (BPDN) based molecular devices [1]. The experimental observations clearly show the presence of Coulomb blockade in single organic molecules that is responsible for the voltage-induced switching. We present the theory of the hysteresis switch which explains the non-linear hysteresis I-V characteristics based on the mechanisms of Coulomb blockade and the existence of two different molecular conformations of neutral and charged states of the molecule. [1] A.S. Blum, J.G. Kushmerick, D.P. Long, C.H. Patterson, J.C. Yang, J.C. Henderson, Y.X. Yao, J.M. Tour, R. Shashidhar, and B.R. Ratna, ``Molecularly inherent voltage-controlled conductance switching'' , Nature Materials 4, 167 (2005).

  6. Hysteresis Responses of Evapotranspiration to Meteorological Factors at a Diel Timescale: Patterns and Causes

    PubMed Central

    Zheng, Han; Wang, Qiufeng; Zhu, Xianjin; Li, Yingnian; Yu, Guirui

    2014-01-01

    Evapotranspiration (ET) is an important component of the water cycle in terrestrial ecosystems. Understanding the ways in which ET changes with meteorological factors is central to a better understanding of ecological and hydrological processes. In this study, we used eddy covariance measurements of ET from a typical alpine shrubland meadow ecosystem in China to investigate the hysteresis response of ET to environmental variables including air temperature (Ta), vapor pressure deficit (VPD) and net radiation (Rn) at a diel timescale. Meanwhile, the simulated ET by Priestly-Taylor equation was used to interpret the measured ET under well-watered conditions. Pronounced hysteresis was observed in both Ta and VPD response curves of ET. At a similar Ta and VPD, ET was always significantly depressed in the afternoon compared with the morning. But the hysteresis response of ET to Rn was not evident. Similar hysteresis patterns were also observed in the Ta/VPD response curves of simulated ET. The magnitudes of the measured and simulated hysteresis loops showed similar seasonal variation, with relatively smaller values occurring from May to September, which agreed well with the lifetime of plants and the period of rainy season at this site. About 62% and 23% of changes in the strength of measured ET-Ta and ET-VPD loops could be explained by the changes in the strength of simulated loops, respectively. Thus, the time lag between Rn and Ta/VPD is the most important factor generating and modulating the ET-Ta/VPD hysteresis, but plants and water status also contribute to the hysteresis response of ET. Our research confirmed the different hysteresis in the responses of ET to meteorological factors and proved the vital role of Rn in driving the diel course of ET. PMID:24896829

  7. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P2{sub 1}ma) to establish double loop hysteresis in lead-free (1?x)NaNbO{sub 3}-xSrZrO{sub 3} solid solution

    SciTech Connect

    Guo, Hanzheng Randall, Clive A.; Shimizu, Hiroyuki; Mizuno, Youichi

    2015-06-07

    A new lead-free antiferroelectric solid solution system, (1?x)NaNbO{sub 3}-xSrZrO{sub 3}, was rationalized through noting the crystal chemistry trend, of decreasing the tolerance factor and an increase in the average electronegativity of the system. The SrZrO{sub 3} doping was found to effectively stabilize the antiferroelectric (P) phase in NaNbO{sub 3} without changing its crystal symmetry. Preliminary electron diffraction and polarization measurements were presented which verified the enhanced antiferroelectricity. In view of our recent report of another lead-free antiferroelectric system (1?x)NaNbO{sub 3}-xCaZrO{sub 3} [H. Shimizu et al. “Lead-free antiferroelectric: xCaZrO{sub 3} - (1?x)NaNbO{sub 3} system (0 ? x ? 0.10),” Dalton Trans. (published online)], the present results point to a general strategy of utilizing tolerance factor to develop a broad family of new lead-free antiferroelectrics with double polarization hysteresis loops. We also speculate on a broad family of possible solid solutions that could be identified and tested for this important type of dielectric.

  8. A theory of triple hysteresis in ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Weng, George J.

    2009-10-01

    In the vicinity of the transition temperature between two ferroelectric states, a ferroelectric crystal could exhibit a triple hysteresis under an ac field. For a BaTiO3 with the "c-plate" configuration slightly below this temperature, the middle loop is caused by the 0°?180° domain switch in the orthorhombic phase, whereas the upper and lower loops are the result of orthorhombic-to-tetragonal phase transition, and vice versa. In this article we first develop a micromechanics-based thermodynamic model to determine the thermodynamic driving force for phase transition and for domain switch as a function of electric field and temperature, and in the latter case, further supplement it with a kinetic equation and a homogenization scheme. The dependence of dielectric constant of the orthorhombic and tetragonal phases on temperature and electric field are also established. The developed theory is then applied to calculate the triple hysteresis loops of BaTiO3 at several levels of temperature. The calculated results for the triple loops, and for the variation of dielectric constant, are found to be in full accord with the test data of Huibregtse and Young [Phys. Rev. 103, 1705 (1956)].

  9. Contrasting diel hysteresis between soil autotrophic and heterotrophic respiration in a desert ecosystem under different rainfall scenarios.

    PubMed

    Song, Weimin; Chen, Shiping; Zhou, Yadan; Wu, Bo; Zhu, Yajuan; Lu, Qi; Lin, Guanghui

    2015-01-01

    Diel hysteresis occurs often between soil CO2 efflux (RS) and temperature, yet, little is known if diel hysteresis occurs in the two components of RS, i.e., autotrophic respiration (RA) and heterotrophic respiration (RH), and how diel hysteresis will respond to future rainfall change. We conducted a field experiment in a desert ecosystem in northern China simulating five different scenarios of future rain regimes. Diel variations of soil CO2 efflux and soil temperature were measured on Day 6 and Day 16 following the rain addition treatments each month during the growing season. We found contrasting responses in the diel hysteresis of RA and RH to soil temperature, with a clockwise hysteresis loop for RH but a counter-clockwise hysteresis loop for RA. Rain addition significantly increased the magnitude of diel hysteresis for both RH and RA on Day 6, but had no influence on either on Day 16 when soil moisture was much lower. These findings underline the different roles of biological (i.e. plant and microbial activities) and physical-chemical (e.g. heat transport and inorganic CO2 exchange) processes in regulating the diel hysteresis of RA and RH, which should be considered when estimating soil CO2 efflux in desert regions under future rainfall regime. PMID:26615895

  10. Contrasting diel hysteresis between soil autotrophic and heterotrophic respiration in a desert ecosystem under different rainfall scenarios

    PubMed Central

    Song, Weimin; Chen, Shiping; Zhou, Yadan; Wu, Bo; Zhu, Yajuan; Lu, Qi; Lin, Guanghui

    2015-01-01

    Diel hysteresis occurs often between soil CO2 efflux (RS) and temperature, yet, little is known if diel hysteresis occurs in the two components of RS, i.e., autotrophic respiration (RA) and heterotrophic respiration (RH), and how diel hysteresis will respond to future rainfall change. We conducted a field experiment in a desert ecosystem in northern China simulating five different scenarios of future rain regimes. Diel variations of soil CO2 efflux and soil temperature were measured on Day 6 and Day 16 following the rain addition treatments each month during the growing season. We found contrasting responses in the diel hysteresis of RA and RH to soil temperature, with a clockwise hysteresis loop for RH but a counter-clockwise hysteresis loop for RA. Rain addition significantly increased the magnitude of diel hysteresis for both RH and RA on Day 6, but had no influence on either on Day 16 when soil moisture was much lower. These findings underline the different roles of biological (i.e. plant and microbial activities) and physical-chemical (e.g. heat transport and inorganic CO2 exchange) processes in regulating the diel hysteresis of RA and RH, which should be considered when estimating soil CO2 efflux in desert regions under future rainfall regime. PMID:26615895

  11. AVERAGING PRINCIPLE FOR DIFFERENTIAL EQUATIONS WITH HYSTERESIS

    E-print Network

    Schellekens, Michel P.

    AVERAGING PRINCIPLE FOR DIFFERENTIAL EQUATIONS WITH HYSTERESIS A. POKROVSKII O.RASSKAZOV A. VLADIMIROV Abstract. The goal of this paper is to extend the averaging technique to new classes of hysteresis on the systems with the classical Preisach nonlinearity. Key words: Averaging technique, Hysteresis, Sweeping

  12. A Homogenized Energy Framework for Ferromagnetic Hysteresis

    E-print Network

    A Homogenized Energy Framework for Ferromagnetic Hysteresis Ralph C. Smith Marcelo J. Dapino Center In this paper we develop a macroscopic framework quantifying the hysteresis and constitutive nonlinearities and full hysteresis model are validated through comparison with experimental steel and nickel data. i #12

  13. Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system

    SciTech Connect

    Kocakaplan, Yusuf; Keskin, Mustafa

    2014-09-07

    The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We also compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement.

  14. Fatigue Hysteresis of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2015-05-01

    When the fiber-reinforced ceramic-matrix composites (CMCs) are first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. Under fatigue loading, the stress-strain hysteresis loops appear as fiber slipping relative to matrix in the interface debonded region upon unloading/reloading. Due to interface wear at room temperature or interface oxidation at elevated temperature, the interface shear stress degredes with increase of the number of applied cycles, leading to the evolution of the shape, location and area of stress-strain hysteresis loops. The evolution characteristics of fatigue hysteresis loss energy in different types of fiber-reinforced CMCs, i.e., unidirectional, cross-ply, 2D and 2.5D woven, have been investigated. The relationships between the fatigue hysteresis loss energy, stress-strain hysteresis loops, interface frictional slip, interface shear stress and interface radial thermal residual stress, matrix stochastic cracking and fatigue peak stress of fiber-reinforced CMCs have been established.

  15. Magnetic hysteresis of p(+) and He-3(2+) irradiated melt-textured YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Song, S. N.; Liu, J.; Chen, I. G.; Weinstein, Roy

    1992-01-01

    We have measured the magnetic hysteresis loops and temperature dependent trapped fields in melt-textured YBa2Cu3O(7-delta) samples before and after p(+) and He-3(2+) irradiation using a Hall effect magnetometer (HEM) as well as a commercial vibrating sample magnetometer (VSM). For proper He-3(2+) fluence, the critical current density may be enhanced by a factor of 10. Calculations based on various critical state models show that before the irradiation, the hysteresis loops can be well accounted for by a critical current density of a modified power law field dependence. After the irradiation, the best fit has been achieved by using an exponential form. Jc and its field dependence deduced from HEM hysteresis loops are in good agreement with those deduced from the VSM loops, suggesting that the Hall effect magnetometer can be conveniently used to characterize bulk high Tc oxide superconductors.

  16. Titration and hysteresis in epigenetic chromatin silencing

    NASA Astrophysics Data System (ADS)

    Dayarian, Adel; Sengupta, Anirvan M.

    2013-06-01

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs.

  17. High hysteresis in a homogeneous metallic glass

    NASA Astrophysics Data System (ADS)

    Branagan, D. J.; Meacham, B. E.; McCallum, R. W.; Dennis, K. W.; Kramer, M. J.

    2003-05-01

    In this article, we demonstrate high hysteresis in a well characterized homogeneous Tb-Al glass which contained no crystallites or crystalline embryos as verified using conventional and synchrotron diffraction, neutron diffraction, and direct observation in the transmission electron microscope. At low temperature (2 K), the metallic glass structure exhibited intrinsic coercivities approaching 23 kOe and high isotropic energy products of 12.4 MGOe. After crystallization into a three-phase nanoscale structure, the hard magnetic properties were found to be far inferior to that obtainable in the glass structure. From the well defined intrinsic magnetic properties (Msat,Tc), it is clear that the glass contains one or more types of well defined associations (i.e., clusters) and that these associations lead to ferromagnetic coupling/ordering. From the large random magnetic anisotropy, it is probable that the domain size is much larger than the structural cluster size. The measured single-phase loop shapes and the development of high coercivity in the glass state can be explained by an "exchange bias" mechanism resulting in a near perfect distribution of "fragile" pinning centers.

  18. Hysteresis and nonequilibrium work theorem for DNA unzipping

    E-print Network

    Rajeev Kapri

    2012-10-09

    We study by using Monte Carlo simulations the hysteresis in unzipping and rezipping of a double stranded DNA (dsDNA) by pulling its strands in opposite directions in the fixed force ensemble. The force is increased, at a constant rate from an initial value $g_0$ to some maximum value $g_m$ that lies above the phase boundary and then decreased back again to $g_{0}$. We observed hysteresis during a complete cycle of unzipping and rezipping. We obtained probability distributions of work performed over a cycle of unzipping and rezipping for various pulling rates. The mean of the distribution is found to be close (the difference being within 10%, except for very fast pulling) to the area of the hysteresis loop. We extract the equilibrium force versus separation isotherm by using the work theorem on repeated non-equilibrium force measurements. Our method is capable of reproducing the equilibrium and the non-equilibrium force-separation isotherms for the spontaneous rezipping of dsDNA.

  19. Hysteresis and Wavenumber Vacillation in Unstable Baroclinic Flows

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Hysteresis and wavenumber vacillation are studied numerically in a weakly stratified quasigeostrophic model. In general, the amplitude of the most unstable wave increases, as the flow becomes more unstable. When the wave becomes saturated, the next longer wave will grow at the expanse of the most unstable wave and becomes the dominant wave. However, once the longwave state is established, it may remain in that regime even as the instability is decreased beyond the threshold where it first developed, thus constituting a hysteresis loop. In a highly unstable case, the flow may not show a preference for any single wave. Instead, the dominant wave aperiodically varies among several long waves. This phenomenon is known as wavenumber vacillation. Hysteresis is further examined in terms of eddy heat flux. It is shown that total eddy heat flux increases as the flow becomes more unstable, but displays a sharp drop when transition to a longer wave occurs. However, in a longwave state, the heat flux always decreases with decreasing instability even pass the threshold when wave transition first occurs.

  20. A combined Preisach-Hyperbolic Tangent model for magnetic hysteresis of Terfenol-D

    NASA Astrophysics Data System (ADS)

    Talebian, Soheil; Hojjat, Yousef; Ghodsi, Mojtaba; Karafi, Mohammad Reza; Mirzamohammadi, Shahed

    2015-12-01

    This study presents a new model using the combination of Preisach and Hyperbolic Tangent models, to predict the magnetic hysteresis of Terfenol-D at different frequencies. Initially, a proper experimental setup was fabricated and used to obtain different magnetic hysteresis curves of Terfenol-D; such as major, minor and reversal loops. Then, it was shown that the Hyperbolic Tangent model is precisely capable of modeling the magnetic hysteresis of the Terfenol-D for both rate-independent and rate-dependent cases. Empirical equations were proposed with respect to magnetic field frequency which can calculate the non-dimensional coefficients needed by the model. These empirical equations were validated at new frequencies of 100 Hz and 300 Hz. Finally, the new model was developed through the combination of Preisach and Hyperbolic Tangent models. In the combined model, analytical relations of the Hyperbolic Tangent model for the first order reversal loops determined the weighting function of the Preisach model. This model reduces the required experiments and errors due to numerical differentiations generally needed for characterization of the Preisach function. In addition, it can predict the rate-dependent hysteresis as well as rate-independent hysteresis.

  1. P E R S P E C T I V E www.rsc.org/obc

    E-print Network

    Hergenrother, Paul J.

    P E R S P E C T I V E OBC www.rsc.org/obc Bacterial death comes full circle: targeting plasmid 2005 It is now common for bacterial infections to resist the pre- ferred antibiotic treatment of resistance-mediating proteins. These foreign genes often enter the bacteria on plasmids, which are small

  2. Lift hysteresis at stall as an unsteady boundary-layer phenomenon

    NASA Technical Reports Server (NTRS)

    Moore, Franklin K

    1956-01-01

    Analysis of rotating stall of compressor blade rows requires specification of a dynamic lift curve for the airfoil section at or near stall, presumably including the effect of lift hysteresis. Consideration of the magnus lift of a rotating cylinder suggests performing an unsteady boundary-layer calculation to find the movement of the separation points of an airfoil fixed in a stream of variable incidence. The consideration of the shedding of vorticity into the wake should yield an estimate of lift increment proportional to time rate of change of angle of attack. This increment is the amplitude of the hysteresis loop. An approximate analysis is carried out according to the foregoing ideas for a 6:1 elliptic airfoil at the angle of attack for maximum lift. The assumptions of small perturbations from maximum lift are made, permitting neglect of distributed vorticity in the wake. The calculated hysteresis loop is counterclockwise. Finally, a discussion of the forms of hysteresis loops is presented; and, for small reduced frequency of oscillation, it is concluded that the concept of a viscous "time lag" is appropriate only for harmonic variations of angle of attack with time at mean conditions other than maximum lift.

  3. Magnetic hysteresis and magnetic flux patterns measured by acoustically stimulated electromagnetic response in a steel plate

    NASA Astrophysics Data System (ADS)

    Yamada, Hisato; Watanabe, Kakeru; Ikushima, Kenji

    2015-08-01

    Magnetic hysteresis loops are measured by ultrasonic techniques and used in visualizing the magnetic-flux distribution in a steel plate. The piezomagnetic coefficient determines the amplitude of acoustically stimulated electromagnetic (ASEM) fields, yielding the hysteresis behavior of the intensity of the ASEM response. By utilizing the high correspondence of the ASEM response to the magnetic-flux density, we image the specific spatial patterns of the flux density formed by an artificial defect in a steel plate specimen. Magnetic-flux probing by ultrasonic waves is thus shown to be a viable method of nondestructive material inspection.

  4. Negative and positive hysteresis in double-cavity optical bistability in a three-level atom

    SciTech Connect

    Babu, H. Aswath; Wanare, Harshawardhan

    2011-03-15

    We present dual hysteretic behavior of a three-level ladder system exhibiting optical bistability in a double-cavity configuration in the mean-field limit. The two fields coupling the atomic system experience competing cooperative effects along the two transitions. We observe a hump-like feature in the bistable curve arising due to cavity-induced inversion, which transforms into a negative-hysteresis loop. Apart from negative- and positive-hysteresis regions, the system offers a variety of controllable nonlinear dynamical features, ranging from switching, periodic self-pulsing to chaos.

  5. Parameter Estimation Techniques for a Class of Nonlinear Hysteresis Models

    E-print Network

    Parameter Estimation Techniques for a Class of Nonlinear Hysteresis Models Ralph C. Smith hysteresis and constitutive nonlinearities inherent to ferroelectric, ferromagnetic and ferroelastic through comparison with experimental data. i #12;1 Introduction Hysteresis and constitutive nonlinearities

  6. Parameter Estimation Techniques for a Polarization Hysteresis Model

    E-print Network

    Parameter Estimation Techniques for a Polarization Hysteresis Model Ralph C. Smith and Andrew techniques for models quantifying hysteresis and constitutive nonlinearities in ferroelectric materials: Hysteresis model, compact operator, parameter estimation, regularization 1. Introduction Piezoceramic (PZT

  7. A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectric Compounds

    E-print Network

    A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectric Compounds Julie K. Raye- ature-dependent hysteresis and constitutive nonlinearities inherent to relaxor ferroelectric materials characterizing the de- crease in hysteresis and saturation polarization polarization as temperatures

  8. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS)

    SciTech Connect

    Professor Isaak Mayergoyz

    2006-08-21

    This research has further advanced the current state of the art in the areas of dynamic aspects of hysteresis and nonlinear large scale magnetization dynamics. The results of this research will find important engineering applications in the areas of magnetic data storage technology and the emerging technology of “spintronics”. Our research efforts have been focused on the following tasks: • Study of fast (pulse) precessional switching of magnetization in magnetic materials. • Analysis of critical fields and critical angles for precessional switching of magnetization. • Development of inverse problem approach to the design of magnetic field pulses for precessional switching of magnetization. • Study of magnetization dynamics induced by spin polarized current injection. • Construction of complete stability diagrams for spin polarized current induced magnetization dynamics. • Development of the averaging technique for the analysis of the slow time scale magnetization dynamics. • Study of thermal effects on magnetization dynamics by using the theory of stochastic processes on graphs.

  9. AN ENERGYBASED HYSTERESIS MODEL FOR MAGNETOSTRICTIVE TRANSDUCERS

    E-print Network

    to magnetostrictive materials must be addressed when design­ ing systems which employ them. The first concernsAN ENERGY­BASED HYSTERESIS MODEL FOR MAGNETOSTRICTIVE TRANSDUCERS F.T. Calkins Department@iastate.edu Abstract This paper addresses the modeling of hysteresis in magnetostrictive transducers

  10. Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Ersin, Kantar

    2015-10-01

    Magnetic behaviors of the Ising system with bilayer honeycomb lattice (BHL) structure are studied by using the effective-field theory (EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point (TCP).

  11. Understanding the link between nanoscale microstructural features and dynamic hysteresis phenomena

    NASA Astrophysics Data System (ADS)

    Meacham, B. E.; Branagan, D. J.; Shield, J. E.

    2004-06-01

    A Nd-Dy-Fe-B alloy was designed to exhibit high coercivity and optimum loop shapes utilizing a combination of intrinsic and extrinsic alloy design principles. After achieving these initial goals, conventional structural analysis using X-ray and TEM could explain the salient features of the observed hysteresis behavior. However, greater understanding could be gained on the complex dynamic behavior of hysteresis through the exploitation of a new recoil technique that was developed, which focuses on switching field distributions arising from irreversible magnetic behavior. Utilizing this approach, we have successfully linked specific magnetic reversal behavior with distinct magnetic phases that have characteristic microstructural length scales. This new approach may become a powerful tool for the study of the structure-property-hysteresis behavior of hard magnetic materials.

  12. A two-state hysteresis model from high-dimensional friction

    PubMed Central

    Biswas, Saurabh; Chatterjee, Anindya

    2015-01-01

    In prior work (Biswas & Chatterjee 2014 Proc. R. Soc. A 470, 20130817 (doi:10.1098/rspa.2013.0817)), we developed a six-state hysteresis model from a high-dimensional frictional system. Here, we use a more intuitively appealing frictional system that resembles one studied earlier by Iwan. The basis functions now have simple analytical description. The number of states required decreases further, from six to the theoretical minimum of two. The number of fitted parameters is reduced by an order of magnitude, to just six. An explicit and faster numerical solution method is developed. Parameter fitting to match different specified hysteresis loops is demonstrated. In summary, a new two-state model of hysteresis is presented that is ready for practical implementation. Essential Matlab code is provided. PMID:26587279

  13. Hysteresis and coercivity of hematite

    NASA Astrophysics Data System (ADS)

    Ã-zdemir, Ã.-zden; Dunlop, David J.

    2014-04-01

    room-temperature hysteresis, 14 submicron hematites (0.12-0.45 µm) had large coercive forces Hc (150-350 mT), while 22 natural 1-5.5 mm hematite crystals had Hc = 0.8-23 mT (basal-plane measurements). Single-domain (SD) and multidomain (MD) hematites owe their high Hc mainly to magnetoelastic anisotropy, caused in fine particles by internal strains and in large crystals by defects like dislocations, with a smaller contribution by triaxial magnetocrystalline anisotropy. A strong correlation between Hc and the defect moment Md measured below hematite's Morin transition also favors magnetoelastic control. Saturation remanence/saturation magnetization ratios Mrs/Ms and coercivity ratios Hcr/Hc (Hcr is remanent coercive force) are distinctive: Mrs/Ms = 0.5-0.9, Hcr/Hc = 1.02-1.17 for MD hematites; Mrs/Ms = 0.5-0.7, Hcr/Hc = 1.45-1.62 for SD hematites. In high-temperature (20-690°C) hysteresis, Hc(T) ~ Ms(T) to a power 1.8-2.4 above 385°C. Magnetoelastic wall pinning by crystal defects is thus more likely than control by domain nucleation which depends on magnetocrystalline anisotropy. Our results compare well with existing Hc vs. crystal size d data. A suggested peak in Hc around 15 µm and a proposed slope change around 100 µm are both questionable. Using only near-saturation data, Hc varies continuously as d-0.61 from ?0.1 µm to 2 mm. The SD threshold size d0 may be >15 µm but there is no strong evidence that d0 ?100 µm. Direct domain observations are needed to settle the question. Augmented data sets for Hc and Mrs vs. d show that SD hematite is increasingly affected by thermal fluctuations below ?0.3 µm and generally confirm a superparamagnetic threshold size ds of 0.025-0.03 µm.

  14. Corneal hysteresis and its relevance to glaucoma

    PubMed Central

    Deol, Madhvi; Taylor, David A.; Radcliffe, Nathan M.

    2015-01-01

    Purpose of review Glaucoma is a leading cause of irreversible blindness worldwide. It is estimated that roughly 60.5 million people had glaucoma in 2010 and that this number is increasing. Many patients continue to lose vision despite apparent disease control according to traditional risk factors. The purpose of this review is to discuss the recent findings with regard to corneal hysteresis, a variable that is thought to be associated with the risk and progression of glaucoma. Recent findings Low corneal hysteresis is associated with optic nerve and visual field damage in glaucoma and the risk of structural and functional glaucoma progression. In addition, hysteresis may enhance intraocular pressure (IOP) interpretation: low corneal hysteresis is associated with a larger magnitude of IOP reduction following various glaucoma therapies. Corneal hysteresis is dynamic and may increase in eyes after IOP-lowering interventions are implemented. Summary It is widely accepted that central corneal thickness is a predictive factor for the risk of glaucoma progression. Recent evidence shows that corneal hysteresis also provides valuable information for several aspects of glaucoma management. In fact, corneal hysteresis may be more strongly associated with glaucoma presence, risk of progression, and effectiveness of glaucoma treatments than central corneal thickness. PMID:25611166

  15. Magnetic hysteresis in natural materials. [chondrites, lunar samples and terrestrial rocks

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.

    1973-01-01

    Magnetic hysteresis loops and the derived hysteresis ratios R sub H and R sub I are used to classify the various natural dilute magnetic materials. R sub I is the ratio of saturation isothermal remanence (I sub R) to saturation (I sub S) magnetization, and R sub H is the ratio of remanent coercive force (H sub R) to coercive force (H sub C). The R sub H and R sub I values depend on grain size, the characteristics of separate size modes in mixtures of grains of high and low coercivity, and the packing characteristics. Both R sub H and R sub I are affected by thermochemical alterations of the ferromagnetic fraction. Hysteresis loop constriction is observed in lunar samples, chondrite meteorites, and thermochemically altered basaltic rocks, and is due to mixtures of components of high and low coercivity. Discrete ranges of R sub H and R sub I for terrestrial and lunar samples and for chondrite meteorites provide for a classification of these natural materials based on their hysteresis properties.

  16. Identification of an extended Hammerstein system with input hysteresis nonlinearity

    E-print Network

    Wang, Jiandong

    Identification of an extended Hammerstein system with input hysteresis nonlinearity for control of an extended Hammerstein system. A point-slope-based hysteresis model is used to describe the input hysteresis. The basic idea is to separate the ascent and descent paths of the input hysteresis nonlinearity subject

  17. Adhesion hysteresis of silane coated microcantilevers

    SciTech Connect

    DE BOER,MAARTEN P.; KNAPP,JAMES A.; MICHALSKE,TERRY A.; SRINIVASAN,U.; MABOUDIAN,R.

    2000-04-17

    The authors have developed a new experimental approach for measuring hysteresis in the adhesion between micromachined surfaces. By accurately modeling the deformations in cantilever beams that are subject to combined interfacial adhesion and applied electrostatic forces, they determine adhesion energies for advancing and receding contacts. They draw on this new method to examine adhesion hysteresis for silane coated micromachined structures and found significant hysteresis for surfaces that were exposed to high relative humidity (RH) conditions. Atomic force microscopy studies of these surfaces showed spontaneous formation of agglomerates that they interpreted as silages that have irreversibly transformed from uniform surface layers at low RH to isolated vesicles at high RH. They used contact deformation models to show that the compliance of these vesicles could reasonably account for the adhesion hysteresis that develops at high RH as the surfaces are forced into contact by an externally applied load.

  18. Inverse Compensation for Hysteresis in Magnetostrictive Transducers

    E-print Network

    Inverse Compensation for Hysteresis in Magnetostrictive Transducers Ralph C. Smith Center techniques for a class of ferromagnetic transducers including magnetostrictive actuators. If unaccommodated, magnetostrictive materials i #12; 1 Introduction Increased demands on control transducers in combination with novel

  19. Analysis of hunting in Synchronous Hysteresis Motor

    E-print Network

    Truong, Cang Kim, 1979-

    2004-01-01

    The Synchronous Hysteresis Motor has an inherent instability when it is used to drive a gyroscope wheel. The motor ideally should spin at a constant angular velocity, but it instead sporadically oscillates about synchronous ...

  20. Disorder-driven first-order phase transformations: A model for hysteresis

    SciTech Connect

    Dahmen, K.; Kartha, S.; Krumhansl, J.A.; Roberts, B.W.; Sethna, J.P.; Shore, J.D. )

    1994-05-15

    Hysteresis loops in some magnetic systems are composed of small avalanches (manifesting themselves as Barkhausen pulses). Hysteresis loops in other first-order phase transitions (including some magnetic systems) often occur via one large avalanche. The transition between these two limiting cases is studied, by varying the disorder in the zero-temperature random-field Ising model. Sweeping the external field through zero at weak disorder, we get one large avalanche with small precursors and aftershocks. At strong disorder, we get a distribution of small avalanches (small Barkhausen effect). At the critical value of disorder where a macroscopic jump in the magnetization first occurs, universal power-law behavior of the magnetization and of the distribution of (Barkhausen) avalanches is found. This transition is studied by mean-field theory, perturbative expansions, and numerical simulation in three dimensions.

  1. Precision control of piezo-actuated optical deflector with nonlinearity correction based on hysteresis model

    NASA Astrophysics Data System (ADS)

    Wang, Geng; Guan, Chunlin; Zhang, Xiaojun; Zhou, Hong; Rao, Changhui

    2014-04-01

    The hysteresis nonlinearity of piezoelectric actuator is one of the main defects in the control of optical deflector which is widely used as a key component in adaptive optics system. In this paper, a control method combining the feedforward and feedback controllers is proposed to precisely control the deflection angle of an optical deflector. The inverse of an asymmetric Prandtl-Ishlinskii (PI) hysteresis model is utilized in the feedforward loop, and a PID controller is used in the feedback loop. Then, a tracking control experiment for the desired triangle wave was performed. From the experimental results, we can see that the response of the optical deflector is linearized and the positioning precision of optical deflector is significantly improved.

  2. The influence of laminar separation and transition on low Reynolds number airfoil hysteresis

    NASA Technical Reports Server (NTRS)

    Mueller, T. J.

    1984-01-01

    An experimental study of the Lissaman 7769 and Miley MO6-13-128 airfoils at low chord Reynolds numbers is presented. Although both airfoils perform well near their design Reynolds number of about 600,000, they each produce a different type of hysteresis loop in the lift and drag forces when operated below chord Reynolds numbers of 300,000. The type of hysteresis loop was found to depend upon the relative location of laminar separation and transition. The influence of disturbance environment and experimental procedure on the low Reynolds number airfoil boundary layer behavior is also presented. The use of potential flow solutions to help predict how a given airfoil will behave at low Reynolds numbers is also discussed.

  3. 0.38 0.46 0.1748 P E F P F P E F=

    E-print Network

    Bhattacharya, Bhaskar

    . Define event F: A family has at least 1 child. ( )P E FE F = E; = 0.20 + 0.16 + 0.08 + 0.06 = 0.50 P if it is known that it has at least 1 child is ( ) ( ) ( ) 0.5 | 0.8 8 P E F P E F P F 5 = = = #12( ) ( ) ( ) | P E F P E F P F = 16. ( ) ( ) ( ) ( )( ) | 0.38 0.46 0.1748 P E F P F P E F= = = 7

  4. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  5. Hysteresis effects in Bose-Einstein condensates

    SciTech Connect

    Sacchetti, Andrea

    2010-07-15

    Here, we consider damped two-component Bose-Einstein condensates with many-body interactions. We show that, when the external trapping potential has a double-well shape and when the nonlinear coupling factors are modulated in time, hysteresis effects may appear under some circumstances. Such hysteresis phenomena are a result of the joint contribution of the appearance of saddle node bifurcations and the damping effect.

  6. Spatial versus time hysteresis in damping mechanisms

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Fabiano, R. H.; Wang, Y.; Inman, D. J.; Cudney, H., Jr.

    1988-01-01

    A description is given of continuing investigations on the task of estimating internal damping mechanisms in flexible structures. Specifically, two models for internal damping in Euler-Bernoulli beams are considered: spatial hysteresis and time hysteresis. A theoretically sound computational algorithm for estimation is described, and experimental results are discussed. It is concluded that both models perform well in the sense that they accurately predict response for the experiments conducted.

  7. Hysteresis effects in Bose-Einstein condensates

    E-print Network

    Andrea Sacchetti

    2010-06-16

    Here, we consider damped two-components Bose-Einstein condensates with many-body interactions. We show that, when the external trapping potential has a double-well shape and when the nonlinear coupling factors are modulated in time, hysteresis effects may appear under some circumstances. Such hysteresis phenomena are a result of the joint contribution between the appearance of saddle node bifurcations and damping effect.

  8. CHIN.PHYS.LETT. Vol. 25, No. 5 (2008) 1788 Dynamic Simulation for Hysteresis in Shape Memory Alloy under Tension

    E-print Network

    Tang, Shaoqiang

    2008-01-01

    -strain curve exhibits a big hysteresis loop, which quantitatively agrees with the experimental results. PACS transitions are regarded well understood at microscopic level by theories of renormalization group, non band, when the strain exceeds 1.7%. The vol- ume ratio of martensitic band increases along

  9. Investigations of magnetic hysteresis of barium ferrite using the torsion pendulum method

    SciTech Connect

    Richter, H.J.; Hempel, K.A.

    1988-11-15

    The magnetic stiffness is measured by the torsion pendulum method as a function of the applied field. Measurements are performed on random assemblies of chemically coprecipitated barium ferrite powders. The magnetic stiffness for both minor and major loops of the hysteresis cycle is measured and compared with calculated curves based on the model of coherent rotation. The discrepancies between theory and experiment are partly due to the effect of magnetic interaction.

  10. Transport, hysteresis and avalanches in artificial spin ice systems

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, A

    2010-01-01

    We examine the hopping dynamics of an artificial spin ice system constructed from colloids on a kagome optical trap array where each trap has two possible states. By applying an external drive from an electric field which is analogous to a biasing applied magnetic field for real spin systems, we can create polarized states that obey the spin-ice rules of two spins in and one spin out at each vertex. We demonstrate that when we sweep the external drive and measure the fraction of the system that has been polarized, we can generate a hysteresis loop analogous to the hysteretic magnetization versus external magnetic field curves for real spin systems. The disorder in our system can be readily controlled by changing the barrier that must be overcome before a colloid can hop from one side of a trap to the other. For systems with no disorder, the effective spins all flip simultaneously as the biasing field is changed, while for strong disorder the hysteresis curves show a series of discontinuous jumps or avalanches similar to Barkhausen noise.

  11. Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Lyakhovsky, Vladimir; Ougier-Simonin, Audrey; Hamiel, Yariv; Zhu, Wenlu

    2014-05-01

    Sandstones display non-linear and inelastic behaviour such as hysteresis when subjected to cyclic loading. We present three hydrostatic compaction experiments with multiple loading-unloading cycles on Berea and Darley Dale sandstones and explain their hysteretic behaviour using non-linear inelastic compaction and dilation. Each experiment included eight to nine loading-unloading cycles with increasing maximum pressure in each subsequent cycle. Different pressure-volumetric strain relations during loading and unloading were observed. During the first cycles, under relatively low pressures, not all of the volumetric strain is recovered at the end of each cycle whereas at the last cycles, under relatively high pressures, the strain is recovered and the pressure-volumetric strain hysteresis loops are closed. The observed pressure-volumetric strain relations are non-linear and the effective bulk modulus of the sandstones changes between cycles. Observations are modelled with two inelastic deformation processes: irreversible compaction caused by changes in grain packing and recoverable compaction associated with grain contact adhesion, frictional sliding on grains or frictional sliding on cracks. The irreversible compaction is suggested to reflect rearrangement of grains into a more compact mode as the maximum pressure increases. Our model describes the `inelastic compaction envelope' in which sandstone sample will follow during hydrostatic loading. Irreversible compaction occurs when pressure is greater than a threshold value defined by the `inelastic compaction envelope'.

  12. Dynamic Hysteresis in Compacted Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdary, Krishna M.

    The frequency and temperature dependent magnetic response of a bulk soft magnetic nanocomposite made by compacting Fe10Co 90 nanoparticles was measured and modeled. Electron microscopy and x-ray diffraction were used to characterize the size, composition, and structure of the nanoparticles and nanocomposite. Polyol synthesis was used to produce 200 nm particles with average grain size 20 nm and large superparamagnetic fraction. The nanoparticles were consolidated to 90% theoretical density by plasma pressure compaction. The compacted nanoparticles retained the 20 nm average grain size and large superparamagnetic fraction. The nanocomposite resistivity was more than three times that of the bulk alloy. Vibrating sample and SQUID-MPMS magnetometers were used for low frequency magnetic measurements of the nanoparticles and nanocomposite. Compaction reduced the coercivity from 175 Oe to 8 Oe and the effective anisotropy from 124 x 10 3 ergs/cc to 7.9 x 103 ergs/cc. These reductions were caused by increased exchange coupling between surface nanograins, consistent with predictions from the Random Anisotropy model. Varying degrees of exchange coupling existed within the nanocomposite, contributing to a distribution of energy barriers. A permeameter was used for frequency dependent magnetic measurements on a toroid cut from the nanocomposite. Complex permeability, coercivity, and power loss were extracted from dynamic minor hysteresis loops measured over a range of temperatures (77 K - 873 K) and frequencies (0.1 kHz - 100 kHz). The real and imaginary parts of the complex permeability spectrum showed asymmetries consistent with a distribution of energy barriers and high damping. When the complex permeability, power loss, and coercivity were scaled relative to the peak frequency of the imaginary permeability, all fell on universal curves. Various microscopic and macroscopic models for the complex permeability were investigated. The complex permeability was successfully fit by modifying the Cole-Davidson model with a scaling factor that extended the model to higher damping. The additional damping was consistent with the damping from eddy current modeling, showing that the nanocomposite's complex permeability could be explained by combining microscopic effects (the distribution of energy barriers represented by the Cole-Davidson model) with macroscopic effects (damping due to eddy currents).

  13. Negative hysteresis effect observed during calibration of the US Bureau of Mines borehole deformation gauge

    SciTech Connect

    Ganow, H.C.

    1985-08-01

    The US Bureau of Mines borehole deformation gauge (BMG) was designed in the early 1960`s to allow rock stress measurements by the overcoring method. Since that time it has become a de facto standard against which the performance of other borehole deformation gauges is often judged. However, during recent in situ stress studies in the Climax Stock at the Nevada Test Site a strange "negative hysteresis" in the order of 300 to 500 microstrains was observed in standard calibration data. Here, the relaxation curve lies below the indentation (compression) curves as if the system were to somehow respond with an energy release. Therefore, a precision micro-indentation apparatus has been designed and used to perform a series of tests allowing a better understanding of the BMG button to cantilever interaction. Results indicate that the hysteresis effect is caused by differential motion between the button base and the cantilever resulting from the geometric motion inherent in the cantilever. The very large apparent hysteresis is mainly caused by cycling opposing cantilevers through the instrument`s entire dynamic range, and the fundamental imprecision inherent in use of the standard micrometers to calibrate the BMG. Laboratory mean hysteresis magnitudes for a polished cantilever typically range from 3 to 25 microstrain for 100 and 1000 microstrain relaxations on 1000 microstrain deflection loops intended to simulate typical field data. The error percentage is thought to remain fairly constant with deformation loop size, and is sufficiently small such that it can be safely ignored. The hysteresis effect can probably be reduced, and instrument stability improved by machining a small 90 degree cone in the cantilever in which a slightly larger mating cone on the base of the indentation button would reside. 5 refs. 26 figs., 1 tab.

  14. Two-phase equilibrium states in individual Cu-Ni nanoparticles: size, depletion and hysteresis effects.

    PubMed

    Shirinyan, Aram S

    2015-01-01

    In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature-composition phase diagram occur. Our calculations for individual Cu-Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops). For the first time we have calculated and present here on the temperature-composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu-Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram. PMID:26425433

  15. Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects

    PubMed Central

    2015-01-01

    Summary In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature–composition phase diagram occur. Our calculations for individual Cu–Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops). For the first time we have calculated and present here on the temperature–composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu–Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram. PMID:26425433

  16. Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Biller, A. M.; Stolbov, O. V.; Raikher, Yu. L.

    2015-08-01

    Field-induced magnetostatic interaction in a pair of identical particles made of a magnetically soft ferromagnet is studied. It is shown that due to saturation of the ferromagnet magnetization, this case differs significantly from the (super)paramagnetic one. A numerical solution is given, discussed, and compared with that provided by a simpler model (nonlinear mutual dipoles). We show that for multidomain ferromagnetic particles embedded in an elastomer matrix, as for paramagnetic ones in the same environment, pair clusters may form or break by a hysteresis scenario. However, the magnetization saturation brings in important features to this effect. First, the bistability state and the hysteresis take place only in a limited region of the material parameters of the system. Second, along with the hysteresis jumps occurring under the sole influence of the field, the "latent" hysteresis is possible which realizes only if the action of the field is combined with some additional (nonmagnetic) external factor. The obtained conditions, when used to assess the possibility of clustering in real magnetorheological polymers, infer an important role of mesoscopic magnetomechanical hysteresis for the macroscopic properties of these composites.

  17. A Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis

    SciTech Connect

    Chiampi, M.; Repetto, M.; Chiarabaglio, D.

    1995-11-01

    The hysteresis phenomenon can significantly affect the behavior of magnetic cores in electrical machines and devices. This paper presents a finite element solution of periodic steady state magnetic field problems in soft materials with scalar hysteresis. The Jiles-Atherton model is employed for the generation of symmetric B-H loops and it is coupled with the Fixed Point Technique for handling magnetic nonlinearities. The proposed procedure is applied to a hysteretic model problem whose analytical solution is available. The results show that the Fixed Point Technique can efficiently deal with non-single valued material characteristics under periodic operating conditions.

  18. Modified Maxwell Model for hysteresis compensation of piezoelectric stack actuators

    E-print Network

    Xie, Xiaoyue, S.B. Massachusetts Institute of Technology

    2015-01-01

    This thesis presents new observations of the hysteresis behavior of piezoelectric stack actuators and proposes an Input-Range Dependent Maxwell Model for more accurate hysteresis compensation. Experimental studies show ...

  19. Reduction of hysteresis in PI-controlled systems

    SciTech Connect

    Krakow, K.I.

    1998-10-01

    Motorized dampers and valves generally possess some hysteresis. Hysteresis may result in poor repeatability of experimental data. It also may result in the deviation of a response of a proportional integral (PI) controlled system from its target response and in hunting. In some applications, it may be desirable to reduce the effects of hysteresis. A method to reduce the effects of hysteresis is presented here. This method is based on software, not hardware, modification.

  20. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  1. Macroscopic theory for capillary-pressure hysteresis.

    PubMed

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-01

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials. PMID:25646688

  2. Managing Hysteresis: Three Cornerstones to Fiscal Stability

    ERIC Educational Resources Information Center

    Weeks, Richard

    2012-01-01

    The effects of the Great Recession of 2007-2009 continue to challenge school business officials (SBOs) and other education leaders as they strive to prepare students for the global workforce. Economists have borrowed a word from chemistry to describe this state of affairs: hysteresis--the lingering effects of the past on the present. Today's SBOs…

  3. Sorption Hysteresis of Benzene in Charcoal Particles

    E-print Network

    Muzzio, Fernando J.

    Sorption Hysteresis of Benzene in Charcoal Particles W A S H I N G T O N J . B R A I D A , , J O (benzene) in water to a maple- wood charcoal prepared by oxygen-limited pyrolysis at 673 K. Gas adsorption m2/g, and appreciable porosity in ultramicropores Benzene sorption- desorption conditions

  4. Design of hysteresis circuits using differential amplifiers

    NASA Technical Reports Server (NTRS)

    Cooke, W. A.

    1971-01-01

    Design equations for hysteresis circuit are based on the following assumptions: amplifier input impedance is larger than source impedance; amplifier output impedance is less than load impedance; and amplifier switches state when differential input voltage is approximately zero. Circuits are designed to any given specifications.

  5. Flexible pivot mount eliminates friction and hysteresis

    NASA Technical Reports Server (NTRS)

    Highman, C. O.

    1970-01-01

    Flexible steel pivot mount, suspended by flat vertical beryllium copper springs, is capable of rotation, free of hysteresis and starting friction. Mount requires no lubrication, is made in varying sizes, and is driven with either dc torque motor or mechanical linkage.

  6. Vector magnetic hysteresis of hard superconductors and C. Lopez2

    E-print Network

    Majós, Antonio Badía

    Vector magnetic hysteresis of hard superconductors A. Badi´a1 and C. Lo´pez2 1 Departamento de Fi hysteresis. Both features are a manifestation of the nonequilibrium thermodynamic processes which take place type-II materials develop such a pronounced hysteresis that the reversible contribution from

  7. Control of hysteresis: theory and experimental results , Ram Venkataraman

    E-print Network

    Iyer, Ram Venkataraman

    Control of hysteresis: theory and experimental results Xiaobo Tan , Ram Venkataraman , and P. S ABSTRACT Hysteresis in smart materials hinders the wider applicability of such materials in actuators. In this paper, a systematic approach for coping with hysteresis is presented. The method is illustrated through

  8. PID Control of Second-Order Systems with Hysteresis

    E-print Network

    Ryan, E.P.

    PID Control of Second-Order Systems with Hysteresis Bayu Jayawardhana, Hartmut Logemann & Eugene P. Keywords. Hysteresis, Nonlinear systems, PID control, Tuning regulators. 1 Introduction With reference of form (2) exhibit hysteresis phenomena, a particular example of which is the "hysteric spring" model

  9. Hysteresis Inverse Iterative Learning Control of Piezoactuators in AFM

    E-print Network

    Leang, Kam K.

    Hysteresis Inverse Iterative Learning Control of Piezoactuators in AFM S. C. Ashley, U. Aridogan, R update law exploits an inverse model of the hysteresis behavior for piezoactuators. Compared to ILC for hysteresis that updates the control input using the measured tracking error scaled by a constant (fixed

  10. Mathematical models of hydrological systems with Preisach hysteresis

    E-print Network

    Schellekens, Michel P.

    Mathematical models of hydrological systems with Preisach hysteresis P. Krejci, P. O'Kane, A. Pokrovskii, D. Rachinskii 1 Introduction The important role of hysteresis in hydrology and soil physics is known for a long time. Hysteresis manifests itself through the fact that it is easier (i.e., less thermo

  11. Relaxed model for the hysteresis in micromagnetism , M. Effendiev2

    E-print Network

    Carbou, Gilles

    Relaxed model for the hysteresis in micromagnetism G. Carbou1 , M. Effendiev2 and P. Fabrie1 1 Math, Germany. Abstract : in this paper we study a model of ferromagnetic material with hysteresis effects modelling the hysteresis. This term takes the form of a maximal monotone operator acting on the time

  12. A TemperatureDependent Hysteresis Model for Relaxor Ferroelectrics

    E-print Network

    A Temperature­Dependent Hysteresis Model for Relaxor Ferroelectrics Ralph C. Smith 1 and Craig L polarization and distribution of regions as a function of temperature. Hysteresis below the freezing point and hysteresis exhibited by the materials through a wide range of temperatures and input drive levels

  13. A Domain Wall Theory for Ferroelectric Hysteresis Ralph C. Smith

    E-print Network

    A Domain Wall Theory for Ferroelectric Hysteresis Ralph C. Smith Center for Research in Scientific.hom@lmco.com Abstract This paper addresses the modeling of hysteresis in ferroelectric materials through consideration for the anhysteretic polarization that occurs in the absence of domain wall pinning. In the second step, hysteresis

  14. Periodic orbits in the ODEs with hysteresis perturbations

    E-print Network

    Schellekens, Michel P.

    Periodic orbits in the ODEs with hysteresis perturbations A. Pokrovskii Dept. of Applied for the robustness of the unsta- ble oscillations in nonlinear ODE with respect to the small hysteresis perturbations was the interest to the influence of the small hysteresis perturbations to the dynamics of the physical systems

  15. Hysteresis and Economics Taking the economic past into account

    E-print Network

    Lamba, Harbir

    Hysteresis and Economics Taking the economic past into account R. Cross M. Grinfeld H. Lamba of hysteresis to economic models. In particular, we explain why many aspects of real economic systems, for example, in [1], which is also one of the first works in economics to mention hysteresis explicitly (but

  16. HYSTERESIS-BASED SWITCHING CONTROL OF STOCHASTIC LINEAR SYSTEMS

    E-print Network

    Hespanha, João Pedro

    HYSTERESIS-BASED SWITCHING CONTROL OF STOCHASTIC LINEAR SYSTEMS Maria Prandini£ , Jo~ao P. Hespanha. Abstract We study hysteresis-based switching control for a class of discrete-time stochastic linear systems exceeds its minimum (over all admissible models) by a certain hysteresis factor. The con- troller

  17. Extending hysteresis operators to spaces of piecewise continuous functions

    E-print Network

    Bath, University of

    Extending hysteresis operators to spaces of piecewise continuous functions #3; H. LOGEMANN and A@maths.bath.ac.uk, am@maths.bath.ac.uk Abstract: We consider continuous-time hysteresis operators, de#12;ned show how a hysteresis operator de#12;ned on the space of continuous piece- wise monotone functions, can

  18. AN ENERGY-BASED HYSTERESIS MODEL FOR MAGNETOSTRICTIVE TRANSDUCERS

    E-print Network

    Flatau, Alison B.

    AN ENERGY-BASED HYSTERESIS MODEL FOR MAGNETOSTRICTIVE TRANSDUCERS F.T. Calkins Department@iastate.edu Abstract This paper addresses the modeling of hysteresis in magnetostrictive transducers;cant nonlinearities and hysteresis due to inherent properties of mag- netostrictive materials

  19. A Stress-Dependent Hysteresis Model for Ferroelectric Materials

    E-print Network

    A Stress-Dependent Hysteresis Model for Ferroelectric Materials Brian L. Ball 1 , Ralph C. Smith 2, is the presence of hysteresis and constitutive nonlinearities due to the noncen- trosymmetric structure relations provide reasonable accuracy. At higher drive levels, however, the hysteresis and nonlinearities

  20. On regularity properties of solutions to hysteresis-type problems

    E-print Network

    On regularity properties of solutions to hysteresis-type problems D.E. Apushkinskaya and N (distributional) sence. Here L = xx - t is the heat operator, B1 = {x R : |x| hysteresis) means that the hysteresis function Hu(x, t) takes for u(x, t) (, ) the same value as at the previous

  1. Subharmonic ferroresonance in an LCR circuit with hysteresis

    E-print Network

    Lamba, Harbir

    Subharmonic ferroresonance in an LCR circuit with hysteresis H. LAMBA # M.GRINFELD # S.McKEE # R. SIMPSON + Abstract We use the Preisach model of magnetic hysteresis to model the inductance in a series LCR circuit. By introducing a hysteresis parameter into the Preisach functions used, we are able

  2. Torque meter aids study of hysteresis motor rings

    NASA Technical Reports Server (NTRS)

    Cole, M.

    1967-01-01

    Torque meter, simulating hysteresis motor operation, allows rotor ring performance characteristics to be analyzed. The meter determines hysteresis motor torque and actual stresses of the ring due to its mechanical situation and rotation, aids in the study of asymmetries or defects in motor rings, and measures rotational hysteresis.

  3. A Domain Wall Theory for Ferroelectric Hysteresis Ralph C. Smith

    E-print Network

    A Domain Wall Theory for Ferroelectric Hysteresis Ralph C. Smith Center for Research in Scienti c.hom@lmco.com Abstract This paper addresses the modeling of hysteresis in ferroelectric materials through consideration for the anhysteretic polarization that occurs in the absence of domain wall pinning. In the second step, hysteresis

  4. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape.

    PubMed

    Syrenova, Svetlana; Wadell, Carl; Nugroho, Ferry A A; Gschneidtner, Tina A; Diaz Fernandez, Yuri A; Nalin, Giammarco; ?witlik, Dominika; Westerlund, Fredrik; Antosiewicz, Tomasz J; Zhdanov, Vladimir P; Moth-Poulsen, Kasper; Langhammer, Christoph

    2015-12-01

    Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30?nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways. PMID:26343912

  5. Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage

    SciTech Connect

    Xie, H.; Regnier, S.

    2009-04-15

    A method using atomic force microscope (AFM) optical levers and a reference nanopositioning stage has been developed to characterize piezoscanner hysteresis and creep. The piezoscanner is fixed on a closed-loop nanopositioning stage, both of which have the same arrangement on each axis of the three spatial directions inside the AFM-based nanomanipulation system. In order to achieve characterization, the optical lever is used as a displacement sensor to measure the relative movement between the nanopositioning stage and the piezoscanner by lateral tracking a well-defined slope with the tapping mode of the AFM cantilever. This setup can be used to estimate a piezoscanner's voltage input with a reference displacement from the nanopositioning stage. The hysteresis and creep were accurately calibrated by the method presented, which use the current setup of the AFM-based nanomanipulation system without any modification or additional devices.

  6. Neural Controller Design-Based Adaptive Control for Nonlinear MIMO Systems With Unknown Hysteresis Inputs.

    PubMed

    Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2016-01-01

    This paper studies an adaptive neural control for nonlinear multiple-input multiple-output systems in interconnected form. The studied systems are composed of N subsystems in pure feedback structure and the interconnection terms are contained in every equation of each subsystem. Moreover, the studied systems consider the effects of Prandtl-Ishlinskii (PI) hysteresis model. It is for the first time to study the control problem for such a class of systems. In addition, the proposed scheme removes an important assumption imposed on the previous works that the bounds of the parameters in PI hysteresis are known. The radial basis functions neural networks are employed to approximate unknown functions. The adaptation laws and the controllers are designed by employing the backstepping technique. The closed-loop system can be proven to be stable by using Lyapunov theorem. A simulation example is studied to validate the effectiveness of the scheme. PMID:25898325

  7. The hysteresis response of soil CO2 concentration and soil respiration to soil temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Katul, Gabriel G.; Oren, Ram; Daly, Edoardo; Manzoni, Stefano; Yang, Dawen

    2015-08-01

    Diurnal hysteresis between soil temperature (Ts) and both CO2 concentration ([CO2]) and soil respiration rate (Rs) were reported across different field experiments. However, the causes of these hysteresis patterns remain a subject of debate, with biotic and abiotic factors both invoked as explanations. To address these issues, a CO2 gas transport model is developed by combining a layer-wise mass conservation equation for subsurface gas phase CO2, Fickian diffusion for gas transfer, and a CO2 source term that depends on soil temperature, moisture, and photosynthetic rate. Using this model, a hierarchy of numerical experiments were employed to disentangle the causes of the hysteretic [CO2]-Ts and CO2 flux Ts (i.e., F-Ts) relations. Model results show that gas transport alone can introduce both [CO2]-Ts and F-Ts hystereses and also confirm prior findings that heat flow in soils lead to [CO2] and F being out of phase with Ts, thereby providing another reason for the occurrence of both hystereses. The area (Ahys) of the [CO2]-Ts hysteresis near the surface increases, while the Ahys of the Rs-Ts hysteresis decreases as soils become wetter. Moreover, a time-lagged carbon input from photosynthesis deformed the [CO2]-Ts and Rs-Ts patterns, causing a change in the loop direction from counterclockwise to clockwise with decreasing time lag. An asymmetric 8-shaped pattern emerged as the transition state between the two loop directions. Tracing the pattern and direction of the hysteretic [CO2]-Ts and Rs-Ts relations can provide new ways to fingerprint the effects of photosynthesis stimulation on soil microbial activity and detect time lags between rhizospheric respiration and photosynthesis.

  8. Effects of matching network on the hysteresis during E and H mode transitions in argon inductively coupled plasma

    SciTech Connect

    Gao Fei; Zhao Shuxia; Li Xiaosong; Wang Younian

    2010-10-15

    An experimental investigation of the hysteresis during the E (capacitive coupling) and H mode (inductive coupling) transitions at various matching situation in argon inductively coupled plasma is reported. At high pressure, the results show two hysteresis loops involved the plasma density, applied power, and forward power, as well as the electrical parameters in the discharge circuit, when the series capacitance is cycled. The measured electron density versus applied power shows that the hysteresis loop shrinks with the decrease of the matching capacitance, and the same trend is discovered on the input current, voltage, and phase angle. In addition, for the case of small capacitance, the current (or voltage) jumps to a low value when the discharge passes through the E to H mode transition regime. Contrarily, for the case of large capacitance, the current jumps to a high value while the voltage is almost constant. The evolution characteristics of the plasma and circuit parameters observed imply that the nonlinear behavior of the matching situation may be one of the determined factors for hysteresis.

  9. Parent Effectiveness Training (P.E.T.): Criticisms and Caveats.

    ERIC Educational Resources Information Center

    Doherty, William J.; Ryder, Robert G.

    1980-01-01

    Criticizes Parent Effectiveness Training (P.E.T.) for its emphasis on one-sided techniques in the parent-child relationship and its tendency to reduce complex problems to simplistic formulas. P.E.T.'s central metaphor of parent-as-therapist is identified and found wanting. Issues have applicability to the parent education movement in general.…

  10. Rotational hysteresis of exchange-spring magnets.

    SciTech Connect

    Jiang, J.S.; Bader, S.D.; Kaper, H.; Leaf, G.K.; Shull, R.D.; Shapiro, A.J.; Gornakov, V.S.; Nikitenko, V.I.; Platt, C.L.; Berkowitz, A.E.; David, S.; Fullerton, E.E.

    2002-03-27

    We highlight our experimental studies and micromagnetic simulations of the rotational hysteresis in exchange-spring magnets. Magneto-optical imaging and torque magnetometry measurements for SmCo/Fe exchange-spring films with uniaxial in-plane anisotropy show that the magnetization rotation created in the magnetically soft Fe layer by a rotating magnetic field is hysteretic. The rotational hysteresis is due to the reversal of the chirality of the spin spiral structure. Micromagnetic simulations reveal two reversal modes of the chirality, one at low fields due to an in-plane untwisting of the spiral, and the other, at high fields, due to an out-of-plane fanning of the spiral.

  11. The hysteresis limit in relaxation oscillation problems

    NASA Astrophysics Data System (ADS)

    Krejcí, P.

    2005-01-01

    A singularly perturbed differential equation with a small coefficient multiplying the derivative is shown to exhibit a limiting hysteresis behavior as the singular parameter tends to zero. The convergence takes place in the space of left-continuous regulated functions and is related to the generalized Helly selection principle for regulated functions established by Franková. Examples show that convergence cannot be expected in general if no regularity is assumed either for the forcing term or for the equilibrium set.

  12. nature neuroscience VOLUME 14 | NUMBER 9 | SEPTEMBER 2011 1105 p e r s p e c t i v e

    E-print Network

    Nieuwenhuis, Sander

    nature neuroscience VOLUME 14 | NUMBER 9 | SEPTEMBER 2011 1105 p e r s p e c t i v e In theory reviewed 513 behavioral, systems and cognitive neuroscience articles in five top-ranking journals (Science, Nature, Nature Neuroscience, Neuron and The Journal of Neuroscience) and found that 78 used the correct

  13. Stability of dithered non-linear systems with backlash or hysteresis

    NASA Technical Reports Server (NTRS)

    Desoer, C. A.; Shahruz, S. M.

    1986-01-01

    A study is conducted of the effect of dither on the nonlinear element of a single-input single-outout feedback system. Nonlinearities are considered with memory (backlash, hysteresis), in the feedforward loop; a dither of a given amplitude is injected at the input of the nonlinearity. The nonlinearity is followed by a linear element with low-pass characteristic. The stability of the dithered system and an approximate equivalent system (in which the nonlinearity is a smooth function) are compared. Conditions on the input and on the dither frequency are obtained so that the approximate-system stability guarantees that of the given hysteretic system.

  14. Dipole-dipole interaction and its concentration dependence of magnetic fluid evaluated by alternating current hysteresis measurement

    NASA Astrophysics Data System (ADS)

    Ota, Satoshi; Yamada, Tsutomu; Takemura, Yasushi

    2015-05-01

    Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic tools, such as for treating hyperthermia and in magnetic particle imaging, respectively. Magnetic relaxation is one of the heating mechanisms of MNPs. Brownian and Néel relaxation times are calculated conventional theories; however, the influence of dipole-dipole interactions has not been considered in conventional models. In this study, water-dispersed MNPs of different concentrations and MNPs fixed with an epoxy bond were prepared. dc and ac hysteresis loops for each sample were measured. With respect to both dc and ac hysteresis loops, magnetization decreased with the increase in MNP concentration because of inhibition of magnetic moment rotation due to dipole-dipole interactions. Moreover, intrinsic loss power (ILP) was estimated from the areas of the ac hysteresis loops. The dependence of ILP on the frequency of the magnetic field was evaluated for each MNP concentration. The peak frequency of ILP increased with the decrease in MNP concentration. These peaks were due to Brownian relaxation, as they were not seen with the fixed sample. This indicates that the Brownian relaxation time became shorter with lower MNP concentration, because the weaker dipole-dipole interactions with lower concentrations suggested that the magnetic moments could rotate more freely.

  15. Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response

    SciTech Connect

    Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.; Varenyk, Olexandr V.; Kim, Yunseok; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.

    2014-08-14

    We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear coupling between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.

  16. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández-Gómez, P.; Muñoz, J. M.; Valente, M. A.; Torres, C.; de Francisco, C.

    2013-01-01

    Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer's formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  17. Magnetization and Hysteresis of Dilute Magnetic-Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Skomski, Ralph; Balamurugan, B.; Sellmyer, D. J.

    2014-03-01

    Real-structure imperfections in dilute magnetic oxides tend to create small concentrations of local magnetic moments that are coupled by fairly long-range exchange interactions, mediated by p-electrons. The robustness of these interactions is caused by the strong overlap of the p orbitals, as contrasted to the much weaker interatomic exchange involving iron-series 3d electrons. The net exchange between defect moments can be positive or negative, which gives rise to spin structures with very small net moments. Similarly, the moments exhibit magnetocrystalline anisotropy, reinforced by electron hopping to and from 3d states and generally undergoing some random-anuisotropy averaging. Since the coercivity scales as 2K1/M and M is small, this creates pronounced and -- in thin films -- strongly anisotropic hysteresis loops. In finite systems with N moments, both K1 and M are reduced by a factor of order N1/2 due to random anisotropy and moment compensation, respectively, so that that typical coercivities are comparable to bulk magnets. Thermal activation readily randomizes the net moment of small oxide particles, so that the moment is easier to measure in compacted or aggregated particle ensembles. This research is supported by DOE (BES).

  18. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    PubMed

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support. PMID:25375434

  19. Hysteresis analysis and positioning control for a magnetic shape memory actuator.

    PubMed

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2015-01-01

    Magnetic shape memory alloys (MSM alloys), a new kind of smart materials, have become a potential candidate in many engineering fields. MSMs have the advantage of bearing a huge strain, much larger than other materials. In addition, they also have fast response. These characteristics make MSM a good choice in micro engineering. However, MSMs display the obvious hysteresis phenomenon of nonlinear behavior. Thus the difficulty in using the MSM element as a positioning actuator is increased due to the hysteresis. In this paper, the hysteresis phenomenon of the MSM actuator is analyzed, and the closed-loop positioning control is also implemented experimentally. For that, a modified fuzzy sliding mode control (MFSMC) is proposed. The MFSMC and the PID control are used to design the controllers for realizing the positioning control. The experimental results are compared under different experimental conditions, such as different frequency, amplitude, and loading. The experimental results show that the precise positioning control of MFSMC can be achieved satisfactorily. PMID:25853405

  20. Hysteresis Analysis and Positioning Control for a Magnetic Shape Memory Actuator

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2015-01-01

    Magnetic shape memory alloys (MSM alloys), a new kind of smart materials, have become a potential candidate in many engineering fields. MSMs have the advantage of bearing a huge strain, much larger than other materials. In addition, they also have fast response. These characteristics make MSM a good choice in micro engineering. However, MSMs display the obvious hysteresis phenomenon of nonlinear behavior. Thus the difficulty in using the MSM element as a positioning actuator is increased due to the hysteresis. In this paper, the hysteresis phenomenon of the MSM actuator is analyzed, and the closed-loop positioning control is also implemented experimentally. For that, a modified fuzzy sliding mode control (MFSMC) is proposed. The MFSMC and the PID control are used to design the controllers for realizing the positioning control. The experimental results are compared under different experimental conditions, such as different frequency, amplitude, and loading. The experimental results show that the precise positioning control of MFSMC can be achieved satisfactorily. PMID:25853405

  1. Determining CoTE for Concrete Elizabeth Lukefahr, P.E., Ryan Barborak, P.E., Gary Peterson, and Andy Naranjo, P.E.,

    E-print Network

    to collect the displacement data, but due to the configuration of the frame and water bath, this left, and Andy Naranjo, P.E., Texas DOT INTRODUCTION Early-age distress, primarily shallow spalling, in continuously reinforced concrete pavements (CRCP) in Texas has been a problem for several decades. This type

  2. Hysteresis compensation and trajectory preshaping for piezoactuators in scanning applications

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich; Qi, Naiming

    2014-01-01

    This paper focuses on the dynamics and control of piezoactuators (PEAs) for high-speed large-range scanning applications. Firstly, the nonlinear hysteresis is modeled by using a modified Maxwell resistive capacitor (MRC) model. Secondly, an inverse-based feedforward controller is proposed for this application with hysteresis compensation. Then, the scanning trajectories are preshaped by treating the hysteresis-compensated PEA as a linear system. Finally, experiments are conducted to verify the effectiveness of the proposed approaches.

  3. Method and apparatus for sub-hysteresis discrimination

    DOEpatents

    De Geronimo, Gianluigi

    2015-12-29

    Embodiments of comparator circuits are disclosed. A comparator circuit may include a differential input circuit, an output circuit, a positive feedback circuit operably coupled between the differential input circuit and the output circuit, and a hysteresis control circuit operably coupled with the positive feedback circuit. The hysteresis control circuit includes a switching device and a transistor. The comparator circuit provides sub-hysteresis discrimination and high speed discrimination.

  4. The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; He, Xinfeng; Wang, Haiyang; Gu, Quanju; Shi, Shuaixu; Xing, Huaizhong; Wang, Chunrui; Zhang, Jing; Chen, Xiaoshuang; Chu, Junhao

    2012-11-01

    The nanocrystalline VO2 thin films, which surface has a flake grain structure, are achieved by DC sputtering deposition at different sputtering powers. It is found that the hysteresis loop of metal-insulator phase transition (MIT) is almost superposition, and the hysteresis width is only 0.4 °C for the surface flake grain structure that obtained at 132 W DC sputtering power. Moreover, it is shown that the phase transition is very steep, and the film displays 3-4 orders of the change of sheet resistance at MIT. The characterizations of SEM, AFM and four-point probe methods show that the hysteresis width, the orders of the change of sheet resistance and the phase transition become narrower, higher and steeper at MIT, respectively when the surface shapes of the nanocrystalline VO2 thin films change from nanoparticle structures to flake structures with the DC sputtering powers increased from 66 W to 132 W and the surface flake grain sizes reduced gradually to minimum at 132 W. Meanwhile, the surface roughness also changes into minimum. However, with the powers further increased from 132 W to 176 W, the surface flake grain sizes become bigger, and then the surface roughness changes poor. At 176 W, the surface flake structures begin to turn into nanoparticle structures. The hysteresis width, the orders of the change of sheet resistance and the phase transition become wider, lower and poorly steeper at MIT, separately. The results reveal that the nanocrystalline shapes and the surface roughness can affect the hysteresis width and the sheet resistance steepness in MIT. Our analysis shows that the mechanism of the narrowed hysteresis width mainly depends on the strain imbalance of the nanocrystalline VO2 thin film of the flake structures at MIT.

  5. Hysteresis prediction inside magnetic shields and application

    SciTech Connect

    Mori?, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-15

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60??T. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.

  6. Anisotropic hysteresis on ratcheted superhydrophobic surfaces

    E-print Network

    H. Kusumaatmaja; J. M. Yeomans

    2009-04-26

    We consider the equilibrium behaviour and dynamics of liquid drops on a superhydrophobic surface patterned with sawtooth ridges or posts. Due to the anisotropic geometry of the surface patterning, the contact line can preferentially depin from one side of the ratchets, leading to a novel, partially suspended, superhydrophobic state. In both this configuration, and the collapsed state, the drops show strong directional contact angle hysteresis as they are pushed across the surface. The easy direction is, however, different for the two states. This observation allows us to interpret recent experiments describing the motion of water drops on butterfly wings.

  7. Anisotropic hysteresis on ratcheted superhydrophobic surfaces

    E-print Network

    Kusumaatmaja, H

    2009-01-01

    We consider the equilibrium behaviour and dynamics of liquid drops on a superhydrophobic surface patterned with sawtooth ridges or posts. Due to the anisotropic geometry of the surface patterning, the contact line can preferentially depin from one side of the ratchets, leading to a novel, partially suspended, superhydrophobic state. In both this configuration, and the collapsed state, the drops show strong directional contact angle hysteresis as they are pushed across the surface. The easy direction is, however, different for the two states. This observation allows us to interpret recent experiments describing the motion of water drops on butterfly wings.

  8. Stability of shock wave reflections in nonequilibrium steady flows and hysteresis

    NASA Astrophysics Data System (ADS)

    Grasso, F.; Paoli, R.

    2000-12-01

    In the present work we have addressed the issue of the stability of shock wave reflection in the presence of vibrational and chemical relaxation phenomena and its relation with the occurrence of the hysteresis. In order to better understand the physics of the shock wave reflections we have first formulated an evolution equation for the entropy of a mixture of gases in thermal and chemical nonequilibrium by invoking the shifting equilibrium assumption and the concepts of irreversible thermodynamics, and assuming (i) that all diatomic molecules behave as harmonic oscillators; and (ii) finite rate chemistry. A perturbation analysis of the total entropy evolution equation has then been carried out to analyze the stability of shock wave configurations (either regular or Mach) both for ideal and real gases. The analysis shows that a Mach reflection is more stable than a regular one; furthermore, its stability is enhanced by nonequilibrium effects. In order to clarify the occurrence of the hysteresis phenomenon in light of the conclusions reached through the stability analysis, we have also carried out multidimensional simulations (both at flight and wind tunnel conditions) by developing a pseudotransient procedure to span a (hysteresis) loop dual solution domain ? Mach reflection domain ? dual solution domain. The simulations show that the total entropy of the system exhibits an abrupt change along the path dual solution domain ? Mach reflection domain, while it is continuous along the reverse path. An argument is then developed to prove that hysteresis is the natural consequence of the different stability properties of regular and Mach reflections and the Prigogine minimum total entropy production principle.

  9. Memory characteristics of hysteresis and creep in multi-layer piezoelectric actuators: An experimental analysis

    NASA Astrophysics Data System (ADS)

    Biggio, Matteo; Butcher, Mark; Giustiniani, Alessandro; Masi, Alessandro; Storace, Marco

    2014-02-01

    In this paper we provide an experimental characterization of creep and hysteresis in a multi-layer piezoelectric actuator (PEA), taking into account their relationships in terms of memory structure. We fit the well-known log-t model to the response of the PEA when driven by piecewise-constant signals, and find that both the instantaneous and the delayed response of the PEA display hysteretic dependence on the voltage level. We investigate experimentally the dependence of the creep coefficient on the input history, by driving the PEA along first-order reversal curves and congruent minor loops, and find that it displays peculiar features like strict congruence of the minor loops and discontinuities. We finally explain the observed experimental behaviors in terms of a slow relaxation of the staircase interface line in the Preisach plane.

  10. Improving Atomic Force Microscopy Imaging by a Direct Inverse Asymmetric PI Hysteresis Model

    PubMed Central

    Wang, Dong; Yu, Peng; Wang, Feifei; Chan, Ho-Yin; Zhou, Lei; Dong, Zaili; Liu, Lianqing; Li, Wen Jung

    2015-01-01

    A modified Prandtl–Ishlinskii (PI) model, referred to as a direct inverse asymmetric PI (DIAPI) model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace) and voltage-decrease-loop (retrace). A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM. PMID:25654719

  11. Improving atomic force microscopy imaging by a direct inverse asymmetric PI hysteresis model.

    PubMed

    Wang, Dong; Yu, Peng; Wang, Feifei; Chan, Ho-Yin; Zhou, Lei; Dong, Zaili; Liu, Lianqing; Li, Wen Jung

    2015-01-01

    A modified Prandtl-Ishlinskii (PI) model, referred to as a direct inverse asymmetric PI (DIAPI) model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace) and voltage-decrease-loop (retrace). A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM. PMID:25654719

  12. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  13. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.

    PubMed

    Abe-Ouchi, Ayako; Saito, Fuyuki; Kawamura, Kenji; Raymo, Maureen E; Okuno, Jun'ichi; Takahashi, Kunio; Blatter, Heinz

    2013-08-01

    The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere-asthenosphere response. Carbon dioxide is involved, but is not determinative, in the evolution of the 100,000-year glacial cycles. PMID:23925242

  14. Hysteresis between Distinct Modes of Turbulent Dynamos

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Kitchatinov, Leonid L.; Brandenburg, Axel

    2015-04-01

    Nonlinear mean-field models of the solar dynamo show long-term variability, which may be relevant to different states of activity inferred from long-term radiocarbon data. This paper is aimed at probing the dynamo hysteresis predicted by the recent mean-field models of Kitchatinov & Olemskoy with direct numerical simulations. We perform three-dimensional (3D) simulations of large-scale dynamos in a shearing box with helically forced turbulence. As an initial condition, we either take a weak random magnetic field or we start from a snapshot of an earlier simulation. Two quasi-stable states are found to coexist in a certain range of parameters close to the onset of the large-scale dynamo. The simulations converge to one of these states depending on the initial conditions. When either the fractional helicity or the magnetic Prandtl number is increased between successive runs above the critical value for onset of the dynamo, the field strength jumps to a finite value. However, when the fractional helicity or the magnetic Prandtl number is then decreased again, the field strength stays at a similar value (strong field branch) even below the original onset. We also observe intermittent decaying phases away from the strong field branch close to the point where large-scale dynamo action is just possible. The dynamo hysteresis seen previously in mean-field models is thus reproduced by 3D simulations. Its possible relation to distinct modes of solar activity such as grand minima is discussed.

  15. Kinetic effects on double hysteresis in spin crossover molecular magnets analyzed with first order reversal curve diagram technique

    SciTech Connect

    Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian E-mail: radu.tanasa@uaic.ro; Stancu, Alexandru; Tanasa, Radu E-mail: radu.tanasa@uaic.ro; Bronisz, Robert

    2015-05-07

    In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe{sub 1?x}Zn{sub x}(bbtr){sub 3}](ClO{sub 4}){sub 2} (bbtr?=?1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x?=?0) or doped with Zn ions (x?=?0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.

  16. Approach to saturation analysis of hysteresis measurements in rock magnetism and evidence for stress dominated magnetic anisotropy in young mid-ocean ridge basalt

    NASA Astrophysics Data System (ADS)

    Fabian, Karl

    2006-03-01

    Young mid-ocean ridge basalts contain titanomagnetite crystals of varying size and composition. Many studies of their hysteresis properties have found M/M ratios considerably above the theoretical limit of 0.5 for uniaxial single domain particles. Since titanomagnetite is a cubic mineral, high M/M could occur due to cubic anisotropy which allows for M/M values up to 0.866. On the other hand, titanomagnetites with high Ti content possess extremely large magnetostriction constants. Already slight internal stress easily outweighs cubic anisotropy and enforces uniaxial behavior. Are high M/M ratios now a proof for very low internal stress? No! On the contrary, previous studies on synthetic titanomagnetite with high M/M show that after annealing this ratio decreases. A possible explanation is that insufficient saturation of the hysteresis loop, used to infer M/M, leads to underestimation of M. Here, a systematic experimental study on a young mid-ocean ridge basalt using fields of up to 7 T demonstrates that indeed the M/M ratio of the single domain fraction does not significantly deviate from the theoretical value of 0.5 for uniaxial anisotropy. It is further estimated that internal stress above 200 MPa is necessary to explain the observed hysteresis behavior - a value which is consistent with recent independent approximations. On the other hand, theoretical loops for cubic minerals do not fit the observed data. In order to assess the validity of M determinations from hysteresis measurements, an improved method to evaluate the approach to saturation behavior of hysteresis loops is developed. It allows to recognize insufficiently saturated loops and thereby helps to avoid misinterpretation of standard M/M measurements when high fields are not accessible.

  17. Quantification of Hysteresis and Nonlinear Effects on the Frequency Response of Ferroelectric and

    E-print Network

    Quantification of Hysteresis and Nonlinear Effects on the Frequency Response of Ferroelectric. However, these materials also exhibit hysteresis and constitutive nonlinearities at all drive levels of hysteresis and nonlinearities on the frequency behavior of devices that employ these compounds. Whereas

  18. APPLICATION OF AN INVERSE-HYSTERESIS ITERATIVE CONTROL ALGORITHM FOR AFM FABRICATION

    E-print Network

    Leang, Kam K.

    APPLICATION OF AN INVERSE-HYSTERESIS ITERATIVE CONTROL ALGORITHM FOR AFM FABRICATION A thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter 3 Iterative Control for Hysteresis Compensation 35 3.1 Motivation

  19. Aalborg Universitet Behavior Patterns, Origin of Problems and Solutions Regarding Hysteresis

    E-print Network

    Berning, Torsten

    Aalborg Universitet Behavior Patterns, Origin of Problems and Solutions Regarding Hysteresis-Irina; Swierczynski, Maciej Jozef; Andreasen, Søren Juhl; Kær, Søren Knudsen Published in: Hysteresis: Types). Behavior Patterns, Origin of Problems and Solutions Regarding Hysteresis Phenomena in Complex Battery

  20. Phase transition and hysteresis in an ensemble of stochastic spiking neurons

    E-print Network

    Gómez, Vicenç

    Phase transition and hysteresis in an ensemble of stochastic spiking neurons Andreas Kaltenbrunner1 by a hysteresis around a critical coupling strength. Below the critical coupling production of spikes coupled oscillators. Keywords: phase transition; hysteresis; stochastic neurons; pulse coupled oscillators

  1. Friction and Adhesion Hysteresis between Surfactant Monolayers in Water

    E-print Network

    Klein, Jacob

    Friction and Adhesion Hysteresis between Surfactant Monolayers in Water Wuge H. Briscoe Physical friction between two surfaces in adhesive contact with the loading­unloading adhesion hysteresis between them. We then examine in light of this model the observed low friction between two mica surfaces coated

  2. Application of the Preisach model in soil-moisture hysteresis

    E-print Network

    Schellekens, Michel P.

    Application of the Preisach model in soil-moisture hysteresis Denis Flynn, Hugh McNamara, Philip O- teresis effects in the relation between water retention and soil-moisture ten- sion. Special, one parameter, classes of Preisach operators are proposed to construct models of the soil-moisture hysteresis

  3. Positive hysteresis of Ce-doped GAGG scintillator

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Watanabe, Kenichi; Sato, Hiroki; Yagi, Hideki; Yanagitani, Takagimi

    2014-10-01

    Positive hysteresis and radiation tolerance to high-dose radiation exposure were investigated for Ce 1% and 3% doped Gd3(Al, Ga)5O12 (Ce:GAGG) crystal scintillator on comparison with other garnet scintillators such Ce:YAG, Ce:LuAG, Pr:LuAG, and ceramic Ce:GAGG. When they were irradiated by several Gy 60Co ?-rays, Ce 1% doped GAGG crystal exhibited ?20% light yield enhancement (positive hysteresis). This is the first time to observe positive hysteresis in Ce doped GAGG. On the other hand, other garnet materials did not show the positive hysteresis and their light yields were stable after 800 Gy irradiation except Pr:LuAG. The light yield of Pr:LuAG decreased largely. When irradiated Ce:GAGG which showed positive hysteresis was evaluated in Synchrotron facility (UVSOR), new excitation band was created around 60 nm.

  4. Modeling the Effect of Interface Wear on Fatigue Hysteresis Behavior of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-04-01

    An analytical method has been developed to investigate the effect of interface wear on fatigue hysteresis behavior in carbon fiber-reinforced ceramic-matrix composites (CMCs). The damage mechanisms, i.e., matrix multicracking, fiber/matrix interface debonding and interface wear, fibers fracture, slip and pull-out, have been considered. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Upon first loading to fatigue peak stress and subsequent cyclic loading, the fibers failure probabilities and fracture locations were determined by combining the interface wear model and fiber statistical failure model based on the assumption that the loads carried by broken and intact fibers satisfy the global load sharing criterion. The effects of matrix properties, i.e., matrix cracking characteristic strength and matrix Weibull modulus, interface properties, i.e., interface shear stress and interface debonded energy, fiber properties, i.e., fiber Weibull modulus and fiber characteristic strength, and cycle number on fibers failure, hysteresis loops and interface slip, have been investigated. The hysteresis loops under fatigue loading from the present analytical method were in good agreement with experimental data.

  5. Modeling and compensating the dynamic hysteresis of piezoelectric actuators via a modified rate-dependent Prandtl-Ishlinskii model

    NASA Astrophysics Data System (ADS)

    Yang, Mei-Ju; Li, Chun-Xia; Gu, Guo-Ying; Zhu, Li-Min

    2015-12-01

    This paper presents a modified rate-dependent Prandtl-Ishlinskii (MRPI) model for the description and compensation of the rate-dependent asymmetric hysteresis in piezoelectric actuators. Different from the commonly used approach with dynamic weights or dynamic thresholds, the MRPI model is formulated by employing dynamic envelope functions into the play operators, while the weights and thresholds of the play operators are still static. By this way, the developed MRPI model has a relatively simple mathematic format with fewer parameters and easier parameter identification process. The benefit for the developed MRPI model also lies in the fact that the existing control approaches can be directly adopted with the MRPI model for hysteresis compensation in real-time applications. To validate the proposed model, an open-loop tracking controller and a closed-loop tracking controller are developed based on a dynamic hysteresis compensator, which is directly constructed with the MRPI model. Comparative experiments are carried out on a piezo-actuated nanopositioning stage. The experimental results demonstrate the effectiveness and superiority of the controllers based on the developed MRPI model compared to the controllers based on the rate-independent P-I model and the rate-dependent P-I model with dynamic weighting functions.

  6. Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich; Qi, Naiming

    2013-11-01

    A physics-based fractional-order Maxwell resistive capacitor (FOMRC) model is proposed to characterize nonlinear hysteresis and creep behaviors of a piezoelectric actuator (PEA). The Maxwell resistive capacitor (MRC) model is interpreted physically in the electric domain for PEAs. Based on this interpretation, the MRC model is modified to directly describe the relationship between the input voltage and the output displacement of a PEA. Then a procedure is developed to identify the parameters of the MRC model. This procedure is capable of being carried out using the measured input and output of a PEA only. A fractional-order dynamics is integrated into the MRC model to describe the effect of creep, as well as the detachment of hysteresis loops caused by creep. Moreover, the inverse FOMRC model is constructed to compensate for hysteresis and creep in an open-loop positioning application of PEAs. Simulation and experiments are carried out to validate the proposed model. The PEA compensated by the inverse FOMRC model shows an excellent linear behavior.

  7. Deformable mirrors for open-loop adaptive optics

    NASA Astrophysics Data System (ADS)

    Kellerer, A.; Vidal, F.; Gendron, E.; Hubert, Z.; Perret, D.; Rousset, G.

    2012-07-01

    We characterize the performance of deformable mirrors for use in open-loop regimes. This is especially relevant for Multi Object Adaptive Optics (MOAO), or for closed-loop schemes that require improved accuracies. Deformable mirrors are usually characterized by standard parameters, such as influence functions, linearity, hysteresis, etc. We show that these parameters are insufficient for characterizing open-loop performance and that a deeper analysis of the mirror's behavior is then required. The measurements on the deformable mirrors were performed in 2007 on the AO test bench of the Meudon observatory, SESAME.

  8. Thermal hysteresis behaviors of thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Iwasaki, Hideo

    2014-12-01

    Thermoelectric behaviors for the thermal cycles between room and high temperatures are investigated in (Bi,Sb)2Te3 and Bi2S3. Because the reliability and reproducibility of the data against repeated heating are required, the Harman method is adopted to evaluate the figure of merit, ZT, in which only electrical contacts are needed. The electrical contacts are made by the spot welding method using a simple and low-power machine made in our laboratory to avoid damage to the samples. Thermoelectric properties are changed by repeating thermal cycles, though their rate of change is not always very high and is material dependent. The carrier number dominantly contributes to the thermal hysteresis of the thermoelectric properties upon the repetition of the thermal cycles, which actually affects the sample as an annealing effect. It is pointed out that changes in thermoelectric properties upon the repetition of the thermal cycles should be examined beforehand in practical applications.

  9. Windmill speed limiting system utilizing hysteresis

    SciTech Connect

    Barnes, D.R.

    1983-02-22

    A windmill speed limiting device is provided to prevent the windmill blades from going too fast during conditions of heavy winds. In order to slow down the windmill blades, the tips of the blades are turned relative to the main blade portion at high speeds. After the tips are turned, the windmill blade must return to a safe speed before the tips are returned to their normal position. A hysteresis effect by which the tip portions are rotated to their normal angular position in alignment with the main blade portion is implemented by means of a cam track, a pivot point below the center of the blade and a central spring loaded drum to which each of the blades are connected.

  10. A Hysteresis Model for Piezoceramic Materials

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Ounaies, Zoubeida

    1999-01-01

    This paper addresses the modeling of nonlinear constitutive relations and hysteresis inherent to piezoceramic materials at moderate to high drive levels. Such models are, necessary to realize the, full potential of the materials in high performance control applications, and a necessary prerequisite is the development of techniques which permit control implementation. The approach employed here is based on the qualification of reversible and irreversible domain wall motion in response to applied electric fields. A comparison with experimental data illustrates that because the resulting ODE model is physics-based, it can be employed for both characterization and prediction of polarization levels throughout the range of actuator operation. Finally, the ODE formulation is amenable to inversion which facilitates the development of an inverse compensator for linear control design.

  11. Hysteresis in Pressure-Driven DNA Denaturation

    PubMed Central

    Hernández-Lemus, Enrique; Nicasio-Collazo, Luz Adriana; Castañeda-Priego, Ramón

    2012-01-01

    In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue. PMID:22496765

  12. Oxygen Toxicity Calculations by Erik C. Baker, P.E.

    E-print Network

    Haase, Markus

    1 Oxygen Toxicity Calculations by Erik C. Baker, P.E. Management of exposure to oxygen toxicity myself using the good ole' FORTRAN programming language, I found that incorporating oxygen toxicity for others. Background Two oxygen toxicity parameters are typically "tracked" in technical diving

  13. Convective Mixing in the Earth's P. E. Van Keken

    E-print Network

    van Keken, Peter

    2.12 Convective Mixing in the Earth's Mantle P. E. Van Keken University of Michigan, Ann Arbor, MI OF MANTLE HETEROGENEITY 472 2.12.2.1 Geochemical Observations Suggesting Mantle Layering 472 2.12.2.2 Problems with the Classical Layered Model 473 2.12.3 CHARACTERIZATION OF MIXING 474 2.12.3.1 Physics

  14. HONGCHAO LIU, Ph.D., P.E. Curriculum vitae

    E-print Network

    Chen, Xinzhong

    1 HONGCHAO LIU, Ph.D., P.E. Curriculum vitae Department of Civil and Environmental Engineering.liu@ttu.edu Lubbock, Tx 79409 EDUCATIONAL HISTORY 2001-2004: Postdoctoral, University of California, Berkeley, USA -: Professor, Department of Civil and Environmental Engineering, Texas Tech University 2009 -2014: Associate

  15. Automi e Linguaggi Formali Problemi intrattabili, classi P e NP

    E-print Network

    Sperduti, Alessandro

    Automi e Linguaggi Formali Problemi intrattabili, classi P e NP A.A. 2014-2015 Alessandro Sperduti-2015 Docente: Alessandro Sperduti 2 of 30 #12;Classe P Una Tm M ha complessit`a in tempo T(n) se, dato un input-2015 Docente: Alessandro Sperduti 3 of 30 #12;Esempio di problema in P Problema: trovare un albero di copertura

  16. Liquid Crystalline Elastomers as Artificial Muscles P. E. Cladis

    E-print Network

    Cladis, Patricia E.

    Liquid Crystalline Elastomers as Artificial Muscles P. E. Cladis Advanced Liquid Crystal Technologies, POB 1314, Summit, NJ 07902 USA Abstract We find that low molecular weight liquid crystalline cooperative effects acting over length scales larger than the typical mesh size of a liquid single crystalline

  17. Formative Assessment Probes: Using the P-E-O Technique

    ERIC Educational Resources Information Center

    Keeley, Page

    2013-01-01

    This article describes how observing whether objects sink or float in water using the P-E-O (Predict, Explain, and Observe) technique is an elementary precursor to developing explanations in later grades that involve an understanding of density and buoyancy. Beginning as early as preschool, elementary students engage in activities that encourage…

  18. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    SciTech Connect

    Heczko, O. Drahokoupil, J.; Straka, L.

    2015-05-07

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270?Oe while not affecting the transformation behavior and 10?M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  19. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  20. Assessing catchment connectivity using hysteretic loops

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Masselink, Rens; Goni, Mikel; Campo, Miguel Angel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel

    2015-04-01

    Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within landscapes. This information is valuable for land managers to be able to take appropriate action at the correct place. Hysteresis between sediment and water discharge can give important information about the sources , pathways and conditions of sediment that arrives at the outlet of a catchment. "Hysteresis" happens when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed -towards the increase or towards the diminution of the flow. This phenomenon to some extent reflects the way in which the runoff generation processes are conjugated with those of the production and transport of sediments, hence the usefulness of hysteresis as a diagnostic hydrological parameter. However, the complexity of the phenomena and factors which determine hysteresis make its interpretation uncertain or, at the very least, problematic. Many types of hysteretic loops have been described as well as the cause for the shape of the loop, mainly describing the origin of the sediments. In this study, several measures to objectively classify hysteretic loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz "principal", Op, and Oskotz "woodland", Ow). La Tejería and Latxaga watersheds, located in the Central Western part of Navarre, are roughly similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops). On the other hand, Op (ca.1,700 ha) is covered with forest and pasture (cattle-breeding); while Ow (ca. 500 ha), a sub-watershed of the Op, is almost completely covered with forest. The predominant climate in Op/Ow is sub-Atlantic. Furthermore, antecedent conditions and event characteristics were analysed. The loops were compared quantitatively and qualitatively between catchments for similar events and within the catchments for events with different characteristics.

  1. Static measurements of slender delta wing rolling moment hysteresis

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Levin, Daniel

    1991-01-01

    Slender delta wing planforms are susceptible to self-induced roll oscillations due to aerodynamic hysteresis during the limit cycle roll oscillation. Test results are presented which clearly establish that the static rolling moment hysteresis has a damping character; hysteresis tends to be greater when, due to either wing roll or side slip, the vortex burst moves back and forth over the wing trailing edge. These data are an indirect indication of the damping role of the vortex burst during limit cycle roll oscillations.

  2. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  3. perature sensitive. Both electrode pairs show approximately the same thermal hysteresis.

    E-print Network

    Mandelis, Andreas

    236 perature sensitive. Both electrode pairs show approximately the same thermal hysteresis. The E greatly improve their thermal hysteresis characteristics. thermal hysteresis,whereas the glass electrodeshows a thermd hysteresis dependent on the actual pH of the solution. It should be noted that E

  4. L1 Adaptive Control of Hysteresis in Smart Materials Xiang Fan and Ralph C. Smith

    E-print Network

    L1 Adaptive Control of Hysteresis in Smart Materials Xiang Fan and Ralph C. Smith Center behavior. Hence these mate- rials have inherent sensing and actuation capacities. However, the hysteresis compensation is a fundamental approach to cope with hysteresis, where one aims to cancel out the hysteresis

  5. Barkhausen Noise Modelling 5.1 Existing models of hysteresis and Barkhausen

    E-print Network

    Cambridge, University of

    Chapter 5 Barkhausen Noise Modelling 5.1 Existing models of hysteresis and Barkhausen noise 5 in magnetostatic energy, or as hysteresis loss. In the absence of hysteresis, all the energy supplied would go be expressed in terms of Man: Esupp = µ0 Man{H}dH (5.4) Hysteresis loss was attributed to domain wall pinning

  6. Bubble dynamics atop an oscillating substrate: Interplay of compressibility and contact angle hysteresis

    E-print Network

    Straube, Arthur V.

    hysteresis Irina S. Fayzrakhmanova,1 Arthur V. Straube,2,3,a) and Sergey Shklyaev3,4 1 Department and the contact angle hysteresis. In the presence of contact angle hysteresis, the compressible bubble exhibits of such factors as compressibility and contact angle hysteresis, by looking at a relatively sim- ple theoretical

  7. A high-speed hysteresis motor spindle for machining applications

    E-print Network

    Bayless, Jacob D. (Jacob Daniel)

    2014-01-01

    An analysis of suitable drive technologies for use in a new high-speed machining spindle was performed to determine critical research areas. The focus is on a hysteresis motor topology using a solid, inherently-balanced ...

  8. Magnetically suspended reaction sphere with one-axis hysteresis drive

    E-print Network

    Zhou, Lei., S.M. Massachusetts Institute of Technology

    2014-01-01

    This thesis presents the design, modeling, implementation, and control of a magnetically suspended reaction sphere with one-axis hysteresis drive (1D-MSRS). The goal of this project is two fold: (a) exploring the design ...

  9. Hysteresis modeling of clamp band joint with macro-slip

    NASA Astrophysics Data System (ADS)

    Qin, Zhaoye; Cui, Delin; Yan, Shaoze; Chu, Fulei

    2016-01-01

    Clamp band joints are commonly used to connect spacecrafts with launch vehicles. Due to the frictional slippage between the joint components, hysteresis behavior might occur at joint interfaces under cyclic loading. The joint hysteresis will bring friction damping into the launching systems. In this paper, a closed-form hysteresis model for the clamp band joint is developed based on theoretical and numerical analyses of the interactions of the joint components. Then, the hysteresis model is applied to investigating the dynamic response of a payload fastened by the clamp band joint, where the nonlinearity and friction damping effects of the joint is evaluated. The proposed analytical model, which is validated by both finite element analyses and quasi-static experiments, has a simple form with sound accuracy and can be incorporated into the dynamic models of launching systems conveniently.

  10. Essays on crime, hysteresis, poverty and conditional cash transfers 

    E-print Network

    Loureiro, Andre Oliveira Ferreira

    2013-07-03

    This thesis encompasses three essays around criminal behaviour with the first one analysing the impact of programmes aimed at poverty reduction, the second one developing a theoretical model of hysteresis in crime, and ...

  11. Contact angle hysteresis: a review of fundamentals and applications

    E-print Network

    ’t Mannetje, D. J. C. M.

    Contact angle hysteresis is an important physical phenomenon. It is omnipresent in nature and also plays a crucial role in various industrial processes. Despite its relevance, there is a lack of consensus on how to incorporate ...

  12. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes

    NASA Astrophysics Data System (ADS)

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-05-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3- antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  13. Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis

    E-print Network

    Smyth, Katherine M.

    We study the wetting energetics and wetting hysteresis of sessile and impacting water droplets on superhydrophobic surfaces as a function of surface texture and surface energy. For sessile drops, we find three wetting ...

  14. Low-Hysteresis Flow-Through Wind-Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Kunz, N.; Luna, P. M.; Roberts, A. C.; Smith, R. C.; Horne, W. L.; Smith, K. M.

    1992-01-01

    Improved flow-through wind-tunnel balance includes features minimizing both spurious force readings caused by internal pressurized flow and mechanical hysteresis. Symmetrical forces caused by internal flow cancelled.

  15. On the question of hysteresis in Hall magnetohydrodynamic reconnection

    SciTech Connect

    Sullivan, Brian P.; Bhattacharjee, A.; Huang Yimin

    2010-11-15

    Controversy has been raised regarding the cause of hysteresis, or bistability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This brief communication presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al. [Phys. Rev. Lett. 95, 235002 (2005)] is a different phenomenon from that recently reported by Zocco et al. [Phys. Plasmas 16, 110703 (2009)] on the basis of analysis and simulations in electron MHD with finite electron inertia. We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.

  16. Hysteresis and transition in swirling nonpremixed flames

    SciTech Connect

    Tummers, M.J.; Huebner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, T.H.

    2009-02-15

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change from an attached swirling flame (unidirectional or with a weak bluff-body recirculation), to a lifted flame with a strong toroidal vortex occupying the bulk of the flame. Despite dramatic differences in their structures, mixing intensities and combustion performance, both flame types can be realised at identical flow rates, equivalence ratio and swirl intensity. We report here on comprehensive investigations of the two flame regimes at the same conditions in a well-controlled experiment in which the swirl was generated by the rotating outer pipe of the annular burner air passage. Fluid velocity measured with PIV (particle image velocimetry), the qualitative detection of reaction zones from OH PLIF (planar laser-induced fluorescence) and the temperature measured by CARS (coherent anti-Stokes Raman spectroscopy) revealed major differences in vortical structures, turbulence, mixing and reaction intensities in the two flames. We discuss the transition mechanism and arguments for the improved mixing, compact size and a broader stability range of the blue flame in comparison to the long yellow flame. (author)

  17. Experiments on sorption hysteresis of desiccant materials

    SciTech Connect

    Pesaran, A.; Zangrando, F.

    1984-08-01

    Solid desiccant cooling systems take advantage of solar energy for air conditioning. The process involves passing air through a desiccant bed for drying and subsequent evaporative cooling to provide the air conditioning. The desiccant is then regenerated with hot air provided by a gas burner or solar collectors. This performance is limited by the capacity of the desiccant, its sorption properties, and the long-term stability of the desiccant material under cyclic operation conditions. Therefore, we have developed a versatile test facility to measure the sorption properties of candidate solid desiccant materials under dynamic conditions, under different geometrical configurations, and under a broad range of process air stream conditions, characteristic of desiccant dehumidifer operation. We identified a dependence of the sorption processes on air velocity and the test cell aspect ratio and the dynamic hysteresis between adsorption and desorption processes. These experiments were geared to provide data on the dynamic performance of silica gel in a parallel-passage configuration to prepare for tests with a rotary dehumidifier that will be conducted at SERI in late FY 1984. We also recommend improving the accuracy of the isotopic perturbation technique.

  18. Hysteresis in the Central African Rainforest

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan Alexander; Elias Bednar, Johannes; Gautam, Sishir; Petritsch, Richard; Schier, Franziska; Stanzl, Patrick

    2014-05-01

    Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, analyse the relationship between resilience, standing C-stocks and change in climate and finally provide evidence of hysteresis.

  19. Changes in surface figure due to thermal hysteresis

    NASA Astrophysics Data System (ADS)

    Jacobs, S. F.; Johnston, S. C.; Sasian, J. M.; Watson, M.; Targove, J. D.

    1987-01-01

    Thermal cycling hysteresis affects surface figure in low-expansivity mirror substrates. Zerodur, ULE, and Cer-Vit 8-in.-diameter mirrors and dilatometer samples were thermally cycled at uniform rates of 6 K/hr and 60 K/hr, and somewhat faster for nonuniform heating. Figure distortions as large as lambda/10 were observed following nonuniform heating of standard Zerodur, which was the only material exhibiting thermal hysteresis. A new experimental Zerodur appears to be free of this problem.

  20. Stabilization of supercooled fluids by thermal hysteresis proteins.

    PubMed Central

    Wilson, P W; Leader, J P

    1995-01-01

    It has been reported that thermal hysteresis proteins found in many cold-hardy, freeze-avoiding arthropods stabilize their supercooled body fluids. We give evidence that fish antifreeze proteins, which also produce thermal hysteresis, bind to and reduce the efficiency of heterogenous nucleation sites, rather than binding to embryonic ice nuclei. We discuss both possible mechanisms for stabilization of supercooled body fluids and also describe a new method for measuring and defining the supercooling point of small volumes of liquid. PMID:7612853

  1. Aileron roll hysteresis effects on entry of space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Powell, R. W.

    1977-01-01

    Six-degree-of-freedom simulations of the space shuttle orbiter entry with control hysteresis were conducted on the NASA Langley Research Center interactive simulator known as the automatic reentry flight dynamics simulator. These simulations revealed that the vehicle can tolerate control hysteresis producing a + or - 50 percent change in the nominal aileron roll characteristics and an offset in the nominal characteristics equivalent to a + or - 5 deg aileron deflection with little increase in the reaction control system's fuel consumption.

  2. Adhesion hysteresis and friction at nanometer and micrometer lengths

    SciTech Connect

    Szoszkiewicz, Robert; Bhushan, Bharat; Huey, Bryan D.; Kulik, Andrzej J.; Gremaud, Gerard

    2006-01-01

    Comparisons between adhesion hysteresis and friction at nanometer and micrometer length scales were investigated experimentally and theoretically. Nanoscale adhesion hysteresis was measured using the ultrasonic force microscopy (UFM) on mica, calcite, and a few metallic samples (Pt, Au, Cu, Zn, Ti, and Fe). Obtained adhesion hysteresis ranged between 4x10{sup -19} and 4x10{sup -18} J. At the microscale a similar setup with a nanoindenter was used and the same samples were investigated. Adhesion hysteresis measured at the microscale ranged between 8x10{sup -17} and 14x10{sup -17} J. Friction was investigated via lateral force microscopy, as well as by scratch tests done with the nanoindenter. Numerical simulations based on the UFM model as well as established theories of contact mechanics studied qualitative dependencies of adhesion hysteresis on experimental parameters. Quantitative relations between adhesion hysteresis and friction were obtained through an analytic model relying on elastic and adhesive properties of the contact. The model agreed with measurements and simulations.

  3. Voltage control of magnetic hysteresis in a nickel nanoparticle

    NASA Astrophysics Data System (ADS)

    Gartland, P.; Jiang, W.; Davidovi?, D.

    2015-06-01

    The effects of voltage bias on magnetic hysteresis in single Ni particles 2 to 3 nm in diameter are measured between temperatures of 60 mK and 4.2 K by using sequential electron tunneling through the particle. While some Ni particles do not display magnetic hysteresis in tunneling current versus magnetic field, in the Ni particles that display hysteresis, the effect of bias voltage on magnetic switching field is nonlinear. The magnetic switching field changes weakly in the voltage interval ˜1 mV above the tunneling onset voltage, and rapidly decreases versus voltage above that interval. A voltage-driven mechanism explaining this nonlinear suppression of magnetic hysteresis is presented, where the key effect is a magnetization blockade due to the addition of spin-orbit anisotropy ?so to the particle by a single electron. A necessary condition for the particle to exhibit magnetization blockade is that ?so increases when the magnetization is slightly displaced from the easy axis. In that case, an electron will be energetically unable to access the particle if the magnetization is sufficiently displaced from the easy axis, which leads to a voltage interval where magnetic hysteresis is possible that is comparable to ?so/e , where e is the electronic charge. If ?so decreases vs magnetization displacement from the easy axis, there is no magnetization blockade and no hysteresis.

  4. The significance of observed rotational magnetic hysteresis in lunar samples

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1974-01-01

    Rotational magnetic hysteresis curves for lunar soils 10084, 12070, and 14259, and rock 14053 have been published. There is no adequate explanation to date for the observed large hysteresis at high fields. Lunar rock magnetism researchers consider fine particle iron to be the primary source of stable magnetic remanence in lunar samples. Iron has cubic anisotropy with added shape anisotropy for extreme particle shapes. The observed high-field hysteresis must have its source in uniaxial or unidirectional anisotropy. This implies the existence of minerals with uniaxial anisotropy or exchange-coupled spin states. Therefore, the source of this observed high-field hysteresis must be identified and understood before serious paleointensity studies are made. It is probable that the exchange-coupled spin states and/or the source of uniaxial anisotropy responsible for the high-field hysteresis might be influenced by the lunar surface diurnal temperature cycling. The possible sources of high-field hysteresis in lunar samples are presented and considered.

  5. A neural approach for the numerical modeling of two-dimensional magnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Riganti Fulginei, F.; Salvini, A.

    2015-05-01

    This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, making possible a full computer simulation in a reasonable time. The neural system proposed consists of four inputs representing the magnetic field and the magnetic inductions components at each time step and it is trained by 2-d measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the neural system returns the predicted value of the field H at the same time step. A suitable partitioning of the neural system, described in the paper, makes the computing process rather fast. Validations with experimental tests and simulations for non-symmetric and minor loops are presented.

  6. Loop-to-loop coupling.

    SciTech Connect

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  7. Nonlinear ac stationary response and dynamic magnetic hysteresis of quantum uniaxial superparamagnets

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Titov, Serguey V.; Coffey, William T.

    2015-11-01

    The nonlinear ac stationary response of uniaxial paramagnets and superparamagnets—nanoscale solids or clusters with spin number S ˜100-104 —in superimposed uniform ac and dc bias magnetic fields of arbitrary strength, each applied along the easy axis of magnetization, is determined by solving the evolution equation for the reduced density matrix represented as a finite set of three-term differential-recurrence relations for its diagonal matrix elements. The various harmonic components arising from the nonlinear response of the magnetization, dynamic magnetic hysteresis loops, etc., are then evaluated via matrix continued fractions indicating a pronounced dependence of the response on S arising from the quantum spin dynamics, which differ markedly from the magnetization dynamics of classical nanomagnets. In the linear response approximation, the results concur with existing solutions.

  8. Effects of Contact Angle Hysteresis on Ice Adhesion and Growth over Superhydrophobic Surfaces under Dynamic Flow Conditions

    SciTech Connect

    Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2012-01-01

    In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow condition of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.

  9. Heterogeneous side chain conformation highlights a network of interactions implicated in hysteresis of the knotted protein, minimal tied trefoil

    NASA Astrophysics Data System (ADS)

    Burban, David J.; Haglund, Ellinor; Capraro, Dominique T.; Jennings, Patricia A.

    2015-09-01

    Hysteresis is a signature for a bistability in the native landscape of a protein with significant transition state barriers for the interconversion of stable species. Large global stability, as in GFP, contributes to the observation of this rare hysteretic phenomenon in folding. The signature for such behavior is non-coincidence in the unfolding and refolding transitions, despite waiting significantly longer than the time necessary for complete denaturation. Our work indicates that hysteresis in the knotted protein, the minimal tied trefoil from Thermotoga maritma (MTTTm), is mediated by a network of side chain interactions within a tightly packed core. These initially identified interactions include proline 62 from a tight ?-like turn, phenylalanine 65 at the beginning of the knotting loop, and histidine 114 that initiates the threading element. It is this tightly packed region and the knotting element that we propose is disrupted with prolonged incubation in the denatured state, and is involved in the observed hysteresis. Interestingly, the disruption is not linked to backbone interactions, but rather to the packing of side chains in this critical region.

  10. PREFACE: International Workshop on Multi-Rate Processes and Hysteresis

    NASA Astrophysics Data System (ADS)

    Mortell, Michael P.; O'Malley, Robert E.; Pokrovskii, Alexei; Rachinskii, Dmitrii; Sobolev, Vladimir A.

    2008-07-01

    We are interested in singular perturbation problems and hysteresis as common strongly nonlinear phenomena that occur in many industrial, physical and economic systems. The wording `strongly nonlinear' means that linearization will not encapsulate the observed phenomena. Often these two types of phenomena are manifested for different stages of the same or similar processes. A number of fundamental hysteresis models can be considered as limit cases of time relaxation processes, or admit an approximation by a differential equation which is singular with respect to a particular parameter. However, the amount of interaction between practitioners of theories of systems with time relaxation and systems with hysteresis (and between the `relaxation' and `hysteresis' research communities) is still low, and cross-fertilization is small. In recent years Ireland has become a home for a series of prestigious International Workshops in Singular Perturbations and Hysteresis: International Workshop on Multi-rate Processes and Hysteresis (University College Cork, Ireland, 3-8 April 2006). Proceedings are published in Journal of Physics: Conference Series, volume 55. See further information at http://euclid.ucc.ie/murphys2008.htm International Workshop on Hysteresis and Multi-scale Asymptotics (University College Cork, Ireland, 17-21 March 2004). Proceedings are published in Journal of Physics: Conference Series, volume 22. See further information at http://euclid.ucc.ie/murphys2006.htm International Workshop on Relaxation Oscillations and Hysteresis (University College Cork, Ireland, 1-6 April 2002). The related collection of invited lectures, was published as a volume Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005. See further information at http://euclid.ucc.ie/hamsa2004.htm International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics (University College Cork, Ireland, 5-5 April 2001). A collection of invited papers has been published as a special issue of Proceedings of the Russian Academy of Natural Sciences: Nonlinear dynamics of laser and reacting systems, and is available online at http://www.ins.ucc.ie/roh2002.htm. See further information at http://www.ins.ucc.ie/roh2002.htm Among the aims of these workshops were to bring together leading experts in singular perturbations and hysteresis phenomena in applied problems; to discuss important problems in areas such as reacting systems, semiconductor lasers, shock phenomena in economic modelling, fluid mechanics, etc with an emphasis on hysteresis and singular perturbations; to learn and to share modern techniques in areas of common interest. The `International Workshop on Multi-Rate Processes and Hysteresis' (University College Cork, Ireland, April 3-8, 2006) brought together more than 70 scientists (including more than 10 students), actively researching in the areas of dynamical systems with hysteresis and singular perturbations, to analyze those phenomena that occur in many industrial, physical and economic systems. The countries represented at the Workshop included Czech Republic, England, France, Germany, Hungary, Ireland, Israel, Italy, Poland, Romania, Russia, Scotland, South Africa, Switzerland and USA. All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The Workshop has been sponsored by Science Foundation Ireland (SFI), KE Consulting group, Drexel University, Philadelphia, USA, University College Cork (UCC), Boole Centre for Research in Informatics, UCC, Cork, School of Mathematical Sciences, UCC, Cork, Irish Mathematical Society, Tyndall National Institute, Cork, University of Limerick, Cork Institute of Technology, and Heineken. The supportive affiliation of the European Geophysics Society, International Association of Hydrological Sciences, and Laboratoire Poncelet is grateful

  11. M-H loop tracer based on digital signal processing for low frequency characterization of extremely thin magnetic wires

    SciTech Connect

    Butta, M.; Ripka, P.; Infante, G.; Badini-Confalonieri, G. A.; Vazquez, M.

    2009-08-15

    A high-sensitivity ac hysteresis loop tracer has been developed to measure the low frequency hysteresis loop of soft magnetic materials. It has been applied successfully to characterize straight pieces of amorphous glass-covered microwires with metallic nucleus down to 1.5 {mu}m thick. Based on the electromagnetic induction law, the proposed design is extremely simple and exploits the capabilities of commercially available data acquisition cards together with digital signal processing in order to achieve high-sensitivity without the need of expensive analog equipment.

  12. Analyzing hysteresis behavior of capacitance-voltage characteristics of IZO/C60/pentacene/Au diodes with a hole-transport electron-blocking polyterpenol layer by electric-field-induced optical second-harmonic generation measurement

    NASA Astrophysics Data System (ADS)

    Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa; Bazaka, Kateryna; Jacob, Mohan V.

    2013-05-01

    By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed hysteresis behavior of capacitance-voltage (C-V) characteristics of IZO/polyterpenol (PT)/C60/pentacene/Au diodes, where PT layer is actively working as a hole-transport electron-blocking layer. The EFISHG measurement verified the presence of interface accumulated charges in the diodes, and showed that a space charge electric field from accumulated excess electrons (holes) that remain at the PT/C60 (C60/pentacene) interface is responsible for the hysteresis loop observed in the C-V characteristics.

  13. Contact Hysteresis and Friction of Alkanethiol SAMs on Au

    SciTech Connect

    Houston, J.E.; Kiely, J.D.

    1998-10-14

    Nanoindentation has been combhed with nanometer-scale friction measurements to identi~ dissipative mechanisms responsible for friction in hexadecanethiol self-assembled monolayer on Au. We have demonstrated that friction is primarily due to viscoelastic relaxations within the films, which give rise to contact hysteresis when deformation rates are within the ranges of 5 and 200 k. We observe that this contact hysteresis increases with exposure to air such that the friction coefficient increases from 0.004 to 0.075 when films are exposed to air for 40 days. Both hysteresis and friction increase with probe speed, and we present a model of friction that characterizes this speed dependence and which also predicts a linear dependence of friction on normal force in thin organic films. Finally, we identify several short-term wear regimes and identify that wear changes dramatically when fdms age.

  14. Hysteresis Modeling in Magnetostrictive Materials Via Preisach Operators

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1997-01-01

    A phenomenological characterization of hysteresis in magnetostrictive materials is presented. Such hysteresis is due to both the driving magnetic fields and stress relations within the material and is significant throughout, most of the drive range of magnetostrictive transducers. An accurate characterization of the hysteresis and material nonlinearities is necessary, to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a characterization is made here in the context of generalized Preisach operators. This yields a framework amenable to proving the well-posedness of structural models that incorporate the magnetostrictive transducers. It also provides a natural setting in which to develop practical approximation techniques. An example illustrating this framework in the context of a Timoshenko beam model is presented.

  15. Modelling contact angle hysteresis on chemically patterned and superhydrophobic surfaces

    E-print Network

    H. Kusumaatmaja; J. M. Yeomans

    2006-11-03

    We investigate contact angle hysteresis on chemically patterned and superhydrophobic surfaces, as the drop volume is quasi-statically increased and decreased. We consider both two, and three, dimensions using analytical and numerical approaches to minimise the free energy of the drop. In two dimensions we find, in agreement with other authors, a slip, jump, stick motion of the contact line. In three dimensions this behaviour persists, but the position and magnitude of the contact line jumps are sensitive to the details of the surface patterning. In two dimensions we identify analytically the advancing and receding contact angles on the different surfaces and we use numerical insights to argue that these provide bounds for the three dimensional cases. We present explicit simulations to show that a simple average over the disorder is not sufficient to predict the details of the contact angle hysteresis, and to support an explanation for the low contact angle hysteresis of suspended drops on superhydrophobic surfaces.

  16. Crossing in the magnetic force-gap hysteresis curve of magnetic levitation systems with a high- T c superconductor

    NASA Astrophysics Data System (ADS)

    Gou, Xiao-Fan; Zhang, Zhao-Xia

    2010-05-01

    For the magnetic levitation system consisting of a high- T c superconductor and permanent magnet, the relation curve of magnetic force with gap between these two components is known as a hysteresis loop, that is, the approaching and departing portions envelop a complete one, and generally these two portions do not cross each other. However, in some special cases this crossing arises, and makes the complete loop broken. In this paper, by the numerical simulation of the magnetic force-gap curve in large numbers of physical and geometrical parameters, two typical crossings were found. To investigate the crossing and explore its physical causes, for one of the crossings, the current density in the superconductor was further calculated and its magnitude and vector distribution at the gaps nearby where the crossing arises were obtained. Based on these calculation results and an adequate discussion, the conclusion was induced that the crossing in the magnetic force-gap hysteresis curve results from applied magnetic field’s incomplete and insufficient penetrating in superconductor.

  17. Predictability of magnetic hysteresis and thermoremanent magnetization using Preisach theory

    NASA Astrophysics Data System (ADS)

    Newell, A. J.; Niemerg, M.; Bates, D.

    2014-12-01

    Preisach theory is a phenomenological model of hysteresis that is the basis for FORC analysis in rock magnetism. In FORC analysis, a system is characterized using first-order reversal curves (FORCs), each of which is a magnetization curve after a reversal in the direction of change of the magnetic field. Preisach theory uses the same curves to predict the magnetic response to changes in the magnetic field. In rock magnetism, the Preisach model has been adapted to predict general properties of thermoremanent magnetization (TRM), and even to inferpaleointensity from room-temperature FORCs. Preisach theory represents hysteresis by a collection of hysteresis units called hysterons; the distribution of hysterons is inferred from FORC measurements. Each hysteron represents a two-state system. This is similar to a single-domain (SD) magnet, but the first-order theory cannot represent the magnetism of a simple system of randomly oriented SD magnets. Such a system can be represented by a second-order Preisach theory, which requires the measurement of magnetization curves after two reversals of the direction of change. One can generalize this process to higher order reversal curves, although each increase in the number of reversals greatly increases the number of measurements that are needed. The magnetic hysteresis of systems of interacting SD magnets is calculated using numerical homotopy, a method that can find all the solutions of the equilibrium equations for such a system. The hysteresis frequently has features that cannot be represented by any order of Preisach theory. Furthermore, there are stable magnetic states that are not reachable during isothermal hysteresis unless thermal fluctuations are large enough. Such states would not be visible at room temperature but would contribute to TRM.

  18. Ventilation above closing volume reduces pulmonary vascular resistance hysteresis.

    PubMed

    Creamer, K M; McCloud, L L; Fisher, L E; Ehrhart, I C

    1998-10-01

    The aim of this study was to determine the relationship of pulmonary vascular resistance (PVR) hysteresis and lung volume, with special attention to the effects of ventilation around closing volume (CV). Isolated, blood-perfused canine left lower lung lobes (LLL) were incrementally inflated and deflated. Airway and pulmonary artery pressures (PAP) were recorded after each stepwise volume change. Constant blood flow was provided (600 ml/min) and the pulmonary vein pressure (PVP) was held constant at 5 cm H2O. PAP changes, therefore, were a direct index of PVR changes. Group 1 lobes underwent a full inflation from complete collapse to total lobe capacity (TLC) followed by a full deflation. Group 2 lobes underwent two deflation/inflation cycles, after an initial full inflation. These cycles, both beginning at TLC, had deflation end above and below CV, respectively. Significant PVR hysteresis was noted when the first inflation and deflation were compared. The maximum difference in PAP on deflation was 3.3 cm H2O or 11%. The mean decrease was 2.7 cm H2O for 18 lobes (p < 0.0001). The PAPs on all subsequent inflations or deflations that began above CV remained 9% lower than the initial inflation (n = 9, p < 0.0001), but were not different from each other. However, the final inflation which began from below CV resulted in a 30% return of PVR hysteresis (mean increase in PAP of 0.8 cm H2O, n = 7, p < 0.004). We conclude that there is hysteresis in the PVR response during ventilation, with decreased PVR during deflation relative to the initial inflation, that this hysteresis is absent when lung volume is maintained greater than CV, and that hysteresis returns when inflation occurs after deflation below CV. PMID:9769269

  19. Remedying magnetic hysteresis and 1/f noise for magnetoresistive sensors

    NASA Astrophysics Data System (ADS)

    Hu, Jiafei; Tian, Wugang; Zhao, Jianqiang; Pan, Mengchun; Chen, Dixiang; Tian, Guiyun

    2013-02-01

    Thermal domain hoppings cause magnetic hysteresis and 1/f resistance noise in magnetoresistive sensors, which largely degrades their response linearity and low-frequency detection ability. In this Letter, the method of constant magnetic excitation integrated with vertical motion flux modulation was proposed to remedy magnetic hysteresis and 1/f resistance noise together. As demonstrated in experiments, the response linearity of the prototype sensor is promoted by about 10 times. Its noise level is reduced to near Johnson-Nyquist noise level, and, therefore, the low-frequency detection ability is approximately enhanced with a factor of 100.

  20. Hysteresis of boiling for different tunnel-pore surfaces

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert; Piasecka, Magdalena

    2015-05-01

    Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS), narrow tunnel structures (NTS) and mini-fins covered with the copper wire net (NTS-L). The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  1. A survey on hysteresis modeling, identification and control

    NASA Astrophysics Data System (ADS)

    Hassani, Vahid; Tjahjowidodo, Tegoeh; Do, Thanh Nho

    2014-12-01

    The various mathematical models for hysteresis such as Preisach, Krasnosel'skii-Pokrovskii (KP), Prandtl-Ishlinskii (PI), Maxwell-Slip, Bouc-Wen and Duhem are surveyed in terms of their applications in modeling, control and identification of dynamical systems. In the first step, the classical formalisms of the models are presented to the reader, and more broadly, the utilization of the classical models is considered for development of more comprehensive models and appropriate controllers for corresponding systems. In addition, the authors attempt to encourage the reader to follow the existing mathematical models of hysteresis to resolve the open problems.

  2. Large-scale separation and hysteresis in cascades

    NASA Technical Reports Server (NTRS)

    Rothmayer, A. P.; Smith, F. T.

    1985-01-01

    An approach using a two-dimensional thin aerofoil, allied with the theory of viscous bluff-body separation, is used to study the initial cross-over from massive separation to an attached flow in a single-row unstaggered cascade. Analytic solutions are developed for the limit of small cascade-spacing. From the analytic solutions several interesting features of the cascade are examined, including multiple-solution branches and multiple regions of hysteresis. In addition, numerical results are presented for several selected aerofoils. Some of the aerofoils are found to contain markedly enlarged regions of hysteresis for certain critical cascade spacings.

  3. Modeling of Switching and Hysteresis in Molecular Transport

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj P.; Partridge, Harry (Technical Monitor)

    2002-01-01

    The conventional way of modeling current transport in two and three terminal molecular devices could be inadequate for certain cases involving switching and hysteresis. Here we present an alternate approach. Contrary to the regular way where applied bias directly modulates the conducting energy levels of the molecule, our method introduces a nonlinear potential energy surface varying with the applied bias as a control parameter. A time-dynamics is also introduced properly accounting for switching and hysteresis behavior. Although the model is phenomenological at this stage, we believe any detailed model would contain similar descriptions at its core.

  4. A modeling approach to represent hysteresis in capillary pressure-saturation relationship based on fluid connectivity in void space

    E-print Network

    Zhou, Quanlin

    A modeling approach to represent hysteresis in capillary pressure- saturation relationship based of hysteresis behavior and capillary entrapment of wetting and nonwetting fluids. The hysteretic constitutive measurements of primary drainage and main wetting curves. The hysteresis model results are verified

  5. Wetting hysteresis and droplet roll off behavior on superhydrophobic surfaces by Katherine Marie Smyth.

    E-print Network

    Smyth, Katherine Marie

    2010-01-01

    Various states of hydrophobic wetting and hysteresis are observed when water droplets are deposited on micro-post surfaces of different post densities. Hysteresis is commonly defined as the difference between the advancing ...

  6. Seasonal variation in phosphorus concentration-discharge hysteresis inferred from high-frequency in situ monitoring

    NASA Astrophysics Data System (ADS)

    Bieroza, M. Z.; Heathwaite, A. L.

    2015-05-01

    High-resolution in situ total phosphorus (TP), total reactive phosphorus (TRP) and turbidity (TURB) time series are presented for a groundwater-dominated agricultural catchment. Meta-analysis of concentration-discharge (c-q) intra-storm signatures for 61 storm events revealed dominant hysteretic patterns with similar frequency of anti-clockwise and clockwise responses; different determinands (TP, TRP, TURB) behaved similarly. We found that the c-q loop direction is controlled by seasonally variable flow discharge and temperature whereas the magnitude is controlled by antecedent rainfall. Anti-clockwise storm events showed lower flow discharge and higher temperature compared to clockwise events. Hydrological controls were more important for clockwise events and TP and TURB responses, whereas in-stream biogeochemical controls were important for anti-clockwise storm events and TRP responses. Based on the best predictors of the direction of the hysteresis loops, we calibrated and validated a simple fuzzy logic inference model (FIS) to determine likely direction of the c-q responses. We show that seasonal and inter-storm succession in clockwise and anti-clockwise responses corroborates the transition in P transport from a chemostatic to an episodic regime. Our work delivers new insights for the evidence base on the complexity of phosphorus dynamics. We show the critical value of high-frequency in situ observations in advancing understanding of freshwater biogeochemical processes.

  7. Separation of ferromagnetic components by analyzing the hysteresis loops of remanent magnetization

    NASA Astrophysics Data System (ADS)

    Kosareva, L. R.; Utemov, E. V.; Nurgaliev, D. K.; Shcherbakov, V. P.; Kosarev, V. E.; Yasonov, P. G.

    2015-09-01

    The new method is suggested for separating ferromagnetic components in sediments through analyzing the coercivity spectra of the samples by the continuous wavelet transform with the Gaussian-based wavelet (MHAT). A total of 1056 samples of Lake Khuvsgul's sediments (Mongolia) are studied. At least four groups of magnetic components are identified based on the analysis of their magnetization and remagnetization curves. Almost all samples are found to contain two components of bacterial origin which are represented by the assemblages of the interacting single-domain grains and differ by the grain compositions (magnetite and greigite). The applicability of the magnetic data for diagnosing magnetotactic bacteria in sediments and building paleoecological and paleoclimatic reconstructions is demonstrated.

  8. Scaling of hysteresis loop of interacting polymers under a periodic force

    E-print Network

    Rakesh Kumar Mishra; Garima Mishra; Debaprasad Giri; Sanjay Kumar

    2013-09-30

    Using Langevin Dynamics simulations, we study a simple model of interacting-polymer under a periodic force. The force-extension curve strongly depends on the magnitude of the amplitude $(F)$ and the frequency ($\

  9. Scaling of hysteresis loops at phase transitions into a quasiabsorbing state Kazumasa A. Takeuchi*

    E-print Network

    Sano, Masaki

    of the original 2+1 D CP, which shows a DP-class transi- tion at c=1.648 77 3 9 the number in parentheses de. DOI: 10.1103/PhysRevE.77.030103 PACS number s : 05.70.Jk, 05.70.Ln, 05.20. y Directed percolation DP in the DP universality class 1 , refining conditions for this prominent critical behavior, known as DP

  10. Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti-Nb alloys.

    PubMed

    Bönisch, Matthias; Calin, Mariana; van Humbeeck, Jan; Skrotzki, Werner; Eckert, Jürgen

    2015-03-01

    While the current research focus in the search for biocompatible low-modulus alloys is set on ?-type Ti-based materials, the potential of fully martensitic Ti-based alloys remains largely unexplored. In this work, the influence of composition and pre-straining on the elastic properties of martensitic binary Ti-Nb alloys was studied. Additionally, the phase formation was compared in the as-cast versus the quenched state. The elastic moduli and hardness of the studied martensitic alloys are at a minimum of 16wt.% Nb and peak between 23.5 and 28.5wt.% Nb. The uniaxial deformation behavior of the alloys used is characterized by the absence of distinct yield points. Monotonic and cyclic (hysteretic) loading-unloading experiments were used to study the influence of Nb-content and pre-straining on the elastic moduli. Such experiments were also utilized to assess the recoverable elastic and anelastic deformations as well as hysteretic energy losses. Particular attention has been paid to the separation of non-linear elastic from anelastic strains, which govern the stress and strain limits to which a material can be loaded without deforming it plastically. It is shown that slight pre-straining of martensitic Ti-Nb alloys can lead to considerable reductions in their elastic moduli as well as increases in their total reversible strains. PMID:25579952

  11. INSIDE THE HYSTERESIS LOOP: MULTIPLICITY OF INTERNAL STATES IN CONFINED FLUIDS. (R825959)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. A Differential Model of Adsorption Hysteresis with Applications to Chromatography

    E-print Network

    Peszynska, Malgorzata

    A Differential Model of Adsorption Hysteresis with Applications to Chromatography M. Peszy- ena occuring in chromatography or other related disciplines, see [21]. These models have the general rise in the beginning of 20th century, chromatography has become a wide industrial domain delivering

  13. Hysteresis compensation of piezoelectric actuators: the modified Rayleigh model.

    PubMed

    Park, Jongkyu; Moon, Wonkyu

    2010-03-01

    In this study, we develop a novel modified Rayleigh model for hysteresis compensation in piezoelectric actuators. Piezoelectric actuators suffer from hysteresis, in large drive fields of more than 100 V, which can result in serious displacement errors. The typical phenomenological approach is to use the Rayleigh model; however, this model gives more than 10% difference with experiments at the large electric fields of more than 1kV/mm. Furthermore, there are no studies that apply the Rayleigh model to the compensation of precision actuators, such as stack actuators; it has only been applied in the study of the physical properties of piezoelectric materials. Therefore, we propose a modified Rayleigh model, in which each coefficient is defined differently according to whether the field is increasing or decreasing to account for asymmetry at the high fields. By applying a computer-based control from an inverse form of this modified Rayleigh model, we show that we can compensate for hysteresis to reduce the position error to less than five percent. This model has the merits of reducing complicated fitting procedures and of saving computation time compared to the Preisach model. Specifically, this model cannot only predict the hysteresis curves in all local fields using only one fitting procedure, but also make it possible to control the displacement of various piezo-based actuators without expensive sensors, based on the charge-based model. PMID:19939427

  14. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes

    PubMed Central

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-01-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3? antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour. PMID:25953105

  15. A Free Energy Model for Hysteresis in Ferroelectric Materials

    E-print Network

    . This generates strains in the material and provides it with actuator capabilities. Alternatively, applied. The coupled converse and direct electromechanical effects are highly sensitive and repeatable which makes PZT, and extreme electromechanical sensitivity, also produce varying degrees of hysteresis and constitutive

  16. A Free Energy Model for Hysteresis in Ferroelectric Materials

    E-print Network

    . This generates strains in the material and provides it with actuator capabilities. Alternatively, applied#ects. The coupled converse and direct electromechanical e#ects are highly sensitive and repeatable which makes PZT#ects, and extreme electromechanical sensitivity, also produce varying degrees of hysteresis and constitutive

  17. Model and simulations of hysteresis in magnetic cores

    SciTech Connect

    Boley, C.D. ); Hodgdon, M.L. )

    1989-01-01

    Using a theory of ferromagnetic hysteresis developed recently, we present simulations of the behavior of a ferrite core connected in series with an initially charged capacitor. Results are given for three materials and are shown to compare favorably with experiment. 5 refs., 10 figs., 3 tabs.

  18. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.

    PubMed

    Xu, Jixian; Buin, Andrei; Ip, Alexander H; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G; Maksymovych, Peter; Sargent, Edward H

    2015-01-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour. PMID:25953105

  19. Effect of hysteresis on moisture transport in porous building materials

    NASA Astrophysics Data System (ADS)

    Mad?ra, Ji?í; ?urana, Kamil; Ko?í, Jan; ?erný, Robert

    2012-09-01

    The influence of hysteresis of moisture transport properties on the hygrothermal performance of building envelopes is studied. Computational results reveal significant differences in moisture and relative humidity profiles calculated using the model with hysteretic parameters and without them. In addition, the introduction of hysteretic parameters results in worse hygrothermal performance from the water content point of view.

  20. ORIGINAL ARTICLE The impacts of hysteresis on variably saturated hydrologic

    E-print Network

    Borja, Ronaldo I.

    cannot be considered in the hydrologic simulation, the wetting soil­water retention curve, which retention curves indicate that using either the drying soil­water retention curve or an intermediate soil- sidering hysteresis or using the wetting soil­water retention curve, the potential for landsliding

  1. Dynamic contact angles and hysteresis under electrowetting-on-dielectric.

    PubMed

    Nelson, Wyatt C; Sen, Prosenjit; Kim, Chang-Jin C J

    2011-08-16

    By designing and implementing a new experimental method, we have measured the dynamic advancing and receding contact angles and the resulting hysteresis of droplets under electrowetting-on-dielectric (EWOD). Measurements were obtained over wide ranges of applied EWOD voltages, or electrowetting numbers (0 ? Ew ? 0.9), and droplet sliding speeds, or capillary numbers (1.4 × 10(-5) ? Ca ? 6.9 × 10(-3)). If Ew or Ca is low, dynamic contact angle hysteresis is not affected much by the EWOD voltage or the sliding speed; that is, the hysteresis increases by less than 50% with a 2 order-of-magnitude increase in sliding speed when Ca < 10(-3). If both Ew and Ca are high, however, the hysteresis increases with either the EWOD voltage or the sliding speed. Stick-slip oscillations were observed at Ew > 0.4. Data are interpreted with simplified hydrodynamic (Cox-Voinov) and molecular-kinetic theory (MKT) models; the Cox-Voinov model captures the trend of the data, but it yields unreasonable fitting parameters. MKT fitting parameters associated with the advancing contact line are reasonable, but a lack of symmetry indicates that a more intricate model is required. PMID:21751778

  2. Hysteresis Can Grant Fitness in Stochastically Varying Environment

    PubMed Central

    Friedman, Gary; McCarthy, Stephen; Rachinskii, Dmitrii

    2014-01-01

    Although the existence of multiple stable phenotypes of living organisms enables random switching between phenotypes as well as non-random history dependent switching called hysteresis, only random switching has been considered in prior experimental and theoretical models of adaptation to variable environments. This work considers the possibility that hysteresis may also evolve together with random phenotype switching to maximize population growth. In addition to allowing the possibility that switching rates between different phenotypes may depend not only on a continuous environmental input variable, but also on the phenotype itself, the present work considers an opportunity cost of the switching events. This opportunity cost arises as a result of a lag phase experimentally observed after phenotype switching and stochastic behavior of the environmental input. It is shown that stochastic environmental variation results in maximal asymptotic growth rate when organisms display hysteresis for sufficiently slowly varying environmental input. At the same time, sinusoidal input does not cause evolution of memory suggesting that the connection between the lag phase, stochastic environmental variation and evolution of hysteresis is a result of a stochastic resonance type phenomenon. PMID:25068284

  3. Sensor Saturation for Hysteresis Reduction in GMR Magnetometers

    E-print Network

    Krchnavek, Robert R.

    Sensor Saturation for Hysteresis Reduction in GMR Magnetometers Philip S. Mease and Robert R technologies for the development of general-purpose magnetometers. They are applicable for both AC and DC of a magnetic field and instruments that make this measurement are known as magnetometers. The most common

  4. Causes and implications of colloid and microorganism retention hysteresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were designed to better understand the causes and implications of colloid and microorganism retention hysteresis with transients in solution ionic strength (IS). Saturated packed column experiments were conducted using two sizes of carboxyl modified latex (CML) microspheres (0.1 and 1.1...

  5. An Adaptive Control Method for Magnetostrictive Transducers with Hysteresis

    E-print Network

    and force require- ments, the transducer must operate in a regime in which the relation between inputAn Adaptive Control Method for Magnetostrictive Transducers with Hysteresis James M. Nealis of an adaptive control strategy for regulating the output of a proto- typical magnetostrictive transducer

  6. A Free Energy Model for Hysteresis in Magnetostrictive Transducers

    E-print Network

    A Free Energy Model for Hysteresis in Magnetostrictive Transducers Ralph C. Smith Marcelo J. Dapino This paper addresses the development of a free energy model for magnetostrictive transducers operating Introduction Magnetostrictive transducers are being considered for a number of high performance industrial, au

  7. A Free Energy Model for Hysteresis in Magnetostrictive Transducers

    E-print Network

    A Free Energy Model for Hysteresis in Magnetostrictive Transducers Ralph C. Smith Marcelo J. Dapino This paper addresses the development of a free energy model for magnetostrictive transducers operating;1 Introduction Magnetostrictive transducers are being considered for a number of high performance industrial, au

  8. A Domain Wall Model for Hysteresis in Piezoelectric Materials

    E-print Network

    nature of the materials and, more specifically, to domain switching in response to applied fields piezoelectric effects. As a result of the ferroelectric nature of the materials, they also exhibit varyingA Domain Wall Model for Hysteresis in Piezoelectric Materials Ralph C. Smith Center for Research

  9. Elastic guides reduce hysteresis effect in Belleville spring package

    NASA Technical Reports Server (NTRS)

    Mc Glashan, W. F., Jr.; Toth, L. R.

    1967-01-01

    Peripheral support guides that elastically flex with the slight breathing on radial displacement during actuation can greatly reduce the hysteresis present in a Belleville spring package. This technique provides a control device that enhances the precision of pressure regulating valves, pressure switches, and vacuum actuators.

  10. Periodic solutions of a forced system with hysteresis.

    NASA Technical Reports Server (NTRS)

    Drew, J. H.

    1972-01-01

    Hysteresis damping arising in an oscillatory system due to the phenomenon of slip damping analyzed by Goodman and Klumpp (1956) is considered. An idealized physical model is proposed, and the existence of certain periodic motions is investigated in a system with small forcing which are near the largest periodic motion in a corresponding unforced system. Periodic solutions of the forced system are obtained.-

  11. Hysteresis in the Dynamic Perception of Scenes and Objects Sonia Poltoratski and Frank Tong

    E-print Network

    Tong, Frank

    Hysteresis in the Dynamic Perception of Scenes and Objects Sonia Poltoratski and Frank Tong perception, or hysteresis, on the classification of the sequence: observers classified the sequence were perceived for longer on trials beginning with a scene view. This hysteresis effect resisted

  12. Extension of Hysteresis operators of Preisach-type to real, Lebesgue measurable

    E-print Network

    Iyer, Ram Venkataraman

    Extension of Hysteresis operators of Preisach-type to real, Lebesgue measurable functions R. Iyer. However, hysteresis operators of Preisach type have only been defined on much smaller space of regulated for continuous and regulated functions on an interval. Domain extension of hysteresis operators of Preisach type

  13. June 31, 1996 Measuring Hysteresis in Unemployment Rates with Long Memory Models

    E-print Network

    Crato, Nuno

    June 31, 1996 Measuring Hysteresis in Unemployment Rates with Long Memory Models Nuno Crato address the question of unemployment hysteresis within the context of ARFIMA models. Our results suggest that in the post-1973 era, hysteresis is considerably less of a stylized fact for the unemployment rates of key

  14. Bistability and hysteresis in the sliding friction of a dimer S. Gonalves,1,2,

    E-print Network

    Kenkre, V.M.

    Bistability and hysteresis in the sliding friction of a dimer S. Gonçalves,1,2, * C. Fusco,3,1, A and hysteresis, and can be related to earlier observations for extended systems such as the Frenkel-damped nonlinear oscillator. Increasing temperature tends to lower the resonant peak and wash out the hysteresis

  15. Effect of contact angle hysteresis on thermocapillary droplet actuation Jian Z. Chen

    E-print Network

    Troian, Sandra M.

    Effect of contact angle hysteresis on thermocapillary droplet actuation Jian Z. Chen Department-dimensional droplet driven by thermocapillary stresses including contact angle hysteresis. The results of this study highlight the critical role of chemical or mechanical hysteresis and the need to reduce this retentive force

  16. A Unified Model for Hysteresis in Ferroic Materials Ralph C. Smith

    E-print Network

    A Unified Model for Hysteresis in Ferroic Materials Ralph C. Smith , Stefan Seelecke , Marcelo J in hysteretic and nonlinear regimes. Whereas the physical mechanisms which produce hysteresis and constitutive. This unified methodology for quantifying hysteresis and constitutive nonlinearities for a broad class

  17. Hysteresis in Cenozoic Antarctic ice-sheet variations David Pollarda,*, Robert M. DeContob,1

    E-print Network

    Hysteresis in Cenozoic Antarctic ice-sheet variations David Pollarda,*, Robert M. DeContob,1, as found in earlier simple ice sheet models. Hysteresis effects are explored by running the model-linear Antarctic ice-sheet transitions and hysteresis have played important roles in many of the observed

  18. Introduction Hysteresis occurs in several phenomena. In physics we encounter it in plasticity, fric-

    E-print Network

    Visintin, Augusto

    Introduction Hysteresis occurs in several phenomena. In physics we encounter it in plasticity, fric. More generally, hysteresis arises in phase transitions, a typical example being undercooling effects materials. Hysteresis also occurs in engineering; thermostats are a very usual example. Others are met

  19. A Dynamic Hysteresis Model for THUNDER Transducers Brian L. Ball 1

    E-print Network

    A Dynamic Hysteresis Model for THUNDER Transducers Brian L. Ball 1 , Ralph C. Smith 2 and Zoubeida to the piezoceramic patch. A free energy based hysteretic stress-strain relation is employed to model hysteresis: THUNDER actuators, displacement model, hysteresis, piezoceramic, transition element, polariza- tion

  20. Construction and Experimental Implementation of a Model-Based Inverse Filter to Attenuate Hysteresis

    E-print Network

    Hysteresis in Ferroelectric Transducers Andrew G. Hatch and Ralph C. Smith Tathagata De and Murti V. Salapaka@iastate.edu, murti@iastate.edu rsmith@eos.ncsu.edu, aghatch@eos.ncsu.edu Abstract Hysteresis and constitutive hysteresis and constitutive nonlinearities at all drive levels. To illustrate, consider the prototypical

  1. Scale-Independent Hysteresis Switching ? ?? Jo~ao P. Hespanha 1 and A. Stephen Morse 2

    E-print Network

    Hespanha, João Pedro

    Scale-Independent Hysteresis Switching ? ?? Jo~ao P. Hespanha 1 and A. Stephen Morse 2 1 Dept logic inspired by the hysteresis switching logic considered in [7, 11]. The new logic also uses hysteresis to prevent chatter, but unlike its predecessor in [7, 11], it is \\scale-independent" as well

  2. Chaotic hysteresis in an adiabatically oscillating double well N. Berglund, H. Kunz

    E-print Network

    Berglund, Nils

    Chaotic hysteresis in an adiabatically oscillating double well N. Berglund, H. Kunz Institut de well. The system displays hysteresis effects which can be of periodic or chaotic type. We explain this behaviour by computing an analytic expression of a Poincar'e map. Although hysteresis is a quite familiar

  3. Highly Stable Hysteresis-Free Carbon Nanotube Thin-Film Transistors by Fluorocarbon Polymer Encapsulation

    E-print Network

    Javey, Ali

    Highly Stable Hysteresis-Free Carbon Nanotube Thin-Film Transistors by Fluorocarbon Polymer report hysteresis-free carbon nanotube thin-film transistors (CNT-TFTs) employing a fluorocarbon polymer them highly susceptible to the environment.37,38 Specifically, large hysteresis has been commonly

  4. Precise Tracking Control of a Piezoactuated Micropositioning Stage Based on Modified Prandtl-Ishlinskii Hysteresis Model

    E-print Network

    Li, Yangmin

    -Ishlinskii Hysteresis Model Qingsong Xu, Member, IEEE, and Yangmin Li, Senior Member, IEEE Abstract-- In this paper, the hysteresis modeling and com- pensation are carried out and verified for a piezo-driven XY parallel. Results show that the combined control scheme can reduce the nonsymmetric hysteresis to a negligible level

  5. A Hysteresis Model for Piezoceramic Materials Ralph C. Smith Zoubeida Ounaies

    E-print Network

    A Hysteresis Model for Piezoceramic Materials Ralph C. Smith Zoubeida Ounaies Center for Research of nonlinear constitutive relations and hysteresis inherent to piezo­ ceramic materials at moderate to high that they exhibit nearly linear dynamics and minimal hysteresis at low drive levels. The restriction

  6. Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect

    E-print Network

    Javey, Ali

    Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors Woong Kim, Ali that the transistors exhibit hysteresis in their electrical characteristics because of charge trapping by water molecules around the nanotubes, including SiO2 surface-bound water proximal to the nanotubes. Hysteresis

  7. Identification of Quaternary Shape Memory Alloys with Near-Zero Thermal Hysteresis and Unprecedented

    E-print Network

    Rubloff, Gary W.

    Identification of Quaternary Shape Memory Alloys with Near-Zero Thermal Hysteresis of quaternary Ti­Ni­Cu­Pd SMAs and the thermal hysteresis are tailored. Novel alloys with near-zero thermal hysteresis, as predicted by the geometric non- linear theory of martensite, are identified. The thin

  8. An LDA-based relative hysteresis classifier with application to segmentation of retinal vessels

    E-print Network

    Lübeck, Universität zu

    An LDA-based relative hysteresis classifier with application to segmentation of retinal vessels. The proposed hysteresis classification makes use of such knowledge in an effi- cient way. We describe a novel, supervised, hysteresis- based classification method that we apply to the seg- mentation of retina

  9. A level-set approach for simulations of flows with multiple moving contact lines with hysteresis

    E-print Network

    Frey, Pascal

    A level-set approach for simulations of flows with multiple moving contact lines with hysteresis, a relation between contact-line speed and contact angle, slip and contact-line hysteresis. The convergence; Hysteresis 1. Introduction Incompressible two-phase flows with moving contact lines are common in a variety

  10. A hysteresis-free polymer-stabilised blue-phase liquid crystal , Daming Xua

    E-print Network

    Wu, Shin-Tson

    A hysteresis-free polymer-stabilised blue-phase liquid crystal Yifan Liua , Su Xua , Daming Xua hysteresis and good stability. Long ultraviolet (UV) wavelength and top-side (no IPS electrode) exposure create uniform polymer network, which in turn helps to suppress hysteresis. The effect of photoinitiator

  11. Interaction and Deformation of Elastic Bodies: Origin of Adhesion Hysteresis Phil Attard

    E-print Network

    Attard, Phil

    Interaction and Deformation of Elastic Bodies: Origin of Adhesion Hysteresis Phil Attard Ian Wark with a Lennard-Jones potential is obtained by solving self-consistently the elasticity equations. Hysteresis have been observed experimentally, is traced to limited equilibration and dynamic hysteresis

  12. Density hysteresis of heavy water confined in a nanoporous silica matrix

    E-print Network

    Chen, Sow-Hsin

    Density hysteresis of heavy water confined in a nanoporous silica matrix Yang Zhanga,b , Antonio and from 1 to 2,900 bars, where bulk water will crystalize. We observed a promi- nent hysteresis phenomenon this hysteresis phenomenon as support (although not a proof) of the hypothetical existence of a first-order liquid

  13. Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis$

    E-print Network

    Turova, Varvara

    Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis$ M¨unchen, Boltzmannstr. 3, 80807, Germany a r t i c l e i n f o Keywords: Two-phase flow Porous media Hysteresis Play and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating

  14. Hysteresis and Noise from Electronic Nematicity in High-Temperature Superconductors E. W. Carlson,1

    E-print Network

    Carlson, Erica

    Hysteresis and Noise from Electronic Nematicity in High-Temperature Superconductors E. W. Carlson,1 (nematicity) using noise and hysteresis. In particular, we have uncovered a remarkably robust linear relation reported in recent noise [8] and hysteresis [9,10] measure- ments on high-temperature superconductors

  15. Hysteresis and Bistability in a Realistic Cell Model for Calcium Oscillations and Action Potential Firing

    E-print Network

    Gielen, C.C.A.M.

    Hysteresis and Bistability in a Realistic Cell Model for Calcium Oscillations and Action Potential parameter the model reveals a complex, rich spectrum of both stable and unstable solutions with hysteresis with hysteresis has also awakened a large interest in biology [7]. Instabilities, for instance, have been shown

  16. On periodicity of solutions for thermocontrol problems with hysteresis-type switches

    E-print Network

    Fiedler, Bernold

    On periodicity of solutions for thermocontrol problems with hysteresis-type switches P. Gurevich, W the same value as "just before." Thus, the presence of the operator H provides the so-called hysteresis of solutions for two-phase Stefan problems with the Robin boundary condition involving a hysteresis control

  17. Capacitance hysteresis in GaN/AlGaN heterostructures L. E. Byrum,1

    E-print Network

    Dietz, Nikolaus

    Capacitance hysteresis in GaN/AlGaN heterostructures L. E. Byrum,1 G. Ariyawansa,1 R. C. Jayasinghe hysteresis have been attributed to trap energy states located just above the Fermi level at the GaN/AlGaN interface, most likely due to N-vacancy and/or C-donor impurities. The presence of the hysteresis is due

  18. Supervised, hysteresis-based segmentation of retinal images using the linear-classifier percentile

    E-print Network

    Lübeck, Universität zu

    Supervised, hysteresis-based segmentation of retinal images using the linear-classifier percentile, supervised, hysteresis-based classification algorithm that we apply to the segmentation of retina segmentation is similar to a bi- nary (i.e., two-class) pattern classification problem. The hysteresis

  19. A Model for RateDependent Hysteresis in Piezoceramic Materials Operating at Low Frequencies

    E-print Network

    A Model for Rate­Dependent Hysteresis in Piezoceramic Materials Operating at Low Frequencies Ralph contribute to hysteresis inherent to piezoelectric materials operating at low frequencies. While quasistatic the full capabilities of the materials. The model employed here quantifies the hysteresis in two steps

  20. Capillary Condensation Hysteresis in Overlapping Spherical Pores: A Monte Carlo Simulation Study

    E-print Network

    Muzzio, Fernando J.

    Capillary Condensation Hysteresis in Overlapping Spherical Pores: A Monte Carlo Simulation Study crystals. We show different mechanisms of capillary hysteresis depending on the size of the window between the pores. For the system with a small window, the hysteresis cycle is similar to that in a single spherical

  1. Hysteresis Modeling and Compensation for an XY Micropositioning Stage with Model Reference Adaptive Control

    E-print Network

    Li, Yangmin

    Hysteresis Modeling and Compensation for an XY Micropositioning Stage with Model Reference Adaptive to compensate for the hysteresis effects aiming at a sub-micron accuracy motion tracking control. To convert the desired motion trajectory into voltage input, the inverse modified Prandtl-Ishlinskii (PI) hysteresis

  2. Adaptive Neural Control for Uncertain Nonlinear Systems in Pure-feedback Form with Hysteresis Input

    E-print Network

    Ge, Shuzhi Sam

    Adaptive Neural Control for Uncertain Nonlinear Systems in Pure-feedback Form with Hysteresis Input with the generalized Prandtl-Ishlinskii hysteresis input. The non-affine problem both in the pure-feedback form and in the generalized Prandtl-Ishlinskii hysteresis input func- tion is solved by adopting the Mean Value Theorem

  3. HYSTERESIS IN A ROTATING DIFFERENTIALLY HEATED SPHERICAL SHELL OF BOUSSINESQ FLUID

    E-print Network

    Lewis, Greg

    HYSTERESIS IN A ROTATING DIFFERENTIALLY HEATED SPHERICAL SHELL OF BOUSSINESQ FLUID GREGORY M in a codimension-2 hysteresis bifurcation (or cusp) point, providing a mechanism for hysteretic transitions between different cell patterns as the temperature gradient is varied. Key words. cusp point, hysteresis bifurcation

  4. Hysteresis in the dynamic perception of scenes and objects.

    PubMed

    Poltoratski, Sonia; Tong, Frank

    2014-10-01

    Scenes and objects are effortlessly processed and integrated by the human visual system. Given the distinct neural and behavioral substrates of scene and object processing, it is likely that individuals sometimes preferentially rely on one process or the other when viewing canonical "scene" or "object" stimuli. This would allow the visual system to maximize the specific benefits of these 2 types of processing. It is less obvious which of these modes of perception would be invoked during naturalistic visual transition between a focused view of a single object and an expansive view of an entire scene, particularly at intermediate views that may not be assigned readily to either stimulus category. In the current study, we asked observers to report their online perception of such dynamic image sequences, which zoomed and panned between a canonical view of a single object and an entire scene. We found a large and consistent effect of prior perception, or hysteresis, on the classification of the sequence: observers classified the sequence as an object for several seconds longer if the trial started at the object view and zoomed out, whereas scenes were perceived for longer on trials beginning with a scene view. This hysteresis effect resisted several manipulations of the movie stimulus and of the task performed, but hinged on the perceptual history built by unidirectional progression through the image sequence. Multiple experiments confirmed that this hysteresis effect was not purely decisional and was more prominent for transitions between corresponding objects and scenes than between other high-level stimulus classes. This finding suggests that the competitive mechanisms underlying hysteresis may be especially prominent in the perception of objects and scenes. We propose that hysteresis aids in disambiguating perception during naturalistic visual transitions, which may facilitate a dynamic balance between scene and object processing to enhance processing efficiency. PMID:25150947

  5. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy

    PubMed Central

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-01-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity’s free spectral range imparts extreme linearity and precision to the measured spectrum’s wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control. PMID:25395738

  6. A N N U A L R E P O R T 2 0 1 3 P E R S P E C T I V E S

    E-print Network

    Siefert, Chris

    A N N U A L R E P O R T 2 0 1 3 P E R S P E C T I V E S #12;2195 $39M 33 Businesses Assisted Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Program Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Success Stories Retriever Technology

  7. P E R S P E C T I V E S www.sciencemag.org SCIENCE VOL 299 28 FEBRUARY 2003 1329

    E-print Network

    Cohen, Ronald C.

    ar- rest signal? Data obtained from other TCP proteins suggest a mechanism of CIN action. Suzuki etP E R S P E C T I V E S www.sciencemag.org SCIENCE VOL 299 28 FEBRUARY 2003 1329 cells near. Nath et al. hypothesize that wild-type CIN acts in these regions to make cells more sensitive to a cell

  8. 488 | JUNE 2004 | VOLUME 4 www.nature.com/reviews/cancer P E R S P E C T I V E S

    E-print Network

    Hein, Jotun

    on this participation rate and statistics from the Icelandic Cancer Registry,it can be estimated that about 10488 | JUNE 2004 | VOLUME 4 www.nature.com/reviews/cancer P E R S P E C T I V E S To complicate matters even further, the very nature of cancer is to accumulate genetic alterations and this leads

  9. Three-stage evolution of dynamic hysteresis scaling behavior in 63PbTiO{sub 3}-37BiScO{sub 3} bulk ceramics

    SciTech Connect

    Yu Gang; Dong Xianlin; Wang Genshui; Cao Fei; Chen Xuefeng; Nie Hengchang

    2010-05-15

    The ferroelectric hysteresis loops of 63PbTiO{sub 3}-37BiScO{sub 3} ceramics were measured under sinusoidal electric fields in the range of frequency from 0.1 to 100 Hz and field from 5 to 55 kV/cm. The fitting results showed two linear relations existed between the logarithm of hysteresis area and the logarithm of the amplitude of field E{sub 0} in the first and third field region. In the second region, no linear relation existed due to polarization reversal. These three-stage behaviors were distinct from the existing two-stage behaviors. The slopes in the third stage increase with the increasing of frequency, which can be attributed to dielectric loss under high frequency.

  10. Water Stream "Loop-the-Loop"

    ERIC Educational Resources Information Center

    Jefimenko, Oleg

    1974-01-01

    Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

  11. Adaptive Dynamic Surface Control for a Class of Strict-Feedback Nonlinear Systems with Unknown Backlash-Like Hysteresis

    E-print Network

    Ge, Shuzhi Sam

    Backlash-Like Hysteresis Beibei Ren, Phyo Phyo San, Shuzhi Sam Ge and Tong Heng Lee Abstract by unknown backlash-like hysteresis. Using the characteristics of backlash-like hysteresis, adaptive dynamic surface control (DSC) is developed without constructing a hysteresis inverse. The explosion of complexity

  12. Low-gain integral control of in nite-dimensional regular linear systems subject to input hysteresis

    E-print Network

    Bath, University of

    hysteresis #3; H. LOGEMANN and A.D. MAWBY Department of Mathematical Sciences, University of Bath, Bath BA2 7 hysteresis, backlash and hysteresis operators of Prandtl and Preisach type. Keywords: Regular in#12;nite-dimensional systems; integral control; hysteresis nonlineari- ties; robust tracking. AMS subject classi#12;cations: 93

  13. A Particle-Water Based Model for Water Retention Hysteresis

    E-print Network

    Yixiang Gan; Federico Maggi; Giuseppe Buscarnera; Itai Einav

    2013-12-04

    A particle-water discrete element based approach to describe water movement in partially saturated granular media is presented and tested. Water potential is governed by both capillary bridges, dominant at low saturations, and the pressure of entrapped air, dominant at high saturations. The approach captures the hysteresis of water retention during wetting and drainage by introducing the local evolution of liquid-solid contact angles at the level of pores and grains. Extensive comparisons against experimental data are presented. While these are made without the involvement of any fitting parameters, the method demonstrates relative high success by achieving a correlation coefficient of at least 82%, and mostly above 90%. For the tested materials with relatively mono-disperse grain size, the hysteresis of water retention during cycles of wetting and drainage has been shown to arise from the dynamics of solid-liquid contact angles as a function of local liquid volume changes.

  14. Hysteresis and Kinetic Effects During Liquid-Solid Transitions

    SciTech Connect

    Streitz, F H; Chau, R

    2009-02-17

    We address the fundamental issue of phase transition kinetics in dynamically compressed materials. Focusing on solid bismuth (Bi) as a prototype material, we used a variety of time-resolved experiments including electrical conductivity and velocimetry to study the phase transition kinetics of the solid-solid phase transitions. Simple single shock experiments performed on several low-lying high pressure phases of Bi, revealed surprisingly complex behavior and slow dynamics. Strong hysteresis effects were observed in the transition behavior in experiments where the compressed Bi was allowed to release back across a phase line. These experiments represent the first reported simultaneous use of resistivity and velocimetry in a shock compression experiment, and the first observation of hysteresis effects occurring during dynamic compression and release.

  15. Efficiency of Hysteresis Rods in Small Spacecraft Attitude Stabilization

    PubMed Central

    Farrahi, Assal; Sanz-Andrés, Ángel

    2013-01-01

    A semiempirical method for predicting the damping efficiency of hysteresis rods on-board small satellites is presented. It is based on the evaluation of dissipating energy variation of different ferromagnetic materials for two different rod shapes: thin film and circular cross-section rods, as a function of their elongation. Based on this formulation, an optimum design considering the size of hysteresis rods, their cross section shape, and layout has been proposed. Finally, the formulation developed was applied to the case of four existing small satellites, whose corresponding in-flight data are published. A good agreement between the estimated rotational speed decay time and the in-flight data has been observed. PMID:24501579

  16. Hysteresis Behaviors of Poly (Naphthalene Quinone) Radical Electrorheological Fluid

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung J.; Cho, Min S.; Jhon, Myung S.

    As a potential electrorheological(ER) material, poly(naphthalene quinone) radical (PNQR) ER fluid was prepared, and its rheological behavior and hysteresis phenomenon were investigated. PNQR was synthesized by Friedel-Crafts acylation between naphthalene and phthalic anhydride, using zinc chloride as a catalyst at 256°C. A Physica rheometer equipped with a high voltage generator was used to measure the rheological properties of the ER fluids, which were prepared by dispersing PNQR in silicone oil at several particle concentrations. Shear stresses were observed to decrease as shear rate increased in the region of slow deformation rate. It was further found that ER fluid showed different hysteresis behaviors according to the shear rate ranges; thixotropy was observed in the low shear rate region (0.007-0.51/s) and anti-thixotropy in the high shear rate region (0.5-10001/s). Controlled shear stress mode was also applied to observe similar behaviors.

  17. Hysteresis in the Underdamped Driven Frenkel-Kontorova Model

    SciTech Connect

    Braun, O.M.; Bishop, A.R.; Roeder, J.; Braun, O.M.

    1997-11-01

    We study a commensurate chain of atoms subject to a periodic substrate potential, damping, and a thermal bath, and driven by an external dc force. In the underdamped case the average system velocity as a function of adiabatically varying force exhibits hysteresis at nonzero temperatures. The hysteresis exists due to the instability of the driven motion of kinks at high velocities. In the force-decreasing process, the system passes through two regimes: the {open_quotes}cavity-mode{close_quotes} regime (a standing wave superimposed on the state of running atoms) and the {open_quotes}traffic-jam{close_quotes} regime, where the mobility is due to kink-antikink pairs, the kinks being bunched into compact groups. {copyright} {ital 1997} {ital The American Physical Society}

  18. Hysteresis in swelling and in sorption of wood tissue.

    PubMed

    Patera, Alessandra; Derome, Dominique; Griffa, Michele; Carmeliet, Jan

    2013-06-01

    The swelling and shrinkage of four Picea abies (L. Karst) wood tissue homogeneous samples, of porosity varying between 45% and 78%, is documented with high-resolution synchrotron radiation phase-contrast X-ray tomographic microscopy. We report measurements of the reversible moisture-induced orthotropic swelling/shrinkage strains. Hysteresis is observed when the swelling/shrinkage strain is considered as a function of relative humidity, except for the very high porosity sample. Hysteresis is no longer present when swelling/shrinkage strains are considered versus moisture content, indicating that wood deforms to the same extent whether an amount of moisture is desorbed or adsorbed. Furthermore, swelling anisotropy, in the tangential and radial directions, is found to increase with increasing porosity. The most homogeneous behaviour for a group of cells is found for 30-50 cells, smaller/larger groups having higher orders of variations. PMID:23523731

  19. Hysteresis modeling of tunneling magnetoresistance strain sensor elements

    NASA Astrophysics Data System (ADS)

    Hauser, Hans; Rührig, Manfred; Wecker, Joachim

    2004-06-01

    Utilizing the inverse magnetostriction effect, magnetic tunneling junction (MTJ) elements have been demonstrated to also be useful as highly sensitive stress or strain transducers. The prediction of the stress dependent hysteresis of the tunneling magnetoresistance R is done by the energetic model (EM), minimizing the total magnetization work which consists of the Zeeman energy density, of magnetocrystalline and stress anisotropy of the magnetization rotation processes, and of reversible and irreversible contributions of domain wall displacements. Furthermore, the law of approach to saturation and the initial susceptibility relate the parameters of the EM to the effective anisotropy energy which has to be overcome for a magnetization reversal. The calculated R(H) curves are in good aggreement with the measurements, allowing several predictions of the MTJ parameters as magnetostriction constant, stress (strain) sensitivity and hysteresis, and misalignment of the easy axis.

  20. Method of thermal strain hysteresis reduction in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)

    1987-01-01

    A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.

  1. Oscillating hysteresis in the q -neighbor Ising model

    NASA Astrophysics Data System (ADS)

    JÈ©drzejewski, Arkadiusz; Chmiel, Anna; Sznajd-Weron, Katarzyna

    2015-11-01

    We modify the kinetic Ising model with Metropolis dynamics, allowing each spin to interact only with q spins randomly chosen from the whole system, which corresponds to the topology of a complete graph. We show that the model with q ?3 exhibits a phase transition between ferromagnetic and paramagnetic phases at temperature T*, which linearly increases with q . Moreover, we show that for q =3 the phase transition is continuous and that it is discontinuous for larger values of q . For q >3 , the hysteresis exhibits oscillatory behavior—expanding for even values of q and shrinking for odd values of q . Due to the mean-field-like nature of the model, we are able to derive the analytical form of transition probabilities and, therefore, calculate not only the probability density function of the order parameter but also precisely determine the hysteresis and the effective potential showing stable, unstable, and metastable steady states. Our results show that a seemingly small modification of the kinetic Ising model leads not only to the switch from a continuous to a discontinuous phase transition, but also to an unexpected oscillating behavior of the hysteresis and a puzzling phenomenon for q =5 , which might be taken as evidence for the so-called mixed-order phase transition.

  2. The preprocessed doacross loop

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi

    1990-01-01

    Dependencies between loop iterations cannot always be characterized during program compilation. Doacross loops typically make use of a-priori knowledge of inter-iteration dependencies to carry out required synchronizations. A type of doacross loop is proposed that allows the scheduling of iterations of a loop among processors without advance knowledge of inter-iteration dependencies. The method proposed for loop iterations requires that parallelizable preprocessing and postprocessing steps be carried out during program execution.

  3. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  4. The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, B. B.

    2014-06-01

    6-81.3 Mo permalloy, developed in the 1960s for use in high performance ring-core fluxgate sensors, remains the state-of-the-art for permalloy-cored fluxgate magnetometers. The magnetic properties of 6-81.3, namely magnetocrystalline and magnetoelastic anisotropies and saturation induction are all optimum in the Fe-Ni-Mo system. In such polycrystalline permalloy fluxgate sensors a single phenomenon may cause both fluxgate noise and magnetic hysteresis, explain Barkhausen jumps, remanence and coercivity, and avoid domain denucleation. The phenomenon, domain wall reconnection, is presented as part of a theoretical model. In the unmagnetized state a coarse-grain high-quality permalloy foil ideally forms stripe domains, which present at the free surface as parallel, uniformly spaced domain walls that cross the entire thickness of the foil. Leakage flux "in" and "out" of alternating domains is a requirement of the random orientation, grain-by-grain, of magnetic easy axes' angles with respect to the foil free surface. Its magnetostatic energy together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free surface domain pattern remains essentially unchanged, due to the magnetostatic energy cost such a change would elicit. Thus domain walls are "pinned" to free surfaces. Driven to saturation, domain walls first bulge then reconnect via Barkhausen jumps to form a new domain configuration this author has called "channel domains", that are attached to free surfaces. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy deeper into saturation compresses the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero H, thus explaining remanence. The Barkhausen jumps being irreversible exothermic events are sources of fluxgate noise, powered by the energy available from domain wall reconnection. A simplified domain energy model can then provide a predictive relation between ring core magnetic properties and fluxgate sensor noise power. Four properties are predicted to affect noise power, two of which, are well known: saturation total magnetic flux density and magnetic anisotropy. The two additional properties are easy axes alignment and foil thickness. Flux density and magnetic anisotropy are primary magnetic properties determined by an alloy's chemistry and crystalline lattice properties. Easy axes alignment and foil thickness are secondary, geometrical properties related to an alloy's polycrystalline fabric and manufacture. Improvements to fluxgate noise performance can in principle be achieved by optimizing any of these four properties in such a way as to minimize magnetostatic energy. Fluxgate signal power is proportional to B-H loop curvature (d2B/dH2). The degree to which Barkhausen jumps coincide with loop curvature is a measure of noise that accompanies fluxgate signal. B-H loops with significant curvature beyond the open hysteresis loop may be used to advantage to acquire fluxgate signal with reduced noise.

  5. The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, B. B.

    2014-09-01

    Developed in the 1960s for use in high-performance ring-core fluxgate sensors, 6-81.3 Mo permalloy remains the state of the art for permalloy-cored fluxgate magnetometers. The magnetic properties of 6-81.3, namely magnetocrystalline and magnetoelastic anisotropies and saturation induction, are all optimum in the Fe-Ni-Mo system. In such polycrystalline permalloy fluxgate sensors, a single phenomenon may cause both fluxgate noise and magnetic hysteresis; explain Barkhausen jumps, remanence and coercivity; and avoid domain denucleation. This phenomenon, domain wall reconnection, is presented as part of a theoretical model. In the unmagnetized state a coarse-grain high-quality permalloy foil ideally forms stripe domains, which present at the free surface as parallel, uniformly spaced domain walls that cross the entire thickness of the foil. Leakage flux "in" and "out" of alternating domains is a requirement of the random orientation, grain by grain, of magnetic easy axes' angles with respect to the foil free surface. Its magnetostatic energy together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free-surface domain pattern remains essentially unchanged, due to the magnetostatic energy cost such a change would elicit. Thus domain walls are "pinned" to free surfaces. Driven to saturation, domain walls first bulge then reconnect via Barkhausen jumps to form a new domain configuration that I have called "channel domains", which are attached to free surfaces. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy deeper into saturation compresses the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero H, thus explaining remanence. The Barkhausen jumps, being irreversible exothermic events, are sources of fluxgate noise powered by the energy available from domain wall reconnection. A simplified domain energy model can then provide a predictive relation between ring-core magnetic properties and fluxgate sensor noise power. Four properties are predicted to affect noise power, two of which are well known: saturation total magnetic flux density and magnetic anisotropy. The two additional properties are easy axes alignment and foil thickness. Flux density and magnetic anisotropy are primary magnetic properties determined by an alloy's chemistry and crystalline lattice properties. Easy axes alignment and foil thickness are secondary, geometrical properties related to an alloy's polycrystalline fabric and manufacture. Improvements to fluxgate noise performance can in principle be achieved by optimizing any of these four properties in such a way as to minimize magnetostatic energy. Fluxgate signal power is proportional to B - H loop curvature [d2B/dH2]. The degree to which Barkhausen jumps coincide with loop curvature is a measure of noise that accompanies the fluxgate signal. B - H loops with significant curvature beyond the open hysteresis loop may be used to advantage to acquire the fluxgate signal with reduced noise.

  6. Hysteresis, avalanches, and disorder-induced critical scaling: A renormalization-group approach

    SciTech Connect

    Dahmen, K.; Sethna, J.P.

    1996-06-01

    Hysteresis loops are often seen in experiments at first-order phase transformations, when the system goes out of equilibrium. They may have a macroscopic jump (roughly as in the supercooling of liquids) or they may be smoothly varying (as seen in most magnets). We have studied the nonequilibrium zero-temperature random-field Ising-model as a model for hysteretic behavior at first-order phase transformations. As disorder is added, one finds a transition where the jump in the magnetization (corresponding to an infinite avalanche) decreases to zero. At this transition we find a diverging length scale, power-law distributions of noise (avalanches), and universal behavior. We expand the critical exponents about mean-field theory in 6{minus}{epsilon} dimensions. Using a mapping to the pure Ising model, we Borel sum the 6{minus}{epsilon} expansion to {ital O}({epsilon}{sup 5}) for the correlation length exponent. We have developed a method for directly calculating avalanche distribution exponents, which we perform to {ital O}({epsilon}). Our analytical predictions agree with numerical exponents in two, three, four, and five dimensions [Perkovi{acute c} {ital et} {ital al}., Phys. Rev. Lett. {bold 75}, 4528 (1995)]. {copyright} {ital 1996 The American Physical Society.}

  7. Terahertz-Triggered Phase Transition and Hysteresis Narrowing in a Nanoantenna Patterned Vanadium Dioxide Film.

    PubMed

    Thompson, Zachary J; Stickel, Andrew; Jeong, Young-Gyun; Han, Sanghoon; Son, Byung Hee; Paul, Michael J; Lee, Byounghwak; Mousavian, Ali; Seo, Giwan; Kim, Hyun-Tak; Lee, Yun-Shik; Kim, Dai-Sik

    2015-09-01

    We demonstrate that high-field terahertz (THz) pulses trigger transient insulator-to-metal transition in a nanoantenna patterned vanadium dioxide thin film. THz transmission of vanadium dioxide instantaneously decreases in the presence of strong THz fields. The transient THz absorption indicates that strong THz fields induce electronic insulator-to-metal transition without causing a structural transformation. The transient phase transition is activated on the subcycle time scale during which the THz pulse drives the electron distribution of vanadium dioxide far from equilibrium and disturb the electron correlation. The strong THz fields lower the activation energy in the insulating phase. The THz-triggered insulator-to-metal transition gives rise to hysteresis loop narrowing, while lowering the transition temperature both for heating and cooling sequences. THz nanoantennas enhance the field-induced phase transition by intensifying the field strength and improve the detection sensitivity via antenna resonance. The experimental results demonstrate a potential that plasmonic nanostructures incorporating vanadium dioxide can be the basis for ultrafast, energy-efficient electronic and photonic devices. PMID:26301339

  8. Magnetic hysteresis in small-grained CoxPd1-x nanowire arrays

    NASA Astrophysics Data System (ADS)

    Viqueira, M. S.; Pozo-López, G.; Urreta, S. E.; Condó, A. M.; Cornejo, D. R.; Fabietti, L. M.

    2015-11-01

    Co-Pd nanowires with small grain size are fabricated by AC electrodeposition into hexagonally ordered alumina pores, 20-35 nm in diameter and about 1 ?m long. The effects of the alloy composition, the nanowire diameter and the grain size on the hysteresis properties are considered. X-ray diffraction indicates that the nanowires are single phase, a fcc Co-Pd solid solution; electron microscopy results show that they are polycrystalline, with randomly oriented grains (7-12 nm), smaller than the wire diameter. Nanowire arrays are ferromagnetic, with an easy magnetization axis parallel to the nanowire long axis. Both, the coercive field and the loop squareness monotonously increase with the Co content and with the grain size, but no clear correlation with the wire diameter is found. The Co and Co-rich nanowire arrays exhibit coercive fields and reduced remanence values quite insensitive to temperature in the range 4 K-300 K; on the contrary, in Pd-rich nanowires both magnitudes are smaller and they largely increase during cooling below 100 K. These behaviors are systematized by considering the strong dependences displayed by the magneto-crystalline anisotropy and the saturation magnetostriction on composition and temperature. At low temperatures the effective anisotropy value and the domain-wall width to grain size ratio drastically change, promoting less cooperative and harder nucleation modes.

  9. Cochlear hysteresis: Observation with low-frequency modulated distortion product otoacoustic emissions

    NASA Astrophysics Data System (ADS)

    Bian, Lin; Linhardt, Erin E.; Chertoff, Mark E.

    2004-05-01

    Low-frequency modulation of distortion product otoacoustic emissions (DPOAEs) can be used to estimate a nonlinear transducer function (fTr) of the cochlea. From gerbils, DPOAEs were measured while presenting a high-level bias tone. Within one period of the bias tone, the magnitudes of the cubic difference tone (CDT, 2f1-f2) demonstrated two similar modulation patterns (MPs) each resembled the absolute value of the third derivative of the fTr. The center peaks of the MPs occurred at positive sound pressures for rising in bias pressure or loading of the cochlear transducer, and more negative pressures while decreasing bias amplitude or unloading. The corresponding fTr revealed a sigmoid-shaped hysteresis loop with counterclockwise traversal. Physiologic indices that characterized the double MP varied with primary level. A Boltzmann-function-based model with negative damping as a feedback component was proposed. The model was able to replicate the experimental results. Model parameters that fit to the CDT data indicated higher transducer gain and more prominent feedback role at lower primary levels. Both physiologic indices and model parameters suggest that the cochlear transducer dynamically changes its gain with input signal level and the nonlinear mechanism is a time-dependent feedback process.

  10. Detangling extrinsic and intrinsic hysteresis for detecting dynamic switch of electric dipoles using graphene field-effect transistors on ferroelectric gates.

    PubMed

    Ma, Chunrui; Gong, Youpin; Lu, Rongtao; Brown, Emery; Ma, Beihai; Li, Jun; Wu, Judy

    2015-11-28

    A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.08Zr0.52Ti0.48O3 gates (GFET/PLZT-Gate) during a vacuum annealing process developed to systematically remove the polar molecules adsorbed on the GFET channel surface. This allows the extrinsic and intrinsic hysteresis on GFET/PLZT-gate devices to detangle and the detection of the dynamic switch of electric dipoles using GFETs, taking advantage of their high gating efficiency on ferroelectric gate. A model of the charge trapping and pinning mechanism is proposed to successfully explain the transition. In response to pulsed VBG trains of positive, negative, as well as alternating polarities, respectively, the source-drain current ID variation is instantaneous with the response amplitude following the ID-VBG loops measured by DC VBG with consideration of the remnant polarization after a given VBG pulse when the gate electric field exceeds the coercive field of the PLZT. A detection sensitivity of around 212 dipole per ?m(2) has been demonstrated at room temperature, suggesting the GFET/ferroelectric-gate devices provide a promising high-sensitivity scheme for uncooled detection of electrical dipole dynamic switch. PMID:26331952

  11. Hysteresis zone or locus - Aerodynamic of bulbous based bodies at low speeds

    NASA Technical Reports Server (NTRS)

    Covert, E. E.

    1979-01-01

    Experimental data are presented which seem to suggest that a well-defined hysteresis locus on bulbous based bodies at low speeds does not exist. Instead, if the experiment is repeated several times, the entire hysteresis region seems to fill with data rather than trace out a specific hysteresis locus. Data obtained on an oscillating model even at low reduced frequencies may be well defined but when applied to arbitrary motion lead to less accurate results than desired.

  12. On the 2D-transition, hysteresis and thermodynamic equilibrium of Kr adsorption on a graphite surface.

    PubMed

    Diao, Rui; Fan, Chunyan; Do, D D; Nicholson, D

    2015-12-15

    The adsorption and desorption of Kr on graphite at temperatures in the range 60-88K, was systematically investigated using a combination of several simulation techniques including: Grand Canonical Monte Carlo (GCMC), Canonical kinetic-Monte Carlo (C-kMC) and the Mid-Density Scheme (MDS). Particular emphasis was placed on the gas-solid, gas-liquid and liquid-solid 2D phase transitions. For temperatures below the bulk triple point, the transition from a 2D-liquid-like monolayer to a 2D-solid-like state is manifested as a sub-step in the isotherm. A further increase in the chemical potential leads to another rearrangement of the 2D-solid-like state from a disordered structure to an ordered structure that is signalled by (1) another sub-step in the monolayer region and (2) a spike in the plot of the isosteric heat versus density at loadings close to the dense monolayer coverage concentration. Whenever a 2D transition occurs in a grand canonical isotherm it is always associated with a hysteresis, a feature that is not widely recognised in the literature. We studied in details this hysteresis with the analysis of the canonical isotherm, obtained with C-kMC, which exhibits a van der Waals (vdW) type loop with a vertical segment in the middle. We complemented the hysteresis loop and the vdW curve with the analysis of the equilibrium transition obtained with the MDS, and found that the equilibrium transition coincides exactly with the vertical segment of the C-kMC isotherm, indicating the co-existence of two phases at equilibrium. We also analysed adsorption at higher layers and found that the 2D-coexistence is also observed, provided that the temperature is well below the triple point. Finally the 2D-critical temperatures were obtained for the first three layers and they are in good agreement with the experimental data in the literature. PMID:26364074

  13. Characterization of strain-induced martensite phase in austenitic stainless steel using a magnetic minor-loop scaling relation

    SciTech Connect

    Kobayashi, Satoru; Saito, Atsushi; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki

    2008-05-05

    We propose a combined magnetic method using a scaling power-law rule and initial permeability in magnetic minor hysteresis loops for characterization of ferromagnetic {alpha}{sup '} martensites in austenitic stainless steel. The scaling power law between the hysteresis loss and remanence is universal, being independent of volume fraction of strain-induced {alpha}{sup '} martensites. A coefficient of the power law largely decreases with volume fraction, while the initial permeability linearly increases, reflecting a change in the morphology and quantity of martensites, respectively. The present method is highly effective for integrity assessment of austenitic stainless steels because of the sensitivity and extremely low measurement field.

  14. Characterization of strain-induced martensite phase in austenitic stainless steel using a magnetic minor-loop scaling relation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Saito, Atsushi; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki

    2008-05-01

    We propose a combined magnetic method using a scaling power-law rule and initial permeability in magnetic minor hysteresis loops for characterization of ferromagnetic ?' martensites in austenitic stainless steel. The scaling power law between the hysteresis loss and remanence is universal, being independent of volume fraction of strain-induced ?' martensites. A coefficient of the power law largely decreases with volume fraction, while the initial permeability linearly increases, reflecting a change in the morphology and quantity of martensites, respectively. The present method is highly effective for integrity assessment of austenitic stainless steels because of the sensitivity and extremely low measurement field.

  15. Origin of hysteresis in bed form response to unsteady flows

    NASA Astrophysics Data System (ADS)

    Martin, Raleigh L.; Jerolmack, Douglas J.

    2013-03-01

    Field and laboratory studies indicate that changes in riverbed morphology often lag changes in water discharge. This lagged response produces hysteresis in the relationship between water discharge and bed form geometry. To understand these phenomena, we performed flume experiments to observe the response of a sand bed to step increases and decreases in water discharge. For an abrupt rise in discharge, we observed that bed forms grew rapidly by collision and merger of bed forms migrating with different celerities. Growth rate slowed as bed forms approached equilibrium with the higher discharge regime. After an abrupt discharge drop, bed form decay occurred through formation of smaller secondary bed forms, in equilibrium with the lower discharge, which cannibalized the original, relict features. We present a simple model framework to quantitatively predict time scales of bed form adjustment to flow changes, based on equilibrium bed form heights, lengths, and celerities at low and high flows. For rising discharge, the model assumes that all bed form collisions result in irreversible merger, due to a dispersion of initial celerities. For falling discharge, we derive a diffusion model for the decay of relict high-stage features. Our models predict the form and time scale of experimental bed form adjustments. Additional experiments applying slow and fast triangular flood waves show that bed form hysteresis occurs only when the time scale of flow change is faster than the modeled (and measured) bed form adjustment time. We show that our predicted adjustment time scales can also be used to predict the occurrence of bed form hysteresis in natural floods.

  16. Basin of Attraction Determines Hysteresis in Explosive Synchronization

    E-print Network

    Yong Zou; Tiago Pereira; Michael Small; Zonghua Liu; Jürgen Kurths

    2014-02-11

    Spontaneous explosive emergent behavior takes place in heterogeneous networks when the frequencies of the nodes are positively correlated to the node degree. A central feature of such explosive transitions is a hysteretic behavior at the transition to synchronization. We unravel the underlying mechanisms and show that the dynamical origin of the hysteresis is a change of basin of attraction of the synchronization state. Our findings hold for heterogeneous networks with star graph motifs such as scale free networks, and hence reveal how microscopic network parameters such as node degree and frequency affect the global network properties and can be used for network design and control.

  17. Hysteresis effects of changing the parameters of noncooperative games.

    PubMed

    Wolpert, David H; Harré, Michael; Olbrich, Eckehard; Bertschinger, Nils; Jost, Jürgen

    2012-03-01

    We adapt the method used by Jaynes to derive the equilibria of statistical physics to instead derive equilibria of bounded rational game theory. We analyze the dependence of these equilibria on the parameters of the underlying game, focusing on hysteresis effects. In particular, we show that by gradually imposing individual-specific tax rates on the players of the game, and then gradually removing those taxes, the players move from a poor equilibrium to one that is better for all of them. PMID:22587144

  18. Anomalous hysteresis properties of iron films deposited on liquid surfaces

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Lin; Feng, Chun-Mu; Xu, Xiao-Jun; Jin, Jin-Sheng; Xia, A.-Gen; Ye, Gao-Xiang

    2005-07-01

    A nearly free sustained iron film system, deposited on silicone oil surfaces by vapor-phase deposition method, has been fabricated and its crystal structure as well as magnetic properties has been studied. Both the temperature-dependent coercivity Hc(T) and exchange anisotropy field HE(T) of the iron films possess a maximum peak around the critical temperature Tcrit=10-15 and 4K, respectively. Our experimental results show that the anomalous hysteresis properties mainly result from the oxide surfaces of the films with spin-glass-like phase below freezing temperature Tf=30-50K.

  19. Thermal hysteresis of some important physical properties of nanoparticles.

    PubMed

    Sarkar, Tapan; Roy, Shibsekhar; Bhattacharya, Jaydeep; Bhattacharya, Dhananjay; Mitra, Chanchal K; Dasgupta, Anjan Kr

    2008-11-01

    Gold nanoparticles show thermal hysteresis with properties such as surface plasmon absorption, conductivity, and zeta potential. The direction of the incremental change in plasmon peak position and its extinction depend on the nature of surface conjugation. The thermal profile of a surface plasmon resonance spectrum for nanoparticles may serve as a signature for the associated small molecule or macromolecule on which it is seeded. The thermal responses of zeta potential and conductivity profile are found to be independent of the surface conjugation with the later being subjected to a phase transition phenomenon as revealed by a temperature criticality. PMID:18760800

  20. Reversal-field memory in the hysteresis of spin glasses.

    PubMed

    Katzgraber, H G; Pázmándi, F; Pike, C R; Liu, Kai; Scalettar, R T; Verosub, K L; Zimányi, G T

    2002-12-16

    We report a novel singularity in the hysteresis of spin glasses, the reversal-field memory effect, which creates a nonanalyticity in the magnetization curves at a particular point related to the history of the sample. The origin of the effect is due to the existence of a macroscopic number of "symmetric clusters" of spins associated with a local spin-reversal symmetry of the Hamiltonian. We use first order reversal curve (FORC) diagrams to characterize the effect and compare to experimental results on thin magnetic films. We contrast our results on spin glasses to random magnets and show that the FORC technique is an effective "magnetic fingerprinting" tool. PMID:12484912

  1. Quadrupole hysteresis in uniaxial magnet with unity spin

    NASA Astrophysics Data System (ADS)

    Shapovalov, I. P.; Sayko, P. A.

    2013-12-01

    Uniaxial spin-1 magnets with tensor interactions have been studied in the absence of external magnetic field. The model with the most general form of interactions for the uniaxial symmetry has been investigated. Conditions for the implementation of only two quadrupole phases are considered: the phase with a quadrupole ordering along the lattice symmetry axis and the phase with ordering in the plane normal to the lattice symmetry axis. It has been shown that components of the quadrupole order parameter as a function of the single-ion anisotropy constant at low temperatures has "hysteresis" character. An analytical expression for the remagnetization energy per lattice site has been obtained.

  2. Hysteresis in a magnetic bead and its applications

    E-print Network

    Vanchna Singh; Varsha Banerjee

    2012-08-27

    We study hysteresis in a micron-sized bead: a non-magnetic matrix embedded with super- paramagnetic nanoparticles. These hold tremendous promise in therapeutic applications as heat generating machines. The theoretical formulation uses a mean-field theory to account for dipolar interactions between the supermoments. The study enables manipulation of heat dissipation by a compatible selection of commercially available beads and the frequency f and amplitude ho of the applied oscillating field in the labortory. We also introduce the possibility of utilizing return point memory for gradual heating of a local region.

  3. Effect of contact angle hysteresis on moving liquid film integrity.

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Hsu, Y. Y.

    1972-01-01

    A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.

  4. Effect of contact angle hysteresis on moving liquid film integrity

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Hsu, Y. Y.

    1972-01-01

    A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.

  5. Blind loop syndrome

    MedlinePLUS

    Blind loop syndrome occurs when digested food slows or stops moving through part of the intestines. This ... The name of this condition refers to the "blind loop" formed by part of the intestine that ...

  6. Transgressive loop group extensions

    E-print Network

    Konrad Waldorf

    2015-04-27

    A central extension of the loop group of a Lie group is called transgressive, if it corresponds under transgression to a degree four class in the cohomology of the classifying space of the Lie group. Transgressive loop group extensions are those that can be explored by finite-dimensional, higher-categorical geometry over the Lie group. We show how transgressive central extensions can be characterized in a loop-group theoretical way, in terms of loop fusion and thin homotopy equivariance.

  7. Magnetization loop modelling for superconducting/ferromagnetic tube of an ac magnetic cloak

    NASA Astrophysics Data System (ADS)

    Gömöry, F.; Solovyov, M.; Šouc, J.

    2015-04-01

    From the combination of superconducting (SC) and ferromagnetic (FM) materials, one can prepare composites with unusual magnetic properties, e.g. for the cloaking of a dc or low-frequency ac magnetic field by a shell from a SC/FM composite. In the design and optimisation of such SC/FM structures, numerical modelling is essential. Non-linear magnetic permeability, as well as the hysteresis of both kinds of materials, are to be incorporated in the calculations aimed at achieving reliable estimates. We present a technique that allows the prediction of the ac magnetization loops of SC/FM composites. The critical state model-based approach is used to describe the properties of the superconducting material. The ferromagnetic part is characterized by its (non-hysteretic) nonlinear permeability. With these ingredients, the distributions of the magnetic field are calculated in subsequent instants of the ac cycle and are used to evaluate the preliminary data for the magnetization loop, which is still missing the hysteresis of the FM part. Afterward, the latter component is added to the magnetization loop by an approximation deduced from the known dependence of the hysteresis loss in the FM material on the ac magnetic field. In spite of its approximate nature, this approach demonstrated very good predictability in experimental tests.

  8. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress. Progress report, June 1991--December 1991

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  9. Performance catastrophes in sport: a test of the hysteresis hypothesis.

    PubMed

    Hardy, L; Parfitt, G; Pates, J

    1994-08-01

    An experiment is reported which tests Fazey and Hardy's (1988) catastrophe model of anxiety and performance. Eight experienced crown green bowlers performed a bowling task under conditions of high and low cognitive anxiety. On each of these occasions, physiological arousal (measured by heart rate) was manipulated by means of physical work in such a way that the subjects were tested with physiological arousal increasing and decreasing. A repeated-measures three-factor ANOVA was used to test the hysteresis hypothesis that the performance x heart rate graph would follow a different path for heart rate increasing compared with heart rate decreasing in the high cognitive anxiety condition, but not in the low cognitive anxiety condition. The ANOVA revealed the predicted three-way interaction of cognitive anxiety, heart rate, and the direction of change in heart rate upon performance, with follow-up tests indicating that the interaction was due to hysteresis occurring in the high cognitive anxiety condition but not in the low cognitive anxiety condition. Other statistical procedures showed that, in the high cognitive anxiety condition, subjects' best performances were significantly better, and their worst performances significantly worse, than in the low cognitive anxiety condition. However, the results did not provide unequivocal support for the catastrophe model of anxiety and performance. PMID:7932942

  10. Wavenumber selection and hysteresis in nonlinear baroclinic flow

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung

    1995-01-01

    Wavenumber transition and hysteresis in a highly unstable baroclinic flow are investigated using a high-resolution spectral numerical model. As the flow becomes more supercritical, the dominant wave gradually shifts from the most unstable wave predicted by the linear theory to a longer wave with a larger time-averaged amplitude, while the rectified mean flow attains a stronger shear at the center of the channel. The numerical results display a complex hysteresis behavior, which occurs not only between the states of different dominant wavenumbers, but also between the states of identical dominant wavenumber but of different dynamic characteristics. In a certain parameter range three stable states, each with different dominant wavenumber, are possible, and in another parameter range four stable states are possible, among them three stable states with an identical dominant wave. The numerical results suggest that a multiple weather regime exists even without external forcing in which the flow aperiodically varies between two distinct behaviors. The effects of stable higher harmonics are assessed and it is found that their presence contributes not only to the better approximation of the model solutions but also to the selection of the final equilibrium state, due to the chaotic nature of the initial transient period.

  11. Modeling Hysteresis Effect in Three-Phase Relative Permeability

    NASA Astrophysics Data System (ADS)

    Kianinejad, A.; Chen, X.; DiCarlo, D. A.

    2014-12-01

    Simulation and fluid flow prediction of many petroleum enhanced oil recovery methods as well as environmental processes such as carbon dioxide (CO2) geological storage requires accurate modeling and determination of relative permeability under different saturation histories. Based on this critical need, there has been several different three-phase relative permeability models developed to predict the hysteresis effects in relative permeability, most of which requiring many different parameters which introduce extreme complexity to the models for practical purposes. In this work, we experimentally measured three-phase, water/oil/gas, relative permeability in a 1-m long water-wet sand pack, under several different flow histories. We measured the in-situ saturations along the sand pack using a CT scanner. We then determined the relative permeabilities directly from the measured in-situ saturations, using unsteady-state method. Based on our results, good estimation of residual saturations yields in excellent three-phase relative permeability estimations by just using the simple, standard relative permeability models such as, Saturation Weighted Interpolation (SWI), Corey's and Stones. Our results show that, the key parameter to model the hysteresis in three-phase relative permeability (effect of saturation history) is the residual saturations. Once the residual saturations were correctly determined for each specific saturation path, the standard relative permeability models can predict the three-phase relative permeabilities perfectly.

  12. Fatigue, hysteresis, and acoustic emission, parts 1 and 2

    NASA Astrophysics Data System (ADS)

    Guralnick, S. A.; Erber, T.

    1992-05-01

    The basic objective of this research program is to characterize the development of material fatigue by means of stress-strain hysteresis and acoustic emission measurements. We have conjectured that the accumulation and organization of damage in material fatigue is similar to the progressive failure of structures under cyclic loading. And, specifically, that the endurance limit of a material in fatigue is the analogue of the incremental collapse load of a structure. Since the principal features of the service life and failure of structures can be completely described by hysteresis methods, it is plausible that similar means can be used to characterize the inception and organization of microplastic processes in materials. Experiments were conducted upon nearly 100 specimens made of Rimmed AISI 1018 Unannealed Steel. This material was selected because extensive data on its performance exists in the engineering literature and because its stress-strain curve is of the gradual yielding type, mirroring at least the monotonic stress-strain behavior of many of the kinds of metals used in the aircraft industry.

  13. The capillary hysteresis model HYSTR: User`s guide

    SciTech Connect

    Niemi, A.; Bodvarsson, G.S.

    1991-11-01

    The potential disposal of nuclear waste in the unsaturated zone at Yucca Mountain, Nevada, has generated increased interest in the study of fluid flow through unsaturated media. In the near future, large-scale field tests will be conducted at the Yucca Mountain site, and work is now being done to design and analyze these tests. As part of these efforts a capillary hysteresis model has been developed. A computer program to calculate the hysteretic relationship between capillary pressure {phi} and liquid saturation (S{sub 1}) has been written that is designed to be easily incorporated into any numerical unsaturated flow simulator that computes capillary pressure as a function of liquid saturation. This report gives a detailed description of the model along with information on how it can be interfaced with a transport code. Although the model was developed specifically for calculations related to nuclear waste disposal, it should be applicable to any capillary hysteresis problem for which the secondary and higher order scanning curves can be approximated from the first order scanning curves. HYSTR is a set of subroutines to calculate capillary pressure for a given liquid saturation under hysteretic conditions.

  14. Superfluidity and mean-field energy loops: Hysteretic behavior in Bose-Einstein condensates

    SciTech Connect

    Mueller, Erich J.

    2002-12-01

    We present a theory of hysteretic phenomena in Bose gases, using superfluidity in one-dimensional rings and in optical lattices as primary examples. Through this study we are able to give a physical interpretation of swallow-tail loops recently found by many authors in the mean-field energy structure of trapped atomic gases. These loops are a generic sign of hysteresis, and in the present context are an indication of superfluidity. We have also calculated the rate of decay of metastable current-carrying states due to quantum fluctuations.

  15. A linearity tunable DBR fiber laser based on closed-loop PZT

    NASA Astrophysics Data System (ADS)

    Li, Guoyu; Li, Yan; Yang, Kang; Liu, Mingsheng

    2013-02-01

    A linearity tunable fiber laser based on closed-loop piezoelectric ceramics (PZT) is proposed and successfully demonstrated. The cavity of the distributed Bragg reflector (DBR) fiber laser is fixed on the PZT, and the displacement sensor attached on the PZT is monitoring and compensating the nonlinear hysteresis of the PZT real-timely. Experimental results show that the tuning curve of the DBR fiber laser is linear with the tuning range nearly 0.8 nm. Furthermore, the automatic tuning DBR fiber laser driven by the sawtooth wave is realized in closed-loop PZT operation.

  16. Activity and architecture of pyroglutamate-modified amyloid-? (A?pE3-42) pores.

    PubMed

    Gillman, Alan L; Jang, Hyunbum; Lee, Joon; Ramachandran, Srinivasan; Kagan, Bruce L; Nussinov, Ruth; Teran Arce, Fernando

    2014-07-01

    Among the family of A? peptides, pyroglutamate-modified A? (A?pE) peptides are particularly associated with cytotoxicity in Alzheimer's disease (AD). They represent the dominant fraction of A? oligomers in the brains of AD patients, but their accumulation in the brains of elderly individuals with normal cognition is significantly lower. Accumulation of A?pE plaques precedes the formation of plaques of full-length A? (A?1-40/42). Most of these properties appear to be associated with the higher hydrophobicity of A?pE as well as an increased resistance to enzymatic degradation. However, the important question of whether A?pE peptides induce pore activity in lipid membranes and their potential toxicity compared with other A? pores is still open. Here we examine the activity of A?pE pores in anionic membranes using planar bilayer electrical recording and provide their structures using molecular dynamics simulations. We find that A?pE pores spontaneously induce ionic current across the membrane and have some similar properties to the other previously studied pores of the A? family. However, there are also some significant differences. The onset of A?pE3-42 pore activity is generally delayed compared with A?1-42 pores. However, once formed, A?pE3-42 pores produce increased ion permeability of the membrane, as indicated by a greater occurrence of higher conductance electrical events. Structurally, the lactam ring of A?pE peptides induces a change in the conformation of the N-terminal strands of the A?pE3-42 pores. While the N-termini of wild-type A?1-42 peptides normally reside in the bulk water region, the N-termini of A?pE3-42 peptides tend to reside in the hydrophobic lipid core. These studies provide a first step to an understanding of the enhanced toxicity attributed to A?pE peptides. PMID:24922585

  17. Hysteresis Modeling and Inverse Feedforward Control of an AFM Piezoelectric Scanner Based on Nano Images

    E-print Network

    Li, Yangmin

    Hysteresis Modeling and Inverse Feedforward Control of an AFM Piezoelectric Scanner Based on Nano of micro/nano technology. As a critical part of AFM system, the piezoelectric scanner exists many defects in this paper possess a good performance for AFM nano imaging. Index Terms-- Hysteresis modeling, feedforward

  18. Large melting point hysteresis of Ge nanocrystals embedded inSiO2

    SciTech Connect

    Xu, Q.; Sharp, I.D.; Yuan, C.W.; Yi, D.O.; Liao, C.Y.; Glaeser,A.M.; Minor, A.M.; Beeman, J.W.; Ridgway, M.C.; Kluth, P.; Ager III,J.W.; Chrzan, D.C.; Haller, E.E.

    2006-05-04

    The melting behavior of Ge nanocrystals embedded within SiO{sub 2} is evaluated using in situ transmission electron microscopy. The observed melting point hysteresis is large ({+-} 17%) and nearly symmetric about the bulk melting point. This hysteresis is modeled successfully using classical nucleation theory without the need to invoke epitaxy.

  19. Fig. 1. Magnetic hysteresis of NiO-doped NiF2 conversion materials

    E-print Network

    Siegel, Paul H.

    Fig. 1. Magnetic hysteresis of NiO-doped NiF2 conversion materials CMRR Newsletter Shirley Meng). We have investigated the NiF2 based conversion materials and the conversion reaction includes becomes superparamagnetic. The distinguishable magnetic hysteresis was observed at 5K since NiF2

  20. Comment on ``Large Melting-Point Hysteresis of Ge Nanocrystals Embedded in SiO2''

    E-print Network

    Caupin, Frédéric

    Comment on ``Large Melting-Point Hysteresis of Ge Nanocrystals Embedded in SiO2'' In their Letter melting-point hysteresis around the bulk melting point Tm is used with classical nucleation theory (CNT [1], Xu et al. study the melting behavior of Ge nanocrystals (NC) in a SiO2 matrix. The observed

  1. A Domain Wall Model for Ferroelectric Hysteresis Ralph C. Smith 1 and Craig L. Hom 2

    E-print Network

    of these materials in high performance actuator design. The nature of hysteresis models for ferroelectric materials as the polycrystalline nature of the materials. Moreover, microscopic models are often difficult to employ in control a mathematical model for characterizing hysteresis in ferroelectric materials. The model is based

  2. A Domain Wall Model for Ferroelectric Hysteresis Ralph C. Smith1 and Craig L. Hom2

    E-print Network

    of these materials in high performance actuator design. The nature of hysteresis models for ferroelectric materials as the polycrystalline nature of the materials. Moreover, microscopic models are often di cult to employ in control a mathematical model for characterizing hysteresis in ferroelectric materials. The model is based on the quanti

  3. Mechanisms of exercise-recovery hysteresis in the ECG: ISCE 2015 paper.

    PubMed

    Swenne, Cees A

    2015-01-01

    This paper gives an overview of multiple factors, like the mechanisms governing rate adaptation of ventricular action potentials and autonomic mechanisms, which play a role in the genesis of exercise-recovery hysteresis in the ECG. It also discusses the possible association between exercise-recovery ECG hysteresis and arrhythmogeneity. PMID:26336871

  4. Chen Integrals, Generalized Loops and Loop Calculus

    NASA Astrophysics Data System (ADS)

    Tavares, J. N.

    We use Chen iterated line integrals to construct a topological algebra {A}p of separating functions on the group of loops L?p. {A}p has a Hopf algebra structure which allows the construction of a group structure on its spectrum. We call this topological group the group of generalized loops widetilde {{L} {M}p } Then we develop a loop calculus, based on the end point and area derivative operators, providing a rigorous mathematical treatment of the early heuristic ideas of Gambini, Trias and also Mandelstam, Makeenko and Migdal. Finally, we define a natural action of the “pointed” diffeomorphism group Diffp(?) on widetilde {{L} {M}p }, and consider a variational derivative which allows the construction of homotopy invariants. This formalism is useful for constructing a mathematical theory of loop representation of gauge theories and quantum gravity.

  5. Hysteresis in the Cell Response to Time-Dependent Substrate Stiffness Achim Besser and Ulrich S. Schwarz*

    E-print Network

    Schwarz, Ulrich

    Hysteresis in the Cell Response to Time-Dependent Substrate Stiffness Achim Besser and Ulrich S predict that rate- dependent hysteresis will occur in the cellular traction forces when cells are exposed

  6. Nicholas E. Lownes, Ph.D., P.E. Research Areas

    E-print Network

    Chandy, John A.

    Nicholas E. Lownes, Ph.D., P.E. Research Areas Public Transportation Systems Network Modeling Economics Transportation Network Security Modeling & Analysis Transportation Asset Management Assistant Professor and Director, Center for Transportation and Livable Systems University of Connecticut Department

  7. P R O S P E C T U S www.music.ox.ac.uk

    E-print Network

    Oxford, University of

    P R O S P E C T U S FACULTY OF MUSIC www.music.ox.ac.uk #12;Welcome to the Faculty of Music Contents About the Faculty of Music . . . . . . . . . . . . . . . . . . . . . . . . . .2 Musical Life Electronic Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Library Resources

  8. Rapid Total Synthesis of DARPin pE59 and RNase B. a

    E-print Network

    Vinogradov, Alexander A.

    We report the convergent total synthesis of two proteins: DARPin pE59 and Bacillus amyloliquefaciens RNase (Barnase). Leveraging our recently developed fast-flow peptide-synthesis platform, we rapidly explored numerous ...

  9. Hysteresis in coral reefs under macroalgal toxicity and overfishing.

    PubMed

    Bhattacharyya, Joydeb; Pal, Samares

    2015-03-01

    Macroalgae and corals compete for the available space in coral reef ecosystems.While herbivorous reef fish play a beneficial role in decreasing the growth of macroalgae, macroalgal toxicity and overfishing of herbivores leads to proliferation of macroalgae. The abundance of macroalgae changes the community structure towards a macroalgae-dominated reef ecosystem. We investigate coral-macroalgal phase shifts by means of a continuous time model in a food chain. Conditions for local asymptotic stability of steady states are derived. It is observed that in the presence of macroalgal toxicity and overfishing, the system exhibits hysteresis through saddle-node bifurcation and transcritical bifurcation. We examine the effects of time lags in the liberation of toxins by macroalgae and the recovery of algal turf in response to grazing of herbivores on macroalgae by performing equilibrium and stability analyses of delay-differential forms of the ODE model. Computer simulations have been carried out to illustrate the different analytical results. PMID:25708511

  10. Bouc-Wen hysteresis model identification using Modified Firefly Algorithm

    NASA Astrophysics Data System (ADS)

    Zaman, Mohammad Asif; Sikder, Urmita

    2015-12-01

    The parameters of Bouc-Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc-Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc-Wen model parameters. Finally, the proposed method is used to find the Bouc-Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data.

  11. The thermodynamic origin of hysteresis in insertion batteries.

    PubMed

    Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens; Huth, Robert; Moskon, Joze; Gaberscek, Miran

    2010-05-01

    Lithium batteries are considered the key storage devices for most emerging green technologies such as wind and solar technologies or hybrid and plug-in electric vehicles. Despite the tremendous recent advances in battery research, surprisingly, several fundamental issues of increasing practical importance have not been adequately tackled. One such issue concerns the energy efficiency. Generally, charging of 10(10)-10(17) electrode particles constituting a modern battery electrode proceeds at (much) higher voltages than discharging. Most importantly, the hysteresis between the charge and discharge voltage seems not to disappear as the charging/discharging current vanishes. Herein we present, for the first time, a general explanation of the occurrence of inherent hysteretic behaviour in insertion storage systems containing multiple particles. In a broader sense, the model also predicts the existence of apparent equilibria in battery electrodes, the sequential particle-by-particle charging/discharging mechanism and the disappearance of two-phase behaviour at special experimental conditions. PMID:20383130

  12. Phase transition and hysteresis in scale-free network traffic

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Wang, Wen-Xu; Jiang, Rui; Wu, Qing-Song; Wu, Yong-Hong

    2007-03-01

    We model information traffic on scale-free networks by introducing the node queue length L proportional to the node degree and its delivering ability C proportional to L . The simulation gives the overall capacity of the traffic system, which is quantified by a phase transition from free flow to congestion. It is found that the maximal capacity of the system results from the case of the local routing coefficient ? slightly larger than zero, and we provide an analysis for the optimal value of ? . In addition, we report for the first time the fundamental diagram of flow against density, in which hysteresis is found, and thus we can classify the traffic flow with four states: free flow, saturated flow, bistable, and jammed.

  13. Hysteresis of unsaturated hydromechanical properties of a silty soil

    USGS Publications Warehouse

    Lu, Ning; Kaya, Murat; Collins, Brian D.; Godt, Jonathan W.

    2013-01-01

    Laboratory tests to examine hysteresis in the hydrologic and mechanical properties of partially saturated soils were conducted on six intact specimens collected from a landslide-prone area of Alameda County, California. The results reveal that the pore-size distribution parameter remains statistically unchanged between the wetting and drying paths; however, the wetting or drying state has a pronounced influence on the water-entry pressure, the water-filled porosity at zero suction, and the saturated hydraulic conductivity. The suction stress values obtained from the shear-strength tests under both natural moisture and resaturated conditions were mostly bounded by the suction stress characteristic curves (SSCCs) obtained from the hydrologic tests. This finding experimentally confirms that the soil-water retention curve, hydraulic conductivity function, and SSCC are intrinsically related.

  14. The Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    E-print Network

    Lee, Alpha A; Goriely, Alain; Kondrat, Svyatoslav

    2015-01-01

    Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived tradeoff between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and hence power density. We show via an analytical theory and Monte Carlo simulations that charging is sensitively dependent on the affinity of ions to the pores, and that the capacitance of ionophobic pores can be optimized at pore widths significantly larger than the ion diameter. Our theory also predicts that charging can be hysteretic with a significant energy loss per cycle for intermediate ionophilicities. We use these observations to explore the parameter regimes in which a capacitance-power-hysteresis \\emph{trilemma} may...

  15. The Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    E-print Network

    Alpha A Lee; Dominic Vella; Alain Goriely; Svyatoslav Kondrat

    2015-10-19

    Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived tradeoff between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and hence power density. We show via an analytical theory and Monte Carlo simulations that charging is sensitively dependent on the affinity of ions to the pores, and that the capacitance of ionophobic pores can be optimized at pore widths significantly larger than the ion diameter. Our theory also predicts that charging can be hysteretic with a significant energy loss per cycle for intermediate ionophilicities. We use these observations to explore the parameter regimes in which a capacitance-power-hysteresis \\emph{trilemma} may be avoided.

  16. Hysteresis in Magnetic Shape Memory Composites: Modeling and Simulation

    E-print Network

    Conti, Sergio; Rumpf, Martin

    2015-01-01

    Magnetic shape memory alloys are characterized by the coupling between a structural phase transition and magnetic one. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the transformation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the phase boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimali...

  17. A Unified Model for Hysteresis in Ferroic Materials Ralph C. Smith # , Stefan Seelecke + , Marcelo J. Dapino # , and Zoubeida Ounaies

    E-print Network

    A Unified Model for Hysteresis in Ferroic Materials Ralph C. Smith # , Stefan Seelecke + , Marcelo in hysteretic and nonlinear regimes. Whereas the physical mechanisms which produce hysteresis and constitutive. This unified methodology for quantifying hysteresis and constitutive nonlinearities for a broad class

  18. Instanton Analysis of Hysteresis in the Three-Dimensional Random-Field Ising Model Markus Muller and Alessandro Silva

    E-print Network

    Müller, Markus

    Instanton Analysis of Hysteresis in the Three-Dimensional Random-Field Ising Model Markus Mu hysteresis in the random-field Ising model in 3D. We discuss the disorder dependence of the coercive field Hc, and obtain an analytical description of the smooth part of the hysteresis below and above Hc, by identifying

  19. LLS and FTIR Studies on the Hysteresis in Association and Dissociation of Poly(N-isopropylacrylamide) Chains in Water

    E-print Network

    Wu, Chi

    LLS and FTIR Studies on the Hysteresis in Association and Dissociation of Poly aqueous solutions. There exists a hysteresis in the temperature dependence of the average hydrodynamic. Therefore, the chain contraction is entropy-driven, and the hysteresis can be attributed to these additional

  20. Adaptive feed-forward hysteresis compensation for piezoelectric actuators Arnfinn Aas Eielsen, Jan Tommy Gravdahl, and Kristin Y. Pettersen

    E-print Network

    Gravdahl, Jan Tommy

    Adaptive feed-forward hysteresis compensation for piezoelectric actuators Arnfinn Aas Eielsen, Jan) Adaptive feed-forward hysteresis compensation for piezoelectric actuators Arnfinn Aas Eielsen,a) Jan Tommy. Hysteresis and creep nonlinearities inherent in such actuators deteriorate positioning accuracy. An online

  1. 1096 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 3, MARCH 2006 Analysis and Elimination of Hysteresis and

    E-print Network

    Rutledge, David B.

    and Elimination of Hysteresis and Noisy Precursors in Power Amplifiers Sanggeun Jeon, Student Member, IEEE, the anomalous behavior observed in a Class-E PA is analyzed in detail. It involves hysteresis in the power required the development of a new technique for the elimination of the hysteresis. Instead of a trial

  2. Global Sliding Mode-Based Tracking Control of a Piezo-Driven XY Micropositioning Stage with Unmodeled Hysteresis

    E-print Network

    Li, Yangmin

    with Unmodeled Hysteresis Qingsong Xu and Yangmin Li, Senior Member, IEEE Abstract-- In this paper, a global that the GSMC can reduce the hysteresis to a negligible level and lead to a sub-micron accuracy tracking- driven stages comes from the nonlinearities introduced by PZT attributed to the hysteresis, creep

  3. An Approach to Reduction of Hysteresis in Smart Materials Juan Manuel Cruz-Hernandez and Vincent Hayward

    E-print Network

    Hayward, Vincent

    An Approach to Reduction of Hysteresis in Smart Materials Juan Manuel Cruz-Hernandez and Vincent,haywardg/Home.html Abstract This paper addresses the problem of reducing the hysteresis found in the actuation of most smart with the input. This compen- sation reduces the hysteresis to a single saturation. To show its e ectiveness

  4. A Dynamic Hysteresis Model for THUNDER Transducers Brian L. Ball 1 , Ralph C. Smith 2 and Zoubeida Ounaies 3

    E-print Network

    A Dynamic Hysteresis Model for THUNDER Transducers Brian L. Ball 1 , Ralph C. Smith 2 and Zoubeida to the piezoceramic patch. A free energy based hysteretic stress­strain relation is employed to model hysteresis: THUNDER actuators, displacement model, hysteresis, piezoceramic, transition element, polariza­ tion

  5. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 6, DECEMBER 2003 1165 A New Dynamic Model of Hysteresis

    E-print Network

    of Hysteresis in Harmonic Drives Rached Dhaouadi, Senior Member, IEEE, Fathi H. Ghorbel, Senior Member, IEEE the hysteresis phenomenon in harmonic drives. The ex- perimental observation of the dynamic torque-displacement rela- tionship for a harmonic drive shows a hysteresis characteristic in- dicating the simultaneous

  6. 456 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 14, NO. 4, AUGUST 2009 Disturbance-Observer-Based Hysteresis

    E-print Network

    Yi, Jingang

    -Observer-Based Hysteresis Compensation for Piezoelectric Actuators Jingang Yi, Senior Member, IEEE, Steven Chang, and Yantao Shen, Member, IEEE Abstract--We present a novel hysteresis compensation method for piezoelectric actuators. We consider the hysteresis nonlinearity of the actuator as a disturbance over a linear system

  7. Cosmic string loop shapes

    NASA Astrophysics Data System (ADS)

    Blanco-Pillado, Jose J.; Olum, Ken D.; Shlaer, Benjamin

    2015-09-01

    We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-universe string network. The simulation does not include gravitational backreaction, but we model that process by smoothing the loop using Lorentzian convolution. We find that loops at formation consist of generally straight segments separated by kinks. We do not see cusps or any cusplike structure at the scale of the entire loop, although we do see very small regions of string that move with large Lorentz boosts. However, smoothing of the string almost always introduces two cusps on each loop. The smoothing process does not lead to any significant fragmentation of loops that were in non-self-intersecting trajectories before smoothing.

  8. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors.

    PubMed

    Kim, David K; Lai, Yuming; Vemulkar, Tarun R; Kagan, Cherie R

    2011-12-27

    We report low-hysteresis, ambipolar bottom gold contact, colloidal PbSe nanowire (NW) field-effect transistors (FETs) by chemically modifying the silicon dioxide (SiO(2)) gate dielectric surface to overcome carrier trapping at the NW-gate dielectric interface. While water bound to silanol groups at the SiO(2) surface are believed to give rise to hysteresis in FETs of a wide range of nanoscale materials, we show that dehydration and silanization are insufficient in reducing PbSe NW FET hysteresis. Encapsulating PbSe NW FETs in cured poly(methyl) methacrylate (PMMA), dehydrates and uniquely passivates the SiO(2) surface, to form low-hysteresis FETs. Annealing predominantly p-type ambipolar PbSe NW FETs switches the FET behavior to predominantly n-type ambipolar, both with and without PMMA passivation. Heating the PbSe NW devices desorbs surface bound oxygen, even present in the atmosphere of an inert glovebox. Upon cooling, overtime oxygen readsorption switches the FET polarity to predominantly p-type ambipolar behavior, but PMMA encapsulation maintains low hysteresis. Unfortunately PMMA is sensitive to most solvents and heat treatments and therefore its application for nanostructured material deposition and doping is limited. Seeking a robust, general platform for low-hysteresis FETs we explored a variety of hydroxyl-free substrate surfaces, including silicon nitride, polyimide, and parylene, which show reduced electron trapping, but still large hysteresis. We identified a robust dielectric stack by assembling octadecylphosphonic acid (ODPA) on aluminum oxide (Al(2)O(3)) to form low-hysteresis FETs. We further integrated the ODPA/Al(2)O(3) gate dielectric stack on flexible substrates to demonstrate low-hysteresis, low-voltage FETs, and the promise of these nanostructured materials in flexible, electronic circuitry. PMID:22084980

  9. Implications of NiMH Hysteresis on HEV Battery Testing and Performance

    SciTech Connect

    Motloch, Chester George; Belt, Jeffrey R; Hunt, Gary Lynn; Ashton, Clair Kirkendall; Murphy, Timothy Collins; Miller, Ted J.; Coates, Calvin; Tataria, H. S.; Lucas, Glenn E.; Duong, T.Q.; Barnes, J.A.; Sutula, Raymond

    2002-08-01

    Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented.

  10. Molecular thermal hysteresis in helix-dimer formation of sulfonamidohelicene oligomers in solution.

    PubMed

    Shigeno, Masanori; Kushida, Yo; Yamaguchi, Masahiko

    2013-07-29

    Sulfonamidohelicene oligomers up to the nonamer level were synthesized by the repeated coupling reactions of a building block. A tetramer formed a helix dimer in 1,3-difluorobenzene, which unfolded to a random coil with heating. This structural change exhibited thermal hysteresis in which different thermal responses were observed in the course of temperature increase and decrease. The feature of the hysteresis was examined under different heating/cooling modes, and the mechanisms are discussed on the basis of the population change and the presence of an induction period. A proposal regarding the use of thermal hysteresis for sensing a temperature increase/decrease is also given. PMID:23775763

  11. Hysteresis of thin film IPRTs in the range 100 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Zvizdi?, D.; Šestan, D.

    2013-09-01

    As opposed to SPRTs, the IPRTs succumb to hysteresis when submitted to change of temperature. This uncertainty component, although acknowledged as omnipresent at many other types of sensors (pressure, electrical, magnetic, humidity, etc.) has often been disregarded in their calibration certificates' uncertainty budgets in the past, its determination being costly, time-consuming and not appreciated by customers and manufacturers. In general, hysteresis is a phenomenon that results in a difference in an item's behavior when approached from a different path. Thermal hysteresis results in a difference in resistance at a given temperature based on the thermal history to which the PRTs were exposed. The most prominent factor that contributes to the hysteresis error in an IPRT is a strain within the sensing element caused by the thermal expansion and contraction. The strains that cause hysteresis error are closely related to the strains that cause repeatability error. Therefore, it is typical that PRTs that exhibit small hysteresis also exhibit small repeatability error, and PRTs that exhibit large hysteresis have poor repeatability. Aim of this paper is to provide hysteresis characterization of a batch of IPRTs using the same type of thin-film sensor, encapsulated by same procedure and same company and to estimate to what extent the thermal hysteresis obtained by testing one single thermometer (or few thermometers) can serve as representative of other thermometers of the same type and manufacturer. This investigation should also indicate the range of hysteresis departure between IPRTs of the same type. Hysteresis was determined by cycling IPRTs temperature from 100 °C through intermediate points up to 600 °C and subsequently back to 100 °C. Within that range several typical sub-ranges are investigated: 100 °C to 400 °C, 100 °C to 500 °C, 100 °C to 600 °C, 300 °C to 500 °C and 300 °C to 600 °C . The hysteresis was determined at various temperatures by comparison calibration with SPRT. The results of investigation are presented in a graphical form for all IPRTs, ranges and calibration points.

  12. Implementation and analysis of an innovative digital charge amplifier for hysteresis reduction in piezoelectric stack actuators

    SciTech Connect

    Bazghaleh, Mohsen Grainger, Steven; Cazzolato, Ben; Lu, Tien-Fu; Oskouei, Reza

    2014-04-15

    Smart actuators are the key components in a variety of nanopositioning applications, such as scanning probe microscopes and atomic force microscopes. Piezoelectric actuators are the most common smart actuators due to their high resolution, low power consumption, and wide operating frequency but they suffer hysteresis which affects linearity. In this paper, an innovative digital charge amplifier is presented to reduce hysteresis in piezoelectric stack actuators. Compared to traditional analog charge drives, experimental results show that the piezoelectric stack actuator driven by the digital charge amplifier has less hysteresis. It is also shown that the voltage drop of the digital charge amplifier is significantly less than the voltage drop of conventional analog charge amplifiers.

  13. Stress hysteresis as the cause of persistent holes in particulate suspensions

    NASA Astrophysics Data System (ADS)

    Deegan, Robert D.

    2010-03-01

    Concentrated particulate suspensions under vibrations can support stable, localized, vertically oriented free surfaces. The most robust of these structures are persistent holes: deep and stable depressions of the interface. Using a reduced model of the hydrodynamics we show that a rheology with hysteresis can lead to motion opposite to the time-averaged applied force. Moreover, we show experimentally that particulate suspensions of cornstarch in water exhibits hysteresis in the shear-rate response to an applied sinusoidal stress. The results of our model and our experiments suggest that hysteresis accounts for the outward force needed to support persistent holes.

  14. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich

    2015-01-01

    This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  15. What Controls DNA Looping?

    PubMed Central

    Perez, Pamela J.; Clauvelin, Nicolas; Grosner, Michael A.; Colasanti, Andrew V.; Olson, Wilma K.

    2014-01-01

    The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein—the nonspecific nucleoid protein HU—increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture. PMID:25167135

  16. Detangling extrinsic and intrinsic hysteresis for detecting dynamic switch of electric dipoles using graphene field-effect transistors on ferroelectric gates

    NASA Astrophysics Data System (ADS)

    Ma, Chunrui; Gong, Youpin; Lu, Rongtao; Brown, Emery; Ma, Beihai; Li, Jun; Wu, Judy

    2015-11-01

    A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.08Zr0.52Ti0.48O3 gates (GFET/PLZT-Gate) during a vacuum annealing process developed to systematically remove the polar molecules adsorbed on the GFET channel surface. This allows the extrinsic and intrinsic hysteresis on GFET/PLZT-gate devices to detangle and the detection of the dynamic switch of electric dipoles using GFETs, taking advantage of their high gating efficiency on ferroelectric gate. A model of the charge trapping and pinning mechanism is proposed to successfully explain the transition. In response to pulsed VBG trains of positive, negative, as well as alternating polarities, respectively, the source-drain current ID variation is instantaneous with the response amplitude following the ID-VBG loops measured by DC VBG with consideration of the remnant polarization after a given VBG pulse when the gate electric field exceeds the coercive field of the PLZT. A detection sensitivity of around 212 dipole per ?m2 has been demonstrated at room temperature, suggesting the GFET/ferroelectric-gate devices provide a promising high-sensitivity scheme for uncooled detection of electrical dipole dynamic switch.A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.08Zr0.52Ti0.48O3 gates (GFET/PLZT-Gate) during a vacuum annealing process developed to systematically remove the polar molecules adsorbed on the GFET channel surface. This allows the extrinsic and intrinsic hysteresis on GFET/PLZT-gate devices to detangle and the detection of the dynamic switch of electric dipoles using GFETs, taking advantage of their high gating efficiency on ferroelectric gate. A model of the charge trapping and pinning mechanism is proposed to successfully explain the transition. In response to pulsed VBG trains of positive, negative, as well as alternating polarities, respectively, the source-drain current ID variation is instantaneous with the response amplitude following the ID-VBG loops measured by DC VBG with consideration of the remnant polarization after a given VBG pulse when the gate electric field exceeds the coercive field of the PLZT. A detection sensitivity of around 212 dipole per ?m2 has been demonstrated at room temperature, suggesting the GFET/ferroelectric-gate devices provide a promising high-sensitivity scheme for uncooled detection of electrical dipole dynamic switch. Electronic supplementary information (ESI) available: Description of the dielectric constant and loss of the epitaxial 500 nm PLZT thin films; The current density as function of applied electric voltage measured on a PLZT thin film in parallel-plate capacitor geometry; Schematic diagrams for the electrical dipole alignment and switch in the different ranges of the applied electric field. See DOI: 10.1039/c5nr03491d

  17. Hysteresis and bistability in the direct transition from 1:1 to 2:1 rhythm in periodically driven single ventricular cells

    E-print Network

    Guevara, Michael R.

    Hysteresis and bistability in the direct transition from 1:1 to 2:1 rhythm in periodically driven, demonstrating hysteresis. With the BCL set to a value within the hysteresis range, injection of a single well . Hysteresis between 1:1 and 2:1 rhythms was also seen when the stimulus amplitude, rather than the BCL

  18. Phase-coexistence and thermal hysteresis in samples comprising adventitiously doped MnAs nanocrystals: programming of aggregate properties in magnetostructural nanomaterials.

    PubMed

    Zhang, Yanhua; Regmi, Rajesh; Liu, Yi; Lawes, Gavin; Brock, Stephanie L

    2014-07-22

    Small changes in the synthesis of MnAs nanoparticles lead to materials with distinct behavior. Samples prepared by slow heating to 523 K (type-A) exhibit the characteristic magnetostructural transition from the ferromagnetic hexagonal (?) to the paramagnetic orthorhombic (?) phase of bulk MnAs at Tp = 312 K, whereas those prepared by rapid nucleation at 603 K (type-B) adopt the ? structure at room temperature and exhibit anomalous magnetic properties. The behavior of type-B nanoparticles is due to P-incorporation (up to 3%), attributed to reaction of the solvent (trioctylphosphine oxide). P-incorporation results in a decrease in the unit cell volume (?1%) and shifts Tp below room temperature. Temperature-dependent X-ray diffraction reveals a large region of phase-coexistence, up to 90 K, which may reflect small differences in Tp from particle-to-particle within the nearly monodisperse sample. The large coexistence range coupled to the thermal hysteresis results in process-dependent phase mixtures. As-prepared type-B samples exhibiting the ? structure at room temperature convert to a mixture of ? and ? after the sample has been cooled to 77 K and rewarmed to room temperature. This change is reflected in the magnetic response, which shows an increased moment and a shift in the temperature hysteresis loop after cooling. The proportion of ? present at room temperature can also be augmented by application of an external magnetic field. Both doped (type-B) and undoped (type-A) MnAs nanoparticles show significant thermal hysteresis narrowing relative to their bulk phases, suggesting that formation of nanoparticles may be an effective method to reduce thermal losses in magnetic refrigeration applications. PMID:24893115

  19. Motion of liquid drops on surfaces induced by asymmetric vibration: role of contact angle hysteresis.

    PubMed

    Mettu, Srinivas; Chaudhury, Manoj K

    2011-08-16

    Hysteresis of wetting, like the Coulombic friction at solid/solid interface, impedes the motion of a liquid drop on a surface when subjected to an external field. Here, we present a counterintuitive example, where some amount of hysteresis enables a drop to move on a surface when it is subjected to a periodic but asymmetric vibration. Experiments show that a surface either with a negligible or high hysteresis is not conducive to any drop motion. Some finite hysteresis of contact angle is needed to break the periodic symmetry of the forcing function for the drift to occur. These experimental results are consistent with simulations, in which a drop is approximated as a linear harmonic oscillator. The experiment also sheds light on the effect of the drop size on flow reversal, where drops of different sizes move in opposite directions due to the difference in the phase of the oscillation of their center of mass. PMID:21728326

  20. Hysteresis from Multiscale Porosity: Modeling Water Sorption and Shrinkage in Cement Paste

    E-print Network

    Pinson, Matthew B.

    Cement paste has a complex distribution of pores and molecular-scale spaces. This distribution controls the hysteresis of water sorption isotherms and associated bulk dimensional changes (shrinkage). We focus on two locations ...

  1. Magnetic structure and hysteresis in hard magnetic nanocrystalline film: Computer simulation

    E-print Network

    Laughlin, David E.

    Magnetic structure and hysteresis in hard magnetic nanocrystalline film: Computer simulation simulations are used to study the effect of crystallographic textures on the magnetic properties of uniaxial nanocrystalline films of hard magnetic materials with arbitrary grain shapes and size distributions

  2. Theory of sorption hysteresis in nanoporous solids: Part II Molecular condensation

    E-print Network

    Bazant, Martin Z.

    Motivated by the puzzle of sorption hysteresis in Portland cement concrete or cement paste, we develop in Part II of this study a general theory of vapor sorption and desorption from nanoporous solids, which attributes ...

  3. Theory of sorption hysteresis in nanoporous solids: Part I Snap-through instabilities

    E-print Network

    Bazant, Martin Z.

    The sorption–desorption hysteresis observed in many nanoporous solids, at vapor pressures low enough for the liquid (capillary) phase of the adsorbate to be absent, has long been vaguely attributed to some sort of ‘pore ...

  4. Does Corneal Hysteresis Correlate with Endothelial Cell Density?

    PubMed Central

    Akova-Budak, Berna; K?vanç, Sertaç Argun

    2015-01-01

    Background Our aim was to determine if there is a correlation between corneal biomechanical properties, endothelial cell count, and corneal pachymetry in healthy corneas. Material/Methods Ninety-two eyes of all subjects underwent complete ocular examination, including intraocular pressure measurement by Goldmann applanation tonometer, objective refraction, and slit-lamp biomicroscopy. Topographic measurements and corneal pachymetry were performed using a Scheimpflug-based (Pentacam, Oculus, Germany) corneal topographer. Corneal hysteresis (CH) and corneal resistance factor (CRF) were measured with an Ocular Response Analyzer (ORA, Reichert Ophthalmic Instruments, Buffalo, NY). Endothelial cell count measurement was done using a specular microscope (CellChek, Konan, USA). Results Right eye values of the subjects were taken for the study. The mean CH was 11.5±1.7 mmHg and the mean CRF was 11.2±1.4 mmHg. Mean intraocular pressure was 15.3±2.3 mmHg. The mean endothelial cell count was 2754±205 cells/mm2. No correlation was found between biomechanical properties of cornea and endothelial cell count. There was a significant positive correlation between CH, CRF, and corneal thickness (p<0.001; r=0.79). Conclusions The corneal biomechanical properties significantly correlated with corneal thickness. We found no correlation between CH and CRF with the endothelial cell density in normal subjects. PMID:25994302

  5. The Dynamic Characteristic and Hysteresis Effect of an Air Spring

    NASA Astrophysics Data System (ADS)

    Löcken, F.; Welsch, M.

    2015-02-01

    In many applications of vibration technology, especially in chassis, air springs present a common alternative to steel spring concepts. A design-independent and therefore universal approach is presented to describe the dynamic characteristic of such springs. Differential and constitutive equations based on energy balances of the enclosed volume and the mountings are given to describe the nonlinear and dynamic characteristics. Therefore all parameters can be estimated directly from physical and geometrical properties, without parameter fitting. The numerically solved equations fit very well to measurements of a passenger car air spring. In a second step a simplification of this model leads to a pure mechanical equation. While in principle the same parameters are used, just an empirical correction of the effective heat transfer coefficient is needed to handle some simplification on this topic. Finally, a linearization of this equation leads to an analogous mechanical model that can be assembled from two common spring- and one dashpot elements in a specific arrangement. This transfer into "mechanical language" enables a system description with a simple force-displacement law and a consideration of the nonobvious hysteresis and stiffness increase of an air spring from a mechanical point of view.

  6. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Tomar, Monika; Gupta, Vinay

    2015-03-01

    The influence of Cerium doping on the structural and magnetic properties of BiFeO3 thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi1-xCexFeO3 (BCFO) thin films with x=0-0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x?0.08. All low wavenumber Raman modes (<300 cm-1) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm-1), shows a minor shift. Sudden evolution of Raman mode at 668 cm-1, manifested as A1-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M-H) hysteresis curves with improved saturation magnetization (Ms) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi0.88Ce0.12FeO3 thin film found to exhibit better magnetic properties with Ms=15.9 emu/g without any impure phase.

  7. Hysteresis-based analysis of overland metal transport

    NASA Astrophysics Data System (ADS)

    Mishra, Surendra Kumar; Sansalone, J. J.; Singh, Vijay P.

    2003-06-01

    Introducing a concept of equivalent mass depth of flow, this study describes the phenomenon of non-point source pollutant (metal) transport for pavement (or overland) flow in analogy with wave propagation in wide open channels. Hysteretic and normal mass rating curves are developed for runoff rate and mass of 12 dissolved and particulate-bound metal elements (pollutants) using the rainfall-runoff and water quality data of the 15 × 20 m2 instrumented pavement in Cincinnati, USA. Normal mass rating curves developed for easy computation of pollutant load are found to be of a form similar to Manning's, which is valid for open channel flows. Based on the hysteresis analysis, wave types for dissolution and mixing of particulate-bound metals are identified. The analysis finds that the second-order partial-differential equation normally used for metal transport does not have the efficacy to describe fully the strong non-linear phenomena such as is described for various metal elements by dynamic waves. In addition, the proportionality concept of the popular SCS-CN concept is extended for determining the potential maximum metal mass Mp of all the 12 elements transported by a rain storm and related to the antecedent dry period (ADP). For the primary metal zinc element, Mp is found to increase with the ADP and vice versa.

  8. On growth rate hysteresis and catastrophic crystal growth

    NASA Astrophysics Data System (ADS)

    Ferreira, Cecília; Rocha, Fernando A.; Damas, Ana M.; Martins, Pedro M.

    2013-04-01

    Different crystal growth rates as supersaturation is increasing or decreasing in impure media is a phenomenon called growth rate hysteresis (GRH) that has been observed in varied systems and applications, such as protein crystallization or during biomineralization. We have recently shown that the transient adsorption of impurities onto newly formed active sites for growth (or kinks) is sensitive to the direction and rate of supersaturation variation, thus providing a possible explanation for GRH [6]. In the present contribution, we expand on this concept by deriving the analytical expressions for transient crystal growth based on the energetics of growth hillock formation and kink occupation by impurities. Two types of GRH results are described according to the variation of kink density with supersaturation: for nearly constant density, decreasing or increasing supersaturation induce, respectively, growth promoting or inhibiting effects relative to equilibrium conditions. This is the type of GRH measured by us during the crystallization of egg-white lysozyme. For variable kink density, slight changes in the supersaturation level may induce abrupt variations in the crystal growth rate. Different literature examples of this so-called 'catastrophic' crystal growth are discussed in terms of their fundamental consequences.

  9. Dynamics of periodic anticrossings: Decoherence, pointer states and hysteresis curves

    E-print Network

    Peter Foldi; Mihaly G. Benedict; F. M. Peeters

    2008-02-05

    We consider a strongly driven two-level (spin) system, with a periodic external field that induces a sequence of avoided level crossings. The spin system interacts with a bosonic reservoir which leads to decoherence. A Markovian dynamical equation is introduced without relying on the rotating wave approximation in the system-external field interaction. We show that the time evolution of the two-level system is directed towards an incoherent sum of periodic Floquet states regardless of the initial state and even the type of the coupling to the environment. Analyzing the time scale of approaching these time-dependent pointer states, information can be deduced concerning the nature and strength of the system-environment coupling. The inversion as a function of the external field is usually multi-valued, and the form of these hysteresis curves is qualitatively different for low and high temperatures. For moderate temperatures we found that the series of Landau-Zener-St\\"{u}ckelberg-type transitions still can be used for state preparation, regardless of the decoherence rate. Possible applications include quantum information processing and molecular nanomagnets.

  10. Coexistence of phase transitions and hysteresis near BEC

    E-print Network

    M. Männel; K. Morawetz; P. Lipavský

    2013-05-22

    Multiple phases occurring in a Bose gas with finite-range interaction are investigated. In the vicinity of the onset of Bose-Einstein condensation (BEC) the chemical potential and the pressure show a van-der-Waals like behavior indicating a first-order phase transition although there is no long-range attraction. Furthermore the equation of state becomes multivalued near the BEC transition. For a Hartree-Fock or Popov (Hartree-Fock-Bogoliubov) approximation such a multivalued region can be avoided by the Maxwell construction. For sufficiently weak interaction the multivalued region can also be removed using a many-body \\mbox{T-matrix} approximation. However, for strong interactions there remains a multivalued region even for the \\mbox{T-matrix} approximation and after the Maxwell construction, what is interpreted as a density hysteresis. This unified treatment of normal and condensed phases becomes possible due to the recently found scheme to eliminate self-interaction in the \\mbox{T-matrix} approximation, which allows to calculate properties below and above the critical temperature.

  11. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  12. Hysteresis phenomenon of the field emission from carbon nanotube/polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Filippov, S. V.; Popov, E. O.; Kolosko, A. G.; Romanov, P. A.

    2015-11-01

    Using the high voltage scanning method and the technique of multichannel recording and processing of field emission (FE) characteristics in real time mode we found out some subtle effects on current voltage characteristics (IVC) of the multi-tip field emitters. We observed the direct and reverse hysteresis simultaneously in the same field emission experiment. Dependence of the form of IVC hysteresis on time of high voltage scanning was observed.

  13. Multiprotein DNA Looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2006-06-01

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  14. Multiprotein DNA looping

    E-print Network

    Jose M. G. Vilar; Leonor Saiz

    2006-06-19

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switch-like transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  15. Hysteresis Effects and Strain-Induced Homogeneity Effects in Base Metal Thermocouples

    NASA Astrophysics Data System (ADS)

    Pavlasek, P.; Elliott, C. J.; Pearce, J. V.; Duris, S.; Palencar, R.; Koval, M.; Machin, G.

    2015-03-01

    Thermocouples are used in a wide variety of industrial applications in which they play an important role for temperature control and monitoring. Wire inhomogeneity and hysteresis effects are major sources of uncertainty in thermocouple measurements. To efficiently mitigate these effects, it is first necessary to explore the impact of strain-induced inhomogeneities and hysteresis, and their contribution to the uncertainty. This article investigates homogeneity and hysteresis effects in Types N and K mineral-insulated metal-sheathed (MIMS) thermocouples. Homogeneity of thermocouple wires is known to change when mechanical strain is experienced by the thermoelements. To test this influence, bends of increasingly small radii, typical in industrial applications, were made to a number of thermocouples with different sheath diameters. The change in homogeneity was determined through controlled immersion of the thermocouple into an isothermal liquid oil bath at and was found to be very small at for Type K thermocouples, with no measureable change in Type N thermocouples found. An experiment to determine the hysteresis effect in thermocouples was performed on swaged, MIMS Type N and Type K thermocouples, in the temperature range from to . The hysteresis measurements presented simulate the conditions that thermocouples may be exposed to in industrial applications through continuous cycling over 136 h. During this exposure, a characteristic drift from the reference function has been observed but no considerable difference between the heating and cooling measurements was measureable. The measured differences were within the measurement uncertainties; therefore, no hysteresis was observed.

  16. Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis

    E-print Network

    Jitesh Barman; Arun Kumar Nagarajan; Krishnacharya Khare

    2015-07-09

    Low voltage electrowetting on dielectrics on substrates with thin layer of lubricating fluid to reduce contact angle hysteresis is reported here. On smooth and homogeneous solid surfaces, it is extremely difficult to reduce contact angle hysteresis (contact angle difference between advancing and receding drop volume cycle) and the electrowetting hysteresis (contact angle difference between advancing and receding voltage cycle) below 10{\\deg}. On the other hand, electrowetting hysteresis on rough surfaces can be relatively large (>30{\\deg}) therefore they are of no use for most of the fluidic devices. In the present report we demonstrate that using a thin layer of dielectric lubricating fluid on top of the solid dielectric surface results in drastic reduction in contact angle hysteresis as well as electrowetting hysteresis (electrowetting equation to the experimental electrowetting data reveal that the dielectric lubricating fluid layer is only responsible for smooth movement of the three phase contact line of the liquid drop and does not affect the effective specific capacitance of the system.

  17. Hysteresis from Multiscale Porosity: Modeling Water Sorption and Shrinkage in Cement Paste

    NASA Astrophysics Data System (ADS)

    Pinson, Matthew B.; Masoero, Enrico; Bonnaud, Patrick A.; Manzano, Hegoi; Ji, Qing; Yip, Sidney; Thomas, Jeffrey J.; Bazant, Martin Z.; Van Vliet, Krystyn J.; Jennings, Hamlin M.

    2015-06-01

    Cement paste has a complex distribution of pores and molecular-scale spaces. This distribution controls the hysteresis of water sorption isotherms and associated bulk dimensional changes (shrinkage). We focus on two locations of evaporable water within the fine structure of pastes, each having unique properties, and we present applied physics models that capture the hysteresis by dividing drying and rewetting into two related regimes based on relative humidity (RH). We show that a continuum model, incorporating a pore-blocking mechanism for desorption and equilibrium thermodynamics for adsorption, explains well the sorption hysteresis for a paste that remains above approximately 20% RH. In addition, we show with molecular models and experiments that water in spaces of ?1 nm width evaporates below approximately 20% RH but reenters throughout the entire RH range. This water is responsible for a drying shrinkage hysteresis similar to that of clays but opposite in direction to typical mesoporous glass. Combining the models of these two regimes allows the entire drying and rewetting hysteresis to be reproduced accurately and provides parameters to predict the corresponding dimensional changes. The resulting model can improve the engineering predictions of long-term drying shrinkage accounting also for the history dependence of strain induced by hysteresis. Alternative strategies for quantitative analyses of the microstructure of cement paste based on this mesoscale physical model of water content within porous spaces are discussed.

  18. Effect of hysteresis on the stability of an embankment under transient seepage

    NASA Astrophysics Data System (ADS)

    Liu, K.; Vardon, P. J.; Arnold, P.; Hicks, M. A.

    2015-09-01

    Hysteresis is a well-known phenomenon that exists in the soil water retention behaviour of unsaturated soils. However, there is little research on the effects of hysteresis on slope stability. If included in slope stability analyses, commonly the suction in the unsaturated zone is taken as non-hysteretic. In this paper, the authors investigate the effect of hysteresis on the stability of an embankment under transient seepage. A scenario of water level fluctuation has been assessed, in which a cyclic external water level fluctuates between a low and high level. It was found that the factor of safety (FOS), the volumetric water content and the suction in the unsaturated zone are significantly affected by hysteresis. It was also found that, when the period of water level fluctuation in one cycle is relatively small, there is little difference in the FOS between the hysteretic case and non-hysteretic case. However, when the period exceeds a certain threshold value, significant differences between these two cases can be observed. Compared to the case in which hysteresis is considered, the FOS is higher in the case which does not consider hysteresis. This suggests that the non-hysteretic case may overestimate slope stability, leading to a potentially dangerous situation. Moreover, the period under which there emerge large differences between the hysteretic and non-hysteretic case is strongly related to the magnitude of hydraulic conductivity and the period of the cyclic water level fluctuation.

  19. Power-laws in the dynamic hysteresis of quantum nonlinear photonic resonators

    E-print Network

    W. Casteels; F. Storme; A. Le Boité; C. Ciuti

    2015-09-07

    We explore theoretically the physics of dynamic hysteresis for driven-dissipative nonlinear photon resonators. In the regime where the semiclassical mean-field theory predicts bistability, the exact steady-state density matrix is known to be unique, being a statistical mixture of two states: in particular, no static hysteresis cycle of the excited population occurs as a function of the driving intensity. Here, we predict that in the quantum regime a {\\it dynamic} hysteresis with a rich phenomenology does appear when sweeping the driving amplitude in a finite time. The hysteresis area as a function of the sweep time reveals a power-law decay with an universal exponent, with a behavior qualitatively different from the mean-field predictions. The dynamic hysteresis power-law defines a characteristic time, which depends dramatically on the size of the nonlinearity and on the frequency detuning between the driving and the resonator. In the strong nonlinearity regime, the characteristic time oscillates as a function of the intrinsic system parameters due to multiphotonic resonances. We also consider the case of two coupled driven-dissipative nonlinear resonators, showing that dynamic hysteresis and power-law behavior occur also in presence of correlations between the resonators. Our theoretical predictions can be explored in a broad variety of physical systems, e.g., circuit QED superconducting resonators and semiconductor optical microcavities.

  20. Elastic Instabilities of Polymer Solutions in Cross-Channel Flow P. E. Arratia,1,2

    E-print Network

    Gollub, Jerry P.

    Elastic Instabilities of Polymer Solutions in Cross-Channel Flow P. E. Arratia,1,2 C. C. Thomas,1 J a cellular instability of a non-Newtonian fluid in Taylor-Couette flows, analogous to the classical Taylor- Couette instability of Newtonian fluids, but at very low Reynolds (Taylor) numbers. Later, Larson, Shaqfeh

  1. A p p e n d i x J Media, Nutrition,

    E-print Network

    Rau, Don C.

    J­1 j A p p e n d i x J Media, Nutrition, and Physical Activity Resources The following resources these organizations or their positions. #12;Appendix J--Media, Nutrition, and Physical Activity ResourcesJ­2 Nameand Nutrition Focus Calcium Focus Media Info ActionforHealthyKids http://www. actionforhealthykids.org/ (800

  2. Carex opaca (Hermann) P.E. Pothrock & Reznicek (CYPERACEAE) new to North Carolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carex opaca (F. J. Hermann) P.E. Rothrock & Reznicek (CYPERACEAE) is reported from two sites in North Carolina. These are the first records of C. opaca from North Carolina and represent easternmost stations for this species in the United States. Previously C. opaca was known from Arkansas, Illino...

  3. Use of Hydrogen Peroxide in Finfish Aquaculture1 Roy P. E. Yanong2

    E-print Network

    Hill, Jeffrey E.

    FA157 Use of Hydrogen Peroxide in Finfish Aquaculture1 Roy P. E. Yanong2 1. This document is FA157/IFAS Extension. Introduction Hydrogen peroxide is commonly used as a disinfectant for cleaning wounds in people. Hydrogen peroxide has also been used in aquaculture as an immersion (bath) treatment against many different

  4. SIMON FRASER UNIVERSITY & C.U.P.E., LOCAL 3338 WEIGHTED JOB QUESTIONNAIRE (WJQ) CUSTOM

    E-print Network

    Chauve, Cedric

    SIMON FRASER UNIVERSITY & C.U.P.E., LOCAL 3338 WEIGHTED JOB QUESTIONNAIRE (WJQ) CUSTOM PART 1: JOB Review: --------------------- Part 1 is being completed by: Employee Evaluating Supervisor 2. POSITION. Receives and reports on all research contracts/grants. Performs overall reconciliation and provides

  5. Page 1 of 8 SIMON FRASER UNIVERSITY & C.U.P.E., LOCAL 3338

    E-print Network

    Page 1 of 8 SIMON FRASER UNIVERSITY & C.U.P.E., LOCAL 3338 WEIGHTED JOB QUESTIONNAIRE (WJQ) CUSTOM PART 1: JOB DESCRIPTION 1. POSITION IDENTIFICATION FOR USE BY HUMAN RESOURCES Department Name: SFU Completed: May 14, 2008 Next Review: --- Part 1 is being completed by: Employee (Double click on box

  6. Updated February 9, 2011 Audra N. Morse, Ph.D., P.E.

    E-print Network

    Chen, Xinzhong

    Updated February 9, 2011 Audra N. Morse, Ph.D., P.E. Curriculum Vita Contact Information Dept 41023 audra.n.morse@ ttu.edu Lubbock, TX 79409-1023 Education Ph.D. Civil Engineering May, 2003 Texas of Education and Psychology, May 12, 2007 Research Experience Research Grants Morse, A. and Jackson, W. SBIR

  7. A p p e n d i x D Sample Permission

    E-print Network

    Rau, Don C.

    D­1 A p p e n d i x D Sample Permission Forms This appendix provides sample permission forms of ___________ at _____________________________ on the following day(s) of the week: _________________. We invite your child to participate. Media-Smart Youth: Eat your child will participate in Media-Smart Youth and encourage you to ask your child about workshop

  8. Manipulation of vortices by magnetic domain walls P. E. Goa,a)

    E-print Network

    Johansen, Tom Henning

    Manipulation of vortices by magnetic domain walls P. E. Goa,a) H. Hauglin, A° . A. F. Olsen, D simultaneous manipulation and imaging of individual vortices in a NbSe2 single crystal. The magnetic field from a Bloch wall in a ferrite garnet film FGF is used to manipulate the vortices. High-resolution magneto

  9. LANDSLIDE STABILIZATION USING GEOFOAM G. MANN, P. E., President, Creative Engineering Options, Inc., 5418 159th

    E-print Network

    LANDSLIDE STABILIZATION USING GEOFOAM G. MANN, P. E., President, Creative Engineering Options, Inc describes a landslide that utilizes geofoam and involves a single family residence near Seattle, Washington. Historically this western slope experienced several landslide events. This activity has slowly dragged soil

  10. S P E C T R U M | 1 FacilitiesPA G E 2

    E-print Network

    Tsymbal, Evgeny Y.

    The Rube Goldberg ribbon-cutting device designed by Jayme Cox. #12;S P E C T R U M | 3 down menu as a scientist. A highlight of the dedication was the ribbon-cutting ceremony. A very elaborate Rube Goldberg

  11. 3D Engineered Models for Highway Construction Gabe Nelson, P.E.

    E-print Network

    3D Engineered Models for Highway Construction Gabe Nelson, P.E. Snyder & Associates, Inc. Overview of 3D Engineered Models for Highway Construction Module 1 Introduction #12;3D Engineered Models & Quality ­ Protect the Environment · Every Day Counts 2 included 3D Engineered Models for Construction

  12. P.E.E.R.: Dickinson College's Summer Gown/Town Program for Elementary Children.

    ERIC Educational Resources Information Center

    Boytim, James A.

    Dickinson College has operated the Program for Education, Enrichment, and Recreation (P.E.E.R.) for 66 children ages 7-11 since 1968. The program operates for an 8-week summer session for elementary school children who may benefit from a supervised, structured, small group experience. Swimming instruction is provided along with other sports, arts…

  13. SANJIV GOKHALE, PH. D., P.E., F.ASCE Professor, Civil and Environmental Engineering

    E-print Network

    SANJIV GOKHALE, PH. D., P.E., F.ASCE Professor, Civil and Environmental Engineering Vanderbilt.gokhale@vanderbilt.edu EDUCATION Ph. D. in Civil Engineering Columbia University, 1991 M. Phil. in Applied Mathematics, Columbia University, 1990 M. S. in Civil Engineering, Vanderbilt University, 1984 B. S. in Civil Engineering, Indian

  14. 77 FR 43873 - P.E. Partners III, LLC, et al.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... COMMISSION P.E. Partners III, LLC, et al.; Notice of Application July 20, 2012. AGENCY: Securities and... 6(e) of the Investment Company Act of 1940 (the ``Act'') granting an exemption from all provisions..., sections 30(a), (b), (e), and (h) of the Act and the Rules and Regulations and rule 38a-1 under the...

  15. TEXAS TECH UNIVERSITY CLIFFORD B. FEDLER, Ph.D., P.E.

    E-print Network

    Chen, Xinzhong

    on Soil Chemical Properties. Water, Air, & Soil Pollution, 211(1-4), 165-176. Duan, R. and C.B. FedlerTEXAS TECH UNIVERSITY CLIFFORD B. FEDLER, Ph.D., P.E. Education: 1985 UNIVERSITY OF ILLINOIS Engineering, Texas Tech University ASSOCIATE PROFESSOR - Sept 1991 to Sept 1997 - Department of Civil

  16. Use of Antibiotics in Ornamental Fish Aquaculture1 Roy P. E. Yanong2

    E-print Network

    Hill, Jeffrey E.

    Cir 84 Use of Antibiotics in Ornamental Fish Aquaculture1 Roy P. E. Yanong2 1. This document of County Commissioners Cooperating. Nick T. Place , Dean Introduction Antibiotics are very useful additions of antibiotics to help eliminate a fish disease depends on a number of factors: 1) Does the problem actually have

  17. Use of Vaccines in Finfish Aquaculture1 Roy P. E. Yanong2

    E-print Network

    Hill, Jeffrey E.

    FA156 Use of Vaccines in Finfish Aquaculture1 Roy P. E. Yanong2 1. This document is FA156, one used in other animal industries are vaccines and immunostimulants. Both approaches have been used. This publication will address vaccine use; immunostimulants will be discussed in another publication. What

  18. Page 1 of 7 SIMON FRASER UNIVERSITY & C.U.P.E., LOCAL 3338

    E-print Network

    to the Service Desk Manager, the Service Desk Technician provides comprehensive customer service and maintains and technology equipment bookings. Provides comprehensive customer service by keeping users informed via multiplePage 1 of 7 SIMON FRASER UNIVERSITY & C.U.P.E., LOCAL 3338 WEIGHTED JOB QUESTIONNAIRE (WJQ) CUSTOM

  19. Task-parallel global optimization with application to protein folding C. Voglis, P. E. Hadjidoukas,

    E-print Network

    Dimakopoulos, Vassilios

    Task-parallel global optimization with application to protein folding C. Voglis, P. E. Hadjidoukas a software framework for high perfor- mance numerical global optimization. At the core, a run- time library, we extract and exploit the multilevel parallelism of a global optimization application that is based

  20. MARIO G. BERUVIDES, Ph.D., P.E. AT&T Professor of Industrial Engineering

    E-print Network

    Gelfond, Michael

    of Defense, $109,441, October 2011 (M. Beruvides and J. Simonton) "Problem Solving Using SixMARIO G. BERUVIDES, Ph.D., P.E. AT&T Professor of Industrial Engineering Director of the Laboratory for Systems Solutions Department of Industrial Engineering Texas Tech University Lubbock, TX 79409-3061 Tel