Science.gov

Sample records for p-e hysteresis loop

  1. PC Based Pulsed Field Hysteresis Loop Tracer

    NASA Astrophysics Data System (ADS)

    Likhite, S. D.; Likhite, Prachi; Radha, S.

    2011-07-01

    The present paper describes the design and setting up of a PC based hysteresis loop tracer that enables quick characterization of magnetic materials at room temperature. A high magnetic field is generated in a solenoid by passing a pulse current of sinusoidal shape at an interval slow enough to produce minimum heating in the solenoid. A pickup coil system is kept in the solenoid to detect field and magnetization signal of a sample placed in the pickup coil. These transitory analog signals are converted into digital signals by a micro-controller integrated circuit. These digital signals are sent to a computer through a serial port. A software has been developed to interface the system to the PC and processing the data to calculate hysteresis parameters like saturation magnetization Ms, coercivity Hc and remanence Mr followed by plotting of the hysteresis loop. The data and graphs can be printed or stored as files. The sample holder is designed for samples in powder or pellet form. The data acquired for some standard magnetic samples are presented.

  2. Influence of interfacial dislocations on hysteresis loops of ferroelectric films

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Hu, S. Y.; Choudhury, S.; Baskes, M. I.; Saxena, A.; Lookman, T.; Jia, Q. X.; Schlom, D. G.; Chen, L. Q.

    2008-11-01

    We investigated the influence of dislocations, located at the interface of a ferroelectric film and its underlying substrate, on the ferroelectric hysteresis loop including the remanent polarization and coercive field using phase-field simulations. We considered epitaxial ferroelectric BaTiO3 films and found that the hysteresis loop is strongly dependent on the type and density of interfacial dislocations. The dislocations that stabilize multiple ferroelectric variants and domains reduce the coercive field, and consequently, the corresponding remanent polarization also decreases.

  3. Understanding the Hysteresis Loop Conundrum in Pharmacokinetic / Pharmacodynamic Relationships

    PubMed Central

    Louizos, Christopher; Yáñez, Jaime A.; Forrest, Laird; Davies, Neal M.

    2015-01-01

    Hysteresis loops are phenomena that sometimes are encountered in the analysis of pharmacokinetic and pharmacodynamic relationships spanning from pre-clinical to clinical studies. When hysteresis occurs it provides insight into the complexity of drug action and disposition that can be encountered. Hysteresis loops suggest that the relationship between drug concentration and the effect being measured is not a simple direct relationship, but may have an inherent time delay and disequilibrium, which may be the result of metabolites, the consequence of changes in pharmacodynamics or the use of a non-specific assay or may involve an indirect relationship. Counter-clockwise hysteresis has been generally defined as the process in which effect can increase with time for a given drug concentration, while in the case of clockwise hysteresis the measured effect decreases with time for a given drug concentration. Hysteresis loops can occur as a consequence of a number of different pharmacokinetic and pharmacodynamic mechanisms including tolerance, distributional delay, feedback regulation, input and output rate changes, agonistic or antagonistic active metabolites, uptake into active site, slow receptor kinetics, delayed or modified activity, time-dependent protein binding and the use of racemic drugs among other factors. In this review, each of these various causes of hysteresis loops are discussed, with incorporation of relevant examples of drugs demonstrating these relationships for illustrative purposes. Furthermore, the effect that pharmaceutical formulation has on the occurrence and potential change in direction of the hysteresis loop, and the major pharmacokinetic / pharmacodynamic modeling approaches utilized to collapse and model hysteresis are detailed. PMID:24735761

  4. Completely inverted hysteresis loops: Inhomogeneity effects or experimental artifacts

    SciTech Connect

    Song, C. Cui, B.; Pan, F.; Yu, H. Y.

    2013-11-14

    Completely inverted hysteresis loops (IHL) are obtained by the superconducting quantum interference device with large cooling fields (>10 kOe) in (La,Sr)MnO{sub 3} films with self-assembled LaSrMnO{sub 4}, an antiferromagnetic interface. Although the behaviours of measured loops show many features characteristic to the IHL, its origin, however, is not due to the exchange coupling between (La,Sr)MnO{sub 3}/LaSrMnO{sub 4}, an often accepted view on IHL. Instead, we demonstrate that the negative remanence arises from the hysteresis of superconducting coils, which drops abruptly when lower cooling fields are utilized. Hence the completely inverted hysteresis loops are experimental artifacts rather than previously proposed inhomogeneity effects in complicated materials.

  5. Dielectric Hysteresis Loop in Alicyclic and Aromatic Polyamides

    NASA Astrophysics Data System (ADS)

    Murata, Yukinobu; Tsunashima, Kenji; Koizumi, Naokazu

    1994-03-01

    The relationship between electric displacement D and electric field E was studied for alicyclic polyamides of 1,3-bis(aminomethyl)cyclohexane and adipic, pimelic and sebacic acids, an aromatic polyamide prepared from hexamethylenediamine (HMD) and isophthalic acid and a copolyamide of HMD with isophthalic and terephthalic acids. Quenched samples of these polyamides were poorly crystalline or amorphous and exhibited a D-E hysteresis loop with the remanent polarization of 26 to 38 mC·m-2. The remanent polarizations disappeared at the glass transition temperature of each sample. The origin of the D-E hysteresis loop is attributable to amide groups in amorphous regions.

  6. Asymmetric hysteresis loops of systems of bistable nanoscopic wires.

    PubMed

    Tomkowicz, J; González, J; Kułakowski, K

    2012-06-01

    A system of bistable magnetic nanowires of diameter D = 57 nm, length L = 115 nm, magnetization M = 370 emu/cm3 is simulated. The probability distribution of the switching fields of the wires is Gaussian, with mean Hs = 710 Oe and standard deviation u(Hs) = 105 Oe. The wires are randomly distributed on a plane, with directions parallel (OX) or perpendicular (OY) to the axis direction where the magnetic field is applied. The magnetostatic interaction between the wires leads to an asymmetry of the hysteresis loop of the system. Namely, we obtain different curves M(H) for ascending and descending magnetic field. This behaviour is due to the wires which are perpendicular to the applied magnetic field. The directions of their magnetic moments remain often unchanged during the hysteresis experiment, and their contribution to the magnetic moment measured along OX is equal to zero. However, they interact with the wires parallel to the field, and this interaction influences the magnetic state of the parallel wires. The effect can be useful when we are interested in tailoring the shape of the hysteresis loop. Also, a given magnetic configuration of the wires parallel to OY produces a unique asymmetry of the hysteresis loop of the wires parallel to OX. Once an additional field is applied along OY, this unique state is destroyed. The effect can be useful for safety systems. PMID:22905544

  7. Loading-unloading hysteresis loop of randomly rough adhesive contacts

    NASA Astrophysics Data System (ADS)

    Carbone, Giuseppe; Pierro, Elena; Recchia, Giuseppina

    2015-12-01

    We investigate the loading and unloading behavior of soft solids in adhesive contact with randomly rough profiles. The roughness is assumed to be described by a self-affine fractal on a limited range of wave vectors. A spectral method is exploited to generate such randomly rough surfaces. The results are statistically averaged, and the calculated contact area and applied load are shown as a function of the penetration, for loading and unloading conditions. We found that the combination of adhesion forces and roughness leads to a hysteresis loading-unloading loop. This shows that energy can be lost simply as a consequence of roughness and van der Waals forces, as in this case a large number of local energy minima exist and the system may be trapped in metastable states. We numerically quantify the hysteretic loss and assess the influence of the surface statistical properties and the energy of adhesion on the hysteresis process.

  8. Constant rate of change of magnetization hysteresis loop tracer

    NASA Astrophysics Data System (ADS)

    Cammarano, R.; Street, R.; McCormick, P. G.; Evans, M. E.

    1991-04-01

    An experimental procedure has been developed by which magnetization curves may be traversed at a constant rate of change of magnetic polarization, J˙. The new technique involves, in an iterative procedure, the use of a combination of closed- and open-loop digital strategies to control the magnetic field so that J˙ remains constant over the majority of the hysteresis loop. As an application of the effectiveness of the technique, results obtained using Alnico permanent magnet materials are presented. The limitations of this method are reviewed in relation to material properties and the type of measurement system utilized. The consequences of using a digital control system and digital measurement techniques in the characterization of magnetic materials are discussed.

  9. Modeling of hysteresis loops by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Nehme, Z.; Labaye, Y.; Sayed Hassan, R.; Yaacoub, N.; Greneche, J. M.

    2015-12-01

    Recent advances in MC simulations of magnetic properties are rather devoted to non-interacting systems or ultrafast phenomena, while the modeling of quasi-static hysteresis loops of an assembly of spins with strong internal exchange interactions remains limited to specific cases. In the case of any assembly of magnetic moments, we propose MC simulations on the basis of a three dimensional classical Heisenberg model applied to an isolated magnetic slab involving first nearest neighbors exchange interactions and uniaxial anisotropy. Three different algorithms were successively implemented in order to simulate hysteresis loops: the classical free algorithm, the cone algorithm and a mixed one consisting of adding some global rotations. We focus particularly our study on the impact of varying the anisotropic constant parameter on the coercive field for different temperatures and algorithms. A study of the angular acceptation move distribution allows the dynamics of our simulations to be characterized. The results reveal that the coercive field is linearly related to the anisotropy providing that the algorithm and the numeric conditions are carefully chosen. In a general tendency, it is found that the efficiency of the simulation can be greatly enhanced by using the mixed algorithm that mimic the physics of collective behavior. Consequently, this study lead as to better quantified coercive fields measurements resulting from physical phenomena of complex magnetic (nano)architectures with different anisotropy contributions.

  10. Cumulative growth of minor hysteresis loops in the Kolmogorov model

    SciTech Connect

    Meilikhov, E. Z. Farzetdinova, R. M.

    2013-01-15

    The phenomenon of nonrepeatability of successive remagnetization cycles in Co/M (M = Pt, Pd, Au) multilayer film structures is explained in the framework of the Kolmogorov crystallization model. It is shown that this model of phase transitions can be adapted so as to adequately describe the process of magnetic relaxation in the indicated systems with 'memory.' For this purpose, it is necessary to introduce some additional elements into the model, in particular, (i) to take into account the fact that every cycle starts from a state 'inherited' from the preceding cycle and (ii) to assume that the rate of growth of a new magnetic phase depends on the cycle number. This modified model provides a quite satisfactory qualitative and quantitative description of all features of successive magnetic relaxation cycles in the system under consideration, including the surprising phenomenon of cumulative growth of minor hysteresis loops.

  11. Exchange Springs and Hysteresis Loop - An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Braun, Hans-Benjamin; Bill, Andreas

    2002-03-01

    Exchange springs (soft FM/hard FM bilayer) are nowadays implemented as basic elements in magnetic recording heads and magnetic random access memories (MRAM). However, it remains a challenge to describe accurately their physics. We present analytical expressions for the magnetization profile of an exchange spring with arbitrary layer thicknesses and material parameters (exchange coupling and anisotropy). This allows us to analyze in detail the mechanisms governing magnetization reversal under an external field. In particular, we show how the interface coupling induces a twist of the hard layer well below its intrinsic reversal field, in agreement with recent experimental observations. We describe in detail the reversible and irreversible parts of the hysteresis loop and identify the barrier between different magnetization states. This allows us to discuss the effect of thermal fluctuations on the magnetization reversal process. Finally, we find a crossover between power-law and exponential behaviour of the coercivity as a function of layer thickness and material parameters.

  12. Magnetic biasing of a ferroelectric hysteresis loop in a multiferroic orthoferrite.

    PubMed

    Tokunaga, Y; Taguchi, Y; Arima, T; Tokura, Y

    2014-01-24

    In a multiferroic orthoferrite Dy0.7Tb0.3FeO3, which shows electric-field-(E-)driven magnetization (M) reversal due to a tight clamping between polarization (P) and M, a gigantic effect of magnetic-field (H) biasing on P-E hysteresis loops is observed in the case of rapid E sweeping. The magnitude of the bias E field can be controlled by varying the magnitude of H, and its sign can be reversed by changing the sign of H or the relative clamping direction between P and M. The origin of this unconventional biasing effect is ascribed to the difference in the Zeeman energy between the +P and -P states coupled with the M states with opposite sign. PMID:24484164

  13. Modeling of the interleaved hysteresis loop in the measurements of rotational core losses

    NASA Astrophysics Data System (ADS)

    Alatawneh, Natheer; Pillay, Pragasen

    2016-01-01

    The measurement of core losses in machine laminations reveals a fundamental difference between rotational and pulsating types. Rotational core losses under rotating fields decrease at high flux density, while pulsating losses keep increasing steadily. Experimental analyses of loss components Px and Py in x and y directions with rotating fields show that the loss decreases in one loss component and sometimes attains negative values. Tracking the evolution of hysteresis loops along this loss component discloses a peculiar behavior of magnetic hysteresis, where the loop changes its path from counterclockwise to clockwise within a cycle of magnetization process, the so called interleaved hysteresis loop. This paper highlights a successful procedure for modeling the interleaved hysteresis loop in the measurement of rotational core losses in electrical machine laminations using the generalized Prandtl-Ishlinskii (PI) model. The efficiency of the proposed model is compared to Preisach model. Results and conclusion of this work are of importance toward building an accurate model of rotational core losses.

  14. Ac hysteresis loop measurement of stator-tooth in induction motor

    SciTech Connect

    Son, D.

    1999-09-01

    The properties of ac hysteresis loop of a stator tooth in a 5 hp induction motor was measured and analyzed. The load increase on the motor decreased magnetic induction, however increase the minor hysteresis loops in the high induction region. This effect caused increase in the core loss. Depending on condition of the motor, the core loss of the stator tooth can be 50% greater than the core loss under sinusoidal magnetic induction waveform.

  15. Material Data Representation of Hysteresis Loops for Hastelloy X Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Alam, Javed; Berke, Laszlo; Murthy, Pappu L. N.

    1993-01-01

    The artificial neural network (ANN) model proposed by Rumelhart, Hinton, and Williams is applied to develop a functional approximation of material data in the form of hysteresis loops from a nickel-base superalloy, Hastelloy X. Several different ANN configurations are used to model hysteresis loops at different cycles for this alloy. The ANN models were successful in reproducing the hysteresis loops used for its training. However, because of sharp bends at the two ends of hysteresis loops, a drift occurs at the corners of the loops where loading changes to unloading and vice versa (the sharp bends occurred when the stress-strain curves were reproduced by adding stress increments to the preceding values of the stresses). Therefore, it is possible only to reproduce half of the loading path. The generalization capability of the network was tested by using additional data for two other hysteresis loops at different cycles. The results were in good agreement. Also, the use of ANN led to a data compression ratio of approximately 22:1.

  16. Study of the fast photoswitching of spin crossover nanoparticles outside and inside their thermal hysteresis loop

    SciTech Connect

    Galle, G.; Degert, J.; Freysz, E.; Etrillard, C.; Letard, J.-F.; Guillaume, F.

    2013-02-11

    We have studied the low spin to high spin phase transition induced by nanosecond laser pulses outside and within the thermal hysteresis loop of the [Fe(Htrz){sub 2} trz](BF{sub 4}){sub 2}-H{sub 2}O spin crossover nanoparticles. We demonstrate that, whatever the temperature of the compound, the photo-switching is achieved in less than 12.5 ns. Outside the hysteresis loop, the photo-induced high spin state remains up to 100 {mu}s and then relaxes. Within the thermal hysteresis loop, the photo-induced high spin state remains as long as the temperature of the sample is kept within the thermal loop. A Raman study indicates that the photo-switching can be completed using single laser pulse excitation.

  17. Scaling Behavior of Barkhausen Avalanches along the Hysteresis loop in Nucleation-Mediated Magnetization Reversal Process

    SciTech Connect

    Im, Mi-Young; Fischer, Peter; Kim, D.-H.; Shin, S.-C.

    2008-10-14

    We report the scaling behavior of Barkhausen avalanches for every small field step along the hysteresis loop in CoCrPt alloy film having perpendicular magnetic anisotropy. Individual Barkhausen avalanche is directly observed utilizing a high-resolution soft X-ray microscopy that provides real space images with a spatial resolution of 15 nm. Barkhausen avalanches are found to exhibit power-law scaling behavior at all field steps along the hysteresis loop, despite their different patterns for each field step. Surprisingly, the scaling exponent of the power-law distribution of Barkhausen avalanches is abruptly altered from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the field step is close to the coercive field. The contribution of coupling among adjacent domains to Barkhausen avalanche process affects the sudden change of the scaling behavior observed at the coercivity-field region on the hysteresis loop of CoCrPt alloy film.

  18. Non centered minor hysteresis loops evaluation based on exponential parameters transforms of the modified inverse Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Hamimid, M.; Mimoune, S. M.; Feliachi, M.; Atallah, K.

    2014-10-01

    In this present work, a non centered minor hysteresis loops evaluation is performed using the exponential transforms (ET) of the modified inverse Jiles-Atherton model parameters. This model improves the non centered minor hysteresis loops representation. The parameters of the non centered minor hysteresis loops are obtained from exponential expressions related to the major ones. The parameters of minor loops are obtained by identification using the stochastic optimization method “simulated annealing”. The four parameters of JA model (a,α, k and c) obtained by this transformation are applied only in both ascending and descending branches of the non centered minor hysteresis loops while the major ones are applied to the rest of the cycle. This proposal greatly improves both branches and consequently the minor loops. To validate this model, calculated non-centered minor hysteresis loops are compared with measured ones and good agreements are obtained.

  19. Hysteresis loop behaviors of ferroelectric thin films: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    M. Bedoya-Hincapié, C.; H. Ortiz-Álvarez, H.; Restrepo-Parra, E.; J. Olaya-Flórez, J.; E. Alfonso, J.

    2015-11-01

    The ferroelectric response of bismuth titanate Bi4Ti3O12 (BIT) thin film is studied through a Monte Carlo simulation of hysteresis loops. The ferroelectric system is described by using a Diffour Hamiltonian with three terms: the electric field applied in the z direction, the nearest dipole-dipole interaction in the transversal (x-y) direction, and the nearest dipole-dipole interaction in the direction perpendicular to the thin film (the z axis). In the sample construction, we take into consideration the dipole orientations of the monoclinic and orthorhombic structures that can appear in BIT at low temperature in the ferroelectric state. The effects of temperature, stress, and the concentration of pinned dipole defects are assessed by using the hysteresis loops. The results indicate the changes in the hysteresis area with temperature and stress, and the asymmetric hysteresis loops exhibit evidence of the imprint failure mechanism with the emergence of pinned dipolar defects. The simulated shift in the hysteresis loops conforms to the experimental ferroelectric response. Project sponsored by the research departments of the Universidad Nacional de Colombia DIMA and DIB under Project 201010018227-“Crecimiento y caracterización eléctrica y estructural de películas delgadas de BixTiyOz producidas mediante Magnetrón Sputtering” and Project 12920-“Desarrollo teóricoexperimental de nanoestructuras basadas en Bismuto y materiales similares” and “Bisnano Project.”

  20. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang Y.; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-09-25

    Hysteresis loops and Magnetic Barkhausen Noise in a single crystal α-iron containing a nonmagnetic particle were simulated based on the Laudau-Lifshitz-Gilbert equation. The analyses of domain morphologies and hysteresis loops show that reversal magnetization process is control by nucleation of reversed domains at nonmagnetic particle when the particle size reaches a particle value. In such a situation, the value of nucleation field is determined by the size of nonmagnetic particles, and moreover, coercive field and Magnetic Barkhausen Noise signal are strongly affected by the nucleation field of reversed domains.

  1. Segmented shape memory alloy actuators using hysteresis loop control

    NASA Astrophysics Data System (ADS)

    Selden, Brian; Cho, Kyujin; Asada, H. Harry

    2006-04-01

    A new approach to the design and control of shape memory alloy (SMA) actuators is presented. SMA wires are divided into many segments and their thermal states are controlled individually as a group of finite state machines. Instead of driving a current to the entire SMA wire and controlling the wire length based on the analog strain-temperature characteristics, the new method controls the binary state (hot or cold) of individual segments and thereby the total displacement is proportional to the length of the heated segments, i.e. austenite phase. Although the thermomechanical properties of SMA are highly nonlinear and uncertain with a prominent hysteresis, segmented binary control is robust and stable, providing characteristics similar to a stepping motor. However, the heating and cooling of each segment to its bi-stable states entail longer time and larger energy for transition. In this paper, an efficient method for improving the speed of response and power consumption is developed by exploiting the inherent hysteresis of SMA. Instead of keeping the extreme temperatures continuously, the temperatures return to intermediate 'hold' temperatures closer to room temperature but sufficient to keep constant phase. Coordination of the multitude of segments having independent thermal states allows for faster response with little latency time even for thick SMA wires. Based on stress dependent thermomechanical characteristics, the hold temperature satisfying a given stress margin is obtained. The new control method is implemented using the Peltier effect thermoelectric devices for selective segment-by-segment heating and cooling. Experiments demonstrate the effectiveness of the proposed method.

  2. Investigation of the Temperature Hysteresis Phenomenon of a Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem; Cheung, Mark K.

    1999-01-01

    The temperature hysteresis phenomenon of a Loop Heat Pipe (LHP) was experimentally investigated. The temperature hysteresis was identified by the fact that the operating temperature depends upon not only the imposed power but also the previous history of the power variation. The temperature hysteresis could impose limitations on the LHP applications since the LHP may exhibit different steady-state operating temperatures at a given power input even when the condenser sink temperature remains unchanged. In order to obtain insight to this phenomenon, a LHP was tested at different elevations and tilts by using an elaborated power profile. A hypothesis was suggested to explain the temperature hysteresis. This hypothesis explains well the experimental observations. Results of this study provide a better understanding of the performance characteristics of the LHPS.

  3. Nonhysteretic behavior inside the hysteresis loop of VO2 and its possible application in infrared imaging

    NASA Astrophysics Data System (ADS)

    Gurvitch, M.; Luryi, S.; Polyakov, A.; Shabalov, A.

    2009-11-01

    In the resistive phase transition in VO2, temperature excursions taken from points on the major hysteresis loop produce minor loops. For sufficiently small excursions these minor loops degenerate into single-valued, nonhysteretic branches (NHBs) linear in log(ρ) versus T and having essentially the same or even higher temperature coefficient of resistance (TCR) as the semiconducting phase at room temperature. We explain this behavior based on the microscopic picture of percolating phases. Similar short NHBs are found in otherwise hysteretic optical reflectivity. We discuss the opportunities NHBs present for infrared imaging technology based on resistive microbolometers. It is possible to choose a NHB with 102-103 times smaller resistivity than in a pure semiconducting phase, thus providing a microbolometer operating without hysteresis, with low tunable resistivity, and high TCR. Unique features of the proposed method and projected figures of merit are discussed in the context of uncooled focal plane array IR visualization technology.

  4. Simulations of magnetic hysteresis loops at high temperatures

    SciTech Connect

    Plumer, M. L.; Whitehead, J. P.; Fal, T. J.; Ek, J. van; Mercer, J. I.

    2014-09-28

    The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Our results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.

  5. Influence of eddy currents on magnetic hysteresis loops in soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Szczygłowski, Jan

    2001-01-01

    In this paper an attempt has been made to extend the Jiles and Atherton (J-A) quasi-static hysteresis model to describe magnetisation of a material with an alternating magnetic field. In low - industrial - and medium frequency of magnetic field it is possible to ignore the magnetic relaxation and resonance. The field penetration is assumed to be uniform through the material. The influence of eddy currents on the hysteresis loop could be considered and calculated using the method of successive reactions of eddy currents, where a reaction is an additional magnetic field, called reaction Hd, induced in the material by the eddy currents according to rot J= γ∂ B/∂ t where γ is the electrical conductivity. The reaction field Hd was added to the basic field H0∝ Iz1, where I is the current intensity in the magnetising coil of z1 number of windings. By solving the J-A equation for the magnetic field Hw= H0+ Hd it has achieved an extension of the hysteresis loop at an increased frequency of the current, caused by increased losses of the eddy currents. At the frequency f→0 Hz , the hysteresis loop approaches the shape of the quasi-static one.

  6. Experimental Observation of Disorder-Driven Hysteresis-Loop Criticality

    NASA Astrophysics Data System (ADS)

    Berger, A.; Inomata, A.; Jiang, J. S.; Pearson, J. E.; Bader, S. D.

    2000-11-01

    We have studied the effect of magnetic disorder on the magnetization reversal process in thin Co/CoO films. The antiferromagnetic CoO layer allows a reversible tuning of the magnetic disorder by simple temperature variation. For temperatures above a critical temperature Tc, we observe a discontinuous magnetization reversal, whereas smooth magnetization loops occur for T

  7. Estimate Interface Shear Stress of Woven Ceramic Matrix Composites from Hysteresis Loops

    NASA Astrophysics Data System (ADS)

    Li, Longbiao; Song, Yingdong

    2013-12-01

    An approach to estimate the fiber/matrix interface shear stress of woven ceramic matrix composites during fatigue loading has been developed in this paper. Based on the analysis of the microstructure, the woven ceramic matrix composites were divided into four elements of 0o warp yarns, 90o weft yarns, matrix outside of the yarns and the open porosity. When matrix cracking and fiber/matrix interface debonding occur upon first loading to the peak stress, it is assumed that fiber slipping relative to matrix in the interface debonded region of the 0o warp yarns is the mainly reason for the occurrence of the hysteresis loops of woven ceramic matrix composiets during unloading and subsequent reloading. The unloading interface reverse slip length and reloading interface new slip length are determined by the interface slip mechanisms. The hysteresis loops of three different cases have been derived. The hysteresis loss energy for the strain energy lost per volume during corresponding cycle is formulated in terms of the fiber/matrix interface shear stress. By comparing the experimental hysteresis loss energy with the computational values, the fiber/matrix interface shear stress of woven ceramic matrix composites corresponding to different cycles can then be derived. The theoretical results have been compared with experimental data of two different woven ceramic composites.

  8. Damping measurements of laminated composite materials and aluminum using the hysteresis loop method

    NASA Astrophysics Data System (ADS)

    Abramovich, H.; Govich, D.; Grunwald, A.

    2015-10-01

    The damping characteristics of composite laminates made of Hexply 8552 AGP 280-5H (fabric), used for structural elements in aeronautical vehicles, have been investigated in depth using the hysteresis loop method and compared to the results for aluminum specimens (2024 T351). It was found that the loss factor, η, obtained by the hysteresis loop method is linearly dependent only on the applied excitation frequency and is independent of the preloading and the stress amplitudes. For the test specimens used in the present tests series, it was found that the damping of the aluminum specimens is higher than the composite ones for longitudinal direction damping, while for bending vibrations the laminates exhibited higher damping values.

  9. Modeling the Effect of Multiple Matrix Cracking Modes on Cyclic Hysteresis Loops of 2D Woven Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-02-01

    In this paper, the effect of multiple matrix cracking modes on cyclic loading/unloading hysteresis loops of 2D woven ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, are considered as the major reason for hysteresis loops of 2D woven CMCs. The effects of fiber volume content, peak stress, matrix crack spacing, interface properties, matrix cracking mode proportion and interface wear on interface slip and hysteresis loops have been analyzed. The cyclic loading/unloading hysteresis loops of 2D woven SiC/SiC composite corresponding to different peak stresses have been predicted using the present analysis. It was found that the damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire cracking modes of the composite, increases with increasing peak stress.

  10. Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Spisak, B. J.; Wołoszyn, M.; Adamowski, J.

    2012-11-01

    Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner-Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current-voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current-voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current-voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode.

  11. Preparation and investigation of sputtered vanadium dioxide films with large phase-transition hysteresis loops

    NASA Astrophysics Data System (ADS)

    Zhang, Huafu; Wu, Zhiming; He, Qiong; Jiang, Yadong

    2013-07-01

    Vanadium dioxide (VO2) films with large phase-transition hysteresis loops were fabricated on glass substrates by reactive direct current (DC) magnetron sputtering in Ar/O2 atmosphere and subsequent in situ annealing process in pure oxygen. The crystal structure, chemical composition, morphology and metal-insulator transition (MIT) properties of the deposited films were investigated. The results reveal that the films show a polycrystalline nature with a (0 1 1) preferred orientation and consist of small spheroidal nanoparticles. All the deposited VO2 films show large hysteresis loops due to the small density of nucleating defects and the large interfacial energies, which are determined by the characteristics of the particles in the films, namely the small transversal grain size and the spheroidal shape. The film comprising the smallest spheroidal nanoparticles not only shows a large hysteresis width of 36.3 °C but also shows a low transition temperature of 32.2 °C upon cooling. This experiment facilitates the civilian applications of the VO2 films on glass substrates in optical storage-type devices.

  12. Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces

    SciTech Connect

    Maksymovych, Petro; Balke, Nina; Jesse, Stephen; Huijben, Mark; Ramesh, R.; Baddorf, Arthur P; Kalinin, Sergei V

    2009-01-01

    Local piezoresponse hysteresis loops were systematically studied on the surface of ferroelectric thin films of BiFeO{sub 3} grown on SrRuO{sub 3} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3} electrodes and compared between ultrahigh vacuum and ambient environment. The loops on all the samples exhibited characteristic asymmetry manifested in the difference of the piezoresponse slope following local domain nucleation. Spatially resolved mapping has revealed that the asymmetry is strongly correlated with the random-field disorder inherent in the films and is not affected by the random-bond disorder component. The asymmetry thus originates from electrostatic disorder within the film, which allows using it as a unique signature of single defects or defect clusters. The electrostatic effects due to the measurement environment also contribute to the total asymmetry of the piezoresponse loop, albeit with a much smaller magnitude compared to local defects.

  13. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    SciTech Connect

    Ehrmann, Andrea; Blachowicz, Tomasz

    2014-08-15

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  14. Proximity effect induced magnetoresistance hysteresis loops in a topological insulator/YIG heterostructure

    NASA Astrophysics Data System (ADS)

    Montazeri, Mohammad; Lang, Murong; Onbasli, Mehmet C.; Kou, Xufeng; He, Liang; Ross, Caroline A.; Wang, Kang L.

    2014-03-01

    We experimentally demonstrate the proximity effect induced hysteretic magnetoresistance in an 8 quintuple layers of Bi2Se3 films grown on Gallium Gadolinium Garnet (GGG) (111) substrates with a 50 nm Yttrium Iron Garnet (YIG) buffer layer by molecular beam epitaxy. With in-plane and out-of-plane magnetic field, square wave shaped and butterfly shaped resistance hysteresis loops can be observed up to 25 K, respectively. The relationship between the hysteretic MR curves and the magnetic switching of the YIG will be discussed in the context of a proximity effect between the YIG and the TI.

  15. Double hysteresis loops and large negative and positive electrocaloric effects in tetragonal ferroelectrics.

    PubMed

    Wu, Hong-Hui; Zhu, Jiaming; Zhang, Tong-Yi

    2015-10-01

    Phase field modelling and thermodynamic analysis are employed to investigate depolarization and compression induced large negative and positive electrocaloric effects (ECEs) in ferroelectric tetragonal crystalline nanoparticles. The results show that double-hysteresis loops of polarization versus electric field dominate at temperatures below the Curie temperature of the ferroelectric material, when the mechanical compression exceeds a critical value. In addition to the mechanism of pseudo-first-order phase transition (PFOPT), the double-hysteresis loops are also caused by the abrupt rise of macroscopic polarization from the abc phase to the c phase or the sudden fall of macroscopic polarization from the c phase to the abc phase when the temperature increases. This phenomenon is called the electric-field-induced-pseudo-phase transition (EFIPPT) in the present study. Similar to the two types of PFOPTs, the two types of EFIPPTs cause large negative and positive ECEs, respectively, and give the maximum absolute values of negative and positive adiabatic temperature change (ATC ΔT). The temperature associated with the maximum absolute value of negative ATC ΔT is lower than that associated with the maximum positive ATC ΔT. Both maximum absolute values of ATC ΔTs change with the variation in the magnitude of an applied electric field and depend greatly on the compression intensity. PMID:26307461

  16. Specific features of magnetic properties of ferrihydrite nanoparticles of bacterial origin: A shift of the hysteresis loop

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Dubrovskiy, A. A.; Semenov, S. V.; Popkov, S. I.; Stolyar, S. V.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.

    2016-02-01

    The results of the experimental investigation into the magnetic hysteresis of systems of superparamagnetic ferrihydrite nanoparticles of bacterial origin have been presented. The hysteresis properties of these objects are determined by the presence of an uncompensated magnetic moment in antiferromagnetic nanoparticles. It has been revealed that, under the conditions of cooling in an external magnetic field, there is a shift of the hysteresis loop with respect to the origin of the coordinates. These features are associated with the exchange coupling of the uncompensated magnetic moment and the antiferromagnetic "core" of the particles, as well as with processes similar to those responsible for the behavior of minor hysteresis loops due to strong local anisotropy fields of the ferrihydrite nanoparticles.

  17. Analysis of Magnetic Minor Hysteresis Loops in Thermally Aged and Cold-rolled Fe-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Takahashi, F.; Kobayashi, S.; Murakami, T.; Takahashi, S.; Kamada, Y.; Kikuchi, H.

    2011-01-01

    Neutron irradiation causes the formation of Cu precipitate in reactor pressure vessel steel and makes the steel susceptible to rupture. In the present study, we have examined magnetic minor hysteresis loops of Fe-1wt%Cu alloy after thermally ageing at 753 K and subsequent cold rolling to elucidate the effects of Cu precipitation on magnetic properties. Minor-loop coefficients, obtained from scaling power laws between field-dependent parameters of minor hysteresis loops, decrease with ageing time and show a local maximum around 200 min, reflecting the growth of Cu precipitates with ageing. For the alloy cold-rolled after ageing, the minor-loop properties linearly increase with reduction and show a good relationship with mechanical properties such as DBTT and hardness. These observations indicate that the analysis method using magnetic minor loops can be an useful technique of nondestructive evaluation of irradiation embrittlement and subsequent deformation hardening in reactor pressure vessel steels.

  18. Transitional hysteresis loop and coexistence of synchronized shedding in coupled wakes

    NASA Astrophysics Data System (ADS)

    Peng, Yih Ferng; Sau, Amalendu

    2015-07-01

    Hysteretic in-phase ↔ anti-phase exchange of vortex shedding and co-existence of reverse-synchronized bistable wake structures past two side-by-side elliptic/circular cylinders are examined through extensive numerical simulations and bifurcation analysis. Wake characteristics and synchronizations past two side-by-side cylinders have often been demarcated in terms of the gap-ratio "G" and the Reynolds number "Re." The focus here is the "in-phase ↔ anti-phase" two-way transition of oppositely synchronized bistable shedding states. In a remarkable parallel to discontinuous shifts of Strouhal frequency (prompting growth of two distinct instability modes past a single cylinder), the present work reveals interesting in-phase ↔anti-phase transitional switching of vortex shedding past two side-by-side symmetric cylinders, as facilitated by "discontinuous jumps of combined lift-force CL,1+2," and preceding bistable wake evolution via both of these two reverse-synchronized phases. The hysteresis loops are demarcated (for cylinders of different aspect-ratios A) through extended computations of two anti-synchronized solution branches by slowly increasing/decreasing the Re at fixed gap-ratio (G) and increasing/decreasing G minutely at a constant Re, thereby facilitating transitions and using the computed discontinuous jumps of CL,1+2. Simulations conducted with various A (0.5 ≤ A ≤ 2.0) exhibit, both in-phase and anti-phase shedding co-exist over significantly wide ranges of G-space/Re-space, and the exchange of vortex synchronization at the ends of hysteresis loop occurs through discontinuous variation of the CL,1+2. The "gap-biased" anti-phase → in-phase transition gets gradually delayed, as the cylinder aspect-ratio A is decreased. However, the "Re-biased" in-phase → anti-phase transition is advanced with the decrease of A. The tolerance width "HW" of gap-biased hysteresis loop increases fairly linearly, as A decreased over the range 1.0 ≤ A ≤ 2.0.

  19. Quantifying interlayer exchange coupling via layer-resolved hysteresis loops in antiferromagnetically coupled manganite/nickelate superlattices.

    SciTech Connect

    Park, J.; Lee, D. R.; Choi, Y.; Freeland, J. W.; Lee, K.; Sinha, S. K.; Nikolaev, K. R.; Goldman, A. M.; X-Ray Science Division; Pohang Univ. of Science and Technology; Soongsil Univ.; Univ. of Chicago; Univ. of California at San Diego; LANL; Univ. of Minnesota

    2009-09-07

    In superlattices made of a half metallic ferromagnet La{sub 2/3}Ba{sub 1/3}MnO{sub 3}(LBMO) and a metallic paramagnet LaNiO{sub 3}(LNO), the field dependence of the LBMO magnetization was studied using depth- and element-sensitive x-ray resonant magnetic scattering measurements. The superlattices have ten bilayers of LBMO and LNO, and the LBMO layers were antiferromagnetically coupled across LNO spacer layers. From the x-ray measurements, the magnetic hysteresis loop of each LBMO layer was obtained, and subsequently the obtained layer-resolved LBMO hysteresis loops were utilized to determine the interlayer exchange coupling.

  20. Hysteresis loop of a cubic nanowire in the presence of the crystal field and the transverse field

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, Xiao-Xi; Liu, Li-Mei; Chen, Jun-Nan; Zhang, Fan

    2014-03-01

    The effective-field theory with correlations (EFT) has been used to study the various shapes of the hysteresis loop for a ferromagnetic core of spin-1 and a ferromagnetic shell of spin-3/2 with ferrimagnetic interface coupling on a cubic nanowire. The magnetizations and phase diagrams of the nanowire have been investigated in the previous work (J. Magn. Magn. Mater. 324 (2012) 4034-4042). A number of characteristic behaviors are obtained especially for the triple and multiple hysteresis loop patterns for certain values of the system parameters at low temperature. We also examine the effect of the system parameters on coercivity of the nanowire.

  1. Magnetic Hysteresis Loop as a Tool for the Evaluation of Spheroidization of Cementites in Pearlitic Steels

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kamada, Y.

    2015-04-01

    Pearlitic Fe-0.76wt.% C binary alloy was isothermally annealed at 700 °C up to 100 h to study the spheroidization of cementites and its effect on both the mechanical and magnetic properties with the aim to use the magnetic techniques for the evaluation of spheroidization in steels. Micro-Vickers hardness, magnetic hysteresis loop (MHL) measurements, optical and scanning electron microscopy studies were carried out at various lengths of time by interrupting the test. Microhardness and coercivity were decreased with increase in annealing time due to reduction in dislocation pinning and magnetic domain wall pinning for the breaking of cementite lamella and their subsequent transformation to spheroidal form. The microhardness and coercivity showed a very good correlation with the change in microstructure indicating that MHL would be a suitable non-destructive evaluation tool for the evaluation of spheroidized pearlitic steels.

  2. Depolarizing field and ``real'' hysteresis loops in nanometer-scale ferroelectric films

    NASA Astrophysics Data System (ADS)

    Bratkovsky, A. M.; Levanyuk, A. P.

    2006-12-01

    The authors give detailed analysis of the effect of depolarizing field in nanometer-size ferroelectric capacitors studied by Kim et al. [Phys. Rev. Lett. 95, 237602 (2005)]. They calculate a critical thickness of the homogeneous state and its stability with respect to domain formation for strained thin films of BaTiO3 on SrRuO3/SrTiO3 substrate within the Landau theory. While the former (2.5nm ) is the same as given by ab initio calculations, the actual critical thickness is set by the domains at 0.8nm. There is a large Merz's activation field for polarization relaxation. Remarkably, the results show a negative slope of the "actual" hysteresis loops, a hallmark of the domain structures in ideal thin films with imperfect screening.

  3. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  4. Article surveillance magnetic marker having an hysteresis loop with large Barkhausen discontinuities

    DOEpatents

    Humphrey, Floyd B.

    1987-01-01

    A marker for an electronic article surveillance system is disclosed comprising a body of magnetic material with retained stress and having a magnetic hysteresis loop with a large Barkhausen discontinuity such that, upon exposure of the marker to an external magnetic field whose field strength in the direction opposing the instantaneous magnetic polarization of the marker exceeds a predetermined threshold value, there results a regenerative reversal of the magnetic polarization of the marker. An electronic article surveillance system and a method utilizing the marker are also disclosed. Exciting the marker with a low frequency and low field strength, so long as the field strength exceeds the low threshold level for the marker, causes a regenerative reversal of magnetic polarity generating a harmonically rich pulse that is readily detected and easily distinguished.

  5. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    DOE PAGESBeta

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore » on the magnetization reversal behavior and the magnetic properties.« less

  6. Modeling for Fatigue Hysteresis Loops of Carbon Fiber-Reinforced Ceramic-Matrix Composites under Multiple Loading Stress Levels

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    In this paper, the fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under multiple loading stress levels considering interface wear has been investigated using micromechanical approach. Under fatigue loading, the fiber/matrix interface shear stress decreases with the increase of cycle number due to interface wear. Upon increasing of fatigue peak stress, the interface debonded length would propagate along the fiber/matrix interface. The difference of interface shear stress existed in the new and original debonded region would affect the interface debonding and interface frictional slipping between the fiber and the matrix. Based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading, the interface slip lengths, i.e., the interface debonded length, interface counter-slip length and interface new-slip length, are determined by fracture mechanics approach. The fatigue hysteresis loops models under multiple loading stress levels have been developed. The effects of single/multiple loading stress levels and different loading sequences on fatigue hysteresis loops have been investigated. The fatigue hysteresis loops of unidirectional C/SiC composite under multiple loading stress levels have been predicted.

  7. Kerr hysteresis loop tracer with alternate driving magnetic field up to 10 kHz

    NASA Astrophysics Data System (ADS)

    Callegaro, Luca; Fiorini, Carlo; Triggiani, Giacomo; Puppin, Ezio

    1997-07-01

    A magneto-optical Kerr loop tracer for hysteresis loop measurements in thin films with field excitation frequency f0 from 10 mHz to 10 kHz is described. A very high sensitivity is obtained by using an ultrabright light-emitting diode as a low-noise light source and a novel acquisition process. The field is generated with a coil driven by an audio amplifier connected to a free-running oscillator. The conditioned detector output constitutes the magnetization signal (M); the magnetic field (H) is measured with a fast Hall probe. The acquisition electronics are based on a set of sample-and-hold amplifiers which allow the simultaneous sampling of M, H, and dH/dt. Acquisition is driven by a personal computer equipped with a multifunction I/O board. Test results on a 120 nm Fe film on Si substrate are shown. The coercive field of the film increases with frequency and nearly doubles at 10 kHz with respect to dc.

  8. Implications of magnetic-hysteresis-loop scaling in high-temperature superconductors

    SciTech Connect

    Perkins, G.K.; Cohen, L.F.; Zhukov, A.A.; Caplin, A.D.

    1995-04-01

    We show how to incorporate the commonly observed scaling behavior of magnetic hysteresis loops {ital M}({ital H}) in ({ital R})Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} ({ital R}=rare earth) crystals into a systematic and straightforward analytical procedure that yields the key parameters associated with the vortex dynamics. If the effective barrier height for vortex motion is written in terms of a scale energy {ital U}{sub 0}({ital B},{ital T}) and a scale current density {ital J}{sub 0}({ital B},{ital T}), both the field and temperature dependences of these quantities can be found directly from the experimental data, without any deconvolution. The procedure is illustrated with the data on one specific sample of TmBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}. Over a substantial region of the {ital B}-{ital T} plane, {ital J}{sub 0}({ital B},{ital T}) is found to be {proportional_to}{ital B} and essentially temperature independent; {ital U}{sub 0}({ital B},{ital T}) is approximately {proportional_to}1/{ital B} and decreases steadily as {ital T}{sub {ital c}} is approached. The competition between the field dependences of {ital J}{sub 0}({ital B},{ital T}) and {ital U}{sub 0}({ital B},{ital T}) gives rise to the ubiquitous ``fishtail`` in the magnetization loops.

  9. Ferroeletricity and Double Hysteresis Loop Behavior in Even-Numbered n-Nylons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongbo; Zhu, Lei; Litt, Morton

    2015-03-01

    Ferroelectric (FE) property in odd-numbered n-nylons has been known for a long time. In comparison, even-numbered n-nylons are claimed to be non-ferroelectric due to their non-polar crystalline structure, where the direction of hydrogen bonded dipoles alternates. Nevertheless, in this presentation, FE property is discovered in even n-nylons, and it is related to the mesomorphic crystalline structure formed via quenching and/or stretching. Although there was an earlier claim maintaining that FE behavior in melt-quenched nylon 6 was due to the amorphous phase, the conclusion is debatable and the understanding of the FE mechanism is still lacking. We find that poorly bonded amide dipoles, which result from the defective crystalline mesophase, play an important role in the FE behavior of nylon 12. In this mesophase, the chain conformation is smectic-like, twisted, and the hydrogen bonds are randomized. Therefore, this mesophase is abundant in defects and poorly bonded dipoles, which can easily flip under electric field. In addition, the hydrogen-bonded amides can serve as pinning points and induce double hysteresis loop behavior. This understanding illustrates that FE in even n-nylons originates from the defective crystalline phase rather than the amorphous region. NSF (DMR0907580).

  10. Anisotropy and shape of hysteresis loop of frozen suspensions of iron oxide nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi

    2014-03-01

    Colloidal suspensions of nanoparticles in liquids have many uses in biomedical applications. We studied approximately 50 nm diameter iron oxide particles dispersed in H2O for magnetic nanoparticle hyperthermia cancer treatment. Interactions between nanoparticles have been indicated for increasing the heat output under application of an alternating magnetic field, as in hyperthermia. Interactions vary dynamically with an applied field as the nanoparticles reorient and rearrange within the liquid. Therefore, we studied the samples below the liquid freezing point in a range of magnetic field strengths to literally freeze in the effects of interactions. We found that the shape of the magnetic hysteresis loop is squarer (higher anisotropy) when the sample was cooled in a high field, and less square (lower anisotropy) when the sample was cooled in a low or zero field. The cause is most likely the formation of long chains of nanoparticles up to 500 μm, which we observe optically. This increase in anisotropy may indicate improved heating ability for these nanoparticles under an alternating magnetic field.

  11. Depolarizing Field and ``Real'' Hysteresis Loops in Nanometer Scale Ferroelectric Films

    NASA Astrophysics Data System (ADS)

    Bratkovsky, A. M.; Levanyuk, A. P.

    2007-03-01

    We give detailed analysis of the effect of depolarizing field in nanometer-size ferroelectric capacitors studied by Kim et al. [Phys. Rev. Lett. 95, 237602 (2005)]. We calculate a critical thickness of the homogeneous state and its stability with respect to domain formation for strained thin films of BaTiO3 on SrRuO3/SrTiO3 substrate within the Landau theory. While the former (2.5nm) is the same as given by ab- initio calculations, the actual critical thickness is set by the domains at 1.6nm [1]. There is a large Merz's activation field for polarization relaxation. Remarkably, the results show a negative slope of the ``actual'' hysteresis loops, a hallmark of the domain structures in ideal thin films with imperfect screening[2]. [1] A.M. Bratkovsky and A.P. Levanyuk, Appl. Phys. Lett. (in print), cond-mat/0608283. [2] A.M. Bratkovsky and A.P. Levanyuk, Phys. Rev. B 63, 132103 (2001).

  12. Physical motivations of the constitutive relations for ferroelectric ceramics and the existence of butterfly and hysteresis loops

    SciTech Connect

    Chen, P.J.

    1982-01-01

    The responses of ferroelectric ceramics can be quite complex depending on the physical processes to which they are subjected. Their mechanical, electromechanical and dielectric properties depend on domain switching, dipole dynamics and phase transformation which can be caused by external stimuli such as mechanical and electrical loadings, and temperature variations. A theory, taking into account the effects of domain switching and dipole dynamics, has been formulated, and in its present stage of development is sufficient to characterize various observable resonses. Specifically, a special case of the theory predicts the nature of the butterfly and hysteresis loops. The butterfly and hysteresis loops are manifestations of the mechanical, electro-mechanical and dielectric responses due to domain switching produced by cyclic electric fields. Comparisons of the predictions of the theory with experimental results are made in a pseudo one dimensional context.

  13. A New Model Based on Adaptation of the External Loop to Compensate the Hysteresis of Tactile Sensors

    PubMed Central

    Sánchez-Durán, José A.; Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A.

    2015-01-01

    This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes. PMID:26501279

  14. A new model based on adaptation of the external loop to compensate the hysteresis of tactile sensors.

    PubMed

    Sánchez-Durán, José A; Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A

    2015-01-01

    This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes. PMID:26501279

  15. Origin of anomalous hysteresis loops induced by femtosecond laser pulses in GdFeCo amorphous films

    NASA Astrophysics Data System (ADS)

    Xu, Chudong; Chen, Zhifeng; Chen, Daxin; Zhou, Shiming; Lai, Tianshu

    2010-03-01

    A controllable pump-pulse-number magneto-optical Kerr technique combined with an initializing field scanning approach is developed to eliminate and identify memory and accumulation effects, respectively, from external field history and multiple pulse excitations. A series of anomalous loops of GdFeCo films are measured for different amount of pump pulses using this technique, revealing that serious memory and accumulation effects exist in continuous-pulse-pumped anomalous hysteresis loops which show illusory information of hot coercivity and degree of magnetization reversal. Single-pulse-induced anomalous loop reveals that the hot coercivity shown by continuous-pulse-pumped anomalous loops is not the minimum external field that drives real magneto-optical recording.

  16. The phase transition of ɛ-InxFe2-xO3 nanomagnets with a large thermal hysteresis loop (invited)

    NASA Astrophysics Data System (ADS)

    Yamada, Kana; Tokoro, Hiroko; Yoshikiyo, Marie; Yorinaga, Takenori; Namai, Asuka; Ohkoshi, Shin-ichi

    2012-04-01

    A large thermal hysteresis loop was observed in the phase transition on rod-shaped ɛ-InxFe2-xO3 (x ˜ 0.04) nanomagnets. The width of the thermal hysteresis loop, ΔT, increased with increasing rod length (l), i.e., ΔT = 6 K (l = 25 nm), 14 K (40 nm), 25 K (80 nm), and 47 K (170 nm). The observed ΔT value of 47 K is one of the largest values among insulating ferromagnetic materials. The thermal hysteresis loops were analyzed by the Slichter and Drickamer model, and the results showed that the transition enthalpy and entropy do not change. However, the elastic interaction parameter between the transition sites increases with an increasing l value. Maybe the correlation length of a propagating phonon due to elastic interaction competes with the rod length of the samples, causing the rod-length dependence of the thermal hysteresis loop.

  17. The effect of copper and manganese on magnetic minor hysteresis loops in neutron irradiated Fe model alloys

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Kikuchi, H.; Takahashi, S.; Kamada, Y.; Ara, K.; Yamamoto, T.; Klingensmith, D.; Odette, G. R.

    2009-02-01

    Changes of magnetic minor hysteresis loops in pure Fe, Fe-1 wt% Mn, Fe-0.9 wt% Cu, and Fe-0.9 wt% Cu-1 wt% Mn model alloys after neutron irradiation have been studied. Minor-loop coefficients which are obtained from scaling relations between minor-loop parameters and in proportion to internal stress, were found to decrease in all model alloys after the irradiation to a fluence of 3.32 × 10 19 n cm -2. The decrease of the coefficients is larger for alloys including Cu and is enhanced by 1 wt% Mn addition. Such decrease implying the reduction of internal stress during irradiation is in contrast with changes of yield strength after the irradiation that increase with Cu and Mn contents. A qualitative explanation was given on the basis of the preferential formation of Cu precipitates along pre-existing dislocations which reduces internal stress of the dislocations.

  18. The magnetization process: Hysteresis

    NASA Technical Reports Server (NTRS)

    Balsamel, Richard

    1990-01-01

    The magnetization process, hysteresis (the difference in the path of magnetization for an increasing and decreasing magnetic field), hysteresis loops, and hard magnetic materials are discussed. The fabrication of classroom projects for demonstrating hysteresis and the hysteresis of common magnetic materials is described in detail.

  19. Spectral properties of the Preisach hysteresis model with random input. II. Universality classes for symmetric elementary loops

    NASA Astrophysics Data System (ADS)

    Radons, Günter

    2008-06-01

    The Preisach model with symmetric elementary hysteresis loops and uncorrelated input is treated analytically in detail. It is shown that the appearance of long-time tails in the output correlations is a quite general feature of this model. The exponent η of the algebraic decay t-η , which may take any positive value, is determined by the tails of the input and the Preisach density. We identify the system classes leading to identical algebraic tails. These results imply the occurrence of 1/f noise for a large class of hysteretic systems.

  20. Meltable Spin Transition Molecular Materials with Tunable Tc and Hysteresis Loop Width.

    PubMed

    Romero-Morcillo, Tania; Seredyuk, Maksym; Muñoz, M Carmen; Real, Jose A

    2015-12-01

    Herein, we report a way to achieve abrupt high-spin to low-spin transition with controllable transition temperature and hysteresis width, relying not on solid-state cooperative interactions, but utilizing coherency between phase and spin transitions in neutral Fe(II) meltable complexes. PMID:26473403

  1. Estimate Interface Shear Stress of Unidirectional C/SiC Ceramic Matrix Composites from Hysteresis Loops

    NASA Astrophysics Data System (ADS)

    Longbiao, Li; Yingdong, Song; Youchao, Sun

    2013-08-01

    The tensile-tensile fatigue behavior of unidirectional C/SiC ceramic matrix composites at room and elevated temperature has been investigated. An approach to estimate the interface shear stress of ceramic matrix composites under fatigue loading has been developed. Based on the damage mechanisms of fiber sliding relative to matrix in the interface debonded region upon unloading and subsequent reloading, the unloading interface reverse slip length and reloading interface new slip length are determined by the fracture mechanics approach. The hysteresis loss energy for the strain energy lost per volume during corresponding cycle is formulatd in terms of interface shear stress. By comparing the experimental hysteresis loss energy with the computational values, the interface shear stress of unidirectional C/SiC ceramic composites corresponding to different cycles at room and elevated temperatures has been predicted.

  2. Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.

    PubMed

    Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A

    2015-11-01

    We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings. PMID:26560566

  3. Evolution of Recrystallization by Changes in Magnetic Hysteresis Loop in a Non-Oriented Electric Steel Cold Rolled

    NASA Astrophysics Data System (ADS)

    da Silva, F. E.; Freitas, F. N. C.; Abreu, H. F. G.; Gonçalves, L. L.; Moura, E. P.; Silva, M. R.

    2011-06-01

    Non-oriented steels, with low carbon, are widely used in the fabrication of electrical motor nucleus. The performance of these motors is affected by the level of recrystallization. These steels can come from the steel plant in two different conditions: totally processed or semi-processed. The semi-processed steels have a partially deformed structure and are submitted to the final annealing process after reaching the end shape. An adequate annealing heat treatment is important to get an appropriate magnetic property. In the present study, samples of an electric steel, with the composition (0.05 wt% C, 1.28wt% Si, 0.29wt% Mn), cold rolled 50% in thickness, were withdrawn during the industrial heat treatment at temperatures of 575, 580, 600, 620 and 730 °C with the objective of evaluating the evolution of recrystalization with temperature. Magnetic properties were measured at room temperature in a vibrating sample magnetometer. Although the changes in magnetic hysteresis loop with temperature are difficult to observe, they have been identified by using pattern classification techniques, such as principal-component analysis and Karhunen-Loève expansion. These tools have been applied to vectors which are built from each hysteresis loop, properly renormalized, whose components correspond to amplitude of the loop at given equally spaced values of the renormalized field. The samples have been classified in four sets, namely, set A corresponding to temperatures 575/580, set B corresponding to temperatures 600/620, set C corresponding to the samples without annealing heat treatment, and set D corresponding to recrystallized samples. The results for the classification of the different microstructures have been obtained by using both techniques, and in particular a 100% success rate has been reached by using Karhunen-Loève expansion.

  4. Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles

    NASA Astrophysics Data System (ADS)

    Mehdaoui, B.; Carrey, J.; Stadler, M.; Cornejo, A.; Nayral, C.; Delpech, F.; Chaudret, B.; Respaud, M.

    2012-01-01

    The influence of a transverse static magnetic field on the magnetic hyperthermia properties is studied on a system of large-losses ferromagnetic FeCo nanoparticles. The simultaneous measurement of the high-frequency hysteresis loops and of the temperature rise provides an interesting insight into the losses and heating mechanisms. A static magnetic field of only 40 mT is enough to cancel the heating properties of the nanoparticles, a result reproduced using numerical simulations of hysteresis loops. These results cast doubt on the possibility to perform someday magnetic hyperthermia inside a magnetic resonance imaging setup.

  5. Characterization of electrocaloric properties by indirect estimation and direct measurement of temperature-electric field hysteresis loops

    NASA Astrophysics Data System (ADS)

    Maiwa, Hiroshi

    2015-10-01

    The electrocaloric properties of Pb(Zr,Ti)O3(PZT)-based and Ba(Zr,Ti)O3 ceramics and Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) crystals were investigated by the indirect estimation and direct measurement of temperature-electric field (T-E) hysteresis loops. The measured T-E loops showed a similar shape to strain-electric field (s-E) loops. The adiabatic temperature change ΔT due to electrocaloric effects was estimated from the polarization change of these samples. ΔTs of 0.48 and 0.66 K were estimated for the (Pb,La)(Zr,Ti)O3 (PLZT)(9.1/65/35) ceramics and PMN-PT crystals under a field of 30 kV/cm, respectively. The measured temperature changes ΔTs in these samples upon the release of the electric field from 30 kV/cm to zero were 0.39 and 0.36 K, respectively.

  6. Dynamical control of the spin transition inside the thermal hysteresis loop of a spin-crossover single crystal

    NASA Astrophysics Data System (ADS)

    Boukheddaden, Kamel; Sy, Mouhamadou; Paez-Espejo, Miguel; Slimani, Ahmed; Varret, François

    2016-04-01

    We have succeeded to achieve experimentally, using an adapted optical microscopy setup, the reversible control of the front transformation between the low-spin (LS)-high-spin (HS) interface in the spin-crossover (SC) single crystal [{Fe(NCSe)(py)2}2(m-bpypz)] undergoing a first-order transition at 112 K with a 7 K hysteresis width. For that, we first generate a phase separation state (a HS/LS interface at equilibrium) inside the hysteresis loop by tuning the light intensity of the microscope. In the second step, this intensity is monitored in such a way to drive, through a photo-heating process, the interface motion. This photo-control is found to be reversible, accurate and requiring a very small amount of energy. In addition the integrity of the crystal is maintained even after a large number of cycling. The experimental observations, are well described as a reaction diffusion process accounting for the front propagation and the photo-heating effects.

  7. The real cause of the suspended sediment transport - river discharge hysteresis loop, in the Nepal Himalayas

    NASA Astrophysics Data System (ADS)

    Andermann, C.; Bonnet, S.; Crave, A.; Davy, P.; Gloaguen, R.; Longuevergne, L.

    2011-12-01

    Suspended sediment- river discharge hysteresis effects are observed over a wide range of different environments and time scales. This effect is generally interpreted as the result of variations in sediment supply which is directly coupled to sudden slope failure linked to storms, earthquakes and/or to glacial melt processes. In the Nepal Himalayas sediment fluxes are closely associated with the monsoon season. The distinct wet and dry season in Nepal controls the hydrological cycle and exerts a strong influence on the availability of water, river discharge and vegetation cover. The repartition of precipitated water in to direct surface runoff and temporally stored water is of major importance for physical and chemical erosion processes. Additional, the extreme high relief energy provides a landscape constantly close to failure. In this contribution we discuss for the case of the Nepal Himalayas, (1) the occurrence of sediment flux events, (2) how suspended sediments are mobilized and transported and (3) denudation rates derived from these fluxes. We present ~30 years of daily data of precipitation and discharge for the major drainage basins of Nepal. Relating discharge with suspended sediment concentrations reveals a very well defined annual clockwise hysteresis effect, which we observe for both glaciated and unglaciated basins. Probability density distribution of the specific storm runoff sediment fluxes (normalized by the mean flux), reveals that all rivers have the same magnitude distribution behavior with respect to their means, independent from their size and location. The density function describes a power law with a slope ~1, but high fluxes describe a different behavior with a slope of ~2. Hence, mathematically the mean transport depends not on the extreme events, simply because the probability of large events has only little impact with respect to the moderate events. Through the separation of the daily hydrographs into direct storm discharge and baseflow (applying the local minimum method) we show that the hysteresis is rather an effect of dilution than limit of supply. These suspended sediment fluxes are linearly related with storm runoff, which implies that annual sediment fluxes and consequently the mobilization of material, is primarily controlled by the quantity and intensity of storm events. From this observation we derive a new suspended sediment rating model, allowing us to calculate denudation rates from the river discharge hydrograph. Calculated denudation rates in the Nepal Himalayas range from 0.1 -5.9 mm/year. Spatially, denudation seems to be controlled by precipitation intensity and to a lesser degree by relief or other catchment characteristics. Last we propose a new conceptual model of mobilization and transportation of material within the monsoonal discharge cycle.

  8. Double hysteresis loop induced by defect dipoles in ferroelectric Pb(Zr{sub 0.8}Ti{sub 0.2})O{sub 3} thin films

    SciTech Connect

    Pu Yunti; Zhu Jiliang; Zhu Xiaohong; Luo Yuansheng; Wang Mingsong; Li Xuhai; Liu Jing; Zhu Jianguo; Xiao Dingquan

    2011-02-15

    Pb(Zr{sub 0.8}Ti{sub 0.2})O{sub 3} (PZT80/20) thin films were deposited on the Pt(111)/Ti/SiO{sub 2}/Si(100) substrates by RF magnetron sputtering. Mainly perovskite crystalline phase with highly (202)-preferred orientation, determined by x-ray diffraction, was formed in the lead zirconate titanate (PZT)(80/20) thin films. Polarization measurements of the unannealed and aged films showed a clear double hysteresis loop. However, the double hysteresis loop phenomenon was greatly suppressed in the PZT thin films annealed under pure oxygen, and thus they exhibited larger remnant polarization (P{sub r} = 6.3 {mu}C/cm{sup 2}). The related mechanism for the appearance of constricted and double hysteresis loops was investigated to be associated with the realignment and disassociation of defect dipoles via oxygen octahedral rotations or oxygen vacancy diffusion. The butterfly-shaped C-V characteristic curve with a valley gave further evidence for double hysteresis loop characteristic in the unannealed and aged PZT thin films.

  9. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—A useful setup for magnetic hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Connord, V.; Mehdaoui, B.; Tan, R. P.; Carrey, J.; Respaud, M.

    2014-09-01

    A setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An alternating magnetic field in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops, and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of magnetic nanoparticles for magnetic hyperthermia applications.

  10. Disorder-driven hysteresis-loop criticality in Co/CoO-films.

    SciTech Connect

    Berger, A.; Inomata, A.; Jiang, J. S.; Pearson, J. E.; Bader, S. D.

    2000-11-01

    The effect of magnetic disorder on the magnetization reversal process in thin Co/CoO-films has been investigated. The antiferromagnetic CoO layer allows a reversible tuning of the magnetic disorder by simple temperature variation. For temperatures above a critical temperature T{sub c}, we observe a discontinuous magnetization reversal, whereas smooth magnetization loops occur for T < T{sub c}. Our measurements establish the existence of a disorder-driven critical point in the non-equilibrium phase diagram. In addition, we observe scaling behavior in the vicinity of the critical point and determine the critical exponents to {beta} = 0.022 {+-} 0.006 and {beta}{delta} = 0.30 {+-} 0.03.

  11. Hysteresis loops of the energy band gap and effective g factor up to 18 000 for metamagnetic EuSe epilayers

    NASA Astrophysics Data System (ADS)

    Kirchschlager, R.; Heiss, W.; Lechner, R. T.; Bauer, G.; Springholz, G.

    2004-07-01

    Hysteresis effects of the fundamental energy gap as a function of applied magnetic field are studied for metamagnetic EuSe layers grown by molecular-beam epitaxy. Below the phase transition temperature, the energy gap show large step-like red shifts of up to 150meV with increasing magnetic field with pronounced hysteresis effects when the change in the magnetic field is reversed. Both, the steps and the hysteresis loops are caused by transitions between the aniferro-, ferri-, and ferromagnetic phases in EuSe. The large redshift of the band gap is directly proportional to the magnetization of the sample and results from the Zeeman spin splitting of the conduction band. The corresponding effective g factor deduced from our experiments reaches values up to 18 000 at the magnetic phase transitions.

  12. Tailoring Staircase-like Hysteresis Loops in Electrodeposited Trisegmented Magnetic Nanowires: a Strategy toward Minimization of Interwire Interactions.

    PubMed

    Zhang, Jin; Agramunt-Puig, Sebastià; Del-Valle, Núria; Navau, Carles; Baró, Maria D; Estradé, Sònia; Peiró, Francesca; Pané, Salvador; Nelson, Bradley J; Sanchez, Alvaro; Nogués, Josep; Pellicer, Eva; Sort, Jordi

    2016-02-17

    A new strategy to minimize magnetic interactions between nanowires (NWs) dispersed in a fluid is proposed. Such a strategy consists of preparing trisegmented NWs containing two antiparallel ferromagnetic segments with dissimilar coercivity separated by a nonmagnetic spacer. The trisegmented NWs exhibit a staircase-like hysteresis loop with tunable shape that depends on the relative length of the soft- and hard-magnetic segments and the respective values of saturation magnetization. Such NWs are prepared by electrodepositing CoPt/Cu/Ni in a polycarbonate (PC) membrane. The antiparallel alignment is set by applying suitable magnetic fields while the NWs are still embedded in the PC membrane. Analytic calculations are used to demonstrate that the interaction magnetic energy from fully compensated trisegmented NWs with antiparallel alignment is reduced compared to a single-component NW with the same length or the trisegmented NWs with the two ferromagnetic counterparts parallel to each other. The proposed approach is appealing for the use of magnetic NWs in certain biological or catalytic applications where the aggregation of NWs is detrimental for optimized performance. PMID:26804742

  13. Unveiling the Mechanism for the Split Hysteresis Loop in Epitaxial Co2Fe1-xMnxAl Full-Heusler Alloy Films.

    PubMed

    Tao, X D; Wang, H L; Miao, B F; Sun, L; You, B; Wu, D; Zhang, W; Oepen, H P; Zhao, J H; Ding, H F

    2016-01-01

    Utilizing epitaxial Co2Fe1-xMnxAl full-Heusler alloy films on GaAs (001), we address the controversy over the analysis for the split hysteresis loop which is commonly found in systems consisting of both uniaxial and fourfold anisotropies. Quantitative comparisons are carried out on the values of the twofold and fourfold anisotropy fields obtained with ferromagnetic resonance and vibrating sample magnetometer measurements. The most suitable model for describing the split hysteresis loop is identified. In combination with the component resolved magnetization measurements, these results provide compelling evidences that the switching is caused by the domain wall nucleation and movements with the switching fields centered at the point where the energy landscape shows equal minima for magnetization orienting near the easy axis and the field supported hard axis. PMID:26733075

  14. Unveiling the Mechanism for the Split Hysteresis Loop in Epitaxial Co2Fe1-xMnxAl Full-Heusler Alloy Films

    PubMed Central

    Tao, X. D.; Wang, H. L.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Zhang, W.; Oepen, H. P.; Zhao, J. H.; Ding, H. F.

    2016-01-01

    Utilizing epitaxial Co2Fe1-xMnxAl full-Heusler alloy films on GaAs (001), we address the controversy over the analysis for the split hysteresis loop which is commonly found in systems consisting of both uniaxial and fourfold anisotropies. Quantitative comparisons are carried out on the values of the twofold and fourfold anisotropy fields obtained with ferromagnetic resonance and vibrating sample magnetometer measurements. The most suitable model for describing the split hysteresis loop is identified. In combination with the component resolved magnetization measurements, these results provide compelling evidences that the switching is caused by the domain wall nucleation and movements with the switching fields centered at the point where the energy landscape shows equal minima for magnetization orienting near the easy axis and the field supported hard axis. PMID:26733075

  15. Unveiling the Mechanism for the Split Hysteresis Loop in Epitaxial Co2Fe1-xMnxAl Full-Heusler Alloy Films

    NASA Astrophysics Data System (ADS)

    Tao, X. D.; Wang, H. L.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Zhang, W.; Oepen, H. P.; Zhao, J. H.; Ding, H. F.

    2016-01-01

    Utilizing epitaxial Co2Fe1-xMnxAl full-Heusler alloy films on GaAs (001), we address the controversy over the analysis for the split hysteresis loop which is commonly found in systems consisting of both uniaxial and fourfold anisotropies. Quantitative comparisons are carried out on the values of the twofold and fourfold anisotropy fields obtained with ferromagnetic resonance and vibrating sample magnetometer measurements. The most suitable model for describing the split hysteresis loop is identified. In combination with the component resolved magnetization measurements, these results provide compelling evidences that the switching is caused by the domain wall nucleation and movements with the switching fields centered at the point where the energy landscape shows equal minima for magnetization orienting near the easy axis and the field supported hard axis.

  16. Template-free synthesis of Nd0.1Bi0.9FeO3 nanotubes with large inner diameter and wasp-waisted hysteresis loop

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Wang, S. Y.; Wang, X.; Xu, X. L.; Gao, J.; Liu, W. F.

    2015-08-01

    One-dimensional (1D) nanotubes of Nd0.1Bi0.9FeO3 (NBFO) with an inner diameter of ˜50 nm were synthesized via sol-gel based electrospinning without template assistant. The phases, morphologies, crystalline structures, and magnetic properties of these 1D nanostructures were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and SQUID, respectively. It was found that the calcination condition plays a crucial role in determining the morphologies and the magnetic properties. Interestingly, these 1D NBFO nanotubes exhibit wasp-waisted magnetic hysteresis with a lower coercivity and larger saturation magnetization, which were prevalent in natural rocks and artificial composite materials. The origin of these wasp-waisted hysteresis loops was discussed.

  17. Velocity of the high-spin low-spin interface inside the thermal hysteresis loop of a spin-crossover crystal, via photothermal control of the interface motion.

    PubMed

    Slimani, Ahmed; Varret, François; Boukheddaden, Kamel; Garrot, Damien; Oubouchou, Hassane; Kaizaki, Sumio

    2013-02-22

    We investigated by optical microscopy the thermal transition of the spin-crossover dinuclear iron(II) compound [(Fe(NCSe)(py)(2))(2)(m-bpypz)]. In a high-quality crystal the high-spin (HS) low-spin (LS) thermal transition took place with a sizable hysteresis, at ~108 K and ~116 K on cooling and heating, respectively, through the growth of a single macroscopic domain with a straight LS and HS interface. The interface orientation was almost constant and its propagation velocity was close to ~6 and 26 μ m s(-1) for the on-cooling and on-heating processes, respectively. We found that the motion of the interface was sensitive to the intensity of the irradiation beam of the microscope, through a photothermal effect. By fine-tuning the intensity we could stop and even reverse the interface motion. This way we stabilized a biphasic state of the crystal, and we followed the spontaneous motion of the interface at different temperatures inside the thermal hysteresis loop. This experiment gives access for the first time to an accurate determination of the equilibrium temperature in the case of thermal hysteresis--which was not accessible by the usual quasistatic investigations. The temperature dependence of the propagation velocity inside the hysteretic interval was revealed to be highly nonlinear, and it was quantitatively reproduced by a dynamical mean-field theory, which made possible an estimate of the macroscopic energy barrier. PMID:23473199

  18. Scaling Behavior of Amplitude-Dependent Ferroelectric Hysteresis Loops in an Epitaxial PbZr0.2Ti0.8O3 Thin Film

    SciTech Connect

    Yang, Sang Mo; Jang, S. Y.; Kim, T. H.; Kim, Hun-Ho; Lee, Ho Nyung; Yoon, J. -G.

    2011-01-01

    We investigated the scaling behavior of ferroelectric (FE) hysteresis loops as a function of the applied field amplitude (E{sub 0}) in a high-quality epitaxial PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} (PZT) thin film. We observed that the areas of the polarization-electric field hysteresis loops (A) followed the scaling law A {proportional_to} E{sub 0}{sup {alpha}}, with the exponent {alpha} = 0.45 {+-} 0.01. This result is in excellent agreement with the theoretical prediction of {alpha} by the two-dimensional Ising model. In addition, we found that the coercive field (E{sub C}) showed E{sub C} {proportional_to} E{sub 0}{sup {gamma}} with the exponent {gamma} = 0.28 {+-} 0.01. We attribute this relationship to the difference in the sweep rate of the field amplitude E{sub 0}. From the obtained {gamma} value, the growth dimension of FE domains is found to be about 1.68 in our epitaxial PZT thin film.

  19. Enhancement of magnetic domain topologies in Co/Pt thin films by fine tuning the magnetic field path throughout the hysteresis loop

    NASA Astrophysics Data System (ADS)

    Westover, Andrew S.; Chesnel, Karine; Hatch, Kelsey; Salter, Philip; Hellwig, Olav

    2016-02-01

    We have studied the influence of magnetic history on the topology of perpendicular magnetic domains in a thin ferromagnetic film made of [Co(8 Å)/Pt(7 Å)]50 multilayers. More specifically, we have followed the morphological changes in the domain pattern when applying a magnetic field perpendicular to the layer, throughout minor and major magnetization loops, and in the resulting remanent state. We carried out this study by using MFM microscopy with an in-situ magnetic field. We find that the morphology of the magnetic domain pattern is greatly influenced by the magnetic history of the material and that some features, such as the degree of bubbliness (i.e., the extent of bubble domain formation) and density of isolated domains can be enhanced by fine tuning the magnetic field path within the major hysteresis loop towards different remanent states. In particular, we see how hysteresis is correlated to irreversible changes in the domain morphology. More interestingly, we find that the magnetic domain morphology at remanence can be changed from an interconnected labyrinthine stripe state to a state of many separated bubble domains by fine tuning the magnitude of the field previously applied to the material. These results agree well with other findings, such as the magnetic reversal behavior and magnetic memory effects in Co/Pt multilayers, and provide opportunities for potential technological applications.

  20. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  1. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loop for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  2. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    SciTech Connect

    Wieserman, W.R.; Schwarze, G.E.; Niedra, J.M.

    1994-09-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglass 2605SC over the frequency range of 1-50 kHz and temperature range of 23-300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  3. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Xu, Ke; Jiang, Weilin; Droubay, Timothy; Ramuhalli, Pradeep; Edwards, Danny; Johnson, Bradley R.; McCloy, John

    2015-12-01

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversal curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.

  4. Steady state boiling crisis in a helium vertically heated natural circulation loop - Part 1: Critical heat flux, boiling crisis onset and hysteresis

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2016-01-01

    Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. The same loop was used in two experiments with different heated section internal diameter (10 and 6 mm). The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were recorded. The values of critical heat flux (CHF) were found at different positions of the test section, and the post-CHF regime was studied. The predictions of CHF by existing correlations were good in the downstream portion of the section, however CHF anomalies have been observed near the entrance, in the low quality region. In resonance with this, the re-wetting of the surface has distinct hysteresis behavior in each of the two CHF regions. Furthermore, hydraulics effects of crisis, namely on friction, were studied (Part 2). This research is the starting point to future works addressing transients conducing to boiling crisis in helium natural circulation loops.

  5. Hysteresis in weak ferromagnets

    NASA Astrophysics Data System (ADS)

    Bazaliy, Ya. B.; Tsymbal, L. T.; Kakazei, G. N.; Vasiliev, S. V.

    2011-03-01

    Magnetic hysteresis is studied in the orthoferrites ErFeO3 and TmFeO3 using the single crystal samples of millimeter dimensions. It is shown that in both materials one observes a temperature transition manifesting itself through the temperature hysteresis of the magnetic moment and a peculiar temperature evolution of the field hysteresis loop shapes near this transition. Experiments rule out the hypothesis that the ordering of the orthoferrite's rare earth magnetic moments plays an important role in these phenomena. The hysteresis curves can be explained by a few-domain magnetic state of the samples that results from the weak ferromagnetism of the orthoferrites. The phenomenon is generic for weak ferromagnets with temperature dependent magnetization. A large characteristic magnetic length makes the behavior of the relatively big samples analogous to that observed in the nano-size samples of strong ferromagnets. Supported by NSF DMR-0847159, Ukrainian DFFD F28/456-2009, Portuguese FCT ``Ciencia 2007''.

  6. Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles.

    PubMed

    Xu, S T; Ma, Y Q; Zheng, G H; Dai, Z X

    2015-04-21

    Well-dispersed uniform cobalt ferrite nanoparticles were synthesized by thermal decomposition of a metal-organic salt in organic solvent with a high boiling point. Some of the nanoparticles were diluted in a SiO2 matrix and then the undiluted and diluted samples were characterized and their magnetic behavior explored. The undiluted and diluted samples exhibited maximum coercivity Hc of 23,817 and 15,056 Oe at 10 K, respectively, which are the highest values reported to date, and the corresponding ratios of remanence (Mr) to saturation (Ms) magnetization (Mr/Ms) were as high as 0.85 and 0.76, respectively. Interestingly, the magnetic properties of the samples changed at 200 K, which was observed in magnetic hysteresis M(H) loops and zero-field cooling curves as well as the temperature dependence of Hc, Mr/Ms, anisotropy, dipolar field, and the magnetic grain size. Below 200 K, both samples have large effective anisotropy, which arises from the surface spins, resulting in large Hc and Mr/Ms. Above 200 K, the effective anisotropy decreases because there is no contribution from surface spins, while the dipolar interaction increases, resulting in small Hc and Mr/Ms. Our results indicate that strong anisotropy and weak dipolar interaction tend to increase Hc and Mr/Ms, and also clarify that the jumps around H = 0 in M(H) loops can be attributed to the reorientation of surface spins. This work exposes the underlying mechanism in nanoscale magnetic systems, which should lead to improved magnetic performance. PMID:25787852

  7. Simultaneous effects of surface spins: rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, S. T.; Ma, Y. Q.; Zheng, G. H.; Dai, Z. X.

    2015-04-01

    Well-dispersed uniform cobalt ferrite nanoparticles were synthesized by thermal decomposition of a metal-organic salt in organic solvent with a high boiling point. Some of the nanoparticles were diluted in a SiO2 matrix and then the undiluted and diluted samples were characterized and their magnetic behavior explored. The undiluted and diluted samples exhibited maximum coercivity Hc of 23 817 and 15 056 Oe at 10 K, respectively, which are the highest values reported to date, and the corresponding ratios of remanence (Mr) to saturation (Ms) magnetization (Mr/Ms) were as high as 0.85 and 0.76, respectively. Interestingly, the magnetic properties of the samples changed at 200 K, which was observed in magnetic hysteresis M(H) loops and zero-field cooling curves as well as the temperature dependence of Hc, Mr/Ms, anisotropy, dipolar field, and the magnetic grain size. Below 200 K, both samples have large effective anisotropy, which arises from the surface spins, resulting in large Hc and Mr/Ms. Above 200 K, the effective anisotropy decreases because there is no contribution from surface spins, while the dipolar interaction increases, resulting in small Hc and Mr/Ms. Our results indicate that strong anisotropy and weak dipolar interaction tend to increase Hc and Mr/Ms, and also clarify that the jumps around H = 0 in M(H) loops can be attributed to the reorientation of surface spins. This work exposes the underlying mechanism in nanoscale magnetic systems, which should lead to improved magnetic performance.

  8. Bias magnetic field and test period dependences of magnetoelectric hysteresis of particulate multiferroic composites

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Zhou, Hao-Miao; Ye, You-Xiang; Jiao, Zhi-Wei

    2016-03-01

    Magnetoelectric hysteresis behavior for four particulate multiferroic composites with different coercivities of magnetic hysteresis loops has been investigated, and the results show that the magnetoelectric hysteresis are deeply affected by the bias magnetic field and test period. The bias magnetic field dependence of ME hysteresis loops is associated with magnetic hysteresis loops, and the sample with large coercivity of magnetic hysteresis loops has high coercive field of magnetoelectric hysteresis loops. The test time hysteresis caused by fast varying bias magnetic field can be eliminated by prolonging test period. These findings provide some ideas not only for practical applications but also for the examination of magnetoelectric effect.

  9. Temperature Hysteresis in Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Huibin

    1991-05-01

    The martensitic phase transformation which produces shape memory is connected with a hysteresis. Some of the applications of shape memory alloys require small hysteresis loops, other require large ones. It is therefore important to be able to control the size of the hysteresis. For that purpose three different methods were introduced in the present paper. Mechanical vibration narrowed the hysteresis loops in both NiTi and CuZnAl alloys up to 17%, while the width of the hysteresis loops in a NiTi alloy decreased 3 similar 4 times by addition of the third element Cu. With help of a special heat treatment a nearly hysteresis-free phase transformation occured in a Ti-51Ni(at.%) alloy. The size of the hysteresis is determined by the interfacial energies of the phase boundaries and these will be big, if the E-modulus and the lattice distortion are big.

  10. Magnetic blocking from exchange interactions: slow relaxation of the magnetization and hysteresis loop observed in a dysprosium-nitronyl nitroxide chain compound with an antiferromagnetic ground state.

    PubMed

    Han, Tian; Shi, Wei; Niu, Zheng; Na, Bo; Cheng, Peng

    2013-01-14

    The combination of the anisotropic Dy(III) ion and organic radicals as spin carriers results in discrete and one-dimensional lanthanide-radical magnetic materials, namely, [Dy(hfac)(3)(NITThienPh)(2)] (1) and [Dy(2)(hfac)(6)(NITThienPh)(2)](n) (2; hfac =hexafluoroacetylacetonate, NITThienPh = 2-(5-phenyl-2-thienyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide). Linking monomeric 1 with the Dy(III) ion leads to the formation of polymeric 2, and the transformation between them is chemically controllable and reversible. The characterization of both static and dynamic magnetic properties shows that the dominant intrachain exchange interaction is important to observe magnetic bistability in 2 rather than that in 1. Monomeric 1 exhibits paramagnetic behavior, whereas polymeric 2 shows the unusual coexistence of superparamagnetic and two-step field-induced metamagnetic behaviors. The antiferromagnetic ground state of 2 does not prevent the dynamic relaxation of the magnetization with the finite-sized effect in the lanthanide-radical system. Energy barriers to thermally activated relaxation for 2 are 53 and 98 K in the low- and high-temperature regimes, respectively. A hysteresis loop is observed with the coercive field of 99 Oe at 2 K. PMID:23197464

  11. Mathematical models of hysteresis

    SciTech Connect

    1998-08-01

    The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.

  12. A magnetic hysteresis model

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Henretty, Debra A.

    1995-01-01

    The Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) will be deployed from the Space Shuttle and used as a target for a Shuttle-mounted laser. It will be a cylindrical satellite with several corner cube reflectors on the ends. The center of mass of the cylinder will be near one end, and aerodynamic torques will tend to align the axis of the cylinder with the spacecraft velocity vector. Magnetic hysteresis rods will be used to provide passive despin and oscillation-damping torques on the cylinder. The behavior of the hysteresis rods depends critically on the 'B/H' curves for the combination of materials and rod length-to-diameter ratio ('l-over-d'). These curves are qualitatively described in most Physics textbooks in terms of major and minor 'hysteresis loops'. Mathematical modeling of the functional relationship between B and H is very difficult. In this paper, the physics involved is not addressed, but an algorithm is developed which provides a close approximation to empirically determined data with a few simple equations suitable for use in computer simulations.

  13. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO3-xSrZrO3 solid solution

    NASA Astrophysics Data System (ADS)

    Guo, Hanzheng; Shimizu, Hiroyuki; Mizuno, Youichi; Randall, Clive A.

    2015-06-01

    A new lead-free antiferroelectric solid solution system, (1-x)NaNbO3-xSrZrO3, was rationalized through noting the crystal chemistry trend, of decreasing the tolerance factor and an increase in the average electronegativity of the system. The SrZrO3 doping was found to effectively stabilize the antiferroelectric (P) phase in NaNbO3 without changing its crystal symmetry. Preliminary electron diffraction and polarization measurements were presented which verified the enhanced antiferroelectricity. In view of our recent report of another lead-free antiferroelectric system (1-x)NaNbO3-xCaZrO3 [H. Shimizu et al. "Lead-free antiferroelectric: xCaZrO3 - (1-x)NaNbO3 system (0 ? x ? 0.10)," Dalton Trans. (published online)], the present results point to a general strategy of utilizing tolerance factor to develop a broad family of new lead-free antiferroelectrics with double polarization hysteresis loops. We also speculate on a broad family of possible solid solutions that could be identified and tested for this important type of dielectric.

  14. Discharge mode transition and hysteresis in inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Kim, Dong-Hwan; Chung, Chin-Wook

    2013-06-01

    Experimental verification of the discharge mode transition and the hysteresis by considering matching circuit is investigated in inductively coupled plasma using measurements of the plasma density and the power absorption to the plasma. At an argon gas pressure of 100 mTorr where the hysteresis loop of the plasma density had been observed in some previous experiments, there is no hysteresis loop against either the input power or the absorbed power delivered via an automatic impedance matching network. At a higher gas pressure of 350 mTorr, however, the hysteresis loop is clearly seen as functions of both the absorbed power and the input power. This result suggests that the observed hysteresis is due to not only the matching effect but also the nonlinearity of the plasma during capacitive (E) to inductive (H) and H to E heating mode transitions.

  15. Pseudo-elastic hysteresis in shape memory alloys

    NASA Astrophysics Data System (ADS)

    Müller, I.

    2012-05-01

    Observations of pseudo-elastic hysteresis loops in the shape memory alloy CuAlNi are presented. Particular emphasis is laid on the interior of the overall loop and the phenomena of internal yield and recovery and internal loops are discussed. A thermodynamic argument is presented which may afford an interpretation of the observed phenomena in terms of interfacial energies.

  16. The New P.E.

    ERIC Educational Resources Information Center

    Vandertie, Joan; Corner, Amy B.; Corner, Kevin J.

    2012-01-01

    Marana Middle School in Tucson, Ariz., scrapped its traditional P.E. program that emphasized team sports and shifted to a program that focuses on lifetime fitness, student choice in activities, and nutrition and health education. The program also includes student leadership development and informal community service. As a result, Marana students

  17. The New P.E.

    ERIC Educational Resources Information Center

    Vandertie, Joan; Corner, Amy B.; Corner, Kevin J.

    2012-01-01

    Marana Middle School in Tucson, Ariz., scrapped its traditional P.E. program that emphasized team sports and shifted to a program that focuses on lifetime fitness, student choice in activities, and nutrition and health education. The program also includes student leadership development and informal community service. As a result, Marana students…

  18. Preisach-type modeling of high-temperature superconducting hysteresis

    NASA Astrophysics Data System (ADS)

    ElBidweihy, Hatem

    2016-05-01

    Even though Isaak Mayergoyz described it as: "much more accurate for the description of superconducting hysteresis than for the description of hysteresis of magnetic materials", Preisach modeling of superconducting hysteresis is not a popular investigative tool. This might be due to the complexity of identifying the Preisach distribution function or due to lack of convincing physical reasoning behind pure phenomenological versions. In this paper, a two-component Preisach-type model is presented which is computationally-efficient and physically-sound. The change in the slope of the minor hysteresis loops is incorporated in the model and is attributed to reversible fluxoid motion. The model presented is clearly capable of simulating various shapes of superconducting hysteresis loops and could be easily coupled with finite element method (FEM) numerical software.

  19. Revisiting the hysteresis effect in surface energy budgets

    NASA Astrophysics Data System (ADS)

    Sun, Ting; Wang, Zhi-Hua; Ni, Guang-Heng

    2013-05-01

    The hysteresis effect in diurnal cycles of net radiation Rn and ground heat flux G0 has been observed in many studies, while the governing mechanism remains vague. In this study, we link the phenomenology of hysteresis loops to the wave phase difference between the diurnal evolutions of various terms in the surface energy balance. Rn and G0 are parameterized with the incoming solar radiation and the surface temperature as two control parameters of the surface energy partitioning. The theoretical analysis shows that the vertical water flux W and the scaled ratio As*>/AT* (net shortwave radiation to outgoing longwave radiation) play crucial roles in shaping hysteresis loops of Rn and G0. Comparisons to field measurements indicate that hysteresis loops for different land covers can be well captured by the theoretical model, which is also consistent with Camuffo-Bernadi formula. This study provides insight into the surface partitioning and temporal evolution of the energy budget at the land surface.

  20. Evaluation of fatigue damage in steels using Preisach model analysis of magnetic hysteresis measurements

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.; Melikhov, Y. Y.; Kadlecová, J.; Perevertov, O. V.; Tomáš, I.; Ring, A. P.; Jiles, D. C.

    2001-04-01

    The Preisach model analysis of magnetic hysteresis measurements has been applied to evaluate the microstructural changes in steels subjected to cyclic loading. Families of hysteresis loops were measured to obtain the Preisach-like functions. Barkhausen effect signals were also measured. The Preisach representation was found to be more sensitive to the increase in the number of stress cycles during the stable fatigue stage than the traditional hysteresis loop properties and Barkhausen effect signals.

  1. Cosmological hysteresis and the cyclic universe

    NASA Astrophysics Data System (ADS)

    Sahni, Varun; Toporensky, Aleksey

    2012-06-01

    A universe filled with a homogeneous scalar field exhibits “cosmological hysteresis.” Cosmological hysteresis is caused by the asymmetry in the equation of state during expansion and contraction. This asymmetry results in the formation of a hysteresis loop: ∮pdV, whose value can be nonvanishing during each oscillatory cycle. For flat potentials, a negative value of ∮pdV leads to the increase in amplitude of consecutive cycles and to a universe with older and larger successive cycles. Such a universe appears to possess an arrow of time even though entropy production is absent and all of the equations respect time-reversal symmetry. Cosmological hysteresis appears to be widespread and exists for a large class of scalar-field potentials and mechanisms for making the universe bounce. For steep potentials, the value of ∮pdV can be positive as well as negative. The expansion factor in this case displays quasiperiodic behavior in which successive cycles can be both larger as well as smaller than previous ones. This quasiregular pattern resembles the phenomenon of beats displayed by acoustic systems. Remarkably, the expression relating the increase or decrease in oscillatory cycles to the quantum of hysteresis appears to be model independent. The cyclic scenario is extended to spatially anisotropic models and it is shown that the anisotropy density decreases during successive cycles if ∮pdV is negative.

  2. Application of magnetic Compton scattering for spin-specific magnetic hysteresis measurement.

    PubMed

    Agui, Akane; Sakurai, Hiroshi; Tamura, Takuro; Kurachi, Toshitaka; Tanaka, Masahito; Adachi, Hiromichi; Kawata, Hiroshi

    2010-05-01

    An application of magnetic Compton scattering as a new tool to measure a spin-specific magnetic hysteresis (SSMH) loop is introduced and its validity demonstrated. The applied magnetic field dependence of the integrated intensity of magnetic Compton scattering spectra, which reflect only the spin-dependent magnetic properties of magnetically active electrons, was interpreted as the spin-specific hysteresis. The spin magnetization of amorphous Tb(33)Co(67) film was observed and its SSMH loop exhibited qualitative agreement with the ordinal magnetic hysteresis loop measured using a conventional vibrating sample magnetometer. PMID:20400829

  3. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  4. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    PubMed Central

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-01-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650

  5. Hysteresis and terrestrial hydrology

    NASA Astrophysics Data System (ADS)

    O Kane, J. P.; Pokrovski, A.; Kreichi, P.; Haverkamp, R.

    2003-04-01

    An examination of the physics of the land phase of the hydrological cycle shows that the most important non-linearities occur in the unsaturated zone of the soil. These have been studied by Dooge, his co-workers, and others, using switched boundary conditions applied to the one-dimensional form of Richards equation, modelling a one-square meter column of bare soil. Soil water responds to alternating wet and dry periods. Each period starts with a surface flux in or out of the soil that is set by atmospheric conditions. The moisture profile at the end of one period provides the initial condition for the next period. Within each period, a switch from atmosphere control to soil control may occur if the atmospheric conditions are strong enough and if they last for sufficient time. We refer to these times as the "time to ponding" in the case of infiltration of rain, and the "time to stage-two drying" in the case of evaporation. Consequently, there are two sets of switches in the computational clock: an outer pair always switching between wet and dry periods, and an inner pair switching intermittently from atmosphere control to soil control. Their effect has been studied on simplified forms of Richards equation. However the strongly non-linear, hysteretic property of the soil moisture characteristic is always ignored. It is more pronounced for sands than for clays. The presence of macropores changes, but does not eliminate, the hysteresis. The GRIZZLY database brings together a wide range of data sets on soil hysteresis. For many years the description of hysteresis in soils was largely based on Poulovassilis' application of the independent domain theory. Significant progress has since been made on the mathematical properties of hysteresis and its incorporation into models of unsaturated flow in porous media. The purpose of this presentation is to summarise these advances and to examine their implications for hydrology from the pedon (1 meter) scale to the catchment scale starting with the simplest models.

  6. Orientational hysteresis in swarms of active particles in external field

    NASA Astrophysics Data System (ADS)

    Romensky, M.; Lobaskin, V.

    2015-07-01

    Structure and ordering in swarms of active particles have much in common with condensed matter systems like magnets or liquid crystals. A number of important characteristics of such materials can be obtained via dynamic tests such as hysteresis. In this work, we show that dynamic hysteresis can be observed also in swarms of active particles and possesses similar properties to the counterparts in magnetic materials. To study the swarm dynamics, we use computer simulations of the active Brownian particle model with dissipative interactions. The swarm is confined to a narrow linear channel and the one-dimensional polar order parameter is measured. In an oscillating external field, the order parameter demonstrates dynamic hysteresis with the shape of the loop and its area varying with the amplitude and frequency of the applied field, swarm density and the noise intensity. We measure the scaling exponents for the hysteresis loop area, which can be associated with the controllability of the swarm. Although the exponents are non-universal and depend on the system's parameters, their limiting values can be predicted using a generic model of dynamic hysteresis. We also discuss similarities and differences between the swarm ordering dynamics and two-dimensional magnets.

  7. Residual stresses and vector hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Ktena, Aphrodite

    2016-04-01

    Residual stresses in magnetic materials, whether the result of processing or intentional loading, leave their footprint on macroscopic data, such hysteresis loops and differential permeability measurements. A Preisach-type vector model is used to reproduce the phenomenology observed based on assumptions deduced from the data: internal stresses lead to smaller and misaligned grains, hence increased domain wall pinning and angular dispersion of local easy axes, favouring rotation as a magnetization reversal mechanism; misaligned grains contribute to magnetostatic fields opposing the direction of the applied field. The model is using a vector operator which accounts for both reversible and irreversible processes; the Preisach concept for interactions for the role of stress related demagnetizing fields; and a characteristic probability density function which is constructed as a weighed sum of constituent functions: the material is modeled as consisting of various subsystems, e.g. reversal mechanisms or areas subject to strong/weak long range interactions and each subsystem is represented by a constituent probability density function. Our assumptions are validated since the model reproduces the hysteresis loops and differential permeability curves observed experimentally and calculations involving rotating inputs at various residual stress levels are consistent and in agreement with experimental evidence.

  8. A simple model of hysteresis behavior using spreadsheet analysis

    NASA Astrophysics Data System (ADS)

    Ehrmann, A.; Blachowicz, T.

    2015-01-01

    Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.

  9. Hysteresis modeling in ballistic carbon nanotube field-effect transistors

    PubMed Central

    Liu, Yian; Moura, Mateus S; Costa, Ademir J; de Almeida, Luiz Alberto L; Paranjape, Makarand; Fontana, Marcio

    2014-01-01

    Theoretical models are adapted to describe the hysteresis effects seen in the electrical characteristics of carbon nanotube field-effect transistors. The ballistic transport model describes the contributions of conduction energy sub-bands over carbon nanotube field-effect transistor drain current as a function of drain-source and gate-source voltages as well as other physical parameters of the device. The limiting-loop proximity model, originally developed to understand magnetic hysteresis, is also utilized in this work. The curves obtained from our developed model corroborate well with the experimentally derived hysteretic behavior of the transistors. Modeling the hysteresis behavior will enable designers to reliably use these effects in both analog and memory applications. PMID:25187698

  10. An Energy-Based Hysteresis Model for Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Calkins, F. T.; Smith, R. C.; Flatau, A. B.

    1997-01-01

    This paper addresses the modeling of hysteresis in magnetostrictive transducers. This is considered in the context of control applications which require an accurate characterization of the relation between input currents and strains output by the transducer. This relation typically exhibits significant nonlinearities and hysteresis due to inherent properties of magnetostrictive materials. The characterization considered here is based upon the Jiles-Atherton mean field model for ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. As demonstrated through comparison with experimental data, the magnetization model very adequately quantifies both major and minor loops under various operating conditions. The combined model can then be used to accurately characterize output strains at moderate drive levels. The advantages to this model lie in the small number (six) of required parameters and the flexibility it exhibits in a variety of operating conditions.

  11. Magnetic hysteresis based on dipolar interactions in granular magnetic systems

    NASA Astrophysics Data System (ADS)

    Allia, Paolo; Coisson, Marco; Knobel, Marcelo; Tiberto, Paola; Vinai, Franco

    1999-11-01

    The magnetic hysteresis of granular magnetic systems is investigated in the high-temperature limit (T>> blocking temperature of magnetic nanoparticles). Measurements of magnetization curves have been performed at room temperature on various samples of granular bimetallic alloys of the family Cu100-xCox (x=5-20 at. %) obtained in ribbon form by planar flow casting in a controlled atmosphere, and submitted to different thermal treatments. The loop amplitude and shape, which are functions of sample composition and thermal history, are studied taking advantage of a novel method of graphical representation, particularly apt to emphasize the features of thin, elongated loops. The hysteresis is explained in terms of the effect of magnetic interactions of the dipolar type among magnetic-metal particles, acting to hinder the response of the system of moments to isothermal changes of the applied field. Such a property is accounted for in a mean-field scheme, by introducing a memory term in the argument of the Langevin function which describes the anhysteretic behavior of an assembly of noninteracting superparamagnetic particles. The rms field arising from the cumulative effect of dipolar interactions is linked by the theory to a measurable quantity, the reduced remanence of a major symmetric hysteresis loop. The theory's self-consistence and adequacy have been properly tested at room temperature on all examined systems. The agreement with experimental results is always striking, indicating that at high temperatures the magnetic hysteresis of granular systems is dominated by interparticle, rather than single-particle, effects. Dipolar interactions seem to fully determine the magnetic hysteresis in the high-temperature limit for low Co content (x<=10). For higher concentrations of magnetic metal, the experimental results indicate that additional hysteretic mechanisms have to be introduced.

  12. Applications of a theory of ferromagnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Hodgdon, M. L.

    The differential equation dB/dt = alpha times the absolute value of dH/dt (f(H) - B) + dH/dt g(H) and a set of restrictions on the material functions f and g yield a theory of rate independent hysteresis for isoperm ferromagnetic materials. A modification based on exchanging the positions of B and H in the differential equation and on allowing for the dependence of the material functions on dH/dt extends the theory to rate dependent, nonisoperm materials. The theory and its extension exhibit all of the important features of ferromagnetic hysteresis, including the existence and stability of minor loops. Both are well suited for use in numerical field solving codes. Examples in which the material functions are simple combinations of analytic functions are presented here for Mn-Zn ferrite, Permalloy, CMD5005, and CoCr thin film. Also presented is a procedure for constructing a two dimensional vector model that yields bell-shaped and M-shaped curves for graphs of the angular variation of the coercive field.

  13. Domain-wall motion in random potential and hysteresis modeling

    SciTech Connect

    Pasquale, M.; Basso, V.; Bertotti, G.; Jiles, D.C.; Bi, Y.

    1998-06-01

    Two different approaches to hysteresis modeling are compared using a common ground based on energy relations, defined in terms of dissipated and stored energy. Using the Preisach model and assuming that magnetization is mainly due to domain-wall motion, one can derive the expression of magnetization along a major loop typical of the Jiles{endash}Atherton model and then extend its validity to cases where mean-field effects and reversible contributions are present. {copyright} {ital 1998 American Institute of Physics.}

  14. Barkhausen discontinuities and hysteresis of ferromagnetics: New stochastic approach

    SciTech Connect

    Vengrinovich, Valeriy

    2014-02-18

    The magnetization of ferromagnetic material is considered as periodically inhomogeneous Markov process. The theory assumes both statistically independent and correlated Barkhausen discontinuities. The model, based on the chain evolution-type process theory, assumes that the domain structure of a ferromagnet passes successively the steps of: linear growing, exponential acceleration and domains annihilation to zero density at magnetic saturation. The solution of stochastic differential Kolmogorov equation enables the hysteresis loop calculus.

  15. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P2{sub 1}ma) to establish double loop hysteresis in lead-free (1−x)NaNbO{sub 3}-xSrZrO{sub 3} solid solution

    SciTech Connect

    Guo, Hanzheng Randall, Clive A.; Shimizu, Hiroyuki; Mizuno, Youichi

    2015-06-07

    A new lead-free antiferroelectric solid solution system, (1−x)NaNbO{sub 3}-xSrZrO{sub 3}, was rationalized through noting the crystal chemistry trend, of decreasing the tolerance factor and an increase in the average electronegativity of the system. The SrZrO{sub 3} doping was found to effectively stabilize the antiferroelectric (P) phase in NaNbO{sub 3} without changing its crystal symmetry. Preliminary electron diffraction and polarization measurements were presented which verified the enhanced antiferroelectricity. In view of our recent report of another lead-free antiferroelectric system (1−x)NaNbO{sub 3}-xCaZrO{sub 3} [H. Shimizu et al. “Lead-free antiferroelectric: xCaZrO{sub 3} - (1−x)NaNbO{sub 3} system (0 ≤ x ≤ 0.10),” Dalton Trans. (published online)], the present results point to a general strategy of utilizing tolerance factor to develop a broad family of new lead-free antiferroelectrics with double polarization hysteresis loops. We also speculate on a broad family of possible solid solutions that could be identified and tested for this important type of dielectric.

  16. Hysteresis Phenomenon in Heat-Voltage Curves of Polypyrrole-Coated Electrospun Nanofibrous and Regular Fibrous Mats

    NASA Astrophysics Data System (ADS)

    Oroumei, Azam; Tavanai, Hossein; Morshed, Mohammad

    2015-07-01

    This article verifies the hysteresis phenomenon in heat-voltage curves of polypyrrole-coated electrospun nanofibrous and regular fibrous mats. A third-order polynomial model fits the heat-voltage data better than a second-order polynomial model. It was also observed that the hysteresis loop area of nanofibrous and regular fibrous mats increases with decreasing fiber diameter. Moreover, the curvature of the hysteresis loops is significantly affected by the fiber diameter. In fact, the slope of the curvatures increases with decreasing fiber diameter.

  17. First-order phase transition and anomalous hysteresis of Bose gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Daisuke; Ozaki, Takeshi; Sá de Melo, Carlos A. R.; Danshita, Ippei

    2013-09-01

    We study the first-order quantum phase transitions of Bose gases in optical lattices. A special emphasis is placed on an anomalous hysteresis behavior, in which the phase transition occurs in a unidirectional way and a hysteresis loop does not form. We first revisit the hardcore Bose-Hubbard model with dipole-dipole interactions on a triangular lattice to analyze accurately the ground-state phase diagram and the hysteresis using the cluster mean-field theory combined with cluster-size scaling. Details of the anomalous hysteresis are presented. We next consider the two-component and spin-1 Bose-Hubbard models on a hypercubic lattice and show that the anomalous hysteresis can emerge in these systems as well. In particular, for the former model, we discuss the experimental feasibility of the first-order transitions and the associated hysteresis. We also explain an underlying mechanism of the anomalous hysteresis by means of the Ginzburg-Landau theory. From the given cases, we conclude that the anomalous hysteresis is a ubiquitous phenomenon of systems with a phase region of lobe shape that is surrounded by the first-order boundary.

  18. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model

    NASA Astrophysics Data System (ADS)

    Gu, GuoYing; Zhu, LiMin

    2010-08-01

    In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u ](t) by a multiple input single output (MISO) mapping Γ :R2→R. Subsequently, the inverse MISO mapping Γ-1(H[u ](t),H[u˙](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.

  19. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.

    PubMed

    Gu, Guoying; Zhu, Limin

    2010-08-01

    In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Gamma:R(2)-->R. Subsequently, the inverse MISO mapping Gamma(-1)(H[u](t),H[u](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz. PMID:20815625

  20. Understanding contact angle hysteresis on an ambient solid surface

    NASA Astrophysics Data System (ADS)

    Wang, Yong Jian; Guo, Shuo; Chen, Hsuan-Yi; Tong, Penger

    2016-05-01

    We report a systematic study of contact angle hysteresis (CAH) with direct measurement of the capillary force acting on a contact line formed on the surface of a long glass fiber intersecting a liquid-air interface. The glass fiber of diameter 1 -2 μ m and length 100 -200 μ m is glued onto the front end of a rectangular cantilever beam, which is used for atomic force microscopy. From the measured hysteresis loop of the capillary force for 28 different liquids with varying surface tensions and contact angles, we find a universal behavior of the unbalanced capillary force in the advancing and receding directions and the spring constant of a stretched meniscus by the glass fiber. Measurements of the capillary force and its fluctuations suggest that CAH on an ambient solid surface is caused primarily by two types of coexisting and spatially intertwined defects with opposite natures. The contact line is primarily pinned by the relatively nonwetting (repulsive) defects in the advancing direction and by the relatively wetting (attractive) defects in the receding direction. Based on the experimental observations, we propose a "composite model" of CAH and relevant scaling laws, which explain the basic features of the measured hysteresis force loops.

  1. Proton intercalation hysteresis in charging and discharging nickel hydroxide electrodes

    SciTech Connect

    Ta, K.P.; Newman, J.

    1999-08-01

    A reproducible hysteresis in charge-discharge cycling of thin-film (10--40 nm thickness) electroprecipitated nickel hydroxide electrodes was quantified. Thin-film electrodes were prepared both with and without coprecipitated cobalt hydroxide, a common additive to nickel hydroxide electrodes. The ascending and descending branches of the hysteretic loop were determined. Experimental data were gathered using commonly employed techniques to capture electrode behavior on short- and long-time scales. Cyclic voltammetry and galvanostatic discharge experiments were performed, and a macroscopic model of the nickel hydroxide solid material was constructed and used to interpret the simultaneous mass-transfer, kinetic, and thermodynamic phenomena occurring at the nickel hydroxide intercalation electrode. The persistent hysteresis exhibited by these thin-film electrodes cannot be due only to solid-state mass-transfer limitations. Agreement between calculated and experimental results is achieved with treatment of the hysteresis effect as a permanent, thermodynamic quantity. The numerical model may be applied to most rechargeable cells and is especially suited for systems which exhibit a permanent hysteretic loop or in which side reactions are prevalent. Model results agree with current and potential waveforms gathered from experiments performed with nickel hydroxide thin-film electrodes.

  2. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    NASA Astrophysics Data System (ADS)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-02-01

    The Gd5Ge2Si2 alloy and the off-stoichiometric Ni50Mn35In15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd5Ge2Si2 and Ni50Mn35In15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  3. Disorder Identification in Hysteresis Data: Recognition Analysis of the Random-Bond-Random-Field Ising Model

    SciTech Connect

    Ovchinnikov, O. S.; Jesse, S.; Kalinin, S. V.; Bintacchit, P.; Trolier-McKinstry, S.

    2009-10-09

    An approach for the direct identification of disorder type and strength in physical systems based on recognition analysis of hysteresis loop shape is developed. A large number of theoretical examples uniformly distributed in the parameter space of the system is generated and is decorrelated using principal component analysis (PCA). The PCA components are used to train a feed-forward neural network using the model parameters as targets. The trained network is used to analyze hysteresis loops for the investigated system. The approach is demonstrated using a 2D random-bond-random-field Ising model, and polarization switching in polycrystalline ferroelectric capacitors.

  4. Hysteresis responses of evapotranspiration to meteorological factors at a diel timescale: patterns and causes.

    PubMed

    Zheng, Han; Wang, Qiufeng; Zhu, Xianjin; Li, Yingnian; Yu, Guirui

    2014-01-01

    Evapotranspiration (ET) is an important component of the water cycle in terrestrial ecosystems. Understanding the ways in which ET changes with meteorological factors is central to a better understanding of ecological and hydrological processes. In this study, we used eddy covariance measurements of ET from a typical alpine shrubland meadow ecosystem in China to investigate the hysteresis response of ET to environmental variables including air temperature (Ta), vapor pressure deficit (VPD) and net radiation (Rn) at a diel timescale. Meanwhile, the simulated ET by Priestly-Taylor equation was used to interpret the measured ET under well-watered conditions. Pronounced hysteresis was observed in both Ta and VPD response curves of ET. At a similar Ta and VPD, ET was always significantly depressed in the afternoon compared with the morning. But the hysteresis response of ET to Rn was not evident. Similar hysteresis patterns were also observed in the Ta/VPD response curves of simulated ET. The magnitudes of the measured and simulated hysteresis loops showed similar seasonal variation, with relatively smaller values occurring from May to September, which agreed well with the lifetime of plants and the period of rainy season at this site. About 62% and 23% of changes in the strength of measured ET-Ta and ET-VPD loops could be explained by the changes in the strength of simulated loops, respectively. Thus, the time lag between Rn and Ta/VPD is the most important factor generating and modulating the ET-Ta/VPD hysteresis, but plants and water status also contribute to the hysteresis response of ET. Our research confirmed the different hysteresis in the responses of ET to meteorological factors and proved the vital role of Rn in driving the diel course of ET. PMID:24896829

  5. Wetting hysteresis induced by nanodefects.

    PubMed

    Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried

    2016-01-19

    Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395

  6. Wetting hysteresis induced by nanodefects

    PubMed Central

    Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried

    2016-01-01

    Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395

  7. Comparison of magnetic hysteresis parameters of unremagnetized and remagnetized limestones

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.; McCabe, C.

    1994-03-01

    For white magnetite-bearing Mesozoic pelagic limestones from Italy which carry a 'primary' magnetization, the values of saturation remanence/saturation magnetization (Mrs/Ms) and coercivity of remanence/coercive force (Hcr/Hc) generally lie in the pseudo-single domain (PSD) field of the Day et al. (1977) plot. The logarithmic plot of Mrs/MS against Hcr/Hc gives a straight line (R = 0.814) with slope and intercept close to the empirical mixing line of Parry (1982) for single domain (SD) and multidomain (MD) magnetite. For one of the white pelagic limestone formations (Maiolica Formation), samples with hysteresis ratios closer to the MD field display increased paramagnetic susceptibility and are from the upper part of the formation characterized by increased detrital clay. We therefore associate the increased MD magnetite with increased detrital influx. For pinkish and reddish varieties of the Italian pelagic limesones, the presence of hematite is manifest by high saturation fields, a wide range of Hcr/Hc, and 'wasp-waisted' hysteresis loops attributed to the mixing of magnetite and high-coercivity authigenic hematite. The hysteresis for a collection of Paleozoic and Mesozoic remagnetized magnetite-bearing limestones from Britain, Nevada, Alaska and the Appalachians lie mainly outside the PSD field and appear to follow a power law trend. Following Jackson et al. (1993), the high values of Hcr/Hc and the characteristically 'wasp-waisted' hysteresis loops can be interpreted in terms of a fine-grained subspherical high-coercivity SD magnetite mixed with a high proportion of superparamagnetic magnetite. The slope and intercept of the power law relationship for Mrs/Ms and Hcr/Hc in the remagnetized limestones are distinct from those observed for the Italian limestones, and may provide a means of fingerprinting magnetite of 'primary' as opposed to diagenetic origin.

  8. Criteria for saturated magnetization loop

    NASA Astrophysics Data System (ADS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A. M. H. de; Schmidt, J. E.; Geshev, J.

    2016-03-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe3O4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one.

  9. Contrasting diel hysteresis between soil autotrophic and heterotrophic respiration in a desert ecosystem under different rainfall scenarios.

    PubMed

    Song, Weimin; Chen, Shiping; Zhou, Yadan; Wu, Bo; Zhu, Yajuan; Lu, Qi; Lin, Guanghui

    2015-01-01

    Diel hysteresis occurs often between soil CO2 efflux (R(S)) and temperature, yet, little is known if diel hysteresis occurs in the two components of R(S), i.e., autotrophic respiration (R(A)) and heterotrophic respiration (R(H)), and how diel hysteresis will respond to future rainfall change. We conducted a field experiment in a desert ecosystem in northern China simulating five different scenarios of future rain regimes. Diel variations of soil CO2 efflux and soil temperature were measured on Day 6 and Day 16 following the rain addition treatments each month during the growing season. We found contrasting responses in the diel hysteresis of R(A) and R(H) to soil temperature, with a clockwise hysteresis loop for R(H) but a counter-clockwise hysteresis loop for R(A). Rain addition significantly increased the magnitude of diel hysteresis for both R(H) and R(A) on Day 6, but had no influence on either on Day 16 when soil moisture was much lower. These findings underline the different roles of biological (i.e. plant and microbial activities) and physical-chemical (e.g. heat transport and inorganic CO2 exchange) processes in regulating the diel hysteresis of R(A) and R(H), which should be considered when estimating soil CO2 efflux in desert regions under future rainfall regime. PMID:26615895

  10. Contrasting diel hysteresis between soil autotrophic and heterotrophic respiration in a desert ecosystem under different rainfall scenarios

    PubMed Central

    Song, Weimin; Chen, Shiping; Zhou, Yadan; Wu, Bo; Zhu, Yajuan; Lu, Qi; Lin, Guanghui

    2015-01-01

    Diel hysteresis occurs often between soil CO2 efflux (RS) and temperature, yet, little is known if diel hysteresis occurs in the two components of RS, i.e., autotrophic respiration (RA) and heterotrophic respiration (RH), and how diel hysteresis will respond to future rainfall change. We conducted a field experiment in a desert ecosystem in northern China simulating five different scenarios of future rain regimes. Diel variations of soil CO2 efflux and soil temperature were measured on Day 6 and Day 16 following the rain addition treatments each month during the growing season. We found contrasting responses in the diel hysteresis of RA and RH to soil temperature, with a clockwise hysteresis loop for RH but a counter-clockwise hysteresis loop for RA. Rain addition significantly increased the magnitude of diel hysteresis for both RH and RA on Day 6, but had no influence on either on Day 16 when soil moisture was much lower. These findings underline the different roles of biological (i.e. plant and microbial activities) and physical-chemical (e.g. heat transport and inorganic CO2 exchange) processes in regulating the diel hysteresis of RA and RH, which should be considered when estimating soil CO2 efflux in desert regions under future rainfall regime. PMID:26615895

  11. Fatigue Hysteresis of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2016-02-01

    When the fiber-reinforced ceramic-matrix composites (CMCs) are first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. Under fatigue loading, the stress-strain hysteresis loops appear as fiber slipping relative to matrix in the interface debonded region upon unloading/reloading. Due to interface wear at room temperature or interface oxidation at elevated temperature, the interface shear stress degredes with increase of the number of applied cycles, leading to the evolution of the shape, location and area of stress-strain hysteresis loops. The evolution characteristics of fatigue hysteresis loss energy in different types of fiber-reinforced CMCs, i.e., unidirectional, cross-ply, 2D and 2.5D woven, have been investigated. The relationships between the fatigue hysteresis loss energy, stress-strain hysteresis loops, interface frictional slip, interface shear stress and interface radial thermal residual stress, matrix stochastic cracking and fatigue peak stress of fiber-reinforced CMCs have been established.

  12. Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system

    SciTech Connect

    Kocakaplan, Yusuf; Keskin, Mustafa

    2014-09-07

    The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We also compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement.

  13. Origin of hysteresis in resistive switching in magnetite is Joule heating

    NASA Astrophysics Data System (ADS)

    Fursina, A. A.; Sofin, R. G. S.; Shvets, I. V.; Natelson, D.

    2009-06-01

    In many transition-metal oxides the electrical resistance is observed to undergo dramatic changes induced by large biases. In magnetite, Fe3O4 , below the Verwey temperature, an electric-field-driven transition to a state of lower resistance was recently found, with hysteretic current-voltage response. We report the results of pulsed electrical conduction measurements in epitaxial magnetite thin films. We show that while the high- to low-resistance transition is driven by electric field, the hysteresis observed in I-V curves results from Joule heating in the low-resistance state. The shape of the hysteresis loop depends on pulse parameters and reduces to a hysteresis-free “jump” of the current provided thermal relaxation is rapid compared to the time between voltage pulses. A simple relaxation-time thermal model is proposed that captures the essentials of the hysteresis mechanism.

  14. A new index to quantify hysteresis at the runoff event timescale

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; Penna, Daniele; van Meerveld, Ilja; Borga, Marco

    2015-04-01

    Hysteresis is a non-linear loop-like behavior that is common in natural systems. Hysteresis is common in the relation between streamflow and a number of other hydrologic variables, e.g., groundwater levels, soil moisture, extent of the saturated area, and sediment and solute concentrations. Analysis of these hysteretic patterns at the event time scale can lead to a better understanding of the processes underlying the catchment hydrological response. Hysteretic patterns can also be used for model calibration and testing. Several indexes have been developed to analyze hysteresis and quantify the direction and the extent of the loops, particularly to determine hysteresis in the relation between sediment concentrations and runoff. However, they typically suffer from a degree of subjectivity, do not take into account complex hysteretic patterns and are therefore not always applicable to describe other hysteretic relations as well. Therefore, we present a new versatile index for the quantification of a wide range hysteretic loops between hydrological variables at the runoff event timescale and test the sensitivity of the index to the temporal resolution of the measurement data and measurement errors. The conceptual development of the new hysteresis index is based on i) a normalization to compare hysteretic loops at different space- and timescales, and ii) the computation of the slopes of segments connecting the initial state to observations of the independent variable. The index provides information on the direction, the extent and the shape of the hysteretic loops. The index was tested with hydrological data from three experimental catchments in Northern Italy. Hysteretic relations between streamflow (the independent variable) and four different dependent variables (soil moisture, groundwater level, isotopic composition of stream water and electrical conductivity of stream water) were correctly identified and quantified by the index. The objective quantification of hysteresis by the index allowed for the robust classification of hysteresis in datasets and thus to determine differences in hydrological responses for different events. The index also captured the switch in the direction of the hysteretic relation between soil moisture and streamflow with changes in event size and antecedent wetness conditions well. Finally, the sensitivity analyses showed that the index was little affected by the temporal resolution of the measurements and random errors in the input data. Keywords: hysteresis index; hysteretic loops; streamflow; soil moisture; seasonal dynamics; sensitivity analysis

  15. Ionically-mediated electromechanical hysteresis in transition metal oxides

    SciTech Connect

    Kim, Yunseok; Kumar, Amit; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    Electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 are observed. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Ginsburg Landau Devonshire (GLD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically-induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order GLD expansion coefficient, rendering material effectively ferroelectric. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.

  16. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS)

    SciTech Connect

    Professor Isaak Mayergoyz

    2006-08-21

    This research has further advanced the current state of the art in the areas of dynamic aspects of hysteresis and nonlinear large scale magnetization dynamics. The results of this research will find important engineering applications in the areas of magnetic data storage technology and the emerging technology of “spintronics”. Our research efforts have been focused on the following tasks: • Study of fast (pulse) precessional switching of magnetization in magnetic materials. • Analysis of critical fields and critical angles for precessional switching of magnetization. • Development of inverse problem approach to the design of magnetic field pulses for precessional switching of magnetization. • Study of magnetization dynamics induced by spin polarized current injection. • Construction of complete stability diagrams for spin polarized current induced magnetization dynamics. • Development of the averaging technique for the analysis of the slow time scale magnetization dynamics. • Study of thermal effects on magnetization dynamics by using the theory of stochastic processes on graphs.

  17. Regulative Loops, Step Loops and Task Loops

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    This commentary suggests a generalization of the conception of the behavior of tutoring systems, which the target article characterized as having an outer loop that was executed once per task and an inner loop that was executed once per step of the task. A more general conception sees these two loops as instances of regulative loops, which…

  18. Hysteresis and conformational changes in ribosomal ribonucleic acid

    PubMed Central

    Cox, R. A.; Katchalsky, A.

    1972-01-01

    Both rat liver and Escherichia coli rRNA in 0.1m-sodium chloride were titrated with acid or alkali over the range pH3–7 at approx. 0°C. rRNA did not bind acid reversibly and hysteresis was observed, i.e. the plot of acid bound to rRNA against pH had the form of a loop showing that the amount of acid bound at a particular pH depended on the direction of the titration. Although the boundary curves were reproducibly followed on titration from pH7 to 3 and from pH3 to 7, points within the loop were `scanned', e.g. by titration from pH7 to a point in the range pH3–4 followed by titration with alkali to pH7. It is inferred that the `lag' in the release of certain bound protons is at least 1 pH unit, that at least about 9–15% of the titratable groups (adenine and cytosine residues) that are involved in this process and that the free energy dissipated in completing a cycle is approx. 4.2kJ/mol (1kcal/mol) of nucleotide involved in hysteresis. The interpretation of the `scanning' curves was illustrated by means of a cycle of possible changes in the conformation of a hypothetical nucleotide sequence that allows formation of poly(A)·poly(AαH+)-like regions in acidic solutions. It is also inferred that the extent of `hysteresis' might depend on the primary nucleotide sequence of rRNA as well as on secondary structure. PMID:4561324

  19. Hysteresis and strain hardening in the creep response of a polyaniline ER fluid.

    PubMed

    Hiamtup, Piyanoot; Sirivat, Anuvat; Jamieson, Alexander M

    2008-09-01

    The electrorheological creep response of PANI/silicone oil suspensions near the yield point is investigated using parallel plate rheometry. Controlled-stress, thixotropic loop experiments exhibit a pronounced hysteresis, from which we determined the static yield stress (sigma(y(static))), as the stress where onset of flow occurs on the upward part of the loop, and a dynamic yield stress (sigma(y(dynamic))), defined as the stress at which flow ceases on the downward part of the loop. The magnitude of the hysteresis, as characterized by the area under the loop, increases substantially with applied field strength and particle concentration, but decreases with increase of temperature. Consistent with literature data, the creep compliance shows an evolution from viscoelastic to viscoplastic to viscous flow behavior as the applied stress increases through the yield point. In the viscoplastic regime, the apparent equilibrium compliance, J(e)(app), shows a discrete pre-yield transition to higher values, indicating a seemingly-enhanced ductility as the applied stress nears the yield point. Measurement of the static yield stress following these creep experiments suggests that the origin of this transition is a pronounced strain-hardening effect. We conclude that strain-hardening contributes to the hysteresis observed in the thixotropic loop test. PMID:18539292

  20. Hysteresis in the phase transition of chocolate

    NASA Astrophysics Data System (ADS)

    Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua

    2016-01-01

    We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.

  1. A neural network for incorporating the thermal effect on the magnetic hysteresis of the 3F3 material using the Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Nouicer, A.; Nouicer, E.; Feliachi, Mouloud

    2015-01-01

    The present paper deals with the temperature dependent modeling approach for the generation of hysteresis loops of ferromagnetic materials. The physical model is developed to study the effect of temperature on the magnetic hysteresis loop using the Jiles-Atherton (J-A) model. The thermal effects were incorporated through temperature dependent hysteresis parameters of JA model. The temperature-dependent J-A model was validated by measurements made on the ferrite material. The results of proposed model were in good agreement with the measurements.

  2. Parent Effectiveness Training (P.E.T.): Criticisms and Caveats.

    ERIC Educational Resources Information Center

    Doherty, William J.; Ryder, Robert G.

    1980-01-01

    Criticizes Parent Effectiveness Training (P.E.T.) for its emphasis on one-sided techniques in the parent-child relationship and its tendency to reduce complex problems to simplistic formulas. P.E.T.'s central metaphor of parent-as-therapist is identified and found wanting. Issues have applicability to the parent education movement in general.…

  3. Parent Effectiveness Training (P.E.T.): Criticisms and Caveats.

    ERIC Educational Resources Information Center

    Doherty, William J.; Ryder, Robert G.

    1980-01-01

    Criticizes Parent Effectiveness Training (P.E.T.) for its emphasis on one-sided techniques in the parent-child relationship and its tendency to reduce complex problems to simplistic formulas. P.E.T.'s central metaphor of parent-as-therapist is identified and found wanting. Issues have applicability to the parent education movement in general.

  4. Lift hysteresis at stall as an unsteady boundary-layer phenomenon

    NASA Technical Reports Server (NTRS)

    Moore, Franklin K

    1956-01-01

    Analysis of rotating stall of compressor blade rows requires specification of a dynamic lift curve for the airfoil section at or near stall, presumably including the effect of lift hysteresis. Consideration of the magnus lift of a rotating cylinder suggests performing an unsteady boundary-layer calculation to find the movement of the separation points of an airfoil fixed in a stream of variable incidence. The consideration of the shedding of vorticity into the wake should yield an estimate of lift increment proportional to time rate of change of angle of attack. This increment is the amplitude of the hysteresis loop. An approximate analysis is carried out according to the foregoing ideas for a 6:1 elliptic airfoil at the angle of attack for maximum lift. The assumptions of small perturbations from maximum lift are made, permitting neglect of distributed vorticity in the wake. The calculated hysteresis loop is counterclockwise. Finally, a discussion of the forms of hysteresis loops is presented; and, for small reduced frequency of oscillation, it is concluded that the concept of a viscous "time lag" is appropriate only for harmonic variations of angle of attack with time at mean conditions other than maximum lift.

  5. Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale

    NASA Astrophysics Data System (ADS)

    Li, Linglong; Yang, Yaodong; Liu, Zhengchun; Jesse, Stephen; Kalinin, Sergei V.; Vasudevan, Rama K.

    2016-04-01

    The nonlinear response of a ferroic to external fields has been studied for decades, garnering interest for both understanding fundamental physics, as well as technological applications such as memory devices. Yet, the behavior of ferroelectrics at mesoscopic regimes remains poorly understood, and the scale limits of theories developed for macroscopic regimes are not well tested experimentally. Here, we test the link between piezo-nonlinearity and local piezoelectric strain hysteresis, via AC-field dependent measurements in conjunction with hysteresis measurements with varying voltage windows on (K,Na)NbO3 crystals with band-excitation piezoelectric force microscopy. The correlation coefficient between nonlinearity amplitude and the amplitude during hysteresis loop acquisition shows a clear decrease with increasing AC bias. Further, correlation of polynomial fitting terms from the nonlinear measurements with the hysteresis loop area reveals that the largest correlations are reserved for the quadratic terms, which is expected for irreversible domain wall motion contributions that impact both piezoelectric behavior as well as minor loop formation. This study suggests applicability at local length scales of fundamental principles of Rayleigh behavior, with associated implications for future nanoscale ferroic devices.

  6. Modeling of dynamic hysteresis for grain-oriented laminations using a viscosity-based modified dynamic Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Baghel, A. P. S.; Shekhawat, S. K.; Kulkarni, S. V.; Samajdar, I.

    2014-09-01

    Grain-oriented (GO) materials exhibit arbitrary frequency-loss behaviors and anomalies in dynamic hysteresis loop shapes. Significant attempts have been made in the literature to approximate dynamic hysteresis loops using the dynamic Jiles-Atherton (JA) model based Bertotti's approach. Such a model is inefficient in accurate loss computation over a wide range of frequencies and in predictions of correct loop shapes. Moreover, the original static JA model also needs to be improved for accurate prediction of highly steep, gooseneck, and narrow-waist static loops of GO materials. An alternative approach based on magnetic viscosity provides flexibilities to handle indefinite frequency dependence of the losses and to control the anomalous loop shapes. This paper proposes a viscosity-based dynamic JA model which gives accurate prediction of dynamic loops of GO materials. A modified static JA model which considers crystalline and textured structures of GO materials is used to predict static hysteresis loops. The dynamic losses are included in the modified model using the field separation approach. The proposed model is validated using experimental measurements. The computed and measured dynamic loops are in close agreement in the frequency range of 1-200 Hz.

  7. Hysteresis during contact angles measurement.

    PubMed

    Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D

    2010-03-15

    A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle. PMID:20060981

  8. A two-state hysteresis model from high-dimensional friction

    PubMed Central

    Biswas, Saurabh; Chatterjee, Anindya

    2015-01-01

    In prior work (Biswas & Chatterjee 2014 Proc. R. Soc. A 470, 20130817 (doi:10.1098/rspa.2013.0817)), we developed a six-state hysteresis model from a high-dimensional frictional system. Here, we use a more intuitively appealing frictional system that resembles one studied earlier by Iwan. The basis functions now have simple analytical description. The number of states required decreases further, from six to the theoretical minimum of two. The number of fitted parameters is reduced by an order of magnitude, to just six. An explicit and faster numerical solution method is developed. Parameter fitting to match different specified hysteresis loops is demonstrated. In summary, a new two-state model of hysteresis is presented that is ready for practical implementation. Essential Matlab code is provided. PMID:26587279

  9. Technical Note: Testing an improved index for analysing storm discharge-concentration hysteresis

    NASA Astrophysics Data System (ADS)

    Lloyd, C. E. M.; Freer, J. E.; Johnes, P. J.; Collins, A. L.

    2016-02-01

    Analysis of hydrochemical behaviour during storm events can provide new insights into the process controls on nutrient transport in catchments. The examination of storm behaviours using hysteresis analysis has increased in recent years, partly due to the increased availability of high temporal resolution data sets for discharge and water quality parameters. A number of these analyses involve the use of an index to describe the characteristics of a hysteresis loop in order to compare storm behaviours both within and between catchments. This technical note reviews the methods for calculation of the hysteresis index (HI) and explores a new more effective methodology. Each method is systematically tested and the impact of the chosen calculation on the results is examined. Recommendations are made regarding the most effective method of calculating a HI which can be used for comparing data between storms and between different water quality parameters and catchments.

  10. Dynamic hysteresis and scaling behavior for Pb(Zr,Ti)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Xuefeng; Dong, Xianlin; Zhou, Zhiyong; Wang, Junxia; Cao, Fei; Wang, Genshui; Zhang, Hongling

    2014-03-01

    The dynamic hysteresis of Nb-doped Pb(ZrxTi1-x)O3 (PZT, 0.40 ≤ x ≤ 0.60) ceramics with different phase structures was investigated as functions of frequency f and electric field amplitude E0. When E0 grows over ˜1.5 times of coercive field Ec, all the loops become well saturated and their scaling relations of hysteresis area ⟨A⟩ against f and E0 can be expressed with an identical form as ⟨A⟩∝f0.01E00.10 for either tetragonal phase or morphotropic phase, which is in good agreement with our previous result of rhombohedral PZT [Chen et al., J. Appl. Phys. 114, 244101 (2013)]. The results indicate that ferroelectrics with fairly distinct domain structures could have similar dynamic hysteresis and scaling behavior at high-E0 region.

  11. A two-state hysteresis model from high-dimensional friction.

    PubMed

    Biswas, Saurabh; Chatterjee, Anindya

    2015-07-01

    In prior work (Biswas & Chatterjee 2014 Proc. R. Soc. A 470, 20130817 (doi:10.1098/rspa.2013.0817)), we developed a six-state hysteresis model from a high-dimensional frictional system. Here, we use a more intuitively appealing frictional system that resembles one studied earlier by Iwan. The basis functions now have simple analytical description. The number of states required decreases further, from six to the theoretical minimum of two. The number of fitted parameters is reduced by an order of magnitude, to just six. An explicit and faster numerical solution method is developed. Parameter fitting to match different specified hysteresis loops is demonstrated. In summary, a new two-state model of hysteresis is presented that is ready for practical implementation. Essential Matlab code is provided. PMID:26587279

  12. Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Ersin, Kantar

    2015-10-01

    Magnetic behaviors of the Ising system with bilayer honeycomb lattice (BHL) structure are studied by using the effective-field theory (EFT) with correlations. The effects of the interaction parameters on the magnetic properties of the system such as the hysteresis and compensation behaviors as well as phase diagrams are investigated. Moreover, when the hysteresis behaviors of the system are examined, single and double hysteresis loops are observed for various values of the interaction parameters. We obtain the L-, Q-, P-, and S-type compensation behaviors in the system. We also observe that the phase diagrams only exhibit the second-order phase transition. Hence, the system does not show the tricritical point (TCP).

  13. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  14. Structural hysteresis model of transmitting mechanical systems

    NASA Astrophysics Data System (ADS)

    Ruderman, M.; Bertram, T.

    2015-02-01

    We present a structural hysteresis model which describes the dynamic behavior of transmitting mechanical systems with a hysteretic spring and damped bedstop element, both connected in series. From the application point view this approach can be used for predicting the transmitted mechanical force based only on the known kinematic excitation. Using the case study of an elastic gear transmission we show and identify a hysteresis response which multivariate behavior depends on an internal state of the bedstop motion.

  15. Load-Dependent Friction Hysteresis on Graphene.

    PubMed

    Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie

    2016-05-24

    Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading. PMID:27110836

  16. Anomalous heat transport and numerical studies of magnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Mai, Trieu Thanh

    When a small temperature gradient is applied across a system, in steady-state a heat current exists and is expected to follow Fourier's law. In certain low dimensional systems, Fourier's law breaks down and heat transport is anomalous. The anomalous heat conductiv ity n diverges with system size L as kappa ˜ Lgamma. By using hydrodynamic and renormalization group arguments, the nature of the divergence is found to be universal in one-dimensional systems with an exponent gamma = 1/3. The universality class contains all momentum-conserving one-dimensional systems, despite the existence of broken symmetries. Careful numerical simulations of anharmonic chains confirm this universality. The heat conduction analysis requires the existence of well-defined local thermodynamic fields, especially a local temperature. Numerical simulations of chains show that even slight deviations from the mono-atomic anharmonic chain, such as the addition of impurities, dramatically eliminate the possibility of a well-behaved local temperature for such systems. This discovery extends the seminal 1955 numerical experiment by Fermi, Pasta, and Ulam on the question of equipartition of energy to include heat baths in the nonequilibrium steady-state setting. Magnetic hysteresis, another inherently nonequilibrium phenomenon, is also considered. Numerical simulations of magnetic nanopillar arrays reveal the possibility of hysteresis multicycles, where more than one cycle of the external field is required for a configuration to return to the same microscopic configuration. This realistic model and calculated parameters support the belief that disorder and frustration are needed for multicycles to exist. We also use extensive simulations to explain a surprising asymmetry of microscopic memory measurements by Pierce et al. (2005) on disordered Co/Pt magnetic thin films. A dynamical symmetry breaking mechanism from the Landau-Lifshitz-Gilbert spin evolution equation is discovered. In addition, we offer explanations for other experimental results, including: the effects of disorder, intriguing hysteresis loops, and magnetic pattern formation.

  17. Magnetic hysteresis in natural materials. [chondrites, lunar samples and terrestrial rocks

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.

    1973-01-01

    Magnetic hysteresis loops and the derived hysteresis ratios R sub H and R sub I are used to classify the various natural dilute magnetic materials. R sub I is the ratio of saturation isothermal remanence (I sub R) to saturation (I sub S) magnetization, and R sub H is the ratio of remanent coercive force (H sub R) to coercive force (H sub C). The R sub H and R sub I values depend on grain size, the characteristics of separate size modes in mixtures of grains of high and low coercivity, and the packing characteristics. Both R sub H and R sub I are affected by thermochemical alterations of the ferromagnetic fraction. Hysteresis loop constriction is observed in lunar samples, chondrite meteorites, and thermochemically altered basaltic rocks, and is due to mixtures of components of high and low coercivity. Discrete ranges of R sub H and R sub I for terrestrial and lunar samples and for chondrite meteorites provide for a classification of these natural materials based on their hysteresis properties.

  18. Hysteresis model and statistical interpretation of energy losses in non-oriented steels

    NASA Astrophysics Data System (ADS)

    Mănescu (Păltânea), Veronica; Păltânea, Gheorghe; Gavrilă, Horia

    2016-04-01

    In this paper the hysteresis energy losses in two non-oriented industrial steels (M400-65A and M800-65A) were determined, by means of an efficient classical Preisach model, which is based on the Pescetti-Biorci method for the identification of the Preisach density. The excess and the total energy losses were also determined, using a statistical framework, based on magnetic object theory. The hysteresis energy losses, in a non-oriented steel alloy, depend on the peak magnetic polarization and they can be computed using a Preisach model, due to the fact that in these materials there is a direct link between the elementary rectangular loops and the discontinuous character of the magnetization process (Barkhausen jumps). To determine the Preisach density it was necessary to measure the normal magnetization curve and the saturation hysteresis cycle. A system of equations was deduced and the Preisach density was calculated for a magnetic polarization of 1.5 T; then the hysteresis cycle was reconstructed. Using the same pattern for the Preisach distribution, it was computed the hysteresis cycle for 1 T. The classical losses were calculated using a well known formula and the excess energy losses were determined by means of the magnetic object theory. The total energy losses were mathematically reconstructed and compared with those, measured experimentally.

  19. Hysteresis losses of magnetic nanoparticle powders in the single domain size range

    NASA Astrophysics Data System (ADS)

    Dutz, S.; Hergt, R.; Mürbe, J.; Müller, R.; Zeisberger, M.; Andrä, W.; Töpfer, J.; Bellemann, M. E.

    2007-01-01

    Magnetic iron oxide nanoparticle powders were investigated in order to optimise the specific hysteresis losses for biomedical heating applications. Different samples with a mean particle size in the transition range from superparamagnetic to ferromagnetic behaviour (i.e. 10-100 nm) were prepared by two different chemical precipitation routes. Additionally, the influence of milling and annealing on hysteresis losses of the nanoparticles was investigated. Structural investigations of the samples were carried out by X-ray diffraction, measurement of specific surface area, and scanning and transmission electron microscopy. The dependence of hysteresis losses of minor loops on the field amplitude was determined using vibrating sample magnetometry and caloric measurements. For small field amplitudes, a power law was found which changes into saturation at amplitudes well above the coercive field. Maximum hysteresis losses of 6.6 J/kg per cycle were observed for milled powder. For field amplitudes below about 10 kA/m, which are especially interesting for medical and technical applications, hysteresis losses of all investigated powders were at least by one order of magnitude lower than reported for magnetosomes of comparable size.

  20. A statistical mechanical description of metastable states and hysteresis in the 3D soft-spin random-field model at T = 0

    NASA Astrophysics Data System (ADS)

    Rosinberg, M. L.; Tarjus, G.

    2010-12-01

    We present a formalism for computing the complexity of metastable states and the zero-temperature magnetic hysteresis loop in the soft-spin random-field model in finite dimensions. The complexity is obtained as the Legendre transform of the free energy associated with a certain action in replica space and the hysteresis loop above the critical disorder is defined as the curve in the field-magnetization plane where the complexity vanishes; the nonequilibrium magnetization is therefore obtained without having to follow the dynamical evolution. We use approximations borrowed from condensed-matter theory and based on assumptions on the structure of the direct correlation functions (or proper vertices), such as a local approximation for the self-energies, to calculate the hysteresis loop in three dimensions, the correlation functions along the loop, and the second moment of the avalanche-size distribution.

  1. Application of the Preisach Model to Soil-moisture Hysteresis

    NASA Astrophysics Data System (ADS)

    O'Kane, J.; Pokrovskii, A.; Krejci, P.; Haverkamp, R.

    2003-12-01

    An examination of the physics of the land phase of the hydrological cycle shows that the most important non-linearities occur in the unsaturated zone of the soil. These have been studied using switched boundary conditions applied to the one-dimensional form of Richards differential equation, modelling the wetting and drying of a column of bare or vegetated soil, at a scale of roughly one meter. However, the strongly non-linear hysteretic property of the soil moisture characteristic is usually ignored. Smooth non-linear differential, or integro-differential, operators cannot reproduce soil-moisture hysteresis. The classical Preisach Model is presented and applied to the quantitative description of soil-moisture scanning curves. The Preisach model is a deterministic, rate independent non-linear operator with return-point memory and congruent loops. Special, one parameter, classes of Preisach operators are proposed as models of soil-moisture hysteresis for particular soils. The results of fitting these operators to laboratory and field data, taken from the Grenoble GRIZZLY Soil Database, are presented and discussed.

  2. Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Lyakhovsky, Vladimir; Ougier-Simonin, Audrey; Hamiel, Yariv; Zhu, Wenlu

    2014-05-01

    Sandstones display non-linear and inelastic behaviour such as hysteresis when subjected to cyclic loading. We present three hydrostatic compaction experiments with multiple loading-unloading cycles on Berea and Darley Dale sandstones and explain their hysteretic behaviour using non-linear inelastic compaction and dilation. Each experiment included eight to nine loading-unloading cycles with increasing maximum pressure in each subsequent cycle. Different pressure-volumetric strain relations during loading and unloading were observed. During the first cycles, under relatively low pressures, not all of the volumetric strain is recovered at the end of each cycle whereas at the last cycles, under relatively high pressures, the strain is recovered and the pressure-volumetric strain hysteresis loops are closed. The observed pressure-volumetric strain relations are non-linear and the effective bulk modulus of the sandstones changes between cycles. Observations are modelled with two inelastic deformation processes: irreversible compaction caused by changes in grain packing and recoverable compaction associated with grain contact adhesion, frictional sliding on grains or frictional sliding on cracks. The irreversible compaction is suggested to reflect rearrangement of grains into a more compact mode as the maximum pressure increases. Our model describes the `inelastic compaction envelope' in which sandstone sample will follow during hydrostatic loading. Irreversible compaction occurs when pressure is greater than a threshold value defined by the `inelastic compaction envelope'.

  3. Rotational versus alternating hysteresis losses in nonoriented soft magnetic laminations

    NASA Astrophysics Data System (ADS)

    Fiorillo, F.; Rietto, A. M.

    1993-05-01

    Rotational and alternating hysteresis losses have been investigated in theory and experiment in nonoriented soft magnetic laminations. Attention has been focused on the dependence of energy loss on peak magnetization Ip. The experiments, performed in a wide induction range (˜2×10-4 T≤Ip≤˜1.6 T), show that the ratio between rotational and alternating energy losses Whr/Wha is a monotonically decreasing function of Ip. A quantitative theoretical investigation is carried out through modeling of the magnetization process under rotating field and its relation to processes under alternating field. Three basic mechanisms of magnetization rotation are considered: linear combination of unidirectional hysteresis loops at low inductions (Rayleigh region), cyclic rearrangement of magnetic domains between different easy directions at intermediate inductions, and coherent spin rotation toward the approach to magnetic saturation. The ensuing predicted behavior of Whr/Wha is found to be in good agreement with the experiments performed in nonoriented low carbon steel and 3% FeSi laminations.

  4. Transport, hysteresis and avalanches in artificial spin ice systems

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, A

    2010-01-01

    We examine the hopping dynamics of an artificial spin ice system constructed from colloids on a kagome optical trap array where each trap has two possible states. By applying an external drive from an electric field which is analogous to a biasing applied magnetic field for real spin systems, we can create polarized states that obey the spin-ice rules of two spins in and one spin out at each vertex. We demonstrate that when we sweep the external drive and measure the fraction of the system that has been polarized, we can generate a hysteresis loop analogous to the hysteretic magnetization versus external magnetic field curves for real spin systems. The disorder in our system can be readily controlled by changing the barrier that must be overcome before a colloid can hop from one side of a trap to the other. For systems with no disorder, the effective spins all flip simultaneously as the biasing field is changed, while for strong disorder the hysteresis curves show a series of discontinuous jumps or avalanches similar to Barkhausen noise.

  5. Dynamic Hysteresis in Compacted Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdary, Krishna M.

    The frequency and temperature dependent magnetic response of a bulk soft magnetic nanocomposite made by compacting Fe10Co 90 nanoparticles was measured and modeled. Electron microscopy and x-ray diffraction were used to characterize the size, composition, and structure of the nanoparticles and nanocomposite. Polyol synthesis was used to produce 200 nm particles with average grain size 20 nm and large superparamagnetic fraction. The nanoparticles were consolidated to 90% theoretical density by plasma pressure compaction. The compacted nanoparticles retained the 20 nm average grain size and large superparamagnetic fraction. The nanocomposite resistivity was more than three times that of the bulk alloy. Vibrating sample and SQUID-MPMS magnetometers were used for low frequency magnetic measurements of the nanoparticles and nanocomposite. Compaction reduced the coercivity from 175 Oe to 8 Oe and the effective anisotropy from 124 x 10 3 ergs/cc to 7.9 x 103 ergs/cc. These reductions were caused by increased exchange coupling between surface nanograins, consistent with predictions from the Random Anisotropy model. Varying degrees of exchange coupling existed within the nanocomposite, contributing to a distribution of energy barriers. A permeameter was used for frequency dependent magnetic measurements on a toroid cut from the nanocomposite. Complex permeability, coercivity, and power loss were extracted from dynamic minor hysteresis loops measured over a range of temperatures (77 K - 873 K) and frequencies (0.1 kHz - 100 kHz). The real and imaginary parts of the complex permeability spectrum showed asymmetries consistent with a distribution of energy barriers and high damping. When the complex permeability, power loss, and coercivity were scaled relative to the peak frequency of the imaginary permeability, all fell on universal curves. Various microscopic and macroscopic models for the complex permeability were investigated. The complex permeability was successfully fit by modifying the Cole-Davidson model with a scaling factor that extended the model to higher damping. The additional damping was consistent with the damping from eddy current modeling, showing that the nanocomposite's complex permeability could be explained by combining microscopic effects (the distribution of energy barriers represented by the Cole-Davidson model) with macroscopic effects (damping due to eddy currents).

  6. Disorder-driven first-order phase transformations: A model for hysteresis

    SciTech Connect

    Dahmen, K.; Kartha, S.; Krumhansl, J.A.; Roberts, B.W.; Sethna, J.P.; Shore, J.D. )

    1994-05-15

    Hysteresis loops in some magnetic systems are composed of small avalanches (manifesting themselves as Barkhausen pulses). Hysteresis loops in other first-order phase transitions (including some magnetic systems) often occur via one large avalanche. The transition between these two limiting cases is studied, by varying the disorder in the zero-temperature random-field Ising model. Sweeping the external field through zero at weak disorder, we get one large avalanche with small precursors and aftershocks. At strong disorder, we get a distribution of small avalanches (small Barkhausen effect). At the critical value of disorder where a macroscopic jump in the magnetization first occurs, universal power-law behavior of the magnetization and of the distribution of (Barkhausen) avalanches is found. This transition is studied by mean-field theory, perturbative expansions, and numerical simulation in three dimensions.

  7. Replication control genes of plasmid pE194.

    PubMed

    Villafane, R; Bechhofer, D H; Narayanan, C S; Dubnau, D

    1987-10-01

    pE194, a 3.7-kilobase plasmid, confers resistance to macrolide, lincosamide, and streptogramin B antibiotics. The previously identified cop and repF genes of pE194 have been further localized by molecular cloning and mutational analysis together with DNA sequencing. The CfoIB fragment of pE194 is capable of autonomous replication and contains both genes. Most of this region has been resequenced, and two errors reported in a previous study have been corrected. The corrected sequence indicates that the replication region contains a single large open reading frame, which we propose encodes the repF product. Northern blot (RNA blot) analysis of this region detected six transcripts, all transcribed in the same direction as one another and opposite to repF. A 350-base transcript is synthesized from the region containing cop. No in vivo transcript for the repF gene was detected, but a protein was observed in an in vitro transcription-translation system which appears to be its product. An ochre mutation was inserted in the putative repF open reading frame, and a nonsense fragment was detected in the in vitro system. When carried passively on a pUB110 replicon, this mutant product appears capable of inhibiting pE194 replicons in trans. The pE194 origin of replication has been localized to within 200 bases. PMID:2443486

  8. Adhesion hysteresis of a film-terminated fibrillar array

    NASA Astrophysics Data System (ADS)

    Yan, ShunPing; He, LingHui; Wang, HuiJing

    2012-06-01

    Motivated by the recent biomimic design of microstructured adhesive surfaces, we study adhesion between a film-terminated fibrillar array and a rigid substrate. Using a two-dimensional model and ignoring the deformation of the fibers and the backing layer, we show that the adhesion behavior is dominated by a dimensionless parameter reflecting the global flexibility of the terminal film. In particular, if the parameter is larger than 0.4, the adhesion is reversible; otherwise one or more hysteresis loops will appear after an approach-retraction cycle, leading to significant increase in the specific separation work. The result is expected to help not only optimal design of the structure, but also other applications such as micro-manipulation in micromechanical systems.

  9. Ionically-mediated electromechanical hysteresis in transition metal oxides.

    PubMed

    Kim, Yunseok; Morozovska, Anna N; Kumar, Amit; Jesse, Stephen; Eliseev, Eugene A; Alibart, Fabien; Strukov, Dmitri; Kalinin, Sergei V

    2012-08-28

    Nanoscale electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO(2) and SrTiO(3) thin films are observed using scanning probe microscopy. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Landau-Ginzburg-Devonshire (LGD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order LGD expansion coefficient, rendering material effectively ferroelectric. The lifetime of these ionically induced ferroelectric states is then controlled by the transport time of the mobile ionic species and well above that of polarization switching. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides. PMID:22845698

  10. Dynamical analysis to the levitated systems of high temperature superconductors with hysteresis

    NASA Astrophysics Data System (ADS)

    Zhou, You-He; Zhao, Xian-Feng

    2006-08-01

    Dynamic behavior and penetration history of shielding currents distribution associated with the hysteresis of magnetic levitation force are investigated to the vertically mechanical oscillation of a permanent magnet (PM) which is magnetically levitated over a YBCO superconductor based on Bean’s critical-state model and Ampére circulation theorem. After the shielding current distribution is analytically derived out from the Maxwell’s equations of the electromagnetic system to each monotonic procedure of the hysteresis, the dynamic differential equation of the levitation is solved to the damped free vibration of the system using the adaptive Runge-Kutta approach of order 4. The obtained results display that the partially wiping-out phenomenon of shielding currents always happens in the interior of the superconductor such that the PM experiences a damped vibration. It is found that the damping generated from the hysteresis in the superconductor is time-changeable in the whole response, and that the frequency of vibration or magnetic stiffness increases with time during the first four periods of the response, as well as that the maximum penetration depth, δp, of the shielding currents at the end of each procedure of the hysteresis decays with time or turning number, Ntur, i.e., δp=e where α0 and α1 are the fitting coefficients.

  11. Nonferroelectric contributions to the hysteresis cycles in manganite thin films: A comparative study of measurement techniques

    NASA Astrophysics Data System (ADS)

    Fina, I.; Fàbrega, L.; Langenberg, E.; Martí, X.; Sánchez, F.; Varela, M.; Fontcuberta, J.

    2011-04-01

    Several experimental methods to measure ferroelectric hysteresis loops and to extract polarization values are compared for thin films with significant losses and different magnitudes of polarization. The analysis allows the determination of the most appropriate frequency range and technique to extract reliable values of the remanent polarization in materials with low polarization and high leakage. Examples include multiferroic YMnO3 and Bi0.9La0.1NiMnO6 thin films.

  12. Effects of high-strain-rate deformation on magnetic hysteresis in high-tensile steels

    NASA Astrophysics Data System (ADS)

    Morita, Ryo; Kobayashi, Satoru; Odeshi, Akindele G.; Szpunar, Jerzy A.; Miura, Kodai; Kamada, Yasuhiro

    2016-05-01

    We have studied a relationship between magnetic hysteresis and microstructures on high-tensile AISI 4340 steels after impact loading with a strain rate up to 2100 s-1 We find that coercivity, and minor-loop coefficient which is deduced from a power-law scaling between minor-loop parameters increase with strain rate, show a maximum at around a strain rate of 1400 s-1, followed by a decrease at a higher strain rate, associated with magnetic anisotropy with respect to impact direction. These observations are explained from the viewpoints of heat generation and heterogeneous microstructures characteristic to steels subjected to high strain rate deformation.

  13. Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Biller, A. M.; Stolbov, O. V.; Raikher, Yu. L.

    2015-08-01

    Field-induced magnetostatic interaction in a pair of identical particles made of a magnetically soft ferromagnet is studied. It is shown that due to saturation of the ferromagnet magnetization, this case differs significantly from the (super)paramagnetic one. A numerical solution is given, discussed, and compared with that provided by a simpler model (nonlinear mutual dipoles). We show that for multidomain ferromagnetic particles embedded in an elastomer matrix, as for paramagnetic ones in the same environment, pair clusters may form or break by a hysteresis scenario. However, the magnetization saturation brings in important features to this effect. First, the bistability state and the hysteresis take place only in a limited region of the material parameters of the system. Second, along with the hysteresis jumps occurring under the sole influence of the field, the "latent" hysteresis is possible which realizes only if the action of the field is combined with some additional (nonmagnetic) external factor. The obtained conditions, when used to assess the possibility of clustering in real magnetorheological polymers, infer an important role of mesoscopic magnetomechanical hysteresis for the macroscopic properties of these composites.

  14. Hysteresis of the Kuroshio penetrations into the South China Sea

    NASA Astrophysics Data System (ADS)

    Sheremet, V. A.

    2001-12-01

    An idealized problem of a western boundary current of Munk thickness LM flowing across a gap in a ridge is considered using a single-layer depth-averaged approach. When the gap (of width 2 a) is narrow, a <= 3.12 LM, viscous forces alone restrict penetration of the current through the gap. However, the gap is ``leaky'' in the linear case and some very weak flow still passes through. For larger gap width, the boundary current may leap across the gap due to inertia characterized by the Reynolds number Re, completely choking off water exchange between the two basins. For a >= 4.55 LM the flow may be in one of two regimes (penetrating or leaping) for the same parameters depending on previous evolution. The penetrating branch solutions become unsteady with eddies forming west of the gap between the two counter-flowing zonal jets. As the boundary current slowly accelerates, transition from the penetrating to leaping regime happens when the width of a zonal jet near the gap becomes comparable with a, implying the Reynolds number ReP ~= (a/LM)3. On the other hand as the boundary current slowly decelerates, the leaping regime persists while the meridional advection dominates the β -effect in a wiggle of the current core within the gap, implying that the leaping regime breaks at ReL ~= a/LM. Thus hysteresis occurs over the range of Reynolds numbers ReL < Re < ReP. An interesting application of this problem is to the Kuroshio current in Luzon Strait. The theory suggests that normally the Kuroshio can leap across Luzon Strait (LQP >= a). However, during periods when its strength is substantially reduced, it may penetrate into the South China Sea as a loop current. Thus multiple states and hysteresis are likely to occur. Because of the possible hysteresis, in analyzing the observational data, it is important to correlate the Kuroshio penetrations not only with the parameters describing the present state of the current, but also to take into account its history. For example, Farris and Wimbush (1996) found a relationship between the loop-current stage (derived from satellite infrared images) and the wind-stress history: the Kuroshio penetrations occur when the time-integrated strength of the northeast monsoon exceeds a threshold value. This is in qualitative agreement with the present theory in the sense that the penetrations occur when the Kuroshio is weakened by the monsoon blowing in the opposite direction.

  15. Formative Assessment Probes: Using the P-E-O Technique

    ERIC Educational Resources Information Center

    Keeley, Page

    2013-01-01

    This article describes how observing whether objects sink or float in water using the P-E-O (Predict, Explain, and Observe) technique is an elementary precursor to developing explanations in later grades that involve an understanding of density and buoyancy. Beginning as early as preschool, elementary students engage in activities that encourage…

  16. Analysis of a hysteresis motor with overexcitation

    SciTech Connect

    Kataoka, T.; Ishikawa, T.; Takahasi, T.

    1982-11-01

    The performance of a hysteresis motor can be improved greatly if it is overexcited for a short period when running at synchronous speed. The change in the magnetic state of the rotor hysteresis material, when the stator voltage is raised and then reduced to the original value, is described in detail. Based on this, a method for the calculation of the motor performance after overexcitation is proposed, and the effect of overexcitation on the motor performance is clarified by using this method. Good agreement is found between the calculated and the measured results.

  17. Hysteresis modeling in graphene field effect transistors

    SciTech Connect

    Winters, M.; Rorsman, N.; Sveinbjörnsson, E. Ö.

    2015-02-21

    Graphene field effect transistors with an Al{sub 2}O{sub 3} gate dielectric are fabricated on H-intercalated bilayer graphene grown on semi-insulating 4H-SiC by chemical vapour deposition. DC measurements of the gate voltage v{sub g} versus the drain current i{sub d} reveal a severe hysteresis of clockwise orientation. A capacitive model is used to derive the relationship between the applied gate voltage and the Fermi energy. The electron transport equations are then used to calculate the drain current for a given applied gate voltage. The hysteresis in measured data is then modeled via a modified Preisach kernel.

  18. Drift and Hysteresis Effects on AlN/SiO2 Gate pH Ion-Sensitive Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Chiang, Jung-Lung; Chou, Jung-Chuan; Chen, Ying-Chung; Liau, Guo Shiang; Cheng, Chien-Chuan

    2003-08-01

    The nonideal and unstable factors of AlN-based ion-sensitive field-effect transistor (ISFET) devices including the drift and hysteresis effects have been investigated in this study. The drift and hysteresis of AlN-based pH-ISFET devices have been measured using a constant current constant voltage (CCCV) readout circuit. The drift rates were obtained by long-time monitoring for 12 h in pH = 1, 3, 5, 7, 9, and 11 buffer solutions, which indicated that the drift rate increased with the pH value. The hysteresis effect was investigated by exposing the AlN gate ISFET in pH = 7-3-7-11-7 loop cycles with loop times of 960 s, 1920 s and 3840 s, and the magnitudes of hysteresis of 1.0, 1.5 and 4.5 mV were obtained, respectively. The temperature coefficient of hysteresis was found to be approximately 0.234 mV/°C. In addition, it was also found that the hysteresis width with pH started from acid side is smaller than that started from basic side, which results in an asymmetric hysteresis effect.

  19. Behavior of dissolved and total phosphorus concentration and stream discharge: The form of hysteresis during storm events

    NASA Astrophysics Data System (ADS)

    Pradhanang, S. M.; Samal, N. R.; Pierson, D. C.; Schneiderman, E. M.; Zion, M. S.

    2013-12-01

    The forms, rotational patterns and trends of hysteretic loops of dissolved and total phosphorus were investigated in the watershed of a New York City drinking water reservoir. We evaluated two biogeochemical parameters summarizing the changes in solute concentrations and the overall dynamics of each hysteretic loop and seven hydrological parameters that characterize the hydrograph formation of particular storm events. The objectives of this study are: (1) to examine whether the characteristics of solute hysteretic loops monitored during the summer, winter and spring seasons followed a consistent and recurring pattern, (2) to identify hydrological parameters which could potentially influence features of dissolved and total phosphorus hysteresis. Relationships between hysteresis features and hydrological parameters at the watershed outlet were explored using multivariate redundancy analysis (RDA).

  20. Managing Hysteresis: Three Cornerstones to Fiscal Stability

    ERIC Educational Resources Information Center

    Weeks, Richard

    2012-01-01

    The effects of the Great Recession of 2007-2009 continue to challenge school business officials (SBOs) and other education leaders as they strive to prepare students for the global workforce. Economists have borrowed a word from chemistry to describe this state of affairs: hysteresis--the lingering effects of the past on the present. Today's SBOs

  1. Managing Hysteresis: Three Cornerstones to Fiscal Stability

    ERIC Educational Resources Information Center

    Weeks, Richard

    2012-01-01

    The effects of the Great Recession of 2007-2009 continue to challenge school business officials (SBOs) and other education leaders as they strive to prepare students for the global workforce. Economists have borrowed a word from chemistry to describe this state of affairs: hysteresis--the lingering effects of the past on the present. Today's SBOs…

  2. Macroscopic theory for capillary-pressure hysteresis.

    PubMed

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-01

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials. PMID:25646688

  3. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  4. Flexible pivot mount eliminates friction and hysteresis

    NASA Technical Reports Server (NTRS)

    Highman, C. O.

    1970-01-01

    Flexible steel pivot mount, suspended by flat vertical beryllium copper springs, is capable of rotation, free of hysteresis and starting friction. Mount requires no lubrication, is made in varying sizes, and is driven with either dc torque motor or mechanical linkage.

  5. Doubly excited 3P(e) resonant states in Ps(-)

    NASA Technical Reports Server (NTRS)

    Ho, Y. K.; Bhatia, A. K.

    1992-01-01

    Doubly excited 3P(e) resonant states in Ps(-) are calculated using a method of complex-coordinate rotation. Resonance parameters (both resonance positions and widths) for doubly excited states associated with the n = 2, 3, 4, 5, and 6 thresholds of positronium atoms are evaluated using elaborate Hylleraas-type functions. In addition to ten Feshbach-type resonances lying below various Ps thresholds, three shape resonances were identified, one each lying above the n = 2, 4, and 6 Ps thresholds. It is further noted that the energy levels for the present 3P(e) states are nearly degenerate with respect to the previously calculated 1P(0) states. Such a symmetric character suggests that the highly and doubly excited Ps(-), similar to its counterpart in H(-), would exhibit rovibrational behaviors analogous to those of XYX triatomic molecules.

  6. Environmental engineering P. E. examination guide and handbook. 2. edition

    SciTech Connect

    King, W.C.

    1999-01-01

    With chapters contributed by experts in the various specialties of environmental engineering, this best-seller has been revised to reflect the changes effective for the October 1999 examination format. Contents include essential chemistry, fluid mechanics, hydraulics and hydrology, water and wastewater treatment, air pollution control, solid and hazardous waste management, and health, safety and environmental protection. Tips for P.E. candidates have been clearly identified within the body of the text.

  7. A Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis

    SciTech Connect

    Chiampi, M.; Repetto, M.; Chiarabaglio, D.

    1995-11-01

    The hysteresis phenomenon can significantly affect the behavior of magnetic cores in electrical machines and devices. This paper presents a finite element solution of periodic steady state magnetic field problems in soft materials with scalar hysteresis. The Jiles-Atherton model is employed for the generation of symmetric B-H loops and it is coupled with the Fixed Point Technique for handling magnetic nonlinearities. The proposed procedure is applied to a hysteretic model problem whose analytical solution is available. The results show that the Fixed Point Technique can efficiently deal with non-single valued material characteristics under periodic operating conditions.

  8. Tracking Control of Shape-Memory-Alloy Actuators Based on Self-Sensing Feedback and Inverse Hysteresis Compensation

    PubMed Central

    Liu, Shu-Hung; Huang, Tse-Shih; Yen, Jia-Yush

    2010-01-01

    Shape memory alloys (SMAs) offer a high power-to-weight ratio, large recovery strain, and low driving voltages, and have thus attracted considerable research attention. The difficulty of controlling SMA actuators arises from their highly nonlinear hysteresis and temperature dependence. This paper describes a combination of self-sensing and model-based control, where the model includes both the major and minor hysteresis loops as well as the thermodynamics effects. The self-sensing algorithm uses only the power width modulation (PWM) signal and requires no heavy equipment. The method can achieve high-accuracy servo control and is especially suitable for miniaturized applications. PMID:22315530

  9. Performance Calculation of High Temperature Superconducting Hysteresis Motor Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Konar, G.; Chakraborty, N.; Das, J.

    Hysteresis motors being capable of producing a steady torque at low speeds and providing good starting properties at loaded condition became popular among different fractional horse power electrical motors. High temperature superconducting materials being intrinsically hysteretic are suitable for this type of motor. In the present work, performance study of a 2-pole, 50 Hz HTS hysteresis motor with conventional stator and HTS rotor has been carried out numerically using finite element method. The simulation results confirm the ability of the segmented HTS rotor with glued circular sectors to trap the magnetic field as high as possible compared to the ferromagnetic rotor. Also the magnetization loops in the HTS hysteresis motor are obtained and the corresponding torque and AC losses are calculated. The motor torque thus obtained is linearly proportional to the current which is the common feature of any hysteresis motor. Calculations of torques, current densities etc are done using MATLAB program developed in-house and validated using COMSOL Multiphysics software. The simulation result shows reasonable agreement with the published results.

  10. Magnetic hysteresis and rotational hysteresis properties of hydrothermally grown multidomain magnetite

    NASA Astrophysics Data System (ADS)

    Muxworthy, A. R.

    2002-06-01

    A series of hysteresis and rotational hysteresis measurements have been made on a suite of sized hydrothermally grown multidomain magnetite samples. These measurements consisted of hysteresis measurements made between room temperature and the Curie temperature, remanent hysteresis measurements at room temperature and rotational hysteresis measurements also made at room temperature. It was found that several of the measured and calculated parameters, e.g. the coercive force and rotational hysteresis parameters, display slight grain-size dependences across the entire range of samples up to the largest sample, which has a mean grain size of 108 μm, whereas other results, e.g. Henkel plots, were grain-size independent. These results suggest that there is no clear pseudo-single domain to `true' multidomain behaviour transition. On comparison of high-temperature hysteresis with micromagnetic calculations there appears to be a change in the dominant domain-wall pinning mechanism with temperature. It is suggested that this effect could provide a possible mechanism for domain wall reorganization models that have been developed to explain partial thermoremanence cooling behaviour. The room-temperature rotational hysteresis results indicate that in addition to anisotropy, which controls most of the magnetic behaviour, there is a much smaller very high intrinsic anisotropy. It is tentatively suggested that this very high intrinsic anisotropy could be related to metastable remanences in multidomain magnetite. On comparison with published `crossover' template plots it is seen that the low dislocation density hydrothermally produced samples display behaviour that does not entirely correspond with the standard templates, implying that the template plots need to be reassessed.

  11. Reduction of hysteresis in PI-controlled systems

    SciTech Connect

    Krakow, K.I.

    1998-10-01

    Motorized dampers and valves generally possess some hysteresis. Hysteresis may result in poor repeatability of experimental data. It also may result in the deviation of a response of a proportional integral (PI) controlled system from its target response and in hunting. In some applications, it may be desirable to reduce the effects of hysteresis. A method to reduce the effects of hysteresis is presented here. This method is based on software, not hardware, modification.

  12. Modeling Loading/Unloading Hysteresis Behavior of Unidirectional C/SiC Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li; Yingdong, Song; Youchao, Sun

    2013-08-01

    The loading/unloading tensile behavior of unidirectional C/SiC ceramic matrix composites at room temperature has been investigated. The loading/unloading stress-strain curve exhibits obvious hysteresis behavior. An approach to model the hysteresis loops of ceramic matrix composites including the effect of fiber failure during tensile loading has been developed. By adopting a shear-lag model which includes the matrix shear deformation in the bonded region and friction in the debonded region, the matrix cracking space and interface debonded length are obtained by matrix statistical cracking model and fracture mechanics interface debonded criterion. The two-parameter Weibull model is used to describe the fiber strength distribution. The stress carried by the intact and fracture fibers on the matrix crack plane during unloading and subsequent reloading is determined by the Global Load Sharing criterion. Based on the damage mechanisms of fiber sliding relative to matrix during unloading and subsequent reloading, the unloading interface reverse slip length and reloading interface new slip length are obtained by the fracture mechanics approach. The hysteresis loops of unidirectional C/SiC ceramic matrix composites corresponding to different stress have been predicted.

  13. Significance of conservative asparagine residues in the thermal hysteresis activity of carrot antifreeze protein.

    PubMed Central

    Zhang, Dang-Quan; Liu, Bing; Feng, Dong-Ru; He, Yan-Ming; Wang, Shu-Qi; Wang, Hong-Bin; Wang, Jin-Fa

    2004-01-01

    The approximately 24-amino-acid leucine-rich tandem repeat motif (PXXXXXLXXLXXLXLSXNXLXGXI) of carrot antifreeze protein comprises most of the processed protein and should contribute at least partly to the ice-binding site. Structural predictions using publicly available online sources indicated that the theoretical three-dimensional model of this plant protein includes a 10-loop beta-helix containing the approximately 24-amino-acid tandem repeat. This theoretical model indicated that conservative asparagine residues create putative ice-binding sites with surface complementarity to the 1010 prism plane of ice. We used site-specific mutagenesis to test the importance of these residues, and observed a distinct loss of thermal hysteresis activity when conservative asparagines were replaced with valine or glutamine, whereas a large increase in thermal hysteresis was observed when phenylalanine or threonine residues were replaced with asparagine, putatively resulting in the formation of an ice-binding site. These results confirmed that the ice-binding site of carrot antifreeze protein consists of conservative asparagine residues in each beta-loop. We also found that its thermal hysteresis activity is directly correlated with the length of its asparagine-rich binding site, and hence with the size of its ice-binding face. PMID:14531728

  14. Torque meter aids study of hysteresis motor rings

    NASA Technical Reports Server (NTRS)

    Cole, M.

    1967-01-01

    Torque meter, simulating hysteresis motor operation, allows rotor ring performance characteristics to be analyzed. The meter determines hysteresis motor torque and actual stresses of the ring due to its mechanical situation and rotation, aids in the study of asymmetries or defects in motor rings, and measures rotational hysteresis.

  15. Damage Monitoring of Unidirectional C/SiC Ceramic-Matrix Composite under Cyclic Fatigue Loading using A Hysteresis Loss Energy-Based Damage Parameter at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    The damage evolution of unidirectional C/SiC ceramic-matrix composite (CMC) under cyclic fatigue loading has been investigated using a hysteresis loss energy-based damage parameter at room and elevated temperatures. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy versus cycle number have been analyzed. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different cycle number and peak stress has been estimated. The experimental evolution of fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter versus cycle number has been predicted for unidirectional C/SiC composite at room and elevated temperatures. The predicted results of interface shear stress degradation, stress-strain hysteresis loops corresponding to different number of applied cycles, fatigue hysteresis loss energy and fatigue hysteresis loss energy-based damage parameter as a functions of cycle number agreed with experimental data. It was found that the fatigue hysteresis energy-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  16. Giant transverse hysteresis in an asperomagnet

    SciTech Connect

    Coey, J.M.D.; Freitas, P.P.; Plaskett, T.S.; Molnar, S. von )

    1990-05-01

    Comparison of the magnetoresistance of amorphous thin films of Tb{sub 80}U{sub 20} and the nonmagnetic analog Y{sub 80}U{sub 20} reveals hysteresis for the terbium alloy, which extends to fields in excess of 8 T at 4.2 K. Hysteresis is found in the magnetization curve only in fields below 4 T at the same temperature. The magnetoresistance effect, attributed to scattering of electrons by the frozen transverse spin components, which have spatial fluctuations on the scale of the interatomic spacing, is interpreted in terms of the magnetization process of the amorphous alloy. Evidence of weak localization is observed in both films below 1 K.

  17. Rotational hysteresis of exchange-spring magnets

    NASA Astrophysics Data System (ADS)

    Jiang, J. S.; Bader, S. D.; Kaper, H.; Leaf, G. K.; Shull, R. D.; Shapiro, A. J.; Gornakov, V. S.; Nikitenko, V. I.; Platt, C. L.; Berkowitz, A. E.; David, S.; Fullerton, E. E.

    2002-10-01

    We highlight our experimental studies and micromagnetic simulations of the rotational hysteresis in exchange-spring magnets. Magneto-optical imaging and torque magnetometry measurements for Sm-Co/Fe exchange-spring films with uniaxial in-plane anisotropy show that the magnetization rotation created in the magnetically soft Fe layer by a rotating magnetic field is hysteretic. The rotational hysteresis is due to the reversal of the chirality of the spin spiral structure. Micromagnetic simulations reveal two reversal modes of the chirality, one at low fields due to an in-plane untwisting of the spiral, and the other, at high fields, due to an out-of-plane fanning of the spiral.

  18. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape

    NASA Astrophysics Data System (ADS)

    Syrenova, Svetlana; Wadell, Carl; Nugroho, Ferry A. A.; Gschneidtner, Tina A.; Diaz Fernandez, Yuri A.; Nalin, Giammarco; Świtlik, Dominika; Westerlund, Fredrik; Antosiewicz, Tomasz J.; Zhdanov, Vladimir P.; Moth-Poulsen, Kasper; Langhammer, Christoph

    2015-12-01

    Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30 nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways.

  19. Ferroelectric polarization-induced memristive hysteresis behaviors in Ti- and Mn-codoped ZnO

    NASA Astrophysics Data System (ADS)

    An, Namhyun; Lee, Hwauk; Sharma, Sanjeev K.; Lee, Youngmin; Kim, Deuk Young; Lee, Sejoon

    2016-04-01

    ZnTiMnO layers grown on Pt (111)/Al2O3 (0001) substrates exhibit lattice displacement-induced ferroelectric features, which arise from a modulation in the lattice translation symmetry and originate from the substitution of Ti and Mn ions at Zn sites in ZnO's host lattices. After annealing at 900°C, the ZnTiMnO layer shows a clear hysteresis loop, where the maximum polarization is fully saturated within wide electric-field regions. The top-to-bottom Pt/ZnTiMnO/Pt device reveals a polarization-dependent asymmetric hysteresis ( i.e., ferroelectric memristive-switching); in addition, the device shows > 60% data-retention per 10 years. These results suggest that ZnTiMnO holds great promise for use in ferroelectric memristive-switching devices.

  20. Soft x-ray magneto-optic Kerr rotation and element-specific hysteresis measurement

    SciTech Connect

    Kortright, J.B.; Rice, M.

    1996-03-01

    Soft x-ray magneto-optic Kerr rotation has been measured using a continuously tunable multilayer linear polarizer in the beam reflected form samples in applied magnetic fields. Like magnetic circular dichroism, Kerr rotation in the soft x-ray can be element - specific and much larger than in the visible spectral range when the photon energy is tuned near atomic core resonances. Thus sensitive element-specific hysteresis measurements are possible with this technique. Examples showing large Kerr rotation from an Fe film and element-specific hysteresis loops of the Fe and Cr in an Fe/Cr multilayer demonstrate these new capabilities. Some consequences of the strong anomalous dispersion near the FeL{sub 2,3} edges to the Kerr rotation are discussed.

  1. A guided enquiry approach to introduce basic concepts concerning magnetic hysteresis to minimize student misconceptions

    NASA Astrophysics Data System (ADS)

    Wei, Yajun; Zhai, Zhaohui; Gunnarsson, Klas; Svedlindh, Peter

    2014-11-01

    Basic concepts concerning magnetic hysteresis are of vital importance in understanding magnetic materials. However, these concepts are often misinterpreted by many students and even textbooks. We summarize the most common misconceptions and present a new approach to help clarify these misconceptions and enhance students’ understanding of the hysteresis loop. In this approach, students are required to perform an experiment and plot the measured magnetization values and thereby calculated demagnetizing field, internal field, and magnetic induction as functions of the applied field point by point on the same graph. The concepts of the various coercivity, remanence, saturation magnetization, and saturation induction will not be introduced until this stage. By plotting this graph, students are able to interlink all the preceding concepts and intuitively visualize the underlying physical relations between them.

  2. Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage

    SciTech Connect

    Xie, H.; Regnier, S.

    2009-04-15

    A method using atomic force microscope (AFM) optical levers and a reference nanopositioning stage has been developed to characterize piezoscanner hysteresis and creep. The piezoscanner is fixed on a closed-loop nanopositioning stage, both of which have the same arrangement on each axis of the three spatial directions inside the AFM-based nanomanipulation system. In order to achieve characterization, the optical lever is used as a displacement sensor to measure the relative movement between the nanopositioning stage and the piezoscanner by lateral tracking a well-defined slope with the tapping mode of the AFM cantilever. This setup can be used to estimate a piezoscanner's voltage input with a reference displacement from the nanopositioning stage. The hysteresis and creep were accurately calibrated by the method presented, which use the current setup of the AFM-based nanomanipulation system without any modification or additional devices.

  3. Neural Controller Design-Based Adaptive Control for Nonlinear MIMO Systems With Unknown Hysteresis Inputs.

    PubMed

    Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2016-01-01

    This paper studies an adaptive neural control for nonlinear multiple-input multiple-output systems in interconnected form. The studied systems are composed of N subsystems in pure feedback structure and the interconnection terms are contained in every equation of each subsystem. Moreover, the studied systems consider the effects of Prandtl-Ishlinskii (PI) hysteresis model. It is for the first time to study the control problem for such a class of systems. In addition, the proposed scheme removes an important assumption imposed on the previous works that the bounds of the parameters in PI hysteresis are known. The radial basis functions neural networks are employed to approximate unknown functions. The adaptation laws and the controllers are designed by employing the backstepping technique. The closed-loop system can be proven to be stable by using Lyapunov theorem. A simulation example is studied to validate the effectiveness of the scheme. PMID:25898325

  4. Grain-damage hysteresis and plate tectonic states

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2016-04-01

    Shear localization in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. The theoretical model for grain-damage and pinning in two-phase polycrystalline rocks provides a frame-work for understanding lithospheric shear weakening and plate-generation, and is consistent with laboratory and field observations of mylonites. Grain size evolves through the competition between coarsening, which drives grain-growth, and damage, which drives grain reduction. The interface between crystalline phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary positive self-weakening feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. However, the suppression of interface damage at low interface curvature (wherein inter-grain mixing is inefficient and other energy sinks of deformational work are potentially more facile) causes a hysteresis effect, in which three possible equilibrium grain-sizes for a given stress coexist: (1) a stable, large-grain, weakly-deforming state, (2) a stable, small-grain, rapidly-deforming state analogous to ultramylonites, and (3) an unstable, intermediate grain-size state perhaps comparable to protomylonites. A comparison of the model to field data suggests that shear-localized zones of small-grain mylonites and ultra-mylonites exist at a lower stress than the co-existing large-grain porphyroclasts, rather than, as predicted by paleopiezometers or paleowattmeters, at a much higher stress; this interpretation of field data thus allows localization to relieve instead of accumulate stress. The model also predicts that a lithosphere that deforms at a given stress can acquire two stable deformation regimes indicative of plate-like flows, i.e., it permits the coexistence of both slowly deforming plate interiors, and rapidly deforming plate boundaries. Earth seems to exist squarely inside the hysteresis loop and thus can have coexisting deformation states, while Venus appears to straddle the end of the loop where only the weakly deforming branch exists.

  5. The hysteresis response of soil CO2 concentration and soil respiration to soil temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Katul, Gabriel G.; Oren, Ram; Daly, Edoardo; Manzoni, Stefano; Yang, Dawen

    2015-08-01

    Diurnal hysteresis between soil temperature (Ts) and both CO2 concentration ([CO2]) and soil respiration rate (Rs) were reported across different field experiments. However, the causes of these hysteresis patterns remain a subject of debate, with biotic and abiotic factors both invoked as explanations. To address these issues, a CO2 gas transport model is developed by combining a layer-wise mass conservation equation for subsurface gas phase CO2, Fickian diffusion for gas transfer, and a CO2 source term that depends on soil temperature, moisture, and photosynthetic rate. Using this model, a hierarchy of numerical experiments were employed to disentangle the causes of the hysteretic [CO2]-Ts and CO2 flux Ts (i.e., F-Ts) relations. Model results show that gas transport alone can introduce both [CO2]-Ts and F-Ts hystereses and also confirm prior findings that heat flow in soils lead to [CO2] and F being out of phase with Ts, thereby providing another reason for the occurrence of both hystereses. The area (Ahys) of the [CO2]-Ts hysteresis near the surface increases, while the Ahys of the Rs-Ts hysteresis decreases as soils become wetter. Moreover, a time-lagged carbon input from photosynthesis deformed the [CO2]-Ts and Rs-Ts patterns, causing a change in the loop direction from counterclockwise to clockwise with decreasing time lag. An asymmetric 8-shaped pattern emerged as the transition state between the two loop directions. Tracing the pattern and direction of the hysteretic [CO2]-Ts and Rs-Ts relations can provide new ways to fingerprint the effects of photosynthesis stimulation on soil microbial activity and detect time lags between rhizospheric respiration and photosynthesis.

  6. Effects of matching network on the hysteresis during E and H mode transitions in argon inductively coupled plasma

    SciTech Connect

    Gao Fei; Zhao Shuxia; Li Xiaosong; Wang Younian

    2010-10-15

    An experimental investigation of the hysteresis during the E (capacitive coupling) and H mode (inductive coupling) transitions at various matching situation in argon inductively coupled plasma is reported. At high pressure, the results show two hysteresis loops involved the plasma density, applied power, and forward power, as well as the electrical parameters in the discharge circuit, when the series capacitance is cycled. The measured electron density versus applied power shows that the hysteresis loop shrinks with the decrease of the matching capacitance, and the same trend is discovered on the input current, voltage, and phase angle. In addition, for the case of small capacitance, the current (or voltage) jumps to a low value when the discharge passes through the E to H mode transition regime. Contrarily, for the case of large capacitance, the current jumps to a high value while the voltage is almost constant. The evolution characteristics of the plasma and circuit parameters observed imply that the nonlinear behavior of the matching situation may be one of the determined factors for hysteresis.

  7. Hysteresis in the behavior of a long periodically modulated Josephson junction in a magnetic field for not small values of the pinning parameter

    NASA Astrophysics Data System (ADS)

    Zelikman, M. A.

    2016-03-01

    The magnetization curve for a long periodically modulated Josephson junction is calculated using the approach based on analysis of the continuous change in the configuration in the direction of the decrease in the Gibbs potential upon cyclic variation of the external magnetic field for not small values of pinning parameter I. It is shown that unlike in the case of small I, when the hysteresis loop is a part of a certain universal curve, the segments of the loops corresponding to a decrease in h in the first and second quadrants (and symmetric to them) pass below the universal loop, the degree of deviation increasing with pinning parameter I. The properties of the hysteresis loops are considered for various amplitudes of the magnetic field variation on the basis of analysis of vortex configurations.

  8. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation

    NASA Astrophysics Data System (ADS)

    Vrijsen, N. H.; Jansen, J. W.; Compter, J. C.; Lomonova, E. A.

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  9. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation.

    PubMed

    Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator. PMID:23902095

  10. Frequency-dependent capacitance-voltage hysteresis in ferroelectric liquid crystals: An effect of the frequency dependence of dielectric biaxiality

    NASA Astrophysics Data System (ADS)

    Rahman, Muklesur; Kundu, S. K.; Chaudhuri, B. K.; Yoshizawa, A.

    2005-07-01

    Using the concept of the Preisach model for a ferroelectric capacitor, we have analyzed the behavior of frequency (f)-dependent polarization reversal in surface-stabilized ferroelectric liquid crystals (SSFLCs) under an external field. At a fixed temperature, the peak height of the capacitance-voltage hysteresis loop is found to be decreasing with an increasing number of polarization cycles up to a certain typical value of frequency (e.g., fc) being different for different ferroelectric liquid crystals (FLCs). We also observed an inversion (a well instead of a peak) in the hysteresis loops appearing above a typical higher frequency denoted fi. The values of capacitance of the FLC capacitors became almost independent of the voltage for the frequencies between fc and fi. The frequency dependence of dielectric biaxiality in the SSFLCs is directly attributed to the appearance of such behavior.

  11. Magnetization and Hysteresis of Dilute Magnetic-Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Skomski, Ralph; Balamurugan, B.; Sellmyer, D. J.

    2014-03-01

    Real-structure imperfections in dilute magnetic oxides tend to create small concentrations of local magnetic moments that are coupled by fairly long-range exchange interactions, mediated by p-electrons. The robustness of these interactions is caused by the strong overlap of the p orbitals, as contrasted to the much weaker interatomic exchange involving iron-series 3d electrons. The net exchange between defect moments can be positive or negative, which gives rise to spin structures with very small net moments. Similarly, the moments exhibit magnetocrystalline anisotropy, reinforced by electron hopping to and from 3d states and generally undergoing some random-anuisotropy averaging. Since the coercivity scales as 2K1/M and M is small, this creates pronounced and -- in thin films -- strongly anisotropic hysteresis loops. In finite systems with N moments, both K1 and M are reduced by a factor of order N1/2 due to random anisotropy and moment compensation, respectively, so that that typical coercivities are comparable to bulk magnets. Thermal activation readily randomizes the net moment of small oxide particles, so that the moment is easier to measure in compacted or aggregated particle ensembles. This research is supported by DOE (BES).

  12. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández-Gómez, P.; Muñoz, J. M.; Valente, M. A.; Torres, C.; de Francisco, C.

    2013-01-01

    Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer's formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  13. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    PubMed

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support. PMID:25375434

  14. Optically induced hysteresis in a two-state quantum dot laser.

    PubMed

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Dubinkin, I; Fedorov, N; Erneux, T; Viktorov, E A; Kelleher, B

    2016-03-01

    Quantum dot lasers can lase from the ground state only, simultaneously from both the ground and first excited states and from the excited state only. We examine the influence of optical injection at frequencies close to the ground state when the free-running operation of the device is excited state lasing only. We demonstrate the existence of an injection-induced bistability between ground state dominated emission and excited state dominated emission and the consequent hysteresis loop in the lasing output. Experimental and numerical investigations are in excellent agreement. Inhomogeneous broadening is found to be the underlying physical mechanism driving the phenomenon. PMID:26974109

  15. Quantum oscillations and ferromagnetic hysteresis observed in iron filled multiwall carbon nanotubes.

    PubMed

    Barzola-Quiquia, J; Klingner, N; Krüger, J; Molle, A; Esquinazi, P; Leonhardt, A; Martínez, M T

    2012-01-13

    We report on the electrical transport properties of single multiwall carbon nanotubes with and without an iron filling as a function of temperature and magnetic field. For the iron filled nanotubes the magnetoresistance shows a magnetic behavior induced by iron, which can be explained by taking into account a contribution of s-d hybridization. In particular, ferromagnetic-like hysteresis loops were observed up to 50 K for the iron filled multiwall carbon nanotubes. The magnetoresistance shows quantum interference phenomena such as universal conductance fluctuations and weak localization effects. PMID:22155967

  16. Damping dependence in dynamic magnetic hysteresis of single-domain ferromagnetic particles

    NASA Astrophysics Data System (ADS)

    El Mrabti, H.; Déjardin, P. M.; Titov, S. V.; Kalmykov, Yu. P.

    2012-03-01

    It is demonstrated that both the area of the dynamic magnetic hysteresis (DMH) loop and the volume power loss of an assembly of uniaxial superparamagnetic nanoparticles with a random distribution of easy axes are very sensitive to damping at low, intermediate, and high frequencies. In particular, a dynamical regime that is resonant in character occurs in the vicinity of the ferromagnetic resonance (FMR) frequency for low to moderate values of the alternating current (ac) field amplitude. The resonant regime is characterized by a diamagnetic-like response of the particles, resulting from a phase lag of the stationary nonlinear magnetization with respect to the applied field greater than π/2.

  17. Fingerprint image enhancement by differential hysteresis processing.

    PubMed

    Blotta, Eduardo; Moler, Emilce

    2004-05-10

    A new method to enhance defective fingerprints images through image digital processing tools is presented in this work. When the fingerprints have been taken without any care, blurred and in some cases mostly illegible, as in the case presented here, their classification and comparison becomes nearly impossible. A combination of spatial domain filters, including a technique called differential hysteresis processing (DHP), is applied to improve these kind of images. This set of filtering methods proved to be satisfactory in a wide range of cases by uncovering hidden details that helped to identify persons. Dactyloscopy experts from Policia Federal Argentina and the EAAF have validated these results. PMID:15062948

  18. Hysteresis prediction inside magnetic shields and application

    NASA Astrophysics Data System (ADS)

    Morić, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-01

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.

  19. Hysteresis prediction inside magnetic shields and application.

    PubMed

    Morić, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-01

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission. PMID:25085183

  20. Mechano-electric optoisolator transducer with hysteresis

    NASA Astrophysics Data System (ADS)

    Ciuruş, I. M.; Dimian, M.; Graur, A.

    2011-01-01

    This article presents a theoretical and experimental study of designing a mechano-electric optoisolator transducer with hysteresis. Our research is centred upon designing transducers on the basis of optical sensors, as photoelectric conversions eliminate the influence of electromagnetic disturbances. Conversion of the rotation/translation motions into electric signals is performed with the help of a LED-photoresistor Polaroid optocoupler. The driver of the optocoupler's transmitter module is an independent current source. The signal conditioning circuit is a Schmitt trigger circuit. The device is designed to be applied in the field of automation and mechatronics.

  1. Hysteresis prediction inside magnetic shields and application

    SciTech Connect

    Morić, Igor; De Graeve, Charles-Marie; Grosjean, Olivier; Laurent, Philippe

    2014-07-15

    We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.

  2. Loop-to-loop coupling.

    SciTech Connect

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  3. Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response

    SciTech Connect

    Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.; Varenyk, Olexandr V.; Kim, Yunseok; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.

    2014-08-14

    We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear coupling between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.

  4. Dipole-dipole interaction and its concentration dependence of magnetic fluid evaluated by alternating current hysteresis measurement

    NASA Astrophysics Data System (ADS)

    Ota, Satoshi; Yamada, Tsutomu; Takemura, Yasushi

    2015-05-01

    Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic tools, such as for treating hyperthermia and in magnetic particle imaging, respectively. Magnetic relaxation is one of the heating mechanisms of MNPs. Brownian and Néel relaxation times are calculated conventional theories; however, the influence of dipole-dipole interactions has not been considered in conventional models. In this study, water-dispersed MNPs of different concentrations and MNPs fixed with an epoxy bond were prepared. dc and ac hysteresis loops for each sample were measured. With respect to both dc and ac hysteresis loops, magnetization decreased with the increase in MNP concentration because of inhibition of magnetic moment rotation due to dipole-dipole interactions. Moreover, intrinsic loss power (ILP) was estimated from the areas of the ac hysteresis loops. The dependence of ILP on the frequency of the magnetic field was evaluated for each MNP concentration. The peak frequency of ILP increased with the decrease in MNP concentration. These peaks were due to Brownian relaxation, as they were not seen with the fixed sample. This indicates that the Brownian relaxation time became shorter with lower MNP concentration, because the weaker dipole-dipole interactions with lower concentrations suggested that the magnetic moments could rotate more freely.

  5. Loop Input.

    ERIC Educational Resources Information Center

    Woodward, Tessa

    2003-01-01

    Discusses loop input, a specific type of experiential teacher training process that involves an alignment of the process and content of learning. This concept has gradually gained ground in English language teacher training since 1986 when the term was coined. (Author/VWL)

  6. Hysteresis between Distinct Modes of Turbulent Dynamos

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Kitchatinov, Leonid L.; Brandenburg, Axel

    2015-04-01

    Nonlinear mean-field models of the solar dynamo show long-term variability, which may be relevant to different states of activity inferred from long-term radiocarbon data. This paper is aimed at probing the dynamo hysteresis predicted by the recent mean-field models of Kitchatinov & Olemskoy with direct numerical simulations. We perform three-dimensional (3D) simulations of large-scale dynamos in a shearing box with helically forced turbulence. As an initial condition, we either take a weak random magnetic field or we start from a snapshot of an earlier simulation. Two quasi-stable states are found to coexist in a certain range of parameters close to the onset of the large-scale dynamo. The simulations converge to one of these states depending on the initial conditions. When either the fractional helicity or the magnetic Prandtl number is increased between successive runs above the critical value for onset of the dynamo, the field strength jumps to a finite value. However, when the fractional helicity or the magnetic Prandtl number is then decreased again, the field strength stays at a similar value (strong field branch) even below the original onset. We also observe intermittent decaying phases away from the strong field branch close to the point where large-scale dynamo action is just possible. The dynamo hysteresis seen previously in mean-field models is thus reproduced by 3D simulations. Its possible relation to distinct modes of solar activity such as grand minima is discussed.

  7. Hysteresis and feedback of ice sheet response

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Takahashi, K.

    2014-12-01

    Investigating the response of ice sheets to climatic forcings in the past by climate-ice sheet modelling is important for understanding the ice sheets' change. The 100-kyr cycle of the large Northern Hemisphere ice sheets and fast termination of the glacial cycle are the prominent pattern known from paleoclimate records. We simulate the past glacial cycles with an ice sheet model, IcIES in combination with a general circulation model, MIROC, using the time series of insolation and atmospheric CO2. Feedback processes between ice sheet and atmosphere such as the ice albedo feedback, the elevation-mass balance feedback, desertification effect and stationary wave feedback are analyzed. We show that the threshold of termination of the glacial cycles can be explained by the pattern of the hysteresis of ice sheet change, i.e. multiple steady states of the ice sheets under climatic forcings. We find that slope of the upper branch of the multiple equilibria curve for Laurentide ice volumes is fundamental for the observed glacial patterns. Finally, we discuss the similarity and difference between the hysteresis structure of ice sheets variation for Northern Hemisphere ice sheets, Antarctica and Greenland.

  8. Method and apparatus for sub-hysteresis discrimination

    SciTech Connect

    De Geronimo, Gianluigi

    2015-12-29

    Embodiments of comparator circuits are disclosed. A comparator circuit may include a differential input circuit, an output circuit, a positive feedback circuit operably coupled between the differential input circuit and the output circuit, and a hysteresis control circuit operably coupled with the positive feedback circuit. The hysteresis control circuit includes a switching device and a transistor. The comparator circuit provides sub-hysteresis discrimination and high speed discrimination.

  9. Hysteresis compensation and trajectory preshaping for piezoactuators in scanning applications

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich; Qi, Naiming

    2014-01-01

    This paper focuses on the dynamics and control of piezoactuators (PEAs) for high-speed large-range scanning applications. Firstly, the nonlinear hysteresis is modeled by using a modified Maxwell resistive capacitor (MRC) model. Secondly, an inverse-based feedforward controller is proposed for this application with hysteresis compensation. Then, the scanning trajectories are preshaped by treating the hysteresis-compensated PEA as a linear system. Finally, experiments are conducted to verify the effectiveness of the proposed approaches.

  10. Dynamic hysteresis in a one-dimensional Ising model: application to allosteric proteins.

    PubMed

    Graham, I; Duke, T A J

    2005-06-01

    We solve exactly the problem of dynamic hysteresis for a finite one-dimensional Ising model at low temperature. We find that the area of the hysteresis loop, as the field is varied periodically, scales as the square root of the field frequency for a large range of frequencies. Below a critical frequency there is a correction to the scaling law, resulting in a linear relationship between hysteresis area and frequency. The one-dimensional Ising model provides a simplified description of switchlike behavior in allosteric proteins, such as hemoglobin. Thus our analysis predicts the switching dynamics of allosteric proteins when they are exposed to a ligand concentration which changes with time. Many allosteric proteins bind a regulator that is maintained at a nonequilibrium concentration by active signal transduction processes. In the light of our analysis, we discuss to what extent allosteric proteins can respond to changes in regulator concentration caused by an upstream signaling event, while remaining insensitive to the intrinsic nonequilibrium fluctuations in regulator level which occur in the absence of a signal. PMID:16089781

  11. Hysteresis Analysis and Positioning Control for a Magnetic Shape Memory Actuator

    PubMed Central

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2015-01-01

    Magnetic shape memory alloys (MSM alloys), a new kind of smart materials, have become a potential candidate in many engineering fields. MSMs have the advantage of bearing a huge strain, much larger than other materials. In addition, they also have fast response. These characteristics make MSM a good choice in micro engineering. However, MSMs display the obvious hysteresis phenomenon of nonlinear behavior. Thus the difficulty in using the MSM element as a positioning actuator is increased due to the hysteresis. In this paper, the hysteresis phenomenon of the MSM actuator is analyzed, and the closed-loop positioning control is also implemented experimentally. For that, a modified fuzzy sliding mode control (MFSMC) is proposed. The MFSMC and the PID control are used to design the controllers for realizing the positioning control. The experimental results are compared under different experimental conditions, such as different frequency, amplitude, and loading. The experimental results show that the precise positioning control of MFSMC can be achieved satisfactorily. PMID:25853405

  12. Hysteresis analysis and positioning control for a magnetic shape memory actuator.

    PubMed

    Lin, Jhih-Hong; Chiang, Mao-Hsiung

    2015-01-01

    Magnetic shape memory alloys (MSM alloys), a new kind of smart materials, have become a potential candidate in many engineering fields. MSMs have the advantage of bearing a huge strain, much larger than other materials. In addition, they also have fast response. These characteristics make MSM a good choice in micro engineering. However, MSMs display the obvious hysteresis phenomenon of nonlinear behavior. Thus the difficulty in using the MSM element as a positioning actuator is increased due to the hysteresis. In this paper, the hysteresis phenomenon of the MSM actuator is analyzed, and the closed-loop positioning control is also implemented experimentally. For that, a modified fuzzy sliding mode control (MFSMC) is proposed. The MFSMC and the PID control are used to design the controllers for realizing the positioning control. The experimental results are compared under different experimental conditions, such as different frequency, amplitude, and loading. The experimental results show that the precise positioning control of MFSMC can be achieved satisfactorily. PMID:25853405

  13. Experimental comparison of rate-dependent hysteresis models in characterizing and compensating hysteresis of piezoelectric tube actuators

    NASA Astrophysics Data System (ADS)

    Aljanaideh, Omar; Habineza, Didace; Rakotondrabe, Micky; Al Janaideh, Mohammad

    2016-04-01

    An experimental study has been carried out to characterize rate-dependent hysteresis of a piezoelectric tube actuator at different excitation frequencies. The experimental measurements were followed by modeling and compensation of the hysteresis nonlinearities of the piezoelectric tube actuator using both the inverse rate-dependent Prandtl-Ishlinskii model (RDPI) and inverse rate-independent Prandtl-Ishlinskii model (RIPI) coupled with a controller. The comparison of hysteresis modeling and compensation of the actuator with both models is presented.

  14. Improving Atomic Force Microscopy Imaging by a Direct Inverse Asymmetric PI Hysteresis Model

    PubMed Central

    Wang, Dong; Yu, Peng; Wang, Feifei; Chan, Ho-Yin; Zhou, Lei; Dong, Zaili; Liu, Lianqing; Li, Wen Jung

    2015-01-01

    A modified Prandtl–Ishlinskii (PI) model, referred to as a direct inverse asymmetric PI (DIAPI) model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace) and voltage-decrease-loop (retrace). A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM. PMID:25654719

  15. Memory characteristics of hysteresis and creep in multi-layer piezoelectric actuators: An experimental analysis

    NASA Astrophysics Data System (ADS)

    Biggio, Matteo; Butcher, Mark; Giustiniani, Alessandro; Masi, Alessandro; Storace, Marco

    2014-02-01

    In this paper we provide an experimental characterization of creep and hysteresis in a multi-layer piezoelectric actuator (PEA), taking into account their relationships in terms of memory structure. We fit the well-known log-t model to the response of the PEA when driven by piecewise-constant signals, and find that both the instantaneous and the delayed response of the PEA display hysteretic dependence on the voltage level. We investigate experimentally the dependence of the creep coefficient on the input history, by driving the PEA along first-order reversal curves and congruent minor loops, and find that it displays peculiar features like strict congruence of the minor loops and discontinuities. We finally explain the observed experimental behaviors in terms of a slow relaxation of the staircase interface line in the Preisach plane.

  16. A Hysteresis Model for Piezoceramic Materials

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Ounaies, Zoubeida

    1999-01-01

    This paper addresses the modeling of nonlinear constitutive relations and hysteresis inherent to piezoceramic materials at moderate to high drive levels. Such models are, necessary to realize the, full potential of the materials in high performance control applications, and a necessary prerequisite is the development of techniques which permit control implementation. The approach employed here is based on the qualification of reversible and irreversible domain wall motion in response to applied electric fields. A comparison with experimental data illustrates that because the resulting ODE model is physics-based, it can be employed for both characterization and prediction of polarization levels throughout the range of actuator operation. Finally, the ODE formulation is amenable to inversion which facilitates the development of an inverse compensator for linear control design.

  17. Thermal hysteresis behaviors of thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Iwasaki, Hideo

    2014-12-01

    Thermoelectric behaviors for the thermal cycles between room and high temperatures are investigated in (Bi,Sb)2Te3 and Bi2S3. Because the reliability and reproducibility of the data against repeated heating are required, the Harman method is adopted to evaluate the figure of merit, ZT, in which only electrical contacts are needed. The electrical contacts are made by the spot welding method using a simple and low-power machine made in our laboratory to avoid damage to the samples. Thermoelectric properties are changed by repeating thermal cycles, though their rate of change is not always very high and is material dependent. The carrier number dominantly contributes to the thermal hysteresis of the thermoelectric properties upon the repetition of the thermal cycles, which actually affects the sample as an annealing effect. It is pointed out that changes in thermoelectric properties upon the repetition of the thermal cycles should be examined beforehand in practical applications.

  18. Windmill speed limiting system utilizing hysteresis

    SciTech Connect

    Barnes, D.R.

    1983-02-22

    A windmill speed limiting device is provided to prevent the windmill blades from going too fast during conditions of heavy winds. In order to slow down the windmill blades, the tips of the blades are turned relative to the main blade portion at high speeds. After the tips are turned, the windmill blade must return to a safe speed before the tips are returned to their normal position. A hysteresis effect by which the tip portions are rotated to their normal angular position in alignment with the main blade portion is implemented by means of a cam track, a pivot point below the center of the blade and a central spring loaded drum to which each of the blades are connected.

  19. Mechanical Hysteresis as AN Nde Tool for Evaluating Composite Honeycomb Damage

    NASA Astrophysics Data System (ADS)

    Foreman, Cory D.; Dayal, Vinay; Barnard, Daniel J.; Hsu, David K.

    2009-03-01

    Honeycomb composites are finding ever increasing use on aircraft structures, making nondestructive detection of defects contained within honeycomb structures all the more important. This paper focuses on a new detection technique which makes use of the mechanical hysteresis seen as loops in the force-displacement curves. It was observed from load test data that internal damage in honeycomb sandwiches causes the average slope of the force-displacement curves to decrease and the area contained within the hysteresis loop to increase. To satisfy the inspection speed and one-sided access requirements of NDE techniques, a dynamic loading approach was pursued where an accelerometer was used to tap the surface of the test sample. Much of the research focused on the deduction of the force-displacement curves from an acceleration curve. This greatly increased the speed of the technique as well as reduced it to a one-sided test, where only access to the outer surface of the structure is needed.

  20. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.

    PubMed

    Abe-Ouchi, Ayako; Saito, Fuyuki; Kawamura, Kenji; Raymo, Maureen E; Okuno, Jun'ichi; Takahashi, Kunio; Blatter, Heinz

    2013-08-01

    The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere-asthenosphere response. Carbon dioxide is involved, but is not determinative, in the evolution of the 100,000-year glacial cycles. PMID:23925242

  1. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  2. Targeting the Body and the Mind: Evaluation of a P.E. Curriculum Intervention for Adolescents

    ERIC Educational Resources Information Center

    Loukaitou-Sideris, Anastasia

    2015-01-01

    P.E. classes are often the only opportunity for inner-city youth to engage in physical activity, but budget cuts and pressure to perform well on standardized tests has made P.E. an afterthought for many school administrators. This study evaluated the effectiveness of a new P.E. curriculum in five Los Angeles inner-city schools. Interviews were…

  3. Hysteresis in Pressure-Driven DNA Denaturation

    PubMed Central

    Hernández-Lemus, Enrique; Nicasio-Collazo, Luz Adriana; Castañeda-Priego, Ramón

    2012-01-01

    In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like) charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue. PMID:22496765

  4. Hysteresis and Coercivity of Multidomain Hematite

    NASA Astrophysics Data System (ADS)

    Ozdemir, O.

    2008-12-01

    In multidomain hematite, crystal defects lay a major role in hysteresis and coercivity by hindering the motion of domain walls. The kinds of defects that can pin walls are dislocations and growth and deformational twins and twin boundaries. Multidomain hysteresis is also affected by wall nucleation which generally occurs at irregular surfaces such as voids, cracks or at growth steps in the crystal surface. The temperature dependence of Hc is different for nucleation and for various types of defect pinning. The most rapid variation is Hc(T) varying as K(T)/Ms(T), where K is magnetocrystalline anisotropy constant, due to domain nucleation or magnetocrystalline controlled domain wall pinning. Pinning due to the stress field of dislocations or planar defects results in a slower temperature variation: Hc(T) varying as lambda(T)/Ms(T), where lambda is magnetostriction constant. Hc and Ms were measured as a function of temperature in mm-size single crystals of hematite using a PMC MicroVSM. The experimental Hc(T) data varied as the power 1.8-2.4 of Ms(T) between 400 and 625°C. Flanders and Schuele (1961) reported that K(T) varied as the 10th power of Ms in a large single crystal between 20 and 500°C. The magnetostriction constant of hematite has not been measured directly as a function of temperature. Nevertheless, it is reasonable to expect that the magnetostriction of hematite, as in other materials, should have a much weaker power-law dependence on Ms than does the magnetocrystalline anisotropy constant. In the present multidomain hematite crystals, the observed weaker power-law index of 1.8-2.4 indicates that the coercivity is mainly magnetoelastic in origin.

  5. Assessing catchment connectivity using hysteretic loops

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Masselink, Rens; Goni, Mikel; Campo, Miguel Angel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel

    2015-04-01

    Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within landscapes. This information is valuable for land managers to be able to take appropriate action at the correct place. Hysteresis between sediment and water discharge can give important information about the sources , pathways and conditions of sediment that arrives at the outlet of a catchment. "Hysteresis" happens when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed -towards the increase or towards the diminution of the flow. This phenomenon to some extent reflects the way in which the runoff generation processes are conjugated with those of the production and transport of sediments, hence the usefulness of hysteresis as a diagnostic hydrological parameter. However, the complexity of the phenomena and factors which determine hysteresis make its interpretation uncertain or, at the very least, problematic. Many types of hysteretic loops have been described as well as the cause for the shape of the loop, mainly describing the origin of the sediments. In this study, several measures to objectively classify hysteretic loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz "principal", Op, and Oskotz "woodland", Ow). La Tejería and Latxaga watersheds, located in the Central Western part of Navarre, are roughly similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops). On the other hand, Op (ca.1,700 ha) is covered with forest and pasture (cattle-breeding); while Ow (ca. 500 ha), a sub-watershed of the Op, is almost completely covered with forest. The predominant climate in Op/Ow is sub-Atlantic. Furthermore, antecedent conditions and event characteristics were analysed. The loops were compared quantitatively and qualitatively between catchments for similar events and within the catchments for events with different characteristics.

  6. Coexistence of negative photoconductivity and hysteresis in semiconducting graphene

    NASA Astrophysics Data System (ADS)

    Zhuang, Shendong; Chen, Yan; Xia, Yidong; Tang, Nujiang; Xu, Xiaoyong; Hu, Jingguo; Chen, Zhuo

    2016-04-01

    Solution-processed graphene quantum dots (GQDs) possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC) and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture. We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.

  7. Kinetic effects on double hysteresis in spin crossover molecular magnets analyzed with first order reversal curve diagram technique

    SciTech Connect

    Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian E-mail: radu.tanasa@uaic.ro; Stancu, Alexandru; Tanasa, Radu E-mail: radu.tanasa@uaic.ro; Bronisz, Robert

    2015-05-07

    In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe{sub 1−x}Zn{sub x}(bbtr){sub 3}](ClO{sub 4}){sub 2} (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.

  8. Kinetic effects on double hysteresis in spin crossover molecular magnets analyzed with first order reversal curve diagram technique

    NASA Astrophysics Data System (ADS)

    Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian; Tanasa, Radu; Stancu, Alexandru; Bronisz, Robert

    2015-05-01

    In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe1-xZnx(bbtr)3](ClO4)2 (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.

  9. Modeling and compensating the dynamic hysteresis of piezoelectric actuators via a modified rate-dependent Prandtl-Ishlinskii model

    NASA Astrophysics Data System (ADS)

    Yang, Mei-Ju; Li, Chun-Xia; Gu, Guo-Ying; Zhu, Li-Min

    2015-12-01

    This paper presents a modified rate-dependent Prandtl-Ishlinskii (MRPI) model for the description and compensation of the rate-dependent asymmetric hysteresis in piezoelectric actuators. Different from the commonly used approach with dynamic weights or dynamic thresholds, the MRPI model is formulated by employing dynamic envelope functions into the play operators, while the weights and thresholds of the play operators are still static. By this way, the developed MRPI model has a relatively simple mathematic format with fewer parameters and easier parameter identification process. The benefit for the developed MRPI model also lies in the fact that the existing control approaches can be directly adopted with the MRPI model for hysteresis compensation in real-time applications. To validate the proposed model, an open-loop tracking controller and a closed-loop tracking controller are developed based on a dynamic hysteresis compensator, which is directly constructed with the MRPI model. Comparative experiments are carried out on a piezo-actuated nanopositioning stage. The experimental results demonstrate the effectiveness and superiority of the controllers based on the developed MRPI model compared to the controllers based on the rate-independent P-I model and the rate-dependent P-I model with dynamic weighting functions.

  10. Modeling the Effect of Interface Wear on Fatigue Hysteresis Behavior of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    An analytical method has been developed to investigate the effect of interface wear on fatigue hysteresis behavior in carbon fiber-reinforced ceramic-matrix composites (CMCs). The damage mechanisms, i.e., matrix multicracking, fiber/matrix interface debonding and interface wear, fibers fracture, slip and pull-out, have been considered. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Upon first loading to fatigue peak stress and subsequent cyclic loading, the fibers failure probabilities and fracture locations were determined by combining the interface wear model and fiber statistical failure model based on the assumption that the loads carried by broken and intact fibers satisfy the global load sharing criterion. The effects of matrix properties, i.e., matrix cracking characteristic strength and matrix Weibull modulus, interface properties, i.e., interface shear stress and interface debonded energy, fiber properties, i.e., fiber Weibull modulus and fiber characteristic strength, and cycle number on fibers failure, hysteresis loops and interface slip, have been investigated. The hysteresis loops under fatigue loading from the present analytical method were in good agreement with experimental data.

  11. Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich; Qi, Naiming

    2013-11-01

    A physics-based fractional-order Maxwell resistive capacitor (FOMRC) model is proposed to characterize nonlinear hysteresis and creep behaviors of a piezoelectric actuator (PEA). The Maxwell resistive capacitor (MRC) model is interpreted physically in the electric domain for PEAs. Based on this interpretation, the MRC model is modified to directly describe the relationship between the input voltage and the output displacement of a PEA. Then a procedure is developed to identify the parameters of the MRC model. This procedure is capable of being carried out using the measured input and output of a PEA only. A fractional-order dynamics is integrated into the MRC model to describe the effect of creep, as well as the detachment of hysteresis loops caused by creep. Moreover, the inverse FOMRC model is constructed to compensate for hysteresis and creep in an open-loop positioning application of PEAs. Simulation and experiments are carried out to validate the proposed model. The PEA compensated by the inverse FOMRC model shows an excellent linear behavior.

  12. Experiments on sorption hysteresis of desiccant materials

    SciTech Connect

    Pesaran, A.; Zangrando, F.

    1984-08-01

    Solid desiccant cooling systems take advantage of solar energy for air conditioning. The process involves passing air through a desiccant bed for drying and subsequent evaporative cooling to provide the air conditioning. The desiccant is then regenerated with hot air provided by a gas burner or solar collectors. This performance is limited by the capacity of the desiccant, its sorption properties, and the long-term stability of the desiccant material under cyclic operation conditions. Therefore, we have developed a versatile test facility to measure the sorption properties of candidate solid desiccant materials under dynamic conditions, under different geometrical configurations, and under a broad range of process air stream conditions, characteristic of desiccant dehumidifer operation. We identified a dependence of the sorption processes on air velocity and the test cell aspect ratio and the dynamic hysteresis between adsorption and desorption processes. These experiments were geared to provide data on the dynamic performance of silica gel in a parallel-passage configuration to prepare for tests with a rotary dehumidifier that will be conducted at SERI in late FY 1984. We also recommend improving the accuracy of the isotopic perturbation technique.

  13. Hysteresis and transition in swirling nonpremixed flames

    SciTech Connect

    Tummers, M.J.; Huebner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, T.H.

    2009-02-15

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change from an attached swirling flame (unidirectional or with a weak bluff-body recirculation), to a lifted flame with a strong toroidal vortex occupying the bulk of the flame. Despite dramatic differences in their structures, mixing intensities and combustion performance, both flame types can be realised at identical flow rates, equivalence ratio and swirl intensity. We report here on comprehensive investigations of the two flame regimes at the same conditions in a well-controlled experiment in which the swirl was generated by the rotating outer pipe of the annular burner air passage. Fluid velocity measured with PIV (particle image velocimetry), the qualitative detection of reaction zones from OH PLIF (planar laser-induced fluorescence) and the temperature measured by CARS (coherent anti-Stokes Raman spectroscopy) revealed major differences in vortical structures, turbulence, mixing and reaction intensities in the two flames. We discuss the transition mechanism and arguments for the improved mixing, compact size and a broader stability range of the blue flame in comparison to the long yellow flame. (author)

  14. Chromophore packing leads to hysteresis in GFP

    PubMed Central

    Andrews, Benjamin T.; Roy, Melinda; Jennings, Patricia A.

    2010-01-01

    Green fluorescent protein (GFP) possesses a unique folding landscape with a dual basin, leading to the hysteretic folding behavior observed in experiment. While theoretical data do not have the resolution necessary to observe details of the chromophore during refolding, experimental results point to the chromophore as the cause of the observed hysteresis. Using NMR spectroscopy, which probes at the level of the individual residue, the hysteretic intermediate state is further characterized in the context of the loosely-folded native-like state {Niso} predicted in simulation. In the present study, several residues located in the lid of GFP indicate heterogeneity of the native states. Some of these residues show chemical shifts when the native-like intermediate {Niso} responsible for GFP's hysteretic folding behavior is trapped. Observed changes in the chromophore are consistent with increased flexibility or isomerization in {Niso} as predicted in recent theoretical work. Here we observe multiple chromophore environments within the native state are averaged in the trapped intermediate, linking chromophore flexibility to mispacking in the trapped intermediate. The present work is experimental evidence for the proposed final “locking” mechanism in GFP folding forming an incorrectly or loosely packed barrel under intermediate (hysteretic) folding conditions. PMID:19577576

  15. Magnetic evaluation of irradiation hardening in A533B reactor pressure vessel steels: Magnetic hysteresis measurements and the model analysis

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Yamamoto, T.; Klingensmith, D.; Odette, G. R.; Kikuchi, H.; Kamada, Y.

    2012-03-01

    We report results of measurements of magnetic minor hysteresis loops for neutron-irradiated A533B nuclear reactor pressure vessel steels varying alloy composition and irradiation condition. A minor-loop coefficient, which is obtained from a scaling power law between minor-loop parameters exhibits a steep decrease just after irradiation, followed by a maximum in the intermediate fluence regime for most alloys. A model analysis assuming Avrami-type growth for Cu-rich precipitates and an empirical logarithmic law for relaxation of residual stress demonstrates that an increment of the coefficient due to Cu-rich precipitates increases with Cu and Ni contents and is in proportion to a yield stress change, which is related to irradiation hardening.

  16. Adaptive feed-forward hysteresis compensation for piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Eielsen, Arnfinn Aas; Gravdahl, Jan Tommy; Pettersen, Kristin Y.

    2012-08-01

    Piezoelectric actuators are often employed for high-resolution positioning tasks. Hysteresis and creep nonlinearities inherent in such actuators deteriorate positioning accuracy. An online adaptive nonlinear hysteresis compensation scheme for the case of symmetric hysteretic responses and certain periodic reference trajectories is presented. The method has low complexity and is well suited for real-time implementation. Experimental results are presented in order to verify the method, and it is seen that the error due to hysteresis is reduced by more than 90% compared to when assuming a linear response.

  17. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  18. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  19. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    SciTech Connect

    Heczko, O. Drahokoupil, J.; Straka, L.

    2015-05-07

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  20. On the question of hysteresis in Hall magnetohydrodynamic reconnection

    NASA Astrophysics Data System (ADS)

    Sullivan, Brian P.; Bhattacharjee, A.; Huang, Yi-Min

    2010-11-01

    Controversy has been raised regarding the cause of hysteresis, or bistability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This brief communication presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al. [Phys. Rev. Lett. 95, 235002 (2005)] is a different phenomenon from that recently reported by Zocco et al. [Phys. Plasmas 16, 110703 (2009)] on the basis of analysis and simulations in electron MHD with finite electron inertia. We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.

  1. On the question of hysteresis in Hall MHD Reconnection

    NASA Astrophysics Data System (ADS)

    Sullivan, Brian; Bhattacharjee, Amitava; Huang, Yi-Min

    2010-11-01

    Recently, questions have been raised regarding the cause of hysteresis, or bi-stability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This poster presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al.[Phys. Rev. Lett. 95, 235002 (2005)] is, in fact, a different phenomenon from that recently reported by Zocco et al. on the basis of analysis and simulations in electron MHD with finite electron inertia. [Phys. Plasmas 16, 110703 (2009)] We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.

  2. On the question of hysteresis in Hall magnetohydrodynamic reconnection

    SciTech Connect

    Sullivan, Brian P.; Bhattacharjee, A.; Huang Yimin

    2010-11-15

    Controversy has been raised regarding the cause of hysteresis, or bistability, of solutions to the equations that govern the geometry of the reconnection region in Hall magnetohydrodynamic (MHD) systems. This brief communication presents a comparison of the frameworks within which this controversy has arisen and illustrates that the Hall MHD hysteresis originally discovered numerically by Cassak et al. [Phys. Rev. Lett. 95, 235002 (2005)] is a different phenomenon from that recently reported by Zocco et al. [Phys. Plasmas 16, 110703 (2009)] on the basis of analysis and simulations in electron MHD with finite electron inertia. We demonstrate that the analytic prediction of hysteresis in EMHD does not describe or explain the hysteresis originally reported in Hall MHD, which is shown to persist even in the absence of electron inertia.

  3. A high-speed hysteresis drive with pulsed overdrive

    NASA Astrophysics Data System (ADS)

    Pozdnykhov, S. F.; Tarasov, V. N.

    The pulsed overdrive (Delektorskii and Tarasov, 1974) is a special magnetization mode of a hysteresis motor. Consideration is given here to a drive with pulsed overdrive in which field extinction is used to improve the energy characteristics of the motor.

  4. Thermal hysteresis induced by ammonium polyacrylate as antifreeze polymer

    NASA Astrophysics Data System (ADS)

    Funakoshi, Kunio; Inada, Takaaki; Tomita, Takashi; Kawahara, Hidehisa; Miyata, Takashi

    2008-07-01

    Growth and melting rates of a single crystal of ice in ammonium polyacrylate (NH 4PA) aqueous solutions were measured at different solution temperatures, and the morphology of the ice crystals was observed. Thermal hysteresis, defined as the difference between the melting temperature and the non-equilibrium freezing temperature of ice, was confirmed in NH 4PA solutions at concentrations below 25.0 mM. The higher the NH 4PA concentration, the larger the thermal hysteresis, although the thermal hysteresis induced by NH 4PA was much smaller than that induced by antifreeze proteins, antifreeze glycoproteins, or poly(vinyl alcohol). A single crystal of ice grown in the NH 4PA solutions at temperatures within the thermal hysteresis region exhibited the basal faces. When the solution temperature was below the non-equilibrium freezing temperature, the ice crystal grew faster in the a-axis direction than in the c-axis direction, while retaining the basal faces.

  5. Hysteresis modeling of clamp band joint with macro-slip

    NASA Astrophysics Data System (ADS)

    Qin, Zhaoye; Cui, Delin; Yan, Shaoze; Chu, Fulei

    2016-01-01

    Clamp band joints are commonly used to connect spacecrafts with launch vehicles. Due to the frictional slippage between the joint components, hysteresis behavior might occur at joint interfaces under cyclic loading. The joint hysteresis will bring friction damping into the launching systems. In this paper, a closed-form hysteresis model for the clamp band joint is developed based on theoretical and numerical analyses of the interactions of the joint components. Then, the hysteresis model is applied to investigating the dynamic response of a payload fastened by the clamp band joint, where the nonlinearity and friction damping effects of the joint is evaluated. The proposed analytical model, which is validated by both finite element analyses and quasi-static experiments, has a simple form with sound accuracy and can be incorporated into the dynamic models of launching systems conveniently.

  6. Rollercoaster Loop Shapes

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie

    2005-01-01

    Many modern rollercoasters feature loops. Although textbook loops are often circular, real rollercoaster loops are not. In this paper, we look into the mathematical description of various possible loop shapes, as well as their riding properties. We also discuss how a study of loop shapes can be used in physics education.

  7. Aileron roll hysteresis effects on entry of space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Powell, R. W.

    1977-01-01

    Six-degree-of-freedom simulations of the space shuttle orbiter entry with control hysteresis were conducted on the NASA Langley Research Center interactive simulator known as the automatic reentry flight dynamics simulator. These simulations revealed that the vehicle can tolerate control hysteresis producing a + or - 50 percent change in the nominal aileron roll characteristics and an offset in the nominal characteristics equivalent to a + or - 5 deg aileron deflection with little increase in the reaction control system's fuel consumption.

  8. Stabilization of supercooled fluids by thermal hysteresis proteins.

    PubMed Central

    Wilson, P W; Leader, J P

    1995-01-01

    It has been reported that thermal hysteresis proteins found in many cold-hardy, freeze-avoiding arthropods stabilize their supercooled body fluids. We give evidence that fish antifreeze proteins, which also produce thermal hysteresis, bind to and reduce the efficiency of heterogenous nucleation sites, rather than binding to embryonic ice nuclei. We discuss both possible mechanisms for stabilization of supercooled body fluids and also describe a new method for measuring and defining the supercooling point of small volumes of liquid. PMID:7612853

  9. Experimental Highlight of Hysteresis Phenomenon in Rolling Contact

    NASA Astrophysics Data System (ADS)

    Alaci, S.; Cerlinc?, D. A.; Ciornei, F. C.; Filote, C.; Frunz?, G.

    2015-02-01

    In literature, the hysteresis phenomenon in rolling contacts is studied considering both rolling friction and sliding friction. Removal of sliding friction in experimental tests from a concentrated contact is a serious challenge. The paper proposes a method and presents a device ensuring pure rolling between two identical discs, normally loaded. Using photoelastic material for the two rolling discs, by means of photoelastic method, the hysteresis phenomenon due to rolling friction is qualitatively confirmed.

  10. Stabilization of supercooled fluids by thermal hysteresis proteins.

    PubMed

    Wilson, P W; Leader, J P

    1995-05-01

    It has been reported that thermal hysteresis proteins found in many cold-hardy, freeze-avoiding arthropods stabilize their supercooled body fluids. We give evidence that fish antifreeze proteins, which also produce thermal hysteresis, bind to and reduce the efficiency of heterogenous nucleation sites, rather than binding to embryonic ice nuclei. We discuss both possible mechanisms for stabilization of supercooled body fluids and also describe a new method for measuring and defining the supercooling point of small volumes of liquid. PMID:7612853

  11. PREFACE: International Workshop on Hysteresis & Multi-scale Asymptotics

    NASA Astrophysics Data System (ADS)

    Mortell, Michael; O'Malley, Robert E.; Pokrovskii, Alexei; Sobolev, Vladimir

    2005-01-01

    An International Workshop on Hysteresis & Multi-scale Asymptotics was held at University College Cork, Ireland on March 17-21, 2004. It brought together about 40 active scientists in the areas of dynamical systems with hysteresis and singular perturbations to analyse these phenomena which occur in many industrial, physical and economic systems. The scientific programme of the Workshop can be downloaded from the homepage http://euclid.ucc.ie/hamsa2004.htm. This collection of invited papers is based on the programme of the workshop whose main goal was to analyse and to demonstrate an interaction between theories of systems with multiple scales and systems with hysteresis (and between the 'multi-scale' and 'hysteresis' research communities) as far as possible. To fully understand the paths from singular perturbations to hysteresis and from hysteresis to singular perturbations will continue to involve much work and intense interdisciplinary interactions among experts in the two areas. We mention also two previous workshops: International Workshop on Relaxation Oscillations & Hysteresis, University College Cork, Ireland, April 1-6, 2002. The related collection, edited by us, was published as 'Singular Perturbations and Hysteresis', SIAM, Philadelphia, 2005. http://www.ucc.ie/ucc/depts/physics/ins/roh2002.htm International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics, University College Cork, Ireland, April 5-6, 2001. A collection of invited papers has been published as a special issue of Proceedings of the Russian Academy of Natural Sciences: Nonlinear dynamics of laser and reacting systems, Vol. 5, 2001, No 1 and 2 (edited by Vladimir Gol'dstein, Alexei Pokrovskii and Vladimir Sobolev), and is also available online at http://euclid.ucc.ie/appliedmath/gmna2001/ProcGMNA2001Full.pdf Finally, we wish to gratefully acknowledge the support of the School of Mathematical Sciences and the Boole Centre for Research in Informatics, University College Cork.

  12. Changes in surface figure due to thermal hysteresis

    NASA Astrophysics Data System (ADS)

    Jacobs, S. F.; Johnston, S. C.; Sasian, J. M.; Watson, M.; Targove, J. D.

    1987-01-01

    Thermal cycling hysteresis affects surface figure in low-expansivity mirror substrates. Zerodur, ULE, and Cer-Vit 8-in.-diameter mirrors and dilatometer samples were thermally cycled at uniform rates of 6 K/hr and 60 K/hr, and somewhat faster for nonuniform heating. Figure distortions as large as lambda/10 were observed following nonuniform heating of standard Zerodur, which was the only material exhibiting thermal hysteresis. A new experimental Zerodur appears to be free of this problem.

  13. Stiffness and hysteresis properties of some prosthetic feet.

    PubMed

    van Jaarsveld, H W; Grootenboer, H J; de Vries, J; Koopman, H F

    1990-12-01

    A prosthetic foot is an important element of a prosthesis, although it is not always fully recognized that the properties of the foot, along with the prosthetic knee joint and the socket, are in part responsible for the stability and metabolic energy cost during walking. The stiffness and the hysteresis, which are the topics of this paper, are not properly prescribed, but could be adapted to improve the prosthetic walking performance. The shape is strongly related to the cosmetic appearance and so can not be altered to effect these improvements. Because detailed comparable data on foot stiffness and hysteresis, which are necessary to quantify the differences between different types of feet, are absent in literature, these properties were measured by the authors in a laboratory setup for nine different prosthetic feet, bare and with two different shoes. One test cycle consisted of measurements of load deformation curves in 66 positions, representing the range from heel strike to toe-off. The hysteresis is defined by the energy loss as a part of the total deformation energy. Without shoes significant differences in hysteresis between the feet exist, while with sport shoes the differences in hysteresis between the feet vanish for the most part. Applying a leather shoe leads to an increase of hysteresis loss for all tested feet. The stiffness turned out to be non-constant, so mean stiffness is used.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2095529

  14. Self aligned hysteresis free carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Shlafman, M.; Tabachnik, T.; Shtempluk, O.; Razin, A.; Kochetkov, V.; Yaish, Y. E.

    2016-04-01

    Hysteresis phenomenon in the transfer characteristics of carbon nanotube field effect transistor (CNT FET) is being considered as the main obstacle for successful realization of electronic devices based on CNTs. In this study, we prepare four kinds of CNTFETs and explore their hysteretic behavior. Two kinds of devices comprise on-surface CNTs (type I) and suspended CNTs (type II) with thin insulating layer underneath and a single global gate which modulates the CNT conductance. The third and fourth types (types III and IV) consist of suspended CNT over a metallic local gate underneath, where for type IV the local gate was patterned self aligned with the source and drain electrodes. The first two types of devices, i.e., type I and II, exhibit substantial hysteresis which increases with scanning range and sweeping time. Under high vacuum conditions and moderate electric fields ( |E |>4 ×106 V /cm ), the hysteresis for on-surface devices cannot be eliminated, as opposed to suspended devices. Interestingly, type IV devices exhibit no hysteresis at all at ambient conditions, and from the different roles which the global and local gates play for the four types of devices, we could learn about the hysteresis mechanism of this system. We believe that these self aligned hysteresis free FETs will enable the realization of different electronic devices and sensors based on CNTs.

  15. Adhesion hysteresis and friction at nanometer and micrometer lengths

    SciTech Connect

    Szoszkiewicz, Robert; Bhushan, Bharat; Huey, Bryan D.; Kulik, Andrzej J.; Gremaud, Gerard

    2006-01-01

    Comparisons between adhesion hysteresis and friction at nanometer and micrometer length scales were investigated experimentally and theoretically. Nanoscale adhesion hysteresis was measured using the ultrasonic force microscopy (UFM) on mica, calcite, and a few metallic samples (Pt, Au, Cu, Zn, Ti, and Fe). Obtained adhesion hysteresis ranged between 4x10{sup -19} and 4x10{sup -18} J. At the microscale a similar setup with a nanoindenter was used and the same samples were investigated. Adhesion hysteresis measured at the microscale ranged between 8x10{sup -17} and 14x10{sup -17} J. Friction was investigated via lateral force microscopy, as well as by scratch tests done with the nanoindenter. Numerical simulations based on the UFM model as well as established theories of contact mechanics studied qualitative dependencies of adhesion hysteresis on experimental parameters. Quantitative relations between adhesion hysteresis and friction were obtained through an analytic model relying on elastic and adhesive properties of the contact. The model agreed with measurements and simulations.

  16. Water Stream "Loop-the-Loop"

    ERIC Educational Resources Information Center

    Jefimenko, Oleg

    1974-01-01

    Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

  17. Sensitivity and hysteresis properties of A-WO3, Ta2O5, and A-Si:H gate ion-sensitive field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chiang, Jung Lung; Chou, Jung Chuan; Chen, Ying-Chung

    2002-08-01

    The sensitivity and hysteresis effects of ion-sensitive field-effect transistor (ISFET) devices based on a-WO3, Ta2O5, and a-Si:H thin films have been investigated. The pH sensitivity is one of the important characteristic parameters of ISFET devices, and the response of an ISFET is mainly determined by the type of the sensing membrane; therefore the sensing material plays a significant role. Furthermore, hysteresis leads to inaccuracy and instability of ISFET measuring devices. In this investigation the pH sensitivities of different sensing-gate ISFET devices were measured in different buffer solutions by current-voltage (I-V) measurement, and the hysteresis curves were measured by exposing the device to several cycles of pH values over different loop times. According to the experimental results, a-WO3 and a- Si:H are useful in acidic buffer solutions (pH 1 to 7), and Ta2O5 at pH 1 to 12. The pH sensitivities are all larger than 50 mV/pH, and it was found that the key parameter in determining the hysteresis width is the loop time.

  18. Magnetization Hysteresis and Quantum Tunneling in Lanthanide Double-Decker Complexes

    NASA Astrophysics Data System (ADS)

    Rupp, H.; Brink, S.

    2005-03-01

    We present magnetization measurements on single crystals of lanthanide double-deckers [Pc2Ln]^- TBA^+. The 4f^9 (4f^8) configuration of the Dy^3+ (Tb^3+), ion results in a J = 15/2 (J = 6) ground-state multiplett. In SQUID measurements on single crystal samples, we observed very large axial and a significant transverse anisotropy. Magnetization measurements using 2DEG ballistic Hall probes were carried out in a ^3He cryostat. Hysteresis was observed for both compounds up to blocking temperatures of 4.2 and >10 K, respectively. The coercivity increased with decreasing temperatures and increasing sweep rate, as expected for the superparamagnet-like behaviour of a SMM. The hysteresis loops displayed step-like features characteristic for resonant quantum tunnelling of the magnetization (QTM). The step height decreased with increasing sweep rate according the Landau-Zener tunnelling mechanism. In conclusion, the lanthanide double decker molecules are SMM with the highest blocking temperatures observed to date.

  19. A neural approach for the numerical modeling of two-dimensional magnetic hysteresis

    SciTech Connect

    Cardelli, E.; Faba, A.; Laudani, A.; Riganti Fulginei, F.; Salvini, A.

    2015-05-07

    This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, making possible a full computer simulation in a reasonable time. The neural system proposed consists of four inputs representing the magnetic field and the magnetic inductions components at each time step and it is trained by 2-d measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the neural system returns the predicted value of the field H at the same time step. A suitable partitioning of the neural system, described in the paper, makes the computing process rather fast. Validations with experimental tests and simulations for non-symmetric and minor loops are presented.

  20. Crystal growth and dynamic ferroelectric hysteresis scaling behavior of molecular ferroelectric diisopropylammonium bromide

    NASA Astrophysics Data System (ADS)

    Jiang, Chunli; Lin, Hechun; Luo, Chunhua; Zhang, Yuanyuan; Yang, Jing; Peng, Hui; Duan, Chun-Gang

    2016-03-01

    The molecular ferroelectric, diisopropylammonium bromide (DIPAB) crystal with P21 phase is successfully prepared in an anhydrous environment at room temperature. The results illustrate that the water in the solvent / environment plays a key role in the phase of DIPAB single crystal during crystallization process. The scaling behavior of the dynamic hysteresis of DIPAB crystal is also investigated. The scaling relations of hysteresis area(A) against frequency (f) and applied electric field amplitude (E0) can be expressed with A ∝ f - 0 . 17E01 in the f-region I (30-6.6 Hz), A ∝ f 0 . 045E00.92 in the f-region II (200-50 Hz) and A ∝ f - 0 . 41E02 in the f-region III (500-250 Hz). This three-stage behavior between the loop area A and frequency is ascribed to the coexistence of order-disorder and displacive characters in the ferroelectric transition characters in such molecular ferroelectrics.

  1. A neural approach for the numerical modeling of two-dimensional magnetic hysteresis

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Riganti Fulginei, F.; Salvini, A.

    2015-05-01

    This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, making possible a full computer simulation in a reasonable time. The neural system proposed consists of four inputs representing the magnetic field and the magnetic inductions components at each time step and it is trained by 2-d measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the neural system returns the predicted value of the field H at the same time step. A suitable partitioning of the neural system, described in the paper, makes the computing process rather fast. Validations with experimental tests and simulations for non-symmetric and minor loops are presented.

  2. Capillary rise in a microchannel of arbitrary shape and wettability: hysteresis loop.

    PubMed

    Wang, Zhengjia; Chang, Cheng-Chung; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2012-12-11

    Capillary rise in an asymmetric microchannel, in which both contact angle (wettability) and open angle (geometry) can vary with position, is investigated based on free-energy minimization. The integration of the Young-Laplace equation yields the general force balance between surface tension and gravity. The former is surface tension times the integration of cos θ(u) along the contact line, where θ(u) depicts the local difference between contact angle and open angle. The latter comes from the total volume right underneath the meniscus. For the same channel height, multiple solutions can be obtained from the force balance. However, the stable height of capillary rise must satisfy stability analysis. Several interesting cases have been studied, including short capillary, truncated cone, hyperboloid, and two different plates. As the tube length is smaller than Jurin's height, the angle of contact will be tuned to fulfill the force balance. While only one stable state is seen for divergent channels, two stable states can be observed for convergent channels. Three regimes can be identified for the plot of the stable height of capillary rise against the channel height. The higher height dominates in the short channel regime, while the lower height prevails in the tall channel regime. However, both solutions are stable in the intermediate regime. Surface Evolver simulations and experiments are performed to validate our theoretical predictions. Our results offer some implications for water transport to the tops of tall trees. A small bore at the uppermost leaf connected to a larger xylem conduit corresponds to a convergent channel, and two stable heights are possible. The slow growth of the tree can be regarded as a gradual rise of the convergent channel. Consequently, the stable height of capillary rise to the top of a tall tree can always be achieved. PMID:23171321

  3. Separation of ferromagnetic components by analyzing the hysteresis loops of remanent magnetization

    NASA Astrophysics Data System (ADS)

    Kosareva, L. R.; Utemov, E. V.; Nurgaliev, D. K.; Shcherbakov, V. P.; Kosarev, V. E.; Yasonov, P. G.

    2015-09-01

    The new method is suggested for separating ferromagnetic components in sediments through analyzing the coercivity spectra of the samples by the continuous wavelet transform with the Gaussian-based wavelet (MHAT). A total of 1056 samples of Lake Khuvsgul's sediments (Mongolia) are studied. At least four groups of magnetic components are identified based on the analysis of their magnetization and remagnetization curves. Almost all samples are found to contain two components of bacterial origin which are represented by the assemblages of the interacting single-domain grains and differ by the grain compositions (magnetite and greigite). The applicability of the magnetic data for diagnosing magnetotactic bacteria in sediments and building paleoecological and paleoclimatic reconstructions is demonstrated.

  4. Nonlinear ac stationary response and dynamic magnetic hysteresis of quantum uniaxial superparamagnets

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Titov, Serguey V.; Coffey, William T.

    2015-11-01

    The nonlinear ac stationary response of uniaxial paramagnets and superparamagnets—nanoscale solids or clusters with spin number S ˜100-104 —in superimposed uniform ac and dc bias magnetic fields of arbitrary strength, each applied along the easy axis of magnetization, is determined by solving the evolution equation for the reduced density matrix represented as a finite set of three-term differential-recurrence relations for its diagonal matrix elements. The various harmonic components arising from the nonlinear response of the magnetization, dynamic magnetic hysteresis loops, etc., are then evaluated via matrix continued fractions indicating a pronounced dependence of the response on S arising from the quantum spin dynamics, which differ markedly from the magnetization dynamics of classical nanomagnets. In the linear response approximation, the results concur with existing solutions.

  5. Intelligent compensation of friction, ripple, and hysteresis via a regulated chatter.

    PubMed

    Zhao, S; Putra, A S; Tan, K K; Panda, S K; Lee, T H

    2006-07-01

    In this paper, a hybrid control scheme utilizing a PID feedback control with an additional regulated chatter signal is developed to compensate motion impeding influences such as the effects due to friction, force ripples, and hysteresis in linear piezoelectric motor. The regulated chatter signal is a pulse sequence superimposed on the PID control signal. It has a fixed amplitude, and a pulse width regulated via iterative learning control. As such, the scheme is expected to be useful for applications involving iterative motion sequences. An analysis of the closed-loop performance is presented in the paper. Simulation and experimental results are also furnished to demonstrate that the proposed control scheme can reduce tracking errors significantly. PMID:16856637

  6. Simulation of a vector hysteresis measurement system taking hysteresis into account by the vector Preisach model

    NASA Astrophysics Data System (ADS)

    Kuczmann, Miklós

    2008-02-01

    The paper deals with the numerical analysis of a rotational single sheet tester with round-shaped specimen (RRSST) which is now under construction. The measurement setup consists of an induction motor the rotor of which has been removed, and its windings have been replaced to a special two phase one which can generate homogeneous magnetic field inside the motor. The two orthogonal components of the magnetic field intensity and of the magnetic flux density vectors can be measured by H-coils and B-coils, respectively. The Finite Element Method (FEM) with the T, Φ-Φ potential formulation has been applied in the simulations. The vector hysteresis property of the specimen has been approximated by the vector Preisach model. Finally, the nonlinear problem has been solved by the fixed-point technique. The aim of the present work is to focus on the design aspects of this kind of measurement system.

  7. Hydrological annual hysteresis: functional signature for assessing the consistency of catchment conceptual models?

    NASA Astrophysics Data System (ADS)

    Fovet, Ophelie; Laurent, Ruiz; Markus, Hrachowitz; Chantal, Gascuel-Odoux

    2015-04-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. In this study, the annual hysteric patterns observed between stream flow and water storage is analysed both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (ORE AgrHys). The saturated zone storage was estimated using distributed shallow groundwater levels and the unsaturated zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow, saturated, and unsaturated storages led to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such systems-like approach is likely to improve model selection.

  8. Hydrological hysteresis in catchments and its value for assessing process consistency in conceptual models

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.

    2014-05-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analyzed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (ORE AgrHys). The saturated zone storage was estimated using distributed shallow groundwater levels and the unsaturated zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow, saturated, and unsaturated storages led to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such systems-like approach is likely to improve model selection.

  9. Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.

    2015-01-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.

  10. Automated setup for magnetic hysteresis characterization based on a voltage controlled current source with 500 kHz full power bandwidth and 10 A peak-to-peak current

    SciTech Connect

    Calabrese, G.; Capineri, L.; Granato, M.; Frattini, G.

    2015-04-15

    This paper describes the design of a system for the characterization of magnetic hysteresis behavior in soft ferrite magnetic cores. The proposed setup can test magnetic materials exciting them with controlled arbitrary magnetic field waveforms, including the capability of providing a DC bias, in a frequency bandwidth up to 500 kHz, with voltages up to 32 V peak-to-peak, and currents up to 10 A peak-to-peak. In order to have an accurate control of the magnetic field waveform, the system is based on a voltage controlled current source. The electronic design is described focusing on closed loop feedback stabilization and passive components choice. The system has real-time hysteretic loop acquisition and visualization. The comparisons between measured hysteresis loops of sample magnetic materials and datasheet available ones are shown. Results showing frequency and thermal behavior of the hysteresis of a test sample prove the system capabilities. Moreover, the B-H loops obtained with a multiple waveforms excitation signal, including DC bias, are reported. The proposal is a low-cost and replicable solution for hysteresis characterization of magnetic materials used in power electronics.

  11. A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops

    NASA Astrophysics Data System (ADS)

    Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping

    2015-01-01

    A self-adaptive genetic algorithm for estimating Jiles-Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet's hysteresis loops, and the results are in good agreement with published data.

  12. The origin of noise and hysteresis in permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, Barry

    2013-04-01

    in permalloy ring-core fluxgate sensors a single phenomenon may cause both fluxgate noise and magnetic hysteresis. It also provides an explanation for Barkhausen noise, remanence and coercivity. It can also resolve the "domain nucleation problem." in the unmagnetized state a high-quality permalloy foil takes a domain structure generally referred to as "stripe domains," which present at the free surface as parallel, uniformly spaced domain walls bounding regions of alternating 'in' and 'out' leakage flux, and domain walls crossing the entire thickness of the foil. The leakage flux is a requirement of the random orientation, grain-by-grain, of magnetic easy axes' angles with respect to the foil free surface, and creates a free space field with a magnetostatic energy cost. This together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free surface domain pattern remains essentially unchanged, due to the extreme magnetostatic energy cost such a change would elicit. Thus domain walls are 'pinned' to free surfaces. As the fluxgate core is driven to saturation, domain walls pinned at the free surfaces first bulge then reconnect to form a new domain configuration this author has called "channel domains", which are attached to free surfaces. Energy released during the domain wall reconnection manifests as Barkhausen noise, while the reconnection itself manifests as a Barkhausen jump. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy into deep saturation will compress the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero drive H, thus explaining remanence. The Barkhausen jumps being irreversible, exothermic events are sources of fluxgate noise. It is also the case that fluxgate signal power is proportional to B-H loop curvature, that is to the second derivative of B. The degree to which Barkhausen jumps coincide with loop curvature is a measure of fluxgate noise that accompanies fluxgate signal. B-H loops with significant curvature beyond the open hysteresis loop may be used to advantage to acquire fluxgate signal with much reduced fluxgate noise.

  13. Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; Omand, Conor; Nishino, Masamichi

    2016-02-01

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean-field method for a simplified model of a spin-crossover material with a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S =1 /2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley (equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shaped regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. We believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.

  14. Magnetic hysteresis properties of BaFe sub 12 minus x In sub x O sub 19 ceramic ferrites with c -axis oriented grains

    SciTech Connect

    Dionne, G.F.; Fitzgerald, J.F. )

    1991-11-15

    To study the effects of reduced magnetic anisotropy on hysteresis loops of hard magnets for possible use in self-biased microwave devices, a new family of magnetically oriented ({ital c}-axis) In-substituted Ba ferrite was prepared by conventional ceramic techniques. Earlier studies of BaFe{sub 12{minus}{ital x}}(In,Sc){sub {ital x}}O{sub 19} series in single-crystal form have shown that magnetization 4{pi}{ital M} and anisotropy field {ital H}{sub {ital k}} decrease sharply with increasing {ital x}. Since hysteresis loops with optimum energy products require uniformly small grains (1 to 3 {mu}m), sintering temperatures were carefully controlled over a range from 1180 to 1075 {degree}C for 2 h, depending on In content. For nominal values of {ital x} ranging from 0 to 1.5, square hysteresis loops with {ital H}{sub {ital c}} values decreasing from 3500 to 150 Oe were recorded with a high-field hysteresisgraph. The effective {ital H}{sub {ital k}} values were measured and compared with single-crystal data to estimate the degree of grain alignment for each composition.

  15. Strain dependence of pseudoelastic hysteresis of NiTi

    SciTech Connect

    Liu, Y.; Houver, I.; Xiang, H.; Bataillard, L.; Miyazaki, S.

    1999-05-01

    This work investigated the transformation-strain dependence of the stress hysteresis of pseudoelasticity associated with the stress-induced martensitic transformation in binary NiTi alloys. The strain dependence was studied with respect to the deformation mode during the stress-induced martensitic transformation, which was either localized or homogeneous. It was observed that the apparent stress hysteresis of pseudoelasticity was independent of the transformation strain within the macroscopic deformation range, for the specimens deformed in a localized manner. For specimens macroscopically deformed uniformly, the stress hysteresis of pseudoelasticity increased continuously with increasing strain from the beginning of the stress-induced martensitic transformation. The transformation-strain independence of the stress hysteresis for localized deformation is ascribed to be an artificial phenomenon, whereas the transformation-strain dependence of the hysteresis for uniform deformation is believed to be intrinsic to the process of stress-induced martensitic transformation in polycrystalline materials. This intrinsic behavior is attributed to the polycrystallinity of the materials.

  16. Hysteresis in the production of force by larval Dipteran muscle.

    PubMed

    Paterson, Bethany A; Anikin, Ilya Marko; Krans, Jacob L

    2010-07-15

    We describe neuromuscular hysteresis - the dependence of muscle force on recent motoneuron activity - in the body wall muscles of larval Sarcophaga bullata and Drosophila melanogaster. In semi-intact preparations, isometric force produced by a train of nerve impulses at a constant rate was significantly less than that produced by the same train of stimuli with a brief (200 ms) high-frequency burst of impulses interspersed. Elevated force did not decay back to predicted values after the burst but instead remained high throughout the duration of the stimulus train. The increased force was not due to a change in excitatory junction potentials (EJPs); EJP voltage and time course before and after the high-frequency burst were not statistically different. Single muscle and semi-intact preparations exhibited hysteresis similarly, suggesting that connective tissues of the origin or insertion are not crucial to the mechanism of hysteresis. Hysteresis was greatest at low motoneuron rates - yielding a approximately 100% increase over predicted values based on constant-rate stimulation alone - and decreased as impulse rate increased. We modulated motoneuron frequency rhythmically across rates and cycle periods similar to those observed during kinematic analysis of larval crawling. Positive force hysteresis was also evident within these more physiological activation parameters. PMID:20581278

  17. Heterogeneous side chain conformation highlights a network of interactions implicated in hysteresis of the knotted protein, minimal tied trefoil

    NASA Astrophysics Data System (ADS)

    Burban, David J.; Haglund, Ellinor; Capraro, Dominique T.; Jennings, Patricia A.

    2015-09-01

    Hysteresis is a signature for a bistability in the native landscape of a protein with significant transition state barriers for the interconversion of stable species. Large global stability, as in GFP, contributes to the observation of this rare hysteretic phenomenon in folding. The signature for such behavior is non-coincidence in the unfolding and refolding transitions, despite waiting significantly longer than the time necessary for complete denaturation. Our work indicates that hysteresis in the knotted protein, the minimal tied trefoil from Thermotoga maritma (MTTTm), is mediated by a network of side chain interactions within a tightly packed core. These initially identified interactions include proline 62 from a tight β-like turn, phenylalanine 65 at the beginning of the knotting loop, and histidine 114 that initiates the threading element. It is this tightly packed region and the knotting element that we propose is disrupted with prolonged incubation in the denatured state, and is involved in the observed hysteresis. Interestingly, the disruption is not linked to backbone interactions, but rather to the packing of side chains in this critical region.

  18. Effects of Contact Angle Hysteresis on Ice Adhesion and Growth over Superhydrophobic Surfaces under Dynamic Flow Conditions

    SciTech Connect

    Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2012-01-01

    In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow condition of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.

  19. Hysteresis Modeling in Magnetostrictive Materials Via Preisach Operators

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1997-01-01

    A phenomenological characterization of hysteresis in magnetostrictive materials is presented. Such hysteresis is due to both the driving magnetic fields and stress relations within the material and is significant throughout, most of the drive range of magnetostrictive transducers. An accurate characterization of the hysteresis and material nonlinearities is necessary, to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a characterization is made here in the context of generalized Preisach operators. This yields a framework amenable to proving the well-posedness of structural models that incorporate the magnetostrictive transducers. It also provides a natural setting in which to develop practical approximation techniques. An example illustrating this framework in the context of a Timoshenko beam model is presented.

  20. A modified Prandtl-Ishlinskii modeling method for hysteresis

    NASA Astrophysics Data System (ADS)

    Dong, Ruili; Tan, Yonghong

    2009-05-01

    A modified Prandtl-Ishlinskii modeling method for rate-independent hysteresis in piezoelectric actuators is proposed in this paper. In this method, a generalized backlash operator (GBO) regarded as the elementary operator is introduced into the model so as to be more flexible for modeling of complex hysteresis. Moreover, the Levenberg-Marquardt algorithm is used to estimate the parameters of the model. Thus, all the parameters of the modified PI model can be determined automatically. From this way, it avoids the tedious procedure for the selection of the operator parameters by trial and error. Then, a group of proper Clarke subgradients of the GBO outputs with respect to their parameters at a non-smooth point is obtained based on the bundle method. Finally, the experimental results of applying the proposed method to the modeling of hysteresis in a piezoelectric actuator and an ultrasonic motor (USM) are illustrated, respectively.

  1. Hysteresis dispersion scaling of a two-dimensional ferroelectric model

    NASA Astrophysics Data System (ADS)

    Wang, L.-F.; Liu, J.-M.

    2005-09-01

    The ferroelectric hysteresis dispersion of a two-dimensional ferroelectric model lattice in an ac electric field of amplitude E0 and frequency ? over a wide range, respectively, is calculated by Monte Carlo simulation based on the Ginzburg-Landau theory on tetragonal-type ferroelectric phase transitions. Given a fixed field amplitude E0, the hysteresis dispersion as a function of field frequency ? shows a single-peaked pattern, which predicts the existence of a characteristic time responsible for domain switching in an external electric field. The scaling analysis demonstrates that given different field amplitudes E0, the hysteresis dispersions can be scaled and the characteristic time depends inversely on the field amplitude E0 over a wide range of E0, but the large deviation occurs as E0 is very small or extremely large.

  2. Origin of J-V Hysteresis in Perovskite Solar Cells.

    PubMed

    Chen, Bo; Yang, Mengjin; Priya, Shashank; Zhu, Kai

    2016-03-01

    High-performance perovskite solar cells (PSCs) based on organometal halide perovskite have emerged in the past five years as excellent devices for harvesting solar energy. Some remaining challenges should be resolved to continue the momentum in their development. The photocurrent density-voltage (J-V) responses of the PSCs demonstrate anomalous dependence on the voltage scan direction/rate/range, voltage conditioning history, and device configuration. The hysteretic J-V behavior presents a challenge for determining the accurate power conversion efficiency of the PSCs. Here, we review the recent progress on the investigation of the origin(s) of J-V hysteresis behavior in PSCs. We discuss the impact of slow transient capacitive current, trapping and detrapping process, ion migrations, and ferroelectric polarization on the hysteresis behavior. The remaining issues and future research required toward the understanding of J-V hysteresis in PSCs will also be discussed. PMID:26886052

  3. Contact Hysteresis and Friction of Alkanethiol SAMs on Au

    SciTech Connect

    Houston, J.E.; Kiely, J.D.

    1998-10-14

    Nanoindentation has been combhed with nanometer-scale friction measurements to identi~ dissipative mechanisms responsible for friction in hexadecanethiol self-assembled monolayer on Au. We have demonstrated that friction is primarily due to viscoelastic relaxations within the films, which give rise to contact hysteresis when deformation rates are within the ranges of 5 and 200 k. We observe that this contact hysteresis increases with exposure to air such that the friction coefficient increases from 0.004 to 0.075 when films are exposed to air for 40 days. Both hysteresis and friction increase with probe speed, and we present a model of friction that characterizes this speed dependence and which also predicts a linear dependence of friction on normal force in thin organic films. Finally, we identify several short-term wear regimes and identify that wear changes dramatically when fdms age.

  4. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  5. The preprocessed doacross loop

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi

    1990-01-01

    Dependencies between loop iterations cannot always be characterized during program compilation. Doacross loops typically make use of a-priori knowledge of inter-iteration dependencies to carry out required synchronizations. A type of doacross loop is proposed that allows the scheduling of iterations of a loop among processors without advance knowledge of inter-iteration dependencies. The method proposed for loop iterations requires that parallelizable preprocessing and postprocessing steps be carried out during program execution.

  6. Predictability of magnetic hysteresis and thermoremanent magnetization using Preisach theory

    NASA Astrophysics Data System (ADS)

    Newell, A. J.; Niemerg, M.; Bates, D.

    2014-12-01

    Preisach theory is a phenomenological model of hysteresis that is the basis for FORC analysis in rock magnetism. In FORC analysis, a system is characterized using first-order reversal curves (FORCs), each of which is a magnetization curve after a reversal in the direction of change of the magnetic field. Preisach theory uses the same curves to predict the magnetic response to changes in the magnetic field. In rock magnetism, the Preisach model has been adapted to predict general properties of thermoremanent magnetization (TRM), and even to inferpaleointensity from room-temperature FORCs. Preisach theory represents hysteresis by a collection of hysteresis units called hysterons; the distribution of hysterons is inferred from FORC measurements. Each hysteron represents a two-state system. This is similar to a single-domain (SD) magnet, but the first-order theory cannot represent the magnetism of a simple system of randomly oriented SD magnets. Such a system can be represented by a second-order Preisach theory, which requires the measurement of magnetization curves after two reversals of the direction of change. One can generalize this process to higher order reversal curves, although each increase in the number of reversals greatly increases the number of measurements that are needed. The magnetic hysteresis of systems of interacting SD magnets is calculated using numerical homotopy, a method that can find all the solutions of the equilibrium equations for such a system. The hysteresis frequently has features that cannot be represented by any order of Preisach theory. Furthermore, there are stable magnetic states that are not reachable during isothermal hysteresis unless thermal fluctuations are large enough. Such states would not be visible at room temperature but would contribute to TRM.

  7. Hysteresis of boiling for different tunnel-pore surfaces

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert; Piasecka, Magdalena

    2015-05-01

    Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS), narrow tunnel structures (NTS) and mini-fins covered with the copper wire net (NTS-L). The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  8. Hysteresis and the Dynamic Elasticity of Consolidated Granular Materials

    NASA Astrophysics Data System (ADS)

    Guyer, R. A.; Tencate, James; Johnson, Paul

    1999-04-01

    Quasistatic elasticity measurements on rocks show them to be strikingly nonlinear and to have elastic hysteresis with end point memory. When the model for this quasistatic elasticity is extended to the description of nonlinear dynamic elasticity the elastic elements responsible for the hysteresis dominate the behavior. Consequently, in a resonant bar, driven to nonlinearity, the frequency shift and the attenuation are predicted to be nonanalytic functions of the strain field. A resonant bar experiment yielding results in substantial qualitative and quantitative accord with these predictions is reported.

  9. A survey on hysteresis modeling, identification and control

    NASA Astrophysics Data System (ADS)

    Hassani, Vahid; Tjahjowidodo, Tegoeh; Do, Thanh Nho

    2014-12-01

    The various mathematical models for hysteresis such as Preisach, Krasnosel'skii-Pokrovskii (KP), Prandtl-Ishlinskii (PI), Maxwell-Slip, Bouc-Wen and Duhem are surveyed in terms of their applications in modeling, control and identification of dynamical systems. In the first step, the classical formalisms of the models are presented to the reader, and more broadly, the utilization of the classical models is considered for development of more comprehensive models and appropriate controllers for corresponding systems. In addition, the authors attempt to encourage the reader to follow the existing mathematical models of hysteresis to resolve the open problems.

  10. Observation of polymer conformation hysteresis in extensional flow.

    PubMed

    Schroeder, Charles M; Babcock, Hazen P; Shaqfeh, Eric S G; Chu, Steven

    2003-09-12

    Highly extensible Escherichia coli DNA molecules in planar extensional flow were visualized in dilute solution by fluorescence microscopy. For a narrow range of flow strengths, the molecules were found in either a coiled or highly extended conformation, depending on the deformation history of the polymer. This conformation hysteresis persists for many polymer relaxation times and is due to conformation-dependent hydrodynamic forces. Polymer conformational free-energy landscapes were calculated from computer simulations and show two free-energy minima for flow strengths near the coil-stretch transition. Hysteresis cycles may directly influence bulk-solution stresses and the development of stress-strain relations for dilute polymer flows. PMID:12970560

  11. Identification and compensation of Preisach hysteresis models for magnetostrictive actuators

    NASA Astrophysics Data System (ADS)

    Natale, C.; Velardi, F.; Visone, C.

    2001-12-01

    The paper proposes the identification and compensation of the hysteretic behavior of an actuator constituted by a Terfenol-D magnetostrictive material. Hysteresis is modeled by applying the classical Preisach model whose identification procedure is performed by the adoption of both a fuzzy approximator and a feed-forward neural network. This allows to analytically reconstruct either Everett integrals and the Preisach distribution function, without any special smoothing of the measured data, owing to the filtering capabilities of the neuro-fuzzy interpolators. The idea of pseudo-compensator is introduced for compensation of hysteresis and nonlinearity of a magnetostrictive actuator.

  12. M-H loop tracer based on digital signal processing for low frequency characterization of extremely thin magnetic wires

    SciTech Connect

    Butta, M.; Ripka, P.; Infante, G.; Badini-Confalonieri, G. A.; Vazquez, M.

    2009-08-15

    A high-sensitivity ac hysteresis loop tracer has been developed to measure the low frequency hysteresis loop of soft magnetic materials. It has been applied successfully to characterize straight pieces of amorphous glass-covered microwires with metallic nucleus down to 1.5 {mu}m thick. Based on the electromagnetic induction law, the proposed design is extremely simple and exploits the capabilities of commercially available data acquisition cards together with digital signal processing in order to achieve high-sensitivity without the need of expensive analog equipment.

  13. A Comparison of Longitudinal and Transverse Cross Sections in the p (e,e'K)/Lambda and p(e,e'K)/Sigma Reactions

    SciTech Connect

    Richard Mohring

    1999-10-01

    Jefferson Lab Experiment E93-018 measured kaon electroproduction in hydrogen in two hyperon channels, p(e, e'K{sup +})Lambda and p(e,e'K{sup +})Sigma{sup 0}. Data in both channels were taken at three (3) different values of the virtual photon transverse linear polarization, epsilon, for each of four (4) values of Q{sup 2} = (0.52, 0.75, 1.00, 2.00) GeV{sup 2}. Cross sections averaged over the azimuthal angle, phi, were extracted (i.e., sigma{sub T} + epsilon sigma{sub L}) at each of these twelve points for each hyperon. Rosenbluth separations were performed to separate the longitudinal and transverse production cross sections.

  14. Seasonal variation in phosphorus concentration-discharge hysteresis inferred from high-frequency in situ monitoring

    NASA Astrophysics Data System (ADS)

    Bieroza, M. Z.; Heathwaite, A. L.

    2015-05-01

    High-resolution in situ total phosphorus (TP), total reactive phosphorus (TRP) and turbidity (TURB) time series are presented for a groundwater-dominated agricultural catchment. Meta-analysis of concentration-discharge (c-q) intra-storm signatures for 61 storm events revealed dominant hysteretic patterns with similar frequency of anti-clockwise and clockwise responses; different determinands (TP, TRP, TURB) behaved similarly. We found that the c-q loop direction is controlled by seasonally variable flow discharge and temperature whereas the magnitude is controlled by antecedent rainfall. Anti-clockwise storm events showed lower flow discharge and higher temperature compared to clockwise events. Hydrological controls were more important for clockwise events and TP and TURB responses, whereas in-stream biogeochemical controls were important for anti-clockwise storm events and TRP responses. Based on the best predictors of the direction of the hysteresis loops, we calibrated and validated a simple fuzzy logic inference model (FIS) to determine likely direction of the c-q responses. We show that seasonal and inter-storm succession in clockwise and anti-clockwise responses corroborates the transition in P transport from a chemostatic to an episodic regime. Our work delivers new insights for the evidence base on the complexity of phosphorus dynamics. We show the critical value of high-frequency in situ observations in advancing understanding of freshwater biogeochemical processes.

  15. Causes and implications of colloid and microorganism retention hysteresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were designed to better understand the causes and implications of colloid and microorganism retention hysteresis with transients in solution ionic strength (IS). Saturated packed column experiments were conducted using two sizes of carboxyl modified latex (CML) microspheres (0.1 and 1.1...

  16. Study on hydrogen production with hysteresis in UASB.

    PubMed

    Huang, G H; Hsu, S F; Liang, T M; Huang, Y H

    2004-02-01

    This paper uses a 10-l UASB (upflow anaerobic sludge blanket) bench-scale reactor to treat the esterification wastewater of a polyethylene terephthalate manufacturing plant. Two organic loading rates are used to evaluate the effect on H2 production of temperature gradually step-down and step-up in the range of 11-25 degrees C. Experimental results show that H2 production is positively related to temperature. H2 production increases with temperature at the higher organic loading rate (4.5 kg COD m(-3)d(-1)). However, the H2 produced does not go back to its original concentration but rather follows a hysteresis curve. This hysteresis also occurs in the corresponding concentrations of COD, acetate, propionate and butyrate. As in the H2 profiles, these parameter curves return clockwise during the temperature step-up. At the lower organic loading rate (2.2 kg COD m(-3)d(-1)), no obvious hysteresis is observed for H2 curve. The pattern of other parameters, except for the propionate, returns counterclockwise resulting in the hysteresis phenomena. PMID:14637338

  17. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes

    PubMed Central

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-01-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3− antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour. PMID:25953105

  18. Modeling and analysis of hysteresis by harmonic balance method

    NASA Astrophysics Data System (ADS)

    Cheng, Weiying; Saito, Yoshifuru

    2015-05-01

    B-H loop and its modeling are essential for ferromagnetic material characterization and electromagnetic simulation. The objective of this study was to characterize material change by analyzing the corresponding B-H loops and construct a general B-H model for electromagnetic simulation. A B-H loop was decomposed in terms of either ideal or normal magnetization curves, and the respective curves are single-valued functions of B and dB, which can be constructed using harmonic balance method. The B-H loop analysis and modeling were simplified by the loop decomposition approach.

  19. Crystal field dilution in S-1 Blume Capel model: Hysteresis behaviors

    NASA Astrophysics Data System (ADS)

    Akıncı, Ümit

    2016-03-01

    Hysteresis characteristics of the crystal field diluted S-1 Ising (Blume-Capel) model have been studied within the effective field approximation. Paramagnetic and double hysteresis behaviors for the paramagnetic phase have been obtained. It has also been shown that, for the ferromagnetic phase of the system, single and triple hysteresis behaviors may occur. Regions that show these different hysteresis behaviors are explicitly obtained in the space of Hamiltonian parameters. Besides, physical mechanisms that give rise to these behaviors have been given.

  20. Back-propagation operation for analog neural network hardware with synapse components having hysteresis characteristics.

    PubMed

    Ueda, Michihito; Nishitani, Yu; Kaneko, Yukihiro; Omote, Atsushi

    2014-01-01

    To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conductance values vary according to the history of the height and the width of the applied pulse voltage. Due to the difficulty of controlling the accurate conductance, it is not easy to apply the back-propagation learning algorithm to the neural network hardware having memristor synapses. To solve this problem, we proposed and simulated a learning operation procedure as follows. Employing a weight perturbation technique, we derived the error change. When the error reduced, the next pulse voltage was updated according to the back-propagation learning algorithm. If the error increased the amplitude of the next voltage pulse was set in such way as to cause similar memristor conductance but in the opposite voltage scanning direction. By this operation, we could eliminate the hysteresis and confirmed that the simulation of the learning operation converged. We also adopted conductance dispersion numerically in the simulation. We examined the probability that the error decreased to a designated value within a predetermined loop number. The ferroelectric has the characteristics that the magnitude of polarization does not become smaller when voltages having the same polarity are applied. These characteristics greatly improved the probability even if the learning rate was small, if the magnitude of the dispersion is adequate. Because the dispersion of analog circuit elements is inevitable, this learning operation procedure is useful for analog neural network hardware. PMID:25393715

  1. Back-Propagation Operation for Analog Neural Network Hardware with Synapse Components Having Hysteresis Characteristics

    PubMed Central

    Ueda, Michihito; Nishitani, Yu; Kaneko, Yukihiro; Omote, Atsushi

    2014-01-01

    To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conductance values vary according to the history of the height and the width of the applied pulse voltage. Due to the difficulty of controlling the accurate conductance, it is not easy to apply the back-propagation learning algorithm to the neural network hardware having memristor synapses. To solve this problem, we proposed and simulated a learning operation procedure as follows. Employing a weight perturbation technique, we derived the error change. When the error reduced, the next pulse voltage was updated according to the back-propagation learning algorithm. If the error increased the amplitude of the next voltage pulse was set in such way as to cause similar memristor conductance but in the opposite voltage scanning direction. By this operation, we could eliminate the hysteresis and confirmed that the simulation of the learning operation converged. We also adopted conductance dispersion numerically in the simulation. We examined the probability that the error decreased to a designated value within a predetermined loop number. The ferroelectric has the characteristics that the magnitude of polarization does not become smaller when voltages having the same polarity are applied. These characteristics greatly improved the probability even if the learning rate was small, if the magnitude of the dispersion is adequate. Because the dispersion of analog circuit elements is inevitable, this learning operation procedure is useful for analog neural network hardware. PMID:25393715

  2. PREFACE: International Workshop on Multi-Rate Processes and Hysteresis

    NASA Astrophysics Data System (ADS)

    Mortell, Michael P.; O'Malley, Robert E.; Pokrovskii, Alexei; Rachinskii, Dmitrii; Sobolev, Vladimir A.

    2008-07-01

    We are interested in singular perturbation problems and hysteresis as common strongly nonlinear phenomena that occur in many industrial, physical and economic systems. The wording `strongly nonlinear' means that linearization will not encapsulate the observed phenomena. Often these two types of phenomena are manifested for different stages of the same or similar processes. A number of fundamental hysteresis models can be considered as limit cases of time relaxation processes, or admit an approximation by a differential equation which is singular with respect to a particular parameter. However, the amount of interaction between practitioners of theories of systems with time relaxation and systems with hysteresis (and between the `relaxation' and `hysteresis' research communities) is still low, and cross-fertilization is small. In recent years Ireland has become a home for a series of prestigious International Workshops in Singular Perturbations and Hysteresis: International Workshop on Multi-rate Processes and Hysteresis (University College Cork, Ireland, 3-8 April 2006). Proceedings are published in Journal of Physics: Conference Series, volume 55. See further information at http://euclid.ucc.ie/murphys2008.htm International Workshop on Hysteresis and Multi-scale Asymptotics (University College Cork, Ireland, 17-21 March 2004). Proceedings are published in Journal of Physics: Conference Series, volume 22. See further information at http://euclid.ucc.ie/murphys2006.htm International Workshop on Relaxation Oscillations and Hysteresis (University College Cork, Ireland, 1-6 April 2002). The related collection of invited lectures, was published as a volume Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005. See further information at http://euclid.ucc.ie/hamsa2004.htm International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics (University College Cork, Ireland, 5-5 April 2001). A collection of invited papers has been published as a special issue of Proceedings of the Russian Academy of Natural Sciences: Nonlinear dynamics of laser and reacting systems, and is available online at http://www.ins.ucc.ie/roh2002.htm. See further information at http://www.ins.ucc.ie/roh2002.htm Among the aims of these workshops were to bring together leading experts in singular perturbations and hysteresis phenomena in applied problems; to discuss important problems in areas such as reacting systems, semiconductor lasers, shock phenomena in economic modelling, fluid mechanics, etc with an emphasis on hysteresis and singular perturbations; to learn and to share modern techniques in areas of common interest. The `International Workshop on Multi-Rate Processes and Hysteresis' (University College Cork, Ireland, April 3-8, 2006) brought together more than 70 scientists (including more than 10 students), actively researching in the areas of dynamical systems with hysteresis and singular perturbations, to analyze those phenomena that occur in many industrial, physical and economic systems. The countries represented at the Workshop included Czech Republic, England, France, Germany, Hungary, Ireland, Israel, Italy, Poland, Romania, Russia, Scotland, South Africa, Switzerland and USA. All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The Workshop has been sponsored by Science Foundation Ireland (SFI), KE Consulting group, Drexel University, Philadelphia, USA, University College Cork (UCC), Boole Centre for Research in Informatics, UCC, Cork, School of Mathematical Sciences, UCC, Cork, Irish Mathematical Society, Tyndall National Institute, Cork, University of Limerick, Cork Institute of Technology, and Heineken. The supportive affiliation of the European Geophysics Society, International Association of Hydrological Sciences, and Laboratoire Poncelet is gratefully acknowledged. The Editors and the Organizers of the Workshop wish to place on record their sincere gratitude to Mr Andrew Zhezherun and Mr Alexander Pimenov of University College Cork for both the assistance which he provided to all the presenters at the Workshop, and for the careful formatting of all the manuscripts prior to their being forwarded to the Publisher. More information about the Workshop can be found at http://euclid.ucc.ie/murphys2006.htm Michael P Mortell, Robert E O'Malley Jr, Alexei Pokrovskii, Dmitrii Rachinskii and Vladimir Sobolev Editors

  3. Loop functions in thermal QCD

    NASA Astrophysics Data System (ADS)

    Vairo, Antonio

    2014-11-01

    We discuss divergences of loop functions in thermal QCD and compute perturbatively the Polyakov loop, the Polyakov loop correlator and the cyclic Wilson loop. We show how these functions get mixed under renormalization.

  4. Method of thermal strain hysteresis reduction in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)

    1987-01-01

    A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.

  5. Study on thermal hysteresis of Sr doped manganites

    NASA Astrophysics Data System (ADS)

    Singh, Bharat; Kumar, Naresh; Mohan, Rajneesh; Bhattacharya, S.; Gaur, N. K.

    2013-06-01

    We have studied the thermal hysteresis of dc electrical resistivity on the stoichiometric Nd0.67Sr0.33MnO3 and Pr0.67Sr0.33MnO3 manganites. The polycrystalline samples have been synthesized by solid state reaction method. The prepared samples were characterized by X-ray diffraction (XRD) for phase formation and low temperature dc resistivity measurement during both cooling and warming with standard four probe technique. The XRD patterns are indexed in orthorhombic unit cell (space group-Pnma). The resistivity data show a metal-insulator phase transition for both Pr0.67Sr0.33MnO3 and Nd0.67Sr0.33MnO3 samples with observable thermal hysteresis. Thermal coefficient of resistivity of all samples has also been studied.

  6. Attachment/detachment hysteresis of fiber-based magnetic grabbers.

    PubMed

    Gu, Yu; Kornev, Konstantin G

    2014-04-28

    We developed an experimental protocol to analyze the behaviour of a model fiber-based magnetic grabber. A fiber is vertically suspended and fixed to the substrate by its upper end. A magnetic droplet is attached to the free end of the fiber and when a permanent magnet approaches the droplet, the fiber is forced to bow and finally jumps to the magnet. It appears that one can flex the micro-fibers by very small micro or even nano-Newton forces. Using this setup, we discovered a hysteresis of fiber attachment/detachment: the pathway of the fiber jumping to and off the magnet depends on the distance between the magnet and the clamped end. This phenomenon was successfully explained by the Euler-Benoulli model of an elastic beam. The observed hysteresis of fiber attachment/detachment was attributed to the multiple equilibrium configurations of the fiber tip placed in a dipole-type magnetic field. PMID:24668160

  7. Voltage hysteresis of lithium ion batteries caused by mechanical stress.

    PubMed

    Lu, Bo; Song, Yicheng; Zhang, Qinglin; Pan, Jie; Cheng, Yang-Tse; Zhang, Junqian

    2016-02-01

    The crucial role of mechanical stress in voltage hysteresis of lithium ion batteries in charge-discharge cycles is investigated theoretically and experimentally. A modified Butler-Volmer equation of electrochemical kinetics is proposed to account for the influence of mechanical stresses on electrochemical reactions in lithium ion battery electrodes. It is found that the compressive stress in the surface layer of active materials impedes lithium intercalation, and therefore, an extra electrical overpotential is needed to overcome the reaction barrier induced by the stress. The theoretical formulation has produced a linear dependence of the height of voltage hysteresis on the hydrostatic stress difference between lithiation and delithiation, under both open-circuit conditions and galvanostatic operation. Predictions of the electrical overpotential from theoretical equations agree well with the experimental data for thin film silicon electrodes. PMID:26799574

  8. Efficiency of Hysteresis Rods in Small Spacecraft Attitude Stabilization

    PubMed Central

    Farrahi, Assal; Sanz-Andrés, Ángel

    2013-01-01

    A semiempirical method for predicting the damping efficiency of hysteresis rods on-board small satellites is presented. It is based on the evaluation of dissipating energy variation of different ferromagnetic materials for two different rod shapes: thin film and circular cross-section rods, as a function of their elongation. Based on this formulation, an optimum design considering the size of hysteresis rods, their cross section shape, and layout has been proposed. Finally, the formulation developed was applied to the case of four existing small satellites, whose corresponding in-flight data are published. A good agreement between the estimated rotational speed decay time and the in-flight data has been observed. PMID:24501579

  9. Hysteresis and Kinetic Effects During Liquid-Solid Transitions

    SciTech Connect

    Streitz, F H; Chau, R

    2009-02-17

    We address the fundamental issue of phase transition kinetics in dynamically compressed materials. Focusing on solid bismuth (Bi) as a prototype material, we used a variety of time-resolved experiments including electrical conductivity and velocimetry to study the phase transition kinetics of the solid-solid phase transitions. Simple single shock experiments performed on several low-lying high pressure phases of Bi, revealed surprisingly complex behavior and slow dynamics. Strong hysteresis effects were observed in the transition behavior in experiments where the compressed Bi was allowed to release back across a phase line. These experiments represent the first reported simultaneous use of resistivity and velocimetry in a shock compression experiment, and the first observation of hysteresis effects occurring during dynamic compression and release.

  10. Contact angle hysteresis on textured surfaces with nanowire clusters.

    PubMed

    Liao, Ying-Chih; Chiang, Cheng-Kun; Lu, Yen-Wen

    2013-04-01

    Nanowire arrays with various agglomeration patterns were synthesized by adjusting the solvent evaporation rates. Nanowires with 200 nm diameter and 2-25 microm in length were fabricated from an anodic aluminum oxide (AAO) porous template. Various drying treatments were applied to develop nanostructured surfaces with topological differences. Due to surface tension forces, copper nanowires after thermal and evaporative drying treatments agglomerated into clusters, while supercritical drying technique provided excellent bundled-free and vertically-standing nanowire arrays. Although all dried surfaces exhibited hydrophobic nature, the contact angle hysteresis, or the difference between advancing and receding angles, was found to be larger on those surfaces with bundled nanowire clusters. To explain the difference, the wetted solid fraction on each surface was calculated using the Cassie-Baxter model to show that the hysteresis was contributed by liquid/solid contact area on the textured surfaces. PMID:23763151

  11. Scaling law for dynamical hysteresis of cavity solitons

    NASA Astrophysics Data System (ADS)

    Ahmadipanah, Sahar; Kheradmand, Reza; Prati, Franco

    2016-02-01

    By applying to a cavity soliton a control beam modulated in time, we study numerically the performance of the soliton as a flip-flop memory. The soliton is switched on and off periodically through a hysteresis cycle whose size increases dynamically with the modulation frequency. We show that the phenomenon is ruled by a scaling law with an exponent compatible with the theoretical value 2/3 predicted in much simpler systems in the low-frequency limit.

  12. A new paradigm for modelling hysteresis in macroeconomic flows

    NASA Astrophysics Data System (ADS)

    Cross, R.; McNamara, H.; Pokrovskii, A.; Rachinskii, D.

    2008-02-01

    Macroeconomic processes are often conceptualised as “flows”, and analogies are drawn with physical flow processes. Most economic processes, however, carry inherent irreversibility, a fact which these analogies neglect. A better metaphor for economic flows is suggested, involving flows through porous media. This new conceptual framework incorporates important features such as irreversibility and heterostasis through the use of hysteresis. A simple example model is derived, which may be used to derive qualitative results.

  13. Vector hysteresis measurements via a single disk tester

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.

    2006-02-01

    In this paper we present a single disk tester (SDT) developed for vector hysteresis measurements of magnetic steels. The measurement system deals with a stator of a 3-phase induction motor and some suitable magnetic field and magnetic induction probes. Numerical calculations based to a FEM approach in time domain and experimental tests are shown in order to describe both accuracy and efficiency of this measurement system.

  14. Negative resistance and anomalous hysteresis in a collective molecular motor

    PubMed

    Buceta; Parrondo; Van Den Broeck C; de La Rubia FJ

    2000-06-01

    A spatially extended model for a collective molecular motor is presented. The system is driven far from equilibrium by a quenched additive noise. As a result, it exhibits anomalous transport properties, namely, negative resistance and a clockwise hysteresis cycle. The phase diagram and the region of negative resistance are calculated using a Weiss mean field theory. Intuitive explanations of the anomalous transport properties as well as details of its energetics are given. PMID:11088302

  15. Hysteresis effects of changing the parameters of noncooperative games

    NASA Astrophysics Data System (ADS)

    Wolpert, David H.; Harré, Michael; Olbrich, Eckehard; Bertschinger, Nils; Jost, Jürgen

    2012-03-01

    We adapt the method used by Jaynes to derive the equilibria of statistical physics to instead derive equilibria of bounded rational game theory. We analyze the dependence of these equilibria on the parameters of the underlying game, focusing on hysteresis effects. In particular, we show that by gradually imposing individual-specific tax rates on the players of the game, and then gradually removing those taxes, the players move from a poor equilibrium to one that is better for all of them.

  16. Hysteresis of the resonance frequency of magnetostrictive bending cantilevers

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Kremer, Ramona; Sutor, Alexander; Lerch, Reinhard

    2015-05-01

    Magnetostrictive bending cantilevers are applicable for wirelessly measuring physical quantities such as pressure and strain. Exploiting the ΔE-effect, the resonance frequency of the cantilevers is shifted because of a change in the magnetic biasing field. The biasing field, in turn, depends on the applied pressure or strain, respectively. With a view to the application as a reliable sensor, maximum sensitivity but minimum hysteresis in the biasing field/resonance frequency dependence is preferred. In this contribution, monomorph bending cantilevers fabricated using magnetostrictive Fe49Co49V2 and Metglas 2605SA1 are investigated regarding their applicability for future sensors. For this purpose, the biasing field-dependent polarization of the magnetostrictive materials and bending of the cantilevers are determined. Furthermore, a setup to magnetically bias the cantilevers and determine the bending resonance frequency is presented. Here, the resonance frequency is identified by measuring the impulse response employing a laser Doppler vibrometer. The measurement results reveal that cantilevers made of Fe49Co49V2 possess a distinct hysteretic behaviour at low magnetic biasing field magnitudes. This is ascribed to the polarization and bending hysteresis. Cantilevers fabricated using Metglas 2605SA1 feature a lower resonance frequency shift compared to cantilevers with Fe49Co49V2, which would result in a lower sensitivity of the sensor. However, their resonance frequency hysteresis is almost negligible.

  17. Oscillating hysteresis in the q-neighbor Ising model.

    PubMed

    Jȩdrzejewski, Arkadiusz; Chmiel, Anna; Sznajd-Weron, Katarzyna

    2015-11-01

    We modify the kinetic Ising model with Metropolis dynamics, allowing each spin to interact only with q spins randomly chosen from the whole system, which corresponds to the topology of a complete graph. We show that the model with q≥3 exhibits a phase transition between ferromagnetic and paramagnetic phases at temperature T*, which linearly increases with q. Moreover, we show that for q=3 the phase transition is continuous and that it is discontinuous for larger values of q. For q>3, the hysteresis exhibits oscillatory behavior-expanding for even values of q and shrinking for odd values of q. Due to the mean-field-like nature of the model, we are able to derive the analytical form of transition probabilities and, therefore, calculate not only the probability density function of the order parameter but also precisely determine the hysteresis and the effective potential showing stable, unstable, and metastable steady states. Our results show that a seemingly small modification of the kinetic Ising model leads not only to the switch from a continuous to a discontinuous phase transition, but also to an unexpected oscillating behavior of the hysteresis and a puzzling phenomenon for q=5, which might be taken as evidence for the so-called mixed-order phase transition. PMID:26651645

  18. Documenting Science Teachers' Pedagogical Content Knowledge through PaP-eRs.

    ERIC Educational Resources Information Center

    Loughran, John; Milroy, Philippa; Berry, Amanda; Gunstone, Richard; Mulhall, Pamela

    2001-01-01

    Examines ways in which knowledge might be captured, articulated, and portrayed to others. Develops an approach to articulation and portrayal based on what is called the CoRe (Content Representation), which represents the particular content/topic of the science teaching, and PaP-eRs (Pedagogical and Professional experience Repertoire), which

  19. Applying the Bradley-Terry-Luce Method to P-E Fit

    ERIC Educational Resources Information Center

    Eggerth, Donald E.

    2004-01-01

    This study attempted to increase the size of the correlation between person-environment (P-E) fit and job satisfaction by rescaling the instrumentation of the Theory of Work Adjustment using the Bradley-Terry-Luce method and a probability-based fit index. This approach worked as well as, but failed to outperform, the currently used…

  20. Carex opaca (Hermann) P.E. Pothrock & Reznicek (CYPERACEAE) new to North Carolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carex opaca (F. J. Hermann) P.E. Rothrock & Reznicek (CYPERACEAE) is reported from two sites in North Carolina. These are the first records of C. opaca from North Carolina and represent easternmost stations for this species in the United States. Previously C. opaca was known from Arkansas, Illino...

  1. The P.E.A.C.E. Pack: A Computerized Online Assessment of School Bullying

    ERIC Educational Resources Information Center

    Slee, Phillip T.; Mohyla, Jury

    2014-01-01

    School bullying is an international problem with harmful outcomes for those involved. This study describes the design and field testing of an innovative computer-based social learning tool for assessing student perceptions of bullying developed for an Australian intervention program called the P.E.A.C.E. Pack. Students rate their peer group…

  2. Interactions of Cations with RNA Loop-Loop Complexes

    PubMed Central

    Singh, Abhishek; Sethaphong, Latsavongsakda; Yingling, Yaroslava G.

    2011-01-01

    RNA loop-loop interactions are essential in many biological processes, including initiation of RNA folding into complex tertiary shapes, promotion of dimerization, and viral replication. In this article, we examine interactions of metal ions with five RNA loop-loop complexes of unique biological significance using explicit-solvent molecular-dynamics simulations. These simulations revealed the presence of solvent-accessible tunnels through the major groove of loop-loop interactions that attract and retain cations. Ion dynamics inside these loop-loop complexes were distinctly different from the dynamics of the counterion cloud surrounding RNA and depend on the number of basepairs between loops, purine sequence symmetry, and presence of unpaired nucleotides. The cationic uptake by kissing loops depends on the number of basepairs between loops. It is interesting that loop-loop complexes with similar functionality showed similarities in cation dynamics despite differences in sequence and loop size. PMID:21806941

  3. Stress dependence and effect of plastic deformation on magnetic hysteresis and anhysteretic magnetization of FeNi32% films

    NASA Astrophysics Data System (ADS)

    Finkel, P.; Lofland, S.

    2007-05-01

    The magnetic hysteresis and anhysteretic magnetization of FeNi32% films were investigated as a function of isotropic stress. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops are discussed. Also, a role of the plastic deformation interrelated with the elastic stress in the magnetization process is established. An experimental system based on a conventional vibrating sample magnetometer equipped with a specially designed loading fixture and optical resonant spectroscopy tension monitoring technique are used to measure anhysteretic permeability and magnetization curve as a function of stress. Measurements of magnetostriction as a function of magnetic field were shown to be also possible using this fixture. Stresses are deduced from the characteristic resonant frequency of the sample in the fixture and verified via pulse propagation velocity measurement. Both indirect stress measurements are contactless, relying on remote vibration measurement using a laser Doppler vibrometer. Uniaxial stresses up to 1GPa can be applied for samples down to 50μm specimens. Anhysteretic permeability was extracted from the anhysteretic B-H curves constructed by degaussing the sample at the given longitudinal (parallel to the stresses) dc field. The large positive magnetostriction constant leads to higher susceptibility and lower coercivity with tensile stress while the large volume magnetostriction results in reduced saturation magnetization. Large stresses imposed on the sample result in plastic strain of the sample which induces increase in dislocation density and domain wall pinning. This causes the gain in hysteresis loss and coercivity to increase at the highest stresses.

  4. Magnetic Hysteresis Parameters and Day-Plot Analysis to Delineate Diagenetic Alteration in Gas Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Enkin, R. J.; Baker, J.; Nourgaliev, D.; Iassonov, P.

    2005-12-01

    Gas hydrates are naturally occurring cage structures of ice found in continental slope and permafrost sediments. They contain vast quantities of methane which is important both as a climate driver and an energy resource. Hydrate formation alters the redox potential of interstitial fluids which can in turn alter magnetic minerals. Thus magnetic methods can help delineate diagenetic pathways, provide a proxy method to map out past hydrate occurrences, and eventually lead to new remote sensing methods in prospecting for gas hydrates. We present data acquired using a J-Meter Coercivity Spectrometer. Induced and remanent magnetism are simultaneously measured on 1.5 cc samples as they spin on a 50 cm diameter disk, 20 times per second. The applied field ramps between ± 500 mT to produce a hysteresis loop in 7 minutes. Sub-second viscous decay is measured to provide a proxy for the amount of superparamagnetism present. The rapid and simple measurements made possible by this robust machine are ideal for core logging. Measurements made on frozen core from the Mallik permafrost gas hydrate field in Canada's Northwest Territories demonstrates that the magnetic properties are dependent on the concentration of gas hydrate present. Day-plots of magnetic hysteresis parameter ratios distinguish the magnetic carriers in gas hydrate rich sediments. The original magnetite is often reduced to sulphide when gas hydrate concentration exceeds 40%. In other high-concentration gas hydrate horizons, fine single-domain (SD) grains of magnetite apparently dissolve leaving nothing but large multi-domain (MD) magnetite grains. Independently measured superparamagnetism is shown to push hysteresis ratios off the hyperbola expected for SD-MD mixtures, as predicted by Dunlop [JGR, 10.10291/2001JB000486, 2002]. Magnetic study of host sediments in gas hydrate systems provides a powerful core-logging tool, offers a window into the processes of gas hydrate formation, and forms the basis for quantitative analysis of magnetic surveys over gas hydrate fields.

  5. Observational Evidence for Loop-Loop Interaction

    NASA Astrophysics Data System (ADS)

    Guiping, W.; Guangli, H.; Yuhua, T.; Aoao, X.

    2004-01-01

    Through analysis of the data including the hard x-ray(BASTE) microwave(NoRP) and magnetogram(MDI from SOHO) as well as the images of soft x-ray(YHKOH) and EIT(SOHO) on Apr. 151998 solar flare in the active region 8203(N30W12) we found: (1) there are similar quasi period oscillation in the profile of hard x-ray flux (25-5050-100keV) and microwave flux(1GHz) with duration of 85+/-25s every peak includes two sub-peak structures; (2) in the preheat phase of the flare active magnetic field changes apparently and a s-pole spot emerges ; (3) several EIT and soft x-ray loops exist and turn into bright . All of these may suggest that loop-loop interaction indeed exist. Through reconnection the electrons may be accelerated and the hard x-ray and microwave emission take place.

  6. The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, B. B.

    2014-09-01

    Developed in the 1960s for use in high-performance ring-core fluxgate sensors, 6-81.3 Mo permalloy remains the state of the art for permalloy-cored fluxgate magnetometers. The magnetic properties of 6-81.3, namely magnetocrystalline and magnetoelastic anisotropies and saturation induction, are all optimum in the Fe-Ni-Mo system. In such polycrystalline permalloy fluxgate sensors, a single phenomenon may cause both fluxgate noise and magnetic hysteresis; explain Barkhausen jumps, remanence and coercivity; and avoid domain denucleation. This phenomenon, domain wall reconnection, is presented as part of a theoretical model. In the unmagnetized state a coarse-grain high-quality permalloy foil ideally forms stripe domains, which present at the free surface as parallel, uniformly spaced domain walls that cross the entire thickness of the foil. Leakage flux "in" and "out" of alternating domains is a requirement of the random orientation, grain by grain, of magnetic easy axes' angles with respect to the foil free surface. Its magnetostatic energy together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free-surface domain pattern remains essentially unchanged, due to the magnetostatic energy cost such a change would elicit. Thus domain walls are "pinned" to free surfaces. Driven to saturation, domain walls first bulge then reconnect via Barkhausen jumps to form a new domain configuration that I have called "channel domains", which are attached to free surfaces. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy deeper into saturation compresses the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero H, thus explaining remanence. The Barkhausen jumps, being irreversible exothermic events, are sources of fluxgate noise powered by the energy available from domain wall reconnection. A simplified domain energy model can then provide a predictive relation between ring-core magnetic properties and fluxgate sensor noise power. Four properties are predicted to affect noise power, two of which are well known: saturation total magnetic flux density and magnetic anisotropy. The two additional properties are easy axes alignment and foil thickness. Flux density and magnetic anisotropy are primary magnetic properties determined by an alloy's chemistry and crystalline lattice properties. Easy axes alignment and foil thickness are secondary, geometrical properties related to an alloy's polycrystalline fabric and manufacture. Improvements to fluxgate noise performance can in principle be achieved by optimizing any of these four properties in such a way as to minimize magnetostatic energy. Fluxgate signal power is proportional to B - H loop curvature [d2B/dH2]. The degree to which Barkhausen jumps coincide with loop curvature is a measure of noise that accompanies the fluxgate signal. B - H loops with significant curvature beyond the open hysteresis loop may be used to advantage to acquire the fluxgate signal with reduced noise.

  7. The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

    NASA Astrophysics Data System (ADS)

    Narod, B. B.

    2014-06-01

    6-81.3 Mo permalloy, developed in the 1960s for use in high performance ring-core fluxgate sensors, remains the state-of-the-art for permalloy-cored fluxgate magnetometers. The magnetic properties of 6-81.3, namely magnetocrystalline and magnetoelastic anisotropies and saturation induction are all optimum in the Fe-Ni-Mo system. In such polycrystalline permalloy fluxgate sensors a single phenomenon may cause both fluxgate noise and magnetic hysteresis, explain Barkhausen jumps, remanence and coercivity, and avoid domain denucleation. The phenomenon, domain wall reconnection, is presented as part of a theoretical model. In the unmagnetized state a coarse-grain high-quality permalloy foil ideally forms stripe domains, which present at the free surface as parallel, uniformly spaced domain walls that cross the entire thickness of the foil. Leakage flux "in" and "out" of alternating domains is a requirement of the random orientation, grain-by-grain, of magnetic easy axes' angles with respect to the foil free surface. Its magnetostatic energy together with domain wall energy determines an energy budget to be minimized. Throughout the magnetization cycle the free surface domain pattern remains essentially unchanged, due to the magnetostatic energy cost such a change would elicit. Thus domain walls are "pinned" to free surfaces. Driven to saturation, domain walls first bulge then reconnect via Barkhausen jumps to form a new domain configuration this author has called "channel domains", that are attached to free surfaces. The approach to saturation now continues as reversible channel domain compression. Driving the permalloy deeper into saturation compresses the channel domains to arbitrarily small thickness, but will not cause them to denucleate. Returning from saturation the channel domain structure will survive through zero H, thus explaining remanence. The Barkhausen jumps being irreversible exothermic events are sources of fluxgate noise, powered by the energy available from domain wall reconnection. A simplified domain energy model can then provide a predictive relation between ring core magnetic properties and fluxgate sensor noise power. Four properties are predicted to affect noise power, two of which, are well known: saturation total magnetic flux density and magnetic anisotropy. The two additional properties are easy axes alignment and foil thickness. Flux density and magnetic anisotropy are primary magnetic properties determined by an alloy's chemistry and crystalline lattice properties. Easy axes alignment and foil thickness are secondary, geometrical properties related to an alloy's polycrystalline fabric and manufacture. Improvements to fluxgate noise performance can in principle be achieved by optimizing any of these four properties in such a way as to minimize magnetostatic energy. Fluxgate signal power is proportional to B-H loop curvature (d2B/dH2). The degree to which Barkhausen jumps coincide with loop curvature is a measure of noise that accompanies fluxgate signal. B-H loops with significant curvature beyond the open hysteresis loop may be used to advantage to acquire fluxgate signal with reduced noise.

  8. Development of a Portable Mechanical Hysteresis Measurement and Imaging System for Impact Characterization in Honeycomb Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Barnard, Daniel J.; Hsu, David K.

    2011-06-01

    Honeycomb sandwich materials are commonly used for aero-structures, but because the outer skins are typically thin, 2-10 plys, the structures are susceptible to impact damage. NDI methods such as tap tests, bond testers and TTU ultrasound are successfully deployed to find impact damage, but identifying the type/degree of damage is troublesome. As the type/degree of impact damage guides decisions by the maintenance, repair and overhaul (MRO) community regarding repair, the ability to characterize impacts is of interest. Previous work demonstrated that additional impact characterization may be gleaned from hysteresis loop area, as determined from an out-of-plane load-vs-displacement plot, where this parameter shows a correlation with impact energy. This presentation reports on current work involving the development of a portable hysteresis measurement and imaging system based on an instrumented tapper. Data processing and analysis methods that allow production of the load/displacement data from a single accelerometer are discussed, with additional reporting of tests of software to automatically vary pixel size during scanning to decrease C-scans inspection time.

  9. Effect of stress and plastic deformation on hysteresis and anhysteretic magnetization of Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Lofland, Sam

    2004-03-01

    We report on the low-field magnetic properties of thin FeNi alloys films and ribbons under tensile stress. The magnetization was measured using a conventional vibrating sample magnetometer using a special designed fixture allowing applying forces as large as 250 N providing sizable uniaxial stresses on thin film and wires. Anhysteretic permeability was extracted from the anhysteretic B-H curves constructed by degaussing the sample at given longitudinal (parallel to the stresses) dc field. We discuss results of the measurements of steel and invar samples of FeNi samples leads to higher susceptibility and lower coercivity for low tensile stress. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops were characterized. Larger stresses result in plastic strain of the sample which induces an increase in dislocation density and subsequently domain wall pinning. This causes an increase in coercivity and decrease in anhysteretic permeability at the highest stresses. We also discuss the effect of composition and processing on these results.

  10. Terahertz-Triggered Phase Transition and Hysteresis Narrowing in a Nanoantenna Patterned Vanadium Dioxide Film.

    PubMed

    Thompson, Zachary J; Stickel, Andrew; Jeong, Young-Gyun; Han, Sanghoon; Son, Byung Hee; Paul, Michael J; Lee, Byounghwak; Mousavian, Ali; Seo, Giwan; Kim, Hyun-Tak; Lee, Yun-Shik; Kim, Dai-Sik

    2015-09-01

    We demonstrate that high-field terahertz (THz) pulses trigger transient insulator-to-metal transition in a nanoantenna patterned vanadium dioxide thin film. THz transmission of vanadium dioxide instantaneously decreases in the presence of strong THz fields. The transient THz absorption indicates that strong THz fields induce electronic insulator-to-metal transition without causing a structural transformation. The transient phase transition is activated on the subcycle time scale during which the THz pulse drives the electron distribution of vanadium dioxide far from equilibrium and disturb the electron correlation. The strong THz fields lower the activation energy in the insulating phase. The THz-triggered insulator-to-metal transition gives rise to hysteresis loop narrowing, while lowering the transition temperature both for heating and cooling sequences. THz nanoantennas enhance the field-induced phase transition by intensifying the field strength and improve the detection sensitivity via antenna resonance. The experimental results demonstrate a potential that plasmonic nanostructures incorporating vanadium dioxide can be the basis for ultrafast, energy-efficient electronic and photonic devices. PMID:26301339

  11. Matrix and size effects on the appearance of the thermal hysteresis in 2D spin crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Linares, Jorge; Jureschi, Catalin-Maricel; Boulmaali, Ayoub; Boukheddaden, Kamel

    2016-04-01

    The Ising-like model is used to simulate the thermal behavior of a 2D spin crossover (SC) nanoparticle embedded in a matrix, which affects the ligand field at its surface. First, we discuss the standard case of the isolated nanoparticle, and in the second part we consider the effect of the interaction between edge molecules and their local environment. We found that in the case of an isolated SC nanoparticle presenting a gradual spin transition, the matrix effect may drive a first-order spin transition accompanied with a hysteresis loop. An in-depth analysis of the physical mechanism underlying this unusual property is performed, leading to build up the system's phase diagram which clarifies the conditions of appearance of the first-order transition in the current 2D SC nanoparticles as function of their size and the strength of their interaction with their immediate environment.

  12. Hysteresis in the behavior of a long modulated Josephson junction in a magnetic field for small values of the pinning parameter

    NASA Astrophysics Data System (ADS)

    Zelikman, M. A.

    2015-09-01

    The magnetization curve for a long periodically modulated Josephson junction is calculated using the approach based on analysis of the continuous change in the configuration in the direction of the decrease in the Gibbs potential upon cyclic variation of the external magnetic field for small values of the pinning parameter. It is shown that for any turning points, the hysteresis loop is a part of a certain universal curve exhibiting strict periodicity along both axes. The existence of the universal curve and its periodicity are explained on the basis of analysis of vortex configurations.

  13. Origin of hysteresis in bed form response to unsteady flows

    NASA Astrophysics Data System (ADS)

    Martin, Raleigh L.; Jerolmack, Douglas J.

    2013-03-01

    Field and laboratory studies indicate that changes in riverbed morphology often lag changes in water discharge. This lagged response produces hysteresis in the relationship between water discharge and bed form geometry. To understand these phenomena, we performed flume experiments to observe the response of a sand bed to step increases and decreases in water discharge. For an abrupt rise in discharge, we observed that bed forms grew rapidly by collision and merger of bed forms migrating with different celerities. Growth rate slowed as bed forms approached equilibrium with the higher discharge regime. After an abrupt discharge drop, bed form decay occurred through formation of smaller secondary bed forms, in equilibrium with the lower discharge, which cannibalized the original, relict features. We present a simple model framework to quantitatively predict time scales of bed form adjustment to flow changes, based on equilibrium bed form heights, lengths, and celerities at low and high flows. For rising discharge, the model assumes that all bed form collisions result in irreversible merger, due to a dispersion of initial celerities. For falling discharge, we derive a diffusion model for the decay of relict high-stage features. Our models predict the form and time scale of experimental bed form adjustments. Additional experiments applying slow and fast triangular flood waves show that bed form hysteresis occurs only when the time scale of flow change is faster than the modeled (and measured) bed form adjustment time. We show that our predicted adjustment time scales can also be used to predict the occurrence of bed form hysteresis in natural floods.

  14. Traffic jams and hysteresis in driven one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Braun, O. M.; Hu, B.; Filippov, A.; Zeltser, A.

    1998-08-01

    The driven underdamped chain of anharmonically interacting atoms in the sinusoidal external potential is studied. It is shown that due to the interatomic interaction the system exhibits hysteresis for any nonzero rate of changing of the dc driving force. Before the transition to the running state the system passes through the traffic-jam inhomogeneous state. The system behavior is explained with the help of two simple models, the discrete lattice-gas model with two states of atoms, and the continuum mean-field model based on the Fokker-Planck equation.

  15. Mass Measurement System Using Relay Feedback with Hysteresis

    NASA Astrophysics Data System (ADS)

    Mizuno, Takeshi; Adachi, Takahiro; Takasaki, Masaya; Ishino, Yuji

    Mass measurement using a relay feedback system was studied experimentally. The measurement system has an on-off relay with hysteresis and switches force acting on the object in relation to its velocity. Such nonlinear control induces a limit cycle in the feedback system. The mass of the object is determined from the period of this limit cycle. The apparatus manufactured for experimental study uses two voice coil motors (VCM's), one of which is for driving the object and the other is for generating prescribed disturbances. The effects of system parameters and disturbances on measurement accuracy were examined experimentally.

  16. One-phase flow in porous media with hysteresis

    NASA Astrophysics Data System (ADS)

    Botkin, N. D.; Brokate, M.; El Behi-Gornostaeva, E. G.

    2016-04-01

    This paper presents a numerical simulation of one phase flow through a porous medium showing a hysteretic relation between the capillary pressure and the saturation of the phase. The flow model used is based on mass conservation principle and Darcy's law. Boundary conditions of Neumann and Signorini type are imposed. The hysteretic relation between the capillary pressure and the saturation is described by a Preisach hysteresis operator. A numerical algorithm for the treatment of the arising system of equations is proposed. Results of numerical simulations are presented.

  17. Suppression of hysteresis in a forced van der Pol-Duffing oscillator

    NASA Astrophysics Data System (ADS)

    Fahsi, Abdelhak; Belhaq, Mohamed; Lakrad, Faouzi

    2009-04-01

    This paper examines the suppression of hysteresis in a forced nonlinear self-sustained oscillator near the fundamental resonance. The suppression is studied by applying a rapid forcing on the oscillator. Analytical treatment based on perturbation analysis is performed to capture the entrainment zone, the quasiperiodic modulation domain and the hysteresis area as well. The analysis leads to a strategy for the suppression of hysteresis occurring between 1:1 frequency-locked motion and quasiperiodic response. This hysteresis suppression causes the disappearance of nonlinear effects leading to a smooth transition between the quasiperiodic and the frequency-locked responses. Specifically, it appears that a rapid forcing introduces additional apparent nonlinear stiffness which can effectively suppress hysteresis in a certain range of the rapid excitation frequency. This work was motivated by the important issue of controlling and eliminating hysteresis often undesirable in mechanical systems, in general, and in application to microscale devices, especially.

  18. Magnetic hysteresis measurements of thin films under isotropic stress.

    NASA Astrophysics Data System (ADS)

    Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus

    2000-10-01

    Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.

  19. Hysteresis in Cenozoic Antarctic ice-sheet variations

    NASA Astrophysics Data System (ADS)

    Pollard, David; DeConto, Robert M.

    2005-02-01

    A coupled global climate-Antarctic ice sheet model is run for 10 million years across the Eocene-Oligocene boundary ˜34 Ma. The model simulates a rapid transition from very little ice to a large continental ice sheet, forced by a gradual decline of atmospheric CO 2 and higher-frequency orbital forcing. The structure of the transition is explained in terms of height mass balance feedback (HMBF) inherent in the intersection of the ice-sheet surface with the climatic pattern of net annual accumulation minus ablation, as found in earlier simple ice sheet models. Hysteresis effects are explored by running the model in reverse, starting with a full ice sheet and gradually increasing CO 2. The effects of higher-frequency orbital forcing on the non-linear transitions are examined in simulations with and without orbital variability. Similar effects are demonstrated with a much simpler one-dimensional ice-sheet flowline model with idealized bedrock topography and parameterized mass balance forcing. It is suggested that non-linear Antarctic ice-sheet transitions and hysteresis have played important roles in many of the observed fluctuations in marine δ18O records since 34 Ma, and that the range of atmospheric CO 2 variability needed to induce these transitions in the presence of orbital forcing is ˜2× to 4× pre-industrial level.

  20. Hysteresis of soft joints embedded with fluid-filled microchannels

    PubMed Central

    Ghatak, Animangsu; Majumder, Abhijit; Kumar, Rajendra

    2008-01-01

    Many arthropods are known to achieve dynamic stability during rapid locomotion on rough terrains despite the absence of an elaborate nervous system. While muscle viscoelasticity and its inherent friction have been thought to cause this passive absorption of energy, the role of embedded microstructures in muscles and muscle joints has not yet been investigated. Inspired by the soft and flexible hinge joints present in many of these animals, we have carried out displacement-controlled bending of thin elastic slabs embedded with fluid-filled microchannels. During loading, the slab bends uniformly to a critical curvature, beyond which the skin covering the channel buckles with a catastrophic decrease in load. In the reverse cycle, the buckled skin straightens out but at a significantly lower load. In such a loading–unloading cycle, this localized buckling phenomenon results in a dynamic change in the geometry of the joint, which leads to a significant hysteresis in elastic energy. The hysteresis varies nonlinearly with channel diameters and thicknesses of the slab, which is captured by a simple scaling analysis of the phenomenon. PMID:18611846

  1. Quantum hysteresis in coupled qubit-radiation systems

    NASA Astrophysics Data System (ADS)

    Acevedo, O. L.; Rodriguez, F. J.; Quiroga, L.; Johnson, N. F.

    2012-02-01

    We study theoretically the dynamical response of a set of solid-state qubits arbitrarily coupled to a radiation field which is confined in a cavity. Driving the coupling strength in round trips, between weak and strong values, we quantify the hysteresis or irreversible quantum dynamics. The matter-radiation system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity, and superconducting circuit QED. Here we extend this model to address non-equilibrium situations. Analyzing the system's quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We identify significant deviations from the conventional Landau-Zener-Stuckelberg formulae, in particular from cycles starting in the superradiant phase. In the diabatic or impulsive regime, the system remains quenched and there is little hysteresis. By contrast, depending on the specifications of the cycle, the radiation subsystem can exhibit the emergence of non-classicality, complexity and sub-Planckian structures as evidenced by its Wigner function.

  2. Wavenumber selection and hysteresis in nonlinear baroclinic flow

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung

    1995-01-01

    Wavenumber transition and hysteresis in a highly unstable baroclinic flow are investigated using a high-resolution spectral numerical model. As the flow becomes more supercritical, the dominant wave gradually shifts from the most unstable wave predicted by the linear theory to a longer wave with a larger time-averaged amplitude, while the rectified mean flow attains a stronger shear at the center of the channel. The numerical results display a complex hysteresis behavior, which occurs not only between the states of different dominant wavenumbers, but also between the states of identical dominant wavenumber but of different dynamic characteristics. In a certain parameter range three stable states, each with different dominant wavenumber, are possible, and in another parameter range four stable states are possible, among them three stable states with an identical dominant wave. The numerical results suggest that a multiple weather regime exists even without external forcing in which the flow aperiodically varies between two distinct behaviors. The effects of stable higher harmonics are assessed and it is found that their presence contributes not only to the better approximation of the model solutions but also to the selection of the final equilibrium state, due to the chaotic nature of the initial transient period.

  3. Ionic Origin of Electro-osmotic Flow Hysteresis

    NASA Astrophysics Data System (ADS)

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-02-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field.

  4. Fractal growth of liquid crystals as a hysteresis phenomenon

    NASA Astrophysics Data System (ADS)

    Chan, Ho-Kei; Dierking, Ingo

    2006-03-01

    Fractal percolation growth of liquid crystal phases within a supercooled isotropic liquid medium has been observed in recent years. Notable examples include the B2 phase of `banana' mesogens [1] and the smectic C phase of a calamitic hydrogen-bonding liquid crystal [2]. Here we present a dynamical model that describes such fractal growth as well as the spherical growth conventionally observed for nematics and cholesterics. The essential idea is that the supercooled medium does not fully respond to the temperature quench immediately (hysteresis). Its fraction of space available for the phase transition only relaxes from 0 to 1 at some finite rate. Depending on the coupling between the relaxation and growth rates, the liquid crystal phase either grows as a percolation cluster of fractal dimension D 1.89 or approaches a spherical shape of Euclidean dimension D -> 2. The crossover behaviour from relatively slow to fast relaxation is thoroughly investigated. Possible causes of the hysteresis for fractal growth will be discussed. [1] I. Dierking, Liq. Cryst. Today 12(1), (2003), 1 [2] I. Dierking, Chan H. K., Culfaz F., McQuire S., Phys. Rev. E 70, (2004), 051701

  5. Protein response to external electric fields: Relaxation, hysteresis, and echo

    SciTech Connect

    Xu, D.; Phillips, J.C.; Schulten, K.

    1996-07-18

    Dipole moments induced in proteins by external electric fields are studied by molecular dynamics simulations and described in terms of analytical models based on ensembles of Langevin oscillators and Fokker-Planck equations. We investigate through simulations of the protein bovine pancreatic trypsin inhibitor (BPTI) (1) the distribution p(M) of dipole moments as well as the dipole moment autocorrelation function C{sub M,M}(t) at thermal equilibrium, (2) the dielectric constant {epsilon}, (3) the dipole moment {Delta}M(t) induced by cyclic (piecewise linear or sinusoidally periodic in time) spatially homogeneous fields, demonstrating significant hysteresis behavior, and (4) the dipolar responce to a constant homogeneous field applied for about a picosecond. Through a comparison between an analytical model and simulations, we show that the dipolar response (4) can be described by a relaxation characterized by C{sub M,M}(t) in addition to a significant pulse-shaped component, termed the dipole echo. The hysteresis behaviour (3) under a weak external field is related to the equilibrium properties p(M), C{sub M,M}(t), and {epsilon}. In the case of electric fields arising through charge displacements in proteins, e.g., through electronic excitation or photoinduced electron transfer, concomitant dipolar responses in real proteins should resemble those reported here and should be observed by means of sub-picosecond spectroscopy. 53 refs., 17 figs.

  6. Ionic Origin of Electro-osmotic Flow Hysteresis

    PubMed Central

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-01-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field. PMID:26923197

  7. Hysteresis in magnetic shape memory composites: Modeling and simulation

    NASA Astrophysics Data System (ADS)

    Conti, Sergio; Lenz, Martin; Rumpf, Martin

    2016-04-01

    Magnetic shape memory alloys are characterized by the coupling between a structural phase transition and magnetic one. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the transformation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the phase boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimality condition. We illustrate and discuss the influence of the particle geometry (volume fraction, shape, arrangement) and the polymer elastic parameters on the observed hysteresis and compare with recent experimental results.

  8. Fatigue, hysteresis, and acoustic emission, parts 1 and 2

    NASA Astrophysics Data System (ADS)

    Guralnick, S. A.; Erber, T.

    1992-05-01

    The basic objective of this research program is to characterize the development of material fatigue by means of stress-strain hysteresis and acoustic emission measurements. We have conjectured that the accumulation and organization of damage in material fatigue is similar to the progressive failure of structures under cyclic loading. And, specifically, that the endurance limit of a material in fatigue is the analogue of the incremental collapse load of a structure. Since the principal features of the service life and failure of structures can be completely described by hysteresis methods, it is plausible that similar means can be used to characterize the inception and organization of microplastic processes in materials. Experiments were conducted upon nearly 100 specimens made of Rimmed AISI 1018 Unannealed Steel. This material was selected because extensive data on its performance exists in the engineering literature and because its stress-strain curve is of the gradual yielding type, mirroring at least the monotonic stress-strain behavior of many of the kinds of metals used in the aircraft industry.

  9. The capillary hysteresis model HYSTR: User`s guide

    SciTech Connect

    Niemi, A.; Bodvarsson, G.S.

    1991-11-01

    The potential disposal of nuclear waste in the unsaturated zone at Yucca Mountain, Nevada, has generated increased interest in the study of fluid flow through unsaturated media. In the near future, large-scale field tests will be conducted at the Yucca Mountain site, and work is now being done to design and analyze these tests. As part of these efforts a capillary hysteresis model has been developed. A computer program to calculate the hysteretic relationship between capillary pressure {phi} and liquid saturation (S{sub 1}) has been written that is designed to be easily incorporated into any numerical unsaturated flow simulator that computes capillary pressure as a function of liquid saturation. This report gives a detailed description of the model along with information on how it can be interfaced with a transport code. Although the model was developed specifically for calculations related to nuclear waste disposal, it should be applicable to any capillary hysteresis problem for which the secondary and higher order scanning curves can be approximated from the first order scanning curves. HYSTR is a set of subroutines to calculate capillary pressure for a given liquid saturation under hysteretic conditions.

  10. On the 2D-transition, hysteresis and thermodynamic equilibrium of Kr adsorption on a graphite surface.

    PubMed

    Diao, Rui; Fan, Chunyan; Do, D D; Nicholson, D

    2015-12-15

    The adsorption and desorption of Kr on graphite at temperatures in the range 60-88K, was systematically investigated using a combination of several simulation techniques including: Grand Canonical Monte Carlo (GCMC), Canonical kinetic-Monte Carlo (C-kMC) and the Mid-Density Scheme (MDS). Particular emphasis was placed on the gas-solid, gas-liquid and liquid-solid 2D phase transitions. For temperatures below the bulk triple point, the transition from a 2D-liquid-like monolayer to a 2D-solid-like state is manifested as a sub-step in the isotherm. A further increase in the chemical potential leads to another rearrangement of the 2D-solid-like state from a disordered structure to an ordered structure that is signalled by (1) another sub-step in the monolayer region and (2) a spike in the plot of the isosteric heat versus density at loadings close to the dense monolayer coverage concentration. Whenever a 2D transition occurs in a grand canonical isotherm it is always associated with a hysteresis, a feature that is not widely recognised in the literature. We studied in details this hysteresis with the analysis of the canonical isotherm, obtained with C-kMC, which exhibits a van der Waals (vdW) type loop with a vertical segment in the middle. We complemented the hysteresis loop and the vdW curve with the analysis of the equilibrium transition obtained with the MDS, and found that the equilibrium transition coincides exactly with the vertical segment of the C-kMC isotherm, indicating the co-existence of two phases at equilibrium. We also analysed adsorption at higher layers and found that the 2D-coexistence is also observed, provided that the temperature is well below the triple point. Finally the 2D-critical temperatures were obtained for the first three layers and they are in good agreement with the experimental data in the literature. PMID:26364074

  11. Detangling extrinsic and intrinsic hysteresis for detecting dynamic switch of electric dipoles using graphene field-effect transistors on ferroelectric gates.

    PubMed

    Ma, Chunrui; Gong, Youpin; Lu, Rongtao; Brown, Emery; Ma, Beihai; Li, Jun; Wu, Judy

    2015-11-28

    A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.08Zr0.52Ti0.48O3 gates (GFET/PLZT-Gate) during a vacuum annealing process developed to systematically remove the polar molecules adsorbed on the GFET channel surface. This allows the extrinsic and intrinsic hysteresis on GFET/PLZT-gate devices to detangle and the detection of the dynamic switch of electric dipoles using GFETs, taking advantage of their high gating efficiency on ferroelectric gate. A model of the charge trapping and pinning mechanism is proposed to successfully explain the transition. In response to pulsed VBG trains of positive, negative, as well as alternating polarities, respectively, the source-drain current ID variation is instantaneous with the response amplitude following the ID-VBG loops measured by DC VBG with consideration of the remnant polarization after a given VBG pulse when the gate electric field exceeds the coercive field of the PLZT. A detection sensitivity of around 212 dipole per μm(2) has been demonstrated at room temperature, suggesting the GFET/ferroelectric-gate devices provide a promising high-sensitivity scheme for uncooled detection of electrical dipole dynamic switch. PMID:26331952

  12. Hysteresis analysis for the permanent magnet assisted synchronous reluctance motor by coupled FEM and Preisach modelling

    SciTech Connect

    Lee, J.H.; Hyun, D.S. . Dept. of Electrical Engineering)

    1999-05-01

    In high speed applications of PMASynRM, hysteresis losses can become the major cause of power dissipation. Therefore, whereas in other kind of machines a rough estimation of hysteresis can be accepted, their importance in PMASynRM justifies a greater effort in calculating them more precisely. This study investigates the hysteresis phenomena of the Permanent Magnet Assisted Synchronous Reluctance Motor (PMASynRM) using coupled FEM and Preisach modelling. Preisach's model, which allows accurate prediction of hysteresis, is adopted in this procedure to provide a nonlinear solution. The computer simulation and experimental result for the i-[lambda] loci show the propriety of the proposed method.

  13. Natively Unstructured Loops Differ from Other Loops

    PubMed Central

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-01-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%–70% of all worm proteins observed to have more than seven protein–protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long unstructured loops are a major part of unstructured regions in molecular networks. PMID:17658943

  14. A linearity tunable DBR fiber laser based on closed-loop PZT

    NASA Astrophysics Data System (ADS)

    Li, Guoyu; Li, Yan; Yang, Kang; Liu, Mingsheng

    2013-02-01

    A linearity tunable fiber laser based on closed-loop piezoelectric ceramics (PZT) is proposed and successfully demonstrated. The cavity of the distributed Bragg reflector (DBR) fiber laser is fixed on the PZT, and the displacement sensor attached on the PZT is monitoring and compensating the nonlinear hysteresis of the PZT real-timely. Experimental results show that the tuning curve of the DBR fiber laser is linear with the tuning range nearly 0.8 nm. Furthermore, the automatic tuning DBR fiber laser driven by the sawtooth wave is realized in closed-loop PZT operation.

  15. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  16. Long-term soil moisture variability from a new P-E water budget method

    NASA Astrophysics Data System (ADS)

    Zeng, N.; Yoon, J.; Mariotti, A.; Swenson, S. C.

    2006-05-01

    Basin-scale soil moisture is traditionally estimated using either land-surface model forced by observed meteorological variables or atmospheric moisture convergence from atmospheric analysis and observed runoff. Interannual variability from such methods suffer from major uncertainties due to the sensitivity to small imperfections in the land-surface model or the atmospheric analysis. Here we introduce a novel P-E method in estimating basin-scale soil moisture, or more precisely apparent land water storage (AWS). The key input variables are observed precipitation and runoff, and reconstructed evaporation. We show the results for the tropics using the example of the Amazon basin. The seasonal cycle of diagnosed soil moisture over the Amazon is about 200mm, compares favorably with satellite estimate from the GRACE mission, thus lending confidence both in this method and the usefulness of space gravity based large-scale soil moisture estimate. This is about twice as large as estimates from several traditional methods, suggesting that current models tend to under estimate the soil moisture variability. One of the advantage of the P-E method is to retrive long-term variability of the basin-scale soil moisture (including interannual and decadal time scales), which can provide valuable information to understand climate variability and to predict future climate condition. However, validation on reconstructed evaporation is very difficult due to lack of observation. The interannual variability in AWS in the Amazon basin is about 150mm, also consistent with GRACE data, but much larger than model results. We also apply this P-E method to the midlatitude Mississippi basin and discuss the impact of major 20th century droughts such as the dust bowl period on the long-term soil moisture variability. The results suggest the existence of soil moisture memories on decadal time scales, significantly longer than typically assumed seasonal timescales.

  17. P-E Fit as Moderator of the Accountability--Employee Reactions Relationships: Convergent Results across Two Samples

    ERIC Educational Resources Information Center

    Lanivich, Stephen E.; Brees, Jeremy R.; Hochwarter, Wayne A.; Ferris, Gerald R.

    2010-01-01

    The current two-sample investigation, which incorporated Conservation of Resources (COR) and Person-Environment (P-E) fit theories, investigated the interaction effects of felt accountability x P-E fit on the work outcomes of job satisfaction, organizational commitment, depressed mood, and work intensity. Consistent with the conceptual…

  18. P-E Fit as Moderator of the Accountability--Employee Reactions Relationships: Convergent Results across Two Samples

    ERIC Educational Resources Information Center

    Lanivich, Stephen E.; Brees, Jeremy R.; Hochwarter, Wayne A.; Ferris, Gerald R.

    2010-01-01

    The current two-sample investigation, which incorporated Conservation of Resources (COR) and Person-Environment (P-E) fit theories, investigated the interaction effects of felt accountability x P-E fit on the work outcomes of job satisfaction, organizational commitment, depressed mood, and work intensity. Consistent with the conceptual

  19. Explaining Warm Coronal Loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Patsourakos, Spiros

    2008-01-01

    One of the great mysteries of coronal physics that has come to light in the last few years is the discovery that warn (- 1 INK) coronal loops are much denser than expected for quasi-static equilibrium. Both the excess densities and relatively long lifetimes of the loops can be explained with bundles of unresolved strands that are heated impulsively to very high temperatures. Since neighboring strands are at different stages of cooling, the composite loop bundle is multi-thermal, with the distribution of temperatures depending on the details of the "nanoflare storm." Emission hotter than 2 MK is predicted, but it is not clear that such emission is always observed. We consider two possible explanations for the existence of over-dense warm loops without corresponding hot emission: (1) loops are bundles of nanoflare heated strands, but a significant fraction of the nanoflare energy takes the form of a nonthermal electron beam rather then direct plasma heating; (2) loops are bundles of strands that undergo thermal nonequilibrium that results when steady heating is sufficiently concentrated near the footpoints. We present numerical hydro simulations of both of these possibilities and explore the observational consequences, including the production of hard X-ray emission and absorption by cool material in the corona.

  20. Single-Loop Antenna Control

    NASA Astrophysics Data System (ADS)

    Gawronski, W.

    2002-07-01

    This article presents a study of a single-loop antenna control system. A typical antenna control system consists of two feedback loops. The first one -- an inner loop -- is called a rate loop. It uses tachometers to control the drive rate. The second loop -- called a position loop -- uses encoders to control antenna position. The questions arise: Does one need two loops to control antenna motions? Can one achieve similar performance for a system with the position loop only? In order to answer these questions, we studied three types of antennas with a single-loop control: a rigid (or idealized) antenna in order to obtain initial insight into properties of the closed-loop antenna systems; a small antenna, 5 meters in diameter; and a large antenna, 34 meters in diameter. The study compares command following and rejection of wind disturbances of antennas with and without rate loops, and we show that both configurations are equivalent.

  1. Severe obesity: a growing health concern A.S.P.E.N. should not ignore.

    PubMed

    Shikora, Scott A

    2005-01-01

    The definition of malnutrition in the published standards of the American Society of Parenteral and Enteral Nutrition (A.S.P.E.N.) is any derangement in the normal nutrition status and includes overnutrition, commonly referred to as obesity. The incidence of obesity is increasing and reaching epidemic proportions in the United States and even worldwide. This has significant financial impact as our society spends billions of dollars on fad diets, commercial weight-loss programs, nutrition and dietary supplements, prescription and over-the-counter medications, and health clubs. Another approximately dollars 100 billion are spent to treat the medical consequences of obesity. Currently, for those patients with intractable morbid obesity, defined as having a body mass index >40 kg/m2, surgery offers the only option for achieving meaningful and sustainable weight loss. The resultant weight loss dramatically improves health and decreases the cost of health care for these patients. Years of refinement in technology and the introduction of safer and less invasive procedures have dramatically reduced the short-term morbidities and long-term metabolic consequences of these procedures. This address will review the field of weight loss (bariatric) surgery and will offer a compelling request for A.S.P.E.N. to include obesity in its fabric. PMID:15961686

  2. Hysteresis of unsaturated hydromechanical properties of a silty soil

    USGS Publications Warehouse

    Lu, Ning; Kaya, Murat; Collins, Brian D.; Godt, Jonathan W.

    2013-01-01

    Laboratory tests to examine hysteresis in the hydrologic and mechanical properties of partially saturated soils were conducted on six intact specimens collected from a landslide-prone area of Alameda County, California. The results reveal that the pore-size distribution parameter remains statistically unchanged between the wetting and drying paths; however, the wetting or drying state has a pronounced influence on the water-entry pressure, the water-filled porosity at zero suction, and the saturated hydraulic conductivity. The suction stress values obtained from the shear-strength tests under both natural moisture and resaturated conditions were mostly bounded by the suction stress characteristic curves (SSCCs) obtained from the hydrologic tests. This finding experimentally confirms that the soil-water retention curve, hydraulic conductivity function, and SSCC are intrinsically related.

  3. Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation.

    PubMed

    Vehoff, T; Glisović, A; Schollmeyer, H; Zippelius, A; Salditt, T

    2007-12-15

    Spider silk is well-known for its outstanding mechanical properties. However, there is a significant variation of these properties in literature and studies analyzing large numbers of silk samples to explain these variations are still lacking. To fill this gap, the following work examines the mechanical properties of major ampullate silk based on a large ensemble of threads from Nephila clavipes and Nephila senegalensis. In addition, the effect of relative humidity (RH) on the mechanical properties was quantified. The large effect of RH on the mechanical properties makes it plausible that the variation in the literature values can to a large extent be attributed to changes in RH. Spider silk's most remarkable property-its high tenacity-remains unchanged. In addition, this work also includes hysteresis as well as relaxation measurements. It is found that the relaxation process is well described by a stretched exponential decay. PMID:17766337

  4. Hysteresis-free nanoplasmonic Pd-Au alloy hydrogen sensors.

    PubMed

    Wadell, Carl; Nugroho, Ferry Anggoro Ardy; Lidström, Emil; Iandolo, Beniamino; Wagner, Jakob B; Langhammer, Christoph

    2015-05-13

    The recent market introduction of hydrogen fuel cell cars and the prospect of a hydrogen economy have drastically accelerated the need for safe and accurate detection of hydrogen. In this Letter, we investigate the use of arrays of nanofabricated Pd-Au alloy nanoparticles as plasmonic optical hydrogen sensors. By increasing the amount of Au in the alloy nanoparticles up to 25 atom %, we are able to suppress the hysteresis between hydrogen absorption and desorption, thereby increasing the sensor accuracy to below 5% throughout the investigated 1 mbar to 1 bar hydrogen pressure range. Furthermore, we observe an 8-fold absolute sensitivity enhancement at low hydrogen pressures compared to sensors made of pure Pd, and an improved sensor response time to below one second within the 0-40 mbar pressure range, that is, below the flammability limit, by engineering the nanoparticle size. PMID:25915663

  5. Hysteresis in flow patterns in annular swirling jets

    SciTech Connect

    Vanierschot, M.; Van den Bulck, E.

    2007-05-15

    This study investigates the influence of swirl on the mean cold flowfield of an annular jet with a stepped-conical expansion. Both the axial and azimuthal velocity components are measured using a two component Laser Doppler Anemometry system in forward scattering mode. A detailed description of the radial profiles of both mean axial and azimuthal velocity as well as three components of the Reynolds stress are given. Four different jets are identified as a function of the swirl number: 'Closed Jet Flow', 'Open Jet Flow Low Swirl', 'Open Jet Flow High Swirl' and 'Coanda Jet Flow'. These flow patterns change with varying swirl number and there exists hysteresis when increasing and subsequently decreasing the swirl. Also a method for jet identification based upon pressure measurements is presented to replace the time consuming LDA measurements. (author)

  6. Contact Angle Hysteresis of Photo-Responsive Materials

    NASA Astrophysics Data System (ADS)

    Rosenthal, Samuel; McGuiggan, Patricia

    2013-03-01

    An atomic force microscope (AFM) is used to measure the meniscus force on individual microspheres coated with photo-responsive materials such as anatase and rutile TiO2, azobenzene, and other doped oxides as they contact and are retracted from an air/water interface. By exposing the coated microspheres to UV light, the contact angle change. The change can be detected by measuring the increase in the meniscus force. Exposure to visible, infrared, or far infrared light - as the specific material requires - reverses the contact angle change. The measured force-distance curves are fitted to macroscopic wetting theory. From these measurements, the contact angle, the contact angle hysteresis, and the position of the contact line pinning were simultaneously determined. This allowed for a quantification of the contact angle changes from photo-switching. NSF CMMI-0709187

  7. Hysteresis and reversibility of a superhydrophobic photopatternable silicone elastomer.

    PubMed

    Blanco-Gomez, Gerald; Flendrig, Leonard M; Cooper, Jonathan M

    2010-05-18

    We report upon the wetting property of layers of a micropatterned photodefinable silicon elastomer, PDSE, repetitively and alternatively treated with oxygen plasma and temperature cycles. At low power plasma treatments, we observed a hysteresis in terms of contact angle between phases lowering the contact angle and phases of recovery. As opposed to high power plasma for which we show that by generating fissures on the surface, the structure can be cycled between superhydrophobic and superhydrophilic states. The plasma-generated diffusion paths were characterized by electron microscopy and were found to be directly related to the recovery of the wetting properties of the plasma treated layers of PDSE. The cycling between the superhydrophobic and superhydrophilic states was dependent on the power of the applied plasma as well as the condition during the contact angle recovery amplified by a temperature-controlled baking step. PMID:20180571

  8. Hysteresis free carbon nanotube thin film transistors comprising hydrophobic dielectrics

    NASA Astrophysics Data System (ADS)

    Lefebvre, J.; Ding, J.; Li, Z.; Cheng, F.; Du, N.; Malenfant, P. R. L.

    2015-12-01

    We present two examples of carbon nanotube network thin film transistors with strongly hydrophobic dielectrics comprising either Teflon-AF or a poly(vinylphenol)/poly(methyl silsesquioxane) (PVP/pMSSQ) blend. In the absence of encapsulation, bottom gated transistors in air ambient show no hysteresis between forward and reverse gate sweep direction. Device threshold gate voltage and On-current present excellent time dependent stability even under dielectric stress. Furthermore, threshold gate voltage for hole conduction is negative upon device encapsulation with PVP/pMSSQ enabling much improved current On/Off ratio at 0 V. This work addresses two major challenges impeding solution based fabrication of relevant thin film transistors with printable single-walled carbon nanotube channels.

  9. Magnetic hysteresis in a lanthanide molecular magnet dimer system

    NASA Astrophysics Data System (ADS)

    Atkinson, James; Cebulka, Rebecca; Del Barco, Enrique; Roubeau, Olivier; Velasco, Veronica; Barrios, Leo; Aromi, Guillem

    Molecular magnets present a wonderful means for studying the dynamics of spin. Often synthesized as a crystal lattice of identical systems, ensemble measurements enable thorough detailing of the internal degrees of freedom. Here we present the results of characterization performed on a dimer system, CeTm(HL)2(H2L)NO3pyH2O (L = ligand, C45H31O15N3), consisting of two lanthanide spins (Cerium and Thulium) with expected local axial anisotropies tilted with respect to each other. Microwave EPR spectroscopy at low temperature reveals hysteresis in observed absorption features, with angle dependence studies indicating the presence of several ``easy axis'' orientations. We attempt to understand this system through modelling via a spin Hamiltonian, and to determine the strength and nature of the coupling between the lanthanide centers. This research was funded through NSF Grant # 24086159.

  10. Bouc-Wen hysteresis model identification using Modified Firefly Algorithm

    NASA Astrophysics Data System (ADS)

    Zaman, Mohammad Asif; Sikder, Urmita

    2015-12-01

    The parameters of Bouc-Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc-Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc-Wen model parameters. Finally, the proposed method is used to find the Bouc-Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data.

  11. Pressure effect on hysteresis in spin-crossover solid materials

    NASA Astrophysics Data System (ADS)

    Gudyma, Iurii; Ivashko, Victor; Dimian, Mihai

    2016-04-01

    A generalized microscopic Ising-like model is proposed to describe behavior of compressible spin-crossover solids with two states: low-spin and high-spin. The model was solved in mean-field approximation and shows hysteretic behavior at low energy difference between the states. We study the thermal transition between states under external hydrostatic pressure taking into account the changes in the volume of spin-crossover molecules in different states. Depending on the applied pressure, a spin-crossover system can have three types of behavior of molecular fraction in the high-spin state: hysteretic, second-order phase transition and no-phase transition. For the hysteretic regime, it is shown that the transition temperature under pressure is increased while the width of the hysteresis reduced.

  12. Hysteresis in coral reefs under macroalgal toxicity and overfishing.

    PubMed

    Bhattacharyya, Joydeb; Pal, Samares

    2015-03-01

    Macroalgae and corals compete for the available space in coral reef ecosystems.While herbivorous reef fish play a beneficial role in decreasing the growth of macroalgae, macroalgal toxicity and overfishing of herbivores leads to proliferation of macroalgae. The abundance of macroalgae changes the community structure towards a macroalgae-dominated reef ecosystem. We investigate coral-macroalgal phase shifts by means of a continuous time model in a food chain. Conditions for local asymptotic stability of steady states are derived. It is observed that in the presence of macroalgal toxicity and overfishing, the system exhibits hysteresis through saddle-node bifurcation and transcritical bifurcation. We examine the effects of time lags in the liberation of toxins by macroalgae and the recovery of algal turf in response to grazing of herbivores on macroalgae by performing equilibrium and stability analyses of delay-differential forms of the ODE model. Computer simulations have been carried out to illustrate the different analytical results. PMID:25708511

  13. Water adsorption in disordered mesoporous silica (Vycor) at 300 K and 650 K: a Grand Canonical Monte Carlo simulation study of hysteresis.

    PubMed

    Puibasset, Jol; Pellenq, Roland J-M

    2005-03-01

    This numerical simulation paper focuses on the adsorption/desorption of water in disordered mesoporous silica glasses (Vycor-like). The numerical adsorbent was previously obtained by off lattice method, and was shown to reproduce quite well the micro- and mesotextural properties of real Vycor, as well as morphological (pore size distribution) and topological (pore interconnections) disorder. The water-water interactions are described by the SPC model while water-silica interactions are calculated in the framework of the PN-TrAZ model. The water adsorption/desorption isotherms and the configurational energies are calculated by the Grand Canonical Monte Carlo simulation method. The low pressure results compare well with experiments, showing the good transferability of the intermolecular potential. It is shown that if the hysteresis loop observed in the adsorption/desorption isotherm is considered as a true phase transition (which is actually still an open question in the case of disordered porous materials), then it is possible to calculate the grand potential by applying the thermodynamic integration scheme. The grand potential is shown to be multivalued for low (subcritical) temperature, and continuous for high (supercritical) temperature. A coexistence point is found within the hysteresis loop, actually close to the vertical desorption line. Below the equilibrium chemical potential, the gaslike branch is stable whereas the liquidlike branch is metastable. The situation is reversed above the coexistence point. PMID:15836159

  14. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress. Progress report, June 1991--December 1991

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  15. Causes and implications of colloid and microorganism retention hysteresis

    NASA Astrophysics Data System (ADS)

    Bradford, Scott A.; Kim, Hyunjung

    2012-09-01

    Experiments were designed to better understand the causes and implications of colloid and microorganism retention hysteresis with transients in solution ionic strength (IS). Saturated packed column experiments were conducted using two sizes of carboxyl modified latex (CML) microspheres (0.1 and 1.1 μm) and microorganisms (coliphage φX174 and E. coli D21g) under various transient solution chemistry conditions, and 360 μm Ottawa sand that was subject to different levels of cleaning, namely, a salt cleaning procedure that removed clay particles, and a salt + acid cleaning procedure that removed clay and reduced microscopic heterogeneities due to metal oxides and surface roughness. Comparison of results from the salt and salt + acid treated sand indicated that microscopic heterogeneity was a major contributor to colloid retention hysteresis. The influence of this heterogeneity increased with IS and decreasing colloid/microbe size on salt treated sand. These trends were not consistent with calculated mean interaction energies (the secondary minima), but could be explained by the size of the electrostatic zone of influence (ZOI) near microscopic heterogeneities. In particular, the depth of local minima in the interaction energy has been predicted to increase with a decrease in the ZOI when the colloid size and/or the Debye length decreased (IS increased). The adhesive interaction was therefore largely irreversible for smaller sized 0.1 μm CML colloids, whereas it was reversible for larger 1.1 μm CML colloids. Similarly, the larger E. coli D21g exhibited greater reversibility in retention than φX174. However, direct comparison of CML colloids and microbes was not possible due to differences in size, shape, and surface properties. Retention and release behavior of CML colloids on salt + acid treated sand was much more consistent with mean interaction energies due to reduction in microscopic heterogeneities.

  16. Causes and implications of colloid and microorganism retention hysteresis.

    PubMed

    Bradford, Scott A; Kim, Hyunjung

    2012-09-01

    Experiments were designed to better understand the causes and implications of colloid and microorganism retention hysteresis with transients in solution ionic strength (IS). Saturated packed column experiments were conducted using two sizes of carboxyl modified latex (CML) microspheres (0.1 and 1.1 ?m) and microorganisms (coliphage ?X174 and E. coli D21g) under various transient solution chemistry conditions, and 360 ?m Ottawa sand that was subject to different levels of cleaning, namely, a salt cleaning procedure that removed clay particles, and a salt+acid cleaning procedure that removed clay and reduced microscopic heterogeneities due to metal oxides and surface roughness. Comparison of results from the salt and salt+acid treated sand indicated that microscopic heterogeneity was a major contributor to colloid retention hysteresis. The influence of this heterogeneity increased with IS and decreasing colloid/microbe size on salt treated sand. These trends were not consistent with calculated mean interaction energies (the secondary minima), but could be explained by the size of the electrostatic zone of influence (ZOI) near microscopic heterogeneities. In particular, the depth of local minima in the interaction energy has been predicted to increase with a decrease in the ZOI when the colloid size and/or the Debye length decreased (IS increased). The adhesive interaction was therefore largely irreversible for smaller sized 0.1 ?m CML colloids, whereas it was reversible for larger 1.1 ?m CML colloids. Similarly, the larger E. coli D21g exhibited greater reversibility in retention than ?X174. However, direct comparison of CML colloids and microbes was not possible due to differences in size, shape, and surface properties. Retention and release behavior of CML colloids on salt+acid treated sand was much more consistent with mean interaction energies due to reduction in microscopic heterogeneities. PMID:22820488

  17. Large melting point hysteresis of Ge nanocrystals embedded inSiO2

    SciTech Connect

    Xu, Q.; Sharp, I.D.; Yuan, C.W.; Yi, D.O.; Liao, C.Y.; Glaeser,A.M.; Minor, A.M.; Beeman, J.W.; Ridgway, M.C.; Kluth, P.; Ager III,J.W.; Chrzan, D.C.; Haller, E.E.

    2006-05-04

    The melting behavior of Ge nanocrystals embedded within SiO{sub 2} is evaluated using in situ transmission electron microscopy. The observed melting point hysteresis is large ({+-} 17%) and nearly symmetric about the bulk melting point. This hysteresis is modeled successfully using classical nucleation theory without the need to invoke epitaxy.

  18. The intrinsic origin of hysteresis in MoS2 field effect transistors

    NASA Astrophysics Data System (ADS)

    Shu, Jiapei; Wu, Gongtao; Guo, Yao; Liu, Bo; Wei, Xianlong; Chen, Qing

    2016-01-01

    We investigate the hysteresis and gate voltage stress effect in MoS2 field effect transistors (FETs). We observe that both the suspended and the SiO2-supported FETs have large hysteresis in their transfer curves under vacuum which cannot be attributed to the traps at the interface between the MoS2 and the SiO2 or in the SiO2 substrate or the gas adsorption/desorption effect. Our findings indicate that the hysteresis we observe comes from the MoS2 itself, revealing an intrinsic origin of the hysteresis besides some extrinsic factors. The fact that the FETs based on thinner MoS2 have larger hysteresis than that with thicker MoS2 suggests that the surface of MoS2 plays a key role in the hysteresis. The gate voltage sweep range, sweep direction, sweep time and loading history all affect the hysteresis observed in the transfer curves.We investigate the hysteresis and gate voltage stress effect in MoS2 field effect transistors (FETs). We observe that both the suspended and the SiO2-supported FETs have large hysteresis in their transfer curves under vacuum which cannot be attributed to the traps at the interface between the MoS2 and the SiO2 or in the SiO2 substrate or the gas adsorption/desorption effect. Our findings indicate that the hysteresis we observe comes from the MoS2 itself, revealing an intrinsic origin of the hysteresis besides some extrinsic factors. The fact that the FETs based on thinner MoS2 have larger hysteresis than that with thicker MoS2 suggests that the surface of MoS2 plays a key role in the hysteresis. The gate voltage sweep range, sweep direction, sweep time and loading history all affect the hysteresis observed in the transfer curves. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07336g

  19. Hysteresis in the metachronal-tripod gait transition of insects: A modeling study

    NASA Astrophysics Data System (ADS)

    Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo

    2013-07-01

    Locomotion in biological systems involves various gaits, and hysteresis appears when the gaits change in accordance with the locomotion speed. That is, the gaits vary at different locomotion speeds depending on the direction of speed change. Although hysteresis is a typical characteristic of nonlinear dynamic systems, the underlying mechanism for the hysteresis in gait transitions remains largely unclear. In this study, we construct a neuromechanical model of an insect and investigate the dynamic characteristics of its gait and gait transition. The simulation results show that our insect model produces metachronal and tripod gaits depending on the locomotion speed through dynamic interactions among the body mechanical system, the nervous system, and the environment in a self-organized manner. They also show that it undergoes the metachronal-tripod gait transition with hysteresis by changing the locomotion speed. We examined the hysteresis mechanism in the metachronal-tripod gait transition of insects from a dynamic viewpoint.

  20. Activity and Architecture of Pyroglutamate-Modified Amyloid-β (AβpE3-42) Pores

    PubMed Central

    2015-01-01

    Among the family of Aβ peptides, pyroglutamate-modified Aβ (AβpE) peptides are particularly associated with cytotoxicity in Alzheimer’s disease (AD). They represent the dominant fraction of Aβ oligomers in the brains of AD patients, but their accumulation in the brains of elderly individuals with normal cognition is significantly lower. Accumulation of AβpE plaques precedes the formation of plaques of full-length Aβ (Aβ1-40/42). Most of these properties appear to be associated with the higher hydrophobicity of AβpE as well as an increased resistance to enzymatic degradation. However, the important question of whether AβpE peptides induce pore activity in lipid membranes and their potential toxicity compared with other Aβ pores is still open. Here we examine the activity of AβpE pores in anionic membranes using planar bilayer electrical recording and provide their structures using molecular dynamics simulations. We find that AβpE pores spontaneously induce ionic current across the membrane and have some similar properties to the other previously studied pores of the Aβ family. However, there are also some significant differences. The onset of AβpE3-42 pore activity is generally delayed compared with Aβ1-42 pores. However, once formed, AβpE3-42 pores produce increased ion permeability of the membrane, as indicated by a greater occurrence of higher conductance electrical events. Structurally, the lactam ring of AβpE peptides induces a change in the conformation of the N-terminal strands of the AβpE3-42 pores. While the N-termini of wild-type Aβ1–42 peptides normally reside in the bulk water region, the N-termini of AβpE3-42 peptides tend to reside in the hydrophobic lipid core. These studies provide a first step to an understanding of the enhanced toxicity attributed to AβpE peptides. PMID:24922585

  1. Rapid Total Synthesis of DARPin pE59 and RNase B. a

    PubMed Central

    Mong, Surin K.; Vinogradov, Alexander A.; Simon, Mark D.

    2014-01-01

    Here we report the convergent total synthesis of two proteins: DARPin pE59 and RNase B. a. (Barnase). Leveraging our recently developed fast flow peptide synthesis platform, we rapidly explored numerous conditions for the assembly of long polypeptides and were able to mitigate common side reactions including deletion and aspartimide products. We report general strategies for improving the synthetic quality of difficult peptide sequences with our system. High-quality protein fragments produced under optimal synthetic conditions were subjected to convergent native chemical ligation, which afforded native full-length proteins after a final desulfurization step. Both DARPin and Barnase were folded and found to be as active as their recombinant analogues. PMID:24616257

  2. Wilson-loop instantons

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Holman, Richard; Kolb, Edward W.

    1987-01-01

    Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.

  3. The Anderson Current Loop

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F.

    1994-01-01

    Four-wire-probe concept applied to electrical-resistance transducers. Anderson current loop is excitation-and-signal-conditioning circuit suitable for use with strain gauges, resistance thermometers, and other electrical-resistance transducers mounted in harsh environments. Used as alternative to Wheatstone bridge. Simplifies signal-conditioning problem, enabling precise measurement of small changes in resistance of transducer. Eliminates some uncertainties in Wheatstone-bridge resistance-change measurements in flight research. Current loop configuration makes effects of lead-wire and contact resistances insignificantly small. Also provides output voltage that varies linearly with change in gauge resistance, and does so at double sensitivity of Wheatstone bridge.

  4. Loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Chiou, Dah-Wei

    2015-12-01

    This paper presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) — a background-independent, nonperturbative approach to a consistent quantum theory of gravity. Instead of rigorous and systematic derivations, it aims to provide a general picture of LQG, placing emphasis on the fundamental ideas and their significance. The canonical formulation of LQG, as the central topic of the paper, is presented in a logically orderly fashion with moderate details, while the spin foam theory, black hole thermodynamics, and loop quantum cosmology are covered briefly. Current directions and open issues are also summarized.

  5. Automatic one-loop calculations with Sherpa+OpenLoops

    NASA Astrophysics Data System (ADS)

    Cascioli, F.; Höche, S.; Krauss, F.; Maierhöfer, P.; Pozzorini, S.; Siegert, F.

    2014-06-01

    We report on the OpenLoops generator for one-loop matrix elements and its application to four-lepton production in association with up to one jet. The open loops algorithm uses a numerical recursion to construct the numerator of one-loop Feynman diagrams as functions of the loop momentum. In combination with tensor integrals this results in a highly efficient and numerically stable matrix element generator. In order to obtain a fully automated setup for the simulation of next-to-leading order scattering processes we interfaced OpenLoops to the Sherpa Monte Carlo event generator.

  6. Livermore Compiler Analysis Loop Suite

    Energy Science and Technology Software Center (ESTSC)

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizationsmore » and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  7. Livermore Compiler Analysis Loop Suite

    SciTech Connect

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.

  8. Magnetic Hysteresis Loop as a Tool for the Evaluation of Microstructure and Mechanical Properties of DP Steels

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kumar, Satendra; Akela, Arbind Kumar; Prakash Rao, S.; Kaza, Marutiram

    2016-04-01

    DP steel of 1.3-mm thickness full hard sheet was heat treated at different temperatures in the range of 700-850 °C with 25 °C step for 15 min soaking followed by water quenching. The variation of the soaking temperatures leads to variation of volume fraction of martensite which was measured by image analysis software in optical microscopy. Mechanical properties of the samples were evaluated using micro Vicker's hardness test and tensile test machine. Magnetic properties of the samples were measured by MagStar to correlate with the microstructure and mechanical properties of the samples. It was observed that the coercivity of the samples increased linearly with the increase in volume fraction of martensite and mechanical properties. Hence monitoring coercivity would help non-destructive evaluation of mechanical properties of the DP steels. Additionally, it would also helpful for the non-destructive evaluation of variation in heat treatment conditions since coercivity also found to increase linearly with the increase in soaking temperature.

  9. In the Loop

    ERIC Educational Resources Information Center

    Naylor, Michael

    2006-01-01

    In the mid-1800s, Englishman John Venn invented a type of diagram to help visualize logical relationships. A Venn diagram is simply a rectangular box with circular loops in it that overlap to show how objects are related. This article describes activities with Venn diagrams that can be a fun way to sharpen students' logic skills and develop number…

  10. NETL - Chemical Looping Reactor

    ScienceCinema

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  11. Closing the Loop Sampler.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    Closing the Loop (CTL) is a science curriculum designed to introduce students to integrated waste management through awareness. This document presents five lesson plans focusing on developing an understanding of natural resources, solid wastes, conservation, and the life of landfills. Contents include: (1) "What Are Natural Resources?"; (2)…

  12. Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Piguet, O.

    2014-09-01

    In this talk, I give a short general introduction to Loop Quantum Gravity (LQG), beginning with some motivations for quantizing General Relativity, listing various attempts and then focusing on the case of LQG. Work supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (Brazil).

  13. NETL - Chemical Looping Reactor

    SciTech Connect

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  14. Amyloid-β Peptide Aβ3pE-42 Induces Lipid Peroxidation, Membrane Permeabilization, and Calcium Influx in Neurons.

    PubMed

    Gunn, Adam P; Wong, Bruce X; Johanssen, Timothy; Griffith, James C; Masters, Colin L; Bush, Ashley I; Barnham, Kevin J; Duce, James A; Cherny, Robert A

    2016-03-18

    Pyroglutamate-modified amyloid-β (pE-Aβ) is a highly neurotoxic amyloid-β (Aβ) isoform and is enriched in the brains of individuals with Alzheimer disease compared with healthy aged controls. Pyroglutamate formation increases the rate of Aβ oligomerization and alters the interactions of Aβ with Cu(2+) and lipids; however, a link between these properties and the toxicity of pE-Aβ peptides has not been established. We report here that Aβ3pE-42 has an enhanced capacity to cause lipid peroxidation in primary cortical mouse neurons compared with the full-length isoform (Aβ(1-42)). In contrast, Aβ(1-42) caused a significant elevation in cytosolic reactive oxygen species, whereas Aβ3pE-42 did not. We also report that Aβ3pE-42 preferentially associates with neuronal membranes and triggers Ca(2+) influx that can be partially blocked by the N-methyl-d-aspartate receptor antagonist MK-801. Aβ3pE-42 further caused a loss of plasma membrane integrity and remained bound to neurons at significantly higher levels than Aβ(1-42) over extended incubations. Pyroglutamate formation was additionally found to increase the relative efficiency of Aβ-dityrosine oligomer formation mediated by copper-redox cycling. PMID:26697885

  15. The intrinsic origin of hysteresis in MoS2 field effect transistors.

    PubMed

    Shu, Jiapei; Wu, Gongtao; Guo, Yao; Liu, Bo; Wei, Xianlong; Chen, Qing

    2016-01-28

    We investigate the hysteresis and gate voltage stress effect in MoS2 field effect transistors (FETs). We observe that both the suspended and the SiO2-supported FETs have large hysteresis in their transfer curves under vacuum which cannot be attributed to the traps at the interface between the MoS2 and the SiO2 or in the SiO2 substrate or the gas adsorption/desorption effect. Our findings indicate that the hysteresis we observe comes from the MoS2 itself, revealing an intrinsic origin of the hysteresis besides some extrinsic factors. The fact that the FETs based on thinner MoS2 have larger hysteresis than that with thicker MoS2 suggests that the surface of MoS2 plays a key role in the hysteresis. The gate voltage sweep range, sweep direction, sweep time and loading history all affect the hysteresis observed in the transfer curves. PMID:26782750

  16. The effect of contact angle hysteresis on droplet motion and collisions on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Nilsson, Michael; Rothstein, Jonathan

    2010-11-01

    The effect of varying the contact angle hysteresis of a superhydrophobic surface on the characteristics and dynamics of water droplet motion and their subsequent collision are investigated using a high-speed camera. The surfaces are created by imparting random roughness to Teflon through sanding. With this technique, it is possible to create surfaces with similar advancing contact angles near 150 degrees, but with varying contact angle hysteresis. This talk will focus on a number of interesting experimental observations pertaining to drop dynamics along a surface with uniform hysteresis, drop motion along surfaces with transition zones from one hysteresis to another, and the collision of droplets on surfaces of uniform hysteresis. For single drop studies, gravity is used as the driving force, while the collision studies use pressurized air to propel one drop into the other. For the case of droplet collision, the effect of hysteresis, Weber number, and impact number on the maximum deformation of the drops, and the post-collision dynamics will be discussed. For the single droplet measurements, the resistance to motion will be characterized as well as the transition from rolling to sliding as a function of drop size, inclination angle, and hysteresis. Additionally, we will quantify the effect of surface transitions on the resulting motion, mixing, and deflection of the drops.

  17. Scattering Amplitudes with Open Loops

    NASA Astrophysics Data System (ADS)

    Cascioli, F.; Maierhöfer, P.; Pozzorini, S.

    2012-03-01

    We introduce a new technique to generate scattering amplitudes at one loop. Traditional tree algorithms, which handle diagrams with fixed momenta, are promoted to generators of loop-momentum polynomials that we call open loops. Combining open loops with tensor-integral and Ossola-Papadopoulos-Pittau reduction results in a fully flexible, very fast, and numerically stable one-loop generator. As demonstrated with nontrivial applications, the open-loop approach will permit us to obtain precise predictions for a very wide range of collider processes.

  18. On loop transformations of nested loops with affine dependencies

    NASA Astrophysics Data System (ADS)

    Popp, Andreas; Zimmermann, Karl-Heinz

    2001-09-01

    Automatic transformation of a sequential program into a parallel form has a large practical impact. In particular, the parallelization of loop nests with uniform dependencies is well understood. The most common parallelization methods used are loop-level transformations based on unimodular transformations, and the most useful unimodular transformations are inner and outer loop parallelization which are built on linear schedules. In this paper, we consider a larger class of loop nests: loop nests with affine dependencies. For affine loop nests, we provide a generalization of both, inner and outer loop parallelization. For this, the dependencies of the extremal points of the index space need to be considered. We sketch an implementation of our parallelization techniques, and outline a method for the synthesis of array processors from affine loop nests.

  19. Stress dependence of the hysteresis in single crystal NiTi alloys

    SciTech Connect

    Hamilton, R.F.; Sehitoglu, H.; Chumlyakov, Y.; Maier, H.J

    2004-06-21

    We demonstrate the variation in thermal hysteresis with increasing external stress for reversible martensitic transformations. The hysteresis was measured in temperature cycling experiments under external stress and also under pseudoleastic deformation conditions. To understand the role of composition and crystal orientation effects, the study included aged and solutionized Ti-50.1, Ti-50.4, Ti-50.8 and Ti-51.5at.%Ni in the [1 1 1], [0 0 1], [0 1 1], [0 1 2], and [1 2 3] orientations. Differential scanning calorimetry was used to characterize the thermal hysteresis resulting from thermal cycling under zero stress. The results show unequivocally that the thermal hysteresis expands with increasing external stress for aged and solutionized Ti-50.1at.%Ni and Ti-50.4at.%Ni alloys, while it contracts with increasing external stress for the higher Ni alloys with 50.8 and 51.5at.%Ni compositions. The growth of temperature hysteresis was from 20 deg. C to as high as 80 deg. C for the lower Ni alloys, while the contraction of the hysteresis was from 60 to 15 deg. C for the higher Ni alloys. The stress dependence of the hysteresis is rationalized considering dissipation of elastic strain energy due to relaxation of coherency strains at martensite-austenite interfaces. The role of precipitates and frictional work on transformation hysteresis is also clarified based on experiments on low and high Ni alloys with heterogeneous and homogenous precipitate structures respectively. A micro-mechanical model based on reversible thermodynamics was modified to account for plastic relaxation of coherent transforming interfaces, and the predictions account for the growing hysteresis with increasing external stress.

  20. Marine ice sheet dynamics: Hysteresis and neutral equilibrium

    NASA Astrophysics Data System (ADS)

    Durand, G.; Gagliardini, O.; de Fleurian, B.; Zwinger, T.; Le Meur, E.

    2009-09-01

    The stability of marine ice sheets and outlet glaciers is mostly controlled by the dynamics of their grounding line, i.e., where the bottom contact of the ice changes from bedrock or till to ocean water. The last report of the Intergovernmental Panel on Climate Change has clearly underlined the poor ability of models to capture the dynamics of outlet glaciers. Here we present computations of grounding line dynamics on the basis of numerical solutions of the full Stokes equations for ice velocity, coupled with the evolution of the air ice- and sea ice-free interfaces. The grounding line position is determined by solving the contact problem between the ice and a rigid bedrock using the finite element code Elmer. Results of the simulations show that marine ice sheets are unstable on upsloping beds and undergo hysteresis under perturbation of ice viscosity, confirming conclusions from boundary layer theory. The present approach also indicates that a 2-D unconfined marine ice sheet sliding over a downsloping bedrock does not exhibit neutral equilibrium. It is shown that mesh resolution around the grounding line is a crucial issue. A very fine grid size (<100 m spacing) is needed in order to achieve consistent results.

  1. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis

    NASA Astrophysics Data System (ADS)

    Schoof, Christian

    2007-09-01

    The ice sheet-ice shelf transition zone plays an important role in controlling marine ice sheet dynamics, as it determines the rate at which ice flows out of the grounded part of the ice sheet. Together with accumulation, this outflow is the main control on the mass balance of the grounded sheet. In this paper, we verify the results of a boundary layer theory for ice flux in the transition zone against numerical solutions that are able to resolve the transition zone. Very close agreement is obtained, and grid refinement in the transition zone is identified as a critical component in obtaining reliable numerical results. The boundary layer theory confirms that ice flux through the grounding line in a two-dimensional sheet-shelf system increases sharply with ice thickness at the grounding line. This result is then applied to the large-scale dynamics of a marine ice sheet. Our principal results are that (1) marine ice sheets do not exhibit neutral equilibrium but have well-defined, discrete equilibrium profiles; (2) steady grounding lines cannot be stable on reverse bed slopes; and (3) marine ice sheets with overdeepened beds can undergo hysteresis under variations in sea level, accumulation rate, basal slipperiness, and ice viscosity. This hysteretic behavior can in principle explain the retreat of the West Antarctic ice sheet following the Last Glacial Maximum and may play a role in the dynamics of Heinrich events.

  2. Marine ice sheet dynamics: Hysteresis and neutral equilibrium

    NASA Astrophysics Data System (ADS)

    Durand, G.; Gagliardini, O.; de Fleurian, B.; Zwinger, T.; Le Meur, E.

    The stability of marine ice sheets and outlet glaciers is mostly controlled by the dynamics of their grounding line, i.e., where the bottom contact of the ice changes from bedrock or till to ocean water. The last report of the Intergovernmental Panel on Climate Change has clearly underlined the poor ability of models to capture the dynamics of outlet glaciers. Here we present computations of grounding line dynamics on the basis of numerical solutions of the full Stokes equations for ice velocity, coupled with the evolution of the air ice- and sea ice-free interfaces. The grounding line position is determined by solving the contact problem between the ice and a rigid bedrock using the finite element code Elmer. Results of the simulations show that marine ice sheets are unstable on upsloping beds and undergo hysteresis under perturbation of ice viscosity, confirming conclusions from boundary layer theory. The present approach also indicates that a 2-D unconfined marine ice sheet sliding over a downsloping bedrock does not exhibit neutral equilibrium. It is shown that mesh resolution around the grounding line is a crucial issue. A very fine grid size (<100 m spacing) is needed in order to achieve consistent results.

  3. Hysteresis of ligand binding in CNGA2 ion channels

    PubMed Central

    Nache, Vasilica; Eick, Thomas; Schulz, Eckhard; Schmauder, Ralf; Benndorf, Klaus

    2013-01-01

    Tetrameric cyclic nucleotide-gated (CNG) channels mediate receptor potentials in olfaction and vision. The channels are activated by the binding of cyclic nucleotides to a binding domain embedded in the C terminus of each subunit. Here using a fluorescent cGMP derivative (fcGMP), we show for homotetrameric CNGA2 channels that ligand unbinding is ~50 times faster at saturating than at subsaturating fcGMP. Analysis with complex Markovian models reveals two pathways for ligand unbinding; the partially liganded open channel unbinds its ligands from closed states only, whereas the fully liganded channel reaches a different open state from which it unbinds all four ligands rapidly. Consequently, the transition pathways for ligand binding and activation of a fully liganded CNGA2 channel differ from that of ligand unbinding and deactivation, resulting in pronounced hysteresis of the gating mechanism. This concentration-dependent gating mechanism allows the channels to respond to changes in the cyclic nucleotide concentration with different kinetics. PMID:24287615

  4. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Tomar, Monika; Gupta, Vinay

    2015-03-01

    The influence of Cerium doping on the structural and magnetic properties of BiFeO3 thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi1-xCexFeO3 (BCFO) thin films with x=0-0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm-1) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm-1), shows a minor shift. Sudden evolution of Raman mode at 668 cm-1, manifested as A1-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M-H) hysteresis curves with improved saturation magnetization (Ms) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi0.88Ce0.12FeO3 thin film found to exhibit better magnetic properties with Ms=15.9 emu/g without any impure phase.

  5. The Dynamic Characteristic and Hysteresis Effect of an Air Spring

    NASA Astrophysics Data System (ADS)

    Löcken, F.; Welsch, M.

    2015-02-01

    In many applications of vibration technology, especially in chassis, air springs present a common alternative to steel spring concepts. A design-independent and therefore universal approach is presented to describe the dynamic characteristic of such springs. Differential and constitutive equations based on energy balances of the enclosed volume and the mountings are given to describe the nonlinear and dynamic characteristics. Therefore all parameters can be estimated directly from physical and geometrical properties, without parameter fitting. The numerically solved equations fit very well to measurements of a passenger car air spring. In a second step a simplification of this model leads to a pure mechanical equation. While in principle the same parameters are used, just an empirical correction of the effective heat transfer coefficient is needed to handle some simplification on this topic. Finally, a linearization of this equation leads to an analogous mechanical model that can be assembled from two common spring- and one dashpot elements in a specific arrangement. This transfer into "mechanical language" enables a system description with a simple force-displacement law and a consideration of the nonobvious hysteresis and stiffness increase of an air spring from a mechanical point of view.

  6. Implications of NiMH Hysteresis on HEV Battery Testing and Performance

    SciTech Connect

    Motloch, Chester George; Belt, Jeffrey R; Hunt, Gary Lynn; Ashton, Clair Kirkendall; Murphy, Timothy Collins; Miller, Ted J.; Coates, Calvin; Tataria, H. S.; Lucas, Glenn E.; Duong, T.Q.; Barnes, J.A.; Sutula, Raymond

    2002-08-01

    Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented.

  7. Implementation and analysis of an innovative digital charge amplifier for hysteresis reduction in piezoelectric stack actuators

    SciTech Connect

    Bazghaleh, Mohsen Grainger, Steven; Cazzolato, Ben; Lu, Tien-Fu; Oskouei, Reza

    2014-04-15

    Smart actuators are the key components in a variety of nanopositioning applications, such as scanning probe microscopes and atomic force microscopes. Piezoelectric actuators are the most common smart actuators due to their high resolution, low power consumption, and wide operating frequency but they suffer hysteresis which affects linearity. In this paper, an innovative digital charge amplifier is presented to reduce hysteresis in piezoelectric stack actuators. Compared to traditional analog charge drives, experimental results show that the piezoelectric stack actuator driven by the digital charge amplifier has less hysteresis. It is also shown that the voltage drop of the digital charge amplifier is significantly less than the voltage drop of conventional analog charge amplifiers.

  8. Numerical analysis of a measured efficiency hysteresis on a bulb turbine model

    NASA Astrophysics Data System (ADS)

    Houde, S.; Carrier, A.; Buron, J. D.; Deschênes, C.

    2014-03-01

    Within the framework of the BulbT project, simulations were performed to understand the origin of a measured hysteresis on the efficiency hill chart of a bulb turbine model. This hysteresis is associated with a sharp drop of efficiency located at slightly higher discharge than the best efficiency operating condition. It appears as a variation in the turbine performance whether an operating condition located in the efficiency drop is reached from a lower or a higher discharge. This hysteresis was reproduced numerically using Reynolds Averaged Navier Stokes (RANS) simulations. The paper presents the experimental results, the numerical methodology and a comprehensive analysis of the simulations to shed light on this interesting phenomenon.

  9. Sufficient conditions for rate-independent hysteresis in autoregressive identified models

    NASA Astrophysics Data System (ADS)

    Martins, Samir Angelo Milani; Aguirre, Luis Antonio

    2016-06-01

    This paper shows how hysteresis can be described using polynomial models and what are the sufficient conditions to be met by the model in order to have hysteresis. Such conditions are related to the model equilibria, to the forcing function and to certain term clusters in the polynomial models. The main results of the paper are used in the identification and analysis of nonlinear models estimated from data produced by a magneto-rheological damper (MRD) model with Bouc-Wen rate-independent hysteresis. A striking feature of the identified model is its simplicity and this could turn out to be a key factor in controller design.

  10. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich

    2015-01-01

    This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  11. Thermal hysteresis caused by non-equilibrium antifreeze activity of poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Inada, Takaaki; Lu, Shu-Shen

    2004-08-01

    Thermal hysteresis is often taken as the primary manifestation of antifreeze activity of biological non-equilibrium antifreezes, such as antifreeze proteins and antifreeze glycoproteins. Here we report evidence of the thermal hysteresis caused by poly(vinyl alcohol) (PVA). Similar to biological non-equilibrium antifreezes, PVA molecules stopped the growth of ice in the melt at temperatures even below the melting temperature of ice, although PVA exhibited very slight thermal hysteresis compared with most known biological antifreezes. The crystal habit of ice in the melt in the presence of PVA indicated that PVA molecules affected specific planes of the ice crystal.

  12. The thermal hysteresis activity of the type I antifreeze protein: A statistical mechanics model

    NASA Astrophysics Data System (ADS)

    Li, Li-Fen; Liang, X. X.; Li, Q. Z.

    2009-04-01

    Based on the adsorption-inhibition theory, a statistical mechanics model is proposed to investigate the thermal hysteresis activity of the type I antifreeze protein. The thermal hysteresis activity is evaluated by determining the AFP molecule coverage rate on the ice surface and the Gibbs function of the system. As examples, the calculated results for the thermal hysteresis temperatures of AFP9, HPLC-6(TTTT) and AAAA2kE as functions of the concentration of the AFP solution are obtained and discussed. The theoretical results are in agreement with the experimental data.

  13. Temperature-dependent gate-swing hysteresis of pentacene thin film transistors

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Lin, Yu-Cheng

    2014-10-01

    The temperature-dependent hysteresis-type transfer characteristics of pentacene-based organic thin film transistors (OTFTs) were researched. The temperature-dependent transfer characteristics exhibit hopping conduction behavior. The fitting data for the temperature-dependent off-to-on and on-to-off transfer characteristics of OTFTs demonstrate that the hopping distance (ah) and the barrier height for hopping (qϕt) control the carrier flow, resulting in the hysteresis-type transfer characteristics of OTFTs. The hopping model gives an explanation of the gate-swing hysteresis and the roles played by qϕt and ah.

  14. The origin of the p.E180 growth hormone receptor gene mutation.

    PubMed

    Ostrer, Harry

    2016-06-01

    Laron syndrome, an autosomal recessive condition of extreme short stature, is caused by the absence or dysfunction of the growth hormone receptor. A recurrent mutation in the GHR gene, p.E180, did not alter the encoded amino acid, but activated a cryptic splice acceptor resulting in a receptor protein with an 8-amino acid deletion in the extracellular domain. This mutation has been observed among Sephardic Jews and among individuals in Ecuador, Brazil and Chile, most notably in a large genetic isolate in Loja, Ecuador. A common origin has been postulated based on a shared genetic background of markers flanking this mutation, suggesting that the Lojanos (and others) may have Sephardic (Converso) Jewish ancestry. Analysis of the population structure of Lojanos based on genome-wide analysis demonstrated European, Sephardic Jewish and Native American ancestry in this group. X-autosomal comparison and monoallelic Y chromosomal and mitochondrial genetic analysis demonstrated gender-biased admixture between Native American women and European and Sephardic Jewish men. These findings are compatible with the co-occurrence of the Inquisition and the colonization of the Americas, including Converso Jews escaping the Inquisition in the Iberian Peninsula. Although not found among Lojanos, Converso Jews also brought founder mutations to contemporary Hispanic and Latino populations in the BRCA1 (c.68_69delAG) and BLM (c.2207_2212delATCTGAinsTAGATTC) genes. PMID:26277320

  15. Precision Measurement of the p ( e , e ' p ) π 0 Reaction at Threshold

    DOE PAGESBeta

    Chirapatpimol, K.; Shabestari, M.H.; Lindgren, R.A.; Smith, L.C.; Annand, J.R.M.; Higinbotham, D.W.; Moffit, B.; Nelyubin, V.; Norum, B.E.; Allada, K.; et al

    2015-05-13

    New results are reported from a measurement of π⁰ electroproduction near threshold using the p(e,e'p)π⁰ reaction. The experiment was designed to determine precisely the energy dependence of s- and p-wave electromagnetic multipoles as a stringent test of the predictions of chiral perturbation theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the Φ*π and θ*π angles in the pπ⁰ center of mass was obtained for invariant energies above threshold from 0.5 up to 15 MeV. The 4-momentum transfermore » Q² coverage ranges from 0.05 to 0.155 (GeV/c)² in fine steps. A simple phenomenological analysis of our data shows strong disagreement with p-wave predictions from ChPT for Q²>0.07 (GeV/c)², while the s-wave predictions are in reasonable agreement.« less

  16. Precision Measurement of the p(e,e^{'}p)π^{0} Reaction at Threshold.

    PubMed

    Chirapatpimol, K; Shabestari, M H; Lindgren, R A; Smith, L C; Annand, J R M; Higinbotham, D W; Moffit, B; Nelyubin, V; Norum, B E; Allada, K; Aniol, K; Ardashev, K; Armstrong, D S; Arndt, R A; Benmokhtar, F; Bernstein, A M; Bertozzi, W; Briscoe, W J; Bimbot, L; Camsonne, A; Chen, J-P; Choi, S; Chudakov, E; Cisbani, E; Cusanno, F; Dalton, M M; Dutta, C; Egiyan, K; Fernàndez-Ramìrez, C; Feuerbach, R; Fissum, K G; Frullani, S; Garibaldi, F; Gayou, O; Gilman, R; Gilad, S; Goity, J; Gomez, J; Hahn, B; Hamilton, D; Hansen, J-O; Huang, J; Igarashi, R; Ireland, D; de Jager, C W; Jin, X; Jiang, X; Jinasundera, T; Kellie, J; Keppel, C E; Kolb, N; LeRose, J; Liyanage, N; Livingston, K; McNulty, D; Mercado, L; Michaels, R; Mihovilovič, M; Qian, S; Qian, X; Mailyan, S; Mamyan, V; Marrone, S; Monaghan, P; Nanda, S; Perdrisat, C F; Piasetzky, E; Protopopescu, D; Punjabi, V; Qiang, Y; Rachek, I A; Rakhman, A; Riordan, S; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Širca, S; Sparveris, N; Subedi, R R; Suleiman, R; Strakovsky, I; Sulkosky, V; Moinelo, J; Voskanyan, H; Wang, K; Wang, Y; Watson, J; Watts, D; Wojtsekhowski, B; Workman, R L; Yao, H; Zhan, X; Zhang, Y

    2015-05-15

    New results are reported from a measurement of π^{0} electroproduction near threshold using the p(e,e^{'}p)π^{0} reaction. The experiment was designed to determine precisely the energy dependence of s- and p-wave electromagnetic multipoles as a stringent test of the predictions of chiral perturbation theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the ϕ_{π}^{*} and θ_{π}^{*} angles in the pπ^{0} center of mass was obtained for invariant energies above threshold from 0.5 up to 15 MeV. The 4-momentum transfer Q^{2} coverage ranges from 0.05 to 0.155 (GeV/c)^{2} in fine steps. A simple phenomenological analysis of our data shows strong disagreement with p-wave predictions from ChPT for Q^{2}>0.07 (GeV/c)^{2}, while the s-wave predictions are in reasonable agreement. PMID:26024167

  17. Precision Measurement of the p(e, ep) ?? Reaction at Threshold

    SciTech Connect

    Chirapatpimol, K.; Shabestari, M.H.; Lindgren, R. A.; Smith, L. C.; Annand, J. R. M.; Higinbotham, D. W.; Moffit, B.

    2015-05-01

    New results are reported from a measurement of $\\pi^0$ electroproduction near threshold using the p(e, ep) ?? reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the $\\phi^*_{\\pi}$ and $\\theta^*_{\\pi}$ angles in the $p \\pi^0$ center-of-mass was obtained for invariant energies above threshold from 0.5 MeV up to 15 MeV. The 4-momentum transfer $Q^2$ coverage ranges from 0.05 to 0.155 (GeV/c)$^2$ in fine steps. A simple phenomenological analysis of our data shows strong disagreement with $p-$wave predictions from ChPT for $Q^2>0.07$ (GeV/c)$^2$, while the $s-$wave predictions are in reasonable agreement.

  18. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  19. The Cinderella Loop Project

    NASA Astrophysics Data System (ADS)

    O'Connor, J.; Coyle, T.; Douglass, J.; Schmelz, J. T.

    2004-05-01

    On 1999 Nov 6 at 02:30 UT, a solar loop (dubbed Cinderella) on the northeast limb was simultaneously observed by TRACE, EIT on SOHO, and SXT on Yohkoh. This project investigates differences among the data sets from the three instruments. For example, EIT and TRACE have nearly identical temperature responses, but does the high resolution TRACE imager (0.5 arcsec pixels) produce results that match those from the lower resolution EIT imager (2.6 arcsec pixels)? Furthermore, EIT and SXT have similar spatial resolutions, but their temperature responses are much farther apart. Do these two instruments observe the same structures within the loop, and if so, how do their temperature and emissions measures compare? What are the effects of background subtraction on all three data sets? This presentation will address these questions. Solar physics research at the University of Memphis is supported by NASA grants NAG5-9783 and NAG5-12096.

  20. Closed-loop anesthesia.

    PubMed

    LE Guen, Morgan; Liu, Ngai; Chazot, Thierry; Fischler, Marc

    2016-05-01

    Automated anesthesia which may offer to the physician time to control hemodynamic and to supervise neurological outcome and which may offer to the patient safety and quality was until recently consider as a holy grail. But this field of research is now increasing in every component of general anesthesia (hypnosis, nociception, neuromuscular blockade) and literature describes some successful algorithms - single or multi closed-loop controller. The aim of these devices is to control a predefined target and to continuously titrate anesthetics whatever the patients' co morbidities and surgical events to reach this target. Literature contains many randomized trials comparing manual and automated anesthesia and shows feasibility and safety of this system. Automation could quickly concern other aspects of anesthesia as fluid management and this review proposes an overview of closed-loop systems in anesthesia. PMID:26554614

  1. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  2. Verification of Loop Diagnostics

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  3. Dilute oriented loop models

    NASA Astrophysics Data System (ADS)

    Vernier, Eric; Lykke Jacobsen, Jesper; Saleur, Hubert

    2016-02-01

    We study a model of dilute oriented loops on the square lattice, where each loop is compatible with a fixed, alternating orientation of the lattice edges. This implies that loop strands are not allowed to go straight at vertices, and results in an enhancement of the usual {{O}}(n) symmetry to {{U}}(n). The corresponding transfer matrix acts on a number of representations (standard modules) that grows exponentially with the system size. We derive their dimension and those of the centralizer by both combinatorial and algebraic techniques. A mapping onto a field theory permits us to identify the conformal field theory governing the critical range, n≤slant 1. We establish the phase diagram and the critical exponents of low-energy excitations. For generic n, there is a critical line in the universality class of the dilute {{O}}(2n) model, terminating in an {{SU}}(n+1) point. The case n = 1 maps onto the critical line of the six-vertex model, along which exponents vary continuously.

  4. Origin of Plate Tectonics by Grain-Damage: Hysteresis and Plate-Like States

    NASA Astrophysics Data System (ADS)

    Bercovici, D.

    2015-05-01

    Grain-damage theory provides a physical framework to explain the conditions for generating plate tectonics on rocky planets. I present new work exploring grain-damage hysteresis which predicts when plate-like states on planets can exist.

  5. Dynamics of ice stream temporal variability: Modes, scales, and hysteresis

    NASA Astrophysics Data System (ADS)

    Robel, A. A.; Degiuli, E.; Schoof, C.; Tziperman, E.

    2013-06-01

    Understanding the mechanisms governing temporal variability of ice stream flow remains one of the major barriers to developing accurate models of ice sheet dynamics and ice‒climate interactions. Here we analyze a simple model of ice stream hydrology coupled to ice flow dynamics and including drainage and basal cooling processes. Analytic and numerical results from this model indicate that there are two major modes of ice stream behavior: steady‒streaming and binge‒purge variability. The steady‒streaming mode arises from friction‒stabilized subglacial meltwater production, which may also activate and interact with subglacial drainage. The binge‒purge mode arises from a sufficiently cold environment sustaining successive cycles of thinning‒induced basal cooling and stagnation. Low prescribed temperature at the ice surface and weak geothermal heating typically lead to binge‒purge behavior, while warm ice surface temperature and strong geothermal heating will tend to produce steady‒streaming behavior. Model results indicate that modern Siple Coast ice streams reside in the binge‒purge parameter regime near a subcritical Hopf bifurcation to the steady‒streaming mode. Numerical experiments exhibit hysteresis in ice stream variability as the surface temperature is varied by several degrees. Our simple model simulates Heinrich event‒like variability in a hypothetical Hudson Strait ice stream including dynamically determined purge time scale, till freezing and basal cooling during the binge phase. These findings are an improvement on studies of both modern and paleo‒ice stream variability and provide a framework for interpreting complex ice flow models.

  6. Detangling extrinsic and intrinsic hysteresis for detecting dynamic switch of electric dipoles using graphene field-effect transistors on ferroelectric gates

    NASA Astrophysics Data System (ADS)

    Ma, Chunrui; Gong, Youpin; Lu, Rongtao; Brown, Emery; Ma, Beihai; Li, Jun; Wu, Judy

    2015-11-01

    A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.08Zr0.52Ti0.48O3 gates (GFET/PLZT-Gate) during a vacuum annealing process developed to systematically remove the polar molecules adsorbed on the GFET channel surface. This allows the extrinsic and intrinsic hysteresis on GFET/PLZT-gate devices to detangle and the detection of the dynamic switch of electric dipoles using GFETs, taking advantage of their high gating efficiency on ferroelectric gate. A model of the charge trapping and pinning mechanism is proposed to successfully explain the transition. In response to pulsed VBG trains of positive, negative, as well as alternating polarities, respectively, the source-drain current ID variation is instantaneous with the response amplitude following the ID-VBG loops measured by DC VBG with consideration of the remnant polarization after a given VBG pulse when the gate electric field exceeds the coercive field of the PLZT. A detection sensitivity of around 212 dipole per μm2 has been demonstrated at room temperature, suggesting the GFET/ferroelectric-gate devices provide a promising high-sensitivity scheme for uncooled detection of electrical dipole dynamic switch.A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.08Zr0.52Ti0.48O3 gates (GFET/PLZT-Gate) during a vacuum annealing process developed to systematically remove the polar molecules adsorbed on the GFET channel surface. This allows the extrinsic and intrinsic hysteresis on GFET/PLZT-gate devices to detangle and the detection of the dynamic switch of electric dipoles using GFETs, taking advantage of their high gating efficiency on ferroelectric gate. A model of the charge trapping and pinning mechanism is proposed to successfully explain the transition. In response to pulsed VBG trains of positive, negative, as well as alternating polarities, respectively, the source-drain current ID variation is instantaneous with the response amplitude following the ID-VBG loops measured by DC VBG with consideration of the remnant polarization after a given VBG pulse when the gate electric field exceeds the coercive field of the PLZT. A detection sensitivity of around 212 dipole per μm2 has been demonstrated at room temperature, suggesting the GFET/ferroelectric-gate devices provide a promising high-sensitivity scheme for uncooled detection of electrical dipole dynamic switch. Electronic supplementary information (ESI) available: Description of the dielectric constant and loss of the epitaxial 500 nm PLZT thin films; The current density as function of applied electric voltage measured on a PLZT thin film in parallel-plate capacitor geometry; Schematic diagrams for the electrical dipole alignment and switch in the different ranges of the applied electric field. See DOI: 10.1039/c5nr03491d

  7. Fuzzy control design of a magnetically actuated optical image stabilizer with hysteresis compensation

    NASA Astrophysics Data System (ADS)

    Tu, Tse-Yi; Chao, Paul C.-P.; Chiu, Chi-Wei; Wang, Chun-Chieh; Huang, Jeng-Shen

    2009-04-01

    A fuzzy controller (FC) is designed for a magnetically actuated optical image stabilizer (OIS) in order to suppress the vibrations caused by hand shakings and hysteresis. To this end, the dynamic model of the OIS with consideration of hysteresis is first established, along with assuming the hand-shaking vibration as sinusoidal excitations. It is clearly shown that with capability of continuing parameter tuning, the FC is superior to the conventional PID for vibration suppression.

  8. Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma

    NASA Astrophysics Data System (ADS)

    Kakati, H.; M. Borah, S.

    2015-12-01

    In order to make sufficient use of reactive cylindrical magnetron plasma for depositing compound thin films, it is necessary to characterize the hysteresis behavior of the discharge. Cylindrical magnetron plasmas with different targets namely titanium and aluminium are studied in an argon/oxygen and an argon/nitrogen gas environment respectively. The aluminium and titanium emission lines are observed at different flows of reactive gases. The emission intensity is found to decrease with the increase of the reactive gas flow rate. The hysteresis behavior of reactive cylindrical magnetron plasma is studied by determining the variation of discharge voltage with increasing and then reducing the flow rate of reactive gas, while keeping the discharge current constant at 100 mA. Distinct hysteresis is found to be formed for the aluminium target and reactive gas oxygen. For aluminium/nitrogen, titanium/oxygen and titanium/nitrogen, there is also an indication of the formation of hysteresis; however, the characteristics of variation from metallic to reactive mode are different in different cases. The hysteresis behaviors are different for aluminium and titanium targets with the oxygen and nitrogen reactive gases, signifying the difference in reactivity between them. The effects of the argon flow rate and magnetic field on the hysteresis are studied and explained. Project supported by the Department of Science and Technology, Government of India and Council of Scientific and Industrial Research, India.

  9. Effect of hysteresis on the stability of an embankment under transient seepage

    NASA Astrophysics Data System (ADS)

    Liu, K.; Vardon, P. J.; Arnold, P.; Hicks, M. A.

    2015-09-01

    Hysteresis is a well-known phenomenon that exists in the soil water retention behaviour of unsaturated soils. However, there is little research on the effects of hysteresis on slope stability. If included in slope stability analyses, commonly the suction in the unsaturated zone is taken as non-hysteretic. In this paper, the authors investigate the effect of hysteresis on the stability of an embankment under transient seepage. A scenario of water level fluctuation has been assessed, in which a cyclic external water level fluctuates between a low and high level. It was found that the factor of safety (FOS), the volumetric water content and the suction in the unsaturated zone are significantly affected by hysteresis. It was also found that, when the period of water level fluctuation in one cycle is relatively small, there is little difference in the FOS between the hysteretic case and non-hysteretic case. However, when the period exceeds a certain threshold value, significant differences between these two cases can be observed. Compared to the case in which hysteresis is considered, the FOS is higher in the case which does not consider hysteresis. This suggests that the non-hysteretic case may overestimate slope stability, leading to a potentially dangerous situation. Moreover, the period under which there emerge large differences between the hysteretic and non-hysteretic case is strongly related to the magnitude of hydraulic conductivity and the period of the cyclic water level fluctuation.

  10. Adaptive Neural Network Dynamic Surface Control for a Class of Time-Delay Nonlinear Systems With Hysteresis Inputs and Dynamic Uncertainties.

    PubMed

    Zhang, Xiuyu; Su, Chun-Yi; Lin, Yan; Ma, Lianwei; Wang, Jianguo

    2015-11-01

    In this paper, an adaptive neural network (NN) dynamic surface control is proposed for a class of time-delay nonlinear systems with dynamic uncertainties and unknown hysteresis. The main advantages of the developed scheme are: 1) NNs are utilized to approximately describe nonlinearities and unknown dynamics of the nonlinear time-delay systems, making it possible to deal with unknown nonlinear uncertain systems and pursue the L∞ performance of the tracking error; 2) using the finite covering lemma together with the NNs approximators, the Krasovskii function is abandoned, which paves the way for obtaining the L∞ performance of the tracking error; 3) by introducing an initializing technique, the L∞ performance of the tracking error can be achieved; 4) using a generalized Prandtl-Ishlinskii (PI) model, the limitation of the traditional PI hysteresis model is overcome; and 5) by applying the Young's inequalities to deal with the weight vector of the NNs, the updated laws are needed only at the last controller design step with only two parameters being estimated, which reduces the computational burden. It is proved that the proposed scheme can guarantee semiglobal stability of the closed-loop system and achieves the L∞ performance of the tracking error. Simulation results for general second-order time-delay nonlinear systems and the tuning metal cutting system are presented to demonstrate the efficiency of the proposed method. PMID:25700473

  11. Closing the loop.

    PubMed

    Dassau, E; Atlas, E; Phillip, M

    2011-02-01

    Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging results are proof that we are on the right track. We attempted to select recent publications that will present these current achievements in the quest for the artificial pancreas and that will inspire others to continue to progress this field of research. PMID:21323809

  12. Optical parametric loop mirror

    NASA Astrophysics Data System (ADS)

    Mori, K.; Morioka, T.; Saruwatari, M.

    1995-06-01

    A novel configuration for four-wave mixing (FWM) is proposed that offers the remarkable feature of inherently separating the FWM wave from the input pump and signal waves and suppressing their background amplified stimulated emission without optical filtering. In the proposed configuration, an optical parametric loop mirror, two counterpropagating FWM waves generated in a Sagnac interferometer interfere with a relative phase difference that is introduced deliberately. FWM frequency-conversion experiments in a polarization-maintaining fiber achieved more than 35 dB of input-wave suppression against the FWM wave.

  13. Hysteresis and Temporal Scales of Ice Stream Variability

    NASA Astrophysics Data System (ADS)

    Robel, A.; DeGiuli, E.; Schoof, C.; Tziperman, E.

    2012-12-01

    Understanding the mechanisms governing temporal variability of ice stream flow remains one of the major barriers to developing accurate models of ice sheet dynamics and ice-climate interactions. Previous efforts considered the effects of heating at the bed and consequent basal melting on ice stream dynamics, as well as the effect of a dynamic drainage system on ice flow. We consider the effects of both basal heating and dynamic drainage on ice stream flow for the first time, and model ice dynamics, melt water production and drainage evolution. We determine which processes contribute to ice stream variability and the physical controls on the temporal scales of ice stream stagnation and activation. Our tools of choice are both simple and intermediate complexity models of subglacial processes and simple ice dynamics. Analytic and numerical results from the simple model indicate that there are two major modes of ice stream behavior: steady-streaming and binge-purge-like variability. The steady-streaming mode arises either from drainage- or friction-mediated subglacial meltwater production. The binge-purge mode arises from a sufficiently cold environment sustaining successive cycles of thinning-induced basal cooling and stagnation. We characterize both the parameter regimes that produce each of the modes as well as the period of ice stream variability. Modern Siple Coast ice streams are found to reside in the binge-purge parameter regime near a transition to the steady-streaming mode. Changing the prescribed atmospheric temperature can lead to a transition between these modes through a subcritical Hopf bifurcation. The properties of this type of bifurcation and our numerical experiments indicate that this may lead to significant hysteresis in ice stream variability as the surface temperature is varied. Upon atmospheric warming, modern Siple Coast ice streams would transition from binge-purge behavior to steady-streaming at a very different temperature than the reverse transition during a cooling. We will discuss the implications of these findings for our understanding of ice streams, ice sheet modeling and various paleoclimatic phenomena.

  14. Climate Hysteresis for Planets Orbiting Stars of Different Spectral Type

    NASA Astrophysics Data System (ADS)

    Shields, Aomawa; Meadows, V.; Bitz, C.; Pierrehumbert, R.; Joshi, M.; Robinson, T.; Planetary Laboratory, Virtual

    2013-10-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. We have explored this effect with a hierarchy of models. Results from both one-dimensional (1-D) radiative transfer and energy balance models and a three-dimensional (3-D) general circulation model indicate that terrestrial planets orbiting stars with higher near-UV radiation exhibit a stronger ice-albedo feedback. We found that ice extent is much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G- or M-dwarf star at an equivalent flux distance, assuming fixed CO2 (present atmospheric level on Earth). The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone for main-sequence stars, where the maintenance of surface liquid water requires high atmospheric CO2 concentrations. We show that ˜3-10 bar of CO2 will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO2 is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars. Both entrance into and exit out of a snowball state are sensitive to host star spectral energy distribution. Our simulations indicate a smaller climate hysteresis on M-dwarf planets, as measured by the range of instellation that permits multiple stable ice line latitudes. While M-dwarf planets appear less susceptible to snowball episodes than G- or F-dwarf planets over the course of their evolution, any snowball planets that are found orbiting M-dwarf stars may more easily melt out of these states as stellar luminosity increases over time. This effect is due to the lower-albedo ice on M-dwarf planets which, compounded with near-IR absorption by atmospheric gases, reduces the amount of increased stellar insolation, or “instellation”, necessary to melt these planets out of a snowball state.

  15. Coupled dual loop absorption heat pump

    DOEpatents

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  16. Application of the Preisach and Jiles{endash}Atherton models to the simulation of hysteresis in soft magnetic alloys

    SciTech Connect

    Pasquale, M.; Bertotti, G.; Jiles, D.C.; Bi, Y.

    1999-04-01

    This article describes the advances in unification of model descriptions of hysteresis in magnetic materials and demonstrates the equivalence of two widely accepted models, the Preisach (PM) and Jiles{endash}Atherton (JA) models. Recently it was shown that starting from general energy relations, the JA equation for a loop branch can be derived from PM. The unified approach is here applied to the interpretation of magnetization measured in nonoriented Si{endash}Fe steels with variable grain size {l_angle}s{r_angle}, and also in as-cast and annealed Fe amorphous alloys. In the case of NO Fe{endash}Si, the modeling parameter {ital k} defined by the volume density of pinning centers is such that k{approx}A+B/{l_angle}s{r_angle}, where the parameters {ital A} and {ital B} are related to magnetocrystalline anisotropy and grain texture. The value of {ital k} in the amorphous alloys can be used to estimate the microstructural correlation length playing the role of effective grain size in these materials. {copyright} {ital 1999 American Institute of Physics.}

  17. Entropy hysteresis and nonequilibrium thermodynamic efficiency of ion conduction in a voltage-gated potassium ion channel

    NASA Astrophysics Data System (ADS)

    Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2012-12-01

    Here we have studied the nonequilibrium thermodynamic response of a voltage-gated Shaker potassium ion channel using a stochastic master equation. For a constant external voltage, the system reaches equilibrium indicated by the vanishing total entropy production rate, whereas for oscillating voltage the current and entropy production rates show dynamic hysteretic behavior. Here we have shown quantitatively that although the hysteresis loop area vanishes in low and high frequency domains of the external voltage, they are thermodynamically distinguishable. In the very low frequency domain, the system remains close to equilibrium, whereas at high frequencies it goes to a nonequilibrium steady state (NESS) associated with a finite value of dissipation function. At NESS, the efficiency of the ion conduction can also be related with the nonlinear dependence of the dissipation function on the power of the external field. Another intriguing aspect is that, at the high frequency limit, the total entropy production rate oscillates at NESS with half of the time period of the external voltage.

  18. Magnetostriction and effect of stress on hysteresis and anhysteretic magnetization of multilayered FeNi-Fe heterostructures

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Garrity, Ed

    2007-03-01

    We report on the low-field magnetic properties of thin film FeNi-Fe multilayered samples under tensile stress. Anhysterretic magnetization as a function of stresses was measured using a conventional vibrating sample magnetometer combined with a specially designed loading fixture providing controlled uniaxial stresses. Stresses are deduced from the characteristic resonant frequency of the sample in the fixture. Anhysteretic permeability was extracted from the anhysteretic B-H curves constructed by degaussing the sample at given longitudinal dc field. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops were measured. The large positive magnetostriction of FeNi layer is found to compensate negative magnetostiction of the Fe layer. This leads to higher susceptibility and lower coercivity for low tensile stress. The drop in coercivity was particularly sensitive to film stress/strain. Larger stresses result in plastic strain of the sample which induces an increase in dislocation density and subsequently domain wall pinning. This causes an increase in coercivity and decrease in anhysteretic permeability at the highest stresses. The paper summarizes these effects.

  19. Peak effect on magnetic hysteresis in oxygen-overdoped single crystals of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}}

    SciTech Connect

    Xu, M.; Li, T.W.; Hinks, D.G.; Crabtree, G.W.; Jaeger, H.M.; Aoki, H.

    1999-06-01

    Magnetic hysteresis loops in single crystals of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} for H{parallel}c have been investigated in order to study the peak effect or {open_quotes}fishtail{close_quotes} feature. The peak effect was observed in a series of oxygen-overdoped crystals covering a wide range in T{sub c}. The peak fields H{sub pk} show scaling behavior with reduced temperature T/T{sub c}, and the normalized slope (T{sub c}/H{sub pk}) (dH{sub pk}/dT) is found to assume a nearly constant value for all investigated overdoped Tl-2201 crystals. This suggests that the underlying mechanism for the origin of the peak effect is independent of oxygen defect concentration. {copyright} {ital 1999} {ital The American Physical Society}

  20. Peak effect on magnetic hysteresis in oxygen-overdoped single crystals of T1{sub 2}Ba{sub 2}CuO{sub 6+delta}.

    SciTech Connect

    Xu, M.; Li, T. W.; Hinks, D. G.; Crabtree, G. W.; Jaeger, H. M.; Aoki, H.; Materials Science Division; Univ. of Chicago; National Research Inst. for Metals

    1999-06-01

    Magnetic hysteresis loops in single crystals of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}}for H{parallel}c have been investigated in order to study the peak effect or 'fishtail' feature. The peak effect was observed in a series of oxygen-overdoped crystals covering a wide range in T{sub c}. The peak fields H{sub pk} show scaling behavior with reduced temperature T/T{sub c}, and the normalized slope (T{sub c}/H{sub pk}) (dH{sub pk}/dT) is found to assume a nearly constant value for all investigated overdoped Tl-2201 crystals. This suggests that the underlying mechanism for the origin of the peak effect is independent of oxygen defect concentration.

  1. Ekpyrotic loop quantum cosmology

    SciTech Connect

    Wilson-Ewing, Edward

    2013-08-01

    We consider the ekpyrotic paradigm in the context of loop quantum cosmology. In loop quantum cosmology the classical big-bang singularity is resolved due to quantum gravity effects, and so the contracting ekpyrotic branch of the universe and its later expanding phase are connected by a smooth bounce. Thus, it is possible to explicitly determine the evolution of scalar perturbations, from the contracting ekpyrotic phase through the bounce and to the post-bounce expanding epoch. The possibilities of having either one or two scalar fields have been suggested for the ekpyrotic universe, and both cases will be considered here. In the case of a single scalar field, the constant mode of the curvature perturbations after the bounce is found to have a blue spectrum. On the other hand, for the two scalar field ekpyrotic model where scale-invariant entropy perturbations source additional terms in the curvature perturbations, the power spectrum in the post-bounce expanding cosmology is shown to be nearly scale-invariant and so agrees with observations.

  2. Accelerating the loop expansion

    SciTech Connect

    Ingermanson, R.

    1986-07-29

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi/sup 4/ theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs.

  3. Migration of a coarse fluvial sediment pulse detected by hysteresis in bedload generated seismic waves

    NASA Astrophysics Data System (ADS)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Cook, K. L.; Stark, C. P.; Wang, H. W.

    2014-10-01

    Seismic signals near rivers are partially composed of the elastic waves generated by bedload particles impacting the river bed. In this study, we explore the relationship between this seismic signal and river bedload transport by analyzing high-frequency broadband seismic data from multiple stations along the Chijiawan River in northern Taiwan following the removal of a 13 m check dam. This dam removal provides a natural experiment in which rapid and predictable changes in the river's profile occur, which in turn enables independent constraints on spatial and temporal variation in bedload sediment transport. We compare floods of similar magnitudes with and without bedload transport, and find that the amplitude of seismic shaking produced at a given river stage changes over the course of a single storm when bedload transport is active. Hysteresis in the relationship between bedload transport and river stage is a well-documented phenomenon with multiple known causes. Consequently, previous studies have suggested that hysteresis observed in the seismic amplitude-stage response is the signature of bedload transport. Field evidence and stream profile evolution in this study corroborate that interpretation. We develop a metric (Ψ) for the normalized magnitude of seismic hysteresis during individual floods. This metric appears to scale qualitatively with total bedload transport at each seismic station, indicating a dominance of transport on the rising limbs of both storms. We speculate that hysteresis at this site arises from time-dependent evolution of the bed, for example due to grain packing, mobile armoring, or the temporal lag between stage and bedform growth. Ψ reveals along-stream variations in hysteresis for each storm, with a peak in hysteresis further downstream for the second event. The pattern is consistent with a migrating sediment pulse that is a predicted consequence of the dam removal. Our results indicate that hysteresis in the relationship between seismic wave amplitude and river stage may track sediment transport.

  4. Power laws in the dynamic hysteresis of quantum nonlinear photonic resonators

    NASA Astrophysics Data System (ADS)

    Casteels, W.; Storme, F.; Le Boité, A.; Ciuti, C.

    2016-03-01

    We explore theoretically the physics of dynamic hysteresis for driven-dissipative nonlinear photonic resonators. In the regime where the semiclassical mean-field theory predicts bistability, the exact steady-state density matrix is known to be unique, being a statistical mixture of two states; in particular, no static hysteresis cycle of the excited population occurs as a function of the driving intensity. Here, we predict that in the quantum regime a dynamic hysteresis with a rich phenomenology does appear when sweeping the driving amplitude in a finite time. The hysteresis area as a function of the sweep time reveals a double power-law decay, with a behavior qualitatively different from the mean-field predictions. The dynamic hysteresis power-law in the slow sweep limit defines a characteristic time, which depends dramatically on the size of the nonlinearity and on the frequency detuning between the driving and the resonator. In the strong nonlinearity regime, the characteristic time oscillates as a function of the intrinsic system parameters due to multiphotonic resonances. We show that the dynamic hysteresis for the considered class of driven-dissipative systems is due to a nonadiabatic response region with connections to the Kibble-Zurek mechanism for quenched phase transitions. We also consider the case of two coupled driven-dissipative nonlinear resonators, showing that dynamic hysteresis and power-law behavior occur also in the presence of correlations between resonators. Our theoretical predictions can be explored in a broad variety of physical systems, e.g., circuit QED superconducting resonators and semiconductor optical microcavities.

  5. O.P.E.R.A.: A First Letter Mnemonic and Rubric for Conceptualising and Implementing Service Learning

    ERIC Educational Resources Information Center

    Welch, Marshall

    2010-01-01

    This article presents a rubric to help instructors conceptualize, implement, and assess service-learning courses. Using a first-letter mnemonic of O.P.E.R.A., the rubric incorporates principles of best practice to provide a framework for enumerating objectives (O), exploring community partnerships (P), identifying the type of service learning…

  6. Krypton 81m ventilation/perfusion ratios (V/Q) measured in lateral decubitus in pulmonary embolism (P. E. )

    SciTech Connect

    Meignan, M.; Cinotti, L.; Harf, A.; Oliveira, L.; Simonneau, G.

    1984-01-01

    In normal subjects lateral decubitis induces in both independent (lower) and nondependent lung (upper), major changes in perfusion, ventilation and V/Q ratios which can be studied with the short life radioisotope Krypton 81m. Regional V/Q are computed from ventilation and perfusion scans, successively obtained with a gamma camera linked to a computer by continuous inhalation or infusion of this gas during tidal breathing. They were displayed as a color coded functional image. To assess the effect of posture on V/Q in P.E. and other diseases which decrease the regional perfusion, 32 patients with unilateral lung diseases were studied in supine posture and both lateral decubitis: 8 with proved P.E., (3 out of them having radiological opacity matching the perfusion defect), 9 with bullous emphysema, 6 with bronchogenic carcinoma, 9 with acute bacterial pneumonia. V/Q were computed in the region of the perfusion defect. In P.E. the mean V/Q was high (1.92 +- 0.6 SD), and did not change whatever the posture. Conversely major changes of V/Q were induced with postural changes in bullous emphysema and lung carcinoma whatever the V/Q in patient supine. In pneumonia low V/Q were observed in supine posture (.73 +- .2). They decreased significantly when the pneumonia was dependent (.53 +- .2 p < 0.02) and increased in the controlateral decubitis (1.07 +- .3, p < 0.001). Since posture has no or little effect on regional V/Q in P.E., it can be used to discriminate P.E., even in the case of radiological opacity, from other unilateral disease inducing perfusion defect.

  7. The double loop mattress suture

    PubMed Central

    Biddlestone, John; Samuel, Madan; Creagh, Terry; Ahmad, Tariq

    2014-01-01

    An interrupted stitch type with favorable tissue characteristics will reduce local wound complications. We describe a novel high-strength, low-tension repair for the interrupted closure of skin, cartilage, and muscle, the double loop mattress stitch, and compare it experimentally with other interrupted closure methods. The performance of the double loop mattress technique in porcine cartilage and skeletal muscle is compared with the simple, mattress, and loop mattress interrupted sutures in both a novel porcine loading chamber and mechanical model. Wound apposition is assessed by electron microscopy. The performance of the double loop mattress in vivo was confirmed using a series of 805 pediatric laparotomies/laparoscopies. The double loop mattress suture is 3.5 times stronger than the loop mattress in muscle and 1.6 times stronger in cartilage (p ≤ 0.001). Additionally, the double loop mattress reduces tissue tension by 66% compared with just 53% for the loop mattress (p ≤ 0.001). Wound gapping is equal, and wound eversion appears significantly improved (p ≤ 0.001) compared with the loop mattress in vitro. In vivo, the double loop mattress performs as well as the loop mattress and significantly better than the mattress stitch in assessments of wound eversion and dehiscence. There were no episodes of stitch extrusion in our series of patients. The mechanical advantage of its intrinsic pulley arrangement gives the double loop mattress its favorable properties. Wound dehiscence is reduced because this stitch type is stronger and exerts less tension on the tissue than the mattress stitch. We advocate the use of this novel stitch wherever a high-strength, low-tension repair is required. These properties will enhance wound repair, and its application will be useful to surgeons of all disciplines. PMID:24698436

  8. The Role of Dynamic Storage in the Response to Snowmelt Conditions in the Southwestern United States: Flux Hysteresis at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Driscoll, J. M.; Meixner, T.; Ferré, T. P. A.; Williams, M. W.; Sickman, J. O.; Molotch, N. P.; Jepsen, S. M.

    2014-12-01

    The role of dynamic storage in catchment discharge response to earlier snowmelt timing has not been fully quantified. Green Lake 4 (GL4) and Emerald Lake Watershed (ELW) have similar high-elevation settings but GL4 has greater estimated storage capacity relative to ELW due to differences in physical structure. Daily catchment area-normalized input (modelled snowmelt estimates) and output (measured discharge) in conjunction with mineral weathering products (hydrochemical data) for eleven snowmelt seasons from GL4 (more storage) and ELW (less storage) were used to determine the role of dynamic storage at the catchment scale. Daily fluxes generally show snowmelt is greater than discharge initially, changing mid-season to discharge being greater than snowmelt, creating a counter-clockwise hysteresis loop for each snowmelt season. This hysteresis loop can be approximated with a least-squares fitted ellipse. The properties of fitted ellipses were used to quantify catchment response, which were then compared between catchments with different storage capacities (GL4 and ELW). The eccentricity of the fitted ellipses can be used to quantify delay between snowmelt and discharge due to connection to subsurface storage; narrower loops show minimal storage delay whereas wider loops show greater storage delay. Variability of mineral weathering products shows changes in contribution from stored water over the snowmelt season. Both catchments show a moderate linear correlation between fitted ellipse area and total snowmelt volume (GL4 R2=0.516, ELW R2=0.614). Ellipse eccentricity is more consistent among years in ELW (range=0.81-0.94) than in GL4 (range=0.54-0.95), indicating a more consistent hydrologic structure and connectivity to shallow storage at ELW. The linear correlation between seasonal eccentricity versus snowmelt timing is stronger in ELW than GL4 (R2=0.741 and 0.223, respectively). ELW shows hydrochemical response independent of snowmelt timing, whereas GL4 shows more variability. The larger storage capacity of GL4 allows for a greater range of physical and chemical response to input conditions. The limited storage capacity of ELW shows greater vulnerability of physical response to changes in snowmelt conditions, though chemical response remains constant regardless of snowmelt conditions.

  9. Unstable anisotropic loop quantum cosmology

    SciTech Connect

    Nelson, William; Sakellariadou, Mairi

    2009-09-15

    We study stability conditions of the full Hamiltonian constraint equation describing the quantum dynamics of the diagonal Bianchi I model in the context of loop quantum cosmology. Our analysis has shown robust evidence of an instability in the explicit implementation of the difference equation, implying important consequences for the correspondence between the full loop quantum gravity theory and loop quantum cosmology. As a result, one may question the choice of the quantization approach, the model of lattice refinement, and/or the role of the ambiguity parameters; all these should, in principle, be dictated by the full loop quantum gravity theory.

  10. Heating Profiles of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Plowman, Joseph; Kankelborg, Charles C.; Martens, Petrus C.

    2016-05-01

    We analyze the temperature and density profiles of coronal loops, as a function of their length, using data from SDO/AIA and Hinode/EIS. The analysis considers the location of the heating along the loop's length, and we conduct a more throrough investigation of our previous preliminary result that heating is concentrated near the loop footpoints. The work now features a larger selection of coronal loops, compared to our previous presentations, and examines their scale-height temperatures to ascertain the extent to which they are hydrostatic.

  11. Hall resistance hysteresis in AlGaN/GaN 2DEG

    NASA Astrophysics Data System (ADS)

    Tsubaki, K.; Maeda, N.; Saitoh, T.; Kobayashi, N.

    2004-03-01

    The Hall resistance of AlGaN/GaN two-dimensional electron gas (2DEG) at low temperatures was measured. The AlGaN/GaN heterostructures were grown by low-pressure metal-organic chemical vapor phase epitaxy on (0 0 0 1) SiC substrate. The electron mobility and electron concentration at 4.2 K are 9540 cm2/ V s and 6.6×10 12 cm-2, respectively. When the temperature is lower than 4.5 K the hysteresis of Hall resistance is observed near zero magnetic field. The hysteresis of Hall resistance increases with decreasing temperature. At temperatures higher than 4.5 K, the hysteresis of Hall resistance disappears. From the analysis of the residual Hall resistance dependence on the temperature, the Curie temperature of the Hall resistance hysteresis is calculated to be 4.4 K. In general, the hysteresis implies the possibility of ferromagnetism, but the conformation of the ferromagnetism of AlGaN/GaN heterostructure is still difficult and the detailed physical mechanism is still unclear.

  12. Numerical and experimental comparison of electromechanical properties and efficiency of HTS and ferromagnetic hysteresis motors

    NASA Astrophysics Data System (ADS)

    Inácio, D.; Inácio, S.; Pina, J.; Gonçalves, A.; Ventim Neves, M.; Leão Rodrigues, A.

    2008-02-01

    Hysteresis motors are very attractive in a wide range of fractional power applications, due to its torque-speed characteristics and simplicity of construction. This motor's performance is expected to improve when HTS rotors are used, and in fact, hysteresis motors have shown to be probably the most viable electrical machines using HTS materials. While these motors, either conventional or HTS, are both hysteresis motors, they base their operation on different physical phenomena: hysteretic behaviour in conventional ferromagnetic materials is due to the material's non-linear magnetic properties, while in HTS materials the hysteresis has an ohmic nature and is related with vortices' dynamics. In this paper, theoretical aspects of both conventional and HTS hysteresis motors are discussed, its operation principles are highlighted, and the characteristics of both motors are presented. The characteristics, obtained both by experimental tests and numerical simulation (made with commercial software), are compared, in order to evaluate not only the motor's electromechanical performances but also the overall systems efficiency, including cryogenics for the HTS device.

  13. Conjugation of type I antifreeze protein to polyallylamine increases thermal hysteresis activity.

    PubMed

    Can, Ozge; Holland, Nolan B

    2011-10-19

    Antifreeze proteins (AFPs) are ice binding proteins found in some plants, insects, and Antarctic fish allowing them to survive at subzero temperatures by inhibiting ice crystal growth. The interaction of AFPs with ice crystals results in a difference between the freezing and melting temperatures, termed thermal hysteresis, which is the most common measure of AFP activity. Creating antifreeze protein constructs that reduce the concentration of protein needed to observe thermal hysteresis activities would be beneficial for diverse applications including cold storage of cells or tissues, ice slurries used in refrigeration systems, and food storage. We demonstrate that conjugating multiple type I AFPs to a polyallylamine chain increases thermal hysteresis activity compared to the original protein. The reaction product is approximately twice as active when compared to the same concentration of free proteins, yielding 0.5 °C thermal hysteresis activity at 0.3 mM protein concentration. More impressively, the amount of protein required to achieve a thermal hysteresis of 0.3 °C is about 100 times lower when conjugated to the polymer (3 μM) compared to free protein (300 μM). Ice crystal morphologies observed in the presence of the reaction product are comparable to those of the protein used in the conjugation reaction. PMID:21905742

  14. Vortex loops and Majoranas

    SciTech Connect

    Chesi, Stefano; CEMS, RIKEN, Wako, Saitama 351-0198 ; Jaffe, Arthur; Department of Physics, University of Basel, Basel; Institute for Theoretical Physics, ETH Zürich, Zürich ; Loss, Daniel; Department of Physics, University of Basel, Basel ; Pedrocchi, Fabio L.

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  15. Dynamic PID loop control

    SciTech Connect

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  16. Pulse thermal loop

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M. (Inventor)

    2002-01-01

    A pulse thermal loop heat transfer system includes a means to use pressure rises in a pair of evaporators to circulate a heat transfer fluid. The system includes one or more valves that iteratively, alternately couple the outlets the evaporators to the condenser. While flow proceeds from one of the evaporators to the condenser, heating creates a pressure rise in the other evaporator, which has its outlet blocked to prevent fluid from exiting the other evaporator. When the flow path is reconfigured to allow flow from the other evaporator to the condenser, the pressure in the other evaporator is used to circulate a pulse of fluid through the system. The reconfiguring of the flow path, by actuating or otherwise changing the configuration of the one or more valves, may be triggered when a predetermined pressure difference between the evaporators is reached.

  17. Extension of the stability of motions in a combustion chamber by non- linear active control based on hysteresis

    SciTech Connect

    Knoop, P.; Culick, F.E.C.; Zukoski, E.E.

    1996-07-01

    This report presents the first quantitative data establishing the details of hysteresis whose existence in dynamical behavior was reported by Sterling and Zukoski. The new idea was demonstrated that the presence of dynamical hysteresis provides opportunity for a novel strategy of active nonlinear control of unsteady motions in combustors. A figure shows the hysteresis exhibited for the amplitude of pressure oscillations as a function of equivalence ratio in a combustor having a recirculation zone, in this case a dump combustor.

  18. Loop-the-Loop: Bringing Theory into Practice

    ERIC Educational Resources Information Center

    Suwonjandee, N.; Asavapibhop, B.

    2012-01-01

    During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…

  19. Loop-the-Loop: Bringing Theory into Practice

    ERIC Educational Resources Information Center

    Suwonjandee, N.; Asavapibhop, B.

    2012-01-01

    During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,

  20. Uranyl Nitrate Flow Loop

    SciTech Connect

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by the U.S. Department of Energy (DOE) NA-241, Office of Dismantlement and Transparency.

  1. A MECHANISM FOR HYSTERESIS IN BLACK HOLE BINARY STATE TRANSITIONS

    SciTech Connect

    Begelman, Mitchell C.; Armitage, Philip J.

    2014-02-20

    We suggest that the hysteretic cycle of black hole state transitions arises from two established properties of accretion disks: the increase in turbulent stress in disks threaded by a net magnetic field and the ability of thick (but not thin) disks to advect such a field radially. During quiescence, magnetic field loops are generated by the magnetorotational instability at the interface between the inner hot flow and outer thin disk. Vertical flux is advected into and accumulates stochastically within the inner flow, where it stimulates the turbulence so that α ∼ 1. The transition to a geometrically thin inner disk occurs when L ∼ α{sup 2} L {sub Edd} ∼ L {sub Edd}, and the first ''thin'' disk to form is itself moderately thick, strongly magnetized, and able to advect field inward. These properties favor episodic jet production. As the accretion rate declines magnetic flux escapes, α decreases to α ∼ 0.01-0.1, and a hot inner flow is not re-established until L << L {sub Edd}. We discuss possible observational consequences of our scenario.

  2. Conditions necessary for capillary hysteresis in porous media: Tests of grain-size and surface tension influences

    SciTech Connect

    Tokunaga, Tetsu K.; Olson, Keith R.; Wan, Jiamin

    2004-03-12

    Hysteresis in the relation between water saturation and matric potential is generally regarded as a basic aspect of unsaturated porous media. However, the nature of an upper length scale limit for saturation hysteresis has not been previously addressed. Since hysteresis depends on whether or not capillary rise occurs at the grain scale, this criterion was used to predict required combinations of grain size, surface tension, fluid-fluid density differences, and acceleration in monodisperse systems. The Haines number (Ha), composed of the aforementioned variables, is proposed as a dimensionless number useful for separating hysteretic (Ha < 15) versus nonhysteretic (Ha > 15) behavior. Vanishing of hysteresis was predicted to occur for grain sizes greater than 10.4 +- 0.5 mm, for water-air systems under the acceleration of ordinary gravity, based on Miller-Miller scaling and Haines' original model for hysteresis. Disappearance of hysteresis was tested through measurements of drainage and wetting curves of sands and gravels and occurs between grain sizes of 10 and 14 mm (standard conditions). The influence of surface tension was tested through measurements of moisture retention in 7 mm gravel, without and with a surfactant (sodium dodecylbenzenesulfonate (SDBS)). The ordinary water system (Ha = 7) exhibited hysteresis, while the SDBS system (Ha = 18) did not. The experiments completed in this study indicate that hysteresis in moisture retention relations has an upper limit at Ha = 16 +- 2 and show that hysteresis is not a fundamental feature of unsaturated porous media.

  3. Hysteresis in single-layer MoS2 field effect transistors.

    PubMed

    Late, Dattatray J; Liu, Bin; Matte, H S S Ramakrishna; Dravid, Vinayak P; Rao, C N R

    2012-06-26

    Field effect transistors using ultrathin molybdenum disulfide (MoS(2)) have recently been experimentally demonstrated, which show promising potential for advanced electronics. However, large variations like hysteresis, presumably due to extrinsic/environmental effects, are often observed in MoS(2) devices measured under ambient environment. Here, we report the origin of their hysteretic and transient behaviors and suggest that hysteresis of MoS(2) field effect transistors is largely due to absorption of moisture on the surface and intensified by high photosensitivity of MoS(2). Uniform encapsulation of MoS(2) transistor structures with silicon nitride grown by plasma-enhanced chemical vapor deposition is effective in minimizing the hysteresis, while the device mobility is improved by over 1 order of magnitude. PMID:22577885

  4. Incorporation of the capillary hysteresis model HYSTR into the numerical code TOUGH

    SciTech Connect

    Niemi, A.; Bodvarsson, G.S.; Pruess, K.

    1991-11-01

    As part of the work performed to model flow in the unsaturated zone at Yucca Mountain Nevada, a capillary hysteresis model has been developed. The computer program HYSTR has been developed to compute the hysteretic capillary pressure -- liquid saturation relationship through interpolation of tabulated data. The code can be easily incorporated into any numerical unsaturated flow simulator. A complete description of HYSTR, including a brief summary of the previous hysteresis literature, detailed description of the program, and instructions for its incorporation into a numerical simulator are given in the HYSTR user`s manual (Niemi and Bodvarsson, 1991a). This report describes the incorporation of HYSTR into the numerical code TOUGH (Transport of Unsaturated Groundwater and Heat; Pruess, 1986). The changes made and procedures for the use of TOUGH for hysteresis modeling are documented.

  5. Anomalous optical switching and thermal hysteresis behaviors of VO2 films on glass substrate

    NASA Astrophysics Data System (ADS)

    Li, Jian; Dho, Joonghoe

    2011-12-01

    In order to study the optical switching of vanadium dioxide (VO2) and its thermal hysteresis behavior, we fabricated VO2 films on glass substrates at various oxygen pressures. Only the VO2 films made at 5-10 mTorr displayed x-ray diffraction peaks and metal-insulator transition. Upon heating and cooling, remarkably, these samples exhibited significant optical switching behaviors with a clockwise thermal hysteresis in the infrared range of >850 nm or with a counterclockwise thermal hysteresis in the near visible range of 650-850 nm. The temperature dependence of optical absorption was explained by the O2p-V3d splitting depending on the structural transition of VO2.

  6. A high-performance angular speed measurement method based on adaptive hysteresis switching techniques

    NASA Astrophysics Data System (ADS)

    Huang, Haiming; Chou, Wusheng; Zhang, Zuojiang

    2015-12-01

    The high-performance measurement of angular speed (AS) is an essential requirement for achieving the high accuracy of machine control and monitoring. This paper proposes a new adaptive AS measurement system, which minimizes AS errors and fluctuations from conventional AS methods in a wide range of AS measurement. Unlike the conventional switches used previously, the system is composed of two layers of hysteresis switches, hereinafter referred to as the inner and outer hysteresis switch, respectively, to count pulses from an optical encoder adaptively. To highlight the key techniques used, the system is named as a hysteresis switch-based adaptation AS measurement (HS-AASM). The proposed method is designed and implemented based on a cost-effective TMS320F28335 digital signal controller (DSC). The performance analyses and experimental verifications show that the HS-AASM method outperforms the existing methods.

  7. Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis.

    PubMed

    Liu, Zhi; Lai, Guanyu; Zhang, Yun; Chen, Xin; Chen, Chun Lung Philip

    2014-12-01

    This paper investigates the fusion of unknown direction hysteresis model with adaptive neural control techniques in face of time-delayed continuous time nonlinear systems without strict-feedback form. Compared with previous works on the hysteresis phenomenon, the direction of the modified Bouc-Wen hysteresis model investigated in the literature is unknown. To reduce the computation burden in adaptation mechanism, an optimized adaptation method is successfully applied to the control design. Based on the Lyapunov-Krasovskii method, two neural-network-based adaptive control algorithms are constructed to guarantee that all the system states and adaptive parameters remain bounded, and the tracking error converges to an adjustable neighborhood of the origin. In final, some numerical examples are provided to validate the effectiveness of the proposed control methods. PMID:25420237

  8. Determining hysteresis thresholds for edge detection by combining the advantages and disadvantages of thresholding methods.

    PubMed

    Medina-Carnicer, R; Carmona-Poyato, A; Muoz-Salinas, R; Madrid-Cuevas, F J

    2010-01-01

    Hysteresis is an important technique for edge detection, but the unsupervised determination of its parameters is not an easy problem. In this paper, we propose a method for unsupervised determination of hysteresis thresholds using the advantages and disadvantages of two thresholding methods. The basic idea of our method is to look for the best hysteresis thresholds in a set of candidates. First, the method finds a subset and a overset of the unknown edge points set. Then, it determines the best edge map with the measure chi(2). Compared with a general method to determine the parameters of an edge detector, our method performs well and is less computationally complex. The basic idea of our method can be generalized to other pattern recognition problems. PMID:19783504

  9. Accurate modeling of vector hysteresis using a superposition of Preisach-type models

    SciTech Connect

    Adly, A.A.; Mayergoyz, I.D.

    1997-09-01

    Vector hysteresis models are basically regarded as helpful tools that can be utilized in simulating and/or predicting multi-dimensional field-media interactions. Simulations of energy loss in power devices having unoriented magnetic cores, read/write recording processes as well as tape and disk erasure approaches are examples of such interactions that are currently of considerable interest. Vector hysteresis models are generally regarded as helpful tools that can be utilized in simulating multi-dimensional field-media interactions. In this paper, simulation of vector hysteresis is proposed by using a superposition of isotropic Preisach-type models. This approach gives the opportunity to fully incorporate rotational experimental results in its identification procedure, thus leading to higher simulation accuracy. Detailed solution of the model identification problem and some experimental testing results are given in the paper.

  10. A Model for Rate-Dependent Hysteresis in Piezoceramic Materials Operating at Low Frequencies

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Ounaies, Zoubeida; Wieman, Robert

    2001-01-01

    This paper addresses the modeling of certain rate-dependent mechanisms which contribute to hysteresis inherent to piezoelectric materials operating at low frequencies. While quasistatic models are suitable for initial material characterization in some applications, the reduction in coercive field and polarization values which occur as frequencies increase must be accommodated to achieve the full capabilities of the materials. The model employed here quantifies the hysteresis in two steps. In the first, anhysteretic polarization switching is modeled through the application of Boltzmann principles to balance the electrostatic and thermal energy. Hysteresis is then incorporated through the quantification of energy required to translate and bend domain walls pinned at inclusions inherent to the materials. The performance of the model is illustrated through a fit to low frequency data (0.1 Hz - 1 Hz) from a PZT5A wafer.

  11. A Ni-Cd battery model considering state of charge and hysteresis effects

    NASA Astrophysics Data System (ADS)

    García-Plaza, M.; Serrano-Jiménez, D.; Eloy-García Carrasco, J.; Alonso-Martínez, J.

    2015-02-01

    This paper introduces an electrical battery model. Based on a Thévenin circuit with two RC parallel branches, it includes an ampère-hour counting method to estimate the state of charge (SOC) and a novel model for the hysteresis. The presented model can consider variations in its parameters under changes in all of its internal and external variables, although only SOC and hysteresis are considered. Hysteresis consideration does not only allow distinguishing the parameters during charging and discharging, but also during transients between them. The model was designed to be capable of being implemented in online and offline systems. Finally the proposed model was validated for a single Ni-Cd cell, characterized by current interruption method, in an offline system. The validation was also extended to a stack of 210 cells of the same technology.

  12. The Projectile Inside the Loop

    ERIC Educational Resources Information Center

    Varieschi, Gabriele U.

    2006-01-01

    The loop-the-loop demonstration can be easily adapted to study the kinematics of projectile motion, when the moving body falls inside the apparatus. Video capturing software can be used to reveal peculiar geometrical effects of this simple but educational experiment.

  13. Influence of hysteresis on groundwater wave dynamics in an unconfined aquifer with a sloping boundary

    NASA Astrophysics Data System (ADS)

    Shoushtari, Seyed Mohammad Hossein Jazayeri; Cartwright, Nick; Perrochet, Pierre; Nielsen, Peter

    2015-12-01

    In this paper, the influence of hysteresis on water table dynamics in an unconfined aquifer was examined using a numerical model to solve Richards' unsaturated flow equation. The model was subject to simple harmonic forcing across a sloping boundary with a seepage face boundary condition. Time series from both hysteretic and non-hysteretic models were subject to harmonic analysis to extract the amplitude and phase profiles for comparison with existing sand flume data (Cartwright et al., 2004). The results from both model types show good agreement with the data indicating no influence of hysteresis at the oscillation period examined (T = 348 s). The models were then used to perform a parametric study to examine the relationship between oscillation period and hysteresis effects with periods ranging from 3 min to 180 min. At short oscillation periods, (T ≈ 180 s) the effects of hysteresis were negligible with both models providing similar results. As the oscillation period increased, the hysteretic model showed less amplitude damping than the non-hysteretic model. For periods greater than T = 60 min, the phase lag in the non-hysteretic model is greater than for the hysteretic one. For periods less than T = 60 min this trend is reversed and the hysteretic model produced a greater phase lag than the non-hysteretic model. These findings suggest that consideration of hysteresis dynamics in Richards' equation models has no influence on water table wave dispersion for short period forcing such as waves (T ≈ 10 s) whereas for long period forcing such as tides (T ≈ 12.25 h) or storm surges (T ≈ days) hysteresis dynamics should be taken into account.

  14. Stroke maximizing and high efficient hysteresis hybrid modeling for a rhombic piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Shao, Shubao; Xu, Minglong; Zhang, Shuwen; Xie, Shilin

    2016-06-01

    Rhombic piezoelectric actuator (RPA), which employs a rhombic mechanism to amplify the small stroke of PZT stack, has been widely used in many micro-positioning machineries due to its remarkable properties such as high displacement resolution and compact structure. In order to achieve large actuation range along with high accuracy, the stroke maximizing and compensation for the hysteresis are two concerns in the use of RPA. However, existing maximization methods based on theoretical model can hardly accurately predict the maximum stroke of RPA because of approximation errors that are caused by the simplifications that must be made in the analysis. Moreover, despite the high hysteresis modeling accuracy of Preisach model, its modeling procedure is trivial and time-consuming since a large set of experimental data is required to determine the model parameters. In our research, to improve the accuracy of theoretical model of RPA, the approximation theory is employed in which the approximation errors can be compensated by two dimensionless coefficients. To simplify the hysteresis modeling procedure, a hybrid modeling method is proposed in which the parameters of Preisach model can be identified from only a small set of experimental data by using the combination of discrete Preisach model (DPM) with particle swarm optimization (PSO) algorithm. The proposed novel hybrid modeling method can not only model the hysteresis with considerable accuracy but also significantly simplified the modeling procedure. Finally, the inversion of hysteresis is introduced to compensate for the hysteresis non-linearity of RPA, and consequently a pseudo-linear system can be obtained.

  15. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  16. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  17. Implementation and identification of Preisach type hysteresis models with Everett Function in closed form

    NASA Astrophysics Data System (ADS)

    Szabó, Zsolt; Füzi, János

    2016-05-01

    The Preisach function is considered as a product of two special one dimensional functions, which allows the closed form evaluation of the Everett integral. The deduced closed form expressions are included in Preisach models, in particular in the static model, moving model and a rate dependent hysteresis model, which can simulate the frequency dependence of the magnetization process. The details of the freely available implementations, which are available online are presented. The identification of the model parameters and the accuracy to describe the magnetization process are discussed and demonstrated by fitting measured data. Transient electric circuit simulation with hysteresis demonstrates the applicability of the developed models.

  18. Dynamic hysteresis of tetragonal ferroelectrics: The resonance of 90-domain switching

    NASA Astrophysics Data System (ADS)

    Chen, D. P.; Liu, J.-M.

    2012-02-01

    The dynamic hysteresis of ferroelectric lattice with 90-domain structure in response to time-varying electric field of frequency ? and amplitude E0 is investigated using Monte Carlo simulation based on the Ginzburg-Landau phenomenological theory. A resonance mode of the polarization switching at low frequency range, associated with cluster dipole switching, beside the dipole switching resonance mode, is revealed, characterized by two separate peaks in the hysteresis area spectrum A(?). It is indicated that the power law scaling behaviors A(?) ?? for ? ? 0 and A(?) ?-? for ? ? ? remain applicable.

  19. Magnetic shielding properties of sheet metal products taking into account hysteresis effects

    NASA Astrophysics Data System (ADS)

    Sergeant, Peter; Dupré, Luc; Vandenbossche, Lode; De Wulf, Marc

    2005-05-01

    Analytical expressions are presented to find the shielding effectiveness and the losses of a shield consisting of ferromagnetic, isotropic, nonlinear, and hysteretic material, characterized by the Preisach distribution function in the Rayleigh region. The nonlinear shield is divided into a sufficient number of piecewise linear sublayers with a permeability that is constant (space independent) and complex (to model hysteresis). Simulations of an infinitely long cylindrical shield in transverse sinusoidal flux show that the shielding of perfectly linear material is better than the one of nonlinear metal sheets. More hysteresis and nonlinearity deteriorate the shielding factor, as eddy current losses decrease.

  20. On reasons for the hysteresis of melting and crystallization of nanoparticles

    NASA Astrophysics Data System (ADS)

    Samsonov, V. M.; Vasilyev, S. A.; Talyzin, I. V.; Ryzhkov, Yu. A.

    2016-01-01

    Molecular dynamics experiments for metal nanoclusters (gold, nickel, and aluminum) with the tight-binding potential have indicated that the melting temperature increases noticeably and the crystallization temperature decreases significantly with an increase in the absolute value of the heating and cooling rates, respectively. It has been concluded that the pronounced hysteresis of melting and crystallization is due primarily to nonequilibrium conditions of heating and cooling, but it is incompletely eliminated by reducing the rate of variation of the temperature. It has been found that the hysteresis of melting and crystallization corresponds at the structural level to a smooth crossover from the liquid state to the crystal one.