Science.gov

Sample records for p-glycoprotein p-gp activity

  1. Development of Classification Models for Identifying “True” P-glycoprotein (P-gp) Inhibitors Through Inhibition, ATPase Activation and Monolayer Efflux Assays

    PubMed Central

    Rapposelli, Simona; Coi, Alessio; Imbriani, Marcello; Bianucci, Anna Maria

    2012-01-01

    P-glycoprotein (P-gp) is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external) validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function. PMID:22837672

  2. Inhibitory effects of herbal constituents on P-glycoprotein in vitro and in vivo: herb-drug interactions mediated via P-gp.

    PubMed

    Li, Xue; Hu, Jinping; Wang, Baolian; Sheng, Li; Liu, Zhihao; Yang, Shuang; Li, Yan

    2014-03-01

    Modulation of drug transporters via herbal medicines which have been widely used in combination with conventional prescription drugs may result in herb-drug interactions in clinical practice. The present study was designed to investigate the inhibitory effects of 50 major herbal constituents on P-glycoprotein (P-gp) in vitro and in vivo as well as related inhibitory mechanisms. Among these herbal medicines, four constituents, including emodin, 18?-glycyrrhetic acid (18?-GA), dehydroandrographolide (DAG), and 20(S)-ginsenoside F? [20(S)-GF?] exhibited significant inhibition (>50%) on P-gp in MDR1-MDCKII and Caco-2 cells. Emodin was the strongest inhibitor of P-gp (IC??=9.42 ?M), followed by 18?-GA (IC??=21.78 ?M), 20(S)-GF? (IC??=76.08 ?M) and DAG (IC??=77.80 ?M). P-gp ATPase activity, which was used to evaluate the affinity of substrates to P-gp, was stimulated by emodin and DAG with Km and Vmax values of 48.61, 29.09 ?M and 71.29, 38.45 nmol/min/mg protein, respectively. However, 18?-GA and 20(S)-GF? exhibited significant inhibition on both basal and verapamil-stimulated P-gp ATPase activities at high concentration. Molecular docking analysis (CDOCKER) further elucidated the mechanism for structure-inhibition relationships of herbal constituents with P-gp. When digoxin was co-administered to male SD rats with emodin or 18?-GA, the AUC(??t) and Cmax of digoxin were increased by approximately 51% and 58%, respectively. Furthermore, 18?-GA, DAG, 20(S)-GF? and Rh? at 10 ?M significantly inhibited CYP3A4/5 activity, while emodin activated the metabolism of midazolam in human liver microsomes. In conclusion, four herbal constituents demonstrated inhibition of P-gp to specific extents in vitro and in vivo. Taken together, our findings provided the basis for the reliable assessment of the potential risks of herb-drug interactions in humans. PMID:24380838

  3. Synthesis and P-glycoprotein induction activity of colupulone analogs.

    PubMed

    Bharate, Jaideep B; Batarseh, Yazan S; Wani, Abubakar; Sharma, Sadhana; Vishwakarma, Ram A; Kaddoumi, Amal; Kumar, Ajay; Bharate, Sandip B

    2015-05-21

    Brain amyloid-beta (A?) plaques are one of the primary hallmarks associated with Alzheimer's disease (AD) pathology. Efflux pump proteins located at the blood-brain barrier (BBB) have been reported to play an important role in the clearance of brain A?, among which the P-glycoprotein (P-gp) efflux transporter pump has been shown to play a crucial role. Thus, P-gp has been considered as a potential therapeutic target for treatment of AD. Colupulone, a prenylated phloroglucinol isolated from Humulus lupulus, is known to activate pregnane-X-receptor (PXR), which is a nuclear receptor controlling P-gp expression. In the present work, we aimed to synthesize and identify analogs of colupulone that are potent P-gp inducer(s) with an ability to enhance A? transport across the BBB. A series of colupulone analogs were synthesized by modifications at both prenyl as well as acyl domains. All compounds were screened for P-gp induction activity using a rhodamine 123 based efflux assay in the P-gp overexpressing human adenocarcinoma LS-180 cells, wherein all compounds showed significant P-gp induction activity at 5 ?M. In the western blot studies in LS-180 cells, compounds 3k and 5f were able to induce P-gp as well as LRP1 at 1 ?M. The effect of compounds on the A? uptake and transport was then evaluated. Among all tested compounds, diprenylated acyl phloroglucinol displayed a significant increase (29%) in A? transport across bEnd3 cells grown on inserts as a BBB model. The results presented here suggest the potential of this scaffold to enhance clearance of brain A? across the BBB and thus its promise for development as a potential anti-Alzheimer agent. PMID:25875530

  4. Multidrug-resistance gene 1-type p-glycoprotein (MDR1 p-gp) inhibition by tariquidar impacts on neuroendocrine and behavioral processing of stress.

    PubMed

    Thoeringer, Christoph K; Wultsch, Thomas; Shahbazian, Anaid; Painsipp, Evelin; Holzer, Peter

    2007-01-01

    The multidrug-resistance gene 1-type p-glycoprotein (MDR1 p-gp) is a major gate-keeper at the blood-brain barrier (BBB), protecting the central nervous system from accumulation of toxic xenobiotics and drugs. In addition, MDR1 p-gp has been found to control the intracerebral access of glucocorticoid hormones and thus to modulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) system. In view of the implication of glucocorticoids in the control of behavior, we examined how acute pharmacological inhibition of MDR1 p-gp at the BBB by tariquidar (XR9576; 12 mg/kg, PO) impacts the neuroendocrine and behavioral processing of stress in C57BL/6JIcoHim inbred mice. Inhibition of MDR1 p-gp at the BBB did not alter emotional behavior at baseline. However, mice that were sensitized by water-avoidance stress, a mild psychological stressor, displayed significantly reduced anxiety-related behavior in the elevated plus-maze test when treated with tariquidar. Tariquidar, however, had no effect on stress-coping performance assessed in the forced swim test. Investigating the impact of acute MDR1 p-gp inhibition on the glucocorticoid system, we observed a significant attenuation of the mild stress-induced increase of plasma corticosterone after tariquidar administration. In order to examine whether the anti-anxiety effect of tariquidar in sensitized animals is mediated by glucocorticoids, the animals were treated with corticosterone (1mg/kg, SC) immediately after exposure to water-avoidance stress. Corticosterone caused a significant anxiolytic-like effect in this stress-related anxiety protocol, whereas tariquidar could not further enhance corticosterone's anti-anxiety effects. The current data show for the first time that pharmacological inhibition of MDR1 p-gp at the murine BBB by tariquidar alters emotional behavior and HPA axis activity. By facilitating the entry of corticosterone into the brain, tariquidar enhances feedback inhibition of the HPA system and in this way improves anxiety-related stress processing. These findings highlight a novel approach to the treatment of stress-related affective disorders in humans. PMID:17881135

  5. The Transmission Interfaces Contribute Asymmetrically to the Assembly and Activity of Human P-glycoprotein*

    PubMed Central

    Loo, Tip W.; Clarke, David M.

    2015-01-01

    P-glycoprotein (P-gp; ABCB1) is an ABC drug pump that protects us from toxic compounds. It is clinically important because it confers multidrug resistance. The homologous halves of P-gp each contain a transmembrane (TM) domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Each NBD is connected to the TMDs by a transmission interface involving a pair of intracellular loops (ICLs) that form ball-and-socket joints. P-gp is different from CFTR (ABCC7) in that deleting NBD2 causes misprocessing of only P-gp. Therefore, NBD2 might be critical for stabilizing ICLs 2 and 3 that form a tetrahelix bundle at the NBD2 interface. Here we report that the NBD1 and NBD2 transmission interfaces in P-gp are asymmetric. Point mutations to 25 of 60 ICL2/ICL3 residues at the NBD2 transmission interface severely reduced P-gp assembly while changes to the equivalent residues in ICL1/ICL4 at the NBD1 interface had little effect. The hydrophobic nature at the transmission interfaces was also different. Mutation of Phe-1086 or Tyr-1087 to arginine at the NBD2 socket blocked activity or assembly while the equivalent mutations at the NBD1 socket had only modest effects. The results suggest that the NBD transmission interfaces are asymmetric. In contrast to the ICL2/3-NBD2 interface, the ICL1/4-NBD1 transmission interface is more hydrophilic and insensitive to mutations. Therefore the ICL2/3-NBD2 transmission interface forms a precise hydrophobic connection that acts as a linchpin for assembly and trafficking of P-gp. PMID:25987565

  6. Development of Novel Rifampicin-Derived P-Glycoprotein Activators/Inducers. Synthesis, In Silico Analysis and Application in the RBE4 Cell Model, Using Paraquat as Substrate

    PubMed Central

    Vilas-Boas, Vânia; Silva, Renata; Palmeira, Andreia; Sousa, Emília; Ferreira, Luísa Maria; Branco, Paula Sério; Carvalho, Félix; Bastos, Maria de Lourdes; Remiăo, Fernando

    2013-01-01

    P-glycoprotein (P-gp) is a 170 kDa transmembrane protein involved in the outward transport of many structurally unrelated substrates. P-gp activation/induction may function as an antidotal pathway to prevent the cytotoxicity of these substrates. In the present study we aimed at testing rifampicin (Rif) and three newly synthesized Rif derivatives (a mono-methoxylated derivative, MeORif, a peracetylated derivative, PerAcRif, and a reduced derivative, RedRif) to establish their ability to modulate P-gp expression and activity in a cellular model of the rat’s blood–brain barrier, the RBE4 cell line P-gp expression was assessed by western blot using C219 anti-P-gp antibody. P-gp function was evaluated by flow cytometry measuring the accumulation of rhodamine123. Whenever P-gp activation/induction ability was detected in a tested compound, its antidotal effect was further tested using paraquat as cytotoxicity model. Interactions between Rif or its derivatives and P-gp were also investigated by computational analysis. Rif led to a significant increase in P-gp expression at 72 h and RedRif significantly increased both P-gp expression and activity. No significant differences were observed for the other derivatives. Pre- or simultaneous treatment with RedRif protected cells against paraquat-induced cytotoxicity, an effect reverted by GF120918, a P-gp inhibitor, corroborating the observed P-gp activation ability. Interaction of RedRif with P-gp drug-binding pocket was consistent with an activation mechanism of action, which was confirmed with docking studies. Therefore, RedRif protection against paraquat-induced cytotoxicity in RBE4 cells, through P-gp activation/induction, suggests that it may be useful as an antidote for cytotoxic substrates of P-gp. PMID:23991219

  7. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1

    PubMed Central

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-01-01

    Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1 monolayers with a permeability of 5.7 × 10?5 cm sec?1 compared to an apical to basolateral permeability of 1.3 × 10?5 cm sec-1. The efflux could be inhibited with the P-gp inhibitor zosuquidar. Zosuquidar (0.4 ?mol/L) reduced the efflux ratio (PB-A/PA-B) for verapamil 4.6–1.6. The presence of telmisartan, however, only caused a slight reduction in P-gp-mediated verapamil transport to an efflux ratio of 3.4. Overall, the results of the present in vitro approach indicate, that clinical use of telmisartan as a P-gp inhibitor may not be an effective strategy for increasing brain uptake of verapamil by co-administration with telmisartan. PMID:26171231

  8. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy.

    PubMed

    Silva, Renata; Vilas-Boas, Vânia; Carmo, Helena; Dinis-Oliveira, Ricardo Jorge; Carvalho, Félix; de Lourdes Bastos, Maria; Remiăo, Fernando

    2015-05-01

    P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity. PMID:25435018

  9. Geneva Cocktail for Cytochrome P450 and P-Glycoprotein Activity Assessment Using Dried Blood Spots

    PubMed Central

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-01-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography–tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6?h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session. PMID:24722393

  10. Induction of expression and functional activity of P-glycoprotein efflux transporter by bioactive plant natural products.

    PubMed

    Abuznait, Alaa H; Qosa, Hisham; O'Connell, Nicholas D; Akbarian-Tefaghi, Jessica; Sylvester, Paul W; El Sayed, Khalid A; Kaddoumi, Amal

    2011-11-01

    The effect of bioactive plant natural products on the expression and functional activity of P-glycoprotein (P-gp) is poorly understood. Interactions of bioactive plant-based food and dietary supplements with P-gp can cause significant alteration of pharmacokinetic properties of P-gp substrate drugs when used in combination. This can augment toxicity and/or interfere with the drug's therapeutic outcomes. This study investigated the effects of diverse commonly used plant natural products on the expression and activity of P-gp in human adenocarcinoma cells (LS-180). These natural products included the tobacco cembranoid (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (cembratriene), the palm oil-derived ?-tocotrienol, the extra-virgin olive oil-derived secoiridoid oleocanthal, and the triterpene acid asiatic acid derived from Melaleuca ericifolia and abundant in several other common plant dietary supplements. Treatment with 25?M of cembratriene, oleocanthal, ?-tocotrienol, or asiatic acid showed 2.3-3.0-fold increase in P-gp expression as demonstrated by Western blotting. These results were consistent with those obtained by quantitative analysis of fluorescent micrographs for P-gp. Accumulation studies demonstrated 31-38% decrease in rhodamine 123 intracellular levels when LS-180 cells were treated with the investigated compounds as a result of P-gp induction. Bioactive natural products can up-regulate the P-gp expression and functionality, which may induce herb/food-drug interactions when concomitantly used with P-gp substrate drugs. PMID:21851848

  11. Induction of Expression and Functional Activity of P-glycoprotein Efflux Transporter by Bioactive Plant Natural Products

    PubMed Central

    Abuznait, Alaa H.; Qosa, Hisham; O’Connell, Nicholas D.; Akbarian-Tefaghi, Jessica; Sylvester, Paul W.; El Sayed, Khalid A.; Kaddoumi, Amal

    2011-01-01

    The effect of bioactive plant natural products on the expression and functional activity of P-glycoprotein (P-gp) is poorly understood. Interactions of bioactive plant-based food and dietary supplements with P-gp can cause significant alteration of pharmacokinetic properties of P-gp substrate drugs when used in combination. This can augment toxicity and/or interfere with the drug’s therapeutic outcomes. This study investigated the effects of diverse commonly used plant natural products on the expression and activity of P-gp in human adenocarcinoma cells (LS-180). These natural products included the tobacco cembranoid (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (cembratriene), the palm oil-derived ?-tocotrienol, the extra-virgin olive oil-derived secoiridoid oleocanthal, and the triterpene acid asiatic acid derived from Melaleuca ericifolia and abundant in several other common plant dietary supplements. Treatment with 25 ?M of cembratriene, oleocanthal, ?-tocotrienol, or asiatic acid showed 2.3-3.0-fold increase in P-gp expression as demonstrated by Western blotting. These results were consistent with those obtained by quantitative analysis of fluorescent micrographs for P-gp. Accumulation studies demonstrated 31-38% decrease in rhodamine 123 intracellular levels when LS-180 cells were treated with the investigated compounds as a result of P-gp induction. Bioactive natural products can up-regulate the P-gp expression and functionality, which may induce herb/food-drug interactions when concomitantly used with P-gp substrate drugs. PMID:21851848

  12. Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system

    NASA Astrophysics Data System (ADS)

    Kirthivasan, B.; Singh, D.; Bommana, M. M.; Raut, S. L.; Squillante, E.; Sadoqi, M.

    2012-06-01

    Magnetic nanoparticles (NP) were developed for the active brain targeting of water-soluble P-glycoprotein (P-gp) substrate rhodamine 123 (Rh123). The NP matrix of poly(lactide-co-glycolide) (PLGA) and methoxy poly(ethyleneglycol)-poly(lactic acid) (M-PEG-PLA) was prepared by single emulsion solvent evaporation of polymers with oleic acid-coated magnetic nanoparticles (OAMNP) and Rh123. All formulations were characterized in terms of morphology, particle size, magnetic content and Rh123 encapsulation efficiency. The maximum encapsulation efficiency of Rh123 was 45 ± 3% and of OAMNP was 42 ± 4%. The brain targeting and biodistribution study was performed on Sprague Dawley rats (3 groups, n = 6). Rh123 (0.4 mg kg-1) was administered in saline form, NP containing Rh123, and NP containing Rh123 in the presence of a magnetic field (0.8 T). The fluorimetric analysis of brain homogenates revealed a significant uptake (p < 0.05) of Rh123 in the magnetically targeted group relative to controls. These results were supported by fluorescence microscopy. This study reveals the ability of magnetically targeted nanoparticles to deliver substances to the brain, the permeation of which would otherwise be inhibited by the P-gp system.

  13. Active elimination of the marine biotoxin okadaic acid by P-glycoprotein through an in vitro gastrointestinal barrier.

    PubMed

    Ehlers, Anke; These, Anja; Hessel, Stefanie; Preiss-Weigert, Angelika; Lampen, Alfonso

    2014-03-01

    The consumption of okadaic acid (OA) contaminated shellfish can induce acute toxic symptoms in humans such as diarrhea, nausea, vomiting and abdominal pain; carcinogenic and embryotoxic effects have also been described. Toxicokinetic studies with mice have shown that high cytotoxic doses of OA can pass the gastrointestinal barrier presumably by paracellular passage. However, in vitro studies using human intestinal Caco-2 cell monolayers to represent the intestinal barrier have shown that at low-dose exposure OA is transported against a concentration gradient suggesting an active efflux mechanism. Since P-glycoprotein (P-gp) transports a wide variety of substrates, we investigated its possible influence on the observed elimination of OA. We used two different cellular transwell models: (i) Caco-2 cell monolayer endogenously expressing human P-gp and simulating the intestinal barrier and (ii) MDCK-II cell monolayer stably over-expressing P-gp. Our study demonstrates clearly that OA at non-cytotoxic concentrations passes the monolayer barrier only to a low degree, and that it is actively eliminated by P-gp over the apical membrane. Therefore, our in vitro data indicate that humans appear to have efficient defense mechanisms to protect themselves against low-dose contaminated shellfish by exhibiting a low bioavailability as a result of active elimination of OA by P-gp. PMID:24374049

  14. Stereoselective Regulation of P-gp Activity by Clausenamide Enantiomers in Caco-2, KB/KBv and Brain Microvessel Endothelial Cells

    PubMed Central

    Zhu, Chuan-jiang; Hua, Fang; Zhu, Xiao-lu; Li, Meng; Wang, Hong-xu; Yu, Xiao-ming; Li, Yan

    2015-01-01

    The (?)- and (+)-clausenamide (CLA) enantiomers have different pharmacokinetic effects in animals, but their association with putative stereoselective regulation of P-glycoprotein (P-gp) remains unclear. Using three cells expressing P-gp—Caco-2, KBv and rat brain microvessel endothelial cells(RBMEC), this study investigated the association of CLA enantiomers with P-gp. The results showed that the rhodamine 123 (Rh123) accumulation, an indicator of P-gp activity, in Caco-2, KBv and RBMECs was increased by (?)CLA (1 or 5 ?mol/L) at 8.2%–28.5%, but reduced by (+)CLA at 11.7%–25.9%, showing stereoselectivity in their regulation of P-gp activity. Following co-treatment of these cells with each CLA enantiomer and verapamil as a P-gp inhibitor, the (+)-isomer clearly antagonized the inhibitory effects of verapamil on P-gp efflux, whereas the (?)-isomer had slightly synergistic or additive effects. When higher concentrations (5 or 10 ?mol/L) of CLA enantiomers were added, the stimulatory effects of the (+)-isomer were converted into inhibitory ones, leading to an enhanced intracellular uptake of Rh123 by 24.5%–58.2%; but (?)-isomer kept its inhibition to P-gp activity, causing 30.0%–63.0% increase in the Rh123 uptake. The biphasic effects of (+)CLA were confirmed by CLA uptake in the Caco-2 cells. (+)CLA at 1 ?mol/L had significantly lower intracellular uptake than (?)CLA with a ratio[(?)/(+)] of 2.593, which was decreased to 2.167 and 1.893 after CLA concentrations increased to 2.5 and 5 ?mol/L. Besides, in the non-induced KB cells, (+)CLA(5 ?mol/L) upregulated P-gp expression at 54.5% relative to vehicle control, and decreased Rh123 accumulation by 28.2%, while (?)CLA(5 ?mol/L) downregulated P-gp expression at 15.9% and increased Rh123 accumulation by 18.0%. These results suggested that (?)CLA could be a P-gp inhibitor and (+)CLA could be a modulator with concentration-dependent biphasic effects on P-gp activity, which may result in drug—drug interactions when combined with other P-gp substrate drugs. PMID:26295572

  15. Jatrophane diterpenoids from the latex of Euphorbia dendroides and their anti-P-glycoprotein activity in human multi-drug resistant cancer cell lines.

    PubMed

    Jadranin, Milka; Peši?, Milica; Aljan?i?, Ivana S; Milosavljevi?, Slobodan M; Todorovi?, Nina M; Podolski-Reni?, Ana; Bankovi?, Jasna; Tani?, Nikola; Markovi?, Ivanka; Vajs, Vlatka E; Teševi?, Vele V

    2013-02-01

    Thirteen jatrophane diterpenoids (1-10, 13-15), three previously isolated (11, 12, 16) and a known tigliane (17) were isolated from the latex of Euphorbia dendroides. The structures and relative configurations of compounds were elucidated by spectroscopic techniques. The P-glycoprotein (P-gp) inhibiting activities of the representative set of jatrophanes (1-6 and 11-16) have been assessed. Jatrophanes 2 and 5 demonstrated the most powerful inhibition of P-gp, higher than R(+)-verapamil and tariquidar in colorectal multi-drug resistant (MDR) cells (DLD1-TxR). PMID:23079764

  16. Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4.

    PubMed

    Wang, E; Lew, K; Barecki, M; Casciano, C N; Clement, R P; Johnson, W W

    2001-12-01

    The bulk of characterized xenobiotic defense and disposition is conferred by the abundant enzymes cytochrome P450 3A4 and P-glycoprotein. Although expressed in many tissues, these enzymes are most abundant in the liver and intestine and seem to share most substrates and inhibitors, with the apparent synergy between these two promiscuous enzymes asserted because of their extensive overlap of substrates and shared tissue location. Since the broad-spectrum tolerance to lipophilic compounds of various sizes naturally results in a similar pattern of substrate/inhibitor recognition, the cause or mechanism of many drug/drug and drug/herb interactions can be difficult to determine. These two seemingly indiscriminate enzymes, however, do not share some unique inhibitor selectivity. Particularly, we show various potent CYP3A4 inhibitors that do not affect P-gp active transport function. Remarkably, we have also identified several compounds-valinomycin, norverapamil, reserpine, nobiletin, emetine, gallopamil, fluphenazine-that uniquely inhibit P-gp function with affinities comparable to benchmark P-gp inhibitors despite a lack of effect on CYP3A4 function at physiologically relevant concentrations. Indeed, valinomycin inhibits P-gp with an IC(50) similar to cyclosporin A yet apparently does not affect CYP3A4 function, and emetine and nobiletin are also specific for interaction with P-gp. Additionally, norverapamil and reserpine have, respectively, a 60- and 40-fold preference for inhibition of P-gp over CYP3A4. Some striking structural analogies among these compounds are discussed. These distinguishing qualities of substrate recognition between CYP3A4 and P-gp should reveal nuances of active-site architecture unique to each and could serve as tools to probe for the specific discernment of P-gp-mediated drug/drug or drug/herb interactions. Learning more about binding distinctions and quantitative activity relationships of substrate/inhibitor interactions with these two enzymes and the differences between them may indicate how they recognize such a wide variety of molecules as substrates (and/or inhibitors). Moreover, identification of specific inhibitors will allow the determination of which enzyme is responsible for drug interactions and/or the extent of contribution in a multiple exposure situation. PMID:11743742

  17. Influence of combinations of digitonin with selected phenolics, terpenoids, and alkaloids on the expression and activity of P-glycoprotein in leukaemia and colon cancer cells.

    PubMed

    Eid, Safaa Yehia; El-Readi, Mahmoud Zaki; Eldin, Essam Eldin Mohamed Nour; Fatani, Sameer Hassan; Wink, Michael

    2013-12-15

    P-glycoprotein (P-gp or MDR1) is an ATP-binding cassette (ABC) transporter. It is involved in the efflux of several anticancer drugs, which leads to chemotherapy failure and multidrug resistance (MDR) in cancer cells. Representative secondary metabolites (SM) including phenolics (EGCG and thymol), terpenoids (menthol, aromadendrene, ?-sitosterol-O-glucoside, and ?-carotene), and alkaloids (glaucine, harmine, and sanguinarine) were evaluated as potential P-gp inhibitors (transporter activity and expression level) in P-gp expressing Caco-2 and CEM/ADR5000 cancer cell lines. Selected SM increased the accumulation of the rhodamine 123 (Rho123) and calcein-AM (CAM) in a dose dependent manner in Caco-2 cells, indicating that they act as competitive inhibitors of P-gp. Non-toxic concentrations of ?-carotene (40?M) and sanguinarine (1?M) significantly inhibited Rho123 and CAM efflux in CEM/ADR5000 cells by 222.42% and 259.25% and by 244.02% and 290.16%, respectively relative to verapamil (100%). Combination of the saponin digitonin (5?M), which also inhibits P-gp, with SM significantly enhanced the inhibition of P-gp activity. The results were correlated with the data obtained from a quantitative analysis of MDR1 expression. Both compounds significantly decreased mRNA levels of the MDR1 gene to 48% (p<0.01) and 46% (p<0.01) in Caco-2, and to 61% (p<0.05) and 1% (p<0.001) in CEM/ADR5000 cells, respectively as compared to the untreated control (100%). Combinations of digitonin with SM resulted in a significant down-regulation of MDR1. Our findings provide evidence that the selected SM interfere directly and/or indirectly with P-gp function. Combinations of different P-gp substrates, such as digitonin alone and together with the set of SM, can mediate MDR reversal in cancer cells. PMID:23999162

  18. P-Glycoprotein Transport of Neurotoxic Pesticides.

    PubMed

    Lacher, Sarah E; Skagen, Kasse; Veit, Joachim; Dalton, Rachel; Woodahl, Erica L

    2015-10-01

    P-glycoprotein (P-gp) has been associated with a number of neurodegenerative diseases, including Parkinson's disease, although the mechanisms remain unclear. Altered transport of neurotoxic pesticides has been proposed in Parkinson's disease, but it is unknown whether these pesticides are P-gp substrates. We used three in vitro transport models, stimulation of ATPase activity, xenobiotic-induced cytotoxicity, and inhibition of rhodamine-123 efflux, to evaluate P-gp transport of diazinon, dieldrin, endosulfan, ivermectin, maneb, 1-methyl-4-phenyl-4-phenylpyridinium ion (MPP(+)), and rotenone. Diazinon and rotenone stimulated ATPase activity in P-gp-expressing membranes, with Vmax values of 22.4 ± 2.1 and 16.8 ± 1.0 nmol inorganic phosphate/min per mg protein, respectively, and Km values of 9.72 ± 3.91 and 1.62 ± 0.51 µM, respectively, compared with the P-gp substrate verapamil, with a Vmax of 20.8 ± 0.7 nmol inorganic phosphate/min per mg protein and Km of 0.871 ± 0.172 ?M. None of the other pesticides stimulated ATPase activity. We observed an increased resistance to MPP(+) and rotenone in LLC-MDR1-WT cells compared with LLC-vector cells, with 15.4- and 2.2-fold increases in EC50 values, respectively. The resistance was reversed in the presence of the P-gp inhibitor verapamil. None of the other pesticides displayed differential cytotoxicity. Ivermectin was the only pesticide to inhibit P-gp transport of rhodamine-123, with an IC50 of 0.249 ± 0.048 ?M. Our data demonstrate that dieldrin, endosulfan, and maneb are not P-gp substrates or inhibitors. We identified diazinon, MPP(+), and rotenone as P-gp substrates, although further investigation is needed to understand the role of P-gp transport in their disposition in vivo and associations with Parkinson's disease. PMID:26272936

  19. Anthelmintics Are Substrates and Activators of Nematode P Glycoprotein?

    PubMed Central

    Kerboeuf, Dominique; Guégnard, Fabrice

    2011-01-01

    P glycoproteins (Pgp), members of the ABC transporter superfamily, play a major role in chemoresistance. In nematodes, Pgp are responsible for resistance to anthelmintics, suggesting that they are Pgp substrates, as they are in mammalian cells. However, their binding to nematode Pgp and the functional consequences of this interaction have not been investigated. Our study showed that levamisole and most of the macrocyclic lactones (MLs) are Pgp substrates in nematodes. Ivermectin, although a very good substrate in mammalian cells, is poorly transported. In contrast to their inhibitory effect on mammalian Pgp, these drugs had a stimulatory effect on the transport activity of the reference Pgp substrate rhodamine 123 (R123) in the nematode. This may be due to a specific sequence of nematode Pgp, which shares only 44% identity with mammalian Pgp. Other factors, such as the affinity of anthelmintics for Pgp and their concentration in the Pgp microenvironment, could also differ in nematodes, as suggested by the specific relationship observed between the octanol-water partition coefficient (log P) of MLs and R123 efflux. Nevertheless, some similarities were also observed in the functional activities of the mammalian and nematode Pgp. As in mammalian cells, substrates known to bind the H site (Hoechst 33342 and colchicine) activated the R site, resulting in an increased R123 efflux. Our findings thus show that ML anthelmintics, which inhibit Pgp-mediated efflux in mammals, activate transport activity in nematodes and suggest that several substituents in the ML structure are involved in modulating the stimulatory effect. PMID:21300828

  20. Antisense to MDR1 mRNA reduces P-glycoprotein expression, swelling-activated C1- current and volume regulation in bovine ciliary epithelial cells.

    PubMed

    Wang, L; Chen, L; Walker, V; Jacob, T J

    1998-08-15

    Native ciliary epithelial cells from the ciliary epithelium of the eye exhibit anti-P-glycoprotein (P-gp) immunofluorescence. We have used an antisense 'knock-down' approach to investigate the relationship between P-gp and the volume-activated chloride current (IC1,swell) and its role in volume regulation. An antisense oligonucleotide to the human multidrug resistance (MDR1) gene, taken up by the cells in a dose-dependent manner, reduced P-gp immunofluorescence, inhibited IC1,swell and significantly increased the latency of activation of IC1,swell. Increasing the hypotonic stress did not result in an increased activation of ICl,swell. MDR1 antisense 'knock-down' also reduced the ability of the cells to volume regulate following a hypotonic challenge. These cells are known to express at least two volume-activated chloride channels, and the data suggest that P-gp is involved in the activation pathway of a subset of channels that contribute to whole-cell IC1,swell and participate in volume regulation. PMID:9679161

  1. Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice.

    PubMed

    Uchida, Yasuo; Ohtsuki, Sumio; Kamiie, Junichi; Terasaki, Tetsuya

    2011-11-01

    The purpose of this study was to examine whether in vivo drug distribution to the brain can be reconstructed by integrating P-glycoprotein (P-gp)/mdr1a expression levels, P-gp in vitro activity, and drug unbound fractions in mouse plasma and brain. For 11 P-gp substrates, in vitro P-gp transport activities were determined by measuring transcellular transport across monolayers of mouse P-gp-transfected LLC-PK1 (L-mdr1a) and parental cells. P-gp expression amounts were determined by quantitative targeted absolute proteomics. Unbound drug fractions in plasma and brain were obtained from the literature and by measuring brain slice uptake, respectively. Brain-to-plasma concentration ratios (K(p brain)) and its ratios between wild-type and mdr1a/1b(-/-) mice (K(p brain) ratio) were obtained from the literature or determined by intravenous constant infusion. Unbound brain-to-plasma concentration ratios (K(p,uu,brain)) were estimated from K(p brain) and unbound fractions. Based on pharmacokinetic theory, K(p brain) ratios were reconstructed from in vitro P-gp transport activities and P-gp expression amounts in L-mdr1a cells and mouse brain capillaries. All reconstructed K(p brain) ratios were within a 1.6-fold range of observed values. K(p brain) then was reconstructed from the reconstructed K(p brain) ratios and unbound fractions. K(p,uu,brain) was reconstructed as the reciprocal of the reconstructed K(p brain) ratios. For quinidine, loperamide, risperidone, indinavir, dexamethasone, paclitaxel, verapamil, loratadine, and diazepam, the reconstructed K(p brain) and K(p,uu,brain) agreed with observed and estimated in vivo values within a 3-fold range, respectively. Thus, brain distributions of P-gp substrates can be reconstructed from P-gp expression levels, in vitro activity, and drug unbound fractions. PMID:21828264

  2. Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis.

    PubMed

    Kubota, Hisashi; Ishihara, Hideyuki; Langmann, Thomas; Schmitz, Gerd; Stieger, Bruno; Wieser, Heinz-Gregor; Yonekawa, Yasuhiro; Frei, Karl

    2006-03-01

    Multidrug resistance protein, also referred as P-glycoprotein (P-gp, MDR1; ABCB1) and multidrug resistance-associated protein (MRP) 1 (ABCC1) and 2 (ABCC2) are, thus far, candidates to cause antiepileptic drug (AED) resistance epilepsy. In this study, we investigated P-gp, MRP1 and MRP2 expression, localization and functional activity on cryosections and isolated human brain-derived microvascular endothelial cells (HBMEC) from epileptic patients (HBMEC-EPI) with hippocampal sclerosis (HS), as compared with HBMEC isolated from normal brain cortex (HBMEC-CTR). We examined the expression and distribution of three transporters, P-gp, MRP1 and MRP2 on two major parts of the resected tissue, the hippocampus and the parahippocampal gyrus (Gph). P-gp showed diffuse expression not only in endothelium but also by parenchymal cells in both the hippocampus and the Gph. MRP1 labeling was observed in parenchymal cells in the Gph. By contrast, MRP2 was mainly found in endothelium of the hippocampus. P-gp and MRP1 expression in the Gph was relatively high in the patient with long-term seizure history. Quantitative RT-PCR analysis of HBMEC revealed that MDR1, MRP1 as well as MRP5 (ABCC5) and MRP6 (ABCC6) were overexpressed in HBMEC-EPI at the mRNA level. HBMEC from both normal and epilepsy groups displayed protein expression of P-gp, whereas MRP1 and MRP2 were seen only in HBMEC-EPI. Accordingly, it is of particular interest that MRP functional activities were observed in HBMEC-EPI, but not in HBMEC-CTR. Our results suggest that complex MDR expression changes not only in the hippocampus but in the Gph may play a role in AED pharmacoresistance in intractable epilepsy patients with mesial temporal lobe epilepsy (MTLE) by altering the permeability of AEDs across the blood-brain barrier (BBB). PMID:16361082

  3. T lymphocytes impair P-glycoprotein function during neuroinflammation.

    PubMed

    Kooij, Gijs; van Horssen, Jack; de Lange, Elizabeth C M; Reijerkerk, Arie; van der Pol, Susanne M A; van Het Hof, Bert; Drexhage, Joost; Vennegoor, Anke; Killestein, Joep; Scheffer, George; Oerlemans, Ruud; Scheper, Rik; van der Valk, Paul; Dijkstra, Christine D; de Vries, Helga E

    2010-06-01

    The ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp; ABCB1) is highly expressed at the blood-brain barrier (BBB). P-gp actively secretes and keeps the central nervous system (CNS) safe from body-born metabolites, but also from drugs and food components, emphasising the importance of its optimal function to maintain brain homeostasis. Here we demonstrate that vascular P-gp expression and function are strongly decreased during neuroinflammation. In vivo, the expression and function of brain endothelial P-gp in experimental allergic encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), were significantly impaired. Strikingly, vascular P-gp expression was decreased in both MS and EAE lesions and its disappearance coincided with the presence of perivascular infiltrates consisting of lymphocytes. Our data strongly suggest that activated CD4(+) T cells induce impaired function of brain endothelial P-gp. Notably, lymphocyte interaction through endothelial intracellular adhesion molecule -1 (ICAM-1) resulted in activation of a nuclear factor kappa B (NF-kappaB) signaling pathway, which resulted in endothelial P-gp malfunction. Our study provides first evidence that CD4(+) T cells are able to affect endogenous molecular protection mechanisms of brain endothelium. Loss of vascular P-gp function during neuroinflammation may disturb brain homeostasis and thereby aggravate disease progression via exposure of vulnerable CNS cells to detrimental compounds. PMID:19959334

  4. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    SciTech Connect

    Crowe, Andrew Tan, Ai May

    2012-05-01

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of only 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup ?6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup ?6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ? Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ? Inhaled corticosteroid potent P-gp inducers especially fluticasone and beclomethasone. ? Systemic corticosteroids are weak P-gp inducers. ? Mineralocorticoids not affected by P-gp mediated efflux.

  5. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity.

    PubMed

    Silva, Renata; Palmeira, Andreia; Carmo, Helena; Barbosa, Daniel José; Gameiro, Mariline; Gomes, Ana; Paiva, Ana Mafalda; Sousa, Emília; Pinto, Madalena; Bastos, Maria de Lourdes; Remiăo, Fernando

    2015-10-01

    The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been proposed as a strategy against the toxicity induced by P-gp substrates such as the herbicide paraquat (PQ). The aim of this study was to screen five newly synthetized thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the pump's expression and/or activity and to evaluate whether they would afford protection against PQ-induced toxicity in Caco-2 cells. All five thioxanthones (20 µM) caused a significant increase in both P-gp expression and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively. Additionally, it was demonstrated that the tested compounds, when present only during the efflux of rhodamine 123, rapidly induced an activation of P-gp. The tested compounds also increased P-gp ATPase activity in MDR1-Sf9 membrane vesicles, indicating that all derivatives acted as P-gp substrates. PQ cytotoxicity was significantly reduced in the presence of four thioxanthone derivatives, and this protective effect was reversed upon incubation with a specific P-gp inhibitor. In silico studies showed that all the tested thioxanthones fitted onto a previously described three-feature P-gp induction pharmacophore. Moreover, in silico interactions between thioxanthones and P-gp in the presence of PQ suggested that a co-transport mechanism may be operating. Based on the in vitro activation results, a pharmacophore model for P-gp activation was built, which will be of further use in the screening for new P-gp activators. In conclusion, the study demonstrated the potential of the tested thioxanthonic compounds in protecting against toxic effects induced by P-gp substrates through P-gp induction and activation. PMID:25234084

  6. Thyroid Hormone and P-Glycoprotein in Tumor Cells

    PubMed Central

    Davis, Paul J.; Lin, Hung-Yun; Sudha, Thangirala; Mousa, Shaker A.

    2015-01-01

    P-glycoprotein (P-gp; multidrug resistance pump 1, MDR1; ABCB1) is a plasma membrane efflux pump that when activated in cancer cells exports chemotherapeutic agents. Transcription of the P-gp gene (MDR1) and activity of the P-gp protein are known to be affected by thyroid hormone. A cell surface receptor for thyroid hormone on integrin ?v?3 also binds tetraiodothyroacetic acid (tetrac), a derivative of L-thyroxine (T4) that blocks nongenomic actions of T4 and of 3,5,3?-triiodo-L-thyronine (T3) at ?v?3. Covalently bound to a nanoparticle, tetrac as nanotetrac acts at the integrin to increase intracellular residence time of chemotherapeutic agents such as doxorubicin and etoposide that are substrates of P-gp. This action chemosensitizes cancer cells. In this review, we examine possible molecular mechanisms for the inhibitory effect of nanotetrac on P-gp activity. Mechanisms for consideration include cancer cell acidification via action of tetrac/nanotetrac on the Na+/H+ exchanger (NHE1) and hormone analogue effects on calmodulin-dependent processes and on interactions of P-gp with epidermal growth factor (EGF) and osteopontin (OPN), apparently via ?v?3. Intracellular acidification and decreased H+ efflux induced by tetrac/nanotetrac via NHE1 is the most attractive explanation for the actions on P-gp and consequent increase in cancer cell retention of chemotherapeutic agent-ligands of MDR1 protein. PMID:25866761

  7. Reversal of P-glycoprotein-mediated multidrug resistance by the novel tetrandrine derivative W6.

    PubMed

    Sun, Hua; Liu, Xiao-Dong; Liu, Qian; Wang, Feng-Peng; Bao, Xiu-Qi; Zhang, Dan

    2015-01-01

    Overexpression of ATP-dependent efflux pump P-glycoprotein (P-gp) is the main cause of multidrug resistance (MDR) and chemotherapy failure in cancer treatment. Inhibition of P-gp-mediated drug efflux is an effective way to overcome cancer drug resistance. The present study investigated the reversal effect of the novel tetrandrine derivative W6 on P-gp-mediated MDR. KBv200, MCF-7/adr and their parental sensitive cell lines KB, MCF-7 were used for reversal study. The intracellular accumulation with P-gp substrates of doxorubicin was determined by flow cytometry. The expression of P-gp and ERK1/2 was investigated by western blot and real-time-PCR (RT-PCR) analysis. ATPase activity of P-gp was performed by P-gp-Glo(TM) assay systems. In comparison with P-gp-negative parental cells, W6 produced a favorable reversal effect in the MDR cells, as determined using the MTT assay. W6 significantly and dose-dependently increased intracellular accumulation of P-gp substrate doxorubicin (DOX) in P-gp overexpressing KBv200 cells, and also inhibited the ATPase activity of P-gp. W6 inhibited P-gp expression in KBv200 cells in a time-dependent manner, but it had no effect on MDR1 expression. In addition, W6 significantly decreased the ERK1/2 activation in KBv200 cells. Our results showed that W6 effectively reversed P-gp-mediated MDR by inhibiting the transport function and expression of P-gp, demonstrating the potential clinical utility of W6. PMID:26235354

  8. Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein.

    PubMed

    Bikadi, Zsolt; Hazai, Istvan; Malik, David; Jemnitz, Katalin; Veres, Zsuzsa; Hari, Peter; Ni, Zhanglin; Loo, Tip W; Clarke, David M; Hazai, Eszter; Mao, Qingcheng

    2011-01-01

    Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics, efficacy, safety, or tissue levels of drugs or drug candidates. At present, publicly available, reliable in silico models predicting P-gp substrates are scarce. In this study, a support vector machine (SVM) method was developed to predict P-gp substrates and P-gp-substrate interactions, based on a training data set of 197 known P-gp substrates and non-substrates collected from the literature. We showed that the SVM method had a prediction accuracy of approximately 80% on an independent external validation data set of 32 compounds. A homology model of human P-gp based on the X-ray structure of mouse P-gp as a template has been constructed. We showed that molecular docking to the P-gp structures successfully predicted the geometry of P-gp-ligand complexes. Our SVM prediction and the molecular docking methods have been integrated into a free web server (http://pgp.althotas.com), which allows the users to predict whether a given compound is a P-gp substrate and how it binds to and interacts with P-gp. Utilization of such a web server may prove valuable for both rational drug design and screening. PMID:21991360

  9. Fas signaling promotes chemoresistance in gastrointestinal cancer by up-regulating P-glycoprotein

    PubMed Central

    Wang, Yadong; Lin, Shiyong; Chen, Jinmin; Wang, Jing; Wang, Zhiqing; Jiang, Bo

    2014-01-01

    Fas signaling promotes metastasis of gastrointestinal (GI) cancer cells by inducing epithelial-mesenchymal transition (EMT), and EMT acquisition has been found to cause cancer chemoresistance. Here, we demonstrated that the response to chemotherapy of GI cancer patients with higher expression of FasL was significantly worse than patients with lower expression. Fas-induced activation of the ERK1/2-MAPK pathway decreased the sensitivity of GI cancer cells to chemotherapeutic agents and promoted the expression of P-glycoprotein (P-gp). FasL promoted chemoresistance of GI cancer cell via upregulation of P-gp by increasing ?-catenin and decreasing miR-145. ?-catenin promoted P-gp gene transcription by binding with P-gp promoter while miR-145 suppressed P-gp expression by interacting with the mRNA 3?UTR of P-gp. Immunostaining and qRT-PCR analysis of human GI cancer samples revealed a positive association among FasL, ?-catenin, and P-gp, but a negative correlation between miR-145 and FasL or P-gp. Altogether, our results showed Fas signaling could promote chemoresistance in GI cancer through modulation of P-gp expression by ?-catenin and miR-145. Our findings suggest that Fas signaling-based cancer therapies should be administered cautiously, as activation of this pathway may not only lead to apoptosis but also induce chemoresistance. PMID:25333257

  10. In Silico Quantitative Structure-Activity Relationship Studies on P-gp Modulators of Tetrahydroisoquinoline-Ethyl-Phenylamine Series

    PubMed Central

    2011-01-01

    Background Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy. The drug efflux by a transport protein is the main reason for MDR. In humans, MDR mainly occurs when the ATP-binding cassette (ABC) family of proteins is overexpressed simultaneously. P-glycoprotein (P-gp) is most commonly associated with human MDR; it utilizes energy from adenosine triphosphate (ATP) to transport a number of substrates out of cells against concentration gradients. By the active transport of substrates against concentration gradients, intracellular concentrations of substrates are decreased. This leads to the cause of failure in cancer chemotherapy. Results Herein, we report Topomer CoMFA (Comparative Molecular Field Analysis) and HQSAR (Hologram Quantitative Structure Activity Relationship) models for third generation MDR modulators. The Topomer CoMFA model showed good correlation between the actual and predicted values for training set molecules. The developed model showed cross validated correlation coefficient (q2) = 0.536 and non-cross validated correlation coefficient (r2) = 0.975 with eight components. The best HQSAR model (q2 = 0.777, r2 = 0.956) with 5-8 atom counts was used to predict the activity of test set compounds. Both models were validated using test set compounds, and gave a good predictive values of 0.604 and 0.730. Conclusions The contour map near R1 indicates that substitution of a bulkier and polar group to the ortho position of the benzene ring enhances the inhibitory effect. This explains why compounds with a nitro group have good inhibitory potency. Molecular fragment analyses shed light on some essential structural and topological features of third generation MDR modulators. Fragments analysis showed that the presence of tertiary nitrogen, a central phenyl ring and an aromatic dimethoxy group contributed to the inhibitory effect. Based on contour map information and fragment information, five new molecules with variable R1 substituents were designed. The activity of these designed molecules was predicted by the Topomer CoMFA and HQSAR models. The novel compounds showed higher potency than existing compounds. PMID:21269449

  11. Dasatinib reverses the multidrug resistance of breast cancer MCF-7 cells to doxorubicin by downregulating P-gp expression via inhibiting the activation of ERK signaling pathway

    PubMed Central

    Chen, Ting; Wang, Changyuan; Liu, Qi; Meng, Qiang; Sun, Huijun; Huo, Xiaokui; Sun, Pengyuan; Peng, Jinyong; Liu, Zhihao; Yang, Xiaobo; Liu, Kexin

    2015-01-01

    Multidrug resistance (MDR) is one of the major obstacles to the efficiency of cancer chemotherapy, which often results from the overexpression of drug efflux transporters such as P-glycoprotein (P-gp). In the present study, we determined the effect of dasatinib which was approved for imatinib resistant chronic myelogenous leukemia (CML) and (Ph+) acute lymphoblastic leukemia (ALL) treatment on P-gp-mediated MDR. Our results showed that dasatinib significantly increased the sensitivity of P-gp-overexpressing MCF-7/Adr cells to doxorubicin in MTT assays; thus lead to an enhanced cytotoxicity of doxorubicin in MCF-7/Adr cells. Additionally, dasatinib increased the intracellular accumulation, inhibited the efflux of doxorubicin in MCF-7/Adr cells, and significantly enhanced doxorubicin-induced apoptosis in MCF-7/Adr cells. Further studies showed that dasatinib altered the expression levels of mRNA, protein levels of P-gp, and the phosphorylation of signal–regulated kinase (ERK) both in time-dependent (before 24 h) and dose-dependent manners at concentrations that produced MDR reversals. In conclusion, dasatinib reverses P-gp-mediated MDR by downregulating P-gp expression, which may be partly attributed to the inhibition of ERK pathway. Dasatinib may play an important role in circumventing MDR when combined with other conventional antineoplastic drugs. PMID:25482933

  12. Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells.

    PubMed

    Munoz, Jessian L; Walker, Nykia D; Scotto, Kathleen W; Rameshwar, Pranela

    2015-10-10

    Chemotherapeutic resistance can occur by P-glycoprotein (P-gp), a 12-transmembrane ATP-dependent drug efflux pump. Glioblastoma (GBM) has poor survival rate and uniformly acquired chemoresistance to its frontline agent, Temozolomide (TMZ). Despite much effort, overcoming TMZ resistance remains a challenge. We reported on autonomous induction of TMZ resistance by increased transcription MDR1, the gene for P-gp. This study investigated how P-gp and TMZ interact to gain resistance. Using an experimental model of Adriamycin-resistant DC3F cells (DC3F/Adx), we showed that increased P-gp caused TMZ resistance. Increasing concentrations of TMZ competed with Calcein for P-gp, resulting in reduced efflux in the DC3F/Adx cells. Three different inhibitors of P-gp reversed the resistance to TMZ in two different GBM cell lines, by increasing active Caspase 3. Molecular modeling predicted the binding sites to be the intracellular region of P-gp and also identified specific amino acids and kinetics of energy for the efflux of TMZ. Taken together, we confirmed P-gp targeting of TMZ, a crucial regulator of TMZ resistance in GBM. This study provides insights on the effectiveness by which TMZ competes with other P-gp substrates, thereby opening the door for combined targeted therapies. PMID:26208431

  13. Regulation of multidrug resistance 1 (MDR1)/P-glycoprotein gene expression and activity by heat-shock transcription factor 1 (HSF1).

    PubMed

    Vilaboa, N E; Galán, A; Troyano, A; de Blas, E; Aller, P

    2000-08-11

    Infection of HeLa cells with adenovirus-carrying HSF1(+) cDNA, which encodes a mutated form of HSF1 with constitutive transactivation capacity, increased multidrug resistance 1 (MDR1) mRNA level and P-glycoprotein (P-gp) cell surface content and stimulated rhodamine 123 accumulation and vinblastine efflux activity. On the other hand, infection with adenovirus-carrying HSP70 and HSP27 cDNAs did not increase MDR1/P-gp expression. HSF1 regulates MDR1/P-gp expression at the transcriptional level, since HSF1(+) bound the heat-shock consensus elements (HSEs) in the MDR1 gene promoter and also activated the expression of an MDR1 promoter-driven reporter plasmid (pMDR1(-1202)). In addition, heat-shock increased pMDR1(-1202) promoter activity but not the activity of a similar reporter plasmid with point mutations at specific HSEs, and the heat-induced increase was totally inhibited by co-transfection with an expression plasmid carrying HSF1(-), a dominant negative mutant of HSF1. The stress inducers arsenite, butyrate, and etoposide also increased pMDR1(-1202) promoter activity, but the increase was not inhibited (in the case of butyrate) or was only partially inhibited (in the case of arsenite and etoposide) by HSF1(-). These results demonstrate that HSF1 regulates MDR1 expression, and that the HSEs present in the -315 to -285 region mediate the heat-induced activation of the MDR1 promoter. However, other factors may also participate in MDR1 induction by stressing agents. PMID:10816597

  14. Osteoblastic differentiation and P-glycoprotein multidrug resistance in a murine osteosarcoma model.

    PubMed

    Takeshita, H; Kusuzaki, K; Murata, H; Suginoshita, T; Hirata, M; Hashiguchi, S; Ashihara, T; Gebhardt, M C; Mankin, H J; Hirasawa, Y

    2000-04-01

    A recent study of multidrug resistance (MDR) 1 gene transfected osteosarcoma cells found a cause-effect relationship between increased expression of P-glycoprotein (P-gp) and a low aggressive phenotype. However, several experimental and clinical studies have observed contradictory findings in that P-gp expression has been associated with tumour progression. In the present study, we characterized P-gp-positive and P-gp-negative single-cell clones of a murine osteosarcoma, to further investigate the relationship between P-gp expression and changes in cell phenotype. Although these clones were all selected by doxorubicin (DOX) exposure, they were heterogeneous with respect to MDR1 gene expression. The P-gp-positive clones revealed MDR phenotype, whereas the P-gp-negative clones showed no resistance to drugs. Morphological and functional analysis showed that both the P-gp-positive and P-gp-negative clones were more differentiated than the parent cells in terms of enhanced activity of cellular alkaline phosphatase, an increase in well-organized actin stress fibres and enhanced osteogenic activity. Moreover, these subclones all displayed a decrease in malignant potential such as oncogenic activity, tumour growth rate and metastatic ability, regardless of their P-gp status. These results indicate that the observed osteoblastic differentiation and less aggressive phenotype in DOX-selected osteosarcoma cells may not only be explained by the direct effect of P-gp, and accordingly, consideration of the effect of DOX, as well as P-gp, appears to be important. PMID:10755409

  15. Rapid, reversible modulation of blood-brain barrier P-glycoprotein transport activity by vascular endothelial growth factor

    PubMed Central

    Hawkins, Brian T.; Sykes, Destiny B.; Miller, David S.

    2010-01-01

    Increased brain expression of vascular endothelial growth factor (VEGF) is associated with neurological disease, brain injury and blood-brain barrier (BBB) dysfunction. However, the specific effect of VEGF on the efflux transporter P-glycoprotein, a critical component of the BBB, is not known. Using isolated rat brain capillaries and in situ rat brain perfusion, we determined the effect of VEGF exposure on P-glycoprotein activity in vitro and in vivo. In isolated capillaries, VEGF acutely and reversibly decreased P-glycoprotein transport activity without decreasing transport protein expression or opening tight junctions. This effect was blocked by inhibitors of the VEGF receptor flk-1 and Src kinase, but not by inhibitors of phosphatidylinostitol-3-kinase or protein kinase C. VEGF also increased Tyr-14 phosphorylation of caveolin-1, and this was blocked by the Src inhibitor PP2. Pharmacological activation of Src kinase activity mimicked the effects of VEGF on P-glycoprotein activity and Tyr-14 phosphorylation of caveolin-1. In vivo, intracerebroventricular (ICV) injection of VEGF increased brain distribution of P-glycoprotein substrates morphine and verapamil, but not the tight junction marker, sucrose; this effect was blocked by PP2. These findings indicate that VEGF decreases P-glycoprotein activity via activation of flk-1 and Src, and suggest Src-mediated phosphorylation of caveolin-1 may play a role in downregulation of P-glycoprotein activity. These findings also imply that P-glycoprotein activity is acutely diminished in pathological conditions associated with increased brain VEGF expression and that BBB VEGF/Src signaling could be targeted to acutely modulate P-glycoprotein activity and thus improve brain drug delivery. PMID:20107068

  16. Esters of the Marine-Derived Triterpene Sipholenol A Reverse P-GP-Mediated Drug Resistance

    PubMed Central

    Zhang, Yongchao; Zhang, Yun-Kai; Wang, Yi-Jun; Vispute, Saurabh G.; Jain, Sandeep; Chen, Yangmin; Li, Jessalyn; Youssef, Diaa T. A.; El Sayed, Khalid A.; Chen, Zhe-Sheng

    2015-01-01

    Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1). Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers. PMID:25874923

  17. Disease control by regulation of P-glycoprotein on lymphocytes in patients with rheumatoid arthritis

    PubMed Central

    Tsujimura, Shizuyo; Tanaka, Yoshiya

    2015-01-01

    The main purpose of treatment of rheumatoid arthritis (RA) with disease modifying antirheumatic drugs (DMARDs) is to control activation of lymphocytes, although some patients do not respond adequately to such treatment. Among various mechanisms of multidrug resistance, P-glycoprotein (P-gp), a member of ATP-binding cassette transporters, causes drug-resistance by efflux of intracellular drugs. Certain stimuli, such as tumor necrosis factor-?, activate lymphocytes and induce P-gp expression on lymphocytes, as evident in active RA. Studies from our laboratories showed spontaneous nuclear accumulation of human Y-box-binding protein-1, a multidrug resistance 1 transcription factor, in unstimulated lymphocytes, and surface overexpression of P-gp on peripheral lymphocytes of RA patients with high disease activity. The significant correlation between P-gp expression level and RA disease activity is associated with active efflux of drugs from the lymphocyte cytoplasm and in drug-resistance. However, the use of biological agents that reduce P-gp expression as well as P-gp antagonists (e.g., cyclosporine) can successfully reduce the efflux of corticosteroids from lymphocytes in vitro, suggesting that both types of drugs can be used to overcome drug-resistance and improve clinical outcome. We conclude that lymphocytes activated by various stimuli in RA patients with highly active disease acquire P-gp-mediated multidrug resistance against corticosteroids and probably some DMARDs, which are substrates of P-gp. Inhibition/reduction of P-gp could overcome such drug resistance. Expression of P-gp on lymphocytes is a promising marker of drug resistance and a suitable therapeutic target to prevent drug resistance in patients with active RA. PMID:26618109

  18. New insight into p-glycoprotein as a drug target.

    PubMed

    Breier, Albert; Gibalova, Lenka; Seres, Mario; Barancik, Miroslav; Sulova, Zdenka

    2013-01-01

    Multidrug resistance (MDR) of cancer tissue is a phenomenon in which cancer cells exhibit reduced sensitivity to a large group of unrelated drugs with different mechanisms of pharmacological activity. Mechanisms that reduce cell sensitivity to damage induced by a variety of chemicals were found to be caused by diverse, albeit well-defined, phenotypic alterations. The molecular basis of MDR commonly involves overexpression of the plasma membrane drug efflux pump - P-glycoprotein (P-gp). This glycoprotein is an ABCB1 member of the ABC transporter family. Cells that develop MDR of this type express massive amounts of P-gp that can induce a drug resistance of more than 100 times higher than normal cells to several drugs, which are substrates of P-gp. Expression of P-gp could be inherent to cancer cells with regard to the specialized tissues from which the cells originated. This is often designated as intrinsic Pgp- mediated MDR. However, overexpression of P-gp may be induced by selection and/or adaptation of cells during exposure to anticancer drugs; this particular example is known as acquired P-gp-mediated MDR. Drugs that are potential inducers of P-gp are often substrates of this transporter. However, several substances that have been proven to not be transportable by P-gp (such as cisplatin or alltrans retinoic acid) could induce minor improvements in P-gp overexpression. It is generally accepted that the drug efflux activity of Pgp is a major cause of reduced cell sensitivity to several compounds. However, P-gp may have side effects that are independent of its drug efflux activity. Several authors have described a direct influence of P-gp on the function of proteins involved in regulatory pathways, including apoptotic progression (such as p53, caspase-3 and Pokemon). Moreover, alterations of cell regulatory pathways, including protein expression, glycosylation and phosphorylation, have been demonstrated in cells overexpressing P-gp, which may consequently induce changes in cell sensitivity to substances that are not P-gp substrates or modulators. We recently reported that P-gppositive L1210 cells exhibit reduced sensitivity to cisplatin, concanavalin A, thapsigargin and tunicamycin. Thus, P-gp-mediated MDR represents a more complex process than was expected, and the unintended effects of P-gp overexpression should be considered when describing this phenotype. The present review aims to provide the most current informations about P-gp-mediated MDR while paying particular attention to the possible dual function of this protein as a drug efflux pump and a regulatory protein that influences diverse cell processes. From a clinical standpoint, overexpression of P-gp in cancer cells represents a real obstacle to effective chemotherapy for malignant diseases. Therefore, this protein should be considered as a viable target for pharmaceutical design. PMID:22931413

  19. Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein.

    PubMed

    Loo, Tip W; Bartlett, M Claire; Clarke, David M

    2004-01-01

    The human multidrug resistance P-glycoprotein (P-gp) uses ATP to transport a wide variety of structurally unrelated cytotoxic compounds out of the cell. The relatively high expression of P-gp in organs such as the intestine, kidney, blood-brain/testes barrier and in some tumor cells can compromise chemotherapy treatments for patients with cancer or AIDS/HIV. It has been difficult to inhibit P-gp during chemotherapy with noncovalent inhibitors because the relatively high levels of inhibitors have severe side effects. An alternative approach to inhibit P-gp would be to covalently modify cysteine residues within the NBDs. In this study, we tested whether metabolites of disulfiram, a drug currently used to treat chronic alcoholism, could inhibit P-gp. We show that the disulfiram metabolites, S-methyl N,N-diethylthiocarbamate sulfoxide and S-methyl N,N-diethylthiocarbamate sulfone inhibited the verapamil-stimulated ATPase activity of P-gp with IC50 values (concentrations that result in 50% inhibition of activity) of 9 and 4.8 microM, respectively. Similarly, S-methyl N,N-diethylthiocarbamate sulfoxide and S-methyl N,N-diethylthiocarbamate sulfone inhibited the activity of aldehyde dehydrogenase with IC50 values of 3.2 and 1.7 microM, respectively. Inhibition of P-gp by the metabolites was not reversed by addition of the reducing compound, dithiothreitol. We then determined which endogenous cysteine residue was responsible for inhibiting P-gp activity after exposure to the disulfiram metabolites. Treatment of P-gp mutants containing a single cysteine residue showed that inactivation was primarily due to modification of Cys1074 in NBD2. These results indicate that metabolites of disulfiram can covalently inactivate P-gp. Covalent modification of drug transporters could be a useful approach for inhibiting their activities during chemotherapy. PMID:16028354

  20. Functional characterization of P-glycoprotein in the intertidal copepod Tigriopus japonicus and its potential role in remediating metal pollution.

    PubMed

    Jeong, Chang-Bum; Kim, Bo-Mi; Kim, Rae-Kwon; Park, Heum Gi; Lee, Su-Jae; Shin, Kyung-Hoon; Leung, Kenneth Mei Yee; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-11-01

    The intertidal copepod Tigriopus japonicus has been widely used in aquatic toxicity testing for diverse environmental pollutants including metals. Despite relatively well-characterized in vivo physiological modulations in response to aquatic pollutants, the molecular mechanisms due to toxicity and detoxification are still unclear. To better understand the mechanisms of metal transport and further detoxification, T. japonicus P-glycoprotein (TJ-P-gp) with conserved motifs/domains was cloned and measured for protein activity against the transcript and protein expression profiles in response to metal exposure. Specifically, we characterized the preliminary efflux activity and membrane topology of TJ-P-gp protein that supports a transport function for chemicals. To uncover whether the efflux activity of TJ-P-gp protein would be modulated by metal treatment, copepods were exposed to three metals (Cd, Cu, and Zn), and were observed for both dose- and time-dependency on the efflux activity of TJ-P-gp protein with or without 10?M of P-gp-specific inhibitors verapamil and zosuquidar (LY335979) for 24h over a wide range of metal concentrations. In particular, treatment with zosuquidar induced metal accumulation in the inner body of T. japonicus. In addition, three metals significantly induced the transporting activity of TJ-P-gp in a concentration-dependent manner in both transcript and protein levels within 24h. Together these data indicate that T. japonicus has a conserved P-gp-mediated metal defense system through the induction of transcriptional up-regulation of TJ-P-gp gene and TJ-P-gp protein activity. This finding provides further understanding of the molecular defense mechanisms involved in P-glycoprotein-mediated metal detoxification in copepods. PMID:25198425

  1. Tetrandrine and fangchinoline, bisbenzylisoquinoline alkaloids from Stephania tetrandra can reverse multidrug resistance by inhibiting P-glycoprotein activity in multidrug resistant human cancer cells.

    PubMed

    Sun, Yan Fang; Wink, Michael

    2014-01-01

    The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000 cancer cells in combination with doxorubicin, a common cancer chemotherapeutic agent. Furthermore, tetrandrine and fangchinoline increased the intracellular accumulation of the fluorescent P-glycoprotein (P-gp) substrate rhodamine 123 (Rho123) and inhibited its efflux in Caco-2 and CEM/ADR5000 cells. In addition, tetrandrine and fangchinoline significantly reduced P-gp expression in a concentration-dependent manner. These results suggest that tetrandrine and fangchinoline can reverse MDR by increasing the intracellular concentration of anticancer drugs, and thus they could serve as a lead for developing new drugs to overcome P-gp mediated drug resistance in clinic cancer therapy. PMID:24856768

  2. Abraxane, the Nanoparticle Formulation of Paclitaxel Can Induce Drug Resistance by Up-Regulation of P-gp

    PubMed Central

    Bu, Xiangli; Ma, Huailei; Gong, He; Liu, Juan; Fang, Xiangdong; Hu, Zhiyuan; Fang, Qiaojun

    2015-01-01

    P-glycoprotein (P-gp) can actively pump paclitaxel (PTX) out of cells and induces drug resistance. Abraxane, a nanoparticle (NP) formulation of PTX, has multiple clinical advantages over the single molecule form. However, it is still unclear whether Abraxane overcomes the common small molecule drug resistance problem mediated by P-gp. Here we were able to establish an Abraxane-resistant cell line from the lung adenocarcinoma cell line A549. We compared the transcriptome of A549/Abr resistant cell line to that of its parental cell line using RNA-Seq technology. Several pathways were found to be up or down regulated. Specifically, the most significantly up-regulated gene was ABCB1, which translates into P-glycoprotein. We verified the overexpression of P-glycoprotein and confirmed its function by reversing the drug resistance with P-gp inhibitor Verapamil. The results suggest that efflux pathway plays an important role in the Abraxane-resistant cell line we established. However, the relevance of this P-gp mediated Abraxane resistance in tumors of lung cancer patients remains unknown. PMID:26182353

  3. Modulation of P-glycoprotein at the Human Blood-Brain Barrier by Quinidine or Rifampin Treatment: A Positron Emission Tomography Imaging Study.

    PubMed

    Liu, Li; Collier, Ann C; Link, Jeanne M; Domino, Karen B; Mankoff, David A; Eary, Janet F; Spiekerman, Charles F; Hsiao, Peng; Deo, Anand K; Unadkat, Jashvant D

    2015-11-01

    Permeability-glycoprotein (P-glycoprotein, P-gp), an efflux transporter at the human blood-brain barrier (BBB), is a significant obstacle to central nervous system (CNS) delivery of P-gp substrate drugs. Using positron emission tomography imaging, we investigated P-gp modulation at the human BBB by an approved P-gp inhibitor, quinidine, or the P-gp inducer, rifampin. Cerebral blood flow (CBF) and BBB P-gp activity were respectively measured by administration of (15)O-water followed by (11)C-verapamil. In a crossover design, healthy volunteers received quinidine and 11-29 days of rifampin treatment during different study periods. CBF and P-gp activity was measured in the absence (control; prior to quinidine treatment) and presence of P-gp modulation. At clinically relevant quinidine plasma concentrations, P-gp inhibition resulted in a 60% increase in (11)C-radioactivity distribution across the human BBB as measured by the brain extraction ratio (ER) of (11)C-radioactivity. Furthermore, the magnitude of BBB P-gp inhibition by quinidine was successfully predicted by a combination of in vitro and macaque data, but not by rat data. Although our findings demonstrated that quinidine did not completely inhibit P-gp at the human BBB, it has the potential to produce clinically significant CNS drug interactions with P-gp substrate drugs that exhibit a narrow therapeutic window and are significantly excluded from the brain by P-gp. Rifampin treatment induced systemic CYP3A metabolism of (11)C-verapamil; however, it reduced the ER by 6%. Therefore, we conclude that rifampin, at its usual clinical dose, cannot be used to induce P-gp at the human BBB to a clinically meaningful extent and is unlikely to cause inadvertent BBB-inductive drug interactions. PMID:26354948

  4. P-Glycoprotein Induction Ameliorates Colistin Induced Nephrotoxicity in Cultured Human Proximal Tubular Cells

    PubMed Central

    Lee, Sun-hyo; Kim, Jin-sun; Ravichandran, Kameswaran; Gil, Hyo-Wook; Song, Ho-yeon; Hong, Sae-yong

    2015-01-01

    The pathogenesis of colistin induced nephrotoxicity is poorly understood. Currently there are no effective therapeutic or prophylactic agents available. This study was aimed to determine the mechanism of colistin induced nephrotoxicity and to determine whether P-glycoprotein (P-gp) induction could prevent colistin induced nephrotoxicity. Colistin induced cell toxicity in cultured human proximal tubular cells in both dose and time dependent manner. Colistin provoked ROS in a dose dependent manner as measured by DCF-DA. To investigate apoptosis, caspase 3/7 activity was determined. Caspase 3/7 activity was increased dose dependently (25, 50, 100 ?g/ml) at 6 h. Autophagosome formation was assessed by measuring LC3- II/LC3-I ratio. The ratio of LC3-II to LC3- I was increased at 2 h (25 ?g/ml). Suppression of autophagosome formation increased colistin induced nephrotoxicity. The expression of P-gp and the cell toxicity was determined in colistin with or without dexamethasone (P-gp inducer) and verapamil (selective P-gp inhibitor). Colistin itself suppressed the expression of P-gp. P-gp expression and activity decreased colistin induced nephrotoxicity with dexamethasone treatment. In addition induced P-gp transporter was shown to improve the efflux effect on colistin treated HK2 cell line, which was demonstrated by calcein-AM fluorescence accumulation assay. The increased activity could be blocked by N-acetylcysteine. In conclusion, colistin induces nephrotoxicity by suppressing P-gp. Induction of P-gp could ameliorate colistin induced nephrotoxicity by decreasing apoptosis. PMID:26287374

  5. Inhibition of P-Glycoprotein by HIV Protease Inhibitors Increases Intracellular Accumulation of Berberine in Murine and Human Macrophages

    PubMed Central

    Zha, Weibin; Wang, Guangji; Xu, Weiren; Liu, Xuyuan; Wang, Yun; Zha, Beth S.; Shi, Jian; Zhao, Qijin; Gerk, Phillip M.; Studer, Elaine; Hylemon, Phillip B.; Pandak, William M.; Zhou, Huiping

    2013-01-01

    Background HIV protease inhibitor (PI)-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR), a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER) stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp) in HIV PI-mediated accumulation of BBR in macrophages. Methodology and Principal Findings Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT) and human P-gp transfected (MDCK/P-gp) cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123) efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp. Conclusion and Significance HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic. PMID:23372711

  6. The Human P-Glycoprotein Transporter Enhances the Type I Interferon Response to Listeria monocytogenes Infection

    PubMed Central

    Sigal, Nadejda; Kaplan Zeevi, Millie; Weinstein, Shiri; Peer, Dan

    2015-01-01

    Human multidrug efflux transporters are known for their ability to extrude antibiotics and toxic compounds out of cells, yet accumulating data indicate they have additional functions in diverse physiological processes not related to drug efflux. Here, we show that the human multidrug transporter P-glycoprotein (P-gp) (also named MDR1 and ABCB1) is transcriptionally induced in the monocytic cell line THP-1 upon infection with the human intracellular bacterial pathogen Listeria monocytogenes. Notably, we found that P-gp is important for full activation of the type I interferon response elicited against L. monocytogenes bacteria. Both inhibition of P-gp function by verapamil and inhibition of its transcription using mRNA silencing led to a reduction in the magnitude of the type I response in infected cells. This function of P-gp was specific to type I interferon cytokines elicited against cytosolic replicating bacteria and was not observed in response to cyclic di-AMP (c-di-AMP), a molecule that was shown to be secreted by L. monocytogenes during infection and to trigger type I interferons. Moreover, P-gp was not involved in activation of other proinflammatory cytokines, such as those triggered by vacuolar-restricted L. monocytogenes or lipopolysaccharide (LPS). Taken together, these findings demonstrate a role for P-gp in proper development of an innate immune response against intracellular pathogens, highlighting the complexity in employing therapeutic strategies that involve inhibition of multidrug resistance (MDR) efflux pumps. PMID:25824830

  7. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    PubMed Central

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-01-01

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation. PMID:26114386

  8. Circadian modulation in the intestinal absorption of P-glycoprotein substrates in monkeys.

    PubMed

    Iwasaki, Masaru; Koyanagi, Satoru; Suzuki, Norio; Katamune, Chiharu; Matsunaga, Naoya; Watanabe, Nobuaki; Takahashi, Masayuki; Izumi, Takashi; Ohdo, Shigehiro

    2015-07-01

    Recent studies in laboratory rodents have revealed that circadian oscillation in the physiologic functions affecting drug disposition underlies the dosing time-dependent change in pharmacokinetics. However, it is difficult to predict the circadian change in the drug pharmacokinetics in a diurnal human by using the data collected from nocturnal rodents. In this study, we used cynomolgus monkeys, diurnal active animals, to evaluate the relevance of intestinal expression of P-glycoprotein (P-gp) to the dosing time dependency of the pharmacokinetics of its substrates. The rhythmic phases of circadian gene expression in the suprachiasmatic nuclei (the mammalian circadian pacemaker) of cynomolgus monkeys were similar to those reported in nocturnal rodents. On the other hand, the expression of circadian clock genes in the intestinal epithelial cells of monkeys oscillated at opposite phases in rodents. The intestinal expression of P-gp in the small intestine of monkeys was also oscillated in a circadian time-dependent manner. Furthermore, the intestinal absorption of P-gp substrates (quinidine and etoposide) was substantially suppressed by administering the drugs at the times of day when P-gp levels were abundant. By contrast, there was no significant dosing time-dependent difference in the absorption of the non-P-gp substrate (acetaminophen). The oscillation in the intestinal expression of P-gp appears to affect the pharmacokinetics of its substrates. Identification of circadian factors affecting the drug disposition in laboratory monkeys may improve the predictive accuracy of pharmacokinetics in humans. PMID:25901027

  9. Inhibition of P-glycoprotein Gene Expression and Function Enhances Triptolide-induced Hepatotoxicity in Mice

    PubMed Central

    Kong, Ling-Lei; zhuang, Xiao-Mei; Yang, Hai-Ying; Yuan, Mei; Xu, Liang; Li, Hua

    2015-01-01

    Triptolide (TP) is the major active principle of Tripterygium wilfordii Hook f. and very effective in treatment of autoimmune diseases. However, TP induced hepatotoxicity limited its clinical applications. Our previous study found that TP was a substrate of P-glycoprotein and its hepatobiliary clearance was markedly affected by P-gp modulation in sandwich-cultured rat hepatocytes. In this study, small interfering RNA (siRNA) and specific inhibitor tariquidar were used to investigate the impact of P-gp down regulation on TP-induced hepatotoxicity. The results showed that when the function of P-gp was inhibited by mdr1a-1 siRNA or tariquidar, the systemic and hepatic exposures of TP were significantly increased. The aggravated hepatotoxicity was evidenced with the remarkably lifted levels of serum biomarkers (ALT and AST) and pathological changes in liver. The other toxicological indicators (MDA, SOD and Bcl-2/Bax) were also significantly changed by P-gp inhibition. The data analysis showed that the increase of TP exposure in mice was quantitatively correlated to the enhanced hepatotoxicity, and the hepatic exposure was more relevant to the toxicity. P-gp mediated clearance played a significant role in TP detoxification. The risk of herb-drug interaction likely occurs when TP is concomitant with P-gp inhibitors or substrates in clinic. PMID:26134275

  10. Oral Cyclosporin A Inhibits CD4 T cell P-glycoprotein Activity in HIV-Infected Adults Initiating Treatment with Nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Hulgan, Todd; Donahue, John P.; Smeaton, Laura; Pu, Minya; Wang, Hongying; Lederman, Michael M.; Smith, Kimberly; Valdez, Hernan; Pilcher, Christopher; Haas, David W.

    2010-01-01

    Purpose P-glycoprotein limits tissue penetration of many antiretroviral drugs. We characterized effects of the P-glycoprotein substrate cyclosporin A on T cell P-glycoprotein activity in HIV-infected AIDS Clinical Trials Group study A5138 participants. Methods We studied P-glycoprotein activity on CD4 and CD8 T cells in 16 participants randomized to receive oral cyclosporin A (n=9) or not (n=7) during initiation antiretroviral therapy (ART) that did not include protease or non-nucleoside reverse transcriptase inhibitors. Results CD4 T cell P-glycoprotein activity decreased by a median of 8 percentage points with cyclosporin A/ART (difference between cyclosporin A/ART versus ART only P=0.001). Plasma trough cyclosporin A concentrations correlated with change in P-glycoprotein activity in several T cell subsets. Conclusions Oral cyclosporin A can inhibit peripheral blood CD4 T cell P-glycoprotein activity. Targeted P-glycoprotein inhibition might enhance delivery of ART to T cells. PMID:19779705

  11. Induction of P-Glycoprotein by Antiretroviral Drugs in Human Brain Microvessel Endothelial Cells

    PubMed Central

    Chan, Gary N. Y.; Patel, Rucha; Cummins, Carolyn L.

    2013-01-01

    The membrane-associated drug transporter P-glycoprotein (P-gp) plays an essential role in drug efflux from the brain. Induction of this protein at the blood-brain barrier (BBB) could further affect the ability of a drug to enter the brain. At present, P-gp induction mediated by antiretroviral drugs at the BBB has not been fully investigated. Since P-gp expression is regulated by ligand-activated nuclear receptors, i.e., human pregnane X receptor (hPXR) and human constitutive androstane receptor (hCAR), these receptors could represent potential pathways involved in P-gp induction by antiretroviral drugs. The aims of this study were (i) to determine whether antiretroviral drugs currently used in HIV pharmacotherapy are ligands for hPXR or hCAR and (ii) to examine P-gp function and expression in human brain microvessel endothelial cells treated with antiretroviral drugs identified as ligands of hPXR and/or hCAR. Luciferase reporter gene assays were performed to examine the activation of hPXR and hCAR by antiretroviral drugs. The hCMEC/D3 cell line, which is known to display several morphological and biochemical properties of the BBB in humans, was used to examine P-gp induction following 72 h of exposure to these agents. Amprenavir, atazanavir, darunavir, efavirenz, ritonavir, and lopinavir were found to activate hPXR, whereas abacavir, efavirenz, and nevirapine were found to activate hCAR. P-gp expression and function were significantly induced in hCMEC/D3 cells treated with these drugs at clinical concentrations in plasma. Together, our data suggest that P-gp induction could occur at the BBB during chronic treatment with antiretroviral drugs identified as ligands of hPXR and/or hCAR. PMID:23836171

  12. Effect of FosPeg® mediated photoactivation on P-gp/ABCB1 protein expression in human nasopharyngeal carcinoma cells.

    PubMed

    Wu, R W K; Chu, E S M; Huang, Z; Xu, C S; Ip, C W; Yow, C M N

    2015-07-01

    Multidrug resistance (MDR) refers to the ability of cancer cells to develop cross resistance to a range of anticancer drugs which are structurally and functionally unrelated. P-glycoprotein (P-gp) is the best studied MDR phenotype in photodynamic therapy (PDT) treated cells. Our pervious study demonstrated that FosPeg® mediated PDT is effective to NPC cell line models. In this in vitro study, the expression of MDR1 gene and its product P-gp in undifferentiated, poorly differentiated and well differentiated human nasopharyngeal carcinoma (NPC) cells were investigated. The influence of P-gp efflux activities on photosensitizer FosPeg® was also examined. Regardless of the differentiation status, PDT tested NPC cell lines all expressed P-gp protein. Results indicated that FosPeg® photoactivation could heighten the expression of MDR1 gene and P-gp transporter protein in a dose dependent manner. Up to 2-fold increase of P-gp protein expression were seen in NPC cells after FosPeg® mediated PDT. Interestingly, our finding demonstrated that FosPeg® mediated PDT efficiency is independent to the MDR1 gene and P-gp protein expression in NPC cells. FosPeg® itself is not the substrate of P-gp transporter protein and no efflux of FosPeg® were observed in NPC cells. Therefore, the PDT efficiency would not be affected even though FosPeg® mediated PDT could induce MDR1 gene and P-gp protein expression in NPC cells. FosPeg® mediated PDT could be a potential therapeutic approach for MDR cancer patients. PMID:25900553

  13. Evidence against a role of P-glycoprotein in the clearance of the Alzheimer's disease A?1-42 peptides.

    PubMed

    Bello, Ivan; Salerno, Milena

    2015-05-01

    It has been proposed that the amyloid-? peptides (A?) cause the neuronal degeneration in the Alzheimer's disease brain. An imbalance between peptide production at the neuronal level and their elimination across the blood-brain-barrier (BBB) results in peptide accumulation inside the brain. The identification and functional characterization of the transport systems in the BBB with the capacity to transport A? is crucial for the understanding of A? peptide traffic from the brain to the blood. In this context, it has been suggested that the P-glycoprotein (P-gp), expressed in endothelial cells of the BBB, plays a role in the elimination of A?. However, there is little, if any, experimental evidence to support this; therefore, the aim of this investigation was to determine whether P-gp is capable of transporting A? peptides. Our results show that ATPase activity measured in plasma membrane vesicles of K562 cells overexpressing P-gp is not increased by the presence of A?42, suggesting that A?42 is not a P-gp substrate. Similarly, P-gp of pirarubicin was unaffected by A?42. Moreover, the overexpression of P-gp does not protect cells against A?42 toxicity. Taken together, our results support the conclusion that A?42 is not transported by P-gp. PMID:25591827

  14. Ligand and Structure-Based Classification Models for Prediction of P-Glycoprotein Inhibitors

    PubMed Central

    2013-01-01

    The ABC transporter P-glycoprotein (P-gp) actively transports a wide range of drugs and toxins out of cells, and is therefore related to multidrug resistance and the ADME profile of therapeutics. Thus, development of predictive in silico models for the identification of P-gp inhibitors is of great interest in the field of drug discovery and development. So far in silico P-gp inhibitor prediction was dominated by ligand-based approaches because of the lack of high-quality structural information about P-gp. The present study aims at comparing the P-gp inhibitor/noninhibitor classification performance obtained by docking into a homology model of P-gp, to supervised machine learning methods, such as Kappa nearest neighbor, support vector machine (SVM), random fores,t and binary QSAR, by using a large, structurally diverse data set. In addition, the applicability domain of the models was assessed using an algorithm based on Euclidean distance. Results show that random forest and SVM performed best for classification of P-gp inhibitors and noninhibitors, correctly predicting 73/75% of the external test set compounds. Classification based on the docking experiments using the scoring function ChemScore resulted in the correct prediction of 61% of the external test set. This demonstrates that ligand-based models currently remain the methods of choice for accurately predicting P-gp inhibitors. However, structure-based classification offers information about possible drug/protein interactions, which helps in understanding the molecular basis of ligand-transporter interaction and could therefore also support lead optimization. PMID:24050383

  15. Trametenolic acid B reverses multidrug resistance in breast cancer cells through regulating the expression level of P-glycoprotein.

    PubMed

    Zhang, Qiaoyin; Wang, Junzhi; He, Haibo; Liu, Hongbing; Yan, Ximing; Zou, Kun

    2014-07-01

    Trametenolic acid B (TAB) is the main active composition of Trametes lactinea (Berk.) Pat which possesses antitumor activities. There was no report its antitumor effect through regulating P-glycoprotein (P-gp) so far, due toP-gp over expression is one of the most important mechanisms contributing to the multiple drug resistance phenotype. The present aim was to investigate the effects of TAB on P-gp in multidrug-resistant cells;Paclitaxel-resistant cell line MDA-MB-231/Taxol was established by stepwise exposure for 10 months.MDA-MB-231 cells and MDA-MB-231/Taxol cells were treated with TAB, and their growth was evaluated using MTT assays. Paclitaxel accumulation in the cells was analyzed by high performance liquid chromatogram(HPLC). The activity of P-gp was detected by intracellular accumulation of rhodamine 123 (Rho123), and the protein expression of P-gp was evaluated using western blot. Results indicated that the IC50 of MDA-MB-231/Taxol to paclitaxel (Taxol) was 33 times higher than that of nature MDA-MB-231. TAB increased the intracellular concentration of Taxol and inhibited the activity of P-gp and suppressed the expression of P-gp in MDA-MB-231/Taxol cells. Our present results showed that TAB could reverse Taxol resistance in MDA-MB-231/Taxol cells,mainly inhibiting the activity of P-gp and down-regulating the expression level of P-gp, and then enhancing the accumulation of chemotherapy agents. PMID:25289403

  16. Reaction dynamics of ATP hydrolysis catalyzed by P-glycoprotein.

    PubMed

    Scian, Michele; Acchione, Mauro; Li, Mavis; Atkins, William M

    2014-02-18

    P-glycoprotein (P-gp) is a member of the ABC transporter family that confers drug resistance to many tumors by catalyzing their efflux, and it is a major component of drug-drug interactions. P-gp couples drug efflux with ATP hydrolysis by coordinating conformational changes in the drug binding sites with the hydrolysis of ATP and release of ADP. To understand the relative rates of the chemical step for hydrolysis and the conformational changes that follow it, we exploited isotope exchange methods to determine the extent to which the ATP hydrolysis step is reversible. With ?(18)O4-labeled ATP, no positional isotope exchange is detectable at the bridging ?-phosphorus-O-?-phosphorus bond. Furthermore, the phosphate derived from hydrolysis includes a constant ratio of three (18)O/two (18)O/one (18)O that reflects the isotopic composition of the starting ATP in multiple experiments. Thus, H2O-exchange with HPO4(2-) (Pi) was negligible, suggesting that a [P-gp·ADP·Pi] is not long-lived. This further demonstrates that the hydrolysis is essentially irreversible in the active site. These mechanistic details of ATP hydrolysis are consistent with a very fast conformational change immediately following, or concomitant with, hydrolysis of the ?-phosphate linkage that ensures a high commitment to catalysis in both drug-free and drug-bound states. PMID:24506763

  17. ABCB1 (MDR1)-type P-glycoproteins at the blood-brain barrier modulate the activity of the hypothalamic-pituitary-adrenocortical system: implications for affective disorder.

    PubMed

    Müller, Marianne B; Keck, Martin E; Binder, Elisabeth B; Kresse, Adelheid E; Hagemeyer, Thomas P; Landgraf, Rainer; Holsboer, Florian; Uhr, Manfred

    2003-11-01

    Multidrug-resistance gene 1-type P-glycoproteins (ABCB1-type P-gps) protect the brain against the accumulation of many toxic xenobiotics and drugs. We recently could show that the access of the endogenous glucocorticoids corticosterone and cortisol to the brain are regulated by ABCB1-type P-gps in vivo. ABCB1-type P-gp function, therefore, is likely to exert a profound influence on the regulation of the hypothalamic-pituitary-adrenocortical (HPA) system. Hyperactivity of the HPA system is frequently observed in human affective disorder, and a considerable amount of evidence has been accumulated suggesting that normalization of the HPA system might be the final step necessary for stable remission of the disease. To examine whether blood-brain barrier (BBB) function influences neuroendocrine regulation, we investigated HPA system activity in abcb1ab (-/-) mice under basal conditions and following stress. Abcb1ab (-/-) mice showed consistently lower plasma ACTH levels and lower evening plasma corticosterone levels. CRH mRNA expression in the hypothalamic paraventricular nucleus was decreased and pituitary POMC mRNA expressing cells were significantly reduced in number in abcb1ab (-/-) mutants; however, they showed a normal activation of the HPA system following CRH stimulation. Lower doses of dexamethasone were required to suppress plasma corticosterone levels in mutants. Our data thus provide evidence for a sustained suppression of the HPA system at the hypothalamic level in abcb1ab (-/-) mice, suggesting that BBB function significantly regulates HPA system activity. Whether naturally occurring polymorphisms in the human ABCB1 gene might result in persistent changes in the responsiveness and regulation of the HPA system will be the subject of future investigations, correlating both genetic information with individual characteristics of the neuroendocrine phenotype. PMID:12888779

  18. Evaluation of dual P-gp-BCRP inhibitors as nanoparticle formulation.

    PubMed

    Singh, Manu Smriti; Juvale, Kapil; Wiese, Michael; Lamprecht, Alf

    2015-09-18

    Overcoming multidrug resistance (MDR) in cancer is a major challenge and efforts are on-going to develop inhibitors against the most characterized and ubiquitous MDR transporters: P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP1) and breast cancer resistance protein (BCRP). Recently reported, two 4-anilinoquinazolines (compounds 1 and 2), demonstrate potential MDR reversal activity against BCRP and to a lesser extent, P-gp. In this work, we formulated the compounds as polymeric nanoparticles (NPs) and assessed their MDR inhibitory activity in relevant BCRP and P-gp over-expressing cell line models. Particles in the size range 300-365nm with a loading efficiency of 69% (compound 1 NP) and 77% (compound 2 NP) respectively were obtained. BCRP inhibition was observed in Hoechst 33342 and pheophorbide A assays while P-gp inhibition was evaluated in calcein AM and rhodamine-123 assays. In cytotoxicity studies, while BCRP expressing cells showed complete reversal of drug resistance in nearly all treatment groups (both compounds and their respective NP); a higher reversal in NP treated group was obtained as compared with inhibitory compound treated group in P-gp expressing cells. These results demonstrate promising inhibitory activity of both formulations, especially against P-gp expressing cells; which is possibly due to a prolonged presence of encapsulated compounds in NPs and consequently a prolonged sensitization of transmembrane drug transporter. These formulations can therefore be considered as dual-transporter inhibitors and it is imperative to investigate both inhibitors in animal models of MDR owing to the presence of multiple efflux transporters in several cancer models. PMID:25976226

  19. Use of cassette dosing approach to examine the effects of P-glycoprotein on the brain and cerebrospinal fluid concentrations in wild-type and P-glycoprotein knockout rats.

    PubMed

    Liu, Xingrong; Cheong, Jonathan; Ding, Xiao; Deshmukh, Gauri

    2014-04-01

    The study objectives were 1) to test the hypothesis that the lack of P-glycoprotein (P-gp) and the inhibition of breast cancer resistance protein (Bcrp) at the blood-brain barrier after cassette dosing of potent P-gp and Bcrp inhibitors were due to low plasma concentrations of those inhibitors and 2) to examine the effects of P-gp on the unbound brain (C(u,brain)) and cerebrospinal fluid (CSF) concentrations (C(u,CSF)) of P-gp substrates in rats. In vitro inhibition of 11 compounds (amprenavir, citalopram, digoxin, elacridar, imatinib, Ko143 [(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester], loperamide, prazosin, quinidine, sulfasalazine, and verapamil) on P-gp and Bcrp was examined in P-gp- and Bcrp-expressing Madin-Darby canine kidney cells, respectively. An in vivo study was conducted in wild-type and Mdr1a(-/-) rats after subcutaneous cassette dosing of the 11 compounds at 1-3 mg/kg, and the brain, CSF, and plasma concentrations of these compounds were determined. At the maximal unbound concentrations observed in rats at 1-3 mg/kg, P-gp and Bcrp were not inhibited by a cassette of the 11 compounds. For non-P-gp/Bcrp substrates, similar C(u,brain), C(u,CSF), and unbound plasma concentrations (C(u,plasma)) were observed in wild-type and P-gp knockout rats. For P-gp/Bcrp substrates, C(u,brain) ? C(u,CSF) ? C(u,plasma) in wild-type rats, but C(u,brain) and C(u,CSF) increased in the P-gp knockout rats and were within 3-fold of C(u,plasma) for six of the seven P-gp substrates. These results indicate that P-gp and Bcrp inhibition at the blood-brain barrier is unlikely in cassette dosing and also suggest that P-gp and Bcrp activity at the blood-CSF barrier is functionally not important in determination of the CSF concentration for their substrates. PMID:24398459

  20. Borneol Depresses P-Glycoprotein Function by a NF-?B Signaling Mediated Mechanism in a Blood Brain Barrier in Vitro Model

    PubMed Central

    Fan, Xiang; Chai, Lijuan; Zhang, Han; Wang, Yuefei; Zhang, Boli; Gao, Xiumei

    2015-01-01

    P-glycoprotein (P-gp) on brain microvascular endothelial cells (BMECs) that form the blood brain barrier (BBB), influences transportation of substances between blood and brain. The objective of this study was to characterize the effects of borneol on P-gp efflux function on BBB and explore the potential mechanisms. We established an in vitro BBB model comprised of rat BMECs and astrocytes to measure the effects of borneol on the known P-gp substrates transport across BBB, and examined the function and expression of P-gp in BMECs and the signaling pathways regulating P-gp expression. Borneol increased intracellular accumulation of Rhodamine 123, enhanced verapamil and digoxin across the BBB in vitro model, and depressed mdr1a mRNA and P-gp expression. Borneol could activate nuclear factor-?B (NF-?B) and inhibition of NF-?B with MG132 (carbobenzoxy-Leu-Leu-leucinal) and SN50 (an inhibitory peptide) obscuring the P-gp decreases induced by borneol. These data suggested that borneol depresses P-gp function in BMECs by a NF-?B signaling medicated mechanism in a BBB in vitro model. PMID:26593909

  1. P-Glycoprotein Limits Oral Availability, Brain Penetration, and Toxicity of an Anionic Drug, the Antibiotic Salinomycin?

    PubMed Central

    Lagas, Jurjen S.; Sparidans, Rolf W.; van Waterschoot, Robert A. B.; Wagenaar, Els; Beijnen, Jos H.; Schinkel, Alfred H.

    2008-01-01

    Salinomycin is a polyether organic anion that is extensively used as a coccidiostatic antibiotic in poultry and commonly fed to ruminant animals to improve feed efficiency. However, salinomycin also causes severe toxicity when accidentally fed to animals in high doses. In addition, humans are highly sensitive to salinomycin and severe toxicity has been reported. Multidrug efflux transporters like P-glycoprotein (P-gp), BCRP, and MRP2 are highly expressed in the intestine and can restrict the oral uptake and tissue penetration of xenobiotics. The purpose of this study was to investigate whether the anionic drug salinomycin is a substrate for one or more of these efflux pumps. Salinomycin was actively transported by human MDR1 P-gp expressed in polarized MDCK-II monolayers but not by the known organic anion transporters human MRP2 and murine Bcrp1. Using P-gp-deficient mice, we found a marked increase in plasma salinomycin concentrations after oral administration and decreased plasma clearance after intravenous administration. Furthermore, absence of P-gp resulted in significantly increased brain penetration. P-gp-deficient mice also displayed clearly increased susceptibility to salinomycin toxicity. Thus far, P-gp was thought to affect mainly hydrophobic, positively charged or neutral drugs in vivo. Our data show that P-gp can also be a major determinant of the pharmacokinetic behavior and toxicity of an organic anionic drug. Variation in P-gp activity might thus directly affect the effective exposure to salinomycin and possibly to other anionic drugs and toxin substrates. Individuals with reduced or absent P-gp activity could therefore be more susceptible to salinomycin toxicity. PMID:18195061

  2. Effects of Sertraline and Fluoxetine on P-Glycoprotein at Barrier Sites: In Vivo and In Vitro Approaches

    PubMed Central

    Kapoor, Amita; Iqbal, Majid; Petropoulos, Sophie; Ho, Hay Lam; Gibb, William; Matthews, Stephen G.

    2013-01-01

    Background and Purpose Retention of substances from systemic circulation in the brain and testes are limited due to high levels of P-glycoprotein (P-gp) in the luminal membranes of brain and testes capillary endothelial cells. From a clinical perspective, P-gp rapidly extrudes lipophilic therapeutic agents, which then fail to reach efficacious levels. Recent studies have demonstrated that acute administration of selective serotonin reuptake inhibitors (SSRI) can affect P-gp function, in vitro and in vivo. However, little is known concerning the time-course of these effects or the effects of different SSRI in vivo. Experimental Approach The P-gp substrate, tritiated digoxin ([3H] digoxin), was co-administered with fluoxetine or sertraline to determine if either compound increased drug accumulation within the brains and testes of mice due to inhibition of P-gp activity. We undertook parallel studies in endothelial cells derived from brain microvessels to determine the dose-response and time-course of effects. Key Results In vitro, sertraline resulted in rapid and potent inhibition of P-gp function in brain endothelial cells, as determined by cellular calcein accumulation. In vivo, a biphasic effect was demonstrated. Brain accumulation of [3H] digoxin was increased 5 minutes after treatment with sertraline, but by 60 minutes after sertraline treatment, brain accumulation of digoxin was reduced compared to control. By 240 minutes after sertraline treatment brain digoxin accumulation was elevated compared to control. A similar pattern of results was obtained in the testes. There was no significant effect of fluoxetine on P-gp function, in vitro or in vivo. Conclusions and Implications Acute sertraline administration can modulate P-gp activity in the blood-brain barrier and blood-testes barrier. This clearly has implications for the ability of therapeutic agents that are P-gp substrates, to enter the brain when co-administered with SSRI. PMID:23468867

  3. Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding

    SciTech Connect

    Aller, Stephen G.; Yu, Jodie; Ward, Andrew; Weng, Yue; Chittaboina, Srinivas; Zhuo, Rupeng; Harrell, Patina M.; Trinh, Yenphuong T.; Zhang, Qinghai; Urbatsch, Ina L.; Chang, Geoffrey

    2009-04-22

    P-glycoprotein (P-gp) detoxifies cells by exporting hundreds of chemically unrelated toxins but has been implicated in multidrug resistance (MDR) in the treatment of cancers. Substrate promiscuity is a hallmark of P-gp activity, thus a structural description of poly-specific drug-binding is important for the rational design of anticancer drugs and MDR inhibitors. The x-ray structure of apo P-gp at 3.8 angstroms reveals an internal cavity of -6000 angstroms cubed with a 30 angstrom separation of the two nucleotide-binding domains. Two additional P-gp structures with cyclic peptide inhibitors demonstrate distinct drug-binding sites in the internal cavity capable of stereoselectivity that is based on hydrophobic and aromatic interactions. Apo and drug-bound P-gp structures have portals open to the cytoplasm and the inner leaflet of the lipid bilayer for drug entry. The inward-facing conformation represents an initial stage of the transport cycle that is competent for drug binding.

  4. In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions

    PubMed Central

    Shityakov, Sergey; Förster, Carola

    2014-01-01

    P-glycoprotein (P-gp) is an ATP (adenosine triphosphate)-binding cassette transporter that causes multidrug resistance of various chemotherapeutic substances by active efflux from mammalian cells. P-gp plays a pivotal role in limiting drug absorption and distribution in different organs, including the intestines and brain. Thus, the prediction of P-gp–drug interactions is of vital importance in assessing drug pharmacokinetic and pharmacodynamic properties. To find the strongest P-gp blockers, we performed an in silico structure-based screening of P-gp inhibitor library (1,300 molecules) by the gradient optimization method, using polynomial empirical scoring (POLSCORE) functions. We report a strong correlation (r2=0.80, F=16.27, n=6, P<0.0157) of inhibition constants (Kiexp or pKiexp; experimental Ki or negative decimal logarithm of Kiexp) converted from experimental IC50 (half maximal inhibitory concentration) values with POLSCORE-predicted constants (KiPOLSCORE or pKiPOLSCORE), using a linear regression fitting technique. The hydrophobic interactions between P-gp and selected drug substances were detected as the main forces responsible for the inhibition effect. The results showed that this scoring technique might be useful in the virtual screening and filtering of databases of drug-like compounds at the early stage of drug development processes. PMID:24711707

  5. Effect of Emergence of Fluoroquinolone Resistance on Intrinsic Expression of P-Glycoprotein Phenotype in Corneal Epithelial Cells

    PubMed Central

    Barot, Megha; Gokulgandhi, Mitan R.; Haghnegahdar, Megan; Dalvi, Pranjali

    2011-01-01

    Abstract Purpose Multidrug resistance (MDR) represents a major obstacle to the success of antimicrobial fluoroquinolone (FQ) therapy. MDR-associated efflux protein pumps antimicrobial agents out of the corneal cells, leading to suboptimal eradication of microbes. This article examines whether long-term FQ (levofloxacin, ofloxacin, and gatifloxacin) therapy can modify the MDR phenotype (P-glycoprotein [P-gp]) on corneal epithelial cells (Statens Seruminstitut Rabbit Cornea [SIRC]). Methods To study the effect of FQ, SIRC cells without any exposure to FQ (control) were compared with the cells exposed to ofloxacin, levofloxacin, and gatifloxacin at a concentration of 10??g/mL for 3 weeks. Efflux activity of P-gp was assessed by in vitro uptake studies (fluorescent and radioactive), flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR). Results In the presence of FQ, elevated P-gp expression was noted with uptake, flow cytometry, and qRT-PCR analyses. This study confirms that long-term exposure to antibiotics, particularly FQ, can induce overexpression of P-gp efflux transporter present on the corneal cells. P-gp overexpression is commonly noticed in anticancer drug resistance cell lines; however, for the first time, this report describes overexpression of P-gp due to FQ exposure. Conclusions Based on this result, it is suggested that strategies should be developed and implemented not only to overcome resistance to ocular pathogen but also to FQ-induced cellular resistance. PMID:21830912

  6. Spinosad is a potent inhibitor of canine P-glycoprotein.

    PubMed

    Schrickx, Johannes A

    2014-04-01

    Inhibition of the drug transporter P-glycoprotein (P-gp) by the oral flea preventative spinosad has been suggested as the underlying cause of the drug-drug interaction with ivermectin. In this study, an in vitro model consisting of canine cells was validated to describe the inhibitory effect of drugs on canine P-gp. In this model, ivermectin, cyclosporin, verapamil, loperamide and ketoconazole inhibited P-gp function with IC50 values ranging from 0.1 to 3.7 ?mol/L. Spinosad was a potent inhibitor of canine P-gp with an IC50 value of 0.27 ?mol/L or 0.2 ?g/mL. The risk of spinosad causing P-gp related drug-drug interactions in the dog could be predicted by the IC50 value, the oral dosage and plasma concentrations. PMID:24582422

  7. Hydrogel-assisted functional reconstitution of human P-glycoprotein (ABCB1) in giant liposomes

    E-print Network

    Mayer, Michael

    Hydrogel-assisted functional reconstitution of human P-glycoprotein (ABCB1) in giant liposomes Kim This paper describes the formation of giant proteoliposomes containing P-glycoprotein (P-gp) from a solution method generated a significant fraction of giant proteoliposomes that were free of internalized vesicles

  8. P-glycoprotein involvement in cuticular penetration of [14C]thiodicarb in resistant tobacco budworms.

    PubMed

    Lanning, C L; Ayad, H M; Abou-Donia, M B

    1996-06-01

    Pesticides have been shown to interact with the multidrug resistance protein associated with cancer chemotherapy, P-glycoprotein (P-gp). P-gp, therefore, has also been implicated in the development of pesticide resistance. The purpose of this study was to characterize the effect P-gp has on the accumulation of the carbamate pesticide, thiodicarb. For these studies, resistant tobacco budworm larvae, expressing four times the P-gp as susceptible larvae, were pretreated with the P-gp inhibitor, quinidine, and challenged topically with thiodicarb. Quinidine enhanced thiodicarb toxicity in a dose-dependent manner, with mortality in the presence of P-gp inhibition increased up to 33%. Quinidine treatment increased [14C]thiodicarb accumulation 2- to 3-fold as compared to thiodicarb treatment alone. This study suggests that P-gp contributes to quinidine synergism of thiodicarb toxicity and suggests that P-gp may be involved in cuticular resistance to pesticides. PMID:8644124

  9. The novel bis-benzylisoquinoline PY35 reverses P-glycoprotein-mediated multidrug resistance.

    PubMed

    Cao, Zhonglian; Wright, Meredith; Cheng, Jiekai; Huang, Xiaoxing; Liu, Li; Wu, Lixing; Yang, Ping

    2014-09-01

    Multidrug resistance (MDR) to chemotherapeutic drugs is the main cause of chemotherapy failure in cancer treatment, and it generally results from expression of ATP-dependent efflux pump P-glycoprotein (P-gp). MDR reversal agents typically act by inhibiting the drug efflux activity of P-gp, thereby increasing intracellular drug levels. PY35 is a novel 5-substituted tetrandrine (Tet) derivative (CN Application No. 201210238709.6). The present study was performed to investigate the ability of PY35 to reverse P-gp-mediated MDR and its mechanism in resistant K562/Adriamycin (ADM), MCF-7/ADM cells and their sensitive cell lines K562 and MCF-7. The ability of PY35 to reverse drug resistance was evaluated by MTT assay. The results showed that PY35 can reverse MDR more effectively than the drug prototype?Tet. The P-gp function was assessed by the Rhodamine 123 (Rho-123; a P-gp substrate) uptake assay with flow cytometry (FCM) and laser scanning confocal microscopes (LSCM); it showed that the MDR cells pumped Rho-123 out the cells, while their sensitive cells scarcely showed efflux. The presence of PY35 efficiently decreased the efflux of the Rho-123, showing that PY35 can reverse P-gp-mediated MDR by increasing the intracellular concentration of Rho-123. The intracellular accumulation of ADM was analyzed by FCM and showed that the coadministration of PY35 and ADM had clearer accumulation than the treatment of Tet and ADM, and was also more evident than treatment with only ADM. The effect of PY35 on the expression of P-gp was assessed by western blotting. The results indicated that PY35 does not inhibit the expression level of the P-gp. This study indicated that PY35 can effectively reverse P-gp-mediated MDR, not by inhibiting the expression of P-gp, but by the coadministration of PY35 and ADM that could increase the intracellular accumulation of drugs. Thus, PY35 may be a potential inhibitor to overcome drug resistance. PMID:25017650

  10. Marine Natural Products with P-Glycoprotein Inhibitor Properties

    PubMed Central

    Lopez, Dioxelis; Martinez-Luis, Sergio

    2014-01-01

    P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters. PMID:24451193

  11. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping.

    PubMed

    Smith, A J; van Helvoort, A; van Meer, G; Szabo, K; Welker, E; Szakacs, G; Varadi, A; Sarkadi, B; Borst, P

    2000-08-01

    The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Attempts to show that MDR3 P-glycoprotein can cause MDR have been unsuccessful thus far. Here, we report an increased directional transport of several MDR1 P-glycoprotein substrates, such as digoxin, paclitaxel, and vinblastine, through polarized monolayers of MDR3-transfected cells. Transport of other good MDR1 P-glycoprotein substrates, including cyclosporin A and dexamethasone, was not detectably increased. MDR3 P-glycoprotein-dependent transport of a short-chain phosphatidylcholine analog and drugs was inhibited by several MDR reversal agents and other drugs, indicating an interaction between these compounds and MDR3 P-gp. Insect cell membranes from Sf9 cells overexpressing MDR3 showed specific MgATP binding and a vanadate-dependent, N-ethylmaleimide-sensitive nucleotide trapping activity, visualized by covalent binding with [alpha-(32)P]8-azido-ATP. Nucleotide trapping was (nearly) abolished by paclitaxel, vinblastine, and the MDR reversal agents verapamil, cyclosporin A, and PSC 833. We conclude that MDR3 P-glycoprotein can bind and transport a subset of MDR1 P-glycoprotein substrates. The rate of MDR3 P-glycoprotein-mediated transport is low for most drugs, explaining why this protein is not detectably involved in multidrug resistance. It remains possible, however, that drug binding to MDR3 P-glycoprotein could adversely affect phospholipid or toxin secretion under conditions of stress (e.g. in pregnant heterozygotes with one MDR3 null allele). PMID:10918072

  12. CJY, an isoflavone, interacts with ATPase of P-glycoprotein in the rat brain microvessel endothelial cells (RBMECs).

    PubMed

    Li, Ming-Shan; Cen, Juan; He, Ling; Liu, Lu; Ji, Bian-Sheng

    2013-12-01

    Our previous study reported CJY, an isoflavone, can reverse P-glycoprotein (P-gp) efflux activity in rat brain microvessel endothelial cells (RBMECs). In the present report, by assessment of ATPase activity of RBMECs, we gained further insight into the nature of the CJY interactions with P-gp. The results revealed that the basal P-gp ATPase activity was increased by CJY. Kinetic studies on ATPase activity showed the effects of Tetrandrine (Tet) on CJY-stimulated, CsA on CJY-stimulated, and CsA on Tet-stimulated P-gp ATPase activity were all non-competitive inhibition, indicating that these substrates can simultaneously but independently bind to diverse sites on P-gp. Furthermore, the combined effects of CJY with Tet, and CJY with CsA were also evaluated isobolographically. The results showed synergistic interactions in both combinations, implying that combined treatment of CJY with other modulators may exert synergistic interactions for the drug's penetration into the brain and the treatment of neurological disorders. PMID:24090809

  13. P-glycoprotein expression induced by glucose depletion enhanced the chemosensitivity in human hepatocellular carcinoma cell-lines.

    PubMed

    Cheng, Samuel Chak-Sum; Zhou, Jing; Xie, Yong

    2005-04-01

    Chemoresistance in cancer cells is frequently associated with an over-expression of the P-glycoprotein (P-gp). The expression of P-gp can be regulated as the cells encounter a number of chemical, physical or environmental stimuli. In this study, P-gp was found gradually expressed in a human hepatocellular carcinoma (HCC) QGY-7703 cells after 48 h of culturing in glucose-free medium. This phenomenon disappeared after the removal of glucose deprivation culture conditions. Mdr1-cDNA isolated from the cell line cultured in glucose-free conditions (namely QGY-7703G), was transiently transformed into the parent QGY-7703 cells, and multi-drug resistance was eventually induced. Results from XTT cytotoxicity assays indicated that the mdr1 gene was functional and the P-gp could restore the QGY-7703 cell's ability to withstand high concentrations of a number of chemotherapeutic agents. A P-gp inhibitor, verapamil, could completely reverse the cellular drug resistance when applied to the QGY-7703G cells. Our results indicated that an alteration of a specific state in cells caused by an external stimulus in vitro may lead to an expression of stress proteins (e.g. P-gp), which may enhance the cells' survival in adverse conditions. The expressed P-gp induced by glucose deprivation has a functional role in affecting the chemosensitivity in HCC QGY-7703G cells. Inhibition of P-gp activity may enhance the effect of the cancer cells towards cancer chemotherapy. PMID:15914037

  14. Tetrandrine potentiates the hypoglycemic efficacy of berberine by inhibiting P-glycoprotein function.

    PubMed

    Shan, Yong-Qiang; Zhu, Yan-Ping; Pang, Jing; Wang, Yan-Xiang; Song, Dan-Qing; Kong, Wei-Jia; Jiang, Jian-Dong

    2013-01-01

    This study was designed to improve the absorption and hypoglycemic efficacy of berberine (BBR), which is a substrate of P-glycoprotein (P-gp), by combination with a P-gp inhibitor tetrandrine (Tet). Flow cytometry and LC-MS/MS were used to determine the cellular efflux or retention of chemicals. Pharmacokinetic study was performed in ICR mice following oral administration of the study compounds. The hypoglycemic efficacies of the compounds were evaluated in diabetic KK-Ay mice. In the in vitro experiments, Tet significantly inhibited the efflux and increased the uptake of P-gp substrates rhodamine-123 as well as BBR in MCF7/DOX cells and Caco-2 intestinal cells. Meanwhile, Tet greatly reduced the expression of P-gp in Caco-2 cells. The inhibition of BBR efflux by Tet was translated into improved pharmacokinetics in vivo. When co-administered, Tet dose-dependently increased the average maximum concentration (C(max)) and area under concentration-time curve (AUC????) of BBR in mice. Tet itself had no impact on glucose metabolism. However, it greatly potentiated the hypoglycemic efficacy of BBR in diabetic KK-Ay mice. In addition, we found that Tet had moderate inhibitory effect on the catalytic activity of CYP3A4, which played a role in the bio-transformation of BBR, and this may also take part in the improvement of the pharmacokinetics of BBR. In summary, combination with P-gp inhibitors such as Tet can improve the pharmacokinetics and hypoglycemic efficacy of BBR greatly; this implicates a feasible strategy for exploring the therapeutic effects of BBR and other pharmaceuticals which are substrates of P-gp. PMID:23924821

  15. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review

    PubMed Central

    Abdallah, Hossam M.; Al-Abd, Ahmed M.; El-Dine, Riham Salah; El-Halawany, Ali M.

    2014-01-01

    Resistance of solid tumors to treatment is significantly attributed to pharmacokinetic reasons at both cellular and multi-cellular levels. Anticancer agent must be bio-available at the site of action in a cytotoxic concentration to exert its proposed activity. P-glycoprotein (P-gp) is a member of the ATP-dependent membrane transport proteins; it is known to pump substrates out of cells in ATP-dependent mechanism. The over-expression of P-gp in tumor cells reduces the intracellular drug concentrations, which decreases the cytotoxicity of a broad spectrum of antitumor drugs. Accordingly, P-gp inhibitors/blockers are potential enhancer for the cellular bioavailability of several clinically important anticancer drugs such as, anthracyclines, taxanes, vinca alkaloids, and podophyllotoxins. Besides several chemically synthesized P-gp inhibitors/blockers, some naturally occurring compounds and plant extracts were reported for their modulation of multidrug resistance; however, this review will focus only on major classes of naturally occurring inhibitors viz., flavonoids, coumarins, terpenoids, alkaloids and saponins. PMID:25685543

  16. Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance.

    PubMed

    Mercer, Susan L; Coop, Andrew

    2011-01-01

    Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationships to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation. PMID:21050174

  17. P-glycoprotein Modulates Morphine Uptake into the CNS: A Role for the Non-steroidal Anti-inflammatory Drug Diclofenac

    PubMed Central

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M.; Thompson, Brandon J.; Zhang, Yifeng; Laracuente, Mei-Li; DeMarco, Kristin M.; Ronaldson, Patrick T.; Davis, Thomas P.

    2014-01-01

    Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP), induced by subcutaneous plantar injection of ?-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp) that is endogenously expressed at the blood-brain barrier (BBB). The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID) that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h), as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction. PMID:24520393

  18. Cyclosporin A has low potency as a calcineurin inhibitor in cells expressing high levels of P-glycoprotein.

    PubMed

    Fakata, K L; Elmquist, W F; Swanson, S A; Vorce, R L; Prince, C; Stemmer, P M

    1998-01-01

    Cyclosporin A (CsA) is a widely-used immunosuppressant drug whose therapeutic and toxic actions are mediated through inhibition of calcineurin (CN), a calcium- and calmodulin-dependent phosphatase. Inhibition of CN by CsA requires drug binding to its protein cofactor in the inhibition, cyclophilin. Because cyclophilin is a high affinity target for CsA it is expected that this protein can act as a reservoir for the drug in the cell and may be able to inhibit cellular efflux of CsA. P-glycoprotein (P-gp) is known to increase the rate of CsA efflux from CsA loaded cells but it is not clear if the P-gp drug efflux pump can compete effectively with cyclophilin at therapeutically relevant concentrations of CsA. To test the hypothesis that increased expression of P-gp confers protection against CsA-dependent inhibition of CN phosphatase activity, KB-V cells expressing varying levels of P-gp were analyzed to determine the potency of CsA as a CN inhibitor. When intact cells were treated with CsA, a positive correlation was observed between P-gp expression and resistance to CsA-dependent inhibition of CN: the IC50 is approximately 20-fold higher in the multidrug resistant epidermal carcinoma cell line, KB-V, which expresses P-gp at a high level than in the parental, KB, cell line expressing very low levels of P-gp. The resistance displayed by KB-V cells is abrogated by co-administration of the P-gp inhibitor verapamil, whereas verapamil has no effect on CsA potency in control KB cells. In cell lysates from KB-V cells with different amounts of P-gp CsA exhibits equivalent potency, indicating that the difference in sensitivity to CsA among the cell types requires maintenance of cell integrity. These observations support the view that resistance to CN inhibition by CsA occurs in cells with moderately elevated P-gp activity. Therefore, P-gp activity appears to be an important determinant of CsA cellular specificity for both therapeutic and toxic effects. PMID:9651111

  19. Persistent reversal of P-glycoprotein-mediated daunorubicin resistance by tetrandrine in multidrug-resistant human T lymphoblastoid leukemia MOLT-4 cells.

    PubMed

    Liu, Zhen-Li; Hirano, Toshihiko; Tanaka, Sachiko; Onda, Kenji; Oka, Kitaro

    2003-11-01

    Multidrug resistance (MDR) represents a major problem in cancer chemotherapy. P-glycoprotein (P-gp), the drug efflux pump that mediates this resistance, can be inhibited by compounds with a variety of pharmacological functions, thus circumventing the MDR phenotype. The present study was performed to evaluate a unique MDR-reversal feature of a bisbenzylisoquinoline alkaloid tetrandrine (TET) in a P-gp expressing MOLT-4 MDR line (MOLT-4/DNR) established in our laboratory. Cell viability was determined by an MTT assay. P-gp function was characterized by determining the Rh123 accumulation/efflux capacity. P-gp overexpression in resistant MOLT-4/DNR cells was confirmed by flow cytometry analysis after staining with phycoerythrin-conjugated anti-P-gp monoclonal antibody 17F9. Compared to ciclosporin A (CsA), TET exhibited stronger activity to reverse drug resistance to daunorubicin (DNR), vinblastine (VLB) and doxorubicin (DOX) in MOLT-4/DNR cells. TET showed no cytotoxic effects on parental MOLT-4 cells lacking P-gp expression or on the resistant MOLT-4/DNR cells. TET modulated DNR cytotoxicity even after it was washed with the medium for 24 h, while CsA almost completely lost its reversal capability 24 h after washing. TET and CsA similarly increased the accumulation of Rh123 in resistant MOLT-4/DNR cells. However, TET inhibited Rh123 efflux from resistant cells even after washing with the medium, while CsA rapidly lost its ability to inhibit Rh123 efflux after washing. The current study suggests that TET enhances the cytotoxicity of anticancer drugs in the P-gp expressing MDR cell line by modulating P-gp in a different manner to the well-known P-gp inhibitor CsA. PMID:14713364

  20. Hyperammonemia enhances the function and expression of P-glycoprotein and Mrp2 at the blood-brain barrier through NF-?B.

    PubMed

    Zhang, Ji; Zhang, Mian; Sun, Binbin; Li, Ying; Xu, Ping; Liu, Can; Liu, Li; Liu, Xiaodong

    2014-12-01

    Ammonia is considered to be the main neurotoxin responsible for hepatic encephalopathy resulting from liver failure. Liver failure has been reported to alter expression and activity of P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (Mrp2) at the blood-brain barrier (BBB). The aim of this study was to investigate whether ammonia is involved in abnormalities of expression and activity of P-gp and Mrp2 at the BBB. Hyperammonemic rats were developed by an intraperitoneal injection of ammonium acetate (NH4 Ac, 4.5 mmol/kg). Results showed that Mrp2 function markedly increased in cortex and hippocampus of rats at 6 h following NH4 Ac administration. Significant increase in function of P-gp was observed in hippocampus of rats. Meanwhile, such alterations were in line with the increase in mRNA and protein levels of P-gp and Mrp2. Significant increase in levels of nuclear amount of nuclear factor-?B (NF-?B) p65 was also observed. Primarily cultured rat brain microvessel endothelial cells (rBMECs) were used for in vitro study. Data indicated that 24 h exposure to ammonia significantly increased function and expression of P-gp and Mrp2 in rBMECs, accompanied with activation of NF-?B. Furthermore, such alterations induced by ammonia were reversed by NF-?B inhibitor. In conclusion, this study demonstrates that hyperammonemia increases the function and expression of P-gp and Mrp2 at the BBB via activating NF-?B pathway. Hyperammonemia, a proverbial main factor responsible for neurocognitive disorder and blood-brain barrier (BBB) dysfunction resulting from liver failure, could increase the expression and activity of P-glycoprotein and multidrug resistance-associated protein 2 (Mrp2) at the BBB both in vivo and in vitro. Furthermore, the NF-?B activation stimulated by hyperammonemia may be the potential mechanism underlying such abnormalities induced by hyperammonemia. PMID:25200138

  1. Increased intestinal P-glycoprotein expression and activity with progression of diabetes and its modulation by epigallocatechin-3-gallate: Evidence from pharmacokinetic studies.

    PubMed

    Dash, Ranjeet Prasad; Ellendula, Bhanuchander; Agarwal, Milee; Nivsarkar, Manish

    2015-11-15

    The aim of this study was to evaluate the change in the expression and the activity of intestinal P-glycoprotein (efflux transporter) with progression of diabetes in rats. Diabetes was induced in Wistar rats using a combination of low dose streptozotocin along with high fat diet. The expression of intestinal P-glycoprotein significantly increased (P?0.05) with the progression of diabetes which was inferred from the mRNA analysis of mdr1a and mdr1b genes in the ileum segment of rat intestine. Furthermore, a significant increase (P?0.05) in Na(+)-K(+) ATPase activity was observed in the ileum segment of rat intestine with the progression of diabetes. As a result of this, a significant decrease in the intestinal uptake and peroral bioavailability of the P-glycoprotein substrates (verapamil and atorvastatin) was observed along with the progression of diabetes as compared to normal animals. To address this problem of impaired drug uptake and bioavailability, a reported P-glycoprotein inhibitor, epigallocatechin-3-gallate, was experimentally evaluated. The treatment with epigallocatechin-3-gallate resulted in significant reduction in the expression and activity of P-glycoprotein and subsequent improvement in the intestinal uptake and peroral bioavailability of both verapamil and atorvastatin in normal as well as in diabetic animals. The findings of this study rationalised the use and established the mechanism of action of epigallocatechin-3-gallate to overcome P-glycoprotein mediated drug efflux and will also be helpful in therapeutic drug monitoring in diabetes. PMID:26460146

  2. Multi-drug resistance in a canine lymphoid cell line due to increased P-glycoprotein expression, a potential model for drug-resistant canine lymphoma.

    PubMed

    Zandvliet, M; Teske, E; Schrickx, J A

    2014-12-01

    Canine lymphoma is routinely treated with a doxorubicin-based multidrug chemotherapy protocol, and although treatment is initially successful, tumor recurrence is common and associated with therapy resistance. Active efflux of chemotherapeutic agents by transporter proteins of the ATP-Binding Cassette superfamily forms an effective cellular defense mechanism and a high expression of these transporters is frequently observed in chemotherapy-resistant tumors in both humans and dogs. In this study we describe the ABC-transporter expression in a canine lymphoid cell line and a sub-cell line with acquired drug resistance following prolonged exposure to doxorubicin. This sub-cell line was more resistant to doxorubicin and vincristine, but not to prednisolone, and had a highly increased P-glycoprotein (P-gp/abcb1) expression and transport capacity for the P-gp model-substrate rhodamine123. Both resistance to doxorubicin and vincristine, and rhodamine123 transport capacity were fully reversed by the P-gp inhibitor PSC833. No changes were observed in the expression and function of the ABC-transporters MRP-1 and BCRP. It is concluded that GL-40 cells represent a useful model for studying P-gp dependent drug resistance in canine lymphoid neoplasia, and that this model can be used for screening substances as potential P-gp substrates and their capacity to modulate P-gp mediated drug resistance. PMID:24975508

  3. Natural Products based P-glycoprotein Activators for Improved ?-amyloid Clearance in Alzheimer's Disease: An in silico Approach.

    PubMed

    Shinde, Pravin; Vidyasagar, Nikhil; Dhulap, Sivakami; Dhulap, Abhijeet; Hirwani, Raj

    2015-01-01

    Alzheimer's disease is an age related disorder and is defined to be progressive, irreversible neurodegenerative disease. The potential targets which are associated with the Alzheimer's disease are cholinesterases, N-methyl-D-aspartate receptor, Beta secretase 1, Pregnane X receptor (PXR) and P-glycoprotein (Pgp). P-glycoprotein is a member of the ATP binding cassette (ABC) transporter family, which is an important integral of the blood-brain, blood-cerebrospinal fluid and the blood-testis barrier. Reports from the literature provide evidences that the up-regulation of the efflux pump is liable for a decrease in ? -amyloid intracellular accumulation and is an important hallmark in Alzheimer's disease (AD). Thus, targeting ?-amyloid clearance by stimulating Pgp could be a useful strategy to prevent Alzheimer's advancement. Currently available drugs provide limited effectiveness and do not assure to cure Alzheimer's disease completely. On the other hand, the current research is now directed towards the development of synthetic or natural based therapeutics which can delay the onset or progression of Alzheimer's disease. Since ancient time medicinal plants such as Withania somnifera, Bacopa monieri, Nerium indicum have been used to prevent neurological disorders including Alzheimer's disease. Till today around 125 Indian medicinal plants have been screened on the basis of ethnopharmacology for their activity against neurological disorders. In this paper, we report bioactives from natural sources which show binding affinity towards the Pgp receptor using ligand based pharmacophore development, virtual screening, molecular docking and molecular dynamics simulation studies for the bioactives possessing acceptable ADME properties. These bioactives can thus be useful to treat Alzheimer's disease. PMID:26306632

  4. Interaction of pyridostigmine bromide and N,N-diethyl-m-toluamide alone and in combination with P-glycoprotein expressed in Escherichia coli leaky mutant.

    PubMed

    El-Masry, Eman M; Abou-Donia, Mohamed B

    2006-05-01

    P-glycoprotein (P-gp), the most extensively studied ATP-binding transporter, functions as a biological barrier by extruding toxic substances and xenobiotics out of the cell. This study was carried out to determine the effect of N,N-diethyl-m-toluamide (DEET) and pyridostigmine bromide (PB), alone and in combination, on P-gp expression using Escherichia coli leaky mutant transformed with Mdr1 gene (pT5-7/mdr1), which codes for P-gp or lactose permease (pT5-7/lacY) as negative control. Also, daunomycin (a known P-gp sustrate) was used as a positive control and reserpine (a known P-gp inhibitor) served as a negative control. An in vitro cell-resistant assay was used to monitor the potential of test compounds to interact with P-gp. Following exposure of the cells to pyridostigmine bromide or daunomycin, P-gp conferred significant resistance against both compounds, while reserpine and DEET significantly inhibited the glycoprotein. Cells were grown in the presence of noncytotoxic concentrations of daunomycin, pyridostigmine bromide, reserpine, or DEET, and membrane fractions were examined by Western immunoblotting for expression of P-gp. Daunomycin induced P-gp expression quantitatively more than pyridostigmine bromide, while reserpine and DEET significantly inhibited P-gp expression in cells harboring mdr1. Photoaffinity labeling experiment performed with the P-gp ligand [125I]iodoarylazidoprazosin demonstrated that compounds that induced or inhibited P-gp transport activity also bound to P-gp. DEET was also found to be a potent inhibitor of P-gp-mediated ATPase activity, whereas pyridostigmine bromide increased P-gp ATPase activity. Cells expressing P-gp or lac permease were exposed to pyridostigmine bromide and DEET, alone and in combination. Noncytotoxic concentrations of DEET significantly inhibited P-gp-mediated resistance against pyridostigmine bromide, resulting in a reduction of the number of effective drug interactions with biological targets. An explanation of these results might be that DEET is a third-generation inhibitor of P-gp; it has high potency and specificity for P-gp, it inhibits hydrolysis of ATP, it exerts no appreciable impact on cytochrome P-450 3A4, and it prevents transport of xenobiotics, such as pyridostigmine bromide, out of the cell. This conclusion explains, at least in part, the increased toxicity and bioavailability of pyridostigmine bromide following combined administration with DEET. This study improves our understanding of the basis of chemical interactions with DEET by defining the ability of drugs to interact with P-gp either as inhibitors or substrates, which may in turn lead to altered efficacy or toxicity. PMID:16728371

  5. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions

    EPA Science Inventory

    The human efflux transporter P-glycoprotein (P-gp, MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  6. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions.

    EPA Science Inventory

    The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  7. P-glycoprotein-mediated transport of oxytetracycline in the Caco-2 cell model.

    PubMed

    Schrickx, J; Fink-Gremmels, J

    2007-02-01

    ATP-dependent drug transporters such as P-glycoprotein (P-gp), multi-drug resistance associated protein (MRP2) and breast cancer resistant protein (BCRP) are expressed at the brush border membrane of enterocytes. These efflux transporters excrete their substrates, among other various classes of antibiotics, into the lumen thus reducing net absorption as indicated by a low bioavailability after oral administration. Oxytetracycline (OTC) has been used for decennia in veterinary medicine for its extensive spectrum of antimicrobial activity. A major limitation has been, and still remains, its low bioavailability following oral administration. The present study aimed to investigate to what extent this low bioavailability is attributable to the fact that OTC is a substrate for one or more efflux transporters. As an experimental model to study the transmembrane transport of OTC, differentiated Caco-2 cells grown as monolayers on permeable supports were used. With this model it was shown that the secretion of OTC is slightly higher than its absorption. PSC833, a potent inhibitor of P-gp, decreased the secretion of OTC without affecting its absorption, while the MRP-inhibitor MK571 did not exert any effect. These data indicate that OTC is a substrate for P-gp. The affinity of OTC to these transporters seems to be rather low, as suggested by the low efflux ratio of 1:1.3. In competition experiments, OTC decreased the effluxes of other P-gp substrates such as Rhodamine123 and ivermectin. These findings are of clinical relevance, as they clearly indicate potential drug-drug interactions at the level of P-gp-mediated drug transport. PMID:17217397

  8. Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines

    PubMed Central

    Erez, Offer; Ben-Zvi, Zvi; Erez, Noam; Eshkoli, Tamar; Sheizaf, Boaz; Sheiner, Eyal; Huleihel, Mahmud; Holcberg, Gershon

    2013-01-01

    Objectives. Marijuana is the most commonly used illicit drug during pregnancy. Due to high lipophilicity, cannabinoids can easily penetrate physiological barriers like the human placenta and jeopardize the developing fetus. We evaluated the impact of cannabidiol (CBD), a major non-psychoactive cannabinoid, on P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) expression, and P-gp function in a placental model, BeWo and Jar choriocarcinoma cell lines (using P-gp induced MCF7 cells (MCF7/P-gp) for comparison). Study design. Following the establishment of the basal expression of these transporters in the membrane fraction of all three cell lines, P-gp and BCRP protein and mRNA levels were determined following chronic (24–72 h) exposure to CBD, by Western Blot and qPCR. CBD impact on P-gp efflux function was examined by uptake of specific P-gp fluorescent substrates (calcein-AM, DiOC2(3) and rhodamine123(rh123)). Cyclosporine A (CsA) served as a positive control. Results. Chronic exposure to CBD resulted in significant changes in the protein and mRNA levels of both transporters. While P-gp was down-regulated, BCRP levels were up-regulated in the choriocarcinoma cell lines. CBD had a remarkably different influence on P-gp and BCRP expression in MCF7/P-gp cells, demonstrating that these are cell type specific effects. P-gp dependent efflux (of calcein, DiOC2(3) and rh123) was inhibited upon short-term exposure to CBD. Conclusions. Our study shows that CBD might alter P-gp and BCRP expression in the human placenta, and inhibit P-gp efflux function. We conclude that marijuana use during pregnancy may reduce placental protective functions and change its morphological and physiological characteristics. PMID:24058883

  9. Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines.

    PubMed

    Feinshtein, Valeria; Erez, Offer; Ben-Zvi, Zvi; Erez, Noam; Eshkoli, Tamar; Sheizaf, Boaz; Sheiner, Eyal; Huleihel, Mahmud; Holcberg, Gershon

    2013-01-01

    Objectives. Marijuana is the most commonly used illicit drug during pregnancy. Due to high lipophilicity, cannabinoids can easily penetrate physiological barriers like the human placenta and jeopardize the developing fetus. We evaluated the impact of cannabidiol (CBD), a major non-psychoactive cannabinoid, on P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) expression, and P-gp function in a placental model, BeWo and Jar choriocarcinoma cell lines (using P-gp induced MCF7 cells (MCF7/P-gp) for comparison). Study design. Following the establishment of the basal expression of these transporters in the membrane fraction of all three cell lines, P-gp and BCRP protein and mRNA levels were determined following chronic (24-72 h) exposure to CBD, by Western Blot and qPCR. CBD impact on P-gp efflux function was examined by uptake of specific P-gp fluorescent substrates (calcein-AM, DiOC2(3) and rhodamine123(rh123)). Cyclosporine A (CsA) served as a positive control. Results. Chronic exposure to CBD resulted in significant changes in the protein and mRNA levels of both transporters. While P-gp was down-regulated, BCRP levels were up-regulated in the choriocarcinoma cell lines. CBD had a remarkably different influence on P-gp and BCRP expression in MCF7/P-gp cells, demonstrating that these are cell type specific effects. P-gp dependent efflux (of calcein, DiOC2(3) and rh123) was inhibited upon short-term exposure to CBD. Conclusions. Our study shows that CBD might alter P-gp and BCRP expression in the human placenta, and inhibit P-gp efflux function. We conclude that marijuana use during pregnancy may reduce placental protective functions and change its morphological and physiological characteristics. PMID:24058883

  10. Tobacco budworm P-glycoprotein: biochemical characterization and its involvement in pesticide resistance.

    PubMed

    Lanning, C L; Fine, R L; Corcoran, J J; Ayad, H M; Rose, R L; Abou-Donia, M B

    1996-10-24

    Since pesticides have been shown to interact with P-glycoprotein (P-gp), the purpose of this study was to examine the possible role of P-gp in pesticide resistance in the tobacco budworm (Heliothis virescens). Using three P-gp antibodies, P-gp expression in various resistant populations of tobacco budworms was found to be 2-6-times that of the susceptible larvae. Tobacco budworm P-gp was glycosylated and localized primarily in the cuticle and fat body with little expression in the mid gut. To determine the role of P-gp in pesticide resistance, resistant tobacco budworm larvae were treated with a P-gp inhibitor, quinidine, and challenged with various doses of thiodicarb. Inhibition of P-gp decreased the LD50 for thiodicarb by a factor of 12.5. Quinidine treatment did not result in a significant inhibition of the P-450 system nor did it alter the feeding of the larvae, suggesting the potential involvement of P-gp in pesticide resistance. An age-dependent increase in P-gp expression was detected in resistant larvae as compared to control, susceptible larvae. This correlates with the reported age-dependent increase in resistance and is further evidence supporting the role of P-gp in the development of pesticide resistance. PMID:8898877

  11. Validation of a P-Glycoprotein (P-gp) Humanized Mouse Model by Integrating Selective Absolute Quantification of Human MDR1, Mouse Mdr1a and Mdr1b Protein Expressions with In Vivo Functional Analysis for Blood-Brain Barrier Transport

    PubMed Central

    Sadiq, Muhammad Waqas; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Hammarlund-Udenaes, Margareta

    2015-01-01

    It is essential to establish a useful validation method for newly generated humanized mouse models. The novel approach of combining our established species-specific protein quantification method combined with in vivo functional studies is evaluated to validate a humanized mouse model of P-gp/MDR1 efflux transporter. The P-gp substrates digoxin, verapamil and docetaxel were administered to male FVB Mdr1a/1b(+/+) (FVB WT), FVB Mdr1a/1b(-/-) (Mdr1a/1b(-/-)), C57BL/6 Mdr1a/1b(+/+) (C57BL/6 WT) and humanized C57BL (hMDR1) mice. Brain-to-plasma total concentration ratios (Kp) were measured. Quantitative targeted absolute proteomic (QTAP) analysis was used to selectively quantify the protein expression levels of hMDR1, Mdr1a and Mdr1b in the isolated brain capillaries. The protein expressions of other transporters, receptors and claudin-5 were also quantified. The Kp for digoxin, verapamil, and docetaxel were 20, 30 and 4 times higher in the Mdr1a/1b(-/-) mice than in the FVB WT controls, as expected. The Kp for digoxin, verapamil and docetaxel were 2, 16 and 2-times higher in the hMDR1 compared to the C57BL/6 WT mice. The hMDR1 mice had 63- and 9.1-fold lower expressions of the hMDR1 and Mdr1a proteins than the corresponding expression of Mdr1a in C57BL/6 WT mice, respectively. The protein expression levels of other molecules were almost consistent between C57BL/6 WT and hMDR1 mice. The P-gp function at the BBB in the hMDR1 mice was smaller than that in WT mice due to lower protein expression levels of hMDR1 and Mdr1a. The combination of QTAP and in vivo functional analyses was successfully applied to validate the humanized animal model and evaluates its suitability for further studies. PMID:25932627

  12. Absence of P-Glycoprotein Transport in the Pharmacokinetics and Toxicity of the Herbicide Paraquat

    PubMed Central

    Lacher, Sarah E.; Gremaud, Julia N.; Skagen, Kasse; Steed, Emily; Dalton, Rachel; Sugden, Kent D.; Cardozo-Pelaez, Fernando; Sherwin, Catherine M. T.

    2014-01-01

    Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a?/?/mdr1b?/?) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil—37.0 [95% confidence interval (CI): 33.2–41.4], 46.2 (42.5–50.2), and 34.1 µM (31.2–37.2)—respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a?/?/mdr1b?/? mice: clearances of 0.47 [95% confidence interval (CI): 0.42–0.52] and 0.78 l/h (0.58–0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50–2.04) and 3.36 liters (2.39–4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a?/?/mdr1b?/? mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and Parkinson disease is not attributed to alterations in paraquat transport. PMID:24297779

  13. Inhibition of P-glycoprotein function by XR9576 in a solid tumour model can restore anticancer drug efficacy.

    PubMed

    Walker, J; Martin, C; Callaghan, R

    2004-03-01

    Resistance to cancer chemotherapy involves both altered drug activity at the designated target and modified intra-tumour pharmacokinetic properties (e.g. uptake, metabolism). The membrane transporter P-glycoprotein (P-gp) plays a major role in pharmacokinetic resistance by preventing sufficient intracellular accumulation of several anticancer agents. Whilst inhibiting P-gp has great potential to restore chemotherapeutic effectiveness in blood-borne cancers, the situation in solid tumours is less clear. Therefore, the degree of resistance tumours pose to the cytotoxicity of vinblastine and doxorubicin was characterised using the multicellular tumour spheroid model. Tumour spheroids were generated from either drug-sensitive MCF7(WT) breast cancer cells or a resistant P-gp-expressing variant (NCI/ADR(Res)). Drug-induced cytotoxicity in tumour spheroids was measured using an outgrowth assay and compared with that observed in monolayer cultures. As anticipated, the 3-D organisation of MCF7(WT) in tumour spheroids was associated with a reduction in the potency of doxorubicin and vinblastine-i.e. the inherent multicellular resistance phenomenon. In contrast, tumour spheroids from NCI/ADR(Res) cells did not display multicellular resistance. However their constitutive expression of P-gp reduced the potency of both anticancer drugs. Moreover, the highly potent P-gp inhibitor, the anthranilic acid derivative, XR9576, was able to restore the cytotoxic efficacy of both drugs in tumour spheroids comprising NCI/ADR(Res) cells. The results suggest that inhibition of P-gp in solid tumours is achievable and that generation of potent inhibitors will provide a significant benefit towards restoration of chemotherapy in solid tissues. PMID:14962729

  14. ADMET evaluation in drug discovery. 13. Development of in silico prediction models for P-glycoprotein substrates.

    PubMed

    Li, Dan; Chen, Lei; Li, Youyong; Tian, Sheng; Sun, Huiyong; Hou, Tingjun

    2014-03-01

    P-glycoprotein (P-gp) actively transports a wide variety of chemically diverse compounds out of cells. It is highly associated with the ADMET properties of drugs and drug candidates and, moreover, plays a major role in the multidrug resistance (MDR) phenomenon, which leads to the failure of chemotherapy in cancer treatments. Therefore, the recognition of potential P-gp substrates at the early stages of the drug discovery process is quite important. Here, we compiled an extensive data set containing 423 P-gp substrates and 399 nonsubstrates, which is the largest P-gp substrate/nonsubstrate data set yet published. Comparison of the distributions of eight important physicochemical properties for the substrates and nonsubstrates reveals that molecular weight and molecular solubility are the informative attributes differentiating P-gp substrates from nonsubstrates. Examination of the distributions of eight physicochemical properties for 735 P-gp inhibitors and 423 substrates gives the fact that inhibitors are significantly more hydrophobic than substrates while substrates tend to have more H-bond donors than inhibitors. Then, the classification models based on simple molecular properties, topological descriptors, and molecular fingerprints were developed using the naive Bayesian classification technique. The best naive Bayesian classifier yields a Matthews correlation coefficient of 0.824 and a prediction accuracy of 91.2% for the training set from a 5-fold cross-validation procedure, and a Matthews correlation coefficient of 0.667 and a prediction accuracy of 83.5% for the test set containing 200 molecules. Analysis of the important structural fragments given by the Bayesian classifier shows that the essential H-bond acceptors arranged in distinct spatial patterns and flexibility are quite essential for P-gp substrate-likeness, which affords a deeper understanding on the molecular basis of substrate/P-gp interaction. Finally, the reasons for mispredictions were discussed. It turns out that the presented classifier could be used as a reliable virtual screening tool for identifying potential substrates of P-gp. PMID:24499501

  15. Extracellular galectin-3 programs multidrug resistance through Na+/K+-ATPase and P-glycoprotein signaling

    PubMed Central

    Harazono, Yosuke; Kho, Dhong Hyo; Balan, Vitaly; Nakajima, Kosei; Hogan, Victor; Raz, Avraham

    2015-01-01

    Galectin-3 (Gal-3, LGALS3) is a pleotropic versatile, 29–35 kDa chimeric gene product, and involved in diverse physiological and pathological processes, including cell growth, homeostasis, apoptosis, pre-mRNA splicing, cell-cell and cell-matrix adhesion, cellular polarity, motility, adhesion, activation, differentiation, transformation, signaling, regulation of innate/adaptive immunity, and angiogenesis. In multiple diseases, it was found that the level of circulating Gal-3 is markedly elevated, suggesting that Gal-3-dependent function is mediated by specific interaction with yet an unknown ubiquitous cell-surface protein. Recently, we showed that Gal-3 attenuated drug-induced apoptosis, which is one of the mechanisms underlying multidrug resistance (MDR). Here, we document that MDR could be mediated by Gal-3 interaction with the house-keeping gene product e.g., Na+/K+-ATPase, and P-glycoprotein (P-gp). Gal-3 interacts with Na+/K+-ATPase and induces the phosphorylation of P-gp. We also find that Gal-3 binds P-gp and enhances its ATPase activity. Furthermore Gal-3 antagonist suppresses this interaction and results in a decrease of the phosphorylation and the ATPase activity of P-gp, leading to an increased sensitivity to doxorubicin-mediated cell death. Taken together, these findings may explain the reported roles of Gal-3 in diverse diseases and suggest that a combined therapy of inhibitors of Na+/K+-ATPase and Gal-3, and a disease specific drug(s) might be superior to a single therapeutic modality. PMID:26158764

  16. [Effect of cryptotanshinone on imatinib sensitivity and P-glycoprotein expression of chronic myeloid leukemia cells].

    PubMed

    Ge, Yu-qing; Cheng, Ru-bin; Yang, Bo; Huang, Zhen; Chen, Zhe

    2015-06-01

    Cryptotanshinone (CPT), a lipid soluble active compound in Salvia miltiorrhiza, has a significant inhibitory effect on multiple malignant tumors, e. g. chronic myeloid leukemia (CML) cells and can effectively enhance imatinib's chemotherapeutic effect. However, its functional molecular mechanism remained unclear. In this experiment, the authors conducted a systematic study on the effect of CPT on the imatinib sensitivity and P-glycoprotein (P-gp) expression in CML cells by using CML cells K562 and imatinib persister K562-R. The MTT assays were performed to determine CPT's impact on the inhibitory effect of imatinib. Annexin V-FITC/PI staining analysis was used to detect the changes in the cell apoptosis rate. The active changes in apoptosis regulatory proteins Caspase-3, Caspase-9 and PARP were determined by Western blot. After the cells were pretreated with the gradient concentration of CPT, the expression of P-gp was analyzed by Western blot and flow cytometry. The changes in intracellular concentrations of imatinib were determined by HPLC analysis. The results indicated that the pretreatment with CPT significantly increased the proliferation inhibiting and apoptosis inducing effects of imatinib on K562 and K562-R cells as well as the degradation product expression of pro-apoptotic proteins Caspase-3, Caspase-9 and PARP, with a significant difference with the control group (P < 0.01). However, CPT showed no impact on the P-gp expression in CML cells and the intracellular concentrations of imatinib. In summary, the findings suggested that CPT enhanced the sensitivity of CML cells to imatinib. Its mechanism is not dependent on the inhibition in P-gp expression and the increase in intracellular drug concentration. PMID:26591531

  17. Downregulation of JNK/SAPK activity is associated with the cross-resistance to P-glycoprotein-unrelated drugs in multidrug-resistant FM3A/M cells overexpressing P-glycoprotein.

    PubMed

    Kang, C D; Ahn, B K; Jeong, C S; Kim, K W; Lee, H J; Yoo, S D; Chung, B S; Kim, S H

    2000-04-10

    In the present study, cross-drug resistance in multidrug-resistant (MDR) cells, which overexpress P-glycoprotein (Pgp), a mdr1 gene product, against Pgp-unrelated drugs, and its relevance to c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) activity were examined. The multidrug-resistant FM3A/M cells overexpressing Pgp were resistant to apoptotic cell death induced either by Pgp-related drugs including vincristine and vinblastine, which are pumped out by Pgp, or by the Pgp-unrelated drugs including 5'-fluorouracil (5-FU) and bleomycin, which are not targets for Pgp, compared with the parental FM3A cells. Verapamil reversed the resistance of FM3A/M cells to apoptosis induced by the Pgp-related drugs but not that induced by the Pgp-unrelated drugs. Interestingly, FM3A/M cells have shown significantly lower basal and drug-stimulated JNK/SAPK activities than FM3A cells. After transfection with pEBG-SEK or pEBG-SAPK constructs, FM3A/M cells recovered the basal and Pgp-unrelated drug-stimulated activities of JNK/SAPK and the susceptibility to Pgp-unrelated drug-induced apoptotic cell death comparable to those of FM3A cells. Furthermore, FM3A cells became resistant to apoptotic cell death induced by vincristine and 5-FU after transfection with pEBG-SEK(K --> R), a dominant negative inhibitory mutant of SEK. These results suggest that downregulation of JNK/SAPK activity appears to confer on Pgp-associated FM3A/M cells a cross-resistance to Pgp-unrelated drugs. PMID:10739677

  18. Cargoing P-gp inhibitors via nanoparticle sensitizes tumor cells against doxorubicin.

    PubMed

    Singh, Manu Smriti; Lamprecht, Alf

    2015-01-30

    Inhibitors against multidrug resistance (MDR) efflux transporters have failed in most clinical settings due to unfavorable pharmacokinetic interactions with co-administered anti-cancer drug and their inherent toxicities. Nanoparticles (NPs) have shown potential to overcome drug efflux by delivering and localizing therapeutic molecules within tumor mass. In this work, we investigated effect of nanocarrier surface charge and formulation parameters for a hydrophilic and lipophilic MDR inhibitor on their ability to reverse drug resistance. Active inhibition of efflux pumps was achieved by encapsulating first and third generation P-gp inhibitors- verapamil and elacridar respectively in non-ionic, anionic and cationic surfactant-based NPs. The ability of NPs to reverse P-glycoprotein (P-gp)-mediated MDR efflux was evaluated in sensitive (A2780) and resistant (A2780Adr) ovarian cancer cell lines by various in vitro accumulation and cytotoxicity assays. Uptake mechanism for NP appears to be caveolae-dependent with 20%-higher internalization in A2780Adr than A2780 cell lines which can be co-related to the biophysical membrane composition. Cationic- CTAB NPs showed highest reversal efficacy followed by PVA and SDS-NP (P+S NP) and PVA-NPs. As compared to doxorubicin treated drug resistant cells lines, blank-, verapamil- and elacridar-CTAB-NPs showed 2.6-, 20- and 193-fold lower IC50 values. This work highlights the importance of inhibitor-loaded charged particles to overcome cancer drug resistance. PMID:25437111

  19. Pharmacokinetic Interactions of Herbs with Cytochrome P450 and P-Glycoprotein

    PubMed Central

    Cho, Hyun-Jong

    2015-01-01

    The concurrent use of drugs and herbal products is becoming increasingly prevalent over the last decade. Several herbal products have been known to modulate cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) which are recognized as representative drug metabolizing enzymes and drug transporter, respectively. Thus, a summary of knowledge on the modulation of CYP and P-gp by commonly used herbs can provide robust fundamentals for optimizing CYP and/or P-gp substrate drug-based therapy. Herein, we review ten popular medicinal and/or dietary herbs as perpetrators of CYP- and P-gp-mediated pharmacokinetic herb-drug interactions. The main focus is placed on previous works on the ability of herbal extracts and their phytochemicals to modulate the expression and function of CYP and P-gp in several in vitro and in vivo animal and human systems. PMID:25632290

  20. P-Glycoprotein Acts as an Immunomodulator during Neuroinflammation

    PubMed Central

    Kooij, Gijs; Reijerkerk, Arie; van Horssen, Jack; van der Pol, Susanne M. A.; Drexhage, Joost; Schinkel, Alfred; Dijkstra, Christine D.; den Haan, Joke M. M.; Geijtenbeek, Teunis B. H.; de Vries, Helga E.

    2009-01-01

    Background Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system in which autoreactive myelin-specific T cells cause extensive tissue damage, resulting in neurological deficits. In the disease process, T cells are primed in the periphery by antigen presenting dendritic cells (DCs). DCs are considered to be crucial regulators of specific immune responses and molecules or proteins that regulate DC function are therefore under extensive investigation. We here investigated the potential immunomodulatory capacity of the ATP binding cassette transporter P-glycoprotein (P-gp). P-gp generally drives cellular efflux of a variety of compounds and is thought to be involved in excretion of inflammatory agents from immune cells, like DCs. So far, the immunomodulatory role of these ABC transporters is unknown. Methods and Findings Here we demonstrate that P-gp acts as a key modulator of adaptive immunity during an in vivo model for neuroinflammation. The function of the DC is severely impaired in P-gp knockout mice (Mdr1a/1b?/?), since both DC maturation and T cell stimulatory capacity is significantly decreased. Consequently, Mdr1a/1b ?/? mice develop decreased clinical signs of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Reduced clinical signs coincided with impaired T cell responses and T cell-specific brain inflammation. We here describe the underlying molecular mechanism and demonstrate that P-gp is crucial for the secretion of pro-inflammatory cytokines such as TNF-? and IFN-?. Importantly, the defect in DC function can be restored by exogenous addition of these cytokines. Conclusions Our data demonstrate that P-gp downmodulates DC function through the regulation of pro-inflammatory cytokine secretion, resulting in an impaired immune response. Taken together, our work highlights a new physiological role for P-gp as an immunomodulatory molecule and reveals a possible new target for immunotherapy. PMID:19997559

  1. Multiple Transport-Active Binding Sites Are Available for a Single Substrate on Human P-Glycoprotein (ABCB1)

    PubMed Central

    Chufan, Eduardo E.; Kapoor, Khyati; Sim, Hong-May; Singh, Satyakam; Talele, Tanaji T.; Durell, Stewart R.; Ambudkar, Suresh V.

    2013-01-01

    P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell- and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982) with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [125I]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C) Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available for each substrate. PMID:24349290

  2. Inhibitory Effects of Highly Oxygenated Lanostane Derivatives from the Fungus Ganoderma lucidum on P-Glycoprotein and ?-Glucosidase.

    PubMed

    Zhao, Xi-Run; Huo, Xiao-Kui; Dong, Pei-Pei; Wang, Chao; Huang, Shan-Shan; Zhang, Bao-Jing; Zhang, Hou-Li; Deng, Sa; Liu, Ke-Xin; Ma, Xiao-Chi

    2015-08-28

    Twelve new highly oxygenated lanostane triterpenoids and nine known ganoderic acids were isolated from the fruiting body of Ganoderma lucidum. The new compounds were lanostane nortriterpenoids with 27 carbons (1-5 and 8), lanostane nor-triterpenoids with 25 carbons (6 and 7), and lanostane triterpenoids (9-12) based on multiple spectroscopic data analysis, including HRESIMS, 1D-NMR, 2D-NMR, and CD. Compounds 1-5 were identified as rare nor-lanostanoids that contain a 17?-pentatomic lactone ring. Compound 13, possessing a lactone ring, had been isolated previously. The P-glycoprotein (P-gp) inhibitory effects of compounds 1-21 were evaluated at a concentration of 20 ?M using an adriamycin (ADM)-resistant human breast adenocarcinoma cell line (MCF-7/ADR). Compounds 1, 5, 18, and 20 and verapamil increased the accumulation of ADM in MCF-7/ADR cells approximately 3-fold when compared with the negative control. These data support the significant P-glycoprotein inhibitory activities of compounds 1, 5, 18, and 20. In silico docking analysis suggested these compounds had similar P-gp recognition mechanisms compared with those of verapamil (a classical inhibitor). Furthermore, in an in vitro bioassay, compounds 2, 4, 5, 6, and 18 showed moderate inhibitory effects against ?-glucosidase compared with those of the positive control acarbose. PMID:26222905

  3. Discovery of a marine-derived bis-indole alkaloid fascaplysin, as a new class of potent P-glycoprotein inducer and establishment of its structure-activity relationship.

    PubMed

    Manda, Sudhakar; Sharma, Sadhana; Wani, Abubakar; Joshi, Prashant; Kumar, Vikas; Guru, Santosh K; Bharate, Sonali S; Bhushan, Shashi; Vishwakarma, Ram A; Kumar, Ajay; Bharate, Sandip B

    2016-01-01

    The screening of IIIM natural products repository for P-gp modulatory activity in P-gp over-expressing human adenocarcinoma LS-180 cells led to the identification of 7 natural products viz. withaferin, podophyllotoxin, 3-demethylcolchicine, agnuside, reserpine, seseberecine and fascaplysin as P-gp inducers. Fascaplysin (6a), a marine-derived bis-indole alkaloid, was the most potent among all of them, showing induction of P-gp with EC50 value of 25 nM. P-gp induction is one of the recently targeted strategy to increase amyloid-? clearance from Alzheimer brains. Thus, we pursued a medicinal chemistry of fascaplysin to establish its structure-activity relationship for P-gp induction activity. Four series of analogs viz. substituted quaternary fascaplysin analogs, D-ring opened quaternary analogs, D-ring opened non-quaternary analogs, and ?-carbolinium analogs were synthesized and screened for P-gp induction activity. Among the total of 48 analogs screened, only quaternary nitrogen containing analogs 6a-g and 10a, 10h-l displayed promising P-gp induction activity; whereas non-planar non-quaternary analogs 9a-m, 13a-n, 15a-h were devoid of this activity. The P-gp induction activity of best compounds was then confirmed by western-blot analysis, which indicated that fascaplysin (6a) along with 4,5-difluoro analog of fascaplysin 6f and D-ring opened analog 10j displayed 4-8 fold increase in P-gp expression in LS-180 cells at 1 ?M. Additionally, compounds 6a and 6f also showed inhibition of acetylcholinestease (AChE), an enzyme responsible for neuronal loss in Alzheimer's disease. Thus, fascaplysin and its analogs showing promising P-gp induction along with AChE inhibition at 1 ?M, with good safety window (LS-180: IC50 > 10 ?M, hGF: 4 ?M), clearly indicates their promise for development as an anti-Alzheimer agent. PMID:26560048

  4. Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[11C]verapamil PET

    PubMed Central

    Kuntner, Claudia; Bankstahl, Jens P.; Bankstahl, Marion; Stanek, Johann; Wanek, Thomas; Stundner, Gloria; Karch, Rudolf; Brauner, Rebecca; Meier, Martin; Ding, Xiaoqi; Müller, Markus; Löscher, Wolfgang; Langer, Oliver

    2013-01-01

    Purpose Overactivity of the multidrug efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) is believed to play an important role in resistance to central nervous system drug treatment. (R)-[11C]verapamil (VPM) PET can be used to measure the function of P-gp at the BBB, but low brain uptake of VPM hampers the mapping of regional differences in cerebral P-gp function and expression. The aim of this study was to evaluate the dose-response relationship of two potent P-gp inhibitors and to investigate if increased brain uptake of VPM mediated by P-gp inhibition can be used to assess regional differences in P-gp activity. Methods Two groups of Sprague-Dawley rats (n=12) underwent single VPM PET scans at 120 min after administration of different doses of the P-gp inhibitors tariquidar and elacridar. In an additional 6 rats, paired VPM PET scans were performed before and after administration of 3 mg/kg tariquidar. Results Inhibitor administration resulted in an up to 11-fold increase in VPM brain distribution volumes (DV) with ED50 values of 3.0±0.2 and 1.2±0.1 mg/kg for tariquidar and elacridar, respectively. In paired PET scans, 3 mg/kg tariquidar resulted in regionally different enhancement of brain activity distribution, with lowest DV in cerebellum and highest DV in thalamus. Conclusion Our data show that tariquidar and elacridar are able to increase VPM brain distribution in rat brain up to 11-fold over baseline at maximum effective doses, with elacridar being about 3 times more potent than tariquidar. Regional differences in tariquidar-induced modulation of VPM brain uptake point to regional differences in cerebral P-gp function and expression in rat brain. PMID:20016890

  5. Jatrophane diterpenes as P-glycoprotein inhibitors. First insights of structure-activity relationships and discovery of a new, powerful lead.

    PubMed

    Corea, Gabriella; Fattorusso, Ernesto; Lanzotti, Virginia; Taglialatela-Scafati, Orazio; Appendino, Giovanni; Ballero, Mauro; Simon, Pierre-Noël; Dumontet, Charles; Di Pietro, Attilio

    2003-07-17

    The Mediterranean spurge Euphorbia dendroides L. afforded a series of 10 closely related jatrophane polyesters, nine of which are new, which served as a base for the establishment of structure-activity relationships within this class of P-glycoprotein inhibitors. The results, while pointing to the general role of lipophilicity for activity, also highlighted the relevance of the substitution pattern at the positions 2, 3, and 5, suggesting the involvement of this fragment in binding. The most powerful compound of the series, euphodendroidin D (4), outperformed cyclosporin by a factor of 2 to inhibit Pgp-mediated daunomycin transport. PMID:12852769

  6. P-glycoprotein and its inducible expression in three bivalve species after exposure to Prorocentrum lima.

    PubMed

    Huang, Lu; Liu, Su-Li; Zheng, Jian-Wei; Li, Hong-Ye; Liu, Jie-Sheng; Yang, Wei-Dong

    2015-12-01

    P-glycoprotein (P-gp or ABCB1) belongs to the family of ATP-binding cassette (ABC) transporters responsible for multixenobiotic resistance (MXR) in aquatic organisms. To provide more information of P-gp in shellfish, in this study, complete cDNA of P-gp in three bivalve species including Ruditapes philippinarum, Scapharca subcrenata and Tegillarca granosa were cloned and its expressions in gill, digestive gland, adductor muscle and mantle of the three bivalves were detected after exposure to Prorocentrum lima, a toxogenic dinoflagellate. The complete sequences of R. philippinarum, S. subcrenata and T. granosa P-gp showed high homology with MDR/P-gp/ABCB proteins from other species, having a typical sequence organization as full transporters from the ABCB family. Phylogenetic analyses revealed that the amino acid sequences of P-gp from S. subcrenata and T. granosa had a closest relationship, forming an independent branch, then grouping into the other branch with Mytilus californianus, Mytilus galloprovincialis and Crassostrea gigas. However, P-gp sequences from R. philippinarum were more similar to the homologs from the more distantly related Aplysia californica than to homologs from S. subcrenata and T. granosa, suggesting that bivalves P-gp might have different paralogs. P-glycoprotein expressed in all detected tissues but there were large differences between them. After exposure to P. lima, the expression of P-gp changed in the four tissues in varying degrees within the same species and between different species, but the changes in mRNA and protein level were not always synchronous. PMID:26539802

  7. Molecular insight into conformational transmission of human P-glycoprotein

    SciTech Connect

    Chang, Shan-Yan; Liu, Fu-Feng E-mail: ysun@tju.edu.cn; Dong, Xiao-Yan; Sun, Yan E-mail: ysun@tju.edu.cn; Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072

    2013-12-14

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through ?-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  8. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    PubMed

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions. PMID:19319690

  9. Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin A and Siamois polyphenols

    PubMed Central

    2010-01-01

    Background Multidrug resistance (MDR) is a major obstacle in cancer treatment and is often the result of overexpression of the drug efflux protein, P-glycoprotein (P-gp), as a consequence of hyperactivation of NF?B, AP1 and Nrf2 transcription factors. In addition to effluxing chemotherapeutic drugs, P-gp also plays a specific role in blocking caspase-dependent apoptotic pathways. One feature that cytotoxic treatments of cancer have in common is activation of the transcription factor NF?B, which regulates inflammation, cell survival and P-gp expression and suppresses the apoptotic potential of chemotherapeutic agents. As such, NF?B inhibitors may promote apoptosis in cancer cells and could be used to overcome resistance to chemotherapeutic agents. Results Although the natural withanolide withaferin A and polyphenol quercetin, show comparable inhibition of NF?B target genes (involved in inflammation, angiogenesis, cell cycle, metastasis, anti-apoptosis and multidrug resistance) in doxorubicin-sensitive K562 and -resistant K562/Adr cells, only withaferin A can overcome attenuated caspase activation and apoptosis in K562/Adr cells, whereas quercetin-dependent caspase activation and apoptosis is delayed only. Interestingly, although withaferin A and quercetin treatments both decrease intracellular protein levels of Bcl2, Bim and P-Bad, only withaferin A decreases protein levels of cytoskeletal tubulin, concomitantly with potent PARP cleavage, caspase 3 activation and apoptosis, at least in part via a direct thiol oxidation mechanism. Conclusions This demonstrates that different classes of natural NF?B inhibitors can show different chemosensitizing effects in P-gp overexpressing cancer cells with impaired caspase activation and attenuated apoptosis. PMID:20438634

  10. Mapping the Binding Site of the Inhibitor Tariquidar That Stabilizes the First Transmembrane Domain of P-glycoprotein.

    PubMed

    Loo, Tip W; Clarke, David M

    2015-12-01

    ABC (ATP-binding cassette) transporters are clinically important because drug pumps like P-glycoprotein (P-gp, ABCB1) confer multidrug resistance and mutant ABC proteins are responsible for many protein-folding diseases such as cystic fibrosis. Identification of the tariquidar-binding site has been the subject of intensive molecular modeling studies because it is the most potent inhibitor and corrector of P-gp. Tariquidar is a unique P-gp inhibitor because it locks the pump in a conformation that blocks drug efflux but activates ATPase activity. In silico docking studies have identified several potential tariquidar-binding sites. Here, we show through cross-linking studies that tariquidar most likely binds to sites within the transmembrane (TM) segments located in one wing or at the interface between the two wings (12 TM segments form 2 divergent wings). We then introduced arginine residues at all positions in the 12 TM segments (223 mutants) of P-gp. The rationale was that a charged residue in the drug-binding pocket would disrupt hydrophobic interaction with tariquidar and inhibit its ability to rescue processing mutants or stimulate ATPase activity. Arginines introduced at 30 positions significantly inhibited tariquidar rescue of a processing mutant and activation of ATPase activity. The results suggest that tariquidar binds to a site within the drug-binding pocket at the interface between the TM segments of both structural wings. Tariquidar differed from other drug substrates, however, as it stabilized the first TM domain. Stabilization of the first TM domain appears to be a key mechanism for high efficiency rescue of ABC processing mutants that cause disease. PMID:26507655

  11. c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1alpha-dependent P-glycoprotein expression in hypoxia.

    PubMed

    Comerford, Katrina M; Cummins, Eoin P; Taylor, Cormac T

    2004-12-15

    We previously have shown that hypoxia increases the expression of P-glycoprotein, which in turn increases tumor cell capacity to actively extrude chemotherapeutic agents and may contribute to tumor drug resistance. This event is mediated through the hypoxia-inducible factor (HIF-1). Here, we investigated the role of the stress-activated protein kinase c-Jun NH(2)-terminal kinase (JNK) in the signaling mechanisms underlying these events. Hypoxia activates JNK activity in vitro and in vivo. Overexpression of mitogen-activated protein kinase (MAPK) kinase kinase (MEKK-1), which preferentially activates JNK, mimics, in a nonadditive way, hypoxia-induced activity of the MDR1 promoter and expression of MDR1 mRNA and P-glycoprotein. Furthermore, the JNK inhibitor SP600125 selectively and specifically inhibits hypoxia- and MEKK-1-induced MDR1 promoter activity in a dose-dependent manner. JNK inhibition also reversed hypoxia- and MEKK-1-induced activity of an HIF-1-dependent reporter gene. MEKK-1-induced MDR1 expression depends on a functional HIF-1 binding site (hypoxia-responsive element). Hypoxia- but not cobalt chloride-dependent HIF-1-DNA binding and transcriptional activation was inhibited by SP600125, indicating that hypoxia-induced signaling to HIF-1 depends on JNK activation. Because it has been reported that reactive oxygen species are increased in hypoxia and related to JNK activation, we investigated their role in signaling this response. Whereas exogenous addition of H(2)O(2) was sufficient to activate JNK, reactive oxygen species scavengers were without effect on hypoxia-induced JNK or HIF-1 activation. Thus, hypoxia-elicited MDR1 expression, which depends on HIF-1 activation, depends at least in part on signaling via activation of JNK. Furthermore, these events are independent of the generation of reactive oxygen intermediates. Thus, JNK may represent a therapeutic target in the prevention of tumor resistance to chemotherapeutic treatment. PMID:15604272

  12. Reversible Dimers of the Atypical Antipsychotic Quetiapine Inhibit P-Glycoprotein-Mediated Efflux in Vitro with Increased Binding Affinity and in Situ at the Blood-Brain Barrier

    PubMed Central

    2014-01-01

    The multidrug resistance transporter P-glycoprotein (P-gp) is highly expressed in the capillary endothelial cells of the blood-brain barrier (BBB) where it functions to limit the brain penetration of many drugs, including antipsychotic agents used to treat schizophrenia. Therefore, in an effort to inhibit the transporter, we designed dimers of the antipsychotic drug and P-gp substrate quetiapine (QT), linked by variable length tethers. In P-gp overexpressing cells and in human brain capillary endothelial hCMEC/D3 cells, the dimer with the shortest tether length (QT2C2) (1) was the most potent inhibitor showing >80-fold better inhibition of P-gp-mediated transport than monomeric QT. The dimers, which are linked via ester moieties, are designed to revert to the therapeutic monomer once inside the target cells. We demonstrated that the addition of two sterically blocking methyl groups to the linker (QT2C2Me2, 8) increased the half-life of the molecule in plasma 10-fold as compared to the dimer lacking methyl groups (QT2C2, 1), while retaining inhibitory potency for P-gp transport and sensitivity to cellular esterases. Experiments with purified P-gp demonstrated that QT2C2 (1) and QT2C2Me2 (8) interacted with both the H- and R-binding sites of the transporter with binding affinities 20- to 30-fold higher than that of monomeric QT. Using isolated rat brain capillaries, QT2C2Me2 (8) was a more potent inhibitor of P-gp transport than QT. Lastly, we showed that QT2C2Me2 (8) increased the accumulation of the P-gp substrate verapamil in rat brain in situ three times more than QT. Together, these results indicate that the QT dimer QT2C2Me2 (8) strongly inhibited P-gp transport activity in human brain capillary endothelial cells, in rat brain capillaries, and at the BBB in an animal model. PMID:24483607

  13. Reversible dimers of the atypical antipsychotic quetiapine inhibit p-glycoprotein-mediated efflux in vitro with increased binding affinity and in situ at the blood-brain barrier.

    PubMed

    Emmert, Dana; Campos, Christopher R; Ward, David; Lu, Peihua; Namanja, Hilda A; Bohn, Kelsey; Miller, David S; Sharom, Frances J; Chmielewski, Jean; Hrycyna, Christine A

    2014-04-16

    The multidrug resistance transporter P-glycoprotein (P-gp) is highly expressed in the capillary endothelial cells of the blood-brain barrier (BBB) where it functions to limit the brain penetration of many drugs, including antipsychotic agents used to treat schizophrenia. Therefore, in an effort to inhibit the transporter, we designed dimers of the antipsychotic drug and P-gp substrate quetiapine (QT), linked by variable length tethers. In P-gp overexpressing cells and in human brain capillary endothelial hCMEC/D3 cells, the dimer with the shortest tether length (QT2C2) (1) was the most potent inhibitor showing >80-fold better inhibition of P-gp-mediated transport than monomeric QT. The dimers, which are linked via ester moieties, are designed to revert to the therapeutic monomer once inside the target cells. We demonstrated that the addition of two sterically blocking methyl groups to the linker (QT2C2Me2, 8) increased the half-life of the molecule in plasma 10-fold as compared to the dimer lacking methyl groups (QT2C2, 1), while retaining inhibitory potency for P-gp transport and sensitivity to cellular esterases. Experiments with purified P-gp demonstrated that QT2C2 (1) and QT2C2Me2 (8) interacted with both the H- and R-binding sites of the transporter with binding affinities 20- to 30-fold higher than that of monomeric QT. Using isolated rat brain capillaries, QT2C2Me2 (8) was a more potent inhibitor of P-gp transport than QT. Lastly, we showed that QT2C2Me2 (8) increased the accumulation of the P-gp substrate verapamil in rat brain in situ three times more than QT. Together, these results indicate that the QT dimer QT2C2Me2 (8) strongly inhibited P-gp transport activity in human brain capillary endothelial cells, in rat brain capillaries, and at the BBB in an animal model. PMID:24483607

  14. Providing a molecular mechanism for P-glycoprotein; why would I bother?

    PubMed

    Callaghan, Richard

    2015-10-01

    It is almost 40 years since the drug efflux pump P-glycoprotein (permeability glycoprotein or P-gp) was shown to confer multi-drug resistance in cancer cells. This protein has been one of the most extensively investigated transport proteins due to its intriguing mechanism and its affect in oncology. P-gp is known to interact with over 300 compounds and the ability to achieve this has not yet been revealed. Following the binding of substrate and nucleotide, a complex series of conformational changes in the membrane and cytosolic domains translocates substrate across the membrane. Despite over 30 years of biochemical investigation, the availability of structural data and a plethora of chemical tools to modulate its function, the molecular mechanism remains a mystery. In addition, overcoming its activity in resistant cancer cells has not been achieved in the clinic, thereby garnering some degree of pessimism in the field. This review highlights the progress that has been achieved in understanding this complex protein and the value of undertaking molecular studies. PMID:26517914

  15. Providing a molecular mechanism for P-glycoprotein; why would I bother?

    PubMed Central

    Callaghan, Richard

    2015-01-01

    It is almost 40 years since the drug efflux pump P-glycoprotein (permeability glycoprotein or P-gp) was shown to confer multi-drug resistance in cancer cells. This protein has been one of the most extensively investigated transport proteins due to its intriguing mechanism and its affect in oncology. P-gp is known to interact with over 300 compounds and the ability to achieve this has not yet been revealed. Following the binding of substrate and nucleotide, a complex series of conformational changes in the membrane and cytosolic domains translocates substrate across the membrane. Despite over 30 years of biochemical investigation, the availability of structural data and a plethora of chemical tools to modulate its function, the molecular mechanism remains a mystery. In addition, overcoming its activity in resistant cancer cells has not been achieved in the clinic, thereby garnering some degree of pessimism in the field. This review highlights the progress that has been achieved in understanding this complex protein and the value of undertaking molecular studies. PMID:26517914

  16. Inhibition of P-glycoprotein by psychotherapeutic drugs in a canine cell model.

    PubMed

    Schrickx, J A; Fink-Gremmels, J

    2014-10-01

    Drug-drug interactions related to long-term therapies are of increasing concern. Psychotherapeutic drugs, licensed for the use in dogs for the management of separation anxiety and other behavioural disorders, are examples of drugs used in long-term therapies. In an in vitro system with canine P-glycoprotein (P-gp) expressing cell lines, three psychotherapeutic drugs with a different mode of action were tested for their ability to inhibit the canine multidrug transporter P-gp. At 10 ?m, the selective serotonin reuptake inhibitor fluoxetine and the tricyclic antidepressant clomipramine inhibited P-gp for 41% and 59%, respectively. In contrast, selegeline did not inhibit the function of the canine P-gp. PMID:24602126

  17. Increased brain uptake of venlafaxine loaded solid lipid nanoparticles by overcoming the efflux function and expression of P-gp.

    PubMed

    Zhou, Yan; Zhang, Guoqiang; Rao, Zhi; Yang, Yang; Zhou, Qian; Qin, Hongyan; Wei, Yuhui; Wu, Xin'an

    2015-07-01

    Venlafaxine (VLX) could be pumped out of the brain by P-glycoprotein (P-gp). Moreover, the expression of P-gp distributed in blood-brain barrier could be significantly induced by VLX. Thus, P-gp could be considered as the nature barrier for delivering of VLX to the brain. The aim of this study was to investigate whether the efflux function and increased expression of P-gp could be reversed by utilizing solid lipid nanoparticles (SLN). VLX solid lipid nanoparticles (VLX - SLN) were prepared and evaluated. Pharmacokinetics and brain distribution of VLX in different formulations were conducted after oral or intravenous administration. P-gp efflux function to VLX was evaluated by the brain uptake amount of VLX, while P-gp expression was investigated by Western blotting. Results indicated that the entrapment, mean size and zata potential of VLX - SLN was 74.9 ± 3.0 %, 186.3 ± 69.26 nm and -22.8 ± 7.78 mv, respectively. After vein injection of VLX formulations, the brain uptake amount of VLX from VLX - SLN was significantly higher than that of VLX solution, VLX solution with empty SLN (VLX+ empty SLN) and VLX solution with Verapamil (VLX + Ver), respectively. Furthermore, the protein mass of P-gp in VLX - SLN treated group was the lowest among all the investigated groups. These results indicated that SLN could overcome P-gp and achieve brain target by intravenous administration. PMID:25567760

  18. Interactions between P-glycoprotein substrates and other cationic drugs at the hepatic excretory level.

    PubMed

    Smit, J W; Duin, E; Steen, H; Oosting, R; Roggeveld, J; Meijer, D K

    1998-02-01

    1. In the present study it was tested whether known P-glycoprotein (P-gp) substrates/MDR reversal agents interact with small (type 1) and bulky (type 2) cationic drugs at the level of biliary excretion in the rat isolated perfused liver model (IPRL). The studies were performed with model compounds tri-n-butylmethylammonium (TBuMA) (a relatively small type 1 organic cation), rocuronium (Roc) (a bulky type 2 organic cation) and the classical P-gp substrate doxorubicin (Dox). 2. Inhibitors were given in a 4 fold molar excess to the substrate studied. To minimize an interaction of the substrates at the hepatic uptake level, the competing compounds were added when over 55% to 85% of the administered dose of the model compounds had been removed from the perfusate and taken up by the liver. 3. We found a mutual interaction between TBuMA and procainamidethobromide (PAEB), both type 1 cationic compounds during biliary excretion. Interestingly, type 2 compounds, such as rocuronium, clearly inhibited type 1 cationic drugs as well as Dox secretion into bile, whereas type 1 compounds did not significantly inhibit type 2 drug excretion into bile. The type 1 cations PAEB and TBuMA only moderately inhibited Dox biliary excretion. Dox did not inhibit the biliary excretion of the type 2 agent rocuronium whereas rocuronium reduced Dox biliary excretion by 50% compared to controls. 4. MDR substrates/reversal agents like verapamil, quinine, quinidine and vinblastine strongly reduced both type 1 and type 2 organic cation excretion into bile. Dox secretion into bile was also profoundly reduced by these drugs, vinblastine being the most potent inhibitor in general. 5. The lack of mutual inhibition observed in some combinations of substrates may indicate that major differences in affinity of the substrates for a single excretory system exist. Alternatively, multiple organic cation transport systems with separate substrate specificities may be involved in the biliary excretion of amphiphilic drugs. Furthermore, the present study revealed a clear positive correlation between the lipophilicity of the potential inhibitors studied and their respective inhibitory activity on the biliary excretion of the model drugs investigated. 6. Our data are compatible with a potential involvement of P-glycoprotein in the hepatobiliary excretion of doxorubicin as well as of some type 1 and type 2 organic cations. Furthermore we postulate that the hydrophobic properties of the amphiphilic cationic drugs studied play a crucial role in the accommodation of these agents by P-glycoprotein and/or other potential cationic drug carrier proteins in the canalicular membrane. PMID:9504375

  19. Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies?

    PubMed

    Potschka, Heidrun

    2010-08-01

    Enhanced brain efflux of antiepileptic drugs by the blood-brain barrier transporter P-glycoprotein is discussed as one mechanism contributing to pharmacoresistance of epilepsies. P-glycoprotein overexpression has been proven to occur as a consequence of seizure activity. Therefore, blocking respective signaling events should help to improve brain penetration and efficacy of P-glycoprotein substrates. A series of recent studies revealed key signaling factors involved in seizure-associated transcriptional activation of P-glycoprotein. These data suggested several interesting targets, including the N-methyl-d-aspartate (NMDA) receptor, the inflammatory enzyme cyclooxygenase-2, and the prostaglandin E2 EP1 receptor. These targets have been further evaluated in rodent models, demonstrating that targeting these factors can control P-glycoprotein expression, improve antiepileptic drug brain penetration, and help to overcome pharmacoresistance. In general, the approach offers particular advantages over transporter inhibition as it preserves basal transporter function. In this review the different strategies for blocking P-glycoprotein upregulation, including their therapeutic promise and drawbacks are discussed. Moreover, pros and cons of the approach are compared to those of alternative strategies to overcome transporter-associated resistance. Regarding future perspectives of the novel approach, there is an obvious need to more clearly define the clinical relevance of transporter overexpression. In this context current efforts are discussed, including the development of imaging tools that allow an evaluation of P-glycoprotein function in individual patients. PMID:20477844

  20. St. John's wort may ameliorate 2,4,6-trinitrobenzenesulfonic acid colitis off rats through the induction of pregnane X receptors and/or P-glycoproteins.

    PubMed

    Sehirli, A O; Cetinel, S; Ozkan, N; Selman, S; Tetik, S; Yuksel, M; Dulger, F G A

    2015-04-01

    It is reported that deficiencies of the pregnane X receptor (PXR) and P-glycoprotein (P-gp), the latter of which is encoded by the MDR1 gene, are important factors in the pathogenesis of inflammatory bowel disease (IBD). It is also known that the activation of PXR is protective of IBD due to the mutual repression between PXR and nuclear factor kappa B (NF-?B) expression and because NF-?B was reported to play a pivotal role in the pathogenesis of ulcerative colitis. The goal of this study was to investigate whether St. John's wort (SJW) and spironolactone (SPL), both known to have strong inducing effects on cytochrome P 450 (CYP) enzymes as well as PXR and P-gp, have ameliorating effects on 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis of rats through induction of PXR and/or P-gp. Wistar albino rats (250 - 300 g) were divided into control and TNBS-colitis groups. Each group was then divided into a) control (saline), b) SJW (300 mg/kg p.o. bid), and c) SPL (80 mg/kg p.o.) groups. Drugs were given for 7 days. Both treatments ameliorated the clinical hallmarks of colitis, as determined by body weight loss and assessment of diarrhea, colon length, and bowel histology. Plasma levels of NF-?B, tumour necrosis factor-alpha (TNF-?) and tissue myeloperoxidase (MPO) activity, as well as the oxidative stress markers that increased during colitis, decreased significantly after both treatments. The PXR and P-gp expression in the intestinal tissues was diminished in the colitis group but increased after drug treatments. Both drugs appeared to have significant antioxidant and anti-inflammatory effects and ameliorated the TNBS colitis of the rats, most likely through their PXR- and P-gp-inducing properties. PMID:25903951

  1. The co-delivery of a low-dose P-glycoprotein inhibitor with doxorubicin sterically stabilized liposomes against breast cancer with low P-glycoprotein expression

    PubMed Central

    Gao, Wei; Lin, Zhiqiang; Chen, Meiwan; Yang, Xiucong; Cui, Zheng; Zhang, Xiaofei; Yuan, Lan; Zhang, Qiang

    2014-01-01

    Introduction P-glycoprotein (P-gp) inhibitors are usually used to treat tumors that overexpress P-gps. However, most common types of breast cancers, such as Luminal A, are low-P-gp expressing, at least during the initial phases of treatment. Therefore, it would be interesting to know if P-gp inhibitors are still useful in treating low-P-gp-expressing tumors. Methods In the study reported here, the human breast-cancer cell line MCF-7, chosen as a model of Luminal A, was found to be low-P-gp expressing. We designed a novel doxorubicin (DOX) sterically stabilized liposome system co-loaded with the low-dose P-gp inhibitor cyclosporine A (CsA) (DOX/CsA/SSL). Results The co-delivery system showed good size uniformity, high encapsulation efficiency, and a desirable release profile. The cell-uptake and cytotoxicity studies demonstrated that CsA could significantly enhance the intracellular accumulation and toxicity of free DOX and the liposomal DOX in MCF-7 cells. The confocal microscopy and in vivo imaging study confirmed the intracellular and in vivo targeting effect of DOX/CsA/SSL, respectively. Finally, the in vivo study proved that DOX/CsA/SSL could achieve significantly better antitumor effect against MCF-7 tumor than controls, without inducing obvious systemic toxicity. Conclusion This study demonstrated that the co-delivery of a low-dose P-gp inhibitor and liposomal DOX could improve the therapy of low-P-gp-expressing cancer, which is of significance in clinical tumor therapy. PMID:25092974

  2. Inhibition of P-glycoprotein-mediated transport by extracts of and monoterpenoids contained in Zanthoxyli Fructus

    SciTech Connect

    Yoshida, Naoko; Takagi, Akiyoshi; Kitazawa, Hidenori; Kawakami, Junichi . E-mail: kawakami-tym@umin.ac.jp; Adachi, Isao

    2005-12-01

    Citrus (rutaceous) herbs are often used in traditional medicine and Japanese cuisine and can be taken concomitantly with conventional medicine. In this study, the effect of various citrus-herb extracts on P-glycoprotein (P-gp)-mediated transport was examined in vitro to investigate a possible interaction with P-gp substrates. Component monoterpenoids of the essential oil in Zanthoxyli Fructus was screened to find novel P-gp inhibitors. LLC-GA5-COL150 cells transfected with human MDR1 cDNA encoding P-gp were used. Cellular accumulation of [{sup 3}H]digoxin was measured in the presence or absence of P-gp inhibitors or test samples. Aurantii Fructus, Evodiae Fructus, Aurantii Fructus Immaturus, Aurantii Nobilis Pericarpium, Phellodendri Cortex, and Zanthoxyli Fructus were extracted with hot water (decocted) and then fractionated with ethyl acetate. The cell to medium ratio of [{sup 3}H]digoxin accumulation increased significantly in the presence of the decoction of Evodiae Fructus, Aurantii Nobilis Pericarpium, and Zanthoxyli Fructus, and the ethyl acetate fraction of all citrus herbs used. The ethyl acetate fraction of Zanthoxyli Fructus exhibited the strongest inhibition of P-gp among tested samples with an IC{sub 5} value of 166 {mu}g/mL. Then its component monoterpenoids, geraniol, geranyl acetate (R)-(+)-limonene, (R)-(+)-linalool, citronellal (R)-(+)-citronellal, DL-citronellol (S)-(-)-{beta}-citronellol, and cineole, were screened. (R)-(+)-citronellal and (S)-(-)-{beta}-citronellol inhibited P-gp with IC{sub 5} values of 167 {mu}M and 504 {mu}M, respectively. These findings suggest that Zanthoxyli Fructus may interact with P-gp substrates and that some monoterpenoids with the relatively lower molecular weight of about 150 such as (R)-(+)-citronellal can be potent inhibitors of P-gp.

  3. Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy

    PubMed Central

    Hoosain, Famida G.; Choonara, Yahya E.; Tomar, Lomas K.; Kumar, Pradeep; Tyagi, Charu; du Toit, Lisa C.; Pillay, Viness

    2015-01-01

    The efficient noninvasive treatment of neurodegenerative disorders is often constrained by reduced permeation of therapeutic agents into the central nervous system (CNS). A vast majority of bioactive agents do not readily permeate into the brain tissue due to the existence of the blood-brain barrier (BBB) and the associated P-glycoprotein efflux transporter. The overexpression of the MDR1 P-glycoprotein has been related to the occurrence of multidrug resistance in CNS diseases. Various research outputs have focused on overcoming the P-glycoprotein drug efflux transporter, which mainly involve its inhibition or bypassing mechanisms. Studies into neurodegenerative disorders have shown that the P-glycoprotein efflux transporter plays a vital role in the progression of schizophrenia, with a noted increase in P-glycoprotein function among schizophrenic patients, thereby reducing therapeutic outcomes. In this review, we address the hypothesis that methods employed in overcoming P-glycoprotein in cancer and other disease states at the level of the BBB and intestine may be applied to schizophrenia drug delivery system design to improve clinical efficiency of drug therapies. In addition, the current review explores polymers and drug delivery systems capable of P-gp inhibition and modulation. PMID:26491671

  4. Hyperglycemia induced down-regulation of renal P-glycoprotein expression.

    PubMed

    Yeh, Szu-Yu; Pan, Huei-Ju; Lin, Chung-Cheng; Kao, Yu-Han; Chen, Yen-Hui; Lin, Chun-Jung

    2012-09-01

    The purpose of this study is to investigate the regulation of P-glycoprotein expression in the kidney under diabetic condition. Renal P-glycoprotein expression was examined in inbred mice with type 1 or type 2 diabetes by Western blotting. The underlying mechanisms of P-glycoprotein regulation were examined in Madin-Darby canine kidney type II (MDCK-II) cells by Western blotting or qRT-PCR. (3)H-digoxin uptake was measured for P-glycoprotein activity in cells under various treatments. The results showed that P-glycoprotein expression was lower in kidneys of diabetic mice than in controls. In MDCK-II cells, treatments with insulin or IL-6 did not cause any change in P-glycoprotein expression, whereas TNF-? tended to increase P-glycoprotein expression at a concentration of 1 ng/ml. On the other hand, P-glycoprotein expression was reduced under high glucose conditions (450 mg/dl), while superoxide production was increased, and the reduction in P-glycoprotein expression was abolished by N-acetylcysteine (an antioxidant) and staurosporine (a nonselective PKC inhibitor). Treatment with oxidizing agents (H(2)O(2), BSO) or PMA (a PKC activator) reduced P-glycoprotein expression. Antioxidant (N-acetylcysteine or glutathione) co-treatment abolished the H(2)O(2)-induced and BSO-induced reduction in P-glycoprotein expression, whereas it did not prevent the effect of PMA. The PMA-induced P-glycoprotein down-regulation was prevented by co-treatment of LY333531 (a PKC-? inhibitor). (3)H-digoxin levels were higher in MDCK-II cells with high glucose, PMA or H(2)O(2) treatments. In conclusion, P-glycoprotein expression is lower in kidneys of diabetic mice and in MDCK-II cells under high glucose conditions. Hyperglycemia induced reactive oxygen species and activated PKC in MDCK-II cells, leading to the decrease in P-glycoprotein expression. PMID:22721613

  5. Reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis Mahoniae, on P-glycoprotein-mediated doxorubicin-resistance in human breast cancer (MCF-7/DOX) cells.

    PubMed

    Wang, Tian-Xiao; Yang, Xiao-Hong

    2008-05-01

    This study investigated the reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis mahoniae, on P-glycoprotein-mediated multidrug resistance in human breast cancer doxorubicin-resistant (MCF-7/DOX) cells. RT-PCR assay and immunity histochemistry assay were used to determine the expression level of mdrl gene and P-gp in MCF-7/DOX cells to elucidate resistant character of MCF-7/DOX cells. The activity of isotetrandine to enhance doxorubicin cytotoxicity was tested using MTT (3-(4, 5-dimethyhthiazol)-2,5 -diphenyltetrazolium bromide) assay and was evaluated by the reversal fold (RF) values. Intracellular accumulation of doxorubicin was assessed by the determination of doxorubicin-associated fluorescence intensity. Effect of isotetrandrine on the expression level of P-gp in MCF-7/DOX cells was then determined by immunity histochemistry assay. The ability of isotetrandrine to inhibit P-gp function was evaluated by detecting the accumulation and efflux of rhodamine 123 (Rh123) with flow cytometry (FCM). Verapamil was employed as a comparative agent in whole experiment. The results indicated that MCF-7/DOX cells had phenotype of MDR and that the positive expression of P-gp was their resistant character. 10 microg x mL(-1) isotetrandrine could distinctly enhance cytotoxicity of DOX in MCF-7/DOX cells and reversal fold (RF) was significantly higher than that of verapamil (P < 0.05), but it hardly affected cytotoxicity of DOX in MCF-7 cells and the expression level of P-gp in MCF-7/DOX cells. The ability of isotetrandrine to inhibit P-gp function was reversible, because incubation of MCF-7/DOX cells with isotetrandrine caused a marked increase in uptake and a notable decrease in efflux of Rh123 and a marked increase of intracellular DOX concentrations. In conclusion, isotetrandrine exhibited potent effect on the reversal of P-gp-mediated MDR in vitro, suggesting that it might become a candidate of effective MDR reversing agent in cancer chemotherapy. PMID:18717331

  6. Lamellarins as inhibitors of P-glycoprotein-mediated multidrug resistance in a human colon cancer cell line.

    PubMed

    Plisson, Fabien; Huang, Xiao-Cong; Zhang, Hua; Khalil, Zeinab; Capon, Robert J

    2012-06-01

    Chemical analysis of a Didemnum sp. (CMB-01656) collected during scientific Scuba operations off Wasp Island, New South Wales, yielded five new lamellarins A1 (1), A2 (2), A3 (3), A4 (4) and A5 (5) and eight known lamellarins C (6), E (7), K (8), M (9), S (10), T (11), X (12) and ? (13). Analysis of a second Didemnum sp. (CMB-02127) collected during scientific trawling operations along the Northern Rottnest Shelf, Western Australia, yielded the new lamellarin A6 (14) and two known lamellarins G (15) and Z (16). Structures were assigned to 1-16 on the basis of detailed spectroscopic analysis with comparison to literature data and authentic samples. Access to this unique library of natural lamellarins (1-16) provided a rare opportunity for structure-activity relationship (SAR) investigations, probing interactions between lamellarins and the ABC transporter efflux pump P-glycoprotein (P-gp) with a view to reversing multidrug resistance in a human colon cancer cell line (SW620 Ad300). These SAR studies, which were expanded to include the permethylated lamellarin derivative (17) and a series of lamellarin-inspired synthetic coumarins (19-24) and isoquinolines (25-26), successfully revealed 17 as a promising new non-cytotoxic P-gp inhibitor pharmacophore. PMID:22473938

  7. Reversion of P-glycoprotein-mediated multidrug resistance by guggulsterone in multidrug-resistant human cancer cell lines.

    PubMed

    Xu, Hong-Bin; Xu, Lu-Zhong; Li, Ling; Fu, Jun; Mao, Xia-Ping

    2012-11-01

    Multidrug resistance (MDR) presents a serious problem in cancer chemotherapy. Our previous studies have shown that guggulsterone could reverse MDR through inhibiting the function and expression of P-glycoprotein (P-gp). The present study is to further investigate the reversal effects of guggulsterone on MDR in drug-resistant cancer cell lines. The effects of guggulsterone on MDR1mRNA gene expression, intracellular pH, P-gp ATPase activity and glucosylceramide synthase (GCS) expression were assessed by RT-PCR, Laser Scanning Confocal Microscope using the pH-sensitive fluorescent probe BCECF-AM, Pgp-Glo assay system, and flow cytometric technology, respectively. The results showed that guggulsterone ranging from 2.5 to 80 ?M significantly promoted the activity of P-gp ATPase in a dose-dependent manner. The intracellular pH of K562/DOX cells was found to be higher than K562 cells. After treatment with guggulsterone (1, 3, 10, 30, 100 ?M), intracellular pH of K562/DOX cells decreased in a dose- and time-dependent manner. However, the present study revealed that guggulsterone ranging from 3 to 100 ?M had little influence on MDR1 gene expression in K562/DOX cells. Further, the isogenic doxorubicin-resistant MCF-7/DOX cells exhibited a 4.9-fold increase in GCS level as compared with parental MCF-7 human breast cancer cells. After treatment with guggulsterone (0.1, 1, 10 ?M) for 48 h, MCF-7/DOX cells were found to have no change of GCS protein expression amount. Guggulsterone might be a potent MDR reversal agent, and its mechanism on MDR needs more research. PMID:22960326

  8. Pharmacokinetic Compatibility of Ginsenosides and Schisandra Lignans in Shengmai-san: From the Perspective of P-Glycoprotein

    PubMed Central

    Liang, Yan; Zhou, Yuanyuan; Zhang, Jingwei; Rao, Tai; Zhou, Lijun; Xing, Rong; Wang, Qian; Fu, Hanxu; Hao, Kun; Xie, Lin; Wang, Guangji

    2014-01-01

    Background Phytochemical-mediated alterations in P-glycoprotein (P-gp) activity may result in herb-drug interactions by altering drug pharmacokinetics. Shengmai-san, a traditional Chinese herbal medicine composed by Panax Ginseng, Ophiopogon Japonicus, and Schisandra Chinensis, is routinely being used for treating various coronary heart diseases. In our previous studies, Schisandra Lignans Extract (SLE) was proved as a strong P-gp inhibitor, and herein, the compatibility of Shengmai-san was studied by investigating the influence of SLE on the pharmacokinetics of the ginsenosides from the perspective of P-gp. Methodology Pharmacokinetic experiments were firstly performed based on in vitro uptake, efflux and transport experiments in Caco-2, LLC-PK1 wild-type and MDR1-overexpressing L-MDR1 cells. During the whole experiment, digoxin, a classical P-gp substrate, was used as a positive control drug to verify the cells used are the valid models. Meanwhile, the effects of SLE on the pharmacokinetics of ginsenosides were further investigated in rats after single-dose and multi-dose of SLE. Results and Conclusions The efflux ratios of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 were found more than 3.5 in L-MDR1 cells and can be decreased significantly by verapamil (a classical P-gp inhibitor). Contrarily, the efflux ratios of other ginsenosides (Rh1, F1, Re, and Rg1) were lower than 2.0 and not affected by verapamil. Then, the effects of SLE on the uptake and transport of ginsenosides were investigated, and SLE was found can significantly enhance the uptake and inhibit the efflux ratio of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 in Caco-2 and L-MDR1 cells. Besides, In vivo experiments showed that single-dose and multi-dose of SLE at 500 mg/kg could increase the area under the plasma concentration time curve of Rb2, Rc and Rd significantly without affecting terminal elimination half-time. In conclusion, SLE could enhance the exposure of ginsenosides Rb2, Rc, Rg2, Rg3, Rd and Rb1 significantly. PMID:24922060

  9. Expression of MDR1/P glycoprotein in human sarcomas.

    PubMed Central

    Vergier, B.; Cany, L.; Bonnet, F.; Robert, J.; de Mascarel, A.; Coindre, J. M.

    1993-01-01

    Conflicting reports of MDR1 gene expression in human tumours are observed according to whether studies are performed at the mRNA or P-glycoprotein level. We have investigated this expression in 22 clinically drug-resistant sarcomas at the mRNA level by Northern blot (NB), Dot blot (DB), in situ hybridisation (ISH), and at the protein level by immunohistochemistry (IHC) using three monoclonal antibodies (MoAbs): C219, JSB1, MRK16. Increased MDR1 mRNA expression was detected by NB, DB, and ISH in 1/22 sarcoma (an Ewing's sarcoma). ISH was perfectly correlated with DB hybridisation and confirmed the expression of tumoral cells alone. Specific staining of 100% of tumoral cells was obtained with the three MoAbs in the same sarcoma. Expression in tumoral cells of 12 other sarcomas was detected with MRK16, and positive staining of stromal cells with both C219 (1/22) and MRK16 (8/22) was observed. This study confirms that MDR1 overexpression occurs in human sarcomas but is not the principal mechanism of drug-resistance. Furthermore, positivity with one antibody does not necessarily imply the presence of P glycoprotein (P-gp) and a disparity may exist between the levels of P-gp and its mRNA in the same sample. So care must be taken in interpreting results and more sensitive techniques such as the polymerase chain reaction (PCR) could prove useful. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7903154

  10. Population pharmacokinetic modelling of non-linear brain distribution of morphine: influence of active saturable influx and P-glycoprotein mediated efflux

    PubMed Central

    Groenendaal, D; Freijer, J; de Mik, D; Bouw, M R; Danhof, M; de Lange, E C M

    2007-01-01

    Background and purpose: Biophase equilibration must be considered to gain insight into the mechanisms underlying the pharmacokinetic-pharmacodynamic (PK-PD) correlations of opioids. The objective was to characterise in a quantitative manner the non-linear distribution kinetics of morphine in brain. Experimental approach: Male rats received a 10-min infusion of 4 mg kg?1 of morphine, combined with a continuous infusion of the P-glycoprotein (Pgp) inhibitor GF120918 or vehicle, or 40 mg kg?1 morphine alone. Unbound extracellular fluid (ECF) concentrations obtained by intracerebral microdialysis and total blood concentrations were analysed using a population modelling approach. Key results: Blood pharmacokinetics of morphine was best described with a three-compartment model and was not influenced by GF120918. Non-linear distribution kinetics in brain ECF was observed with increasing dose. A one compartment distribution model was developed, with separate expressions for passive diffusion, active saturable influx and active efflux by Pgp. The passive diffusion rate constant was 0.0014 min?1. The active efflux rate constant decreased from 0.0195 min?1 to 0.0113 min?1 in the presence of GF120918. The active influx was insensitive to GF120918 and had a maximum transport (Nmax/Vecf) of 0.66 ng min?1 ml?1 and was saturated at low concentrations of morphine (C50=9.9 ng ml?1). Conclusions and implications: Brain distribution of morphine is determined by three factors: limited passive diffusion; active efflux, reduced by 42% by Pgp inhibition; low capacity active uptake. This implies blood concentration-dependency and sensitivity to drug-drug interactions. These factors should be taken into account in further investigations on PK-PD correlations of morphine. PMID:17471182

  11. Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery.

    PubMed

    Liu, Jiansheng; He, Yajing; Zhang, Jun; Li, Jiajia; Yu, Xiangrong; Cao, Zhonglian; Meng, Fanmin; Zhao, Yuwu; Wu, Xunyi; Shen, Teng; Hong, Zhen

    2016-01-01

    Despite optimal therapeutic regimen with currently available antiepileptic drugs (AEDs), approximately a third of epilepsy patients remain drug refractory. Region-specific overexpression of multidrug efflux transporters at the blood-brain barrier, such as P-glycoprotein (P-gp), might contribute to multidrug resistance (MDR) by reducing target concentrations of AEDs. Therefore, development of nanomedicine that can modulate P-gp function as well as facilitate targeted AEDs delivery represents a promising strategy for epilepsy intervention. To achieve this, we sought to exploit the possibility of combination of active targeting function of tryptophan by transporter-mediated endocytosis and overcoming MDR by Pluronic block copolymers. Herein, a tryptophan derivate (TD) functionalized Pluronic P123/F127 mixed micelles encapsulating LTG (TD-PF/LTG) was developed to promote AEDs delivery to epileptogenic focus. TD-PF/LTG was about 20 nm in diameter with a spherical shape and high encapsulation efficiency. A rat epilepsy model with pilocarpine was established to evaluate the brain penetration efficiency of the LTG-incorporated polymeric micellar formulation, compared with free LTG formulations. Studies showed that TD-PF/LTG was more efficient than PF/LTG as well as free LTG in delivering the drug to the brain, especially the hippocampus. The enhanced targeted delivery could be ascribed to the increased tryptophan uptake at epileptogenic focus as well as P-gp modulation property of the nanomaterial. Taken together, TD-conjugated Pluronic micelles showed promising potential as a nanoplatform for the delivery of AEDs in refractory epilepsy. PMID:26447556

  12. P-glycoprotein substrate models using support vector machines based on a comprehensive data set.

    PubMed

    Wang, Zhi; Chen, Yuanying; Liang, Hu; Bender, Andreas; Glen, Robert C; Yan, Aixia

    2011-06-27

    P-glycoprotein (P-gp) is one of the major ABC transporters and involved in many essential processes such as lipid and steroid transport across cell membranes but also in the uptake of drugs such as HIV protease and reverse transcriptase inhibitors. Despite its importance, reliable models predicting substrates of P-gp are scarce. In this study, we have built several computational models to predict whether or not a compound is a P-gp substrate, based on the largest data set yet published, employing 332 distinct structures. Each molecule is represented by ADRIANA.Code, MOE, and ECFP_4 fingerprint descriptors. The models are computed using a support vector machine based on a training set which includes 131 substrates and 81 nonsubstrates that were evaluated by 5-, 10-fold, and leave-one-out (LOO) cross-validation. The best model gives a Matthews Correlation Coefficient of 0.73 and a prediction accuracy of 0.88 on the test set. Examination of the model based on ECFP_4 fingerprints revealed several substructures which could have significance in separating substrates and nonsubstrates of P-gp, such as the nitrile and sulfoxide functional groups which have a higher frequency in nonsubstrates than in substrates. In addition structural isomerism in sugars was found to result in remarkable differences regarding the likelihood of a compound to be a substrate for P-gp. PMID:21604677

  13. Three- and four-class classification models for P-glycoprotein inhibitors using counter-propagation neural networks.

    PubMed

    Thai, K-M; Huynh, N-T; Ngo, T-D; Mai, T-T; Nguyen, T-H; Tran, T-D

    2015-01-01

    P-glycoprotein (P-gp) is an ATP binding cassette (ABC) transporter that helps to protect several certain human organs from xenobiotic exposure. This efflux pump is also responsible for multi-drug resistance (MDR), an issue of the chemotherapy approach in the fight against cancer. Therefore, the discovery of P-gp inhibitors is considered one of the most popular strategies to reverse MDR in tumour cells and to improve therapeutic efficacy of commonly used cytotoxic drugs. Until now, several generations of P-gp inhibitors have been developed but they have largely failed in preclinical and clinical studies due to lack of selectivity, poor solubility and severe pharmacokinetic interactions. In this study, three models (SION, SIO, SIN) to classify specific 'true' P-gp inhibitors as well as three other models (CPBN, CPB1, CPN) to distinguish between P-gp inhibitors, CYP 3A inhibitors and co-inhibitors of these proteins with rather high accuracy values for the test set and the external set were generated based on counter-propagation neural networks (CPG-NN). Such three and four-class classification models helped provide more information about the bioactivities of compounds not only on one target (P-gp), but also on a combination of multiple targets (P-gp, CYP 3A). PMID:25588022

  14. The functional influences of common ABCB1 genetic variants on the inhibition of P-glycoprotein by Antrodia cinnamomea extracts.

    PubMed

    Sheu, Ming-Jyh; Teng, Yu-Ning; Chen, Ying-Yi; Hung, Chin-Chuan

    2014-01-01

    Antrodia cinnamomea is a traditional healthy food that has been demonstrated to possess anti-inflammatory, antioxidative, and anticacer effects. The purpose of this study was to evaluate whether the ethanolic extract of A. cinnamomea (EEAC) can affect the efflux function of P-glycoprotein (P-gp) and the effect of ABCB1 genetic variants on the interaction between EEAC and P-gp. To investigate the mechanism of this interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established and the expression of P-gp was confirmed by Western blot. The results of the rhodamine 123 efflux assay demonstrated that EEAC efficiently inhibited wild-type P-gp function at an IC50 concentration of 1.51 ± 0.08 µg/mL through non-competitive inhibition. The IC50 concentrations for variant-type 1236T-2677T-3435T P-gp and variant-type 1236T-2677A-3435T P-gp were 5.56 ± 0.49 µg/mL and 3.33±0.67 µg/mL, respectively. In addition, the inhibition kinetics of EEAC also changed to uncompetitive inhibition in variant-type 1236T-2677A-3435T P-gp. The ATPase assay revealed that EEAC was an ATPase stimulator and was capable of reducing verapamil-induced ATPase levels. These results indicate that EEAC may be a potent P-gp inhibitor and higher dosages may be required in subjects carrying variant-types P-gp. Further studies are required to translate this basic knowledge into clinical applications. PMID:24586917

  15. The Functional Influences of Common ABCB1 Genetic Variants on the Inhibition of P-glycoprotein by Antrodia cinnamomea Extracts

    PubMed Central

    Chen, Ying-Yi; Hung, Chin-Chuan

    2014-01-01

    Antrodia cinnamomea is a traditional healthy food that has been demonstrated to possess anti-inflammatory, antioxidative, and anticacer effects. The purpose of this study was to evaluate whether the ethanolic extract of A. cinnamomea (EEAC) can affect the efflux function of P-glycoprotein (P-gp) and the effect of ABCB1 genetic variants on the interaction between EEAC and P-gp. To investigate the mechanism of this interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established and the expression of P-gp was confirmed by Western blot. The results of the rhodamine 123 efflux assay demonstrated that EEAC efficiently inhibited wild-type P-gp function at an IC50 concentration of 1.51±0.08 µg/mL through non-competitive inhibition. The IC50 concentrations for variant-type 1236T-2677T-3435T P-gp and variant-type 1236T-2677A-3435T P-gp were 5.56±0.49 µg/mL and 3.33±0.67 µg/mL, respectively. In addition, the inhibition kinetics of EEAC also changed to uncompetitive inhibition in variant-type 1236T-2677A-3435T P-gp. The ATPase assay revealed that EEAC was an ATPase stimulator and was capable of reducing verapamil-induced ATPase levels. These results indicate that EEAC may be a potent P-gp inhibitor and higher dosages may be required in subjects carrying variant-types P-gp. Further studies are required to translate this basic knowledge into clinical applications. PMID:24586917

  16. Role of P-glycoprotein in the disposition of macrocyclic lactones: A comparison between ivermectin, eprinomectin, and moxidectin in mice.

    PubMed

    Kiki-Mvouaka, Solange; Ménez, Cécile; Borin, Christiane; Lyazrhi, Faouri; Foucaud-Vignault, Magali; Dupuy, Jacques; Collet, Xavier; Alvinerie, Michel; Lespine, Anne

    2010-04-01

    Macrocyclic lactones (MLs) are lipophilic anthelmintics and substrates for P-glycoprotein (P-gp), an ATP-binding cassette transporter involved in drug efflux out of both host and parasites. To evaluate the contribution of P-gp to the in vivo kinetic disposition of MLs, the plasma kinetics, brain concentration, and intestinal excretion of three structurally different MLs (ivermectin, eprinomectin, and moxidectin) were compared in wild-type and P-gp-deficient [mdr1ab(-/-)] mice. Each drug (0.2 mg/kg) was administered orally, intravenously, or subcutaneously to the mice. Plasma, brain, and intestinal tissue concentrations were measured by high-performance liquid chromatography. The intestinal excretion rate after intravenous administration was determined at different levels of the small intestine by using an in situ intestinal perfusion model. P-gp deficiency led to a significant increase in the area under the plasma concentration-time curve (AUC) of ivermectin (1.5-fold) and eprinomectin (3.3-fold), whereas the moxidectin AUC was unchanged. Ivermectin and to a greater extent eprinomectin were both excreted by the intestine via a P-gp-dependent pathway, whereas moxidectin excretion was weaker and mostly P-gp-independent. The three drugs accumulated in the brains of the mdr1ab(-/-) mice, but eprinomectin concentrations were significantly lower. We concluded that eprinomectin disposition in mice is controlled mainly by P-gp efflux, more so than that of ivermectin, whereas moxidectin disposition appears to be mostly P-gp-independent. Given that eprinomectin and ivermectin have higher affinity for P-gp than moxidectin, these findings demonstrated that the relative affinity of MLs for P-gp could be predictive of the in vivo kinetic behavior of these drugs. PMID:20089736

  17. Comparative Study of the Effects of Antituberculosis Drugs and Antiretroviral Drugs on Cytochrome P450 3A4 and P-Glycoprotein

    PubMed Central

    Horita, Yasuhiro

    2014-01-01

    Predicting drug-drug interactions (DDIs) related to cytochrome P450 (CYP), such as CYP3A4 and one of the major drug transporters, P-glycoprotein (P-gp), is crucial in the development of future chemotherapeutic regimens to treat tuberculosis (TB) and TB/AIDS coinfection cases. We evaluated the effects of 30 anti-TB drugs, novel candidates, macrolides, and representative antiretroviral drugs on human CYP3A4 activity using a commercially available screening kit for CYP3A4 inhibitors and a human hepatocyte, HepaRG. Moreover, in order to estimate the interactions of these drugs with human P-gp, screening for substrates was performed. For some substrates, P-gp inhibition tests were carried out using P-gp-expressing MDCK cells. As a result, almost all the compounds showed the expected effects on human CYP3A4 both in the in vitro screening and in HepaRG cells. Importantly, the unproven mechanisms of DDIs caused by WHO group 5 drugs, thioamides, and p-aminosalicylic acid were elucidated. Intriguingly, clofazimine (CFZ) exhibited weak inductive effects on CYP3A4 at >0.25 ?M in HepaRG cells, while an inhibitory effect was observed at 1.69 ?M in the in vitro screening, suggesting that CFZ autoinduces CYP3A4 in the human liver. Our method, based on one of the pharmacokinetics parameters in humans, provides more practical information associated with not only DDIs but also with drug metabolism. PMID:24663015

  18. HMGB1 Contributes to the Expression of P-Glycoprotein in Mouse Epileptic Brain through Toll-Like Receptor 4 and Receptor for Advanced Glycation End Products

    PubMed Central

    Chen, Yan; Huang, Xian-Jing; Yu, Nian; Xie, Yuan; Zhang, Kang; Wen, Fang; Liu, Hao; Di, Qing

    2015-01-01

    The objective of the present study was to investigate the role of high-mobility group box-1 (HMGB1) in the seizure-induced P-glycoprotein (P-gp) overexpression and the underlying mechanism. Kainic acid (KA)-induced mouse seizure model was used for in vivo experiments. Male C57BL/6 mice were divided into four groups: normal saline control (NS) group, KA-induced epileptic seizure (EP) group, and EP group pretreated with HMGB1 (EP+HMGB1 group) or BoxA (HMGB1 antagonist, EP+BoxA group). Compared to the NS group, increased levels of HMGB1 and P-gp in the brain were observed in the EP group. Injection of HMGB1 before the induction of KA further increased the expression of P-gp while pre-treatment with BoxA abolished this up-regulation. Next, the regulatory role of HMGB1 and its potential involved signal pathways were investigated in mouse microvascular endothelial bEnd.3 cells in vitro. Cells were treated with HMGB1, HMGB1 plus lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) [toll-like receptor 4 (TLR4) antagonist], HMGB1 plus FPS-ZM1 [receptor for advanced glycation end products (RAGE) inhibitor], HMGB1 plus SN50 [nuclear factor-kappa B (NF-?B) inhibitor], or vehicle. Treatment with HMGB1 increased the expression levels of P-gp, TLR4, RAGE and the activation of NF-?B in bEnd.3 cells. These effects were inhibited by the pre-treatment with either LPS-RS or FPS-ZM1, and were abolished by the pre-treatment of SN50 or a combination treatment of both LPS-RS and FPS-ZM1. Luciferase reporter assays showed that exogenous expression of NF-?B p65 increased the promoter activity of multidrug resistance 1a (P-gp-encoding gene) in endothelial cells. These data indicate that HMGB1 contributes to the overexpression of P-gp in mouse epileptic brain tissues via activation of TLR4/RAGE receptors and the downstream transcription factor NF-?B in brain microvascular endothelial cells. PMID:26485677

  19. Cell-free microfluidic determination of P-glycoprotein interactions with substrates and inhibitors.

    PubMed

    Eyer, Klaus; Herger, Michael; Krämer, Stefanie D; Dittrich, Petra S

    2014-12-01

    The membrane protein P-glycoprotein (P-gp) plays key roles in the oral bioavailability of drugs, their blood brain barrier passage as well as in multidrug resistance. For new drug candidates it is mandatory to study their interaction with P-gp, according to FDA and EMA regulations. The vast majority of these tests are performed using confluent cell layers of P-gp overexpressing cell lines that render these tests laborious. In this study, we introduce a cell-free microfluidic assay for the rapid testing of drug- P-gp interactions. Cell-derived vesicles are prepared from MDCKII-MDR1 overexpressing cells and immobilized on the surface of a planar microfluidic device. The drug is delivered continuously to the vesicles and calcein accumulation is monitored by means of a fluorescence assay and total internal reflection fluorescence (TIRF) microscopy. Only small amounts of compounds (~10 ?l) are required in concentrations of 5, 25 and 50 ?M for a test that provides within 5 min information on the apparent dissociation constant of the drug and P-gp. We tested 10 drugs on-chip, 9 of which are inhibitors or substrates of P-glycoprotein and one negative control. We benchmarked the measured apparent dissociation constants against an alternative assay on a plate reader and reference data from FDA. These comparisons revealed good correlations between the logarithmic apparent dissociation constants (R(2)?=?0.95 with ATPase assay, R(2)?=?0.93 with FDA data) and show the reliability of the rapid on-chip test. The herein presented assay has an excellent screening window factor (Z'-factor) of 0.8, and is suitable for high-throughput testing. PMID:24928366

  20. Optimization of irinotecan chronotherapy with P-glycoprotein inhibition

    SciTech Connect

    Filipski, Elisabeth; Berland, Elodie; Ozturk, Narin; Guettier, Catherine; Horst, Gijsbertus T.J. van der; Lévi, Francis; and others

    2014-02-01

    The relevance of P-glycoprotein (P-gp) for irinotecan chronopharmacology was investigated in female B6D2F{sub 1} mice. A three-fold 24 h change in the mRNA expression of Abcb1b was demonstrated in ileum mucosa, with a maximum at Zeitgeber Time (ZT) 15 (p < 0.001). No rhythm was found for abcb1a in ileum mucosa, or for Abcb1a/b in Glasgow osteosarcoma (GOS), a mouse tumor cell line moderately sensitive to irinotecan. Non-tumor-bearing mice received irinotecan (50 mg/kg/day i.v. × 4 days) as a single agent or combined with P-gp inhibitor PSC833 (6.25 mg/kg/day i.p. × 4 days) at ZT3 or ZT15, respectively corresponding to the worst or the best irinotecan tolerability. Endpoints involved survival, body weight change and hematologic toxicity. Antitumor efficacy was studied in GOS-bearing mice receiving irinotecan (25, 30 or 40 mg/kg/day × 4 days) and +/? PSC833 at ZT3 or ZT15, with survival, body weight change, and tumor growth inhibition as endpoints. Non-tumor bearing mice lost an average of 17% or 9% of their body weight according to irinotecan administration at ZT3 or ZT15 respectively (p < 0.001). Dosing at ZT15 rather than ZT3 reduced mean leucopenia (9% vs 53%; p < 0.001). PSC833 aggravated irinotecan lethal toxicity from 4 to ? 60%. In tumor-bearing mice, body weight loss was ? halved in the mice on irinotecan or irinotecan–PSC833 combination at ZT15 as compared to ZT3 (p < 0.001). PSC833–irinotecan at ZT15 increased tumor inhibition by ? 40% as compared to irinotecan only at ZT15. In conclusion, P-gp was an important determinant of the circadian balance between toxicity and efficacy of irinotecan. - Highlights: • Irinotecan chronotolerance and chronoefficacy change as drug was applied with PSC833. • P-glycoprotein is an important player of the toxicity and efficacy of irinotecan. • Timing should be considered if chemotherapy is performed with a MDR1 inhibitor.

  1. MDR1-P-glycoprotein behaves as an oncofetal protein that promotes cell survival in gastric cancer cells.

    PubMed

    Rocco, Alba; Compare, Debora; Liguori, Eleonora; Cianflone, Alessandra; Pirozzi, Giuseppe; Tirino, Virginia; Bertoni, Alessandra; Santoriello, Margherita; Garbi, Corrado; D'Armiento, Maria; Staibano, Stefania; Nardone, Gerardo

    2012-10-01

    P-glycoprotein (P-gp), traditionally linked to cancer poor prognosis and multidrug resistance, is undetectable in normal gastric mucosa and overexpressed in gastric cancer (GC). We propose that P-gp may be involved in Helicobacter pylori (Hp)-related gastric carcinogenesis by inhibiting apoptosis. Aim of the study was to evaluate the expression of P-gp in fetal stomach and in Hp-related gastric carcinogenesis, the epigenetic control of the multi-drug resistance-1 (MDR1) gene, the localization and interaction between P-gp and Bcl-x(L) and the effect of the selective silencing of P-gp on cell survival. P-gp and Bcl-xl expression was evaluated by immunohistochemistry on 28 spontaneously abortive human fetuses, 66 Hp-negative subjects, 138 Hp-positive chronic gastritis (CG) of whom 28 with intestinal metaplasia (IM) and 45 intestinal type GCs. P-gp/Bcl-x(L) colocalization was investigated by confocal immunofluorescence microscopy and protein-protein interaction by co-immunoprecipitation, in basal conditions and after stress-induced apoptosis, in GC cell lines AGS and MKN-28 and hepatocellular carcinoma cell line Hep-G2. The role of P-gp in controlling apoptosis was evaluated by knocking down its expression with a specific small interfering RNAs in stressed AGS and MKN-28 cell lines. P-gp is expressed in the gastric mucosa of all human fetuses while, it is undetectable in adult normal mucosa and re-expressed in 30/110 Hp-positive non-IM-CG, 28/28 IM-CG and 40/45 GCs. P-gp expression directly correlates with that of Bcl-x(L) and with the promoter hypomethylation of the MDR1 gene. In GC cell lines, P-gp is localized on the plasma membrane and mitochondria where it colocalizes with Bcl-x(L). Co-immunoprecipitation confirms the physical interaction between P-gp and Bcl-x(L) in AGS, MKN-28 and Hep-G2, at both basal level and after stress-induced apoptosis. The selective silencing of P-gp sensitizes GC cells to stress-induced apoptosis. P-gp behaves as an oncofetal protein that, by cross-talking with Bcl-x(L), acts as an anti-apoptotic agent in Hp-related gastric carcinogenesis. PMID:22751348

  2. The role of P-glycoprotein in intestinal transport versus the BBB transport of tetraphenylphosphonium.

    PubMed

    Swed, Avi; Eyal, Sara; Madar, Igal; Zohar-Kontante, Hila; Weiss, Lola; Hoffman, Amnon

    2009-01-01

    Tetraphenylphosphonium (TPP), a phosphonium cation, is a promising means for tumor imaging. A major contributor to the pharmacokinetics of phosphonium cations is the efflux transporter P-glycoprotein (P-gp). For this application it is important to ascertain the influence of the multidrug resistance system on TPP. Therefore, our aim was to characterize the interaction of TPP with P-gp, in vitro and in in vivo models. P-gp-mediated transport of [3H]-TPP was assessed in Caco-2 cells and ex vivo in rat intestinal wall by the use of a diffusion cell system. The distribution of [3H]-TPP across the blood-brain barrier (BBB) was studied in rats and mice treated with P-gp modulators and in Mdr-1a/b((-/-)) knockout mice. The in vitro permeability coefficient of basolateral-to-apical transfer (PappB-A) of [3H]-TPP was 8-fold greater than apical-to-basolateral (PappA-B) coefficient, indicative of net mucosal secretion. A concentration dependent decrease of this secretion was obtained by the P-gp substrate verapamil, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC. [3H]-TPP transfer across rat jejunum wall was directional and concentration-dependent. 2,4-Dinitrophenol, cyclosporin A (CsA), verapamil and PSC-833 enhanced A-B transport of TPP 3.6-fold, 4-fold, 4.6-fold and 5.3-fold respectively. Likewise, PappA-B of [3H]-TPP was 5-fold greater in P-gp knockout mice than in controls. In vivo, PSC-833, P-gp inhibitor, significantly increased the uptake of [3H]-TPP in the liver, heart, small intestine and the lungs but not the brain. Similar results were obtained in P-gp knockout mice. Our study demonstrates that P-gp mediates TPP efflux in vitro and in vivo; however, the consistently poor BBB permeation of TPP in all in vivo studies including P-gp knockout animals indicates that it is most likely mediated by other mechanisms. These findings are important for optimized clinical application of TPP as an imaging agent in cancer. PMID:19722701

  3. Differential effects of the organochlorine pesticide DDT and its metabolite p,p'-DDE on p-glycoprotein activity and expression.

    PubMed

    Shabbir, Arsalan; DiStasio, Susan; Zhao, Jingbo; Cardozo, Christopher P; Wolff, Mary S; Caplan, Avrom J

    2005-03-01

    1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) is an organochlorine pesticide. Its metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethene (p,p'-DDE) is a persistent environmental contaminant and both compounds accumulate in animals. Because multidrug resistance transporters, such as p-glycoprotein, function as a defense against xenobiotic exposure, we analyzed the ability of DDT and p,p'-DDE to act as efflux modulators. Using a competitive intact cell assay based on the efflux of the fluorescent dye rhodamine 123, we found that DDT, but not p,p'-DDE, stimulated dye retention. Subsequent studies using verapamil as competitor suggested that DDT is a weak p-glycoprotein inhibitor. Further studies addressed the ability of DDT and p,p'-DDE to induce MDR1, the gene encoding p-glycoprotein. In HepG2 cells, we found that both compounds induced MDR1 by twofold to threefold. Similar results were observed in mouse liver after a single dose of p,p'-DDE, although some gender-specific induction differences were noted. By contrast, p,p'-DDE failed to induce MDR1 in HeLa cells, indicating some cell-specific effects for induction. Further expression studies demonstrated increased levels of the endoplasmic reticulum molecular chaperone, Bip, in response to DDT, but not p,p'-DDE. These results suggest that DDT, but not p,p'-DDE, induces an endoplasmic reticulum stress response. PMID:15710169

  4. Differential effects of the organochlorine pesticide DDT and its metabolite p,p'-DDE on p-glycoprotein activity and expression

    SciTech Connect

    Shabbir, Arsalan; DiStasio, Susan; Zhao, Jingbo; Cardozo, Christopher P.; Wolff, Mary S.; Caplan, Avrom J. . E-mail: avrom.caplan@mssm.edu

    2005-03-01

    1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) is an organochlorine pesticide. Its metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethene (p,p'-DDE) is a persistent environmental contaminant and both compounds accumulate in animals. Because multidrug resistance transporters, such as p-glycoprotein, function as a defense against xenobiotic exposure, we analyzed the ability of DDT and p,p'-DDE to act as efflux modulators. Using a competitive intact cell assay based on the efflux of the fluorescent dye rhodamine 123, we found that DDT, but not p,p'-DDE, stimulated dye retention. Subsequent studies using verapamil as competitor suggested that DDT is a weak p-glycoprotein inhibitor. Further studies addressed the ability of DDT and p,p'-DDE to induce MDR1, the gene encoding p-glycoprotein. In HepG2 cells, we found that both compounds induced MDR1 by twofold to threefold. Similar results were observed in mouse liver after a single dose of p,p'-DDE, although some gender-specific induction differences were noted. By contrast, p,p'-DDE failed to induce MDR1 in HeLa cells, indicating some cell-specific effects for induction. Further expression studies demonstrated increased levels of the endoplasmic reticulum molecular chaperone, Bip, in response to DDT, but not p,p'-DDE. These results suggest that DDT, but not p,p'-DDE, induces an endoplasmic reticulum stress response.

  5. Characterization of Human Colorectal Cancer MDR1/P-gp Fab Antibody

    PubMed Central

    Zhang, Xuemei; Xiao, Gary Guishan; Gao, Ying

    2013-01-01

    In this study, the peptide sized 21?kDa covering P-gp transmembrane region was first prepared for generating a novel mouse monoclonal antibody Fab fragment with biological activity against multiple drug resistance protein P-gp21 by phage display technology. Phage-displayed antibody library prepared from mice spleen tissues was selected against the recombinant protein P-gp21 with five rounds of panning. A number of clones expressing Fab bound to P-gp21, showing neutralized activity in vitro, were isolated and screened by enzyme-linked immunosorbent assay based on its recognition properties to P-gp21 and human colorectal cancer tissue homogenate, resulting in identification of an optimal recombinant Fab clone (Number 29). Further characterization by recloning number 29 into an expression vector showed significant induction of the Fab antibody in the clone number 29 by Isopropyl ?-D-1-thiogalactopyranoside (IPTG). After purified by HiTrap Protein L, the specificity of the Fab antibody to P-gp21 was also confirmed. Not only was the targeted region of this monoclonal Fab antibody identified as a 16-peptide epitope (ALKDKKELEGSGKIAT) comprising residues 883–898 within the transmembrane (TM) domain of human P-gp, but also the binding ability with it was verified. The clinical implication of our results for development of personalized therapy of colorectal cancer will be further studied. PMID:24348182

  6. Cbl-b inhibits P-gp transporter function by preventing its translocation into caveolae in multiple drug-resistant gastric and breast cancers

    PubMed Central

    Zhang, Ye; Qu, Xiujuan; Teng, Yuee; Li, Zhi; Xu, Ling; Liu, Jing; Ma, Yanju; Fan, Yibo; Li, Ce; Liu, Shizhou; Wang, Zhenning; Hu, Xuejun; Zhang, Jingdong; Liu, Yunpeng

    2015-01-01

    The transport function of P-glycoprotein (P-gp) requires its efficient localization to caveolae, a subset of lipid rafts, and disruption of caveolae suppresses P-gp transport function. However, the regulatory molecules involved in the translocation of P-gp into caveolae remain unknown. In the present study, we showed that c-Src dependent Caveolin-1 phosphorylation promoted the translocation of P-gp into caveolae, resulting in multidrug resistance in adriamycin resistant gastric cancer SGC7901/Adr and breast cancer MCF-7/Adr cells. In a negative feedback loop, the translocation of Cbl-b from the nucleus to the cytoplasm prevented the localization of P-gp to caveolae resulting in the reversal of MDR through the ubiquitination and degradation of c-Src. Clinical data showed a significant positive relationship between Cbl-b expression and survival in P-gp positive breast cancer patients who received anthracycline-based chemotherapy. Our findings identified a new regulatory mechanism of P-gp transport function in multiple drug-resistant gastric and breast cancers. PMID:25788263

  7. Multidrug resistance gene (P-glycoprotein) expression in the human fetus.

    PubMed Central

    van Kalken, C.; Giaccone, G.; van der Valk, P.; Kuiper, C. M.; Hadisaputro, M. M.; Bosma, S. A.; Scheper, R. J.; Meijer, C. J.; Pinedo, H. M.

    1992-01-01

    P-glycoprotein, a transmembrane protein associated with multidrug resistance in cancer cells, is also expressed in normal tissues. To get more insight into the physiologic role of mdr1/P-glycoprotein, we investigated its expression in human fetal tissues after 7 to 38 weeks of gestation by an immunohistochemical technique, using three different monoclonal antibodies, and by a sensitive RNAse protection assay. Expression of mdr1-mRNA could already be demonstrated in the embryonal phase of human development, after 7 weeks of gestation. Comparing the adult with the fetal tissue distribution, differences were found in specific organs, such as adrenal, intestine, respiratory epithelium, and brain capillaries. In the fetal zone cells of the fetal adrenal cortex no staining was observed by immunohistochemistry, whereas the definitive zone showed increasing expression throughout gestation. Prenatal intestine did not show staining of the epithelium, although definite mdr1-mRNA expression was observed in late specimens. Interestingly, respiratory epithelium of main bronchi and pharynx, not expressing P-gp in adults, did stain positive. Expression of P-gp in brain capillaries was not observed before the third trimester of pregnancy, whereas in kidney and liver, mdr1-mRNA expression and staining for P-glycoprotein were detected in early fetal life (11 to 14 weeks). These findings suggest a pivotal role of P-glycoprotein in physiology of various organs already in early phases of human development and may help to identify its physiologic substrates. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1359789

  8. CJX1, an amlodipine derivative, interacts with ATPase of human P-glycoprotein.

    PubMed

    Ji, Bian-Sheng; He, Ling

    2009-10-01

    Our aim has been to elucidate the possible mechanism of CJX1, an amlodipine derivative, in the modulation of P-gp function by determining its effect on P-gp ATPase activity. Basal P-gp ATPase activity was increased by CJX1 with half-maximal activity concentration (Km) of 8.6+/-1.4 microM. Kinetic analysis indicated a non-competitive inhibition of Verapamil (Ver)-stimulated P-gp ATPase activity by CJX1 and competitive inhibition of CJX1-stimulated P-gp ATPase activity by tetrandrine (Tet). The effect of CsA on CJX1-stimulated and Ver-stimulated P-gp ATPase activity was non-competitive and competitive inhibition, respectively. These findings implying that CJX1 and Tet can bind P-gp either on overlapping sites or distinct but interacting sites, while CJX1 and Ver as well as CsA can bind P-gp on separated sites in K562/DOX cells. Furthermore, the combined effect of CJX1 and Ver has been evaluated isobolographically in numerous fixed-ratio combinations of 1:1, 1:2, 1:4, 1:8, 1:10 in K562/DOX cells. The results show that mixtures of both drugs at these fixed-ratios exerted synergistic interactions, indicating that when the two reverses that bind P-gp on separated sites are combined, each can contribute to the overall interaction with P-gp, leading to the greater effect than that by either agent alone. PMID:19589390

  9. Downregulation of P-gp, Ras and p-ERK1/2 contributes to the arsenic trioxide-induced reduction in drug resistance towards doxorubicin in gastric cancer cell lines.

    PubMed

    Zhao, Yuan-Yuan; Yu, Li; Liu, Bao-Ling; He, Xin-Jia; Zhang, Bi-Yuan

    2015-11-01

    Multidrug resistance (MDR) to doxorubicin (DOX) limits its effectiveness against tumor cells. Arsenic trioxide (As2O3) has been reported to reduce MDR in various types of cancer, but the mechanisms involving Ras and p-glycoprotein (P-gp) remain to be fully elucidated. The objectives of the present study were to evaluate As2O3 in reversing MDR to DOX, and to identify the association in antitumor activities between the effectiveness of DOX and Ras/phosphorylated (p?) extracellular signal?regulated kinase (ERK)1/2 signaling in SGC7901/ADM and SGC7901/S human gastric cancer cell lines. Cytotoxicity and sensitivity towards As2O3 were assessed using non?toxic and mildly?toxic concentrations (0.1 and 0.5 µM, respectively). The reversing effect of As2O3 on MDR was investigated prior to and following treatment with a cytokine activation of the recombinant human granulocyte colony stimulating factor ERK pathway. The SGC7901/ADM and SGC7901/S cells had the same sensitivity to As2O3. The SGC7901/ADM cells were resistant to DOX and As2O3 treatment reduced the level of resistance to DOX (P<0.01). The expression of P?glycoprotein (P-gp) in the SGC7901/ADM cells was higher than in the SGC7901/S cells (P<0.001). As2O3 treatment decreased the levels of P?gp in a time? and dose?dependent manner (P<0.01). The expression of Ras was higher in the SGC7901/ADM cells than in the SGC7901/S cells, while the expression of p?ERK1/2 remained the same. As2O3 decreased the levels of Ras and p?ERK1/2 (P<0.01). Following pretreatment with rhG?CSF, the levels of Ras and p?ERK1/2 were further decreased (P<0.01). Drug?resistant gastric cancer cells had higher expression levels of P?gp and Ras, but not of p?ERK1/2. Non? and mildly?toxic doses of As2O3 reduced MDR to DOX through Ras/p-ERK1/2 signaling. PMID:26459009

  10. In silico identified targeted inhibitors of P-glycoprotein overcome multidrug resistance in human cancer cells in culture

    PubMed Central

    Follit, Courtney A; Brewer, Frances K; Wise, John G; Vogel, Pia D

    2015-01-01

    Failure of cancer chemotherapies is often linked to the over expression of ABC efflux transporters like the multidrug resistance P-glycoprotein (P-gp). P-gp expression in cells leads to the elimination of a variety of chemically unrelated, mostly cytotoxic compounds. Administration of chemotherapeutics during therapy frequently selects for cells that over express P-gp and are therefore capable of robustly exporting diverse compounds, including chemotherapeutics, from the cells. P-gp thus confers multidrug resistance to a majority of drugs currently available for the treatment of cancers and diseases like HIV/AIDS. The search for P-gp inhibitors for use as co-therapeutics to combat multidrug resistances has had little success to date. In a previous study (Brewer et al., Mol Pharmacol 86: 716–726, 2014), we described how ultrahigh throughput computational searches led to the identification of four drug-like molecules that specifically interfere with the energy harvesting steps of substrate transport and inhibit P-gp catalyzed ATP hydrolysis in vitro. In the present study, we demonstrate that three of these compounds reversed P-gp-mediated multidrug resistance of cultured prostate cancer cells to restore sensitivity comparable to naďve prostate cancer cells to the chemotherapeutic drug, paclitaxel. Potentiation concentrations of the inhibitors were <3 ?mol/L. The inhibitors did not exhibit significant toxicity to noncancerous cells at concentrations where they reversed multidrug resistance in cancerous cells. Our results indicate that these compounds with novel mechanisms of P-gp inhibition are excellent leads for the development of co-therapeutics for the treatment of multidrug resistances. PMID:26516582

  11. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery.

    PubMed

    Gu, Jijin; Fang, Xiaoling; Hao, Junguo; Sha, Xianyi

    2015-03-01

    Multidrug resistance (MDR) remains one of the major reasons for the reductions in efficacy of many chemotherapeutic agents in cancer therapy. As a classical MDR phenotype of human malignancies, the adenosine triphosphate binding cassette (ABC)-transporter P-glycoprotein (MDR1/P-gp) is an efflux protein with aberrant activity that has been linked to multidrug resistance in cancer. For the reversal of MDR by RNA interference (RNAi) technology, an U6-RNA gene promoter-driven expression vector encoding anti-MDR1/P-gp short hairpin RNA (shRNA) molecules was constructed (abbreviated pDNA-iMDR1-shRNA). This study explored the feasibility of using Pluronic P123-conjugated polypropylenimine (PPI) dendrimer (P123-PPI) as a carrier for pDNA-iMDR1-shRNA to overcome tumor drug resistance in breast cancer cells. P123-PPI functionalized with anti-CD44 monoclonal antibody (CD44 receptor targeting ligand) (anti-CD44-P123-PPI) can efficiently condense pDNA into nanocomplexes to achieve efficient delivery of pDNA, tumor specificity and long circulation. The in vitro studies methodically evaluated the effect of P123-PPI and anti-CD44-P123-PPI on pDNA-iMDR1-shRNA delivery and P-gp downregulation. Our in vitro results indicated that the P123-PPI/pDNA and anti-CD44-P123-PPI/pDNA nanocomplexes with low cytotoxicity revealed higher transfection efficiency compared with the PPI/pDNA nanocomplexes and Lipofectamine™ 2000 in the presence of serum. The nanocomplexes loaded with pDNA-iMDR1-shRNA against P-gp could reverse MDR accompanied by the suppression of MDR1/P-gp expression at the mRNA and protein levels and improve the internalization and cytotoxicity of Adriamycin (ADR) in the MCF-7/ADR multidrug-resistant cell line. BALB/c nude mice bearing MCF-7/ADR tumor were utilized as a xenograft model to assess antitumor efficacy in vivo. The results demonstrated that the administration of anti-CD44-P123-PPI/pDNA-iMDR1-shRNA nanocomplexes combined with ADR could inhibit tumor growth more efficiently than ADR alone. The enhanced therapeutic efficacy of ADR may be correlated with increased accumulation of ADR in drug-resistant tumor cells. Consequently, these results suggested that the use of pDNA-iMDR1-shRNA-loaded nanocomplexes may be a promising gene delivery strategy to reverse MDR and improve the effectiveness of chemotherapy. PMID:25662500

  12. Modification of Marine Natural Product Ningalin B and SAR Study Lead to Potent P-Glycoprotein Inhibitors

    PubMed Central

    Yang, Chao; Wong, Iris L. K.; Jin, Wen Bin; Jiang, Tao; Chow, Larry M. C.; Wan, Sheng Biao

    2014-01-01

    In this study, new marine ningalin B analogues containing a piperazine or a benzoloxy group at ring C have been synthesized and evaluated on their P-gp modulating activity in human breast cancer and leukemia cell lines. Their structure-activity relationship was preliminarily studied. Compounds 19 and 20 are potent P-gp inhibitors. These two synthetic analogues of permethyl ningalin B may be potentially used as effective modulators of P-gp-mediated drug resistance in cancer cells. PMID:25329704

  13. Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein.

    PubMed

    Eri?, S; Kalini?, M; Ili?, K; Zloh, M

    2014-01-01

    P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) are two members of the adenosine triphosphate (ATP) binding cassette (ABC) family of transporters which function as membrane efflux transporters and display considerable substrate promiscuity. Both are known to significantly influence the absorption, distribution and elimination of drugs, mediate drug-drug interactions and contribute to multiple drug resistance (MDR) of cancer cells. Correspondingly, timely characterization of the interaction of novel leads and drug candidates with these two transporters is of great importance. In this study, several computational classification models for prediction of transport and inhibition of P-gp and BCRP, respectively, were developed based on newly compiled and critically evaluated experimental data. Artificial neural network (ANN) and support vector machine (SVM) ensemble based models were explored, as well as knowledge-based approaches to descriptor selection. The average overall classification accuracy of best performing models was 82% for P-gp transport, 88% for BCRP transport, 89% for P-gp inhibition and 87% for BCRP inhibition, determined across an array of different test sets. An analysis of substrate overlap between P-gp and BCRP was also performed. The accuracy, simplicity and interpretability of the proposed models suggest that they could be of significant utility in the drug discovery and development settings. PMID:25435255

  14. Beta-Amyloid Downregulates MDR1-P-Glycoprotein (Abcb1) Expression at the Blood-Brain Barrier in Mice

    PubMed Central

    Brenn, Anja; Grube, Markus; Peters, Michele; Fischer, Andrea; Jedlitschky, Gabriele; Kroemer, Heyo K.; Warzok, Rolf W.; Vogelgesang, Silke

    2011-01-01

    Neurovascular dysfunction is an important component of Alzheimer's disease, leading to reduced clearance across the blood-brain barrier and accumulation of neurotoxic ?-amyloid (A?) peptides in the brain. It has been shown that the ABC transport protein P-glycoprotein (P-gp, ABCB1) is involved in the export of A? from the brain into the blood. To determine whether A? influences the expression of key A? transporters, we studied the effects of 1-day subcutaneous A?1-40 and A?1-42 administration via Alzet mini-osmotic pumps on P-gp, BCRP, LRP1, and RAGE expression in the brain of 90-day-old male FVB mice. Our results demonstrate significantly reduced P-gp, LRP1, and RAGE mRNA expression in mice treated with A?1-42 compared to controls, while BCRP expression was not affected. The expression of the four proteins was unchanged in mice treated with A?1-40 or reverse-sequence peptides. These findings indicate that, in addition to the age-related decrease of P-gp expression, A?1-42 itself downregulates the expression of P-gp and other A?-transporters, which could exacerbate the intracerebral accumulation of A? and thereby accelerate neurodegeneration in Alzheimer's disease and cerebral ?-amyloid angiopathy. PMID:21660212

  15. A multimodal Pepstatin A peptide-based nanoagent for the molecular imaging of P-glycoprotein in the brains of epilepsy rats.

    PubMed

    Yu, Xiangrong; Wang, Jianhong; Liu, Jiansheng; Shen, Shun; Cao, Zhonglian; Pan, Jiawei; Zhou, Shuyi; Pang, Zhiqing; Geng, Daoying; Zhang, Jun

    2016-01-01

    Regional overexpression of the multidrug transporter P-glycoprotein (P-gp) in epileptic brain tissues may lower antiepileptic drugs concentrations at the target site and contribute to pharmacoresistance in refractory epilepsy. However, few techniques are available to quantitate the level of P-gp expression noninvasively in vivo. In this study, we developed a nanoagent by conjugating superparamagnetic iron oxide nanoparticles with a near infrared probe and the targeting element Pepstatin A, a peptide with specific affinity for P-gp. In a rat model of epilepsy, the nanoagent was readily and selectively accumulated within epileptogenic cerebral regions, which were detectable by both magnetic resonance imaging and optical imaging modalities. This P-gp-targeted nanoagent could be used not only in the molecular imaging of P-gp expression changes in seizure-induced regional, understanding the mechanisms of P-gp disorders, and the prediction of refractory epilepsy, but also in targeted therapies with P-gp modulators. PMID:26524537

  16. Evodiamine Synergizes with Doxorubicin in the Treatment of Chemoresistant Human Breast Cancer without Inhibiting P-Glycoprotein

    PubMed Central

    Shi, Zhi; Zhong, Zhangfeng; Chen, Meiwan; Wang, Yitao

    2014-01-01

    Drug resistance is one of the main hurdles for the successful treatment of breast cancer. The synchronous targeting of apoptosis resistance and survival signal transduction pathways may be a promising approach to overcome drug resistance. In this study, we determined that evodiamine (EVO), a major constituent of the Chinese herbal medicine Evodiae Fructus, could induce apoptosis of doxorubicin (DOX)-sensitive MCF-7 and DOX-resistant MCF-7/ADR cells in a caspase-dependent manner, as confirmed by significant increases of cleaved poly(ADP-ribose) polymerase (PARP), caspase-7/9, and caspase activities. Notably, the reversed phenomenon of apoptosis resistance by EVO might be attributed to its ability to inhibit the Ras/MEK/ERK pathway and the expression of inhibitors of apoptosis (IAPs). Furthermore, our results indicated that EVO enhanced the apoptotic action of DOX by inhibiting the Ras/MEK/ERK cascade and the expression of IAPs without inhibiting the expression and activity of P-glycoprotein (P-gp). Taken together, our data indicate that EVO, a natural product, may be useful applied alone or in combination with DOX for the treatment of resistant breast cancer. PMID:24830744

  17. BPR1K653, a Novel Aurora Kinase Inhibitor, Exhibits Potent Anti-Proliferative Activity in MDR1 (P-gp170)-Mediated Multidrug-Resistant Cancer Cells

    PubMed Central

    Cheung, Chun Hei Antonio; Lin, Wen-Hsing; Hsu, John Tsu-An; Hour, Tzyh-Chyuan; Yeh, Teng-Kuang; Ko, Shengkai; Lien, Tzu-Wen; Coumar, Mohane Selvaraj; Liu, Jin-Fen; Lai, Wen-Yang; Shiao, Hui-Yi; Lee, Tian-Ren; Hsieh, Hsing-Pang; Chang, Jang-Yang

    2011-01-01

    Background Over-expression of Aurora kinases promotes the tumorigenesis of cells. The aim of this study was to determine the preclinical profile of a novel pan-Aurora kinase inhibitor, BPR1K653, as a candidate for anti-cancer therapy. Since expression of the drug efflux pump, MDR1, reduces the effectiveness of various chemotherapeutic compounds in human cancers, this study also aimed to determine whether the potency of BPR1K653 could be affected by the expression of MDR1 in cancer cells. Principal Findings BPR1K653 specifically inhibited the activity of Aurora-A and Aurora-B kinase at low nano-molar concentrations in vitro. Anti-proliferative activity of BPR1K653 was evaluated in various human cancer cell lines. Results of the clonogenic assay showed that BPR1K653 was potent in targeting a variety of cancer cell lines regardless of the tissue origin, p53 status, or expression of MDR1. At the cellular level, BPR1K653 induced endo-replication and subsequent apoptosis in both MDR1-negative and MDR1-positive cancer cells. Importantly, it showed potent activity against the growth of xenograft tumors of the human cervical carcinoma KB and KB-derived MDR1-positive KB-VIN10 cells in nude mice. Finally, BPR1K653 also exhibited favorable pharmacokinetic properties in rats. Conclusions and Significance BPR1K653 is a novel potent anti-cancer compound, and its potency is not affected by the expression of the multiple drug resistant protein, MDR1, in cancer cells. Therefore, BPR1K653 is a promising anti-cancer compound that has potential for the management of various malignancies, particularly for patients with MDR1-related drug resistance after prolonged chemotherapeutic treatments. PMID:21887256

  18. Parguerenes: Marine red alga bromoditerpenes as inhibitors of P-glycoprotein (ABCB1) in multidrug resistant human cancer cells.

    PubMed

    Huang, Xiao-Cong; Sun, Yue-Li; Salim, Angela A; Chen, Zhe-Sheng; Capon, Robert J

    2013-05-01

    High intrinsic or acquired expression of membrane spanning, adenosine triphosphate binding cassette (ABC) transporter proteins, such as P-glycoprotein (P-gp), in cancers represents a major impediment to chemotherapy, with accelerated drug efflux leading to multi-drug resistance (MDR). Although ABC transporter inhibitors offer the prospect of reversing the MDR phenotype, no inhibitors have advanced to the clinic. We employed a range of intracellular fluorescence and radio-ligand accumulation and efflux assays, together with cytotoxicity and MDR reversal assays, as well as flow cytometry, fluorescence microscopy and radioimmunoprecipitation, to discover and evaluate new P-gp inhibitors from a unique library of southern Australian and Antarctic marine natural products. This study successfully characterized two rare bromoditerpenes, parguerenes I and II, sourced from a southern Australian collection of the red alga Laurencia filiformis, as P-gp inhibitors. We determined that the parguerenes were non-cytotoxic, dose-dependent inhibitors of P-gp mediated drug efflux, that modify the extracellular antibody binding epitope of P-gp in a manner that differs markedly from that of the known inhibitors verapamil and cyclosporine A. We confirmed that parguerenes were capable of reversing P-gp mediated vinblastine, doxorubicin and paclitaxel MDR, that inhibitory properties span both P-gp and multidrug resistant protein 1 (MRP1), but do not extend to breast cancer resistance protein (BCRP), and that parguerene II is superior (more potent) to verapamil. Our investigations validate the proposition that marine natural products can deliver new ABC transporter inhibitor scaffolds, with structure characteristics fundamentally different from existing inhibitor classes. PMID:23415901

  19. Effects of capsaicin on P-gp function and expression in Caco-2 cells.

    PubMed

    Han, Yi; Tan, Theresa May Chin; Lim, Lee-Yong

    2006-06-14

    Capsaicin is the pungent component of hot chilli, a popular spice in many populations. The aim of the present study was to evaluate the chronicity and reversibility of the modulating effect of capsaicin on both the P-gp expression and activity in the Caco-2 cell monolayers. Capsaicin at concentrations ranging from 10 to 100 microM, which were found to be non-cytotoxic towards the Caco-2 cells, were observed to inhibit P-gp mediated efflux transport of [3H]-digoxin in the cells. The acute inhibitory effect was dependent on the capsaicin concentration and duration of exposure, with abolishment of polarity of [3H]-digoxin transport attained at 50 microM of capsaicin. In contrast, longer term (48 and 72 h) co-incubation of the Caco-2 cells with capsaicin (50 and 100 microM) increased P-gp activity through an up-regulation of cellular P-gp protein and MDR1 mRNA levels. The up-regulated protein was functionally active, as demonstrated by higher degree of [3H]-digoxin efflux across the cell monolayers, but the induction was readily reversed by the removal of the spice from the culture medium. The induction of P-gp protein and mRNA levels was also influenced by capsaicin concentration and duration of exposure, with higher expression levels, in particular of the mRNA, seen at higher spice concentrations over prolonged period of incubation. Our data suggest that caution should be exercised when capsaicin is to be consumed with drugs that are P-gp substrates. In particular, the oral bioavailability of these drugs may be influenced by the P-gp status of populations that rely heavily on hot chilli in their diets. PMID:16674925

  20. Selenate specifically sensitizes drug-resistant cancer cells by increasing apoptosis via G2 phase cell cycle arrest without P-GP inhibition.

    PubMed

    Choi, Ae-Ran; Jee Jo, Min; Jung, Myung-Ji; Sik Kim, Hyung; Yoon, Sungpil

    2015-10-01

    The purpose of this study was to identify conditions that will increase the sensitivity of drug-resistant cancer cells. Selenium derivatives have been shown to present anti-cancer properties in the clinic. Currently, selenate, selenite, selenomethionine (SeMet), methyl-selenocysteine (MSC), and methaneselenic acid (MSA) are the most common selenium derivatives used as drugs in humans. Herein, we tested whether these selenium derivatives can sensitize KBV20C cancer cells, which are highly resistant to anti-cancer drugs such as vincristine. All five drugs could sensitize KBV20C cells to the same extent as they sensitized the sensitive parent KB cells, suggesting that selenium-derived drugs can be used for drug-resistant cancer cells. We also observed that these drugs did not inhibit the P-glycoprotein (P-gp) pumping-out ability, suggesting that the sensitization by selenium-derived drugs does not depend on P-gp activity in resistant KBV20C cells. Interestingly, using a cell viability assay, microscopic observation, and Hoechst staining, we found that selenate highly sensitized drug-resistant KBV20C cells by activating the apoptotic pathway, when compared to sensitive KB cells. Furthermore, we investigated why selenate sensitizes resistant KBV20C cells. Selenate-induced toxicity was associated with an increase in G2-phase cell cycle arrest in KBV20C cells, suggesting that the selenate-induced increase in apoptosis resulted from cell cycle arrest in resistant KBV20C cells. Our findings may contribute to the development of selenate-based therapies for patients resistant to cancer drugs. PMID:26134503

  1. Doxorubicin delivery enhanced by electroporation to gastrointestinal adenocarcinoma cells with P-gp overexpression.

    PubMed

    Kulbacka, Julita; Daczewska, Ma?gorzata; Dubi?ska-Magiera, Magda; Choroma?ska, Anna; Rembia?kowska, Nina; Surowiak, Pawe?; Kulbacki, Marek; Kotulska, Ma?gorzata; Saczko, Jolanta

    2014-12-01

    Electroporation (EP) can effectively support the penetration of macromolecules from the extracellular space into cells. Electropores induced by the influence of electromagnetic field generate additional paths of transport for macromolecules. The aim of this study was evaluation of the electroporation effect on doxorubicin transport efficiency to human colon (LoVo and LoVo/DX) and gastric (EPG85-257/P and EPG85-257/RDB) adenocarcinoma cells with overexpression of P-glycoprotein and murine macrophage cell line (P388/D1). In our EP experiments cells were placed into a cuvette with aluminum electrodes and pulsed with five square electric pulses of 1300 V/cm and duration of 50 ?s each. Cells were also treated with low doxorubicin concentration ([DOX]=1.7 ?M). The ultrastructure (TEM) and changes of P-glycoprotein expression of tumor cells subjected to electric field were monitored. The mitochondrial cell function and trypan blue staining were evaluated after 24h. Our results indicate the most pronounced effect of EP with DOX and disturbed ultrastructure in resistant gastric and colon cells with decrease of P-gp expression. Electroporation may be an attractive delivery method of cytostatic drugs in chemotherapy, enabling reduction of drug dose, exposure time and side effects. PMID:24767854

  2. Mixed Micelles of Doxorubicin Overcome Multidrug Resistance by Inhibiting the Expression of P-Glycoprotein.

    PubMed

    Jin, Yan; Zhang, Zhijie; Zhao, Tie; Liu, Xiaodong; Jian, Lingyan

    2015-08-01

    With the goal of overcoming multidrug resistance, DSPE-PEG (polyethylene glycol 2000 grafted with distearoyl phosphatidylethanolamine) and TPGS (d-alpha-tocopheryl polyethylene glycol 1000 succinate) were combined, each with a different inhibiting mechanism for P-glycoprotein (P-gp) expression, to create mixed micelles with the purpose of encapsulating the water-soluble drug, doxorubicin (Dox). As the molar ratio of Dox/DSPE-PEG/TPGS was 1:1:0.2, the encapsulation efficiency and particle size of the micelles were 98.2% and 12.8 nm respectively. Compared to Dox/DSPE-PEG micelles, Dox/DSPE-PEG/TPGS mixed micelles demonstrated enhanced in vitro cytotoxicity, drug uptake, and apoptosis for drug resistant H460/TaxR cancer cells. Western blot results showed that the expression level of P-gp significantly decreased as H460/TaxR cells were incubated with Dox/DSPE-PEG/TPGS mixed micelles. The anti-tumor efficacy in vivo was evaluated using H460/TaxR-bearing mice and showed that Dox/DSPE-PEG/TPGS mixed micelles were more effective at inhibiting tumor growth than Dox/DSPE-PEG micelles and free Dox solution. It was also found that the high efficacy of mixed micelles was associated with the ability to induce dramatic apoptosis of the tumor cells. In summary, through combining different P-gp inhibiting mechanisms, mixed micelles could be a promising nanocarrier for anti-cancer drugs in overcoming multidrug resistance. PMID:26295136

  3. Beneficial effect of tetrandrine on refractory epilepsy via suppressing P-glycoprotein.

    PubMed

    Chen, Yinghui; Xiao, Xia; Wang, Cuicui; Jiang, Huiyuan; Hong, Zhen; Xu, Guoxiong

    2015-01-01

    Patients with refractory epilepsy are resistance to antiepileptic drugs (AEDs). The mechanisms of drug resistance are varied, but one of them is the overexpression of multidrug transporters, such as P-glycoprotein (P-gp), in the brain. Tetrandrine (TTD) is a bis-benzylisoquinoline alkaloid isolated from the root of Stephania tetrandra (S, Moore) and is found to have a favorable effect against multidrug resistance (MDR) in chemotherapy. However, whether TTD affects AEDs in refractory epilepsy is unknown. In this study, we investigated the change in AED treatment efficacy in doxorubicin-induced drug resistant cells after TTD administration. We also examined the effect of TTD on seizure behaviors in the refractory epileptic rats, specifically the expression of MDR1 mRNA and P-gp protein in the cortex and hippocampus of the refractory epileptic rats. Our results demonstrated that TTD decreased cell resistance to phenytoin and valproate. TTD decreased seizure rate and increased the treatment efficacy of AEDs by reducing the expression of P-gp at mRNA and protein levels in vivo. These data support the use of TTD as an adjuvant drug for treating refractory epilepsy. PMID:25233150

  4. 3-(Benzo[d][1,3]dioxol-5-ylamino)-N-(4-fluorophenyl)thiophene-2-carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P-glycoprotein efflux pump activity.

    PubMed

    Mudududdla, Ramesh; Guru, Santosh K; Wani, Abubakar; Sharma, Sadhana; Joshi, Prashant; Vishwakarma, Ram A; Kumar, Ajay; Bhushan, Shashi; Bharate, Sandip B

    2015-04-14

    3-((Quinolin-4-yl)methylamino)-N-(4-(trifluoromethoxy)phenyl)thiophene-2-carboxamide (OSI-930, 1) is a potent inhibitor of c-kit and VEGFR2, currently under phase I clinical trials in patients with advanced solid tumors. In order to understand the structure-activity relationship, a series of 3-arylamino N-aryl thiophene 2-carboxamides were synthesized by modifications at both quinoline and amide domains of the OSI-930 scaffold. All the synthesized compounds were screened for in vitro cytotoxicity in a panel of cancer cell lines and for VEGFR1 and VEGFR2 inhibition. Thiophene 2-carboxamides substituted with benzo[d][1,3]dioxol-5-yl and 2,3-dihydrobenzo[b][1,4]dioxin-6-yl groups 1l and 1m displayed inhibition of VEGFR1 with IC50 values of 2.5 and 1.9 ?M, respectively. Compounds 1l and 1m also inhibited the VEGF-induced HUVEC cell migration, indicating its anti-angiogenic activity. OSI-930 along with compounds 1l and 1m showed inhibition of P-gp efflux pumps (MDR1, ABCB1) with EC50 values in the range of 35-74 ?M. The combination of these compounds with doxorubicin led to significant enhancement of the anticancer activity of doxorubicin in human colorectal carcinoma LS180 cells, which was evident from the improved IC50 of doxorubicin, the increased activity of caspase-3 and the significant reduction in colony formation ability of LS180 cells after treatment with doxorubicin. Compound 1l showed a 13.8-fold improvement in the IC50 of doxorubicin in LS180 cells. The ability of these compounds to display dual inhibition of VEGFR and P-gp efflux pumps demonstrates the promise of this scaffold for its development as multi-drug resistance-reversal agents. PMID:25758415

  5. Effects of Muscone on the Expression of P-gp, MMP-9 on Blood-Brain Barrier Model In Vitro.

    PubMed

    Wang, Guang-Yun; Wang, Ning; Liao, Hua-Ning

    2015-11-01

    Muscone is the main chemical ingredient in Musk which is main crude drug in Tongqiaohuoxue decoction (TQHXD), and TQHXD has a protective effect on damaged neurons, so we hypothesize that muscone can alter blood-brain barrier (BBB) permeability via the modulation of P-glycoprotein (P-gp) and matrix metalloproteinase-9 (MMP-9) expression. In this study, astrocytes (AC) and human umbilical vein endothelial cells (ECV304) were co-cultured to simulate the BBB model in vitro. Leak testing, transmembrane resistance experiments, and BBB-specific enzyme testing were used to test whether the model was successful. Different concentrations of muscone permeating the BBB were detected by gas chromatography (GC). The change of the transendothelial electrical resistance (TEER) on the BBB in vitro after treating with muscone was detected by Millicell-ERS. The protein expression of P-gp, MMP-9 in normal, and oxygen/glucose deprivation (OGD) BBB model was determined by western blotting to inquire that the mechanism of muscone penetrates the BBB model in vitro. The results show that muscone was detected in the lower medium of the BBB model by GC; the values of TEER were no significant difference before and after muscone (8 ?M) was added to the BBB model; the expression of P-gp significantly decreased after the BBB model treatment with muscone (4, 8, and 16 ?M) for 24 h; the expression of P-gp and MMP-9 in different concentrations of muscone groups had different degrees of reduction compared with the BBB in the state of OGD. In conclusion, muscone could permeate the BBB model, and it was associated with the inhibition of P-gp and MMP-9 expression. An understanding of the mechanisms of muscone across the BBB is crucial to the development of therapeutic modalities for cerebral vascular diseases. PMID:25976179

  6. The effects of protease inhibitors and nonnucleoside reverse transcriptase inhibitors on p-glycoprotein expression in peripheral blood mononuclear cells in vitro.

    PubMed

    Chandler, Becky; Almond, Lisa; Ford, Jennifer; Owen, Andrew; Hoggard, Patrick; Khoo, Saye; Back, David

    2003-08-15

    Several antiretroviral compounds have been shown to be substrates for the efflux protein P-glycoprotein (P-gp) although few studies have investigated the effects of drug on expression of this protein. Here, an in vitro system has been adopted to investigate the effects of protease inhibitors (PIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs) on P-gp expression in peripheral blood mononuclear cells (PBMCs). PBMCs isolated from healthy volunteers were incubated with 10 or 100 microM PI (saquinavir, ritonavir, lopinavir, indinavir, nelfinavir, amprenavir) or 10 microM NNRTI (efavirenz, nevirapine) for 72 hours. Surface P-gp expression was measured by flow cytometry and compared with vehicle-incubated controls. Toxicity was assessed by MTT assay and the effects of each compound were compared between individuals with differing genotypes at position 3435 of exon 26 of MDR1, which was assigned by restriction fragment length polymorphism. Significant increases in median P-gp expression were observed following incubation with 10 microM nelfinavir (10.2 versus 6.7% P-gp-positive cells) and efavirenz (10.0 versus 6.7% P-gp-positive cells). No significant differences in induction were observed between genotypes (CC, CT, TT). Following incubation with 100 microM PI, significant upregulation of P-gp occurred except with amprenavir. However, nelfinavir, ritonavir, and lopinavir caused marked toxicity, indicating that at higher concentrations, the increase in P-gp may be at least partially related to a stress response. These results indicate the potential of some PIs and NNRTIs to induce P-gp expression in PBMCs in vitro. PMID:12902797

  7. P-glycoprotein expression in extracellular matrix formation of chondrogenic differentiation of human adult stem cells.

    PubMed

    Kim, Sang Gyung; Jeon, Chang Ho; Suh, Hun Suk; Choe, Jung-Yoon; Shin, Im-Hee

    2007-09-01

    Mesenchymal stem cell (MSC) has been known as a good source of progenitor for multiple connective tissue including cartilage, muscle, adipocyte, and bone. P-glycoproteins (P-gps) also known as ABCB1 that exports diverse substrates are the product of the multidrug resistance-1 (MDR-1) gene. P-gp expression has been reported in chondrosarcoma and hypertrophic chondrocyte in the human growth plate. This study was designed to investigate the expression of P-gp during chondrogenic differentiation of adult human stem cells. Bone marrow samples were obtained from nine human donors after informed consent. The isolated mononuclear cells (MNCs) were incubated as one pellet/tube and 0.5ml chondrogenic medium in the presence of 10ng/ml of TGF-beta 1 and TGF-beta 3 for 28 days. The expression of surface P-gps was analyzed by flow cytometry and quantitative RT-PCR was performed for the detection of mRNA expression of MDR-1 and type II collagen gene. Total collagen and glycosaminoglycan (GAG) contents of the pellets were measured. Surface P-gp expression of the MSCs was decreased during chondrogenic differentiation. MDR-1 gene was decreased 10-fold after the 2-week incubation whereas type II collagen gene was increased 491-fold after the 4-week incubation in chondrogenic medium. The total amount of collagen and GAG were increased during pellet culture. This study has demonstrated a decrease in expression of P-gp and down regulation of MDR-1 gene consistently by flow cytometry and quantitative RT-PCR, but an increased expression of type II collagen on MSC during chondrogenesis. PMID:17468018

  8. Interaction between Topically and Systemically Coadministered P-Glycoprotein Substrates/Inhibitors: Effect on Vitreal Kinetics

    PubMed Central

    Hippalgaonkar, Ketan; Srirangam, Ramesh; Avula, Bharathi; Khan, Ikhlas A.

    2010-01-01

    The objective of the present study was to investigate the effect of topically coadministered P-glycoprotein (P-gp) substrates/inhibitors on the vitreal kinetics of a systemically administered P-gp substrate. Anesthetized male rabbits were used in these studies. The concentration-time profile of quinidine in the vitreous humor, after intravenous administration, was determined alone and in the presence of topically coadministered verapamil, prednisolone sodium phosphate (PP), and erythromycin. The vitreal pharmacokinetic parameters of quinidine in the presence of verapamil [apparent elimination rate constant (?z), 0.0027 ± 0.0002 min?1; clearance (CL_F), 131 ± 21 ml/min; area under the curve (AUC0–?), 39 ± 7.0 ?g · min/ml; and mean residence time, 435 ± 20 min] were significantly different from those of the control (0.0058 ± 0.0006 min?1, 296 ± 46 ml/min, 17 ± 3 ?g · min/ml, and 232 ± 20 min, respectively). A 1.7-fold decrease in the vitreal ?z and a 1.5-fold increase in the vitreal AUC of quinidine were observed in the presence of topical PP. Statistically significant differences between the vitreal profiles of the control and erythromycin-treated group were also observed. Plasma concentration-time profiles of quinidine, alone or in the presence of the topically instilled compounds, remained unchanged, indicating uniform systemic quinidine exposure across groups. This study demonstrates an interaction between topically and systemically coadministered P-gp substrates, probably through the modulation of P-gp on the basolateral membrane of the retinal pigmented epithelium, leading to changes in the vitreal kinetics of the systemically administered agent. PMID:20595378

  9. Concomitance of P-gp/LRP Expression with EGFR Mutations in Exons 19 and 21 in Non-Small Cell Lung Cancers

    PubMed Central

    Wei, Hong; Lu, Weipeng; Li, Mei; Zhang, Qiuping

    2016-01-01

    Purpose Traditional chemotherapy is the main adjuvant therapy for the treatment of non-small cell lung cancer (NSCLC). However, the emergence of multi-drug resistance (MDR) has greatly restricted the curative effect of chemotherapy. Therefore, it is necessary to find a method to treat MDR NSCLC clinically. It is worth investigating whether NSCLCs that are resistant to traditional chemotherapy can be effectively treated with tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR). Materials and Methods The expression of P-glycoprotein (P-gp) and lung resistance-related protein (LRP) was detected by immunohistochemistry, and mutations in EGFR (exons 19 and 21) and Kirsten rat sarcoma viral oncogene homolog (KRAS) (exon 2) were detected by high-resolution melting analysis (HRMA) of surgical NSCLC specimens from 127 patients who did not undergo traditional chemotherapy or radiotherapy. A Pearson chi-square test was performed to analyze the correlations between the expression of P-gp and LRP and mutations in EGFR and KRAS. Results The expression frequencies of P-gp and LRP were significantly higher in adenocarcinomas from non-smoking patients; the expression frequency of LRP was significantly higher in cancer tissue from female patients. The frequency of EGFR mutations was significantly higher in well to moderately differentiated adenocarcinomas from non-smoking female patients. The frequency of EGFR mutations in the cancers that expressed P-gp, LRP, or both P-gp and LRP was significantly higher than that in cancers that did not express P-gp or LRP. Conclusion NSCLCs expressing P-gp/LRP bear the EGFR mutation in exon 19 or 21 easily. PMID:26632382

  10. Inhibitory Effects of Green Tea and (–)-Epigallocatechin Gallate on Transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-Glycoprotein

    PubMed Central

    Singer, Katrin; Hoier, Eva; Müller, Fabian; Glaeser, Hartmut; König, Jörg; Fromm, Martin F.

    2015-01-01

    Green tea catechins inhibit the function of organic anion transporting polypeptides (OATPs) that mediate the uptake of a diverse group of drugs and endogenous compounds into cells. The present study was aimed at investigating the effect of green tea and its most abundant catechin epigallocatechin gallate (EGCG) on the transport activity of several drug transporters expressed in enterocytes, hepatocytes and renal proximal tubular cells such as OATPs, organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATEs), and P-glycoprotein (P-gp). Uptake of the typical substrates metformin for OCTs and MATEs and bromosulphophthalein (BSP) and atorvastatin for OATPs was measured in the absence and presence of a commercially available green tea and EGCG. Transcellular transport of digoxin, a typical substrate of P-gp, was measured over 4 hours in the absence and presence of green tea or EGCG in Caco-2 cell monolayers. OCT1-, OCT2-, MATE1- and MATE2-K-mediated metformin uptake was significantly reduced in the presence of green tea and EGCG (P < 0.05). BSP net uptake by OATP1B1 and OATP1B3 was inhibited by green tea [IC50 2.6% (v/v) and 0.39% (v/v), respectively]. Green tea also inhibited OATP1B1- and OATP1B3-mediated atorvastatin net uptake with IC50 values of 1.9% (v/v) and 1.0% (v/v), respectively. Basolateral to apical transport of digoxin was significantly decreased in the presence of green tea and EGCG. These findings indicate that green tea and EGCG inhibit multiple drug transporters in vitro. Further studies are necessary to investigate the effects of green tea on prototoypical substrates of these transporters in humans, in particular on substrates of hepatic uptake transporters (e.g. statins) as well as on P-glycoprotein substrates. PMID:26426900

  11. Identification of a Cryptic Bacterial Promoter in Mouse (mdr1a) P-Glycoprotein cDNA.

    PubMed

    Pluchino, Kristen M; Esposito, Dominic; Moen, Janna K; Hall, Matthew D; Madigan, James P; Shukla, Suneet; Procter, Lauren V; Wall, Vanessa E; Schneider, Thomas D; Pringle, Ian; Ambudkar, Suresh V; Gill, Deborah R; Hyde, Steven C; Gottesman, Michael M

    2015-01-01

    The efflux transporter P-glycoprotein (P-gp) is an important mediator of various pharmacokinetic parameters, being expressed at numerous physiological barriers and also in multidrug-resistant cancer cells. Molecular cloning of homologous cDNAs is an important tool for the characterization of functional differences in P-gp between species. However, plasmids containing mouse mdr1a cDNA display significant genetic instability during cloning in bacteria, indicating that mdr1a cDNA may be somehow toxic to bacteria, allowing only clones containing mutations that abrogate this toxicity to survive transformation. We demonstrate here the presence of a cryptic promoter in mouse mdr1a cDNA that causes mouse P-gp expression in bacteria. This expression may account for the observed toxicity of mdr1a DNA to bacteria. Sigma 70 binding site analysis and GFP reporter plasmids were used to identify sequences in the first 321 bps of mdr1a cDNA capable of initiating bacterial protein expression. An mdr1a M107L cDNA containing a single residue mutation at the proposed translational start site was shown to allow sub-cloning of mdr1a in E. coli while retaining transport properties similar to wild-type P-gp. This mutant mdr1a cDNA may prove useful for efficient cloning of mdr1a in E. coli. PMID:26309032

  12. Identification of a Cryptic Bacterial Promoter in Mouse (mdr1a) P-Glycoprotein cDNA

    PubMed Central

    Pluchino, Kristen M.; Esposito, Dominic; Moen, Janna K.; Hall, Matthew D.; Madigan, James P.; Shukla, Suneet; Procter, Lauren V.; Wall, Vanessa E.; Schneider, Thomas D.; Pringle, Ian; Ambudkar, Suresh V.; Gill, Deborah R.; Hyde, Steven C.; Gottesman, Michael M.

    2015-01-01

    The efflux transporter P-glycoprotein (P-gp) is an important mediator of various pharmacokinetic parameters, being expressed at numerous physiological barriers and also in multidrug-resistant cancer cells. Molecular cloning of homologous cDNAs is an important tool for the characterization of functional differences in P-gp between species. However, plasmids containing mouse mdr1a cDNA display significant genetic instability during cloning in bacteria, indicating that mdr1a cDNA may be somehow toxic to bacteria, allowing only clones containing mutations that abrogate this toxicity to survive transformation. We demonstrate here the presence of a cryptic promoter in mouse mdr1a cDNA that causes mouse P-gp expression in bacteria. This expression may account for the observed toxicity of mdr1a DNA to bacteria. Sigma 70 binding site analysis and GFP reporter plasmids were used to identify sequences in the first 321 bps of mdr1a cDNA capable of initiating bacterial protein expression. An mdr1a M107L cDNA containing a single residue mutation at the proposed translational start site was shown to allow sub-cloning of mdr1a in E. coli while retaining transport properties similar to wild-type P-gp. This mutant mdr1a cDNA may prove useful for efficient cloning of mdr1a in E. coli. PMID:26309032

  13. Forced expression of heat shock protein 27 (Hsp27) reverses P-glycoprotein (ABCB1)-mediated drug efflux and MDR1 gene expression in Adriamycin-resistant human breast cancer cells.

    PubMed

    Kanagasabai, Ragu; Krishnamurthy, Karthikeyan; Druhan, Lawrence J; Ilangovan, Govindasamy

    2011-09-23

    Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor ?B (NF-?B) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-?B (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G(2)/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-?B-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-?B level will be a potential approach to circumvent drug resistance in breast cancer. PMID:21784846

  14. Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin

    PubMed Central

    Lee, Chong-Ki; Choi, Jun-Shik

    2013-01-01

    The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration(IC50) of 4.1 µM and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the AUC0-? of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions. PMID:23776402

  15. The B-cell lymphoma 2 (BCL2)-inhibitors, ABT-737 and ABT-263, are substrates for P-glycoprotein

    SciTech Connect

    Vogler, Meike; Dickens, David; Dyer, Martin J.S.; Owen, Andrew; Pirmohamed, Munir; Cohen, Gerald M.

    2011-05-06

    Highlights: {yields} The BCL2-inhibitor ABT-263 is a substrate for P-glycoprotein. {yields} Apoptosis is inhibited by P-glycoprotein expression. {yields} Overexpression of P-glycoprotein may contribute to resistance to ABT-263 or ABT-737. -- Abstract: Inhibition of BCL2 proteins is one of the most promising new approaches to targeted cancer therapy resulting in the induction of apoptosis. Amongst the most specific BCL2-inhibitors identified are ABT-737 and ABT-263. However, targeted therapy is often only effective for a limited amount of time because of the occurrence of drug resistance. In this study, the interaction of BCL2-inhibitors with the drug efflux transporter P-glycoprotein was investigated. Using {sup 3}H labelled ABT-263, we found that cells with high P-glycoprotein activity accumulated less drug. In addition, cells with increased P-glycoprotein expression were more resistant to apoptosis induced by either ABT-737 or ABT-263. Addition of tariquidar or verapamil sensitized the cells to BCL2-inhibitor treatment, resulting in higher apoptosis. Our data suggest that the BCL2-inhibitors ABT-737 and ABT-263 are substrates for P-glycoprotein. Over-expression of P-glycoprotein may be, at least partly, responsible for resistance to these BCL2-inhibitors.

  16. Hedyotis diffusa Willd overcomes 5-fluorouracil resistance in human colorectal cancer HCT-8/5-FU cells by downregulating the expression of P-glycoprotein and ATP-binding casette subfamily G member 2

    PubMed Central

    LI, QIONGYU; WANG, XIANGFENG; SHEN, ALING; ZHANG, YUCHEN; CHEN, YOUQIN; SFERRA, THOMAS J.; LIN, JIUMAO; PENG, JUN

    2015-01-01

    Previous studies have demonstrated that Hedyotis diffusa Willd (HDW), a traditional Chinese herbal medicine, exhibits potent anticancer activity in models of colorectal cancer (CRC). Aggressive forms of CRC exhibit resistance to widely used chemotherapeutic drugs, including the antimetabolite, 5-fluorouracil (5-FU); however, less is known with regard to the activity of HDW against 5-FU-resistant cancer. In the present study, the mechanism of action and the potency of ethanol extracts of HDW (EEHDW) were investigated on a multidrug-resistant CRC HCT-8/5-FU cell line. Using an MTT cell proliferation assay, EEHDW treatment was shown to significantly reduce the cell viability of HCT-8/5-FU cells in a dose- and time-dependent manner. Furthermore, EEHDW significantly increased the retention of the ATP-binding cassette (ABC) transporter substrate, rhodamine-123, as compared with the untreated controls. To further investigate the molecular mechanisms targeted by EEHDW in the resistant cells, the expression levels of the ABC drug transporter protein, P-glycoprotein (P-gp), and ABC subfamily G member 2 (ABCG2), were analyzed using reverse-transcription polymerase chain reaction and western blot analysis. The mRNA and protein expression levels of P-gp and ABCG2 were reduced in the HCT-8/5-FU cells following EEHDW treatment, indicating that EEHDW inhibits ABCG2-mediated drug resistance by downregulating the expression of ABCG2 and P-gp. Therefore, the potential application of EEHDW as a chemotherapeutic adjuvant represents a promising alternative approach to the treatment of drug-resistant CRC.

  17. Analysis of catalytic carboxylate mutants E552Q and E1197Q suggests asymmetric ATP hydrolysis by the two nucleotide-binding domains of P-glycoprotein.

    PubMed

    Carrier, Isabelle; Julien, Michel; Gros, Philippe

    2003-11-11

    In the nucleotide-binding domains (NBDs) of ABC transporters, such as mouse Mdr3 P-glycoprotein (P-gp), an invariant carboxylate residue (E552 in NBD1; E1197 in NBD2) immediately follows the Walker B motif (hyd(4)DE/D). Removal of the negative charge in mutants E552Q and E1197Q abolishes drug-stimulated ATPase activity measured by P(i) release. Surprisingly, drug-stimulated trapping of 8-azido-[alpha-(32)P]ATP is still observed in the mutants in both the presence and absence of the transition-state analogue vanadate (V(i)), and ADP can be recovered from the trapped enzymes. The E552Q and E1197Q mutants show characteristics similar to those of the wild-type (WT) enzyme with respect to 8-azido-[alpha-(32)P]ATP binding and 8-azido-[alpha-(32)P]nucleotide trapping, with the latter being both Mg(2+) and temperature dependent. Importantly, drug-stimulated nucleotide trapping in E552Q is stimulated by V(i) and resembles the WT enzyme, while it is almost completely V(i) insensitive in E1197Q. Similar nucleotide trapping properties are observed when aluminum fluoride or beryllium fluoride is used as an alternate transition-state analogue. Partial proteolytic cleavage of photolabeled enzymes indicates that, in the absence of V(i), nucleotide trapping occurs exclusively at the mutant NBD, whereas in the presence of V(i), nucleotide trapping occurs at both NBDs. Together, these results suggest that there is single-site turnover occurring in the E552Q and E1197Q mutants and that ADP release from the mutant site, or another catalytic step, is impaired in these mutants. Furthermore, our results support a model in which the two NBDs of P-gp are not functionally equivalent. PMID:14596601

  18. In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression.

    PubMed

    Han, Yi; Chin Tan, Theresa May; Lim, Lee-Yong

    2008-08-01

    Piperine, a major component of black pepper, is used as spice and nutrient enhancer. The purpose of the present study was to evaluate the effects of acute and prolonged piperine exposure on cellular P-gp expression and function in vitro and in vivo. Piperine at concentrations ranging from 10 to 100 microM, determined by MTT assay to be non-cytotoxic, was observed to inhibit P-gp mediated efflux transport of [(3)H]-digoxin across L-MDR1 and Caco-2 cell monolayers. The acute inhibitory effect was dependent on piperine concentration, with abolishment of [(3)H]-digoxin polarized transport attained at 50 microM of piperine. In contrast, prolonged (48 and 72 h) co-incubation of Caco-2 cell monolayers with piperine (50 and 100 microM) increased P-gp activity through an up-regulation of cellular P-gp protein and MDR1 mRNA levels. The up-regulated protein was functionally active, as demonstrated by a higher degree of [(3)H]-digoxin efflux across the cell monolayers, but the induction was readily reversed by the removal of the spice from the culture medium. Peroral administration of piperine at the dose of 112 microg/kg body weight/day to male Wistar rats for 14 consecutive days also led to increased intestinal P-gp levels. However, there was a concomitant reduction in the rodent liver P-gp although the kidney P-gp level was unaffected. Our data suggest that caution should be exercised when piperine is to be co-administered with drugs that are P-gp substrates, particularly for patients whose diet relies heavily on pepper. PMID:18417181

  19. In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression

    SciTech Connect

    Han Yi; Chin Tan, Theresa May; Lim, Lee-Yong

    2008-08-01

    Piperine, a major component of black pepper, is used as spice and nutrient enhancer. The purpose of the present study was to evaluate the effects of acute and prolonged piperine exposure on cellular P-gp expression and function in vitro and in vivo. Piperine at concentrations ranging from 10 to 100 {mu}M, determined by MTT assay to be non-cytotoxic, was observed to inhibit P-gp mediated efflux transport of [{sup 3}H]-digoxin across L-MDR1 and Caco-2 cell monolayers. The acute inhibitory effect was dependent on piperine concentration, with abolishment of [{sup 3}H]-digoxin polarized transport attained at 50 {mu}M of piperine. In contrast, prolonged (48 and 72 h) co-incubation of Caco-2 cell monolayers with piperine (50 and 100 {mu}M) increased P-gp activity through an up-regulation of cellular P-gp protein and MDR1 mRNA levels. The up-regulated protein was functionally active, as demonstrated by a higher degree of [{sup 3}H]-digoxin efflux across the cell monolayers, but the induction was readily reversed by the removal of the spice from the culture medium. Peroral administration of piperine at the dose of 112 {mu}g/kg body weight/day to male Wistar rats for 14 consecutive days also led to increased intestinal P-gp levels. However, there was a concomitant reduction in the rodent liver P-gp although the kidney P-gp level was unaffected. Our data suggest that caution should be exercised when piperine is to be co-administered with drugs that are P-gp substrates, particularly for patients whose diet relies heavily on pepper.

  20. Automated extraction of information on chemical-P-glycoprotein interactions from the literature.

    PubMed

    Yoshida, Shuya; Yamashita, Fumiyoshi; Ose, Atsushi; Maeda, Kazuya; Sugiyama, Yuichi; Hashida, Mitsuru

    2013-10-28

    Knowledge of the interactions between drugs and transporters is important for drug discovery and development as well as for the evaluation of their clinical safety. We recently developed a text-mining system for the automatic extraction of information on chemical-CYP3A4 interactions from the literature. This system is based on natural language processing and can extract chemical names and their interaction patterns according to sentence context. The present study aimed to extend this system to the extraction of information regarding chemical-transporter interactions. For this purpose, the key verb list designed for cytochrome P450 enzymes was replaced with that for known drug transporters. The performance of the system was then tested by examining the accuracy of information on chemical-P-glycoprotein (P-gp) interactions extracted from randomly selected PubMed abstracts. The system achieved 89.8% recall and 84.2% precision for the identification of chemical names and 71.7% recall and 78.6% precision for the extraction of chemical-P-gp interactions. PMID:24010770

  1. Multifunctional PLGA Nanobubbles as Theranostic Agents: Combining Doxorubicin and P-gp siRNA Co-Delivery Into Human Breast Cancer Cells and Ultrasound Cellular Imaging.

    PubMed

    Yang, Hong; Deng, Liwei; Li, Tingting; Shen, Xue; Yan, Jie; Zuo, Liangming; Wu, Chunhui; Liu, Yiyao

    2015-12-01

    Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated that the developed DOX-PLGA/PEI/P-gp shRNA NBs is a potential, safe and efficient theranotic agent for cancer therapy and diagnostics. PMID:26510307

  2. Reversal of P-glycoprotein-mediated multidrug resistance in vitro by milbemycin compounds in adriamycin-resistant human breast carcinoma (MCF-7/adr) cells.

    PubMed

    Xiang, Wensheng; Gao, Aili; Liang, Hongsheng; Li, Changyu; Gao, Jiguo; Wang, Qing; Shuang, Bao; Zhang, Ji; Yan, Yijun; Wang, Xiangjing

    2010-09-01

    The effects of milbemycin A(4) (MB A(4)), milbemycin oxime A(4) (MBO A(4)) and milbemycin beta(1) (MB beta(1)) on reversing multidrug resistance (MDR) of tumor cells were firstly conducted according to the following research, including MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay, the accumulation of adriamycin, the accumulation and efflux of rhodamine 123 (Rh123), the regulations of MDR1 gene, and expression of P-gp. The three milbemycins (5muM) showed strong potency to increase adriamycin cytotoxicity toward adriamycin-resistant human breast carcinoma cells MCF-7/adr with reversal fold (RF) of 21.42, 19.06 and 14.89, respectively. In addition, the mechanisms of milbemycins on P-glycoprotein (P-gp)-mediated MDR demonstrated that the milbemycins significantly increased the intracellular accumulations of adriamycin and Rh123 via inhibiting P-gp transport function. Based on the analysis of the P-gp and MDR1 gene expression using flow cytometry and RT-PCR, the results revealed that milbemycin compounds, particularly MB A(4), could regulate down the expression of the P-gp and MDR1 gene. These findings suggest that the milbemycins probably represent promising agents for overcoming MDR in cancer therapy, and especially MB A(4) is better modulator with the lowest toxicity. PMID:20656007

  3. Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-?b pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice

    PubMed Central

    Liu, Jiali; Zhou, Fang; Chen, Qianying; Kang, An; Lu, Meng; Liu, Wenyue; Zang, Xiaojie; Wang, Guangji; Zhang, Jingwei

    2015-01-01

    Patients with inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, often suffer drug intolerance. This resistance can be divided into intrinsic resistance and acquired resistance. Although there is agreement on acquired resistance, studies regarding intrinsic resistance have demonstrated inconsistencies, especially for Crohn’s disease. For this reason, an animal model of Crohn’s disease was induced with 2,4,6-trinitrobenzene sulfonic acid solution (TNBS), and intrinsic resistance was analyzed by measuring the function and expression of P-glycoprotein (P-gp) in peripheral mononuclear blood cells (PMBC), followed by mechanistic studies. The results revealed reduced retention of cyclosporine A in PMBC over-expressing P-gp in a TNBS-treated group and enhanced secretion of the cytokines IL-1?, IL-6, IL-17, and TNF-? as well as LPS in plasma. These cytokines and LPS can induce P-gp expression through the STAT3/Nf-?b pathway, contributing to a decrease of cyclosporine A retention, which can be reversed by the application of a P-gp inhibitor. Our results demonstrated that the sustained chronic inflammation could induce the intrinsic resistance presented as P-gp over-expression in PBMC in Crohn’s disease through STAT3/Nf-?b pathway and this resistance might be reversed by combinational usage of P-gp inhibitors. PMID:26324318

  4. Compartmental models for apical efflux by P-glycoprotein. Part 2. A theoretical study on transporter kinetic parameters

    PubMed Central

    Korzekwa, Ken; Nagar, Swati

    2013-01-01

    Purpose The impact of efflux transporters in intracellular concentrations of a drug can be predicted with modeling techniques. In Part 1, several compartmental models were developed and evaluated. The goal of Part 2 was to apply these models to the characterization and interpretation of saturation kinetic data. Methods The compartmental models from Part 1were used to evaluate a previously published dataset from cell lines expressing varying levels of P-glycoprotein. Kinetic parameters for the transporter were estimated and compared across models. Results Fits and errors for all compartmental models were identical. All compartmental models predicted more consistent parameters than the Michaelis-Menten model. The 5-compartment model with efflux out of the membrane predicted differential impact of P-gp upon apical versus basolateral drug exposure. Finally, the saturable kinetics of active efflux along with a permeability barrier was modeled to delineate a relationship between intracellular concentration with or without active efflux versus donor concentration. This relationship was not a rectangular hyperbola, but instead was shown to be a quadratic function. Conclusions One approach to estimate an in vivo transporter effect is to first model an intracellular Km value from in vitro data, and use this value along with the appropriate tissue transporter expression levels and relative surface area to calculate the relevant apparent Km (or Ki) values. Together with the results from Part 1, these studies suggest that compartmental models can provide a path forward to better utilize in vitro transporter data for in vivo predictions such as physiologically based pharmacokinetic modeling. PMID:23959852

  5. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast

    PubMed Central

    2012-01-01

    Background Invasive micropapillary carcinoma (IMPC) of the breast is a distinct and aggressive variant of luminal type B breast cancer that does not respond to neoadjuvant chemotherapy. It is characterized by small pseudopapillary clusters of cancer cells with inverted cell polarity. To investigate whether hypoxia-inducible factor-1 (HIF-1) activation may be related to the drug resistance described in this tumor, we used MCF7 cancer cells cultured as 3-D spheroids, which morphologically simulate IMPC cell clusters. Methods HIF-1 activation was measured by EMSA and ELISA in MCF7 3-D spheroids and MCF7 monolayers. Binding of HIF-1? to MDR-1 gene promoter and modulation of P-glycoprotein (Pgp) expression was evaluated by ChIP assay and FACS analysis, respectively. Intracellular doxorubicin retention was measured by spectrofluorimetric assay and drug cytotoxicity by annexin V-FITC measurement and caspase activity assay. Results In MCF7 3-D spheroids HIF-1 was activated and recruited to participate to the transcriptional activity of MDR-1 gene, coding for Pgp. In addition, Pgp expression on the surface of cells obtained from 3-D spheroids was increased. MCF7 3-D spheroids accumulate less doxorubicin and are less sensitive to its cytotoxic effects than MCF7 cells cultured as monolayer. Finally, HIF-1? inhibition either by incubating cells with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (a widely used HIF-1? inhibitor) or by transfecting cells with specific siRNA for HIF-1? significantly decreased the expression of Pgp on the surface of cells and increased the intracellular doxorubicin accumulation in MCF7 3-D spheroids. Conclusions MCF7 breast cancer cells cultured as 3-D spheroids are resistant to doxorubicin and this resistance is associated with an increased Pgp expression in the plasma membrane via activation of HIF-1. The same mechanism may be suggested for IMPC drug resistance. PMID:22217342

  6. Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2).

    PubMed

    Tournier, Nicolas; Chevillard, Lucie; Megarbane, Bruno; Pirnay, Stéphane; Scherrmann, Jean-Michel; Declčves, Xavier

    2010-08-01

    Drug interaction with P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) may influence its tissue disposition including blood-brain barrier transport and result in potent drug-drug interactions. The limited data obtained using in-vitro models indicate that methadone, buprenorphine, and cannabinoids may interact with human P-gp; but almost nothing is known about drugs of abuse and BCRP. We used in vitro P-gp and BCRP inhibition flow cytometric assays with hMDR1- and hBCRP-transfected HEK293 cells to test 14 compounds or metabolites frequently involved in addiction, including buprenorphine, norbuprenorphine, methadone, ibogaine, cocaine, cocaethylene, amphetamine, N-methyl-3,4-methylenedioxyamphetamine, 3,4-methylenedioxyamphetamine, nicotine, ketamine, Delta9-tetrahydrocannabinol (THC), naloxone, and morphine. Drugs that in vitro inhibited P-gp or BCRP were tested in hMDR1- and hBCRP-MDCKII bidirectional transport studies. Human P-gp was significantly inhibited in a concentration-dependent manner by norbuprenorphine>buprenorphine>methadone>ibogaine and THC. Similarly, BCRP was inhibited by buprenorphine>norbuprenorphine>ibogaine and THC. None of the other tested compounds inhibited either transporter, even at high concentration (100 microm). Norbuprenorphine (transport efflux ratio approoximately 11) and methadone (transport efflux ratio approoximately 1.9) transport was P-gp-mediated; however, with no significant stereo-selectivity regarding methadone enantiomers. BCRP did not transport any of the tested compounds. However, the clinical significance of the interaction of norbuprenorphine with P-gp remains to be evaluated. PMID:19887017

  7. Application of compartmental modeling to an examination of in vitro intestinal permeability data: assessing the impact of tissue uptake, P-glycoprotein, and CYP3A.

    PubMed

    Johnson, Brendan M; Charman, William N; Porter, Christopher J H

    2003-09-01

    P-glycoprotein (P-gp)-mediated drug efflux and cytochrome p450 3A (CYP3A) metabolism within the enterocyte have been implicated as potential biochemical barriers to intestinal drug permeability. The current studies examined the in vitro intestinal permeability of verapamil, a common P-gp and CYP3A substrate, using both disappearance and appearance measurements, and investigated the possible impact of P-gp efflux on the intestinal extraction of verapamil. Bidirectional permeability and metabolism studies were conducted across rat jejunal tissue in side-by-side diffusion chambers and data were modeled using compartmental kinetics. Substantial tissue uptake of verapamil was evident in the in vitro model and resulted in a disappearance permeability coefficient that was approximately 10-fold greater than that determined from verapamil appearance in the receptor chamber. Polarization of the bidirectional transport of verapamil was evident due to P-gp efflux (efflux ratio of 2.5), and significant intestinal extraction of verapamil on passage across the tissue was observed (mucosal to serosal extraction ratio of 0.31 +/- 0.04). Surprisingly, the selective P-gp inhibitor, valspodar (PSC833), had an insignificant impact on P-gp-mediated efflux of verapamil; however, selective CYP3A inhibition (afforded by midazolam) increased mucosal to serosal verapamil transport 1.6-fold, presumably through a reduction in intestinal metabolism. Using a four-compartment model, simulations of the impact of P-gp on the intestinal extraction ratio of verapamil demonstrated that for efflux to increase intestinal extraction, a nonlinear relationship must exist between the extent of drug metabolism and the extent of drug transport; the origin of this "nonlinearity" may include saturable drug metabolism, accumulation, and/or distribution. PMID:12920171

  8. Predicting Activators and Inhibitors of the Breast Cancer Resistance Protein (ABCG2) and P-Glycoprotein (ABCB1) Based on Mechanistic Considerations.

    PubMed

    Egido, Estefanía; Müller, Rita; Li-Blatter, Xiaochun; Merino, Gracia; Seelig, Anna

    2015-11-01

    Colocalized in membrane barriers, the ABC transporters ABCB1 and ABCG2 strongly contribute to multidrug resistance (MDR). Here we investigate the as yet unknown mechanisms of activation and inhibition of ABCG2. For this purpose we measured the ATPase activity of ABCG2 and ABCB1 as a function of allocrite concentration using a calibration set of 30 diverse compounds and a validation set of 23 compounds. We demonstrate that ABCG2 is activated at low and inhibited at high allocrite concentrations, yielding bell-shaped activity curves. With an ATP regeneration assay we prove that the inhibitory part is indeed due to a decrease in activity because of high allocrite load in the transporter. However, inhibition is only observed if the membrane solubility of allocrites is sufficiently high. The concentrations of half-maximum activation and inhibition are at least 10-fold lower for ABCG2 than for ABCB1. Because ABCG2 binds its allocrites with higher affinity than ABCB1, it can extract hydrophilic, nonamphiphilic, and highly charged compounds out of the lipid membrane, typically exhibiting low lipid-water partition coefficients, but is inhibited by hydrophobic, amphiphilic, and moderately charged compounds, with high lipid-water partition coefficients. In contrast, ABCB1 is barely interacting with hydrophilic compounds, but is activated by hydrophobic compounds. We show that hydrophobicity, amphiphilicity, and charge have a dual role; they predict, on the one hand, allocrites' lipid-water partition coefficient and, on the other hand, the transporters' preference for the chemical nature of allocrites. Parameters reflecting hydrophobicity, amphiphilicity, and charge are therefore sufficient for differentiating between allocrites, activators, and inhibitors of ABCB1 and ABCG2. PMID:26372856

  9. Haemonchus contortus P-glycoprotein-2: in situ localisation and characterisation of macrocyclic lactone transport.

    PubMed

    Godoy, Pablo; Lian, Jing; Beech, Robin N; Prichard, Roger K

    2015-01-01

    Haemonchus contortus is a veterinary nematode that infects small ruminants, causing serious decreases in animal production worldwide. Effective control through anthelmintic treatment has been compromised by the development of resistance to these drugs, including the macrocyclic lactones. The mechanisms of resistance in H. contortus have yet to be established but may involve efflux of the macrocyclic lactones by nematode ATP-binding-cassette transporters such as P-glycoproteins. Here we report the expression and functional activity of H. contortus P-glycoprotein 2 expressed in mammalian cells and characterise its interaction with the macrocyclic lactones, ivermectin, abamectin and moxidectin. The ability of H. contortus P-glycoprotein 2 to transport different fluorophore substrates was markedly inhibited by ivermectin and abamectin in a dose-dependent and saturable way. The profile of transport inhibition by moxidectin was markedly different. H. contortus P-glycoprotein 2 was expressed in the pharynx, the first portion of the worm's intestine and perhaps in adjacent nervous tissue, suggesting a role for this gene in regulating the uptake of avermectins and in protecting nematode tissues from the effects of macrocyclic lactone anthelmintic drugs. H. contortus P-glycoprotein 2 may thus contribute to resistance to these drugs in H. contortus. PMID:25486495

  10. Breast Cancer Resistance Protein and P-glycoprotein in Brain Cancer: Two Gatekeepers Team Up

    PubMed Central

    Agarwal, Sagar; Hartz, Anika M.S.; Elmquist, William F.; Bauer, Björn

    2012-01-01

    Brain cancer is a devastating disease. Despite extensive research, treatment of brain tumors has been largely ineffective and the diagnosis of brain cancer remains uniformly fatal. Failure of brain cancer treatment may be in part due to limitations in drug delivery, influenced by the ABC drug efflux transporters P-gp and BCRP at the blood-brain and blood-tumor barriers, in brain tumor cells, as well as in brain tumor stem-like cells. P-gp and BCRP limit various anti-cancer drugs from entering the brain and tumor tissues, thus rendering chemotherapy ineffective. To overcome this obstacle, two strategies – targeting transporter regulation and direct transporter inhibition – have been proposed. In this review, we focus on these strategies. We first introduce the latest findings on signaling pathways that could potentially be targeted to down-regulate P-gp and BCRP expression and/or transport activity. We then highlight in detail the new paradigm of P-gp and BCRP working as a “cooperative team of gatekeepers” at the blood-brain barrier, discuss its ramifications for brain cancer therapy, and summarize the latest findings on dual P-gp/BCRP inhibitors. Finally, we provide a brief summary with conclusions and outline the perspectives for future research endeavors in this field. PMID:21827403

  11. Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up.

    PubMed

    Agarwal, Sagar; Hartz, Anika M S; Elmquist, William F; Bauer, Björn

    2011-01-01

    Brain cancer is a devastating disease. Despite extensive research, treatment of brain tumors has been largely ineffective and the diagnosis of brain cancer remains uniformly fatal. Failure of brain cancer treatment may be in part due to limitations in drug delivery, influenced by the ABC drug efflux transporters P-gp and BCRP at the blood-brain and blood-tumor barriers, in brain tumor cells, as well as in brain tumor stem-like cells. P-gp and BCRP limit various anti-cancer drugs from entering the brain and tumor tissues, thus rendering chemotherapy ineffective. To overcome this obstacle, two strategies - targeting transporter regulation and direct transporter inhibition - have been proposed. In this review, we focus on these strategies. We first introduce the latest findings on signaling pathways that could potentially be targeted to down-regulate P-gp and BCRP expression and/or transport activity. We then highlight in detail the new paradigm of P-gp and BCRP working as a "cooperative team of gatekeepers" at the blood-brain barrier, discuss its ramifications for brain cancer therapy, and summarize the latest findings on dual P-gp/BCRP inhibitors. Finally, we provide a brief summary with conclusions and outline the perspectives for future research endeavors in this field. PMID:21827403

  12. Enhanced brain disposition and effects of ?9-tetrahydrocannabinol in P-glycoprotein and breast cancer resistance protein knockout mice.

    PubMed

    Spiro, Adena S; Wong, Alexander; Boucher, Aurélie A; Arnold, Jonathon C

    2012-01-01

    The ABC transporters P-glycoprotein (P-gp, Abcb1) and breast cancer resistance protein (Bcrp, Abcg2) regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis ?(9)-tetrahydrocannabinol (THC) has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT) mice. Abcb1a/b (-/-), Abcg2 (-/-) and wild-type (WT) mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (-/-) and Abcg2 (-/-) mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (-/-) mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis. PMID:22536451

  13. Reversal of P-glycoprotein-dependent resistance to vinblastine by newly synthesized bisbenzylisoquinoline alkaloids in mouse leukemia P388 cells.

    PubMed

    Wang, Feng-Peng; Wang, Li; Yang, Jin-Song; Nomura, Masaaki; Miyamoto, Ken-Ichi

    2005-10-01

    We examined the ability of partially synthesized new compounds from fangchinoline and tetrandrine to reverse P-glycoprotein (P-gp)-dependent multidrug resistance (MDR) in vitro and in vivo. All compound enhanced the in vitro cyctotoxic effect of vinblastin (VBL) at 0.1 microM as potent as 10 microM verapamil against the resistant cell line P388/ADR. The combination effect tended to be strong by substitution of bulky group, resulting 5,14-dibromotetrandrine (compound #9) showed the strongest effect. Compound #9 increased intracellular VBL accumulation in P388/ADR cells, much stronger than verapamil, as well as cytotoxic combined effect. This mechanism seems to inhibit the function of P-gp, but not the expression of P-gp. In combination with VBL, this compound also synergistically prolonged the life-span of P388/ADR-bearing mice. Bisbenzylisoquinoline alkaloids and their derivatives are possible to be good candidates as modifier of MDR in cancer chemotherapy. PMID:16204959

  14. Influence of P-Glycoprotein Inhibition or Deficiency at the Blood-Brain Barrier on (18)F-2-Fluoro-2-Deoxy-D-glucose ( (18)F-FDG) Brain Kinetics.

    PubMed

    Tournier, Nicolas; Saba, Wadad; Goutal, Sébastien; Gervais, Philippe; Valette, Héric; Scherrmann, Jean-Michel; Bottlaender, Michel; Cisternino, Salvatore

    2015-05-01

    The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 ?M) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively. PMID:25716150

  15. Quantification of proteins by flow cytometry: Quantification of human hepatic transporter P-gp and OATP1B1 using flow cytometry and mass spectrometry.

    PubMed

    Hogg, Karen; Thomas, Jerry; Ashford, David; Cartwright, Jared; Coldwell, Ruth; Weston, Daniel J; Pillmoor, John; Surry, Dominic; O'Toole, Peter

    2015-07-01

    Flow cytometry is a powerful tool for the quantitation of fluorescence and is proven to be able to correlate the fluorescence intensity to the number of protein on cells surface. Mass spectroscopy can also be used to determine the number of proteins per cell. Here we have developed two methods, using flow cytometry and mass spectroscopy to quantify number of transporters in human cells. These two approaches were then used to analyse the same samples so that a direct comparison could be made. Transporters have a major impact on the behaviour of a diverse number of drugs in human systems. While active uptake studies by transmembrane protein transporters using model substrates are routinely undertaken in human cell lines and hepatocytes as part of drug discovery and development, the interpretation of these results is currently limited by the inability to quantify the number of transporters present in the test samples. Here we provide a flow cytometric method for accurate quantification of transporter levels both on the cell surface and within the cell, and compare this to a quantitative mass spectrometric approach. Two transporters were selected for the study: OATP1B1 (also known as SLCO1B1, LST-1, OATP-C, OATP2) due to its important role in hepatic drug uptake and elimination; P-gp (also known as P-glycoprotein, MDR1, ABCB1) as a well characterised system and due to its potential impact on oral bioavailability, biliary and renal clearance, and brain penetration of drugs that are substrates for this transporter. In all cases the mass spectrometric method gave higher levels than the flow cytometry method. However, the two methods showed very similar trends in the relative ratios of both transporters in the hepatocyte samples investigated. The P-gp antibody allowed quantitative discrimination between externally facing transporters located in the cytoplasmic membrane and the total number of transporters on and in the cell. The proportion of externally facing transporter varied considerably in the four hepatocyte samples analysed, ranging from only 6% to 35% of intact and viable cells. The sample with only 6% externally facing transporter was further analysed by confocal microscopy which qualitatively confirmed the low level of transporter in the membrane and the large internal population. Here we prove that flow cytometry is an important tool for future protein analysis as it can not only quantify the number of proteins that a cell express but also identify the number of proteins on the surface and it is easy to apply for routine assays. PMID:25916617

  16. Enhanced intestinal absorption of etoposide by self-microemulsifying drug delivery systems: roles of P-glycoprotein and cytochrome P450 3A inhibition.

    PubMed

    Zhao, Gang; Huang, Jiangeng; Xue, Kewen; Si, Luqin; Li, Gao

    2013-11-20

    Etoposide is recognized as a dual P-glycoprotein (P-gp) and cytochrome P450 3A (CYP3A) substrate drug with poor water-solubility. To improve its solubility and bioavailability, three novel self-microemulsifying drug delivery systems (SMEDDS) contained the known P-gp and CYP3A inhibitory surfactants, Cremophor RH40, Cremophor EL, or Polysorbate 80, were prepared. This work aims to evaluate the enhanced intestinal absorption of etoposide SMEDDS as well as to explore the roles of P-gp and CYP3A inhibition in the absorption process. Etoposide SMEDDS were orally administered to rats for in vivo bioavailability investigation. In situ single-pass intestinal perfusion with mesenteric vein cannulation was employed to study the drug permeability and intestinal metabolism. In vitro Caco-2 cell models were applied to study the effects of P-gp and CYP3A inhibition by SMEDDS on the cellular accumulation of etoposide. It was found that the bioavailability and in situ intestinal absorption were significantly enhanced by SMEDDS with the order of Polysorbate 80-based SMEDDS>Cremophor EL-based SMEDDS>Cremophor RH40-based SMEDDS. In addition, there was a dramatically high linear correlation between the AUC0-t values and the apparent permeability coefficient values based on the appearance of the drug in mesenteric vein blood. Cellular uptake studies demonstrated that P-gp inhibition by SMEDDS played an important role in etoposide uptake. Moreover, etoposide metabolism was demonstrated to be dramatically inhibited by the three kinds of SMEDDS. These finding may assist in the improvement of the intestinal absorption of P-gp and/or CYP3A substrate drugs. PMID:23981337

  17. The bisbenzylisoquinoline alkaloids, tetrandine and fangchinoline, enhance the cytotoxicity of multidrug resistance-related drugs via modulation of P-glycoprotein.

    PubMed

    Choi, S U; Park, S H; Kim, K H; Choi, E J; Kim, S; Park, W K; Zhang, Y H; Kim, H S; Jung, N P; Lee, C O

    1998-03-01

    The occurrence of resistance to chemotherapeutic drugs is a major problem for successful cancer treatment and reducing drug accumulation by P-glycoprotein (P-gp) is one of the major mechanisms of multidrug resistance (MDR). The present study was performed to evaluate the MDR-reversal abilities of two bisbenzylisoquinoline alkaloids, tetrandine (TET) and fangchinoline (FAN), compared with verapamil (VER), a well-known P-gp modulator. TET (3.0 microM), FAN (3.0 microM) and VER (10.0 microM) reduced the paclitaxel (TAX) concentration required to achieve 50% inhibition of cell growth (EC50) to HCT15 (P-gp-positive) cells about 3100-, 1900- and 410-fold, and these compounds also reduced the EC50 value of actinomycin D (AMD) about 36.0-, 45.9- and 18.2-fold in the cells, respectively. Meanwhile, TET, FAN and VER had no effect on the cytotoxicity of the drugs to SK-OV-3 (P-gp-negative) cells. On the other hand, TET (3.0 microM), FAN (3.0 microM) and VER (10.0 microM) similarly enhanced the accumulation rates of rhodamine 123, a well known P-gp substrate, in HCT15 cells (200-250%). After efflux for 2 h with fresh medium, TET and FAN also enhanced the residual rate of rhodamine 123 about 5.0- and 2.6-fold in comparison with control, respectively. TET, FAN and VER could not affect the accumulation and residual rate of rhodamine 123 in SK-OV-3 cells. From the result, we conclude that TET and FAN enhanced the cytotoxicity of MDR-related drugs via modulation of P-gp. PMID:9625436

  18. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.

    PubMed

    Orr, Mona W; Donaldson, Gregory P; Severin, Geoffrey B; Wang, Jingxin; Sintim, Herman O; Waters, Christopher M; Lee, Vincent T

    2015-09-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ?orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ?orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ?orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ?orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ?orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway. PMID:26305945

  19. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover

    PubMed Central

    Orr, Mona W.; Donaldson, Gregory P.; Severin, Geoffrey B.; Wang, Jingxin; Sintim, Herman O.; Waters, Christopher M.; Lee, Vincent T.

    2015-01-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5?-phosphoguanylyl-(3?,5?)-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ?orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ?orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ?orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP–regulated pel promoter. Additionally, the c-di-GMP–governed auto-aggregation and biofilm phenotypes were elevated in the ?orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ?orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway. PMID:26305945

  20. Gauging the clinical significance of P-glycoprotein-mediated herb-drug interactions: Comparative effects of St. John's wort, echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics

    PubMed Central

    Gurley, Bill J.; Swain, Ashley; Williams, D. Keith; Barone, Gary; Battu, Sunil Kumar

    2007-01-01

    Concomitant administration of botanical supplements with drugs that are P-glycoprotein (P-gp) substrates may produce clinically significant herb-drug interactions. This study evaluated the effects of St. John's wort and Echinacea on the pharmacokinetics of digoxin, a recognized P-gp substrate. Eighteen healthy volunteers were randomly assigned to receive a standardized St. John's wort (300 mg three times daily) or Echinacea (267 mg three times daily) supplement for 14 days, followed by a 30-day washout period. Subjects were also randomized to receive rifampin (300 mg twice daily, 7 days) and clarithromycin (500 mg twice daily, 7 days) as positive controls for P-gp induction and inhibition, respectively. Digoxin (Lanoxin® 0.25 mg) was administered orally before and after each supplementation and control period. Serial digoxin plasma concentrations were obtained over 24 hours and analyzed by chemiluminescent immunoassay. Comparisons of AUC(0-3), AUC(0-24), T1/2, and Cmax, were used to assess the effects of St. John's wort, Echinacea, rifampin, and clarithromycin on digoxin disposition. St. John's wort and rifampin both produced significant reductions (p<0.05) in AUC(0-3), AUC(0-24), and Cmax, while clarithromycin increased these parameters significantly (p<0.05). Echinacea supplementation did not affect digoxin pharmacokinetics. Clinically significant P-gp-mediated herb-drug interactions are more likely to occur with St. John's wort than with Echinacea. PMID:18214850

  1. Effects of benzo(e)pyrene and benzo(a)pyrene on P-glycoprotein-mediated transport in Caco-2 cell monolayer: a comparative approach.

    PubMed

    Sugihara, Narumi; Toyama, Kumiko; Okamoto, Tastuaki; Kadowaki, Masaaki; Terao, Kazumi; Furuno, Koji

    2007-08-01

    The previous studies from our laboratory reported that benzo(a)pyrene (Bap) influenced efflux transport of rhodamine 123 (Rho-123) by induction of P-glycoprotein (P-gp) in Caco-2 cells. The present study investigated whether induction of P-gp and the enhanced efflux transport of Rho-123 were caused by benzo(e)pyrene (Bep), which has a structure similar to Bap, but is not a carcinogenic compound. In Caco-2 monolayer exposed to 50 microM Bep for 72 h, the ratio of the apparent permeability coefficient (P(app)) of Rho-123 efflux increased significantly compared to that of the control monolayer. Similarly, a significant increase in expression of MDR1 mRNA and of P-gp at the protein level were detected by RT-PCR and by Western blot analysis, respectively, in Caco-2 cells exposed to Bep, compared to that of the control. Caco-2 cells exposed to Bep showed oxidative stress that was detected by fluorescence microscopy using aminophenyl fluorescein. However, the oxidative stress was weaker compared with that of Bap. The cellular GSH content was decreased to 80% or 59% of control cells, respectively, in Caco-2 cells exposed to either Bep or Bap. Our results further show that Bep or Bap-induced P-gp in Caco-2 cells might have been the result of oxidative stress rather than DNA damage. PMID:17408918

  2. Identification of members of the P-glycoprotein multigene family.

    PubMed Central

    Ng, W F; Sarangi, F; Zastawny, R L; Veinot-Drebot, L; Ling, V

    1989-01-01

    Overproduction of P-glycoprotein is intimately associated with multidrug resistance. This protein appears to be encoded by a multigene family. Thus, differential expression of different members of this family may contribute to the complexity of the multidrug resistance phenotype. Three lambda genomic clones isolated from a hamster genomic library represent different members of the hamster P-glycoprotein gene family. Using a highly conserved exon probe, we found that the hamster P-glycoprotein gene family consists of three genes. We also found that the P-glycoprotein gene family consists of three genes in mice but has only two genes in humans and rhesus monkeys. The hamster P-glycoprotein genes have similar exon-intron organizations within the 3' region encoding the cytoplasmic domains. We propose that the hamster P-glycoprotein gene family arose from gene duplication. The hamster pgp1 and pgp2 genes appear to be more closely related to each other than either gene is to the pgp3 gene. We speculate that the hamster pgp1 and pgp2 genes arose from a recent gene duplication event and that primates did not undergo this duplication and therefore contain only two P-glycoprotein genes. Images PMID:2566908

  3. Identification of members of the P-glycoprotein multigene family

    SciTech Connect

    Ng, W.F.; Sarangi, F.; Zastawny, R.L.; Veinot-Drebot, L.; Ling, V. )

    1989-03-01

    Overproduction of P-glycoprotein is intimately associated with multidrug resistance. This protein appears to be encoded by a multigene family. Thus, differential expression of different members of this family may contribute to the complexity of the multidrug resistance phenotype. Three lambda genomic clones isolated from a hamster genomic library represent different members of the hamster P-glycoprotein gene family. Using a highly conserved exon probe, the authors found that the hamster P-glycoprotein gene family consists of three genes. They also found that the P-glycoprotein gene family consists of three genes in mice but has only two genes in humans and rhesus monkeys. The hamster P-glycoprotein genes have similar exon-intron organizations within the 3' region encoding the cytoplasmic domains. The propose that the hamster P-glycoprotein gene family arose from gene duplication. The hamster pgpl and pgp2 genes appear to be more closely related to each other than either gene is to the pgp3 gene. They speculate that the hamster pgpl and pgp2 genes arose from a recent gene duplication event and that primates did not undergo this duplication and therefore contain only two P-glycoprotein genes.

  4. Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis.

    PubMed

    Thévenod, F; Friedmann, J M; Katsen, A D; Hauser, I A

    2000-01-21

    Cadmium-mediated toxicity of cultured proximal tubule (PT) cells is associated with increased production of reactive oxygen species (ROS) and apoptosis. We found that cadmium-dependent apoptosis (Hoechst 33342 and annexin V assays) decreased with prolonged CdCl(2) (10 microM) application (controls: 2.4 +/- 1.6%; 5 h: +5.1 +/- 2.3%, 20 h: +5.7 +/- 2.5%, 48 h: +3.3 +/- 1.0% and 72 h: +2.1 +/- 0.4% above controls), while cell proliferation was not affected. Reduction of apoptosis correlated with a time-dependent up-regulation of the drug efflux pump multidrug resistance P-glycoprotein (mdr1) in cadmium-treated cells ( approximately 4-fold after 72 h), as determined by immunoblotting with the monoclonal antibody C219 and measurement of intracellular accumulation of the fluorescent probe calcein +/- the mdr1 inhibitor PSC833 (0.5 microM). When mdr1 inhibitors (PSC833, cyclosporine A, verapamil) were transiently added to cells with mdr1 up-regulation by pretreatment for 72 h with cadmium, cadmium-induced apoptosis increased significantly and to a percentage similar to that obtained in cells with no mdr1 up-regulation (72-h cadmium: 5.2 +/- 0.9% versus 72-h cadmium + 1-h PSC833: 7.2 +/- 1.4%; p < or = 0.001). Cadmium-induced apoptosis and mdr1 up-regulation depended on ROS, since co-incubation with the ROS scavengers N-acetylcysteine (15 mM) or pyrrolidine dithiocarbamate (0.1 mM) abolished both responses. Moreover, cadmium- and ROS-associated mdr1 up-regulation was linked to activation of the transcription factor NF-kappaB; N-acetylcysteine, pyrrolidine dithiocarbamate, and the IkappaB-alpha kinase inhibitor Bay 11-7082 (20 microM) prevented both, mdr1 overexpression and degradation of the inhibitory NF-kappaB subunit, IkappaB-alpha, induced by cadmium. The data show that 1) cadmium-mediated apoptosis in PT cells is associated with ROS production, 2) ROS increase mdr1 expression by a process involving NF-kappaB activation, and 3) mdr1 overexpression protects PT cells against cadmium-mediated apoptosis. These data suggest that mdr1 up-regulation, at least in part, provides anti-apoptotic protection for PT cells against cadmium-mediated stress. PMID:10636889

  5. P-glycoprotein regulates trafficking of CD8(+) T cells to the brain parenchyma.

    PubMed

    Kooij, Gijs; Kroon, Jeffrey; Paul, Debayon; Reijerkerk, Arie; Geerts, Dirk; van der Pol, Susanne M A; van Het Hof, Bert; Drexhage, Joost A; van Vliet, Sandra J; Hekking, Liesbeth H P; van Buul, Jaap D; Pachter, Joel S; de Vries, Helga E

    2014-05-01

    The trafficking of cytotoxic CD8(+) T lymphocytes across the lining of the cerebral vasculature is key to the onset of the chronic neuro-inflammatory disorder multiple sclerosis. However, the mechanisms controlling their final transmigration across the brain endothelium remain unknown. Here, we describe that CD8(+) T lymphocyte trafficking into the brain is dependent on the activity of the brain endothelial adenosine triphosphate-binding cassette transporter P-glycoprotein. Silencing P-glycoprotein activity selectively reduced the trafficking of CD8(+) T cells across the brain endothelium in vitro as well as in vivo. In response to formation of the T cell-endothelial synapse, P-glycoprotein was found to regulate secretion of endothelial (C-C motif) ligand 2 (CCL2), a chemokine that mediates CD8(+) T cell migration in vitro. Notably, CCL2 levels were significantly enhanced in microvessels isolated from human multiple sclerosis lesions in comparison with non-neurological controls. Endothelial cell-specific elimination of CCL2 in mice subjected to experimental autoimmune encephalomyelitis also significantly diminished the accumulation of CD8(+) T cells compared to wild-type animals. Collectively, these results highlight a novel (patho)physiological role for P-glycoprotein in CD8(+) T cell trafficking into the central nervous system during neuro-inflammation and illustrate CCL2 secretion as a potential link in this mechanism. PMID:24429546

  6. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    SciTech Connect

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong; Kodithuwakku, Nandani Darshika; Fang, Weirong; Li, Yunman; Huang, Wenlong

    2014-01-15

    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity and multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein inhibitors. • The accumulation of HZ08 increased via gene interference targeting P-glycoprotein. • HZ08 competitively bound to P-glycoprotein under the presence of verapamil.

  7. Stereoselective Property of 20(S)-Protopanaxadiol Ocotillol Type Epimers Affects Its Absorption and Also the Inhibition of P-Glycoprotein

    PubMed Central

    Wang, Wenyan; Wu, Xiangmeng; Wang, Li; Meng, Qingguo; Liu, Wanhui

    2014-01-01

    Stereoselectivity has been proved to be tightly related to drug action including pharmacodynamics and pharmacokinetics. (20S,24R)-epoxy-dammarane-3,12,25-triol (24R-epimer) and (20S,24S)-epoxy-dammarane-3,12,25-triol (24S-epimer), a pair of 20(S)-protopanaxadiol (PPD) ocotillol type epimers, were the main metabolites of PPD. Previous studies have shown that 24R-epimer and 24S-epimer had stereoselectivity in pharmacological action and pharmacokinetics. In the present study, the aim was to further study the pharmacokinetic characteristics of both epimers, investigate their absorption mechanism and analyze the selectivity effects of ocotillol type side chain and C24 stereo-configuration on P-glycoprotein (P-gp) in vivo and in vitro. Results showed that the absolute bioavailability of 24R-epimer was about 14-fold higher than that of 24S-epimer, and a linear kinetic characteristic was acquired in doses of 5–20 mg/kg for both epimers after oral administration. Furthermore, the apparent permeability coefficients of 24R-epimer were 5–7 folds higher than that of 24S-epimer having lower efflux ratios in Caco-2 cell models. Moreover, both 24R-epimer and 24S-epimer had similar inhibitory effects on P-gp by increasing cellular retention of rhodamine 123 in Caco-2 cells and decreasing efflux of digoxin across Caco-2 cell monolayers. In situ in vivo experiments showed that the inhibition of 24R-epimer on P-gp was stronger than that of 24S-epimer by single-pass intestinal perfusion of rhodamine 123 in rats. Western blot analyses demonstrated that both epimers had no action on P-gp expression in Caco-2 cells. In conclusion, with respect to the stereoselectivity, C24 S-configuration of the ocotillol type epimers processed a poor transmembrane permeability and could be distinguished by P-gp. Sharing a dammarane skeleton, both 24R-epimer and 24S-epimer were potent inhibitors of P-gp. This study provides a new case of stereoselective pharmacokinetics of chiral compounds which contributes to know the chiral characteristics of P-gp and structure-action relationship of PPD type and ocotillol type ginsenosides as a P-gp inhibitor. PMID:24887182

  8. Thyroxine (T4) transfer from CSF to choroid plexus and ventricular brain regions in rabbit: contributory role of P-glycoprotein and organic anion transporting polypeptides.

    PubMed

    Kassem, Nouhad A; Deane, Rashid; Segal, Malcolm B; Chen, RuoLi; Preston, Jane E

    2007-11-21

    This study investigated the transfer of T4 from cerebrospinal fluid (CSF) into the choroid plexuses (CP) and ventricular brain regions, and the role of P-glycoprotein (P-gp), multidrug resistance protein 1 (mrp1) and organic anion transporting polypeptides (oatps). During in vivo ventriculo-cisternal (V-C) perfusion in the anesthetized rabbit (meditomidine hydrochloride 0.5 mg kg(-1), pentobarbitone 10 mg kg(-1) i.v.), 125I-T4 was perfused continuously into ventricular CSF with reference molecules 14C-mannitol and blue dextran. Over 2 h, 36.9+/-4.6% 125I-T4 was recovered in cisternal CSF. Addition of P-gp substrate verapamil increased CSF 125I-T4 recovery to 51.4+/-2.8%, although mrp1 and oatp substrates had no significant effect. In brain, 125I-T4 showed greatest accumulation in the CP (1.52+/-0.31 ml g(-1)), followed by ventricular regions (caudate putamen, ependyma, hippocampus, 0.05-0.14 ml g(-1)). At the CP, verapamil and probenecid (but not indomethacin) significantly increased 125I-T4 accumulation, implicating a role for P-gp and oatps. Of other brain regions, all three drugs increased accumulation in caudate putamen 3-5 times, and indomethacin and probenecid increased accumulation in ependyma 4-5 times. The role of P-gp was investigated further in isolated incubated CPs using 5 microg/ml C219 anti-P-gp antibody. Both 125I-T4 and 3H-cyclosporin accumulation increased by 80%, suggesting that P-gp is functional in the CP and has a role in removal of T4. Combined with the in vivo results, these studies suggest that P-gp provides a local homeostatic mechanism, maintaining CSF T4 levels. We conclude that P-gp and oatps contribute to the transfer of 125I-T4 between the CSF, CP and brain, hence regulating 125I-T4 availability in CSF. PMID:17915195

  9. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein.

    PubMed

    Nabekura, Tomohiro; Hiroi, Takashi; Kawasaki, Tatsuya; Uwai, Yuichi

    2015-03-01

    Drug efflux transporter P-glycoprotein plays an important role in cancer chemotherapy. The nuclear factor-?B (NF-?B) transcription factors play critical roles in development and progression of cancer. In this study, the effects of natural compounds that can inhibit NF-?B activation on the function of P-glycoprotein were investigated using human MDR1 gene-transfected KB/MDR1 cells. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-glycoprotein, in KB/MDR1 cells increased in the presence of caffeic acid phenetyl ester (CAPE), licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol in a concentration-dependent manner. In contrast, lupeol, zerumbone, thymoquinone, emodin, and anethol had no effects. The ATPase activities of P-glycoprotein were stimulated by CAPE, licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol. Tumor necrosis factor (TNF)-? stimulated NF-?B activation was inhibited by CAPE, licochalcone A, anacardic acid, and xanthohumol. KB/MDR1 cells were sensitized to vinblastine cytotoxicity by CAPE, licochalcone A, anacardic acid, xanthohumol, magnolol, and honokiol, showing that these natural NF-?B inhibitors reverse multidrug resistance. These results suggest that natural compounds, such as CAPE, licochalcone A, and anacardic acid, have dual inhibitory effects on the anticancer drug efflux transporter P-glycoprotein and NF-?B activation, and may become useful to enhance the efficacy of cancer chemotherapy. PMID:25776492

  10. Acquisition of MDR phenotype by leukemic cells is associated with increased caspase-3 activity and a collateral sensitivity to cold stress.

    PubMed

    Cerezo, David; Lencina, Miriam; Ruiz-Alcaraz, Antonio J; Ferragut, José Antonio; Saceda, Miguel; Sanchez, Manuel; Cánovas, Manuel; García-Peńarrubia, Pilar; Martín-Orozco, Elena

    2012-04-01

    The acquisition of a multidrug-resistant (MDR) phenotype by tumor cells that renders them unsusceptible to anti-neoplasic agents is one of the main causes of chemotherapy failure in human malignancies. The increased expression of P-glycoprotein (MDR1, P-gp, ABCB1) in tumor cells contributes to drug resistance by extruding chemotherapeutic agents or by regulating programmed cell death. In a study of MDR cell survival under cold stress conditions, it was found that resistant leukemic cells with P-gp over-expression, but not their sensitive counterparts, are hypersensitive to cold-induced cell death when exposed to temperatures below 4 °C. The transfection of parental cells with a P-gp-expressing plasmid makes these cells sensitive to cold stress, demonstrating an association between P-gp expression and cell death at low temperatures. Furthermore, we observed increased basal expression and activity of effector caspase-3 at physiological temperature (37 °C) in MDR cells compared with their parental cell line. Treatment with a caspase-3 inhibitor partially rescues MDR leukemic cells from cold-induced apoptosis, which suggests that the cell death mechanism may require caspase-3 activity. Taken together, these findings demonstrate that P-gp expression plays a role in MDR cell survival, and is accompanied by a collateral sensitivity to death induced by cold stress. These findings may assist in the design of specific therapeutic strategies to complement current chemotherapy treatment against cancer. PMID:22173742

  11. P-glycoprotein inhibition by membrane cholesterol modulation.

    PubMed

    Fenyvesi, Ferenc; Fenyvesi, Eva; Szente, Lajos; Goda, Katalin; Bacsó, Zsolt; Bácskay, Ildikó; Váradi, Judit; Kiss, Tímea; Molnár, Eva; Janáky, Tamás; Szabó, Gábor; Vecsernyés, Miklós

    2008-08-01

    P-glycoprotein (Pgp) is a transmembrane protein that actively exports lipophilic chemotherapeutics from the cells causing multidrug resistance. Pgp molecules are partially localized in TX-100-resistant rafts, and the activity of the transporter is highly sensitive to the presence of cholesterol. To better understand these relationships, the influence of membrane cholesterol content on Pgp function, as measured via calcein accumulation, was studied in correlation with changes elicited in membrane structure. Membrane cholesterol was modulated by heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DIMEB) and the cholesterol inclusion complex of DIMEB (Chol-DIMEB). Changes in membrane cholesterol level were reflected by alterations in the overall lipid packing as measured by Merocyanine 540 (MC540) staining and were also accompanied by changes in the raft association of the pump. DIMEB and Chol-DIMEB treatments have also lead to increased permeability of the cell membrane in both directions, raising the possibility that the effects on pumping efficiency reflect leakage of ATP also from the non-permeabilized cells. However, the treatments did not influence the intracellular ATP levels of the non-permeabilized cells. Our data suggest that Pgp inhibition by cyclodextrin treatments arises through modulation of its membrane microenvironment, rather than as a result of concomitant cytotoxicity. PMID:18539442

  12. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells.

    PubMed

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-02-15

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents. PMID:25765837

  13. Evaluation of genipin on human cytochrome P450 isoenzymes and P-glycoprotein in vitro.

    PubMed

    Gao, Li-Na; Zhang, Ye; Cui, Yuan-Lu; Yan, Kuo

    2014-10-01

    Genipin is obtained from the fruit of Gardenia jasminoides Ellis and acts as an herbal medicine or functional food in East Asia. In addition to produce natural colorant, it possesses widely antiinflammatory, antithrombotic, antidepressive and anticarcinogenic activities. However, little research focuses on the potential of genipin for drug-drug interactions. In this study, effects of genipin on mRNA and protein expression of cytochrome P450 (CYP) 2C19, CYP2D6 and CYP3A4 were detected by real-time reverse-transcription polymerase chain reaction (real-time RT-PCR) and Western blot, respectively, in human hepatoma HepG2 cells. Enzyme activities of which were detected by luminogenic CYP assay in vitro. Moreover, effect of genipin on P-glycoprotein expression was analyzed by Western blot. Results showed that genipin possessed a significant induction on CYP2D6 and a remarkable inhibition on CYP2C19 and CYP3A4 not only from the expression of mRNA and protein (P<0.05 or P<0.01), but the level of enzyme activity. Moreover, a concentration-dependent induction of genipin on P-glycoprotein expression was observed. In conclusion, caution should be exercised with respect to the induction or inhibition of genipin on CYP isoenzymes and the strong induction on P-glycoprotein. PMID:25073096

  14. Synthesis and structure-activity evaluation of isatin-?-thiosemicarbazones with improved selective activity towards multidrug-resistant cells expressing P-glycoproteina

    PubMed Central

    Hall, Matthew D.; Brimacombe, Kyle R.; Varonka, Matthew S.; Pluchino, Kristen M.; Monda, Julie K.; Li, Jiayang; Walsh, Martin J.; Boxer, Matthew B.; Warren, Timothy H.; Fales, Henry M.; Gottesman, Michael M.

    2011-01-01

    Cancer multidrug resistance (MDR) mediated by ATP-binding cassette (ABC) transporters presents a significant unresolved clinical challenge. One strategy to resolve MDR is to develop compounds that selectively kill cells over-expressing the efflux transporter P-glycoprotein (MDR1, P-gp, ABCB1). We have previously reported structure-activity studies based around the lead compound NSC73306 (1, 1-isatin-4-(4?-methoxyphenyl)-3-thiosemicarbazone, 4.3-fold selective). Here we sought to extend this work on MDR1-selective analogs by establishing whether 1 showed ‘robust’ activity against a range of cell lines expressing P-gp. We further aimed to synthesize and test analogs with varied substitution at the N4-position, and substitution around the N4-phenyl ring of isatin-?-thiosemicarbazones (IBTs), to identify compounds with increased MDR1-selectivity. Compound 1 demonstrated MDR1-selectivity against all P-gp-expressing cell lines examined. This selectivity was reversed by inhibitors of P-gp ATPase activity. Structural variation at the 4?-phenyl position of 1 yielded compounds of greater MDR1-selectivity. Two of these analogs, 1-isatin-4-(4?-nitrophenyl)-3-thiosemicarbazone (22, 8.3-fold selective) and 1-isatin-4-(4?-tert-butyl phenyl)-3-thiosemicarbazone (32, 14.8-fold selective), were selected for further testing, and were found to retain the activity profile of 1. These compounds are the most active IBTs identified to date. PMID:21721528

  15. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.

    PubMed

    Clay, Adam T; Lu, Peihua; Sharom, Frances J

    2015-11-01

    The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 ?M. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observed between Pgp Trp residues and the sterol, and the fluorescence emission of bound sterol was enhanced. These observations suggested an intimate interaction of bound sterols with the transporter at a protected nonpolar site. Cholesterol hemisuccinate altered the thermal unfolding of Pgp and greatly stabilized its basal ATPase activity in both a detergent solution and reconstituted proteoliposomes of certain phospholipids. Other sterols, including dehydroergosterol, did not stabilize the basal ATPase activity of detergent-solubilized Pgp, which suggests that this is not a generalized sterol effect. The phospholipid composition and cholesterol hemisuccinate content of Pgp proteoliposomes altered the basal ATPase and drug transport cycles differently. Sterols may interact with Pgp and modulate its structure and function by occupying part of the drug-binding pocket or by binding to putative consensus cholesterol-binding (CRAC/CARC) motifs located within the transmembrane domains. PMID:26484739

  16. [Leishmania: role of P glycoprotein in drug resistance and reversion strategies].

    PubMed

    Osorio, Edison J; Robledo, Sara M; Arango, Gabriel J; Muskus, Carlos E

    2005-06-01

    Protozoan parasites are important causative agents of morbidity and mortality throughout the world--a problem further complicated by the emergence of drug resistance in these parasites. Mechanisms of drug resistance include the following: decreased uptake of the drug into the cell, loss of drug activation, alterations in the drug target, and over-expression of a well-known multiple drug transporter proteins. In this review, two critical components of resistance are stressed: (1) the role of ATP binding cassette proteins, such as P-glycoproteins, in mediating drug resistance in Leishmania and other protozoans, followed by development of cross-resistance to many structurally and functionally unrelated drugs, and (2) some concepts concerning the reversal mechanism of multidrug resistance by drugs and natural products. Several modulators or chemosensitizers alter the capacity of P-glycoproteins to maintain subtoxic intracellular drug concentrations. Calcium channel blockers such as verapamil act in this mode; however, high concentrations are required for an efficient and effective inhibition and, in addition, produce undesirable side effects. The discovery of new, natural product modulators of P-glycoproteins is stressed. This category of modulators offer potentially improved efficacy and lowered toxicity for the mammalian host. PMID:16022379

  17. Crystal Structure of an EAL Domain in Complex with Reaction Product 5?-pGpG

    PubMed Central

    Robert-Paganin, Julien; Nonin-Lecomte, Sylvie; Réty, Stéphane

    2012-01-01

    FimX is a large multidomain protein containing an EAL domain and involved in twitching motility in Pseudomonas aeruginosa. We present here two crystallographic structures of the EAL domain of FimX (residues 438–686): one of the apo form and the other of a complex with 5?-pGpG, the reaction product of the hydrolysis of c-di-GMP. In both crystal forms, the EAL domains form a dimer delimiting a large cavity encompassing the catalytic pockets. The ligand is trapped in this cavity by its sugar phosphate moiety. We confirmed by NMR that the guanine bases are not involved in the interaction in solution. We solved here the first structure of an EAL domain bound to the reaction product 5?-pGpG. Though isolated FimX EAL domain has a very low catalytic activity, which would not be significant compared to other catalytic EAL domains, the structure with the product of the reaction can provides some hints in the mechanism of hydrolysis of the c-di-GMP by EAL domains. PMID:23285035

  18. Reversing of multidrug resistance breast cancer by co-delivery of P-gp siRNA and doxorubicin via folic acid-modified core-shell nanomicelles.

    PubMed

    Wu, Yang; Zhang, Yu; Zhang, Wei; Sun, Chunlong; Wu, Jianzhong; Tang, Jinhai

    2016-02-01

    Multidrug resistance (MDR) remains one of major limitation for the successful treatment of many cancers including breast cancer. Co-delivery of chemotherapeutic drugs and small interfering RNA (siRNA) has been developed because of its ability to generate synergistic anticancer effects via different mechanisms of action, to reverse MDR and increase the efficacy of chemotherapeutic drugs in cancer therapy. Herein, we employed a kind of efficient multifunctional tumor targeted nanomicelles (PECL3) for the co-delivery of hydrophobic anti-cancer drugs and siRNA. This kind of nanomicelles were constructed by folic acid (FA)-decorated PEG-b-(PCL-g-PEI)-b-PCL triblock copolymers, which were synthesized through "click chemistry" and "ring opening" polymerization. Driven by the "core-shell" structure and the electrostatic interaction, this triblock copolymer could efficiently encapsulate P-glycoprotein (P-gp) siRNA and doxorubicin (DOX). The obtained nanomicelles can prevent renal clearance, RNase degradation and aggregation in circulation. Compared to the non-specific delivery, these FA functionalized nanomicelles could efficiently deliver P-gp siRNA to reducing both P-gp expression levels and IC50 value of the DOX in DOX-resistant breast cancer cells (MCF-7/ADR). Additionally, in vivo results showed that DOX loaded PECL3 (D-PECL3) micelles could reduce toxicity of DOX on nontarget tissues and significantly inhibited MCF-7/ADR tumor growth through encapsulating DOX in the micelles and deliver them to target tumor region. Taken together, these results proof that PECL3 micelles could co-deliver siRNA and drug to inhibit MDR tumor growth. These results suggested that the co-delivery of DOX and siRNA in tumor-targeting nanomicelles could excite synergistic effect of gene therapy and chemotherapy, thus can efficiently reverse MDR cancer and kill the cancer cells. PMID:26655793

  19. Effects of third generation P-glycoprotein inhibitors on the sensitivity of drug-resistant and -susceptible isolates of Haemonchus contortus to anthelmintics in vitro.

    PubMed

    Raza, Ali; Kopp, Steven R; Jabbar, Abdul; Kotze, Andrew C

    2015-06-30

    P-glycoproteins (P-gps) play an important role in the sensitivity of nematodes to anthelmintic drugs. They have been implicated in a number of anthelmintic resistances, particularly for macrocyclic lactone drugs. Hence, inhibition of nematode P-gps has been suggested as a means of reversing some types of anthelmintic resistance. The present study aimed to investigate the ability of the most-recently developed group of P-gp inhibitors (the so-called 'third generation' of inhibitors) including tariquidar, zosuquidar and elacridar, to increase the sensitivity of Haemonchus contortus larvae to various anthelmintics (ivermectin, levamisole and thiabendazole) in vitro. We compared these compounds to some older P-gp inhibitors (e.g. verapamil and valspodar). Larval migration and development assays were used to measure the sensitivity of larvae to anthelmintics alone, or in combination with P-gp inhibitors. Significant increases in sensitivity to ivermectin were observed with zosuquidar and tariquidar in larval migration assays (synergism ratios up to 6-fold). Several of the inhibitors increased the sensitivity of both the drug-resistant and -susceptible isolates (e.g. tariquidar with ivermectin in migration assays, zosuquidar with ivermectin in larval development assays), while others had significant effects on the resistant isolate only (e.g. zosuquidar with ivermectin in migration assays, verapamil with ivermectin in development assays). This suggests that some of the inhibitors interact with P-gps representing intrinsic pathways present across nematode populations with quite different drug sensitivities, while other inhibitors interact with P-gps of significance only to resistant nematodes, and hence most likely representing an acquired resistance mechanism. The study highlights the potential of the third generation of P-gp inhibitors for increasing the sensitivity of nematodes to anthelmintics. PMID:25986327

  20. Dexamethasone protects normal human liver cells from apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand by upregulating the expression of P-glycoproteins.

    PubMed

    Zhao, Bo; Xie, Gui-Juan; Li, Rui-Feng; Chen, Qing; Zhang, Xu-Qing

    2015-12-01

    Glucocorticoids are effective for the treatment of acute-on-chronic pre-liver failure, severe chronic hepatitis B and acute liver failure; however, the mechanism underlying the effects of treatment by glucocorticoids remains to be fully elucidated. The role and detailed mechanism of how glucocorticoids prevent liver disease progression can be elucidated by investigating the apoptosis of hepatocytes following glucocorticoid treatment. P?glycoproteins (P?gps) also confer resistance to apoptosis induced by a diverse range of stimuli. Glucocorticoids, particularly dexamethasone (DEX), upregulate the expression of P?gp in several tissues. In the present study, the normal human L?02 liver cell line was used, and techniques, including immunocytochemistry, western blot analysis, flow cytometry and reverse transcription?quantitative polymerase chain reaction analysis were used for determining the expression levels of P?gps, and for evaluating the effect of DEX pretreatment on the expression of P?gps. DEX (1?10 µM) was added to the cell culture media and incubated for 24?72 h. The results revealed that DEX upregulated the mRNA and protein levels of P?gp in a dose? and time?dependent manner. Subsequently, tumor necrosis factor?related apoptosis?inducing ligand (TRAIL) was used for the induction of apoptosis in the cells, followed by a terminal deoxynucleotidyl transferase dUTP nick end labeling assay to assess the apoptotic stages. The results demonstrated that apoptosis in the group of cells, which were pre?treated with DEX was significantly lower than that in the control group. Treatment with tariquidar, a P?gp inhibitor, reduced the anti?apoptotic effects of DEX. These results established that DEX protects normal human liver cells from TRAIL?induced apoptosis by upregulating the expression of P-gp. These observations may be useful for elucidating the mechanism of DEX for preventing the progression of liver disease. PMID:26496964

  1. An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1.

    PubMed

    Helms, Hans Christian; Hersom, Maria; Kuhlmann, Louise Borella; Badolo, Lasina; Nielsen, Carsten Uhd; Brodin, Birger

    2014-09-01

    Efflux transporters of the ATP-binding cassette superfamily including breast cancer resistance protein (Bcrp/Abcg2), P-glycoprotein (P-gp/Abcb1) and multidrug resistance-associated proteins (Mrp's/Abcc's) are expressed in the blood-brain barrier (BBB). The aim of this study was to investigate if a bovine endothelial/rat astrocyte in vitro BBB co-culture model displayed polarized transport of known efflux transporter substrates. The co-culture model displayed low mannitol permeabilities of 0.95?±?0.1?·?10(-6) cm·s(-1) and high transendothelial electrical resistances of 1,177?±?101 ?·cm(2). Bidirectional transport studies with (3)H-digoxin, (3)H-estrone-3-sulphate and (3)H-etoposide revealed polarized transport favouring the brain-to-blood direction for all substrates. Steady state efflux ratios of 2.5?±?0.2 for digoxin, 4.4?±?0.5 for estrone-3-sulphate and 2.4?±?0.1 for etoposide were observed. These were reduced to 1.1?±?0.08, 1.4?±?0.2 and 1.5?±?0.1, by addition of verapamil (digoxin), Ko143 (estrone-3-sulphate) or zosuquidar?+?reversan (etoposide), respectively. Brain-to-blood permeability of all substrates was investigated in the presence of the efflux transporter inhibitors verapamil, Ko143, zosuquidar, reversan and MK 571 alone or in combinations. Digoxin was mainly transported via P-gp, estrone-3-sulphate via Bcrp and Mrp's and etoposide via P-gp and Mrp's. The expression of P-gp, Bcrp and Mrp-1 was confirmed using immunocytochemistry. The findings indicate that P-gp, Bcrp and at least one isoform of Mrp are functionally expressed in our bovine/rat co-culture model and that the model is suitable for investigations of small molecule transport. PMID:24934296

  2. Protection promoted by pGP3 or pGP4 against Chlamydia muridarum is mediated by CD4(+) cells in C57BL/6N mice.

    PubMed

    Mosolygó, Tímea; Szabó, Agnes M; Balogh, Emese P; Faludi, Ildikó; Virók, Dezs? P; Endrész, Valéria; Samu, Alíz; Krenács, Tibor; Burián, Katalin

    2014-09-01

    Urogenital tract infection with Chlamydia trachomatis is a leading cause of sexually transmitted infections. There is currently no commercially available vaccine against C. trachomatis. The highly conserved plasmid of chlamydiae has been considered to be a virulence factor and the plasmid proteins have important roles in the Chlamydia-specific immune response. This study was designed to evaluate the efficacy of vaccination with plasmid proteins in the prevention of C. muridarum lung infection in a mouse model. C57BL/6N mice were immunised 3 times subcutaneously with recombinant pGP3 or pGP4 and infected with C. muridarum. Immunisation of the mice with recombinant pGP3 or pGP4 protein caused a significantly lower chlamydial burden in the lungs of the infected mice; the lower IFN-? level indicated a reduced extent of inflammation. In vitro or in vivo neutralisation of C. muridarum with sera obtained from immunised mice did not reduce the number of viable C. muridarum in the lungs of mice. However, adoptive transfer of the CD4(+) spleen cells isolated from the immunised mice resulted in a significantly reduced bacterial burden. Our results indicate that it is not the pGP3- and pGP4-specific antibodies, but the CD4(+) cells that are responsible for the protective effect of the immune response to plasmid proteins. PMID:25077421

  3. N-desmethyl-Loperamide Is Selective for P-Glycoprotein among Three ATP-Binding Cassette Transporters at the

    E-print Network

    Pike, Victor W.

    ). In the periphery as well as in the brain, overexpression of P-gp in cancer cells is one cause of multidrug.H.); and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (K]N-desmethyl-Loperamide ([11 C]dLop) is used in positron emission tomography (PET) to measure the in vivo activity of efflux

  4. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies

    SciTech Connect

    Yang, Cuiping Zhang, Tianhong Li, Zheng Xu, Liang Liu, Fei Ruan, Jinxiu Liu, Keliang Zhang, Zhenqing

    2013-12-15

    Aconitine (AC) is a highly toxic alkaloid from bioactive plants of the genus Aconitum, some of which have been widely used as medicinal herbs for thousands of years. In this study, we systematically evaluated the potential role of P-glycoprotein (P-gp) in the mechanisms underlying the low and variable bioavailability of oral AC. First, the bidirectional transport of AC across Caco-2 and MDCKII-MDR1 cells was investigated. The efflux of AC across monolayers of these two cell lines was greater than its influx. Additionally, the P-gp inhibitors, verapamil and cyclosporin A, significantly decreased the efflux of AC. An in situ intestinal perfusion study in rats showed that verapamil co-perfusion caused a significant increase in the intestinal permeability of AC, from 0.22 × 10{sup ?5} to 2.85 × 10{sup ?5} cm/s. Then, the pharmacokinetic profile of orally administered AC with or without pre-treatment with verapamil was determined in rats. With pre-treatment of verapamil, the maximum plasma concentration (C{sub max}) of AC increased sharply, from 39.43 to 1490.7 ng/ml. Accordingly, a 6.7-fold increase in the area under the plasma concentration–time curve (AUC{sub 0–12} {sub h}) of AC was observed when co-administered with verapamil. In silico docking analyses suggested that AC and verapamil possess similar P-gp recognition mechanisms. This work demonstrated that P-gp is involved in limiting the intestinal absorption of AC and attenuating its toxicity to humans. Our data indicate that potential P-gp-mediated drug–drug interactions should be considered carefully in the clinical application of aconite and formulations containing AC. - Highlights: • Verapamil and cyclosporin A decreased the efflux of aconitine across Caco-2 cells. • Both inhibitors decreased the efflux of aconitine across MDCKII-MDR1 cells. • Co-perfusion with verapamil increased the intestinal permeability of aconitine. • Co-administration with verapamil sharply increased the C{sub max} and AUC of aconitine. • P-gp interacted with both verapamil and aconitine and recognized them similarly.

  5. Development of in Silico Models for Predicting P-Glycoprotein Inhibitors Based on a Two-Step Approach for Feature Selection and Its Application to Chinese Herbal Medicine Screening.

    PubMed

    Yang, Ming; Chen, Jialei; Shi, Xiufeng; Xu, Liwen; Xi, Zhijun; You, Lisha; An, Rui; Wang, Xinhong

    2015-10-01

    P-glycoprotein (P-gp) is regarded as an important factor in determining the ADMET (absorption, distribution, metabolism, elimination, and toxicity) characteristics of drugs and drug candidates. Successful prediction of P-gp inhibitors can thus lead to an improved understanding of the underlying mechanisms of both changes in the pharmacokinetics of drugs and drug-drug interactions. Therefore, there has been considerable interest in the development of in silico modeling of P-gp inhibitors in recent years. Considering that a large number of molecular descriptors are used to characterize diverse structural moleculars, efficient feature selection methods are required to extract the most informative predictors. In this work, we constructed an extensive available data set of 2428 molecules that includes 1518 P-gp inhibitors and 910 P-gp noninhibitors from multiple resources. Importantly, a two-step feature selection approach based on a genetic algorithm and a greedy forward-searching algorithm was employed to select the minimum set of the most informative descriptors that contribute to the prediction of P-gp inhibitors. To determine the best machine learning algorithm, 18 classifiers coupled with the feature selection method were compared. The top three best-performing models (flexible discriminant analysis, support vector machine, and random forest) and their ensemble model using respectively only 3, 9, 7, and 14 descriptors achieve an overall accuracy of 83.2%-86.7% for the training set containing 1040 compounds, an overall accuracy of 82.3%-85.5% for the test set containing 1039 compounds, and a prediction accuracy of 77.4%-79.9% for the external validation set containing 349 compounds. The models were further extensively validated by DrugBank database (1890 compounds). The proposed models are competitive with and in some cases better than other published models in terms of prediction accuracy and minimum number of descriptors. Applicability domain then was addressed by developing an ensemble classification model to obtain more reliable predictions. Finally, we employed these models as a virtual screening tool for identifying potential P-gp inhibitors in Traditional Chinese Medicine Systems Pharmacology (TCMSP) database containing a total of 13?051 unique compounds from 498 herbs, resulting in 875 potential P-gp inhibitors and 15 inhibitor-rich herbs. These predictions were partly supported by a literature search and are valuable not only to develop novel P-gp inhibitors from TCM in the early stages of drug development, but also to optimize the use of herbal remedies. PMID:26376206

  6. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer's disease.

    PubMed

    Hartz, Anika M S; Miller, David S; Bauer, Björn

    2010-05-01

    Reduced clearance of amyloid-beta (Abeta) from brain partly underlies increased Abeta brain accumulation in Alzheimer's disease (AD). The mechanistic basis for this pathology is unknown, but recent evidence suggests a neurovascular component in AD etiology. We show here that the ATP-driven pump, P-glycoprotein, specifically mediates efflux transport of Abeta from mouse brain capillaries into the vascular space, thus identifying a critical component of the Abeta brain efflux mechanism. We demonstrate in a transgenic mouse model of AD [human amyloid precursor protein (hAPP)-overexpressing mice; Tg2576 strain] that brain capillary P-glycoprotein expression and transport activity are substantially reduced compared with wild-type control mice, suggesting a mechanism by which Abeta accumulates in the brain in AD. It is noteworthy that dosing 12-week-old, asymptomatic hAPP mice over 7 days with pregnenolone-16alpha-carbonitrile to activate the nuclear receptor pregnane X receptor restores P-glycoprotein expression and transport activity in brain capillaries and significantly reduces brain Abeta levels compared with untreated control mice. Thus, targeting intracellular signals that up-regulate blood-brain barrier P-glycoprotein in the early stages of AD has the potential to increase Abeta clearance from the brain and reduce Abeta brain accumulation. This mechanism suggests a new therapeutic strategy in AD. PMID:20101004

  7. Restoring Blood-Brain Barrier P-Glycoprotein Reduces Brain Amyloid-? in a Mouse Model of Alzheimer's DiseaseS?

    PubMed Central

    Hartz, Anika M. S.; Miller, David S.

    2010-01-01

    Reduced clearance of amyloid-? (A?) from brain partly underlies increased A? brain accumulation in Alzheimer's disease (AD). The mechanistic basis for this pathology is unknown, but recent evidence suggests a neurovascular component in AD etiology. We show here that the ATP-driven pump, P-glycoprotein, specifically mediates efflux transport of A? from mouse brain capillaries into the vascular space, thus identifying a critical component of the A? brain efflux mechanism. We demonstrate in a transgenic mouse model of AD [human amyloid precursor protein (hAPP)-overexpressing mice; Tg2576 strain] that brain capillary P-glycoprotein expression and transport activity are substantially reduced compared with wild-type control mice, suggesting a mechanism by which A? accumulates in the brain in AD. It is noteworthy that dosing 12-week-old, asymptomatic hAPP mice over 7 days with pregnenolone-16?-carbonitrile to activate the nuclear receptor pregnane X receptor restores P-glycoprotein expression and transport activity in brain capillaries and significantly reduces brain A? levels compared with untreated control mice. Thus, targeting intracellular signals that up-regulate blood-brain barrier P-glycoprotein in the early stages of AD has the potential to increase A? clearance from the brain and reduce A? brain accumulation. This mechanism suggests a new therapeutic strategy in AD. PMID:20101004

  8. Absorption of fumonisin B1 and aminopentol on an in vitro model of intestinal epithelium; the role of P-glycoprotein.

    PubMed

    De Angelis, I; Friggč, G; Raimondi, F; Stammati, A; Zucco, F; Caloni, F

    2005-03-01

    The aim of the present paper is to evaluate the absorption of fumonisin B1 and its principal metabolite, aminopentol on a human intestinal model, Caco-2 cells, cultured on semi-permeable inserts, that reproduces the two different intestinal compartments: luminal (apical) and serosal (basolateral) side. Following separate exposure in apical and in basolateral compartments, aminopentol passage through the cell layer (in particular from basolateral to apical direction) was shown, while it was not observed for the parent compound. The different aminopentol distribution between the two compartments of the culture system, and its variation in presence of verapamil or probenecid (P-gp and MRP inhibitors respectively), strongly suggests the involvement of P-glycoprotein in the influx/efflux mechanisms of aminopentol in the intestinal cells, reducing its oral bioavailability. PMID:15683866

  9. The effect of quinidine, used as a probe for the involvement of P-glycoprotein, on the intestinal absorption and pharmacodynamics of methadone

    PubMed Central

    Kharasch, Evan D; Hoffer, Christine; Whittington, Dale

    2004-01-01

    Aims There is considerable unexplained interindividual variability in the methadone dose-effect relationship. The efflux pump P-glycoprotein (P-gp) regulates brain access and intestinal absorption of many drugs. Evidence suggests that methadone is a P-gp substrate in vitro, and P-gp affects methadone analgesia in animals. However the role of P-gp in human methadone disposition and pharmacodynamics is unknown. This investigation tested the hypothesis that the intestinal absorption and pharmacodynamics of oral and intravenous methadone are greater after inhibition of intestinal and brain P-gp, using the P-gp inhibitor quinidine as an in vivo probe. Methods Two randomized, double-blind, placebo-controlled, balanced crossover studies were conducted in healthy subjects. Pupil diameters and/or plasma concentrations of methadone and the primary metabolite EDDP were measured after 10 mg intravenous or oral methadone HCl, dosed 1 h after oral quinidine (600 mg) or placebo. Results Quinidine did not alter the effects of intravenous methadone. Miosis tmax (0.3 ± 0.3 vs 0.3 ± 0.2 h (?0.17, 0.22)), peak (5.3 ± 0.8 vs 5.1 ± 1.0 mm (0.39, 0.84)) and AUC vs time (25.0 ± 5.7 vs 26.8 ± 7.1 mm h (?6.1, 2.5)) were unchanged (placebo vs quinidine (95% confidence interval on the difference)). Quinidine increased (P < 0.05) plasma methadone concentrations during the absorptive phase, decreased tmax (2.4 ± 0.7 vs 1.6 ± 0.9 h (0.33, 1.2)), and increased peak miosis (3.2 ± 1.5 vs 4.3 ± 1.6 mm (?1.96, ?0.19)) after oral methadone. The Cmax (55.6 ± 10.3 vs 59.4 ± 14.1 ng ml?1 (?8.5, 0.65)) and AUC of methadone (298 ± 46 vs 316 ± 74 ng ml?1 h (?54, 18)) were unchanged, as were the EDDP : methadone AUC ratios. Quinidine had no effect on the rate constant for transfer of methadone between plasma and effect compartment (ke0) (2.6 ± 2.6 vs 2.5 ± 1.4 h?1 (?3.5, 4.2)). Conclusions Quinidine increased the plasma concentrations of oral methadone in the absorptive phase and the miosis caused by methadone, suggesting that intestinal P-gp affects oral methadone absorption and hence its clinical effects. Quinidine had no effect on methadone pharmacodynamics after intravenous administration, suggesting that if quinidine is an effective inhibitor of brain P-gp, then P-gp does not appear to be a determinant of the access of methadone to the brain. PMID:15089813

  10. Reversal of P-glycoprotein overexpression by Ginkgo biloba extract in the brains of pentylenetetrazole-kindled and phenytoin-treated mice.

    PubMed

    Zhang, Ce; Fan, Qing; Chen, Shu-Liang; Ma, Hui

    2015-08-01

    The purpose of this study was to investigate the combined effects of Ginkgo biloba extract and phenytoin (PHT) sodium as a dose regimen simulating the clinical treatment of patients with epilepsy, on P-glycoprotein (P-GP) overexpression in a pentylenetetrazole-kindled mouse model of epilepsy. Epilepsy was induced by intraperitoneal administration of pentylenetetrazole (40 mg/kg) for 7 days followed by intragastric administration of PHT (40 mg/kg) for 14 days. Thirty mice that developed seizures were randomly divided into three groups and administered PHT as well as the following treatments: saline (negative control); verapamil (20 mg/kg, positive control); and G. biloba (30 mg/kg). Seizure severity was recorded 30 minutes after treatment on Day 4 of drug administration, after which the mice were euthanized, and their brains isolated. Western blots and immunohistochemistry were performed to analyze the expression of P-GP and caspase-3, respectively, in the brain tissue. High-performance liquid chromatography was used to measure the concentrations of PHT in the brains of the treated mice. After 4 consecutive days of treatment, the seizure severity in the mice in the G. biloba extract group was more significantly reduced than the seizure severity in the saline control group, and a significant difference was observed between the G. biloba extract and verapamil control groups (p < 0.05). P-GP expression in the brain more significantly decreased in the mice treated with G. biloba extract and verapamil than it did in the saline-treated control group (p < 0.05). Compared with the saline-treated control group, the mice treated with G. biloba extract and verapamil showed significantly increased brain PHT concentrations (p < 0.05). Furthermore, caspase-3 expression in the brain tissue of the G. biloba extract group was significantly lower than that in the vehicle control group (p < 0.05); this finding demonstrated the neuroprotective effects of G. biloba. Therefore, this study showed that treatment with G. biloba extract in combination with PHT prevented the upregulation of P-GP expression in mice. Moreover, G. biloba extract decreased seizure severity in pentylenetetrazole-kindled/PHT-treated mice through a mechanism that might be related to the reduction of P-GP expression in the brain. PMID:26228278

  11. Mutations in Intracellular Loops 1 and 3 Lead to Misfolding of Human P-glycoprotein (ABCB1) That Can Be Rescued by Cyclosporine A, Which Reduces Its Association with Chaperone Hsp70*

    PubMed Central

    Kapoor, Khyati; Bhatnagar, Jaya; Chufan, Eduardo E.; Ambudkar, Suresh V.

    2013-01-01

    P-glycoprotein (P-gp) is an ATP binding cassette transporter that effluxes a variety of structurally diverse compounds including anticancer drugs. Computational models of human P-gp in the apo- and nucleotide-bound conformation show that the adenine group of ATP forms hydrogen bonds with the conserved Asp-164 and Asp-805 in intracellular loops 1 and 3, respectively, which are located at the interface between the nucleotide binding domains and transmembrane domains. We investigated the role of Asp-164 and Asp-805 residues by substituting them with cysteine in a cysteine-less background. It was observed that the D164C/D805C mutant, when expressed in HeLa cells, led to misprocessing of P-gp, which thus failed to transport the drug substrates. The misfolded protein could be rescued to the cell surface by growing the cells at a lower temperature (27 °C) or by treatment with substrates (cyclosporine A, FK506), modulators (tariquidar), or small corrector molecules. We also show that short term (4–6 h) treatment with 15 ?m cyclosporine A or FK506 rescues the pre-formed immature protein trapped in the endoplasmic reticulum in an immunophilin-independent pathway. The intracellularly trapped misprocessed protein associates more with chaperone Hsp70, and the treatment with cyclosporine A reduces the association of mutant P-gp, thus allowing it to be trafficked to the cell surface. The function of rescued cell surface mutant P-gp is similar to that of wild-type protein. These data demonstrate that the Asp-164 and Asp-805 residues are not important for ATP binding, as proposed earlier, but are critical for proper folding and maturation of a functional transporter. PMID:24064216

  12. Insight into the Cooperation of P-glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) at the Blood-Brain Barrier: A Case Study Examining Sorafenib Efflux Clearance

    PubMed Central

    Agarwal, Sagar; Elmquist, William F.

    2012-01-01

    The ATP-binding cassette transporters p-glycoprotein and breast cancer resistance protein have been shown to be critical determinants limiting drug transport across the BBB into the brain. Several therapeutic agents have been shown to be substrates for these two transporters, and as a result they have limited distribution to the brain. Recently, it has been shown that these two drug transporters cooperate at the BBB and brain penetration of dual substrates increase significantly only when both are absent, e.g., in the Mdr1a/1b-/-Bcrp1-/- mice. The present study uses the brain penetration of sorafenib to investigate these findings and attempts to explain the mechanistic basis of this cooperation with a simple theory based on affinity and capacity dependent carrier-mediated transport. The brain efflux index method, combined with the organotypic brain slices, were used to determine the net contribution of P-gp and BCRP to the total clearance of sorafenib out of the brain and show that its efflux at the BBB is mediated primarily by BCRP. Sorafenib clearance out of the brain decreased 2-fold in the Bcrp1-/- mice and 2.5-fold in the Mdr1a/1b-/-Bcrp1-/- mice. Clearance out of brain when P-gp was absent did not change significantly compared to wild-type. We also investigated the expression of P-gp and BCRP in the genetic knockout animals and saw no differences in either P-gp or BCRP in the transporter deficient mice compared to the wild-type mice. In conclusion, this study explains the cooperation of P-gp and BCRP by analysis of the efflux clearance of sorafenib and correlating it to the ‘mechanisms’ that determine the clearance, i.e., affinity and capacity. PMID:22335402

  13. Isoform I (mdr3) is the major form of P-glycoprotein expressed in mouse brain capillaries. Evidence for cross-reactivity of antibody C219 with an unrelated protein.

    PubMed Central

    Jetté, L; Pouliot, J F; Murphy, G F; Béliveau, R

    1995-01-01

    P-glycoprotein (P-gp) is expressed in various non-cancerous tissues such as the endothelial cells of the blood-brain barrier. We used several monoclonal antibodies (mAbs) and isoform-specific polyclonal antibodies to establish which P-gp isoforms are expressed in isolated mouse brain capillaries. P-gp class I isoform was detected in capillaries with a Western immunoblotting procedure using a specific antiserum. No immunoreactivity was observed with either class II- or class III-specific antisera. Immunoreactivity was observed with mAb C219. However, this antibody detected two distinct immunoreactive proteins (155 and 190 kDa) in the isolated brain capillaries. These two proteins comigrated as a broad band when the samples were submitted to heat prior to gel electrophoresis. The glycoprotein nature of these two antigens was evaluated by their sensitivity to N-glycanase treatment. Following this treatment, the size of the proteins was reduced from 190 and 155 kDa to 180 and 120 kDa, respectively. Triton X-114 phase-partitioning studies showed that the 190 kDa immunoreactive protein was poorly solubilized by Triton X-114, while the 155 kDa protein was partitioned in the detergent-rich phase. In labelling experiments, only the 155 kDa protein was photolabelled with [125I]iodoarylazidoprazosin. These results show that a 190 kDa protein detected by antibody C219 is an antigen unrelated to the three P-gp isoforms presently known. Cross-reactivity of C219 with an unrelated protein emphasizes the fact that more than one antibody should be used in the assessment of P-gp expression in cell lines and tissues. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7848274

  14. Phase I Trial of Lenalidomide and CCI-779 in Patients With Relapsed Multiple Myeloma: Evidence for Lenalidomide–CCI-779 Interaction via P-Glycoprotein

    PubMed Central

    Hofmeister, Craig C.; Yang, Xiaoxia; Pichiorri, Flavia; Chen, Ping; Rozewski, Darlene M.; Johnson, Amy J.; Lee, Seungsoo; Liu, Zhongfa; Garr, Celia L.; Hade, Erinn M.; Ji, Jia; Schaaf, Larry J.; Benson, Don M.; Kraut, Eric H.; Hicks, William J.; Chan, Kenneth K.; Chen, Ching-Shih; Farag, Sherif S.; Grever, Michael R.; Byrd, John C.; Phelps, Mitch A.

    2011-01-01

    Purpose Multiple myeloma (MM) is an incurable plasma-cell neoplasm for which most treatments involve a therapeutic agent combined with dexamethasone. The preclinical combination of lenalidomide with the mTOR inhibitor CCI-779 has displayed synergy in vitro and represents a novel combination in MM. Patients and Methods A phase I clinical trial was initiated for patients with relapsed myeloma with administration of oral lenalidomide on days 1 to 21 and CCI-779 intravenously once per week during a 28-day cycle. Pharmacokinetic data for both agents were obtained, and in vitro transport and uptake studies were conducted to evaluate potential drug-drug interactions. Results Twenty-one patients were treated with 15 to 25 mg lenalidomide and 15 to 20 mg CCI-779. The maximum-tolerated dose (MTD) was determined to be 25 mg lenalidomide with 15 mg CCI-779. Pharmacokinetic analysis indicated increased doses of CCI-779 resulted in statistically significant changes in clearance, maximum concentrations, and areas under the concentration-time curves, with constant doses of lenalidomide. Similar and significant changes for CCI-779 pharmacokinetics were also observed with increased lenalidomide doses. Detailed mechanistic interrogation of this pharmacokinetic interaction demonstrated that lenalidomide was an ABCB1 (P-glycoprotein [P-gp]) substrate. Conclusion The MTD of this combination regimen was 25 mg lenalidomide with 15 mg CCI-779, with toxicities of fatigue, neutropenia, and electrolyte wasting. Pharmacokinetic and clinical interactions between lenalidomide and CCI-779 seemed to occur, with in vitro data indicating lenalidomide was an ABCB1 (P-gp) substrate. To our knowledge, this is the first report of a clinically significant P-gp–based drug-drug interaction with lenalidomide. PMID:21825263

  15. Expression and Localization of P-Glycoprotein, Multidrug Resistance Protein 4, and Breast Cancer Resistance Protein in the Female Lower Genital Tract of Human and Pigtailed Macaque

    PubMed Central

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Patton, Dorothy

    2014-01-01

    Abstract Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters. PMID:24803409

  16. Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog

    PubMed Central

    Kodan, Atsushi; Yamaguchi, Tomohiro; Nakatsu, Toru; Sakiyama, Keita; Hipolito, Christopher J.; Fujioka, Akane; Hirokane, Ryo; Ikeguchi, Keiji; Watanabe, Bunta; Hiratake, Jun; Kimura, Yasuhisa; Suga, Hiroaki; Ueda, Kazumitsu; Kato, Hiroaki

    2014-01-01

    P-glycoprotein is an ATP-binding cassette multidrug transporter that actively transports chemically diverse substrates across the lipid bilayer. The precise molecular mechanism underlying transport is not fully understood. Here, we present crystal structures of a eukaryotic P-glycoprotein homolog, CmABCB1 from Cyanidioschyzon merolae, in two forms: unbound at 2.6-Ĺ resolution and bound to a unique allosteric inhibitor at 2.4-Ĺ resolution. The inhibitor clamps the transmembrane helices from the outside, fixing the CmABCB1 structure in an inward-open conformation similar to the unbound structure, confirming that an outward-opening motion is required for ATP hydrolysis cycle. These structures, along with site-directed mutagenesis and transporter activity measurements, reveal the detailed architecture of the transporter, including a gate that opens to extracellular side and two gates that open to intramembranous region and the cytosolic side. We propose that the motion of the nucleotide-binding domain drives those gating apparatuses via two short intracellular helices, IH1 and IH2, and two transmembrane helices, TM2 and TM5. PMID:24591620

  17. Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling.

    PubMed

    Bauer, Björn; Hartz, Anika M S; Pekcec, Anton; Toellner, Kathrin; Miller, David S; Potschka, Heidrun

    2008-05-01

    Increased expression of drug efflux transporters at the blood-brain barrier accompanies epileptic seizures and complicates therapy with antiepileptic drugs. This study is concerned with identifying mechanistic links that connect seizure activity to increased P-glycoprotein expression at the blood-brain barrier. In this regard, we tested the hypothesis that seizures increase brain extracellular glutamate, which signals through an N-methyl-d-aspartate (NMDA) receptor and cyclooxygenase-2 (COX-2) in brain capillaries to increase blood-brain barrier P-glycoprotein expression. Consistent with this hypothesis, exposing isolated rat or mouse brain capillaries to glutamate for 15 to 30 min increased P-glycoprotein expression and transport activity hours later. These increases were blocked by 5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate) (MK-801), an NMDA receptor antagonist, and by celecoxib, a selective COX-2 inhibitor; no such glutamate-induced increases were seen in brain capillaries from COX-2-null mice. In rats, intracerebral microinjection of glutamate caused locally increased P-glycoprotein expression in brain capillaries. Moreover, using a pilocarpine status epilepticus rat model, we observed seizure-induced increases in capillary P-glycoprotein expression that were attenuated by administration of indomethacin, a COX inhibitor. Our findings suggest that brain uptake of some antiepileptic drugs can be enhanced through COX-2 inhibition. Moreover, they provide insight into one mechanism that underlies drug resistance in epilepsy and possibly other central nervous system disorders. PMID:18094072

  18. Expression of Chlamydia muridarum plasmid genes and immunogenicity of pGP3 and pGP4 in different mouse strains.

    PubMed

    Mosolygó, Tímea; Faludi, Ildikó; Balogh, Emese P; Szabó, Ágnes M; Karai, Adrienn; Kerekes, Fanni; Virók, Dezs? P; Endrész, Valéria; Burián, Katalin

    2014-05-01

    Chlamydia muridarum carries a cryptic plasmid (pMoPn) of 7.5kb, which encodes seven genes. Our aims were to describe the transcriptional pattern of the pMoPn genes in C. muridarum-infected mice and to evaluate the host immune responses against pGP3 and pGP4 proteins. BALB/c and C57BL/6N female mice were inoculated intranasally with C. muridarum and sacrificed at different time points, and the total RNA was extracted from the lung suspensions to determine the levels of expression of the different plasmid genes by RT qPCR. The supernatants of the lungs were subjected to the quantitation of recoverable C. muridarum. TCA04 and TCA05, which encode pGP3 and pGP4, respectively, were amplified by PCR and cloned into the pET vector. The proteins were overexpressed in E. coli HB101 and purified. Selected groups of BALB/c and C57BL/6N mice were infected with C. muridarum 1-3 times. The humoral immune responses in the sera of the mice to the proteins encoded by TCA04 and TCA05 were tested by Western blotting, and the cellular immune responses were assessed in lymphocyte proliferation assays. The proteins recognized by the mouse sera were further analysed by a LC/MSMS technique. The kinetics of C. muridarum growth were similar in the mouse strains used, but the pathogen burden was higher in the BALB/c mice in the late phase of infection. All the plasmid genes in the BALB/c mice showed an increased level of expression on day 7, whereas the expression of the same genes did not change on day 7 in the C57BL/6N mice. The levels of expression of the plasmid genes were higher in the C57BL/6N mice at later time points. In Western blot assays, the sera of the singly infected C57BL/6N mice reacted with the monomeric form of pGP3, whereas the sera of the singly infected BALB/c mice reacted with the trimeric form of pGP3. The sera of the multiply infected C57BL/6N mice also recognized pGP4. Similarly to the humoral immune response, cellular immune responses to pGP3 and pGP4 were detected in the C. muridarum-infected C57BL/6N mice, but the spleen cells of BALB/c mice responded with proliferation only to the pGP3 protein. These results suggest that the proteins encoded by pMoPn genes may modulate the host immune response during C. muridarum infection, and that the evolved immune response against plasmid proteins, similarly to that against other chlamydial proteins, depends on the genetic background of the host. PMID:24631212

  19. Drug-selected coexpression of human glucocerebrosidase and P-glycoprotein using a bicistronic vector.

    PubMed

    Aran, J M; Gottesman, M M; Pastan, I

    1994-04-12

    Bicistronic cassettes under control of a single promoter have recently been suggested as useful tools for coordinate expression of two different foreign proteins in mammalian cells. Using the long 5' untranslated region of encephalomyocarditis virus as translational enhancer of the second gene, a bicistronic unit composed of cDNA for human P-glycoprotein [the product of the multidrug resistance gene, MDR1 (also called PGY1)] as selectable marker and cDNA for human glucocerebrosidase (GC; EC 3.2.1.45) (a membrane-associated lysosomal hydrolase) was constructed. NIH 3T3 cells transfected with a Harvey murine sarcoma virus retroviral vector carrying this bicistronic cassette (pHaMCG) express active P-glycoprotein and GC and expression of both proteins augments coordinately with selection for increased colchicine resistance. Percoll gradient analysis of homogenates showed that GC was targeted to the lysosomal fraction. The ability to select for expression of GC with natural product drugs after introduction of the pHaMCG retroviral vector may be useful in gene therapy strategies for Gaucher disease. PMID:7909160

  20. Drug-selected coexpression of human glucocerebrosidase and P-glycoprotein using a bicistronic vector.

    PubMed Central

    Aran, J M; Gottesman, M M; Pastan, I

    1994-01-01

    Bicistronic cassettes under control of a single promoter have recently been suggested as useful tools for coordinate expression of two different foreign proteins in mammalian cells. Using the long 5' untranslated region of encephalomyocarditis virus as translational enhancer of the second gene, a bicistronic unit composed of cDNA for human P-glycoprotein [the product of the multidrug resistance gene, MDR1 (also called PGY1)] as selectable marker and cDNA for human glucocerebrosidase (GC; EC 3.2.1.45) (a membrane-associated lysosomal hydrolase) was constructed. NIH 3T3 cells transfected with a Harvey murine sarcoma virus retroviral vector carrying this bicistronic cassette (pHaMCG) express active P-glycoprotein and GC and expression of both proteins augments coordinately with selection for increased colchicine resistance. Percoll gradient analysis of homogenates showed that GC was targeted to the lysosomal fraction. The ability to select for expression of GC with natural product drugs after introduction of the pHaMCG retroviral vector may be useful in gene therapy strategies for Gaucher disease. Images PMID:7909160

  1. Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier.

    PubMed

    Hartz, Anika M S; Bauer, Björn; Block, Michelle L; Hong, Jau-Shyong; Miller, David S

    2008-08-01

    Here, we report that diesel exhaust particles (DEPs), a major constituent of urban air pollution, affect blood-brain barrier function at the tissue, cellular, and molecular levels. Isolated rat brain capillaries exposed to DEPs showed increased expression and transport activity of the key drug efflux transporter, P-glycoprotein (6 h EC(50) was approximately 5 microg/ml). Up-regulation of P-glycoprotein was abolished by blocking transcription or protein synthesis. Inhibition of NADPH oxidase or pretreatment of capillaries with radical scavengers ameliorated DEP-induced P-glycoprotein up-regulation, indicating a role for reactive oxygen species in signaling. DEP exposure also increased brain capillary tumor necrosis factor-alpha (TNF-alpha) levels. DEP-induced P-glycoprotein up-regulation was abolished when TNF-receptor 1 (TNF-R1) was blocked and was not evident in experiments with capillaries from TNF-R1 knockout mice. Inhibition of JNK, but not NF-kappaB, blocked DEP-induced P-glycoprotein up-regulation, indicating a role for AP-1 in the signaling pathway. Consistent with this, DEPs increased phosphorylation of c-jun. Together, our results show for the first time that a component of air pollution, DEPs, alters blood-brain barrier function through oxidative stress and proinflammatory cytokine production. These experiments disclose a novel blood-brain barrier signaling pathway, with clear implications for environmental toxicology, CNS pathology, and the pharmacotherapy of CNS disorders. PMID:18474546

  2. C-di-GMP Hydrolysis by Pseudomonas aeruginosa HD-GYP Phosphodiesterases: Analysis of the Reaction Mechanism and Novel Roles for pGpG

    PubMed Central

    Stelitano, Valentina; Giardina, Giorgio; Paiardini, Alessandro; Castiglione, Nicoletta; Cutruzzolŕ, Francesca; Rinaldo, Serena

    2013-01-01

    In biofilms, the bacterial community optimizes the strategies to sense the environment and to communicate from cell to cell. A key player in the development of a bacterial biofilm is the second messenger c-di-GMP, whose intracellular levels are modulated by the opposite activity of diguanylate cyclases and phosphodiesterases. Given the huge impact of bacterial biofilms on human health, understanding the molecular details of c-di-GMP metabolism represents a critical step in the development of novel therapeutic approaches against biofilms. In this study, we present a detailed biochemical characterization of two c-di-GMP phosphodiesterases of the HD-GYP subtype from the human pathogen Pseudomonas aeruginosa, namely PA4781 and PA4108. Upstream of the catalytic HD-GYP domain, PA4781 contains a REC domain typical of two-component systems, while PA4108 contains an uncharacterized domain of unknown function. Our findings shed light on the activity and catalytic mechanism of these phosphodiesterases. We show that both enzymes hydrolyse c-di-GMP in a two-step reaction via the linear intermediate pGpG and that they produce GMP in vitro at a surprisingly low rate. In addition, our data indicate that the non-phosphorylated REC domain of PA4781 prevents accessibility of c-di-GMP to the active site. Both PA4108 and phosphorylated PA4781 are also capable to use pGpG as an alternative substrate and to hydrolyse it into GMP; the affinity of PA4781 for pGpG is one order of magnitude higher than that for c-di-GMP. These results suggest that these enzymes may not work (primarily) as genuine phosphodiesterases. Moreover, the unexpected affinity of PA4781 for pGpG may indicate that pGpG could also act as a signal molecule in its own right, thus further widening the c-di-GMP-related signalling scenario. PMID:24066157

  3. The impact of P-glycoprotein mediated efflux on absorption of 11 sedating and less-sedating antihistamines using Caco-2 monolayers.

    PubMed

    Crowe, Andrew; Wright, Cameron

    2012-06-01

    Caco-2 cells were used to compare P-gp mediated efflux and passive permeability using bidirectional transport of 11 antihistamines. An efflux ratio >2 indicated active efflux, with PSC833 and GF120918 used as functional P-gp inhibitors. Antihistamines were measured directly by HPLC or LC/MS. Fexofenadine had an efflux ratio of 37, yet had negligible passive permeability, even in the presence of a pH gradient (0.1?×?10(-6) cm/sec). Its precursor, terfenadine, had an efflux ratio of 2.5, while cetirizine, desloratadine and hydroxyzine were 4, 7 and 14, respectively. After incubation with P-gp inhibitors, these ratios dropped significantly. Loratadine, by contrast, had equivalent transport in both directions and passive permeability was high (24?×?10(-6) cm/sec). Dimenhydrinate was the only other sedating antihistamine to exhibit efflux, with a ratio of 10. Gradient conditions of pH (6/7.4) increased efflux of terfenadine and desloratadine to over 31 and 38 fold respectively, yet this increased efflux was not associated with P-gp. Altering functional P-gp in the gut is likely to influence absorption of some sedating antihistamines such as dimenhydrinate and hydroxyzine and most less-sedating antihistamines except loratadine. In addition, desloratadine exhibits pH dependent efflux which could further induce variable absorption of this antihistamine. PMID:22188412

  4. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier

    PubMed Central

    Miller, David S.

    2010-01-01

    ATP-binding cassette (ABC) transporters are important, selective elements of the blood-brain barrier. They line the luminal plasma membrane of the brain capillary endothelium, facing the vascular space, both protecting the CNS from entry of neurotoxicants and limiting access of therapeutic drugs to the brain parenchyma. Recent studies highlight the multiple signaling pathways through which the expression and activity of P-glycoprotein and other ABC transporters are modulated in response to xenobiotics, stress and disease. They show that increased transporter expression occurs in response to signals that activate specific transcription factors including, PXR, CAR, NF-?B and AP-1, and reduced transporter activity occurs rapidly and reversibly in response to signaling through Src kinase, protein kinase C and estrogen receptors. A detailed understanding of such regulation can provide the basis for improved neuroprotection and enhanced therapeutic drug delivery to the brain. PMID:20417575

  5. Long-lived signal peptide of lymphocytic choriomeningitis virus glycoprotein pGP-C.

    PubMed

    Froeschke, Marc; Basler, Michael; Groettrup, Marcus; Dobberstein, Bernhard

    2003-10-24

    Signal peptides (SPs) direct nascent secretory and membrane proteins to the membrane of the endoplasmic reticulum. They are usually cleaved from the nascent polypeptide by signal peptidase and then further proteolytically processed. The SP of the pre-glycoprotein (pGP-C) of the lymphocytic choriomeningitis virus SPGP-C (signal peptide of pGP-C) shows different properties: 1) The SPGP-C is unusually long (58 amino acid residues) and contains two hydrophobic segments interrupted by a lysine residue. 2) The SPGP-C is cleaved only from a subset of pGP-C proteins. A substantial portion of pGP-C accumulates that still contains the SPGP-C.3)The cleaved SPGP-C is rather long-lived (t(1/2) of more than 6 h). 4) The cleaved SPGP-C resides in the membrane and is resistant to digestion with proteinase K even in the presence of detergents, suggesting a very compact structure. 5) SPGP-C accumulates in virus particles. These unusual features of the cleaved SPGP-C suggest that SPGP-C not only targets the nascent pGP-C to the endoplasmic reticulum membrane but also has additional functions in lymphocytic choriomeningitis virus life cycle. PMID:12917426

  6. Role of the highly structured 5'-end region of MDR1 mRNA in P-glycoprotein expression.

    PubMed

    Randle, Rebecca A; Raguz, Selina; Higgins, Christopher F; Yagüe, Ernesto

    2007-09-15

    Overexpression of P-glycoprotein, encoded by the MDR1 (multidrug resistance 1) gene, is often responsible for multidrug resistance in acute myeloid leukaemia. We have shown previously that MDR1 (P-glycoprotein) mRNA levels in K562 leukaemic cells exposed to cytotoxic drugs are up-regulated but P-glycoprotein expression is translationally blocked. In the present study we show that cytotoxic drugs down-regulate the Akt signalling pathway, leading to hypophosphorylation of the translational repressor 4E-BP [eIF (eukaryotic initiation factor) 4E-binding protein] and decreased eIF4E availability. The 5'-end of MDR1 mRNA adopts a highly-structured fold. Fusion of this structured 5'-region upstream of a reporter gene impeded its efficient translation, specifically under cytotoxic stress, by reducing its competitive ability for the translational machinery. The effect of cytotoxic stress could be mimicked in vivo by blocking the phosphorylation of 4E-BP by mTOR (mammalian target of rapamycin) using rapamycin or eIF4E siRNA (small interfering RNA), and relieved by overexpression of either eIF4E or constitutively-active Akt. Upon drug exposure MDR1 mRNA was up-regulated, apparently stochastically, in a small proportion of cells. Only in these cells could MDR1 mRNA compete successfully for the reduced amounts of eIF4E and translate P-glycoprotein. Consequent drug efflux and restoration of eIF4E availability results in a feed-forward relief from stress-induced translational repression and to the acquisition of drug resistance. PMID:17573715

  7. Coexisted components of Salvia miltiorrhiza enhance intestinal absorption of cryptotanshinone via inhibition of the intestinal P-gp.

    PubMed

    Dai, Haixue; Li, Xiaorong; Li, Xiaoli; Bai, Lu; Li, Yuhang; Xue, Ming

    2012-11-15

    Cryptotanshinone, derived from the roots of Salvia miltiorrhiza Bge and Salvia przewalskii Maxim, is the major active component and possesses significant antibacterial, antidermatophytic, antioxidant, anti-inflammatory and anticancer activities. The objective of this study was to investigate the intestinal absorptive characteristics of cryptotanshinone as well as the absorptive behavior influenced by co-administration of the diterpenoid tanshinones and danxingfang using an in vitro everted rat gut sac model. The results showed a good linear correlation between cryptotanshinone of absorption and the incubation time from 10 to 70min. The concentration dependence showed that a non-linear correlation existed between the cryptotanshinone absorption and the concentration at 100 ?g/ml. Coexisting diterpenoid tanshinones and danxingfang could significantly enhance the absorption of cryptotanshinone. Coexisting diterpenoid tanshinones and danxingfang, which influenced cryptotanshinone's absorption, manifested as similar to that of the P-glycoprotein inhibitor. The underlying mechanism of the improvement of oral bioavailability was proposed that coexisting diterpenoid tanshinones and danxingfang could decrease the efflux transport of cryptotanshinone by P-glycoprotein. PMID:23041420

  8. Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood-brain barrier.

    PubMed

    Berezowski, Vincent; Landry, Christophe; Dehouck, Marie-Pierre; Cecchelli, Roméo; Fenart, Laurence

    2004-08-20

    P-glycoprotein (P-gp) and the multidrug resistance-associated proteins (MRP), whose expression is associated with multidrug resistance, have been recently located in the brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB), without taking into account a possible influence or contribution of glial cells and pericytes. Using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR), the present study analysed the transcriptional expression of P-gp and the seven homologues of MRP transporters in BCECs in solo culture or in an in vitro model of the BBB consisting of a co-culture of BCECs and glial cells. Pericytes, glial cells, isolated brain capillaries and bovine grey matter extracts were also tested. P-gp mRNA, absent in glial cells, was found in brain capillaries and in co-cultured BCECs with an increased signal compared to the in solo culture. No amplification was observed in pericytes or grey matter. While MRP2, MRP3 and MRP7 remained undetected, MRP1, absent in capillaries or grey matter, was amplified in BCECs, glial cells and pericytes. MRP4 gave a low signal in most cultures. MRP5 was ubiquitously expressed, displaying a potent signal in all conditions. In spite of its presence in cultured glial cells, MRP6 mRNA expression appeared to be restricted to BCECs, with the same upregulation in the co-cultured condition as observed with P-gp. Moreover, MRP6 was the only transporter whose endothelial mRNA expression was influenced by the presence of pericytes. The tissue distribution of the expression of these transporters and the contribution of the different cell populations are discussed. PMID:15262198

  9. Differential effects of peroxisome proliferator-activated receptor agonists on doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells.

    PubMed

    Yousefi, B; Samadi, N; Baradaran, B; Rameshknia, V; Shafiei-Irannejad, V; Majidinia, M; Targhaze, N; Zarghami, N

    2015-01-01

    P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) in tumor cells is still a main obstacle for the chemotherapeutic treatment of cancers. Therefore, identification of safe and effective MDR reversing compounds with minimal adverse side effects is an important approach in the cancer treatment. Studies show that peroxisome proliferator-activated receptor (PPARs) ligands can inhibit cell growth in many cancers. Here, we investigated the effect of different PPAR agonists include fenofibrate, troglitazone and aleglitazar on doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. The effects of doxorubicin (DOX) following treatment with PPAR agonists on cell viability were evaluated using MTT assay and the reversal fold (RF) values. Rhodamine123 (Rh123) assays were used to determine P-gp functioning. P-gp mRNA/protein expression was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis after incubation with troglitazone and aleglitazar. Our results showed that troglitazone and aleglitazar significantly enhanced the cytotoxicity of DOX and decreased the RF values in K562/DOX cells, however, no such results were found for fenofibrate. Troglitazone and aleglitazar significantly down regulated P-gp expression in K562/DOX cells; in addition, the present study revealed that aleglitazar elevated intracellular accumulation of Rh123in K562/DOX cells as short-term effects, which also contribute to the reversal of MDR. These findings show that troglitazone and especially aleglitazar exhibited potent effects in the reversal of P-gp-mediated MDR, suggesting that these compounds may be effective for combination therapy strategies and circumventing MDR in K562/DOX cells to other conventional chemotherapeutic drugs. PMID:26718439

  10. Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    E-print Network

    Ernst, Stefan; Zarrabi, Nawid; Wilkens, Stephan; Boersch, Michael

    2011-01-01

    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBD...

  11. Imaging of P-glycoprotein function and expression to elucidate mechanisms of pharmacoresistance in epilepsy.

    PubMed

    Löscher, Wolfgang; Langer, Oliver

    2010-01-01

    The issue of pharmacoresistance in epilepsy has received considerable attention in recent years, and a number of plausible hypotheses have been proposed. Of these, the so-called transporter hypothesis is the most extensively researched and documented. This hypothesis assumes that refractory epilepsy is associated with a localised over-expression of drug transporter proteins such as P-glycoprotein (Pgp) in the region of the epileptic focus, which actively extrudes antiepileptic drugs (AEDs) from their intended site of action. However, although this hypothesis has biological plausibility, there is no clinical evidence to support the assertion that AEDs are sufficiently strong substrates for transporter-mediated extrusion from the brain. The use of modern brain imaging techniques to determine Pgp function in patients with refractory epilepsy has started only recently, and may ultimately determine whether increased expression and function of Pgp or other efflux transporters are involved in AED resistance. PMID:20645916

  12. Imaging of P-glycoprotein function and expression to elucidate mechanisms of pharmacoresistance in epilepsy

    PubMed Central

    Löscher, Wolfgang; Langer, Oliver

    2013-01-01

    The issue of pharmacoresistance in epilepsy has received considerable attention in recent years, and a number of plausible hypotheses have been proposed. Of these, the so-called transporter hypothesis is the most extensively researched and documented. This hypothesis assumes that refractory epilepsy is associated with a localised over-expression of drug transporter proteins such as P-glycoprotein (Pgp) in the region of the epileptic focus, which actively extrudes antiepileptic drugs (AEDs) from their intended site of action. However, although this hypothesis has biological plausibility, there is no clinical evidence to support the assertion that AEDs are sufficiently strong substrates for transporter-mediated extrusion from the brain. The use of modern brain imaging techniques to determine Pgp function in patients with refractory epilepsy has started only recently, and may ultimately determine whether increased expression and function of Pgp or other efflux transporters are involved in AED resistance. PMID:20645916

  13. Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells.

    PubMed

    Chambers, T C; McAvoy, E M; Jacobs, J W; Eilon, G

    1990-05-01

    Studies were undertaken to identify the protein kinase(s) responsible for P-glycoprotein phosphorylation in multidrug-resistant (KB-V1) human carcinoma cells and to elucidate the functional role of phosphorylation. P-glycoprotein migrated on sodium dodecyl sulfate gels with apparent Mr 150,000 and is termed P150. When KB-V1 membrane vesicles were incubated with [gamma-32P] ATP, P150 was phosphorylated by an endogenous kinase that exhibited properties of membrane-inserted protein kinase C (PKC). Both membrane-bound P150 and purified P150 served as effective substrates for highly purified rat brain PKC which incorporated approximately 0.6 mol of phosphate/mol of P150. Enzyme assays showed that KB-V1 cells exhibit 4-fold higher PKC activity compared with the drug-sensitive KB-3 cell line. The basal phosphorylation of P150 observed in 32P-labeled cells was increased 2-fold by phorbol ester (PMA) treatment and reduced 30% by treatment with the isoquinolinsulfonamide H-7. Phosphopeptide maps of partially digested P150, phosphorylated either in vitro with PKC or in intact 32P-labeled control or PMA-stimulated cells, were indistinguishable from one another. Drug accumulation assays revealed that PMA treatment of KB-V1 cells significantly reduced [3H]vinblastine accumulation induced by verapamil or by tetrandrine. The results suggest that PKC is primarily responsible for P150 phosphorylation in KB-V1 cells and that phosphorylation may play a modulatory role in the drug transport process. PMID:1970571

  14. Mrp1 is essential for sphingolipid signaling to p-glycoprotein in mouse blood–brain and blood–spinal cord barriers

    PubMed Central

    Cartwright, Tara A; Campos, Christopher R; Cannon, Ronald E; Miller, David S

    2013-01-01

    At the blood–brain and blood–spinal cord barriers, P-glycoprotein, an ATP-driven drug efflux pump, is a major obstacle to central nervous system (CNS) pharmacotherapy. Recently, we showed that signaling through tumor necrosis factor-? (TNF-?), sphingolipids, and sphingosine-1-phosphate receptor 1 (S1PR1) rapidly and reversibly reduced basal P-glycoprotein transport activity in the rat blood–brain barrier. The present study extends those findings to the mouse blood–brain and blood–spinal cord barriers and, importantly, identifies multidrug resistance-associated protein 1 (Mrp1, Abcc1) as the transporter that mediates S1P efflux from brain and spinal cord endothelial cells. In brain and spinal cord capillaries isolated from wild-type mice, TNF-?, sphingosine, S1P, the S1PR agonist fingolimod (FTY720), and its active, phosphorylated metabolite, FTY720P, reduced P-glycoprotein transport activity; these effects were abolished by a specific S1PR1 antagonist. In brain and spinal cord capillaries isolated from Mrp1-null mice, neither TNF-? nor sphingosine nor FTY720 reduced P-glycoprotein transport activity. However, S1P and FTY720P had the same S1PR1-dependent effects on transport activity as in capillaries from wild-type mice. Thus, deletion of Mrp1 alone terminated endogenous signaling to S1PR1. These results identify Mrp1 as the transporter essential for S1P efflux from the endothelial cells and thus for inside-out S1P signaling to P-glycoprotein at the blood–brain and blood–spinal cord barriers. PMID:23168528

  15. Localization of P-glycoprotein at the nuclear envelope of rat brain cells

    SciTech Connect

    Babakhanian, Karlo; Bendayan, Moise; Bendayan, Reina . E-mail: r.bendayan@utoronto.ca

    2007-09-21

    P-Glycoprotein is a plasma membrane drug efflux protein implicated in extrusion of cytotoxic compounds out of a cell. There is now evidence that suggests expression of this transporter at several subcellular sites, including the nucleus, mitochondria, and Golgi apparatus. This study investigated the localization and expression of P-glycoprotein at the nuclear membrane of rat brain microvessel endothelial (RBE4) and microglial (MLS-9) cell lines. Immunocytochemistry at the light and electron microscope levels using P-glycoprotein monoclonals antibodies demonstrated the localization of the protein at the nuclear envelope of RBE4 and MLS-9 cells. Western blot analysis revealed a single band of 170-kDa in purified nuclear membranes prepared from isolated nuclei of RBE4 and MLS-9 cells. These findings indicate that P-glycoprotein is expressed at the nuclear envelope of rat brain cells and suggest a role in multidrug resistance at this subcellular site.

  16. Liquid Chromatographic Method for Irinotecan Estimation: Screening of P-gp Modulators

    PubMed Central

    Tariq, M.; Negi, L. M.; Talegaonkar, Sushama; Ahmad, F. J.; Iqbal, Zeenat; Khan, A. M.

    2015-01-01

    The present work is aimed to develop a simple, sensitive, robust and reliable HPLC method for the estimation of irinotecan in the physiological media in order to assess the permeability profile of irinotecan, using the everted gut sac, in the presence of various P-gp modulators. Separation was achieved using, C18 column with mobile phase consisting of acetonitrile and 0.045 µM sodium dihydrogen phosphate dihydrate buffer containing ion pair agent heptane sulphonic acid sodium salt (0.0054 µM), pH 3. The flow rate was maintained at 1 ml/min and analysis was performed at 254.9 nm using PDA detector. Calibration data showed an excellent linear relationship between peak-area verses drug concentration (r2, 0.9999). Linearity was found to be in the range of 0.060-10.0 µg/ml. Limits of detection and quantification were found to ~0.020 µg/ml and ~0.060 µg/ml, respectively. The developed method was found to be precise (RSD < 1.5%, for repeatability and <2.55% for intermediate precision, acceptable ranges of precision), accurate (The recovered content of irinotecan in the presence of various P-gp modulators varied from 96.11-101.51%, within acceptable range, 80-120%), specific and robust (% RSD < 2). Developed method has been applied successfully for the evaluation of eleven P-gp modulators from diverse chemical class. PMID:25767314

  17. Characterization of P-glycoprotein and multidrug resistance proteins in rat kidney and intestinal cell lines.

    PubMed

    van de Water, Femke M; Boleij, Johanna M; Peters, Janny G P; Russel, Frans G M; Masereeuw, Rosalinde

    2007-01-01

    The activity of P-glycoprotein (Pgp/MDR1/ABCB1) and multidrug resistance proteins (MRP/ABCC) influence the pharmacokinetics and bioavailability of many drugs. Few suitable cell lines for the study of drug transport exist. Additional non-human cell lines may help clarify species differences and contribute to the current knowledge of drug transport. The aim of the present study was to characterize three rat epithelial cell lines for transporter expression and activity. Transporter expression was assessed in intestinal IEC-6 and renal GERP and NRK-52E cells using RT-PCR and Western blot analysis. Pgp and Mrp transport activity were analyzed by measuring calcein accumulation and glutathione-S-bimane efflux, respectively. The three cell lines showed Pgp expression and Pgp-dependent transport, both decreasing with culture time after reaching confluency. Besides Pgp, cells expressed Mrp1, Mrp3, Mrp4, and Mrp5, while Mrp2 and Mrp6 were absent. In addition, they showed temperature- and Mrp-dependent efflux of glutathione-S-bimane. Exposure to a panel of different inhibitors showed that this efflux was probably mediated by Mrp4. In conclusion, the three rat epithelial cell lines investigated showed Pgp and Mrp expression and transport. Mrp dependent transport was most likely mediated by Mrp4. In future, these cell lines may be used as in vitro models to study drug transport. PMID:17088052

  18. Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation

    SciTech Connect

    Piwnica-Worms, D.; Vallabhaneni, V.R.; Kronauge, J.F.

    1995-09-26

    Multidrug resistance (MDR) in mammalian cells and tumors is associated with overexpression of an {approximately}170 integral membrane efflux transporter, the MDR1 P-glycoprotein. Hexakis(2-methoxyisobutyl isonitrile) technetium(I) (Tc-SESTAMIBI), a {gamma}-emitting lipophilic cationic metallopharmaceutical, has recently been shown to be a P-glycoprotein transport substrate. Exploiting the negligible lipid membrane adsorption properties of this organometallic substrate, we studied the transport kinetics, pharmacology, drug binding, and modulation of P-glycoprotein in cell preparations derived from a variety of species and selection strategies, including SW-1573, V79, Alex, and CHO drug-sensitive cells and in 77A, LZ-8, and Alex/A.5 MDR cells. Rapid cell accumulation (T{sub 1/2} {approx} 6 min) of the agent to a steady state was observed which was inversely proportional to immunodetectable levels of P-glycoprotein. Many MDR cytotoxic agents inhibited P-glycoprotein-mediated Tc-SESTAMIBI efflux, thereby enhancing organometallic cation accumulation. 70 refs., 7 figs., 2 tabs.

  19. Interactions among PIN-FORMED and P-Glycoprotein Auxin Transporters in Arabidopsis[W

    PubMed Central

    Blakeslee, Joshua J.; Bandyopadhyay, Anindita; Lee, Ok Ran; Mravec, Jozef; Titapiwatanakun, Boosaree; Sauer, Michael; Makam, Srinivas N.; Cheng, Yan; Bouchard, Rodolphe; Adamec, Ji?í; Geisler, Markus; Nagashima, Akitomo; Sakai, Tatsuya; Martinoia, Enrico; Friml, Ji?í; Peer, Wendy Ann; Murphy, Angus S.

    2007-01-01

    Directional transport of the phytohormone auxin is established primarily at the point of cellular efflux and is required for the establishment and maintenance of plant polarity. Studies in whole plants and heterologous systems indicate that PIN-FORMED (PIN) and P-glycoprotein (PGP) transport proteins mediate the cellular efflux of natural and synthetic auxins. However, aromatic anion transport resulting from PGP and PIN expression in nonplant systems was also found to lack the high level of substrate specificity seen in planta. Furthermore, previous reports that PGP19 stabilizes PIN1 on the plasma membrane suggested that PIN–PGP interactions might regulate polar auxin efflux. Here, we show that PGP1 and PGP19 colocalized with PIN1 in the shoot apex in Arabidopsis thaliana and with PIN1 and PIN2 in root tissues. Specific PGP–PIN interactions were seen in yeast two-hybrid and coimmunoprecipitation assays. PIN–PGP interactions appeared to enhance transport activity and, to a greater extent, substrate/inhibitor specificities when coexpressed in heterologous systems. By contrast, no interactions between PGPs and the AUXIN1 influx carrier were observed. Phenotypes of pin and pgp mutants suggest discrete functional roles in auxin transport, but pin pgp mutants exhibited phenotypes that are both additive and synergistic. These results suggest that PINs and PGPs characterize coordinated, independent auxin transport mechanisms but also function interactively in a tissue-specific manner. PMID:17237354

  20. Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Ernst, S.; Verhalen, B.; Zarrabi, N.; Wilkens, S.; Börsch, M.

    2011-03-01

    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBDs undergo significant movements during catalysis. Duty cycle-optimized alternating laser excitation (DCO-ALEX) is applied to minimize FRET artifacts and to select the appropriate molecules. The data show that Pgp is a highly dynamic enzyme that appears to fluctuate between at least two major conformations during steady state turnover.

  1. Carboxymethylcellulose-based and docetaxel-loaded nanoparticles circumvent P-glycoprotein mediated multidrug resistance

    PubMed Central

    Roy, Aniruddha; Murakami, Mami; Ernsting, Mark J.; Hoang, Bryan; Undzys, Elijus; Li, Shyh-Dar

    2014-01-01

    Taxanes are a class of anticancer agents with a broad spectrum and have been widely used to treat a variety of cancer. However, its long term use has been hampered by accumulating toxicity and development of drug resistance. The most extensively reported mechanism of resistance is the overexpression of P-glycoprotein (Pgp). We have developed a PEGylated carboxymethylcellulose conjugate of docetaxel (Cellax), which condenses into ~120 nm nanoparticles. Here we demonstrated that Cellax therapy did not upregulate Pgp expression in MDA-MB-231 and EMT-6 breast tumor cells whereas a significant increase in Pgp expression was measured with native docetaxel (DTX) treatment. Treatment with DTX led to 4 to 7-fold higher Pgp mRNA expression and 2-fold higher Pgp protein expression compared to Cellax treatment in the in vitro and in vivo system respectively. Cellax also exhibited significantly increased efficacy compared to DTX in a taxane-resistant breast tumor model. Against the highly Pgp expressing EMT6/AR1 cells, Cellax exhibited a 6.5 times lower IC50 compared to native DTX, and in the in vivo model, Cellax exhibited 90% tumor growth inhibition, while native DTX had no significant antitumor activity. PMID:24564177

  2. Carboxymethylcellulose-based and docetaxel-loaded nanoparticles circumvent P-glycoprotein-mediated multidrug resistance.

    PubMed

    Roy, Aniruddha; Murakami, Mami; Ernsting, Mark J; Hoang, Bryan; Undzys, Elijus; Li, Shyh-Dar

    2014-08-01

    Taxanes are a class of anticancer agents with a broad spectrum and have been widely used to treat a variety of cancer. However, its long-term use has been hampered by accumulating toxicity and development of drug resistance. The most extensively reported mechanism of resistance is the overexpression of P-glycoprotein (Pgp). We have developed a PEGylated carboxymethylcellulose conjugate of docetaxel (Cellax), which condenses into ?120 nm nanoparticles. Here we demonstrated that Cellax therapy did not upregulate Pgp expression in MDA-MB-231 and EMT-6 breast tumor cells, whereas a significant increase in Pgp expression was measured with native docetaxel (DTX) treatment. Treatment with DTX led to 4-7-fold higher Pgp mRNA expression and 2-fold higher Pgp protein expression compared with Cellax treatment in the in vitro and in vivo system, respectively. Cellax also exhibited significantly increased efficacy compared with that of DTX in a taxane-resistant breast tumor model. Against the highly Pgp expressing EMT6/AR1 cells, Cellax exhibited a 6.5 times lower IC50 compared with that of native DTX, and in the in vivo model, Cellax exhibited 90% tumor growth inhibition, while native DTX had no significant antitumor activity. PMID:24564177

  3. Compartmental models for apical efflux by P-glycoprotein. Part 1. Evaluation of model complexity

    PubMed Central

    Nagar, Swati; Tucker, Jalia; Weiskircher, Erica A.; Bhoopathy, Siddhartha; Hidalgo, Ismael J.; Korzekwa, Ken

    2013-01-01

    Purpose With the goal of quantifying P-gp transport kinetics, Part 1 of these manuscripts evaluates different compartmental models and Part 2 applies these models to kinetic data. Methods Models were developed to simulate the effect of apical efflux transporters on intracellular concentrations of six drugs. The effect of experimental variability on model predictions was evaluated. Several models were evaluated, and characteristics including membrane configuration, lipid content, and apical surface area (asa) were varied. Results Passive permeabilities from MDCK-MDR1 cells in the presence of cyclosporine gave lower model errors than from MDCK control cells. Consistent with the results in Part 2, model configuration had little impact on calculated model errors. The 5-compartment model was the simplest model that reproduced experimental lag times. Lipid content and asa had minimal effect on model errors, predicted lag times, and intracellular concentrations. Including endogenous basolateral uptake activity can decrease model errors. Models with and without explicit membrane barriers differed markedly in their predicted intracellular concentrations for basolateral drug exposure. Single point data resulted in clearances similar to time course data. Conclusions Compartmental models are useful to evaluate the impact of efflux transporters on intracellular concentrations. Whereas a 3-compartment model may be sufficient to predict the impact of transporters that efflux drugs from the cell, a 5-compartment model with explicit membranes may be required to predict intracellular concentrations when efflux occurs from the membrane. More complex models including additional compartments may be unnecessary. PMID:24019023

  4. Increase in multidrug transport activity is associated with oocyte maturation in sea stars*

    PubMed Central

    Roepke, Troy A.; Hamdoun, Amro M.; Cherr, Gary N.

    2011-01-01

    In this study, we report on the presence of efflux transporter activity before oocyte maturation in sea stars and its upregulation after maturation. This activity is similar to the multidrug resistance (MDR) activity mediated by ATP binding cassette (ABC) efflux transporters. In sea star oocytes the efflux activity, as measured by exclusion of calcein-am, increased two-fold 3 h post-maturation. Experiments using specific and non-specific dyes and inhibitors demonstrated that the increase in transporter activity involves an ABCB protein, P-glycoprotein (P-gp), and an ABCC protein similar to the MDR-associated protein (MRP)-like transporters. Western blots using an antibody directed against mammalian P-gp recognized a 45 kDa protein in sea star oocytes that increased in abundance during maturation. An antibody directed against sea urchin ABCC proteins (MRP) recognized three proteins in immature oocytes and two in mature oocytes. Experiments using inhibitors suggest that translation and microtubule function are both required for post-maturation increases in transporter activity. Immunolabeling revealed translocation of stored ABCB proteins to the plasma cell membrane during maturation, and this translocation coincided with increased transport activity. These MDR transporters serve protective roles in oocytes and eggs, as demonstrated by sensitization of the oocytes to the maturation inhibitor, vinblastine, by MRP and PGP-specific transporter inhibitors. PMID:17118011

  5. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    PubMed

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  6. IMMUNOHISTOCHEMICAL DETECTION OF P-GLYCOPROTEIN IN TELEOST TISSUES USING MAMMALIAN POLYCLONAL AND MONOCLONAL ANTIBODIES

    EPA Science Inventory

    Mammalian P-glycoprotein is a highly conserved 170 kD integral plasma membrane protein functioning as an energy dependent efflux pump of exogenous and endogenous lipophilic aromatic compounds entering the cell by diffusion. n this study, the tissue specificity of one polyclonal (...

  7. Novel dihydro-beta-agarofuran sesquiterpenes as potent modulators of human P-glycoprotein dependent multidrug resistance.

    PubMed

    Torres-Romero, David; Muńoz-Martínez, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Gamarro, Francisco; Bazzocchi, Isabel L

    2009-12-21

    P-Glycoprotein (Pgp) overexpression is one factor contributing to multidrug resistance (MDR) in cancer cells and represents one drawback in the treatment of cancer. In an attempt to find more specific and less toxic anticancer MDR-reversal agents, we report herein the isolation, structure elucidation and biological activity of nine new (, and ) and seven known (, and ) dihydro-beta-agarofuran sesquiterpenes from the leaves of Celastrus vulcanicola. Their stereostructures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques, CD studies and biogenetic means. All the compounds were assayed on human MDR1-transfected NIH-3T3 cells, in order to determine their ability to reverse the MDR phenotype due to Pgp overexpression. Six compounds from these series (, , , , and ) showed an effectiveness that was similar to (or higher than) the classical Pgp reversal agent verapamil for the reversal of resistance to daunomycin and vinblastine. The structure-activity relationships are discussed. PMID:20024113

  8. Integrated assessment of ivermectin pharmacokinetics, efficacy against resistant Haemonchus contortus and P-glycoprotein expression in lambs treated at three different dosage levels.

    PubMed

    Alvarez, Luis; Suarez, Gonzalo; Ceballos, Laura; Moreno, Laura; Canton, Candela; Lifschitz, Adrián; Maté, Laura; Ballent, Mariana; Virkel, Guillermo; Lanusse, Carlos

    2015-05-30

    The main goals of the current work were: (a) to assess the ivermectin (IVM) systemic exposure and plasma disposition kinetics after its administration at the recommended dose, x5 and x10 doses to lambs, (b) to compare the clinical efficacy of the same IVM dosages in lambs infected with an IVM-resistant isolate of Haemonchus contortus, and (c) to assess the expression of the transporter protein P-glycoprotein (P-gp) in H. contortus recovered at 14 days after administration of the IVM dose regimens. There were two separated trials where IVM was administered either subcutaneously (SC, Experiment I) or intraruminally (IR, Experiment II). Each experiment involved twenty-four (24) lambs artificially infected with a highly resistant H. contortus isolate. Animals were allocated into 4 groups (n=6) and treated with IVM at either 0.2 (IVM x1), 1 (IVM x5) or 2mg/kg (IVM x10). Plasma samples were collected up to 12 days post-treatment and analysed by HPLC. An untreated-control Group was included to assess the comparative anthelmintic efficacy of the different treatments. The level of expression of Pgp in H. contortus specimens obtained from lambs both untreated and IR treated with the different IVM doses was quantified by real time PCR. Parametric and non-parametric tests were used to compare the statistical significance of the results (P<0.05). After the SC treatment, the IVM plasma area under the concentration-time curve (AUC0-LOQ) increased from 41.9 (IVM SCx1) up to 221 (IVM SCx5) and 287 (IVM SCx10)ng.day/mL and after the IR treatment from 20.8 (IVM IRx1) up to 121 (IVM IRx5) and 323 (IVM IRx10)ng.day/mL. Dose-adjusted AUC0-LOQ and Cmax were similar among doses, demonstrating dose proportionality for IVM after both SC and IR administration at the three different doses. The efficacies against resistant H. contortus after the SC treatment were 42% (IVM SC1), 75% (IVM SCx5) and 75% (IVM SCx10). However, the IR IVM treatment reached clinical efficacies ranging from 48% (IVM IRx1) up to 96% (IVM IRx5) and 98% (IVM IRx10). None of the IR IVM treatments increased the expression of P-gp in adult H. contortus at 14 days post-treatment compared to samples collected from the untreated control group. An enhanced parasite exposure of the drug at the abomasum may explain the improved efficacy against this recalcitrant H. contortus isolate observed only after the IR administration at 5- and 10-fold the IVM therapeutic dosage. PMID:25841863

  9. Comparative tissue pharmacokinetics and efficacy of moxidectin, abamectin and ivermectin in lambs infected with resistant nematodes: Impact of drug treatments on parasite P-glycoprotein expression?

    PubMed Central

    Lloberas, Mercedes; Alvarez, Luis; Entrocasso, Carlos; Virkel, Guillermo; Ballent, Mariana; Mate, Laura; Lanusse, Carlos; Lifschitz, Adrian

    2012-01-01

    The high level of resistance to the macrocyclic lactones has encouraged the search for strategies to optimize their potential as antiparasitic agents. There is a need for pharmaco-parasitological studies addressing the kinetic-dynamic differences between various macrocyclic lactones under standardized in vivo conditions. The current work evaluated the relationship among systemic drug exposure, target tissue availabilities and the pattern of drug accumulation within resistant Haemonchus contortus for moxidectin, abamectin and ivermectin. Drug concentrations in plasma, target tissues and parasites were measured by high performance liquid chromatography. Additionally, the efficacy of the three molecules was evaluated in lambs infected with resistant nematodes by classical parasitological methods. Furthermore, the comparative determination of the level of expression of P-glycoprotein (P-gp2) in H. contortus recovered from lambs treated with each drug was performed by real time PCR. A longer persistence of moxidectin (P < 0.05) concentrations in plasma was observed. The concentrations of the three compounds in the mucosal tissue and digestive contents were significant higher than those measured in plasma. Drug concentrations were in a range between 452 ng/g (0.5 day post-treatment) and 32 ng/g (2 days post-treatment) in the gastrointestinal (GI) contents (abomasal and intestinal). Concentrations of the three compounds in H. contortus were in a similar range to those observed in the abomasal contents (positive correlation P = 0.0002). Lower moxidectin concentrations were recovered within adult H. contortus compared to abamectin and ivermectin at day 2 post-treatment. However, the efficacy against H. contortus was 20.1% (ivermectin), 39.7% (abamectin) and 89.6% (moxidectin). Only the ivermectin treatment induced an enhancement on the expression of P-gp2 in the recovered adult H. contortus, reaching higher values at 12 and 24 h post-administration compared to control (untreated) worms. This comparative pharmacological evaluation of three of the most used macrocyclic lactones compounds provides new insights into the action of these drugs. PMID:24533290

  10. P-glycoprotein-dependent resistance of cancer cells toward the extrinsic TRAIL apoptosis signaling pathway.

    PubMed

    Galski, Hanan; Oved-Gelber, Tamar; Simanovsky, Masha; Lazarovici, Philip; Gottesman, Michael M; Nagler, Arnon

    2013-09-01

    The TNF-related apoptosis-inducing ligand (TRAIL or Apo2L) preferentially cause apoptosis of malignant cells in vitro and in vivo without severe toxicity. Therefore, TRAIL or agonist antibodies to the TRAIL DR4 and DR5 receptors are used in cancer therapy. However, many malignant cells are intrinsically resistant or acquire resistance to TRAIL. It has been previously proposed that the multidrug transporter P-glycoprotein (Pgp) might play a role in resistance of cells to intrinsic apoptotic pathways by interfering with components of ceramide metabolism or by modulating the electrochemical gradient across the plasma membrane. In this study we investigated whether Pgp also confers resistance toward extrinsic death ligands of the TNF family. To this end we focused our study on HeLa cells carrying a tetracycline-repressible plasmid system which shuts down Pgp expression in the presence of tetracycline. Our findings demonstrate that expression of Pgp is a significant factor conferring resistance to TRAIL administration, but not to other death ligands such as TNF-? and Fas ligand. Moreover, blocking Pgp transport activity sensitizes the malignant cells toward TRAIL. Therefore, Pgp transport function is required to confer resistance to TRAIL. Although the resistance to TRAIL-induced apoptosis is Pgp specific, TRAIL itself is not a direct substrate of Pgp. Pgp expression has no effect on the level of the TRAIL receptors DR4 and DR5. These findings might have clinical implications since the combination of TRAIL therapy with administration of Pgp modulators might sensitize TRAIL resistant tumors. PMID:23774624

  11. Several major antiepileptic drugs are substrates for human P-glycoprotein.

    PubMed

    Luna-Tortós, Carlos; Fedrowitz, Maren; Löscher, Wolfgang

    2008-12-01

    One of the current hypotheses of pharmacoresistant epilepsy proposes that transport of antiepileptic drugs (AEDs) by drug efflux transporters such as P-glycoprotein (Pgp) at the blood-brain barrier may play a significant role in pharmacoresistance in epilepsy by extruding AEDs from their intended site of action. However, several recent in vitro studies using cell lines that overexpress efflux transporters indicate that human Pgp may not transport AEDs to any relevant extent. In this respect it has to be considered that most AEDs are highly permeable, so that conventional bi-directional transport assays as used in these previous studies may fail to identify AEDs as Pgp substrates, particularly if these drugs are not high-affinity substrates for Pgp. In the present study, we used a modified transport assay that allows evaluating active transport independently of the passive permeability component. In this concentration equilibrium transport assay (CETA), the drug is initially added at identical concentration to both sides of a polarized, Pgp-overexpressing cell monolayer instead of applying the drug to either the apical or basolateral side for studying bi-directional transport. Direct comparison of the conventional bi-directional (concentration gradient) assay with the CETA, using MDR1-transfected LLC cells, demonstrated that CETA, but not the conventional assay, identified phenytoin and phenobarbital as substrates of human Pgp. Furthermore, directional transport was determined for lamotrigine and levetiracetam, but not carbamazepine. Transport of AEDs could be completely or partially (>50%) inhibited by the selective Pgp inhibitor, tariquidar. However, transport of phenobarbital and levetiracetam was also inhibited by MK571, which preferentially blocks transport by multidrug resistance transporters (MRPs), indicating that, in addition to Pgp, these AEDs are substrates of MRPs. The present study provides the first direct evidence that several AEDS are substrates of human Pgp, thus further substantiating the transporter hypothesis of pharmacoresistant epilepsy. PMID:18824002

  12. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression

    PubMed Central

    Prados, Jose; Caba, Octavio; Cabeza, Laura; Berdasco, Maria; Gónzalez, Beatriz; Melguizo, Consolación

    2015-01-01

    Background The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. Methods Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2’-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. Results Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. Conclusions These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma multiforme patients. PMID:26447477

  13. Regulation of hepatic drug transporter activity and expression by organochlorine pesticides.

    PubMed

    Bucher, Simon; Le Vee, Marc; Jouan, Elodie; Fardel, Olivier

    2014-03-01

    Organochlorine (OC) pesticides constitute a major class of persistent and toxic organic pollutants, known to modulate drug-detoxifying enzymes. In the present study, OCs were demonstrated to also alter the activity and expression of human hepatic drug transporters. Activity of the sinusoidal influx transporter OCT1 (organic cation transporter 1) was thus inhibited by endosulfan, chlordane, heptachlor, lindane, and dieldrine, but not by dichlorodiphenyltrichloroethane isomers, whereas those of the canalicular efflux pumps MRP2 (multidrug resistance-associated protein 2) and BCRP (breast cancer resistance protein) were blocked by endosulfan, chlordane, heptachlor, and chlordecone; this latter OC additionally inhibited the multidrug resistance gene 1 (MDR1)/P-glycoprotein (P-gp) activity. OCs, except endosulfan, were next found to induce MDR1/P-gp and MRP2 mRNA expressions in hepatoma HepaRG cells; some of them also upregulated BCRP. By contrast, expression of sinusoidal transporters was not impaired (organic anion-transporting polypeptide (OATP) 1B1 and OATP2B1) or was downregulated (sodium taurocholate co-transporting polypeptide (NTCP) and OCT1). Such regulations of drug transporter activity and expression, depending on the respective nature of OCs and transporters, may contribute to the toxicity of OC pesticides. PMID:24464585

  14. Effects of silybinin, CYP3A4 and P-glycoprotein inhibitor in vitro, on the bioavailability of loratadine in rats.

    PubMed

    Li, C; Lee, M Y; Choi, J S

    2010-07-01

    The effect of silybinin on the pharmacokinetics of orally and intravenously administered loratadine in rats was investigated. Pharmacokinetic parameters of loratadine were determined in rats following oral (4 mg x kg(-1)) and intravenous (1 mg x kg(-1)) administration to rats in the presence and absence of silybinin (0.3, 1.5 and 6 mg x kg(-1)). Compared to those animals in an oral control group (given loratadine alone), the area under the plasma concentration-time curve (AUC) and the peak plasma concentration (C(max)) of loratadine were increased significantly (P < 0.05 for 1.5 mg x kg(-1), P < 0.01 for 6 mg x kg(-1)) by 50.0-76.7% and 65.4-90.1%, respectively, by silybinin. Consequently, the absolute bioavailability of loratadine in the presence of silybinin (1.5 and 6 mg x kg(-1)) was 8.6-10.2%, which was significantly (1.5 mg x kg(-1), P < 0.05; 6 mg x kg(-1), P < 0.01) enhanced compared to that in oral control group (5.8%). Moreover, the relative bioavailability of loratadine was 1.50- to 1.77-fold greater than that in the control group. In contrast, silybinin had no effect on any pharmacokinetic parameters of loratadine given intravenously, implying that coadministration of silybinin could inhibit the cytochrome P450 (CYP) 3A4-mediated metabolism of loratadine, resulting in reducing gastrointestinal and hepatic first-pass metabolism, and the P-glycoprotein (P-gp) efflux pump in the small intestine. Silybinin significantly enhanced the oral bioavailability of loratadine, suggesting that concurrent use of silybinin and loratadine should be monitored closely for potential drug interactions. PMID:20662320

  15. Progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux: design, synthesis, characterization and biological evaluation.

    PubMed

    Zeinyeh, Waël; Mahiout, Zahia; Radix, Sylvie; Lomberget, Thierry; Dumoulin, Axel; Barret, Roland; Grenot, Catherine; Rocheblave, Luc; Matera, Eva-Laure; Dumontet, Charles; Walchshofer, Nadia

    2012-10-01

    Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton. PMID:22868178

  16. Natural and synthetic benzophenones: interaction with the cytosolic binding domain of P-glycoprotein.

    PubMed

    Rancon, S; Chaboud, A; Darbour, N; Comte, G; Bayet, C; Simon, P N; Raynaud, J; Di Pietro, A; Cabalion, P; Barron, D

    2001-06-01

    A benzophenone glycoside has been isolated from Davallia solida. Its structure was elucidated by chemical and spectral means as 4-O-beta-D-glucopyranosyl-2,6,4'-trihydroxybenzophenone. It bound with moderate affinity to the purified C-terminal cytosolic domain of P-glycoprotein, but the binding affinity was 6- to 10-fold increased for its aglycone derivative and other related benzophenones. PMID:11394856

  17. Serum concentrations of anthraquinones after intake of Folium Sennae and potential modulation on P-glycoprotein.

    PubMed

    Peng, Yu-Hsuan; Lin, Shiuan-Pey; Yu, Chung-Ping; Tsai, Shang-Yuan; Chen, Min-Yu; Hou, Yu-Chi; Chao, Pei-Dawn Lee

    2014-10-01

    Folium Sennae (leaves of Cassia angustifolia or senna) is a laxative and a component in diets for weight control. It contains a variety of anthranoids such as sennosides, aloe-emodin, and rhein. In order to measure the serum concentrations of senna anthranoids, Sprague-Dawley rats were orally administered with single dose and multiple doses of Folium Sennae. The concentrations of anthranoids in serum were determined by HPLC method before and after hydrolysis with sulfatase and ?-glucuronidase. The results showed that in the serum, aloe-emodin glucuronides and rhein glucuronides were the major metabolites. Traces of rhein free form were present transiently during the early phase, whereas the free form of aloe-emodin was not detected. We also evaluated the modulation effect of Folium Sennae on P-glycoprotein by using the LS 180 cell model which showed that it significantly inhibited P-glycoprotein by 16-46?%. In conclusion, senna anthranoids were rapidly and extensively metabolized to rhein glucuronides and aloe-emodin glucuronides in rats. Folium Sennae ingestion inhibited the efflux function of P-glycoprotein in the intestine. PMID:25177847

  18. pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor.

    PubMed

    Zhao, Yong; Zhou, Yanxia; Wang, Dishi; Gao, Yajie; Li, Jinwen; Ma, Shujin; Zhao, Lei; Zhang, Chao; Liu, Yan; Li, Xinru

    2015-04-01

    The combination of a chemotherapeutic drug with a P-glycoprotein (P-gp) inhibitor has emerged as a promising strategy for treating multidrug resistance (MDR) cancer. To ensure that two drugs can be co-delivered to the tumor region and quickly released in tumor cells, tumor-targeted and pH-sensitive polymeric micelles were designed and prepared by combining cationic ring-opening polymerization of 2-ethyl-2-oxazoline (EOz) with anionic ring-opening polymerization of D,L-lactide (LA), and then encapsulating doxorubicin (DOX) and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS1000) into the micelles self-assembled by poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (PEOz-PLA) and DSPE-PEG-folate. PEOz-PLA exhibited a low critical micelle concentration and negligible cytotoxicity. The micelles enabled the rapid release of DOX when pH decreased from 7.4 to 5.0. The targeting ability of the micelles was demonstrated by in vitro flow cytometry in KBv cells and in vivo real time near-infrared fluorescence imaging in KBv tumor-bearing nude mice. The efficiency of MDR reversion for the micelles was testified by enhancement of intracellular DOX accumulation and cytotoxicity. The efficient drug delivery by the micelles was attributed to synergistic effects of folate-mediated targeting, pH-triggered drug release and TPGS1000-aroused P-gp inhibition. Therefore, the designed multifunctional polymeric micelles may have significant promise for therapeutic application of MDR cancer. PMID:25612838

  19. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines.

    PubMed

    Bergman, A M; Pinedo, H M; Talianidis, I; Veerman, G; Loves, W J P; van der Wilt, C L; Peters, G J

    2003-06-16

    Gemcitabine (2',2'-difluorodeoxycytidine) is a deoxycytidine analogue that is activated by deoxycytidine kinase (dCK) to its monophosphate and subsequently to its triphosphate dFdCTP, which is incorporated into both RNA and DNA, leading to DNA damage. Multidrug resistance (MDR) is characterised by an overexpression of the membrane efflux pumps P-glycoprotein (P-gP) or multidrug resistance-associated protein (MRP). Gemcitabine was tested against human melanoma, non-small-cell lung cancer, small-cell lung cancer, epidermoid carcinoma and ovarian cancer cells with an MDR phenotype as a result of selection by drug exposure or by transfection with the mdr1 gene. These cell lines were nine- to 72-fold more sensitive to gemcitabine than their parental cell lines. The doxorubicin-resistant cells 2R120 (MRP1) and 2R160 (P-gP) were nine- and 28-fold more sensitive to gemcitabine than their parental SW1573 cells, respectively (P<0.01), which was completely reverted by 25 micro M verapamil. In 2R120 and 2R160 cells, dCK activities were seven- and four-fold higher than in SW1573, respectively, which was associated with an increased dCK mRNA and dCK protein. Inactivation by deoxycytidine deaminase was 2.9- and 2.2-fold decreased in 2R120 and 2R160, respectively. dFdCTP accumulation was similar in SW1573 and its MDR variants after 24 h exposure to 0.1 micro M gemcitabine, but dFdCTP was retained longer in 2R120 (P<0.001) and 2R160 (P<0.003) cells. 2R120 and 2R160 cells also incorporated four- and six-fold more [(3)H]gemcitabine into DNA (P<0.05), respectively. P-glycoprotein and MRP1 overexpression possibly caused a cellular stress resulting in increased gemcitabine metabolism and sensitivity, while reversal of collateral gemcitabine sensitivity by verapamil also suggests a direct relation between the presence of membrane efflux pumps and gemcitabine sensitivity. PMID:12799644

  20. A Potato cDNA Encoding a Homologue of Mammalian Multidrug Resistant P-Glycoprotein

    NASA Technical Reports Server (NTRS)

    Wang, W.; Takezawa, D.; Poovaiah, B. W.

    1996-01-01

    A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with S-15-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170-180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.

  1. Quantitative evaluation of the effect of p-glycoprotein on oral drug absorption

    E-print Network

    Shirasaka, Yoshiyuki

    2006-10-27

    -gp-induced Caco-2 cells 103.7 5.20 4??P-gp-highly induced Caco-2 cells 191.0 9.53 6??MDR1-MDCKII cells 359.6 144.59 mRNA (?10-5/GAPDH) P-gp expression levels 1??Non-cell (Blank) 0.000.00 MDR1-knockdown Caco-2 cells5 1.328.71 Protein levels were detected... 300300300 400 400400400 12.012.012.012.0 mRNA level (?10-5/GAPDH) R2 = 0.894 R2 = 0.863 000 0 2.0 2.02.02.0 4.0 4.04.04.0 6.0 6.06.06.0 8.0 8.08.08.0 10 1010 10 12 1212 12 R2 = 0.937000 0 2.02.02.02.0 4.04.04.04.0 6.06.06.06.0 8.08.08.08.0 10...

  2. Quantitative investigation of the brain-to-cerebrospinal fluid unbound drug concentration ratio under steady-state conditions in rats using a pharmacokinetic model and scaling factors for active efflux transporters.

    PubMed

    Kodaira, Hiroshi; Kusuhara, Hiroyuki; Fuse, Eiichi; Ushiki, Junko; Sugiyama, Yuichi

    2014-06-01

    A pharmacokinetic model was constructed to explain the difference in brain- and cerebrospinal fluid (CSF)-to-plasma and brain-to-CSF unbound drug concentration ratios (Kp,uu,brain, Kp,uu,CSF, and Kp,uu,CSF/brain, respectively) of drugs under steady-state conditions in rats. The passive permeability across the blood-brain barrier (BBB), PS1, was predicted by two methods using log(D/molecular weight(0.5)) for PS1(1) or the partition coefficient in octanol/water at pH 7.4 (LogD), topologic van der Waals polar surface area, and van der Waals surface area of the basic atoms for PS1(2). The coefficients of each parameter were determined using previously reported in situ rat BBB permeability. Active transport of drugs by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) measured in P-gp- and Bcrp-overexpressing cells was extrapolated to in vivo by introducing scaling factors. Brain- and CSF-to-plasma unbound concentration ratios (Kp,uu,brain and Kp,uu,CSF, respectively) of 19 compounds, including P-gp and Bcrp substrates (daidzein, dantrolene, flavopiridol, genistein, loperamide, quinidine, and verapamil), were simultaneously fitted to the equations in a three-compartment model comprising blood, brain, and CSF compartments. The calculated Kp,uu,brain and Kp,uu,CSF of 17 compounds were within a factor of three of experimental values. Kp,uu,CSF values of genistein and loperamide were outliers of the prediction, and Kp,uu,brain of dantrolene also became an outlier when PS1(2) was used. Kp,uu,CSF/brain of the 19 compounds was within a factor of three of experimental values. In conclusion, the Kp,uu,CSF/brain of drugs, including P-gp and Bcrp substrates, could be successfully explained by a kinetic model using scaling factors combined with in vitro evaluation of P-gp and Bcrp activities. PMID:24644297

  3. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-? deposition in an Alzheimer disease mouse model

    PubMed Central

    Cirrito, John R.; Deane, Rashid; Fagan, Anne M.; Spinner, Michael L.; Parsadanian, Maia; Finn, Mary Beth; Jiang, Hong; Prior, Julie L.; Sagare, Abhay; Bales, Kelly R.; Paul, Steven M.; Zlokovic, Berislav V.; Piwnica-Worms, David; Holtzman, David M.

    2005-01-01

    Accumulation of amyloid-? (A?) within extracellular spaces of the brain is a hallmark of Alzheimer disease (AD). In sporadic, late-onset AD, there is little evidence for increased A? production, suggesting that decreased elimination from the brain may contribute to elevated levels of A? and plaque formation. Efflux transport of A? across the blood-brain barrier (BBB) contributes to A? removal from the brain. P-glycoprotein (Pgp) is highly expressed on the luminal surface of brain capillary endothelial cells and contributes to the BBB. In Pgp-null mice, we show that [125I]A?40 and [125I]A?42 microinjected into the CNS clear at half the rate that they do in WT mice. When amyloid precursor protein–transgenic (APP-transgenic) mice were administered a Pgp inhibitor, A? levels within the brain interstitial fluid significantly increased within hours of treatment. Furthermore, APP-transgenic, Pgp-null mice had increased levels of brain A? and enhanced A? deposition compared with APP-transgenic, Pgp WT mice. These data establish a direct link between Pgp and A? metabolism in vivo and suggest that Pgp activity at the BBB could affect risk for developing AD as well as provide a novel diagnostic and therapeutic target. PMID:16239972

  4. Digoxin net secretory transport in bronchial epithelial cell layers is not exclusively mediated by P-glycoprotein/MDR1.

    PubMed

    Hutter, Victoria; Chau, David Y S; Hilgendorf, Constanze; Brown, Alan; Cooper, Anne; Zann, Vanessa; Pritchard, David I; Bosquillon, Cynthia

    2014-01-01

    The impact of P-glycoprotein (MDR1, ABCB1) on drug disposition in the lungs as well as its presence and activity in in vitro respiratory drug absorption models remain controversial to date. Hence, we characterised MDR1 expression and the bidirectional transport of the common MDR1 probe (3)H-digoxin in air-liquid interfaced (ALI) layers of normal human bronchial epithelial (NHBE) cells and of the Calu-3 bronchial epithelial cell line at different passage numbers. Madin-Darby Canine Kidney (MDCKII) cells transfected with the human MDR1 were used as positive controls. (3)H-digoxin efflux ratio (ER) was low and highly variable in NHBE layers. In contrast, ER=11.4 or 3.0 were measured in Calu-3 layers at a low or high passage number, respectively. These were, however, in contradiction with increased MDR1 protein levels observed upon passaging. Furthermore, ATP depletion and the two MDR1 inhibitory antibodies MRK16 and UIC2 had no or only a marginal impact on (3)H-digoxin net secretory transport in the cell line. Our data do not support an exclusive role of MDR1 in (3)H-digoxin apparent efflux in ALI Calu-3 layers and suggest the participation of an ATP-independent carrier. Identification of this transporter might provide a better understanding of drug distribution in the lungs. PMID:23816640

  5. Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling.

    PubMed

    Riganti, Chiara; Salaroglio, Iris C; Pinzňn-Daza, Martha L; Caldera, Valentina; Campia, Ivana; Kopecka, Joanna; Mellai, Marta; Annovazzi, Laura; Couraud, Pierre-Olivier; Bosia, Amalia; Ghigo, Dario; Schiffer, Davide

    2014-02-01

    Low delivery of many anticancer drugs across the blood-brain barrier (BBB) is a limitation to the success of chemotherapy in glioblastoma. This is because of the high levels of ATP-binding cassette transporters like P-glycoprotein (Pgp/ABCB1), which effluxes drugs back to the bloodstream. Temozolomide is one of the few agents able to cross the BBB; its effects on BBB cells permeability and Pgp activity are not known. We found that temozolomide, at therapeutic concentration, increased the transport of Pgp substrates across human brain microvascular endothelial cells and decreased the expression of Pgp. By methylating the promoter of Wnt3 gene, temozolomide lowers the endogenous synthesis of Wnt3 in BBB cells, disrupts the Wnt3/glycogen synthase kinase 3/?-catenin signaling, and reduces the binding of ?-catenin on the promoter of mdr1 gene, which encodes for Pgp. In co-culture models of BBB cells and human glioblastoma cells, pre-treatment with temozolomide increases the delivery, cytotoxicity, and antiproliferative effects of doxorubicin, vinblastine, and topotecan, three substrates of Pgp that are usually poorly delivered across BBB. Our work suggests that temozolomide increases the BBB permeability of drugs that are normally effluxed by Pgp back to the bloodstream. These findings may pave the way to new combinatorial chemotherapy schemes in glioblastoma. PMID:23771630

  6. Insights into the structure and substrate interactions of the P-glycoprotein multidrug transporter from spectroscopic studies.

    PubMed

    Sharom, F J; Liu, R; Romsicki, Y; Lu, P

    1999-12-01

    The P-glycoprotein multidrug transporter is a 170-kDa efflux pump which exports a diverse group of natural products, chemotherapeutic drugs, and hydrophobic peptides across the plasma membrane, driven by ATP hydrolysis. The transporter has been proposed to interact with its drug substrates within the membrane environment; however, much remains to be learned about the nature and number of the drug binding site(s). The two nucleotide binding domains are responsible for ATP binding and hydrolysis, which is coupled to drug movement across the membrane. In recent years, P-glycoprotein has been purified and functionally reconstituted in amounts large enough to allow biophysical studies. The use of spectroscopic techniques has led to insights into both its secondary and tertiary structure, and its interaction with nucleotides and drugs. In this review, we will summarise what has been learned by application to purified P-glycoprotein of fluorescence spectroscopy, circular dichroism spectroscopy and infra-red spectroscopy. PMID:10581365

  7. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites.

    PubMed Central

    Cordon-Cardo, C; O'Brien, J P; Casals, D; Rittman-Grauer, L; Biedler, J L; Melamed, M R; Bertino, J R

    1989-01-01

    Endothelial cells of human capillary blood vessels at the blood-brain and other blood-tissue barrier sites express P-glycoprotein as detected by mouse monoclonal antibodies against the human multidrug-resistance gene product. This pattern of endothelial cell expression may indicate a physiological role for P-glycoprotein in regulating the entry of certain molecules into the central nervous system and other anatomic compartments, such as the testes. These tissues, which limit the access of systemic drugs, are known pharmacologic sanctuaries for metastatic cancer. P-glycoprotein expression in capillary endothelium of brain and testes and not other tissues (i.e., kidney and placenta) may in part explain this phenomenon and could have important implications in cancer chemotherapy. Images PMID:2563168

  8. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak. CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies. PMID:26557010

  9. P-glycoprotein-mediated colchicine resistance in different cell lines correlates with the effects of colchicine on P-glycoprotein conformation.

    PubMed

    Druley, T E; Stein, W D; Ruth, A; Roninson, I B

    2001-04-10

    The multidrug transporter P-glycoprotein (Pgp) is an ATPase efflux pump for multiple cytotoxic agents, including vinblastine and colchicine. We have found that resistance to vinblastine but not to colchicine in cell lines derived from different types of tissues and expressing the wild-type human Pgp correlates with the Pgp density. Vinblastine induces a conformational change in Pgp, evidenced by increased reactivity with a conformation-sensitive monoclonal antibody UIC2, in all the tested cell lines. In contrast, colchicine increases the UIC2 reactivity in only some of the cell lines. In those lines where colchicine alone did not affect UIC2 reactivity, this drug was, however, able to reverse the vinblastine-induced increase in UIC2 reactivity. The magnitude of the increase in UIC2 reactivity in the presence of saturating concentrations of colchicine correlates with the relative ability of Pgp to confer colchicine resistance in different cell lines, suggesting the existence of some cell-specific factors that have a coordinate effect on the ability of colchicine to induce conformational transitions and to be transported by Pgp. Colchicine, like vinblastine, reverses the decrease in UIC2 reactivity produced by nonhydrolyzable nucleotides, but unlike vinblastine, it does not reverse the effect of ATP at a high concentration. Colchicine, however, decreases the Hill number for the effect of ATP on the UIC2 reactivity from 2 to 1. Colchicine increases the UIC2 reactivity and reverses the effect of ATP in ATPase-deficient Pgp mutants, but not in the wild-type Pgp expressed in the same cellular background, suggesting that ATP hydrolysis counteracts the effects of colchicine on the Pgp conformation. PMID:11284688

  10. Transgenically expressed Parascaris P-glycoprotein-11 can modulate ivermectin susceptibility in Caenorhabditis elegans

    PubMed Central

    Janssen, I. Jana I.; Krücken, Jürgen; Demeler, Janina; von Samson-Himmelstjerna, Georg

    2015-01-01

    P-glycoproteins (Pgps) are suspected to mediate drug extrusion in nematodes contributing to macrocyclic lactone resistance. This association was recently shown for Parascaris Pgp-11. Ivermectin resistance was correlated with the presence of three pgp-11 single nucleotide polymorphisms and/or increased pgp-11 mRNA levels. In the present study, the ability of Pgp-11 to modulate ivermectin susceptibility was investigated by its expression in a pgp-11-deficient Caenorhabditis elegans strain. Expression of Parascaris pgp-11 in two transgenic lines significantly decreased ivermectin susceptibility in a motility (thrashing) assay conducted in liquid medium. The EC50 values increased by 3.2- and 4.6-fold in the two lines relative to a transgenic control strain. This is the first report on the successful functional analysis of a parasitic nematode Pgp in the model organism C.?elegans. PMID:25905032

  11. Structural Characterization of Two Metastable ATP-Bound States of P-Glycoprotein

    PubMed Central

    O’Mara, Megan L.; Mark, Alan E.

    2014-01-01

    ATP Binding Cassette (ABC) transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs), the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg2+ with each NBD indicates that the coordination of ATP and Mg2+ differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation of the simulations. PMID:24632881

  12. Directed evolution of P-glycoprotein cysteines reveals site-specific, non-conservative substitutions that preserve multidrug resistance.

    PubMed

    Swartz, Douglas J; Mok, Leo; Botta, Sri K; Singh, Anukriti; Altenberg, Guillermo A; Urbatsch, Ina L

    2014-01-01

    Pgp (P-glycoprotein) is a prototype ABC (ATP-binding-cassette) transporter involved in multidrug resistance of cancer. We used directed evolution to replace six cytoplasmic Cys (cysteine) residues in Pgp with all 20 standard amino acids and selected for active mutants. From a pool of 75000 transformants for each block of three Cys, we identified multiple mutants that preserved drug resistance and yeast mating activity. The most frequent substitutions were glycine and serine for Cys427 (24 and 20%, respectively) and Cys1070 (37 and 25%) of the Walker A motifs in the NBDs (nucleotide-binding domains), Cys1223 in NBD2 (25 and 8%) and Cys638 in the linker region (24 and 16%), whereas close-by Cys669 tolerated glycine (16%) and alanine (14%), but not serine (absent). Cys1121 in NBD2 showed a clear preference for positively charged arginine (38%) suggesting a salt bridge with Glu269 in the ICL2 (intracellular loop 2) may stabilize domain interactions. In contrast, three Cys residues in transmembrane ?-helices could be successfully replaced by alanine. The resulting CL (Cys-less) Pgp was fully active in yeast cells, and purified proteins displayed drug-stimulated ATPase activities indistinguishable from WT (wild-type) Pgp. Overall, directed evolution identified site-specific, non-conservative Cys substitutions that allowed building of a robust CL Pgp, an invaluable new tool for future functional and structural studies, and that may guide the construction of other CL proteins where alanine and serine have proven unsuccessful. PMID:24825346

  13. Characterization of tetrandrine, a potent inhibitor of P-glycoprotein-mediated multidrug resistance.

    PubMed

    Fu, Liwu; Liang, Yongju; Deng, Liwen; Ding, Yan; Chen, Liming; Ye, Yanli; Yang, Xiaoping; Pan, Qichao

    2004-04-01

    Multidrug resistance (MDR) is one of the main obstacles in tumor chemotherapy. A promising approach to solving this problem is to utilize a nontoxic and potent modulator able to reverse MDR, which in combination with anticancer drugs increases the anticancer effect. Experiments were carried out to examine the potential of tetrandrine (Tet) as a MDR-reversing agent. Survival of cells incubated with Tet at 2.5 micromol/l for 72 h was over 90%. Tet at 2.5 micromol/l almost completely reversed resistance to vincristine (VCR) in KBv200 cells. Tet at a concentration as low as 0.625 micromol/l produced a 7.6-fold reversal of MDR, but showed no effect on the sensitivity of drug-sensitive KB cells in vitro. In the KBv200 cell xenograft model in nude mice, neither Tet nor VCR inhibited tumor growth. However, VCR and Tet combined inhibited tumor growth by 45.7%, 61.2% and 55.7% in three independent experimental settings. In the KB cell xenograft model in nude mice, Tet did not inhibit tumor growth, but VCR and the combination of VCR and Tet inhibited tumor growth by 40.6% and 41.6%, respectively. Mechanism studies showed that Tet inhibited [(3)H]azidopine photoaffinity labeling of P-gp and increased accumulation of VCR in MDR KBv200 cells in a concentration-dependent manner. The results suggest that Tet is a potent MDR-reversing agent in vitro and in vivo. Its mechanism of action is via directly binding to P-gp and increasing intracellular VCR accumulation. PMID:14666379

  14. Re-evaluation of the role of P-glycoprotein in in vitro drug permeability studies with the bovine brain microvessel endothelial cells.

    PubMed

    Hakkarainen, Jenni J; Rilla, Kirsi; Suhonen, Marjukka; Ruponen, Marika; Forsberg, Markus M

    2014-03-01

    1.? Currently available in vitro blood-brain barrier models all have recognized restrictions. In addition to leakiness, inconsistent data about P-glycoprotein mediated efflux limit the attractiveness of the primary bovine brain microvessel endothelial cells (BBMECs). Therefore, we re-evaluated the role of P-glycoprotein mediated efflux with two culture conditions in BBMECs for prediction of drug permeability of potential P-glycoprotein substrates. 2.? BBMECs were monocultured on filters on petri dishes and on filter inserts, and expression and localization of P-glycoprotein were compared by using western blot and confocal microscopy, respectively. The functionality of P-glycoprotein was assessed by using cellular uptake, calcein-AM and bidirectional transport assays. 3.? P-glycoprotein expression was higher in BBMECs cultured on filter inserts decreasing the permeability of digoxin and paclitaxel, but not the permeability of vinblastine. However, the monocultured BBMECs were not able to demonstrate efflux in the bidirectional transport assays. Under certain culture conditions, occludin may not be correctly located, perhaps explaining in part the leakiness of BBMECs. 4.? In conclusion, BBMECs, despite possessing a functional P-glycoprotein, under certain culture conditions may not be a suitable in vitro model for the bidirectional transport assays and for predicting the permeability of drugs and xenobiotics that are potential P-glycoprotein substrates. PMID:23924297

  15. Evaluation of Memory Enhancing Clinically Available Standardized Extract of Bacopa monniera on P-Glycoprotein and Cytochrome P450 3A in Sprague-Dawley Rats

    PubMed Central

    Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar

    2013-01-01

    Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6?-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp. PMID:24015255

  16. Is P-glycoprotein (ABCB1) a phase 0 or a phase 3 colchicine transporter depending on colchicine exposure conditions?

    SciTech Connect

    Decleves, Xavier. E-mail: xavier.decleves@univ-paris5.fr; Niel, Elisabeth; Debray, Marcel; Scherrmann, Jean-Michel

    2006-12-01

    This study investigates the P-glycoprotein (Pgp)-mediated transport of its substrates in accumulation or efflux modes under steady-state conditions. The kinetics of colchicine uptake and efflux, a substrate of both Pgp and intracellular tubulin, were studied in HL60 and HL60/DNR cells; HL60/DNR cells contain 25 times more Pgp than do HL60 cells. HL60/DNR cells in a medium containing 6.25 nM colchicine, which mimics therapeutic conditions, reached steady-state twice as rapidly as did HL60 cells, and accumulated 24-times less colchicine than did HL60 cells. The Pgp inhibitor GF120918, increased colchicine uptake by HL60 cells 1.2-fold and that of HL60/DNR cells 17-fold, while it had no effect on colchicine efflux from either cell line that had been incubated with colchicine for 24 h. Colchicine kinetics fitted well a two closed-compartment model, showing that the low intracellular accumulation of colchicine in HL60/DNR cells resulted from a 11-fold decrease in colchicine uptake and a 2.3-fold increase in colchicine efflux, that could be attributed to Pgp-mediated efflux activity in HL60/DNR cells. Intracellular colchicine was mainly and similarly distributed in the cytosol in both cell lines. These data demonstrate that the kinetics of the intracellular colchicine accumulation depend on the density of Pgp and that Pgp is more a phase 0 (preventing cellular uptake) than a phase 3 (effluxing intracellular substrate) transporter under steady-state conditions, although the situation is reversed after a short incubation time (30 min), when intracellular free colchicine concentration is probably high enough for it to be removed from the cell by Pgp.

  17. Determining the structure and mechanism of the human multidrug resistance P-glycoprotein using cysteine-scanning mutagenesis and thiol-modification techniques.

    PubMed

    Loo, T W; Clarke, D M

    1999-12-01

    The multidrug resistance P-glycoprotein is an ATP-dependent drug pump that extrudes a broad range of hydrophobic compounds out of cells. Its physiological role is likely to protect us from exogenous and endogenous toxins. The protein is important because it contributes to the phenomenon of multidrug resistance during AIDS and cancer chemotherapy. We have used cysteine-scanning mutagenesis and thiol-modification techniques to map the topology of the protein, show that both nucleotide-binding domains are essential for activity, examine packing of the transmembrane segments, map the drug-binding site, and show that there is cross-talk between the ATP-binding sites and the transmembrane segments. PMID:10581364

  18. Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (?/?) Mice and Effects on Mammalian GABA(A) Channel Activity

    PubMed Central

    Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne

    2012-01-01

    The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(?/?) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(?/?) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(?/?) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat ?1?2?2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688

  19. Synthesis, activity and pharmacophore development for isatin-?-thiosemicarbazones with selective activity towards multidrug resistant cellsa

    PubMed Central

    Hall, Matthew D.; Salam, Noeris K.; Hellawell, Jennifer L.; Fales, Henry M.; Kensler, Caroline B.; Ludwig, Joseph A.; Szakacs, Gergely; Hibbs, David E.; Gottesman, Michael M.

    2009-01-01

    We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-?-thiosemicarbazones from our initial study have been validated, and a range of analogs synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1-selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone, and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicty of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity, and aid in directing the search for the mechanism of action of 1. PMID:19397322

  20. The potential role of cyclooxygenase-2 inhibitors in the treatment of experimentally-induced mammary tumour: does celecoxib enhance the anti-tumour activity of doxorubicin?

    PubMed

    Awara, Wageh M; El-Sisi, Alaa E; El-Sayad, Magda E; Goda, Ahmed E

    2004-11-01

    The potential anti-tumour activity of non-steroidal anti-inflammatory drugs (NSAIDS) has been previously discussed. This study was undertaken to assess the possible anti-tumour activity of the cyclooxygenase-2 (COX-2) inhibitor; celecoxib in an animal model of mammary carcinoma; the solid Ehrlich carcinoma (SEC). The possibility that celecoxib may modulate the anti-tumour activity of doxorubicin on the SEC was also studied. Some of the possible mechanisms underlying such modulation were investigated. The anti-tumour activity of celecoxib (25 mg kg(-1)), diclofenac (12.5 mg kg(-1)) and doxorubicin (2 mg kg(-1)) either alone or in combination were investigated on SEC in vivo through the assessment of tumour growth delay (TGD) and tumour volume (TV), changes in tumour DNA content and nitric oxide (NO) levels, immunohistochemical staining of the tumour suppressor gene product; p53 histopathological examination and determination of apoptotic index of SEC. In addition, the influence of these drugs on the DNA fragmentation pattern of Ehrlich carcinoma cells (ECC) was studied. It was found that both celecoxib and diclofenac lack the anti-tumour activity on SEC. In addition there was a significant increase in doxorubicin anti-tumour activity when administered in combination with celecoxib. Moreover, it was found that both celecoxib and diclofenac have the potential to inhibit the function of P-glycoprotein (P-gp) in ECC using rhodamine uptake and efflux assays. Therefore, the current study suggested the chemosensitizing potential of celecoxib in the SEC animal model of mammary tumour, which could be explained in part on the basis of inhibition of P-gp function, with possible enhancement of doxorubicin anti-tumour activity. PMID:15458769

  1. Amonafide, a topoisomerase II inhibitor, is unaffected by P-glycoprotein-mediated efflux.

    PubMed

    Chau, Mydoanh; Christensen, Jennifer L; Ajami, Alfred M; Capizzi, Robert L

    2008-03-01

    Over-expression of P-glycoprotein (Pgp+) has been related to resistance to classical Topo II inhibitors used in the treatment of AML and is common in patients with poor-prognosis, such as those with secondary AML (sAML). Since clinical trials with amonafide, a unique ATP-independent Topo II inhibitor, in combination with cytarabine, have shown significant efficacy for remission induction in patients with sAML, we compared the cytotoxic effect of amonafide (amonafide l-malate, Xanafide) to the classical Topo II inhibitors (daunorubicin, doxorubicin, idarubicin, etoposide, and mitoxantrone) in K562 leukemia cells and in the MDR subline, K562/DOX. Pgp expression was found to be approximately 6.5-fold greater in K562/DOX and causes the rapid efflux of these drugs from the leukemia cell. As a consequence, the LC(50) values for the classical Topo II inhibitor drugs tested were each increased up to 3 log units. A similar result was also observed in murine P388 and P388/ADR leukemia cells. Addition of cyclosporin A reversed K562/DOX resistance for the classical Topo II inhibitors, decreasing their LC(50) values to the levels observed with wild type cells but had no effect on amonafide potency in Pgp+ or wild type cells. Further examination of amonafide in bidirectional Caco-2 and MDR1-MDCK models confirmed that amonafide is neither a substrate nor inhibitor of Pgp. These observations suggest that amonafide is a promising therapeutic candidate directed toward bypassing this common mechanism of drug resistance encountered in the treatment of patients with AML, and possibly in other resistant hematological malignancies as well. PMID:17826829

  2. Glyceollin Transport, Metabolism, and Effects on P-Glycoprotein Function in Caco-2 Cells

    PubMed Central

    Chimezie, Chukwuemezie; Ewing, Adina C.; Quadri, Syeda S.; Cole, Richard B.; Boué, Stephen M.; Omari, Christopher F.; Bratton, Melyssa; Glotser, Elena; Skripnikova, Elena; Townley, Ian

    2014-01-01

    Abstract Glyceollins are phytoalexins produced in soybeans from their isoflavone precursor daidzein. Their impressive anticancer and glucose normalization effects in rodents have generated interest in their therapeutic potential. The aim of the present studies was to begin to understand glyceollin intestinal transport and metabolism, and their potential effects on P-glycoprotein (Pgp) in Caco-2 cells. At 10 and 25 ?M, glyceollin permeability was 2.4±0.16×10?4 cm/sec and 2.1±0.15×10?4 cm/sec, respectively, in the absorptive direction. Basolateral to apical permeability at 25 ?M was 1.6±0.10×10?4 cm/sec. Results suggest high absorption potential of glyceollin by a passive-diffusion-dominated mechanism. A sulfate conjugate at the phenolic hydroxyl position was observed following exposure to Caco-2 cells. In contrast to verapamil inhibition of the net secretory permeability of rhodamine 123 (R123) and its enhancement of calcein AM uptake into Caco-2 cells, neither glyceollin nor genistein inhibited Pgp (MDR1; ABCB1) up to 300 ?M. There was no significant change in MDR1 mRNA expression, Pgp protein expression, or R123 transport in cells exposed to glyceollin or genistein for 24?h up to 100 ?M. Collectively, these results suggest that glyceollin has the potential to be well absorbed, but that, similar to the isoflavone genistein, its absorption may be reduced substantially by intestinal metabolism; further, they indicate that glyceollin does not appear to alter Pgp function in Caco-2 cells. PMID:24476214

  3. Characterization of a novel brain barrier ex vivo insect-based P-glycoprotein screening model

    PubMed Central

    Andersson, Olga; Badisco, Liesbeth; Hansen, Ane Hĺkansson; Hansen, Steen Honoré; Hellman, Karin; Nielsen, Peter Aadal; Olsen, Line Rřrbćk; Verdonck, Rik; Abbott, N Joan; Vanden Broeck, Jozef; Andersson, Gunnar

    2014-01-01

    In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain barrier of the desert locust (Schistocerca gregaria). In an in vivo study on the locust, we found an increased uptake of the two well-known Pgp substrates, rhodamine 123 and loperamide after co-administration with the Pgp inhibitors cyclosporine A or verapamil. Furthermore, ex vivo studies on isolated locust brains demonstrated differences in permeation of high and low permeability compounds. The vertebrate Pgp inhibitor verapamil did not affect the uptake of passively diffusing compounds but significantly increased the brain uptake of Pgp substrates in the ex vivo model. In addition, studies at 2°C and 30°C showed differences in brain uptake between Pgp-effluxed and passively diffusing compounds. The transcriptome data show a high degree of sequence identity of the locust Pgp transporter protein sequences to the human Pgp sequence (37%), as well as the presence of conserved domains. As in vertebrates, the locust brain–barrier function is morphologically confined to one specific cell layer and by using a whole-brain ex vivo drug exposure technique our locust model may retain the major cues that maintain and modulate the physiological function of the brain barrier. We show that the locust model has the potential to act as a robust and convenient model for assessing BBB permeability in early drug discovery. PMID:25505597

  4. BCRP and P-gp relay overexpression in triple negative basal-like breast cancer cell line: a prospective role in resistance to Olaparib

    PubMed Central

    Dufour, Robin; Daumar, Pierre; Mounetou, Emmanuelle; Aubel, Corinne; Kwiatkowski, Fabrice; Abrial, Catherine; Vatoux, Catherine; Penault-Llorca, Frédérique; Bamdad, Mahchid

    2015-01-01

    The triple negative basal-like (TNBL) breast carcinoma is an aggressive and unfavorable prognosis disease. Inhibitors of poly(ADP-ribose) polymerase such as Olaparib could represent a promising targeted therapy but their sensitivity against Multidrug Resistance proteins (MDR), which causes resistance, is not well defined. Thus, our work focused on the analysis of P-gp and BCRP coexpression in the SUM1315 TNBL human cell line, in correlation with Olaparib intracellular concentration. Western blot analyses showed a clear coexpression of P-gp and BCRP in SUM1315 cells. A low cytotoxic Olaparib treatment clearly led to an increased expression of both BCRP and P-gp in these cells. Indeed, after 1.5?h of treatment, BCRP expression was increased with a 1.8 fold increase rate. Then, P-gp took over from 3?h to 15?h with an average increase rate of 1.8 fold, and finally returned to control value at 24?h. HPLC-UV analyses showed that, in the same treatment conditions, the intracellular Olaparib concentration increased from 1?h to 3?h and remained relatively stable until 24?h. Results suggest that the resistance mechanism induced by Olaparib in TNBL SUM1315 cell line may be overpassed if a cytotoxic and stable intracellular level of the drug can be maintained. PMID:26234720

  5. Modulation of P-glycoprotein activity in Calu-3 cells using steroids and ?-ligands

    E-print Network

    Hamilton, Karen O.; Yazdanian, Mehran; Audus, Kenneth L.

    2001-01-01

    , propanolol and timolol were also obtained from Sigma. Albuterol sulfate was a gift from Boehringer Ingelheim Inc. (Ridgefield, CT). All other reagents were from Sigma. Cyclosporin A (CsA) was first dissolved in methanol (Fisher Scientific, Fair Lawn, NJ...

  6. EGFR/HER2 inhibitors effectively reduce the malignant potential of MDR breast cancer evoked by P-gp substrates in vitro and in vivo.

    PubMed

    Jin, Yiting; Zhang, Wei; Wang, Hongying; Zhang, Zijing; Chu, Chengyu; Liu, Xiuping; Zou, Qiang

    2016-02-01

    Multidrug resistance (MDR) induced by chemotherapy in breast cancer frequently leads to tumor invasion, metastasis and poor clinical outcome. We preliminarily found that the epidermal growth factor receptor (EGFR) is involved in enhancing the malignant potential of MDR breast cancer cells, but the mechanism remains unclear. In the present study, we demonstrated in vitro and in vivo that EGFR/HER2 promote the invasive and metastatic abilities of MDR breast cancer. More importantly, a new function of EGFR/HER2 inhibitors was revealed for the first time, which could improve the treatment efficacy of breast cancer by reversing the MDR process rather than by inhibiting tumor growth. Firstly, using quantitative real?time PCR and western blot analysis, we found that overexpression of EGFR/HER2 in MCF7/Adr cells upregulated CD147 and MMP2/9 at both the transcription and protein expression levels, which promoted tumor cell migration, as determined using an in vitro invasion assay. Secondly, the upregulated levels of CD147 and MMP2/9 were decreased when EGFR/HER2 activity was inhibited, and therefore tumor invasion was also significantly inhibited. These phenomena were also demonstrated in nude mouse assays. Additionally, in MDR breast cancer patients, we found that overexpression of EGFR and P?gp levels led to shorter overall survival (OS) and disease?free survival (DFS) by IHC assays and Kaplan?Meier survival analysis. In conclusion, EGFR/HER2 play a crucial role in enhancing CD147 and MMP expression to establish favorable conditions for invasion/metastasis in MDR breast cancer. The scope of application of EGFR/HER2 inhibitors may be expanded in EGFR/HER2?positive patients. We suggest that MDR breast cancer patients may benefit from novel therapies targeting EGFR/HER2. PMID:26718028

  7. Heterocyclic cyclohexanone monocarbonyl analogs of curcumin can inhibit the activity of ATP-binding cassette transporters in cancer multidrug resistance.

    PubMed

    Revalde, Jezrael L; Li, Yan; Hawkins, Bill C; Rosengren, Rhonda J; Paxton, James W

    2015-02-01

    Curcumin (CUR) is a phytochemical that inhibits the xenobiotic ABC efflux transporters implicated in cancer multidrug resistance (MDR), such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins 1 and 5 (MRP1 and MRP5). The use of CUR in the clinic however, is complicated by its instability and poor pharmacokinetic profile. Monocarbonyl analogs of CUR (MACs) are compounds without CUR's unstable ?-diketone moiety and were reported to have improved stability and in vivo disposition. Whether the MACs can be used as MDR reversal agents is less clear, as the absence of a ?-diketone may negatively impact transporter inhibition. In this study, we investigated 23 heterocyclic cyclohexanone MACs for inhibitory effects against P-gp, BCRP, MRP1 and MRP5. Using flow cytometry and resistance reversal assays, we found that many of these compounds inhibited the transport activity of the ABC transporters investigated, often with much greater potency than CUR. Overall the analogs were most effective at inhibiting BCRP and we identified three compounds, A12 (2,6-bis((E)-2,5-dimethoxy-benzylidene)cyclohexanone), A13 (2,6-bis((E)-4-hydroxyl-3-methoxybenzylidene)-cyclohexanone) and B11 (3,5-bis((E)-2-fluoro-4,5-dimethoxybenzylidene)-1-methylpiperidin-4-one), as the most promising BCRP inhibitors. These compounds inhibited BCRP activity in a non-cell line, non-substrate-specific manner. Their inhibition occurred by direct transporter interaction rather than modulating protein or cell surface expression. From these results, we concluded that MACs, such as the heterocyclic cyclohexanone analogs in this study, also have potential as MDR reversal agents and may be superior alternatives to the unstable parent compound, CUR. PMID:25543853

  8. Resveratrol induces AMPK-dependent MDR1 inhibition in colorectal cancer HCT116/L-OHP cells by preventing activation of NF-?B signaling and suppressing cAMP-responsive element transcriptional activity.

    PubMed

    Wang, Ziyuan; Zhang, Long; Ni, Zhenhua; Sun, Jian; Gao, Hong; Cheng, Zhuoan; Xu, Jianhua; Yin, Peihao

    2015-12-01

    Resveratrol, a natural polyphenolic compound found in foods and beverages, has attracted increasing attention in recent years because of its potent chemopreventive and anti-tumor effects. In this study, the effects of resveratrol on the expression of P-glycoprotein/multi-drug resistance protein 1 (P-gp/MDR1), and the underlying molecular mechanisms, were investigated in oxaliplatin (L-OHP)-resistant colorectal cancer cells (HCT116/L-OHP). Resveratrol downregulated MDR1 protein and mRNA expression levels and reduced MDR1 promoter activity. It also enhanced the intracellular accumulation of rhodamine 123, suggesting that resveratrol can reverse multi-drug resistance by downregulating MDR1 expression and reducing drug efflux. Resveratrol treatment also reduced nuclear factor-?B (NF-?B) activity, reduced phosphorylation levels of I?B?, and reduced nuclear translocation of the NF-?B subunit p65. Moreover, downregulation of MDR1 expression and promoter activity was mediated by resveratrol-induced AMP-activated protein kinase (AMPK) phosphorylation. The inhibitory effects of resveratrol on MDR1 expression and cAMP-responsive element-binding protein (CREB) phosphorylation were reversed by AMPK? siRNA transfection. We found that the transcriptional activity of cAMP-responsive element (CRE) was inhibited by resveratrol. These results demonstrated that the inhibitory effects of resveratrol on MDR1 expression in HCT116/L-OHP cells were closely associated with the inhibition of NF-?B signaling and CREB activation in an AMPK-dependent manner. PMID:26124005

  9. Toxicology of avermectins and milbemycins (macrocylic lactones) and the role of P-glycoprotein in dogs and cats.

    PubMed

    Merola, Valentina M; Eubig, Paul A

    2012-03-01

    The macrocyclic lactones (MLs) are parasiticides able to kill a wide variety of arthropods and nematodes. They have a high margin of safety for labeled indications, and ivermectin has become the best-selling antiparasitic in the world. Dogs of certain breeds and mixtures of those breeds have a defect in the ABCB1 gene (formerly MDR1 gene) that results in a lack of functional P-glycoprotein, which leads to accumulation of the MLs in the central nervous system and a higher risk of adverse effects when exposed. There is no specific antidote for ML toxicosis so the most important part of treatment is good supportive care. PMID:22381182

  10. The cross-talk between canonical and non-canonical Wnt-dependent pathways regulates P-glycoprotein expression in human blood–brain barrier cells

    PubMed Central

    Pinzón-Daza, Martha L; Salaroglio, Iris C; Kopecka, Joanna; Garzňn, Ruth; Couraud, Pierre-Olivier; Ghigo, Dario; Riganti, Chiara

    2014-01-01

    In this work, we investigate if and how transducers of the ‘canonical' Wnt pathway, i.e., Wnt/glycogen synthase kinase 3 (GSK3)/?-catenin, and transducers of the ‘non-canonical' Wnt pathway, i.e., Wnt/RhoA/RhoA kinase (RhoAK), cooperate to control the expression of P-glycoprotein (Pgp) in blood–brain barrier (BBB) cells. By analyzing human primary brain microvascular endothelial cells constitutively activated for RhoA, silenced for RhoA or treated with the RhoAK inhibitor Y27632, we found that RhoAK phosphorylated and activated the protein tyrosine phosphatase 1B (PTP1B), which dephosphorylated tyrosine 216 of GSK3, decreasing the GSK3-mediated inhibition of ?-catenin. By contrast, the inhibition of RhoA/RhoAK axis prevented the activation of PTP1B, enhanced the GSK3-induced phosphorylation and ubiquitination of ?-catenin, and reduced the ?-catenin-driven transcription of Pgp. The RhoAK inhibition increased the delivery of Pgp substrates like doxorubicin across the BBB and improved the doxorubicin efficacy against glioblastoma cells co-cultured under a BBB monolayer. Our data demonstrate that in human BBB cells the expression of Pgp is controlled by a cross-talk between canonical and non-canonical Wnt pathways. The disruption of this cross-talk, e.g., by inhibiting RhoAK, downregulates Pgp and increases the delivery of Pgp substrates across the BBB. PMID:24896565

  11. Frog intestinal perfusion to evaluate drug permeability: application to p-gp and cyp3a4 substrates

    PubMed Central

    Yerasi, Neelima; Vurimindi, Himabindu; Devarakonda, Krishna

    2015-01-01

    To evaluate the reliability of using in situ frog intestinal perfusion technique for permeability assessment of carrier transported drugs which are also substrates for CYP enzymes. Single Pass Intestinal Perfusion (SPIP) studies were performed in frogs of the species Rana tigrina using established method for rats with some modifications after inducing anesthesia. Effective permeability coefficient (Peff) of losartan and midazolam was calculated in the presence and absence of inhibitors using the parallel-tube model. Peff of losartan when perfused alone was found to be 0.427 ± 0.27 × 10-4cm/s and when it was co-perfused with inhibitors, significant change in Peff was observed. Peff of midazolam when perfused alone was found to be 2.03 ± 0.07 × 10-4cm/s and when it was co-perfused with inhibitors, no significant change in Peff was observed. Comparison of Peff calculated in frog with that of other available models and also humans suggested that the Peff-values are comparable and reflected well with human intestinal permeability. It is possible to determine the Peff-value for compounds which are dual substrates of P-glycoprotein and CYP3A4 using in situ frog intestinal perfusion technique. The calculated Peff-values correlated well with reported Peff-values of probe drugs. comparison of the Peff-value of losartan obtained with that of reported human’s Peff and Caco 2 cell data, and comparison of the Peff-value of midazolam with that of reported rat’s Peff, we could conclude that SPIP from model can be reliably used in preclinical studies for permeability estimation. This model may represent a valuable alternative to the low speed and high cost of conventional animal models (typically rodents) for the assessment of intestinal permeability. PMID:26236236

  12. Entamoeba histolytica P-glycoprotein (EhPgp) inhibition, induce trophozoite acidification and enhance programmed cell death.

    PubMed

    Medel Flores, Olivia; Gómez García, Consuelo; Sánchez Monroy, Virgina; Villalba Magadaleno, José D'Artagnan; Nader García, Elvira; Pérez Ishiwara, D Guillermo

    2013-11-01

    Programmed cell death (PCD) is induced in Entamoeba histolytica by a variety of stimuli in vitro and in vivo. In mammals, intracellular acidification serves as a global switch for inactivating cellular processes and initiates molecular mechanisms implicated in the destruction of the genome. In contrast, intracellular alkalinization produced by P-glycoprotein overexpression in multidrug-resistant cells has been related to apoptosis resistance. Our previous studies showed that overexpression of E. histolytica P-glycoprotein (PGP) altered chloride-dependent currents and triggered trophozoite swelling, the reverse process of cell shrinkage produced during PCD. Here we showed that antisense inhibition of PGP expression produced a synchronous death of trophozoites and the enhancement of biochemical and morphological characteristics of PCD induced by G418. The nucleus was contracted, and the nuclear membrane was disrupted. Moreover, chromatin was extensively fragmented. Ca(2+) concentration was increased, while the intracellular pH (ipH) was acidified. In contrast, PGP overexpression prevented intracellular acidification and circumvented the apoptotic effect of G418. PMID:24012862

  13. Capsaicin pretreatment increased the bioavailability of cyclosporin in rats: involvement of P-glycoprotein and CYP 3A inhibition.

    PubMed

    Zhai, Xue-jia; Shi, Fang; Chen, Fen; Lu, Yong-ning

    2013-12-01

    Capsaicin (CAP), the main ingredient responsible for the hot pungent taste of chilli peppers. This study investigated the effect of CAP on the pharmacokinetics of Cyclosporin A (CyA) in rats and the mechanism of this food-drug interaction. The results indicated that after 7 days of low or middle dose of CAP (0.3 or 1.0 mg/kg), the blood concentration of CyA was not significantly changed compared with that of vehicle-treated rats, whereas the blood concentration of CyA in high dose group (3.0 mg/kg) was significantly increased. The total clearance (CL/F) of CyA was decreased, and the bioavailability was significantly increased to about 1.44-fold of that in vehicle-treated rats after 7 days of high dose CAP treatment. At this time, the P-gp and CYP3A1/2 in the liver and intestine were decreased at both the mRNA and protein levels. These results demonstrated that chronic ingestion of high doses of CAP will increase the bioavailability of CyA to a significant extent in rats and the food-drug interaction between CAP and CyA appears to be due to modulation of P-gp and CYP3A gene expression by CAP, with differential dose-dependence. PMID:24013073

  14. [Effect of tetrandrine combined with daunorubicin on expressions of P21 and P-gp in K562/A02 cells].

    PubMed

    Chen, Bao-An; Li, Jing; Chen, Jian; Gao, Feng; Wu, Ya-Nan; Zhu, Min-Sheng; Ding, Jia-Hua; Gao, Chong; Sun, Xin-Chen; Xu, Wen-Lin; Wang, Xue-Mei

    2009-10-01

    This study was aimed to investigate the reversal effect of Tetrandrine (TET) combined with daunorubicin (DNR) on multidrug resistance (MDR) of K562/A02 cells and its relation to P21, P-gp and their genes so as to provide the new theoretic evidence for clinical use of TET. The experiments were divided into 4 groups: control group (DNR alone), combined 1 group (DNA+0.5 mg/L TET), combined 2 group (DNR+1.0 mg/L TET) and combined 3 group (DNR+2.0 mg/L TET). The expressions of P21, P-gp and mdr-1 gene in K562/A02 cells of different groups were detected by Western blot, flow cytometry and semi-quantitative PCR respectively. The results showed that the expression of P21 was enhanced along with increasing of TET concentration, the expression of P-gp was reduced along with increasing of TET concentration and expression of mdr-1 gene was almost not observed in K562 cells, but the high expression of mdr-1 gene was seen in K562/A02 cells, furthermore, the expression of mdr-1 gene in K562/A02 cells increasingly was reduced along with increasing of TET concentration. It is concluded that the TET possesses the reversal effect on multiple drug resistance of K562/A02 cells with concentration dependence, the reversal effect of TET may be related to up-regulation of P21 expression and down-regulation of P-gp and mdr-1 gene expressions in K562/A02 cells. PMID:19840446

  15. Role of glutathione S-transferase P1, P-glycoprotein and multidrug resistance-associated protein 1 in acquired doxorubicin resistance.

    PubMed

    Harbottle, A; Daly, A K; Atherton, K; Campbell, F C

    2001-06-15

    While P-glycoprotein (Pgp) and multidrug resistance-associated protein 1 (MRP1) are known to be important in acquired doxorubicin resistance, the role of glutathione S-transferases (GST) remains unclear. Our study assessed roles of these 3 factors in a human drug-sensitive carcinoma cell line (HEp2), a subclone made resistant by prolonged incubation in doxorubicin (HEp2A), and HEp2 cells stably transfected with human GSTP1. Drug-resistant HEp2A cells showed greater total GST activity, GSTP class enzyme expression, Pgp expression, MRP1 transcript expression, drug efflux and at least 13-fold greater resistance to doxorubicin than the parent HEp2 cell line. GSTM class enzyme expression was similar in both cell types, while GSTA class enzymes were not detected. In the resistant HEp2A cells, cytotoxicity was markedly enhanced by the Pgp/MRP inhibitor verapamil at low doxorubicin concentrations. The GST inhibitor curcumin also enhanced cytotoxicity in HEp2A cells when the Pgp/MRP efflux barrier had been reversed by verapamil or overcome by high doxorubicin concentrations. In addition, curcumin had a chemosensitising effect at low doxorubicin concentrations in HEp2 cells. Stable transfection of HEp2 cells with human GSTP1 increases doxorubicin resistance 3-fold over control cells. Our study indicates involvement of GSTP enzymes as well as efflux mechanisms in the acquired doxorubicin-resistance phenotype. PMID:11351295

  16. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense

    SciTech Connect

    Leslie, Elaine M.; Deeley, Roger G.; Cole, Susan P.C. . E-mail: coles@post.queensu.ca

    2005-05-01

    In tumor cell lines, multidrug resistance is often associated with an ATP-dependent decrease in cellular drug accumulation which is attributed to the overexpression of certain ATP-binding cassette (ABC) transporter proteins. ABC proteins that confer drug resistance include (but are not limited to) P-glycoprotein (gene symbol ABCB1), the multidrug resistance protein 1 (MRP1, gene symbol ABCC1), MRP2 (gene symbol ABCC2), and the breast cancer resistance protein (BCRP, gene symbol ABCG2). In addition to their role in drug resistance, there is substantial evidence that these efflux pumps have overlapping functions in tissue defense. Collectively, these proteins are capable of transporting a vast and chemically diverse array of toxicants including bulky lipophilic cationic, anionic, and neutrally charged drugs and toxins as well as conjugated organic anions that encompass dietary and environmental carcinogens, pesticides, metals, metalloids, and lipid peroxidation products. P-glycoprotein, MRP1, MRP2, and BCRP/ABCG2 are expressed in tissues important for absorption (e.g., lung and gut) and metabolism and elimination (liver and kidney). In addition, these transporters have an important role in maintaining the barrier function of sanctuary site tissues (e.g., blood-brain barrier, blood-cerebral spinal fluid barrier, blood-testis barrier and the maternal-fetal barrier or placenta). Thus, these ABC transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, excretion, and toxicity of xenobiotics. In this review, the role of these four ABC transporter proteins in protecting tissues from a variety of toxicants is discussed. Species variations in substrate specificity and tissue distribution of these transporters are also addressed since these properties have implications for in vivo models of toxicity used for drug discovery and development.

  17. Inhibition of P-glycoprotein-mediated transport by S-adenosylmethionine and cynarin in multidrug-resistant human uterine sarcoma MES-SA/Dx5 cells.

    PubMed

    Angelini, A; Di Pietro, R; Centurione, L; Castellani, M L; Conti, P; Porreca, E; Cuccurullo, F

    2012-01-01

    Multidrug resistance (MDR) to anticancer chemotherapy is often mediated by the overexpression of the plasma membrane drug transporter P-glycoprotein (Pgp) encoded by multidrug resistance gene (MDR1). Various chemosensitizing agents are able to inhibit Pgp activity but their clinical application is limited by their toxicity. Furthermore, hepatotoxicity related to chemotherapy causes delays of treatment in cancer patients and often requires supplementation of anti-tumour therapy with hepatoprotective agents. In this in vitro study, we investigated the effectiveness of an endogenous hepatoprotective agent, S-adenosylmethionine (SAMe), and a natural hepatoprotective compound, Cynarin (Cyn), to inhibit Pgp activity in order to evaluate their potential use as chemosensitizing agents. Human doxorubicin (doxo) resistant uterine sarcoma cells (MES-SA/Dx5) expressing high levels of Pgp were treated with two hepatoprotectors at various concentrations (1, 5 and 10 microM) that are clinically achievable, in the presence or absence of three different concentrations of doxo (2, 4 and 8 microM). In order to evaluate the effects of both hepatoprotectors, we measured the intracellular accumulation and cytotoxicity of doxo, the cellular GSH level, ROS production and catalase (CAT) activity. We found that treatment with 2, 4 and 8 microM doxo in the presence of SAMe or Cyn significantly increased the doxo accumulation and cytotoxicity on MES-SA/Dx5 cells, when compared to control cells receiving doxo alone. Moreover, treatment with SAMe or Cyn significantly increased GSH content, greater than 80 percent and 60 percent, respectively) and CAT activity greater than 60 and 150 percent, respectively) in resistant cancer cells, while ROS production was below the values of corresponding untreated control cells. Our in vitro findings provide a rationale for the potential clinical use of these hepatoprotectors both as chemosensitizing agents, to reverse Pgp-mediated MDR, and as antioxidants to protect normal cells from chemotherapy-induced cytotoxixity. PMID:23034269

  18. Functional studies on the activity of efflux transporters in an ex vivo model with chicken splenocytes and evaluation of selected fluoroquinolones in this model.

    PubMed

    Haritova, Aneliya Milanova; Schrickx, Jan A; Fink-Gremmels, Johanna

    2007-03-15

    The efflux proteins P-glycoprotein (P-gp), BCRP and members of the MRP-family (MRPs) are increasingly recognized as determinants of the absorption, tissue distribution and excretion of numerous drugs. A widely applied in vitro screening method, to assess the effect of these efflux transporters in transmembrane transport of drugs is based on the use of peripheral blood mononuclear cells (PBMC), in which the efflux of fluorescent dye Rhodamine 123 (Rh-123) can be easily measured. In avian species, the isolation of PBMCs is compromised by the presence of thrombocytes having approximately the same size. As an alternative, we validated the use of isolated splenocytes to assess Rhodamine 123 transport in the presence and absence of specific inhibitors for P-gp, MRPs and BCRP. Rh-123 efflux was concentration-dependent with the percentage of efflux that decreased with increasing concentrations. P-gp inhibitors, PSC833 and GF120918, significantly inhibit Rh-123 efflux, whereas inhibitors for MRPs and BCRP, MK571 and Ko-143, respectively, have a limited inhibitory effect. However, the effect of GF120918 was more pronounced as compared to PSC833, suggesting an additional role for BCRP next to P-gp in Rh-123 efflux. Moreover, fluoroquinolones were selected to test the applicability of the described model. None of these fluoroquinolones significantly inhibit P-gp function at concentrations up to 50 microM, with exception of danofloxacin and danofloxacin mesylate that were found to reduce Rh-123 efflux by approximately 15%. PMID:17188652

  19. Chronic stress and antidepressant treatment have opposite effects on P-glycoprotein at the blood-brain barrier: an experimental PET study in rats.

    PubMed

    de Klerk, Onno L; Bosker, Fokko J; Willemsen, Antoon T M; Van Waarde, Aren; Visser, Anniek K D; de Jager, Tim; Dagyte, Girstaute; den Boer, Johan A; Dierckx, Rudi A; Meerlo, Peter

    2010-08-01

    The multi-drug efflux transporter P-glycoprotein is expressed in high concentrations at the blood-brain barrier and has a major function in the transport of drugs. In a recent PET-study evidence was found for an increased function of P-glycoprotein at the blood-brain barrier in medicated patients suffering from major depressive disorder. We used small-animal PET and [(11)C]-verapamil to study P-glycoprotein function at the blood-brain barrier of rats, either being administered as venlafaxine, an antidepressant, or subjected to chronic stress, a factor contributing to the development of depression. In a first experiment, male Wistar rats underwent a three-week foot shock procedure as a model of human depression. In a second experiment, rats were chronically treated with the antidepressant venlafaxine (25 mg/kg/d via an implanted osmotic minipump). In both experiments, a [(11)C]-verapamil PET scan was performed. In the chronically stressed rats, the distribution volume (V(T)) of [(11)C]-verapamil was significantly increased, whereas treatment with venlafaxine had the opposite effect and caused a significant reduction in V(T). The changes in V(T) could not be attributed to the influx rate constant (K(1)). Our data suggest that P-glycoprotein function at the blood-brain barrier is inhibited by chronic stress and increased by chronic administration of venlafaxine. PMID:19942635

  20. Suppression of P-gp induced multiple drug resistance in a drug resistant gastric cancer cell line by overexpression of Fas

    PubMed Central

    Yin, Fang; Shi, Yong Quan; Zhao, Wei Ping; Xiao, Bing; Miao, Ji Yan; Fan, Dai Ming

    2000-01-01

    AIM: To observe the drug sensitizing effect and related mechanisms of fas gene transduction on human drug-resistant gastric cancer cell SGC7901/VCR (resistant to Vincristine). METHODS: The cell cycle alteration was observed by FACS. The sensitivity of gastric cancer cells to apoptosis was determined by in vitro apoptosis assay. The drug sensitization of cells to several anti-tumor drugs was observed by MTT assay. Immunochemical method was used to show expression of P-gp and Topo II in gastric cancer cells. RESULTS: Comparing to SGC7901 and pBK-SGC7901/VCR, fas-SGC7901/VCR showed decreasing G2 cells and increasing S cells, the G2 phase fraction of pBK-SGC7901/VCR was about 3.0 times that of fas-SGC7901/VCR, but S phase fraction of fas-SGC7901/VCR was about 1.9 times that of pBK-SGC7901/VCR, indicating S phase arrest of fas-SGC7901/VCR. FACS also suggested apoptosis of fas-SGC7901/VCR. fas-SGC7901/VCR was more sensitive to apoptosis inducing agent VM-26 than pBK-SGC7901/VCR. MTT assay showed increased sensitization of fas-SGC7901/VCR to DDP, MMC and 5-FU, but same sensitization to VCR according to pBK-SGC7901/VCR. SGC7901, pBK-SGC7901/VCR and fas-SGC7901/VCR had positively stained Topo II equally. P-gp staining in pBK-SGC7901/VCR was stronger than in SGC7901, but there was little staining of Pgp in fas-SGC7901/VCR. CONCLUSION: fas gene transduction could reverse the MDR of human drug-resistant gastric cancer cell SGC7901/VCR to a degree, possibly because of higher sensitization to apoptosis and decreased expression of P-gp. PMID:11819671

  1. Identification of an ABCB1 (P-glycoprotein)-positive carfilzomib-resistant myeloma subpopulation by the pluripotent stem cell fluorescent dye CDy1.

    PubMed

    Hawley, Teresa S; Riz, Irene; Yang, Wenjing; Wakabayashi, Yoshiyuki; Depalma, Louis; Chang, Young-Tae; Peng, Weiqun; Zhu, Jun; Hawley, Robert G

    2013-04-01

    Multiple myeloma (MM) is characterized by the malignant expansion of differentiated plasma cells. Although many chemotherapeutic agents display cytotoxic activity toward MM cells, patients inevitably succumb to their disease because the tumor cells become resistant to the anticancer drugs. The cancer stem cell hypothesis postulates that a small subpopulation of chemotherapy-resistant cancer cells is responsible for propagation of the tumor. Herein we report that efflux of the pluripotent stem cell dye CDy1 identifies a subpopulation in MM cell lines characterized by increased expression of P-glycoprotein, a member of the ABC (ATP-binding cassette) superfamily of transporters encoded by ABCB1. We also demonstrate that ABCB1-overexpressing MM cells are resistant to the second-generation proteasome inhibitor carfilzomib that recently received accelerated approval for the treatment of therapy-refractive MM by the U.S. Food and Drug Administration. Moreover, increased resistance to carfilzomib in sensitive MM cells following drug selection was associated with upregulation of ABCB1 cell-surface expression which correlated with increased transporter activity as measured by CDy1 efflux. We further show that chemosensitization of MM cells to carfilzomib could be achieved in vitro by cotreatment with vismodegib, a hedgehog pathway antagonist which is currently in MM clinical trials. CDy1 efflux may therefore be a useful assay to determine whether high expression of ABCB1 is predictive of poor clinical responses in MM patients treated with carfilzomib. Our data also suggest that inclusion of vismodegib might be a potential strategy to reverse ABCB1-mediated drug resistance should it occur. PMID:23475625

  2. Macrocyclic Lactones Differ in Interaction with Recombinant P-Glycoprotein 9 of the Parasitic Nematode Cylicocylus elongatus and Ketoconazole in a Yeast Growth Assay

    PubMed Central

    Kaschny, Maximiliane; Demeler, Janina; Janssen, I. Jana I.; Kuzmina, Tetiana A.; Besognet, Bruno; Kanellos, Theo; Kerboeuf, Dominique; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2015-01-01

    Macrocyclic lactones (MLs) are widely used parasiticides against nematodes and arthropods, but resistance is frequently observed in parasitic nematodes of horses and livestock. Reports claiming resistance or decreased susceptibility in human nematodes are increasing. Since no target site directed ML resistance mechanisms have been identified, non-specific mechanisms were frequently implicated in ML resistance, including P-glycoproteins (Pgps, designated ABCB1 in vertebrates). Nematode genomes encode many different Pgps (e.g. 10 in the sheep parasite Haemonchus contortus). ML transport was shown for mammalian Pgps, Pgps on nematode egg shells, and very recently for Pgp-2 of H. contortus. Here, Pgp-9 from the equine parasite Cylicocyclus elongatus (Cyathostominae) was expressed in a Saccharomyces cerevisiae strain lacking seven endogenous efflux transporters. Pgp was detected on these yeasts by flow cytometry and chemiluminescence using the monoclonal antibody UIC2, which is specific for the active Pgp conformation. In a growth assay, Pgp-9 increased resistance to the fungicides ketoconazole, actinomycin D, valinomycin and daunorubicin, but not to the anthelmintic fungicide thiabendazole. Since no fungicidal activity has been described for MLs, their interaction with Pgp-9 was investigated in an assay involving two drugs: Yeasts were incubated with the highest ketoconazole concentration not affecting growth plus increasing concentrations of MLs to determine competition between or modulation of transport of both drugs. Already equimolar concentrations of ivermectin and eprinomectin inhibited growth, and at fourfold higher ML concentrations growth was virtually abolished. Selamectin and doramectin did not increase susceptibility to ketoconazole at all, although doramectin has been shown previously to strongly interact with human and canine Pgp. An intermediate interaction was observed for moxidectin. This was substantiated by increased binding of UIC2 antibodies in the presence of ivermectin, moxidectin, daunorubicin and ketoconazole but not selamectin. These results demonstrate direct effects of MLs on a recombinant nematode Pgp in an ML-specific manner. PMID:25849454

  3. Macrocyclic lactones differ in interaction with recombinant P-glycoprotein 9 of the parasitic nematode Cylicocylus elongatus and ketoconazole in a yeast growth assay.

    PubMed

    Kaschny, Maximiliane; Demeler, Janina; Janssen, I Jana I; Kuzmina, Tetiana A; Besognet, Bruno; Kanellos, Theo; Kerboeuf, Dominique; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2015-04-01

    Macrocyclic lactones (MLs) are widely used parasiticides against nematodes and arthropods, but resistance is frequently observed in parasitic nematodes of horses and livestock. Reports claiming resistance or decreased susceptibility in human nematodes are increasing. Since no target site directed ML resistance mechanisms have been identified, non-specific mechanisms were frequently implicated in ML resistance, including P-glycoproteins (Pgps, designated ABCB1 in vertebrates). Nematode genomes encode many different Pgps (e.g. 10 in the sheep parasite Haemonchus contortus). ML transport was shown for mammalian Pgps, Pgps on nematode egg shells, and very recently for Pgp-2 of H. contortus. Here, Pgp-9 from the equine parasite Cylicocyclus elongatus (Cyathostominae) was expressed in a Saccharomyces cerevisiae strain lacking seven endogenous efflux transporters. Pgp was detected on these yeasts by flow cytometry and chemiluminescence using the monoclonal antibody UIC2, which is specific for the active Pgp conformation. In a growth assay, Pgp-9 increased resistance to the fungicides ketoconazole, actinomycin D, valinomycin and daunorubicin, but not to the anthelmintic fungicide thiabendazole. Since no fungicidal activity has been described for MLs, their interaction with Pgp-9 was investigated in an assay involving two drugs: Yeasts were incubated with the highest ketoconazole concentration not affecting growth plus increasing concentrations of MLs to determine competition between or modulation of transport of both drugs. Already equimolar concentrations of ivermectin and eprinomectin inhibited growth, and at fourfold higher ML concentrations growth was virtually abolished. Selamectin and doramectin did not increase susceptibility to ketoconazole at all, although doramectin has been shown previously to strongly interact with human and canine Pgp. An intermediate interaction was observed for moxidectin. This was substantiated by increased binding of UIC2 antibodies in the presence of ivermectin, moxidectin, daunorubicin and ketoconazole but not selamectin. These results demonstrate direct effects of MLs on a recombinant nematode Pgp in an ML-specific manner. PMID:25849454

  4. Differences in the expression of endogenous efflux transporters in MDR1-transfected versus wildtype cell lines affect P-glycoprotein mediated drug transport

    PubMed Central

    Kuteykin-Teplyakov, Konstantin; Luna-Tortós, Carlos; Ambroziak, Kamila; Löscher, Wolfgang

    2010-01-01

    Background and purpose: P-glycoprotein (Pgp) efflux assays are widely used to identify Pgp substrates. The kidney cell lines Madin-Darby canine kidney (MDCK)-II and LLC-PK1, transfected with human MDR1 (ABCB1) are used to provide recombinant models of drug transport. Endogenous transporters in these cells may contribute to the activities of recombinant transporters, so that drug transport in MDR1-transfected cells is often corrected for the transport obtained in parental (wildtype) cells. However, expression of endogenous transporters may vary between transfected and wildtype cells, so that this correction may cause erroneous data. Here, we have measured the expression of endogenous efflux transporters in transfected and wildtype MDCK-II or LLC cells and the consequences for Pgp-mediated drug transport. Experimental approach: Using quantitative real-time RT-PCR, we determined the expression of endogenous Mdr1 mRNA and other efflux transporters in wildtype and MDR1-transfected MDCK-II and LLC cells. Transcellular transport was measured with the test substrate vinblastine. Key results: In MDR1-transfected MDCK cells, expression of endogenous (canine) Mdr1 and Mrp2 (Abcc2) mRNA was markedly lower than in wildtype cells, whereas MDR1-transfected LLC cells exhibited comparable Mdr1 but strikingly higher Mrp2 mRNA levels than wildtype cells. As a consequence, transport of vinblastine by human Pgp in efflux experiments was markedly underestimated when transport in MDR1-transfected MDCK cells was corrected for transport obtained in wildtype cells. This problem did not occur in LLC cells. Conclusions and implications: Differences in the expression of endogenous efflux transporters between transfected and wildtype MDCK cells provide a potential bias for in vitro studies on Pgp-mediated drug transport. PMID:20590635

  5. Drug Resistance in Cortical and Hippocampal Slices from Resected Tissue of Epilepsy Patients: No Significant Impact of P-Glycoprotein and Multidrug Resistance-Associated Proteins

    PubMed Central

    Sandow, Nora; Kim, Simon; Raue, Claudia; Päsler, Dennis; Klaft, Zin-Juan; Antonio, Leandro Leite; Hollnagel, Jan Oliver; Kovacs, Richard; Kann, Oliver; Horn, Peter; Vajkoczy, Peter; Holtkamp, Martin; Meencke, Heinz-Joachim; Cavalheiro, Esper A.; Pragst, Fritz; Gabriel, Siegrun; Lehmann, Thomas-Nicolas; Heinemann, Uwe

    2015-01-01

    Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs [carbamazepine (CBZ), sodium valproate, phenytoin] and two unspecific inhibitors of Pgp and MRPs [verapamil (VPM) and probenecid (PBN)] on seizure-like events (SLEs) induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices) were studied. Although in slice preparations the blood brain barrier is not functional, we found that SLEs predominantly persisted in the presence of anticonvulsant drugs (90%) and also in the presence of VPM and PBN (86%). Following subsequent co-administration of anti-epileptic drugs and drug transport inhibitors, SLEs continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30%) or as suppression (7%), particularly by perfusion with CBZ in PBN containing solutions (43, 9%). Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7% of patients. Patients whose tissue was completely or partially sensitive (65%) presented with higher seizure frequencies than those with resistant tissue (35%). However, corresponding subgroups of patients do not differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue. PMID:25741317

  6. Expression of the multidrug transporter P-glycoprotein is inversely related to that of apoptosis-associated endogenous TRAIL.

    PubMed

    Souza, Paloma S; Madigan, James P; Gillet, Jean-Pierre; Kapoor, Khyati; Ambudkar, Suresh V; Maia, Raquel C; Gottesman, Michael M; Leung Fung, King

    2015-08-15

    Multidrug resistance (MDR) has been associated with expression of ABC transporter genes including P-glycoprotein (Pgp, MDR1, ABCB1). However, deregulation of apoptotic pathways also renders cells resistant to chemotherapy. To discover apoptosis-related genes affected by Pgp expression, we used the HeLa MDR-off system. We found that using doxycycline to control Pgp expression has a significant advantage over tetracycline, in that doxycycline caused less endogenous gene expression modification/perturbation, and was more potent than tetracycline in suppressing Pgp expression. Cells overexpressing Pgp have lower TNFSF10 (TRAIL) expression than their parental cells. Controlled downregulation of Pgp increased endogenous TRAIL protein expression. Also, ectopic overexpression of TRAIL in Pgp-positive cells was associated with a reduction in Pgp levels. However, cells expressing a functionally defective mutant Pgp showed an increase in TRAIL expression, suggesting that Pgp function is required for TRAIL suppression. Cells in which Pgp is knocked down by upregulation of TRAIL expression are less susceptible to TRAIL ligand (sTRAIL)-induced apoptosis. Our findings reveal an inverse correlation between functional Pgp and endogenous TRAIL expression. Pgp function plays an important role in the TRAIL-mediated apoptosis pathway by regulating endogenous TRAIL expression and the TRAIL-mediated apoptosis pathway in MDR cancer cells. PMID:26101157

  7. Molecular Cloning and Characterization of a P-Glycoprotein from the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Tian, Lixia; Yang, Jiaqiang; Hou, Wenjie; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Zhou, Xuguo; Wu, Qingjun

    2013-01-01

    Macrocyclic lactones such as abamectin and ivermectin constitute an important class of broad-spectrum insecticides. Widespread resistance to synthetic insecticides, including abamectin and ivermectin, poses a serious threat to the management of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major pest of cruciferous plants worldwide. P-glycoprotein (Pgp), a member of the ABC transporter superfamily, plays a crucial role in the removal of amphiphilic xenobiotics, suggesting a mechanism for drug resistance in target organisms. In this study, PxPgp1, a putative Pgp gene from P. xylostella, was cloned and characterized. The open reading frame (ORF) of PxPgp1 consists of 3774 nucleotides, which encodes a 1257-amino acid peptide. The deduced PxPgp1 protein possesses structural characteristics of a typical Pgp, and clusters within the insect ABCB1. PxPgp1 was expressed throughout all developmental stages, and showed the highest expression level in adult males. PxPgp1 was highly expressed in midgut, malpighian tubules and testes. Elevated expression of PxPgp1 was observed in P. xylostella strains after they were exposed to the abamectin treatment. In addition, the constitutive expressions of PxPgp1 were significantly higher in laboratory-selected and field-collected resistant strains in comparison to their susceptible counterpart. PMID:24264038

  8. Modulation of the multidrug resistance P-glycoprotein: Detection with technetium-99m-sestamibi in vivo

    SciTech Connect

    Luker, G.D.; Fracasso, P.M.; Dobkin, J.; Piwnica-Worms, D.

    1997-03-01

    Overexpression of the multidrug resistance (MDR1) P-glycoprotein (Pgp) has been documented in nearly all forms of human cancers and increased levels of Pgp in some tumors correlate with poor response to treatment. Technetium-99m-sestamibi has recently been validated as a Pgp transport substrate. Pgp is also normally expressed along the biliary canalicular surface of hepatocytes and the luminal side of proximal tubule cells in the kidney, while not expressed in heart. Focused on these organs with known Pgp status, we present the findings on {sup 99m}Tc-sestamibi showed normal, prompt clearance of the radiotracer from the liver and kidneys relative to the heart. After administration of the Pgp modulator, {sup 99m}Tc-sestamibi was selectively retained in the liver and kidneys. Hepatobiliary and renal clearance of {sup 99m}Tc-sestamibi are Pgp-mediated, and inhibition of Pgp transport in these organs can be successfully imaged using {sup 99m}Tc-sestamibi in patients. Similar results might be expected with this and related radiopharmaceuticals for functional imaging of Pgp transport and modulation in tumors. 34 refs., 2 figs.

  9. Cinchonine per os: efficient circumvention of P-glycoprotein-mediated multidrug resistance.

    PubMed

    Genne, P; Duchamp, O; Solary, E; Magnette, J; Belon, J P; Chauffert, B

    1995-03-01

    We have previously suggested that quinine and cinchonine could be good candidates for the clinical circumvention of multidrug resistance (MDR) in haematological malignancies because of their tolerance and their retained efficacy in serum. We have also shown that cinchonine was more efficient than quinine as an anti-MDR agent in vitro, ex vivo and in vivo after parenteral administration. Here, we report that cinchonine administered per os (po) is much more active than quinine po in circumventing MDR in rats bearing resistant colon tumours. The pharmacokinetics of cinchonine and quinine administered po in rat are shown to be very different. Cinchonine demonstrates a greater absolute bioavailability than quinine (44% versus 30%, respectively). Its serum concentration correlates with the anti-MDR activity measured ex vivo and in vivo. Cinchonine administered po does not significantly modify the pharmacokinetics of intravenous doxorubicin (DXR). However, cinchonine induces a significant increase of DXR uptake in organs which express the mdr1 gene (liver, kidney, lung). When associated with VAD (vincristine, adriamycin, dexamethasone) combined therapy in rats, cinchonine does not significantly increase the toxicity of the cytotoxic drugs. Based on these experimental data, a phase I clinical trial is currently in progress to test the tolerance of this potent MDR-reversing agent administered po. PMID:7710633

  10. Reduced ABCB1 Expression and Activity in the Presence of Acrylic Copolymers

    PubMed Central

    Mohammadzadeh, Ramin; Baradaran, Behzad; Valizadeh, Hadi; Yousefi, Bahman; Zakeri-Milani, Parvin

    2014-01-01

    Purpose: P-glycoprotein (P-gp; ABCB1), an integral membrane protein in the apical surface of human intestinal epithelial cells, plays a crucial role in the intestinal transport and efflux leading to changes in the bioavailability of oral pharmaceutical compounds. This study was set to examine the potential effects of three Eudragits RL100, S100 and L100 on the intestinal epithelial membrane transport of rhodammine-123 (Rho-123), a substrate of P-gp using a monolayer of human colon cancer cell line (Caco-2). Methods: The least non-cytotoxic concentrations of the excipients were assessed in Caco-2 cells by the MTT assay. Then the transepithelial transport of Rho-123 across Caco-2 monolayers was determined with a fluorescence spectrophotometer. Besides, the expression of the P-gp in cells exposed to the polymers was demonstrated using Western-blotting analysis. Results: Treatment of cells with Eudragit RL100 and L100 led to a very slight change while Eudragit S100 showed 61% increase in Rho-123 accumulation (P<0.001) and also reduced transporter expression. Conclusion: Our studies suggest that using proper concentrations of the Eudragit S100 in drug formulation would improve intestinal permeability and absorption of p-gp substrate drugs. PMID:24754004

  11. Effects of naturally occurring polymethyoxyflavonoids on cell growth, p-glycoprotein function, cell cycle, and apoptosis of daunorubicin-resistant T lymphoblastoid leukemia cells.

    PubMed

    Ishii, Kimiko; Tanaka, Sachiko; Kagami, Keisuke; Henmi, Kayo; Toyoda, Hiroo; Kaise, Toshikazu; Hirano, Toshihiko

    2010-03-01

    Effects of polymethoxyflavonoids tangeretin and nobiletin and the related polyphenolic compounds baicalein, wogonin, quercetin, and epigallocatechin gallate on the cell growth, P-glycoprotein function, apoptosis, and cell cycle of human T lymphoblastoid leukemia MOLT-4 and its daunorubicin-resistant cells were investigated. The IC50 values of these compounds on the cell growth were 7.1-32.2 micromol/L, and the inhibitory effects were observed to be almost equal to the parent MOLT-4 and the daunorubicin-resistant cells. Tangeretin and nobiletin showed the strongest effects with the IC50 values of 7.1-14.0 micromol/L. These polymethoxyflavonoids inhibited the P-glycoprotein function and significantly influenced the cell cycle (p<.05), whereas they did not induce apoptosis. PMID:19863351

  12. The Dual Cyclooxygenase/5-Lipoxygenase Inhibitor Licofelone Attenuates P-Glycoprotein-Mediated Drug Resistance in the Injured Spinal Cord

    PubMed Central

    Dulin, Jennifer N.; Moore, Meredith L.

    2013-01-01

    Abstract There are currently no proven effective treatments that can improve recovery of function in spinal cord injury (SCI) patients. Many therapeutic compounds have shown promise in pre-clinical studies, but clinical trials have been largely unsuccessful. P-glycoprotein (Pgp, Abcb1b) is a drug efflux transporter of the blood–spinal cord barrier that limits spinal cord penetration of blood-borne xenobiotics. Pathological Pgp upregulation in diseases such as cancer causes heightened resistance to a broad variety of therapeutic drugs. Importantly, several drugs that have been evaluated for the treatment of SCI, such as riluzole, are known substrates of Pgp. We therefore examined whether Pgp-mediated pharmacoresistance diminishes delivery of riluzole to the injured spinal cord. Following moderate contusion injury at T10 in male Sprague–Dawley rats, we observed a progressive, spatial spread of increased Pgp expression from 3 days to 10 months post-SCI. Spinal cord uptake of i.p.-delivered riluzole was significantly reduced following SCI in wild type but not Abcb1a-knockout rats, highlighting a critical role for Pgp in mediating drug resistance following SCI. Because inflammation can drive Pgp upregulation, we evaluated the ability of the new generation dual anti-inflammatory drug licofelone to promote spinal cord delivery of riluzole following SCI. We found that licofelone both reduced Pgp expression and enhanced riluzole bioavailability within the lesion site at 72?h post-SCI. This work highlights Pgp-mediated drug resistance as an important obstacle to therapeutic drug delivery for SCI, and suggests licofelone as a novel combinatorial treatment strategy to enhance therapeutic drug delivery to the injured spinal cord. PMID:22947335

  13. 2'[(18)F]-fluoroethylrhodamine B is a promising radiotracer to measure P-glycoprotein function.

    PubMed

    Trencsényi, György; Kertész, István; Krasznai, Zoárd T; Máté, Gábor; Szalóki, Gábor; Szabó Judit, P; Kárpáti, Levente; Krasznai, Zoltán; Márián, Teréz; Goda, Katalin

    2015-07-10

    In vivo detection of the emergence of P-glycoprotein (Pgp) mediated multidrug resistance in tumors could be beneficial for patients treated with anticancer drugs. PET technique in combination with appropriate radiotracers could be the most convenient method for detection of Pgp function. Rhodamine derivatives are validated fluorescent probes for measurement of mitochondrial membrane potential and also Pgp function. The aim of this study was to investigate whether 2'[(18)F]-fluoroethylrhodamine B ((18)FRB) a halogenated rhodamine derivative previously synthesized for PET assessment of myocardial perfusion preserved its Pgp substrate character. ATPase assay as well as accumulation experiments carried out using Pgp(+) and Pgp(-) human gynecologic (A2780/A2780(AD) and KB-3-1/KB-V1) and a mouse fibroblast cell pairs (NIH 3T3 and NIH 3T3 MDR1) were applied to study the interaction of (18)FRB with Pgp. ATPase assay proved that (18)FRB is a high affinity substrate of Pgp. Pgp(-) cells accumulated the (18)FRB rapidly in accordance with its lipophilic character. Dissipation of the mitochondrial proton gradient by a proton ionophore CCCP decreased the accumulation of rhodamine 123 (R123) and (18)FRB into Pgp(-) cells. Pgp(+) cells exhibited very low R123 and (18)FRB accumulation (around 1-8% of the Pgp(-) cell lines) which was not sensitive to the mitochondrial proton gradient; rather it was increased by the Pgp inhibitor cyclosporine A (CsA). Based on the above data we conclude that (18)FRB is a high affinity Pgp substrate and consequently a potential PET tracer to detect multidrug resistant tumors as well as the function of physiological barriers expressing Pgp. PMID:25857708

  14. Preparation and pharmacodynamic assessment of ezetimibe nanocrystals: Effect of P-gp inhibitory stabilizer on particle size and oral absorption.

    PubMed

    Srivalli, Kale Mohana Raghava; Mishra, Brahmeshwar

    2015-11-01

    Drug nanocrystals have been widely accepted as potent formulations to overcome poor solubility, dissolution and bioavailability problems of hydrophobic drugs. The present study aimed to develop drug nanocrystals of ezetimibe (Eze), a model BCS class II and hypocholesterolemic drug using bottom up precipitation methods. d-?-Tocopheryl polyethylene glycol 1000 succinate (TPGS), and l-ascorbic acid-2-glucoside (AA2G), were the two stabilizers whose potential in developing Eze nanocrystals was investigated. Particle size and zeta potential portrayed the potential of both the stabilizers in producing Eze nanocrystals. The optimized nanocrystal formulations were evaluated for in-vitro solubility, dissolution, solid state characters and in-vivo pharmacodynamic performance. The nanocrystal formulations remarkably increased the solubility of the drug (p<0.05 compared to pure drug). Pure drug could not dissolve more than 28.9% during the 60min dissolution study whereas the drug nanocrystals prepared with AA2G and TPGS presented t90% at 41.33±2.58 and 16.07±2.32min, respectively. The PXRD and DSC studies confirmed the retention of crystallinity and the SEM images indicated lack of aggregation in dried nanocrystals. The TPGS nanocrystals presented significantly superior pharmacodynamic activity upon oral administration. The current study corroborated TPGS nanocrystals to be a promising choice of formulation for the oral delivery of Eze. PMID:26342321

  15. A Pharmacodynamic Study of the P-glycoprotein Antagonist CBT-1® in Combination With Paclitaxel in Solid Tumors

    PubMed Central

    Kelly, Ronan J.; Robey, Robert W.; Chen, Clara C.; Draper, Deborah; Luchenko, Victoria; Barnett, Daryl; Oldham, Robert K.; Caluag, Zinnah; Frye, A. Robin; Steinberg, Seth M.; Fojo, Tito

    2012-01-01

    Background: This pharmacodynamic trial evaluated the effect of CBT-1® on efflux by the ATP binding cassette (ABC) multidrug transporter P-glycoprotein (Pgp/MDR1/ABCB1) in normal human cells and tissues. CBT-1® is an orally administered bisbenzylisoquinoline Pgp inhibitor being evaluated clinically. Laboratory studies showed potent and durable inhibition of Pgp, and in phase I studies CBT-1® did not alter the pharmacokinetics of paclitaxel or doxorubicin. Methods: CBT-1® was dosed at 500 mg/m2 for 7 days; a 3-hour infusion of paclitaxel at 135 mg/m2 was administered on day 6. Peripheral blood mononuclear cells (PBMCs) were obtained prior to CBT-1® administration and on day 6 prior to the paclitaxel infusion. 99mTc-sestamibi imaging was performed on the same schedule. The area under the concentration–time curve from 0–3 hours (AUC0–3) was determined for 99mTc-sestamibi. Results: Twelve patients were planned and enrolled. Toxicities were minimal and related to paclitaxel (grade 3 or 4 neutropenia in 18% of cycles). Rhodamine efflux from CD56+ PBMCs was a statistically significant 51%–100% lower (p < .0001) with CBT-1®. Among 10 patients who completed imaging, the 99mTc-sestamibi AUC0–3 for liver (normalized to the AUC0–3 of the heart) increased from 34.7% to 100.8% (median, 71.9%; p < .0001) after CBT-1® administration. Lung uptake was not changed. Conclusion: CBT-1® is able to inhibit Pgp-mediated efflux from PBMCs and normal liver to a degree observed with Pgp inhibitors studied in earlier clinical trials. Combined with its ease of administration and lack of toxicity, the data showing inhibition of normal tissue Pgp support further studies with CBT-1® to evaluate its ability to modulate drug uptake in tumor tissue. Discussion: Although overexpression of ABCB1 and other ABC transporters has been linked with poor outcome following chemotherapy efforts to negate that through pharmacologic inhibition have generally failed. This is thought to be a result of several factors, including (a) failure to select patients with tumors in which ABCB1 is a dominant resistance mechanism; (b) inhibitors that were not potent, or that impaired drug clearance; and (c) the existence of other mechanisms of drug resistance, including other ABC transporters. Although an animal model for Pgp has been lacking, recent studies have exploited a Brca1?/?; p53?/? mouse model of hereditary breast cancer that develops sporadic tumors similar to cancers in women harboring BRCA1 mutations. Treatment with doxorubicin, docetaxel, or the poly(ADP-ribose) polymerase inhibitor olaparib brings about shrinkage, but resistance eventually emerges. Overexpression of the Abcb1a gene, the mouse ortholog of human ABCB1, has been shown to be a mechanism of resistance in a subset of these tumors. Treating mice with resistant tumors with olaparib plus the Pgp inhibitor tariquidar resensitized the tumors to olaparib. Although results in this animal model support a new look at Pgp as a target, in this era of “targeted therapies,” trial designs that directly assess modulation of drug uptake, including quantitative nuclear imaging, should be pursued before clinical efficacy assessments are undertaken. Such assessment should be performed with compounds that inhibit tissue Pgp without altering the pharmacokinetics of chemotherapeutic agents. This pharmacodynamic study demonstrated that CBT-1®, inhibits Pgp-mediated efflux from PBMCs and normal liver. PMID:22416063

  16. 20(S)-Protopanaxadiol (PPD) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs.

    PubMed

    Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong

    2013-07-15

    Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5?M) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. PMID:23683834

  17. Shornephine A: Structure, Chemical Stability, and P-Glycoprotein Inhibitory Properties of a Rare Diketomorpholine from an Australian Marine-Derived Aspergillus sp.

    PubMed Central

    2015-01-01

    Chemical analysis of an Australian marine sediment-derived Aspergillus sp. (CMB-M081F) yielded the new diketomorpholine (DKM) shornephine A (1) together with two known and one new diketopiperazine (DKP), 15b-?-hydroxy-5-N-acetyladreemin (2), 5-N-acetyladreemin (3), and 15b-?-methoxy-5-N-acetyladreemin (4), respectively. Structure elucidation of 1–4 was achieved by detailed spectroscopic analysis, supported by chemical degradation and derivatization, and biosynthetic considerations. The DKM (1) underwent a facile (auto) acid-mediated methanolysis to yield seco-shornephine A methyl ester (1a). Our mechanistic explanation of this transformation prompted us to demonstrate that the acid-labile and solvolytically unstable DKM scaffold can be stabilized by N-alkylation. Furthermore, we demonstrate that at 20 ?M shornephine A (1) is a noncytotoxic inhibitor of P-glycoprotein-mediated drug efflux in multidrug-resistant human colon cancer cells. PMID:25158286

  18. Shornephine A: structure, chemical stability, and P-glycoprotein inhibitory properties of a rare diketomorpholine from an Australian marine-derived Aspergillus sp.

    PubMed

    Khalil, Zeinab G; Huang, Xiao-cong; Raju, Ritesh; Piggott, Andrew M; Capon, Robert J

    2014-09-19

    Chemical analysis of an Australian marine sediment-derived Aspergillus sp. (CMB-M081F) yielded the new diketomorpholine (DKM) shornephine A (1) together with two known and one new diketopiperazine (DKP), 15b-?-hydroxy-5-N-acetyladreemin (2), 5-N-acetyladreemin (3), and 15b-?-methoxy-5-N-acetyladreemin (4), respectively. Structure elucidation of 1-4 was achieved by detailed spectroscopic analysis, supported by chemical degradation and derivatization, and biosynthetic considerations. The DKM (1) underwent a facile (auto) acid-mediated methanolysis to yield seco-shornephine A methyl ester (1a). Our mechanistic explanation of this transformation prompted us to demonstrate that the acid-labile and solvolytically unstable DKM scaffold can be stabilized by N-alkylation. Furthermore, we demonstrate that at 20 ?M shornephine A (1) is a noncytotoxic inhibitor of P-glycoprotein-mediated drug efflux in multidrug-resistant human colon cancer cells. PMID:25158286

  19. Approaching complete inhibition of P-glycoprotein at the human blood–brain barrier: an (R)-[11C]verapamil PET study

    PubMed Central

    Bauer, Martin; Karch, Rudolf; Zeitlinger, Markus; Philippe, Cécile; Römermann, Kerstin; Stanek, Johann; Maier-Salamon, Alexandra; Wadsak, Wolfgang; Jäger, Walter; Hacker, Marcus; Müller, Markus; Langer, Oliver

    2015-01-01

    As P-glycoprotein (Pgp) inhibition at the blood–brain barrier (BBB) after administration of a single dose of tariquidar is transient, we performed positron emission tomography (PET) scans with the Pgp substrate (R)-[11C]verapamil in five healthy volunteers during continuous intravenous tariquidar infusion. Total distribution volume (VT) of (R)-[11C]verapamil in whole-brain gray matter increased by 273±78% relative to baseline scans without tariquidar, which was higher than previously reported VT increases. During tariquidar infusion whole-brain VT was comparable to VT in the pituitary gland, a region not protected by the BBB, which suggested that we were approaching complete Pgp inhibition at the human BBB. PMID:25669913

  20. Approaching complete inhibition of P-glycoprotein at the human blood-brain barrier: an (R)-[11C]verapamil PET study.

    PubMed

    Bauer, Martin; Karch, Rudolf; Zeitlinger, Markus; Philippe, Cécile; Römermann, Kerstin; Stanek, Johann; Maier-Salamon, Alexandra; Wadsak, Wolfgang; Jäger, Walter; Hacker, Marcus; Müller, Markus; Langer, Oliver

    2015-05-01

    As P-glycoprotein (Pgp) inhibition at the blood-brain barrier (BBB) after administration of a single dose of tariquidar is transient, we performed positron emission tomography (PET) scans with the Pgp substrate (R)-[(11)C]verapamil in five healthy volunteers during continuous intravenous tariquidar infusion. Total distribution volume (VT) of (R)-[(11)C]verapamil in whole-brain gray matter increased by 273 ± 78% relative to baseline scans without tariquidar, which was higher than previously reported VT increases. During tariquidar infusion whole-brain VT was comparable to VT in the pituitary gland, a region not protected by the BBB, which suggested that we were approaching complete Pgp inhibition at the human BBB. PMID:25669913

  1. P-glycoprotein (Mdr1a/1b) and breast cancer resistance protein (Bcrp) decrease the uptake of hydrophobic alkyl triphenylphosphonium cations by the brain

    PubMed Central

    Porteous, Carolyn M.; Menon, David K.; Aigbirhio, Franklin I.; Smith, Robin A.J.; Murphy, Michael P.

    2013-01-01

    Background Mitochondrial dysfunction contributes to degenerative neurological disorders, consequently there is a need for mitochondria-targeted therapies that are effective within the brain. One approach to deliver pharmacophores is by conjugation to the lipophilic triphenylphosphonium (TPP) cation that accumulates in mitochondria driven by the membrane potential. While this approach has delivered TPP-conjugated compounds to the brain, the amounts taken up are lower than by other organs. Methods To discover why uptake of hydrophobic TPP compounds by the brain is relatively poor, we assessed the role of the P-glycoprotein (Mdr1a/b) and breast cancer resistance protein (Bcrp) ATP binding cassette (ABC) transporters, which drive the efflux of lipophilic compounds from the brain thereby restricting the uptake of lipophilic drugs. We used a triple transgenic mouse model lacking two isoforms of P-glycoprotein (Mdr1a/1b) and the Bcrp. Results There was a significant increase in the uptake into the brain of two hydrophobic TPP compounds, MitoQ and MitoF, in the triple transgenics following intra venous (IV) administration compared to control mice. Greater amounts of the hydrophobic TPP compounds were also retained in the liver of transgenic mice compared to controls. The uptake into the heart, white fat, muscle and kidneys was comparable between the transgenic mice and controls. Conclusion Efflux of hydrophobic TPP compounds by ABC transporters contributes to their lowered uptake into the brain and liver. General significance These findings suggest that strategies to bypass ABC transporters in the BBB will enhance delivery of mitochondria-targeted antioxidants, probes and pharmacophores to the brain. PMID:23454352

  2. Influence of antipsychotic, antiemetic, and Ca(2+) channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation.

    PubMed

    Ibrahim, S; Peggins, J; Knapton, A; Licht, T; Aszalos, A

    2000-12-01

    We investigated the effect of antiemetic, antipsychotic, and Ca(2+) blocker drugs on the function of P-glycoprotein (Pgp) in vitro and compared inhibitory concentrations with therapeutic blood levels. Human colon adenocarcinoma (Caco-2) and human blood-brain barrier endothelial cells were transfected or transduced to express Pgp, and the uptake of rhodamine123, calcein AM, or daunorubicin was measured by flow cytometry in the presence of the drugs. NIH3T3/MDR1 cells were used for reference testing. Results of the flow cytometric studies were supported by cell proliferation and monolayer permeability studies. Thirty-five drugs are included in this study, of which 13 modulate the function of Pgp at the therapeutic blood concentration and 8 at a concentration 2 to 4 times higher. Two drugs, which block the function of Pgp only partially at therapeutic blood concentrations, blocked the function of Pgp completely if used concomitantly. Based on these in vitro experiments, we conclude that administration of several drugs that modulate the function of Pgp simultaneously may adversely affect the natural function of this efflux pump and may cause drug-induced side effects in patients. PMID:11082465

  3. P-Glycoprotein Deficient Mouse in situ Blood-Brain Barrier Permeability and its Prediction using an in combo PAMPA Model?

    PubMed Central

    Dagenais, Claude; Avdeef, Alex; Tsinman, Oksana; Dudley, Adam; Beliveau, Richard

    2009-01-01

    The purpose of the study was to assess the permeability of mouse blood-brain barrier (BBB) to a diverse set of compounds in the absence of P-glycoprotein (Pgp) mediated efflux, to predict it using an in combo PAMPA model, and to explore its role in brain penetration classification (BPC). The initial brain uptake (Kin) of 19 compounds in both wild-type and Pgp mutant [mdr1a(?/?)] CF-1 mice was determined by the in situ brain perfusion technique. PAMPA measurements were performed, and the values were used to develop an in combo model, including Abraham descriptors. Published rodent Kin values were used to enhance the dataset and validate the model. The model predicted 92% of the variance of the training set permeability. In all, 182 Kin values were considered in this study, spanning four log orders of magnitude and where Pgp decreased brain uptake by as much as 14-fold. The calculated permeability-surface area (PS) values along with literature reported brain tissue binding were used to group molecules in terms of their brain penetration classification. The in situ BBB permeability can be predicted by the in combo PAMPA model to a satisfactory degree, and can be used as a lower-cost, high throughput first-pass screening method for BBB passive permeability. PMID:19591928

  4. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp).

    PubMed

    Jansson, Patric J; Yamagishi, Tetsuo; Arvind, Akanksha; Seebacher, Nicole; Gutierrez, Elaine; Stacy, Alexandra; Maleki, Sanaz; Sharp, Danae; Sahni, Sumit; Richardson, Des R

    2015-04-10

    Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2',7'-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity. PMID:25720491

  5. Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: Implications for control of drug resistant parasitic nematodes

    PubMed Central

    Bygarski, Elizabeth E.; Prichard, Roger K.; Ardelli, Bernadette F.

    2014-01-01

    Our objective was to determine if the resistance mechanism to moxidectin (MOX) is similar of that to ivermectin (IVM) and involves P-glycoproteins (PGPs). Several Caenorhabditis elegans strains were used: an IVM and MOX sensitive strain, 13 PGP deletion strains and the IVM-R strain which shows synthetic resistance to IVM (by creation of three point mutations in genes coding for ?-subunits of glutamate gated chloride channels [GluCls]) and cross-resistance to MOX. These strains were used to compare expression of PGP genes, measure motility and pharyngeal pumping phenotypes and evaluate the ability of compounds that inhibit PGP function to potentiate sensitivity or reverse resistance to MOX. The results suggest that C. elegans may use regulation of PGPs as a response mechanism to MOX. This was indicated by the over-expression of several PGPs in both drug sensitive and IVM-R strains and the significant changes in phenotype in the IVM-R strain in the presence of PGP inhibitors. However, as the inhibitors did not completely disrupt expression of the phenotypic traits in the IVM-R strain, this suggests that there likely are multiple avenues for MOX action that may include receptors other than GluCls. If MOX resistance was mediated solely by GluCls then exposure of the IVM-R strain to PGP inhibitors should not have affected sensitivity to MOX. Targeted gene deletions showed that protection of C. elegans against MOX involves complex mechanisms and depends on the PGP gene family, particularly PGP-6. While the results presented are similar to others using IVM, there were some important differences observed with respect to PGPs which may play a role in the disparities seen in the characteristics of resistance to IVM and MOX. The similarities are of concern as parasites resistant to IVM show some degree but not complete cross-resistance to MOX; this could impact nematodes that are resistant to IVM. PMID:25516824

  6. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: Prospects for reversing transport-dependent anthelmintic resistance

    PubMed Central

    Lespine, Anne; Ménez, Cécile; Bourguinat, Catherine; Prichard, Roger K.

    2011-01-01

    Parasitic helminths cause significant disease in animals and humans. In the absence of alternative treatments, anthelmintics remain the principal agents for their control. Resistance extends to the most important class of anthelmintics, the macrocyclic lactone endectocides (MLs), such as ivermectin, and presents serious problems for the livestock industries and threatens to severely limit current parasite control strategies in humans. Understanding drug resistance is important for optimizing and monitoring control, and reducing further selection for resistance. Multidrug resistance (MDR) ABC transporters have been implicated in ML resistance and contribute to resistance to a number of other anthelmintics. MDR transporters, such as P-glycoproteins, are essential for many cellular processes that require the transport of substrates across cell membranes. Being overexpressed in response to chemotherapy in tumour cells and to ML-based treatment in nematodes, they lead to therapy failure by decreasing drug concentration at the target. Several anthelmintics are inhibitors of these efflux pumps and appropriate combinations can result in higher treatment efficacy against parasites and reversal of resistance. However, this needs to be balanced against possible increased toxicity to the host, or the components of the combination selecting on the same genes involved in the resistance. Increased efficacy could result from modifying anthelmintic pharmacokinetics in the host or by blocking parasite transporters involved in resistance. Combination of anthelmintics can be beneficial for delaying selection for resistance. However, it should be based on knowledge of resistance mechanisms and not simply on mode of action classes, and is best started before resistance has been selected to any member of the combination. Increasing knowledge of the MDR transporters involved in anthelmintic resistance in helminths will play an important role in allowing for the identification of markers to monitor the spread of resistance and to evaluate new tools and management practices aimed at delaying its spread. PMID:24533264

  7. Doxycycline as an inhibitor of p-glycoprotein in the alpaca for the purpose of maintaining avermectins in the CNS during treatment for parelaphostrongylosis.

    PubMed

    Agbedanu, Prince N; Anderson, Kristi L; Brewer, Matthew T; Carlson, Steve A

    2015-09-15

    Meningeal worms (Parelaphostrongylus tenuis) are a common malady of alpacas, often refractory to conventional treatments. Ivermectin is a very effective anthelmintic used against a variety of parasites but this drug is not consistently effective against alpaca meningeal worms once the parasite has gained access to the CNS, even if used in a protracted treatment protocol. Ivermectin is not effective against clinical cases of P. tenuis, raising the possibility that the drug is not sustained at therapeutic concentrations in the central nervous system (CNS). A specific protein (designated as p-glycoprotein (PGP)) effluxes ivermectin from the brain at the blood-brain barrier, thus hampering the maintenance of therapeutic concentrations of the drug in the CNS. Minocycline is a synthetic tetracycline antibiotic with an excellent safety profile in all animals tested to date. Minocycline has three unique characteristics that could be useful for treating meningeal worms in conjunction with ivermectin. First, minocycline is an inhibitor of PGP at the blood-brain barrier and this inhibition could maintain effective concentrations of ivermectin in the brain and meninges. Second, minocycline protects neurons in vivo through a number of different mechanisms and this neuroprotection could alleviate the potential untoward neurologic effects of meningeal worms. Third, minocycline is a highly lipid-soluble drug, thus facilitating efficient brain penetration. We thus hypothesized that minocycline will maintain ivermectin, or a related avermectin approved in ruminants (abamectin, doramectin, or eprinomectin), in the alpaca CNS. To test this hypothesis, we cloned the gene encoding the alpaca PGP, expressed the alpaca PGP in a heterologous expression system involving MDCK cells, and measured the ability of minocycline to inhibit the efflux of avermectins from the MDCK cells; doxycycline was used as a putative negative control (based on studies in other species). Our in vitro studies surprisingly revealed that doxycycline was effective at inhibiting the efflux of ivermectin and doramectin (minocycline had no effect). These two avermectins, in combination with doxycycline, should be considered when treating meningeal worms in alpacas. PMID:26371853

  8. Haemonchus contortus P-Glycoproteins Interact with Host Eosinophil Granules: A Novel Insight into the Role of ABC Transporters in Host-Parasite Interaction

    PubMed Central

    Issouf, Mohamed; Guégnard, Fabrice; Koch, Christine; Le Vern, Yves; Blanchard-Letort, Alexandra; Che, Hua; Beech, Robin N.; Kerboeuf, Dominique; Neveu, Cedric

    2014-01-01

    Eosinophils are one of the major mammalian effector cells encountered by helminths during infection. In the present study, we investigated the effects of eosinophil granule exposure on the sheep parasitic nematode Haemonchus contortus as a model. H. contortus eggs exposed to eosinophil granule products showed increased rhodamine 123 efflux and this effect was not due to loss of egg integrity. Rh123 is known to be a specific P-glycoprotein (Pgp) substrate and led to the hypothesis that in addition to their critical role in xenobiotic resistance, helminth ABC transporters such as Pgp may also be involved in the detoxification of host cytotoxic products. We showed by quantitative RT-PCR that, among nine different H. contortus Pgp genes, Hco-pgp-3, Hco-pgp-9.2, Hco-pgp-11 and, Hco-pgp-16 were specifically up-regulated in parasitic life stages suggesting a potential involvement of these Pgps in the detoxification of eosinophil granule products. Using exsheathed L3 larvae that mimic the first life stage in contact with the host, we demonstrated that eosinophil granules induced a dose dependent overexpression of Hco-pgp-3 and the closely related Hco-pgp-16. Taken together, our results provide the first evidence that a subset of helminth Pgps interact with, and could be involved in the detoxification of, host products. This opens the way for further studies aiming to explore the role of helminth Pgps in the host-parasite interaction, including evasion of the host immune response. PMID:24498376

  9. Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus)

    E-print Network

    Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos functional and molecular evidence for acquisition of multidrug transporter-mediated efflux activity glycoprotein (p-gp) families of ABC transporters. The corresponding efflux activity is low in unfertilized eggs

  10. Influence of the G2677T/C3435T haplotype of MDR1 on P-glycoprotein trafficking and ibutilide-induced block of HERG

    PubMed Central

    McBride, BF; Yang, T; Roden, DM

    2013-01-01

    The drug efflux pump P-glycoprotein possesses two common and often linked polymorphisms that result in variable drug action. G2677T results in A893S, whereas C3435T is synonymous and has been reported to alter protein folding. We tested the effect of these MDR1 variants on Human Ether-Related A Go-Go (HERG) block by ibutilide in CHO cells 48 h following transient transfection with an IRES-dsRed vector containing MDR1, G2677T MDR1, G2677T/C3435T MDR1 or an empty bicistronic site and an IRES-GFP vector containing HERG (KCNH2). Cotransfection of MDR1 variants had no effect on IKr amplitude at baseline. Cells cotransfected with MDR1-G2677T showed resistance to ibutilide vs HERG alone (IC50: 105.3±1.42 nM vs 27.4±2.5 nM; P<0.0001), consistent with the idea that A893S attenuates IKr block by enhancing drug efflux and thus reducing the drug available to interact with the channel binding site. However, G2677T/C3435T cells showed ibutilide sensitivity similar to cells expressing HERG alone (IC50: 22.2±0.9 nM). Immunostaining showed that the C3435T variant did not traffic to the cell surface. Coculture with fexofenadine(1 ?M), an MDR1 substrate known to rescue misfolding in other membrane proteins, restored cell surface expression of MDR1 G2677T/C3435T and restored resistance to block HERG by ibutilide 200 nM (98.5±0.98% vs 42.3±2.2%, P<0.001). The non-synonymous MDR1 variant G2677 T (A893S) confers resistance to ibutilide block of IKr, which is mitigated by the C3435T polymorphism through reduced protein expression, an effect that can be restored by coculture with fexofenadine. These data identify ibutilide as an MDR1 substrate and further support the concept that variable drug transport function can modulate the action of HERG blockers. PMID:19204737

  11. Influence of the G2677T/C3435T haplotype of MDR1 on P-glycoprotein trafficking and ibutilide-induced block of HERG.

    PubMed

    McBride, B F; Yang, T; Roden, D M

    2009-06-01

    The drug efflux pump P-glycoprotein possesses two common and often linked polymorphisms that result in variable drug action. G2677T results in A893S, whereas C3435T is synonymous and has been reported to alter protein folding. We tested the effect of these MDR1 variants on Human Ether-Related A Go-Go (HERG) block by ibutilide in CHO cells 48 h following transient transfection with an IRES-dsRed vector containing MDR1, G2677T MDR1, G2677T/C3435T MDR1 or an empty bicistronic site and an IRES-GFP vector containing HERG (KCNH2). Cotransfection of MDR1 variants had no effect on I(Kr) amplitude at baseline. Cells cotransfected with MDR1-G2677T showed resistance to ibutilide vs HERG alone (IC(50): 105.3+/-1.42 nM vs 27.4+/-2.5 nM; P<0.0001), consistent with the idea that A893S attenuates I(Kr) block by enhancing drug efflux and thus reducing the drug available to interact with the channel binding site. However, G2677T/C3435T cells showed ibutilide sensitivity similar to cells expressing HERG alone (IC(50): 22.2+/-0.9 nM). Immunostaining showed that the C3435T variant did not traffic to the cell surface. Coculture with fexofenadine(1 microM), an MDR1 substrate known to rescue misfolding in other membrane proteins, restored cell surface expression of MDR1 G2677T/C3435T and restored resistance to block HERG by ibutilide 200 nM (98.5+/-0.98% vs 42.3+/-2.2%, P<0.001). The non-synonymous MDR1 variant G2677 T (A893S) confers resistance to ibutilide block of I(Kr), which is mitigated by the C3435T polymorphism through reduced protein expression, an effect that can be restored by coculture with fexofenadine. These data identify ibutilide as an MDR1 substrate and further support the concept that variable drug transport function can modulate the action of HERG blockers. PMID:19204737

  12. Drug-Induced Trafficking of P-Glycoprotein in Human Brain Capillary Endothelial Cells as Demonstrated by Exposure to Mitomycin C

    PubMed Central

    Noack, Andreas; Noack, Sandra; Hoffmann, Andrea; Maalouf, Katia; Buettner, Manuela; Couraud, Pierre-Olivier; Romero, Ignacio A.; Weksler, Babette; Alms, Dana; Römermann, Kerstin; Naim, Hassan Y.; Löscher, Wolfgang

    2014-01-01

    P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. In this study, trafficking of Pgp was investigated in human brain capillary endothelial cells (hCMEC/D3) that were stably transfected with a doxycycline-inducible MDR1-EGFP fusion plasmid. In the presence of doxycycline, these cells exhibited a 15-fold increase in Pgp-EGFP fusion protein expression, which was associated with an increased efflux of the Pgp substrate rhodamine 123 (Rho123). The chemotherapeutic agent mitomycin C (MMC) was used to study drug-induced trafficking of Pgp. Confocal fluorescence microscopy of single hCMEC/D3-MDR1-EGFP cells revealed that Pgp redistribution from intracellular pools to the cell surface occurred within 2 h of MMC exposure. Pgp-EGFP exhibited a punctuate pattern at the cell surface compatible with concentrated regions of the fusion protein in membrane microdomains, i.e., lipid rafts, which was confirmed by Western blot analysis of biotinylated cell surface proteins in Lubrol-resistant membranes. MMC exposure also increased the functionality of Pgp as assessed in three functional assays with Pgp substrates (Rho123, eFluxx-ID Gold, calcein-AM). However, this increase occurred with some delay after the increased Pgp expression and coincided with the release of Pgp from the Lubrol-resistant membrane complexes. Disrupting rafts by depleting the membrane of cholesterol increased the functionality of Pgp. Our data present the first direct evidence of drug-induced Pgp trafficking at the human BBB and indicate that Pgp has to be released from lipid rafts to gain its full functionality. PMID:24505408

  13. Factors Governing P-Glycoprotein-Mediated Drug–Drug Interactions at the Blood–Brain Barrier Measured with Positron Emission Tomography

    PubMed Central

    2015-01-01

    The adenosine triphosphate-binding cassette transporter P-glycoprotein (ABCB1/Abcb1a) restricts at the blood–brain barrier (BBB) brain distribution of many drugs. ABCB1 may be involved in drug–drug interactions (DDIs) at the BBB, which may lead to changes in brain distribution and central nervous system side effects of drugs. Positron emission tomography (PET) with the ABCB1 substrates (R)-[11C]verapamil and [11C]-N-desmethyl-loperamide and the ABCB1 inhibitor tariquidar has allowed direct comparison of ABCB1-mediated DDIs at the rodent and human BBB. In this work we evaluated different factors which could influence the magnitude of the interaction between tariquidar and (R)-[11C]verapamil or [11C]-N-desmethyl-loperamide at the BBB and thereby contribute to previously observed species differences between rodents and humans. We performed in vitro transport experiments with [3H]verapamil and [3H]-N-desmethyl-loperamide in ABCB1 and Abcb1a overexpressing cell lines. Moreover we conducted in vivo PET experiments and biodistribution studies with (R)-[11C]verapamil and [11C]-N-desmethyl-loperamide in wild-type mice without and with tariquidar pretreatment and in homozygous Abcb1a/1b(?/?) and heterozygous Abcb1a/1b(+/?) mice. We found no differences for in vitro transport of [3H]verapamil and [3H]-N-desmethyl-loperamide by ABCB1 and Abcb1a and its inhibition by tariquidar. [3H]-N-Desmethyl-loperamide was transported with a 5 to 9 times higher transport ratio than [3H]verapamil in ABCB1- and Abcb1a-transfected cells. In vivo, brain radioactivity concentrations were lower for [11C]-N-desmethyl-loperamide than for (R)-[11C]verapamil. Both radiotracers showed tariquidar dose dependent increases in brain distribution with tariquidar half-maximum inhibitory concentrations (IC50) of 1052 nM (95% confidence interval CI: 930–1189) for (R)-[11C]verapamil and 1329 nM (95% CI: 980–1801) for [11C]-N-desmethyl-loperamide. In homozygous Abcb1a/1b(?/?) mice brain radioactivity distribution was increased by 3.9- and 2.8-fold and in heterozygous Abcb1a/1b(+/?) mice by 1.5- and 1.1-fold, for (R)-[11C]verapamil and [11C]-N-desmethyl-loperamide, respectively, as compared with wild-type mice. For both radiotracers radiolabeled metabolites were detected in plasma and brain. When brain and plasma radioactivity concentrations were corrected for radiolabeled metabolites, brain distribution of (R)-[11C]verapamil and [11C]-N-desmethyl-loperamide was increased in tariquidar (15 mg/kg) treated animals by 14.1- and 18.3-fold, respectively, as compared with vehicle group. Isoflurane anesthesia altered [11C]-N-desmethyl-loperamide but not (R)-[11C]verapamil metabolism, and this had a direct effect on the magnitude of the increase in brain distribution following ABCB1 inhibition. Our data furthermore suggest that in the absence of ABCB1 function brain distribution of [11C]-N-desmethyl-loperamide but not (R)-[11C]verapamil may depend on cerebral blood flow. In conclusion, we have identified a number of important factors, i.e., substrate affinity to ABCB1, brain uptake of radiolabeled metabolites, anesthesia, and cerebral blood flow, which can directly influence the magnitude of ABCB1-mediated DDIs at the BBB and should therefore be taken into consideration when interpreting PET results. PMID:26202880

  14. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor.

    PubMed

    Gräns, Johanna; Wassmur, Britt; Fernández-Santoscoy, María; Zanette, Juliano; Woodin, Bruce R; Karchner, Sibel I; Nacci, Diane E; Champlin, Denise; Jayaraman, Saro; Hahn, Mark E; Stegeman, John J; Celander, Malin C

    2015-02-01

    Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ?400 times higher, and the levels of non-dioxin-like PCBs ?3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of AhR2 or CYP1A in liver and gills of NBH fish. In NBH fish, but not in SC fish, there was increased mRNA expression of hepatic PXR, CYP3A and Pgp upon exposure to either of the two PCB congeners. However, basal PXR and Pgp mRNA levels in liver of NBH fish were significantly lower than in SC fish. A different pattern was seen in gills, where there were no differences in basal mRNA expression of these genes between the two populations. In SC fish, but not in NBH fish, there was increased mRNA expression of branchial PXR and CYP3A upon exposure to PCB126 and of CYP3A upon exposure to PCB153. The results suggest a difference between the two populations in non-AhR transcription factor signaling in liver and gills, and that this could involve killifish PXR. It also implies possible cross-regulatory interactions between that factor (presumably PXR) and AhR2 in liver of these fish. PMID:25553538

  15. Transportation of Berberine into HepG2, HeLa and SY5Y Cells: A Correlation to Its Anti-Cancer Effect

    PubMed Central

    Pang, Yu-Nong; Liang, Yin-Wen; Feng, Tian-Shi; Zhao, Shuang; Wu, Hao; Chai, Yu-Shuang; Lei, Fan; Ding, Yi; Xing, Dong-Ming; Du, Li-Jun

    2014-01-01

    The anti-cancer activities of berberine (BBR) have been reported extensively in various cancer cell lines. However, the minimal inhibitory concentrations of BBR varied greatly among different cell lines and very few studies have been devoted to elucidate this aspect. In this study, we employed three cancer cell lines, HepG2, HeLa and SY5Y, to compare the transportation and distribution of BBR. HPLC results demonstrated that BBR was capable of penetrating all the cell lines whereas the cumulative concentrations were significantly different. HepG2 cells accumulated higher level of BBR for longer duration than the other two cell lines. Molecular docking studies revealed the BBR binding site on P-glycoprotein 1 (P-gp). In addition, we elucidated that BBR regulated P-gp at both mRNA and protein levels. BBR induced the transcription and translation of P-gp in HeLa and SY5Y cells, whereas BBR inhibited P-gp expression in HepG2 cells. Further study showed that BBR regulates P-gp expression depending on different mechanisms (or affected by different factors) in different cell lines. To summarize, our study has revealed several mechanistic aspects of BBR regulation on P-gp in different cancer cell lines and might shed some useful insights into the use of BBR in the anti-cancer drug development. PMID:25402492

  16. Casein Kinase 2 (CK2)-mediated Phosphorylation of Hsp90? as a Novel Mechanism of Rifampin-induced MDR1 Expression.

    PubMed

    Kim, So Won; Hasanuzzaman, Md; Cho, Munju; Heo, Ye Rang; Ryu, Min-Jung; Ha, Na-Young; Park, Hyun June; Park, Hyung-Yeon; Shin, Jae-Gook

    2015-07-01

    The P-glycoprotein (P-gp) encoded by the MDR1 gene is a drug-exporting transporter located in the cellular membrane. P-gp induction is regarded as one of the main mechanisms underlying drug-induced resistance. Although there is great interest in the regulation of P-gp expression, little is known about its underlying regulatory mechanisms. In this study, we demonstrate that casein kinase 2 (CK2)-mediated phosphorylation of heat shock protein 90? (Hsp90?) and subsequent stabilization of PXR is a key mechanism in the regulation of MDR1 expression. Furthermore, we show that CK2 is directly activated by rifampin. Upon exposure to rifampin, CK2 catalyzes the phosphorylation of Hsp90? at the Ser-225/254 residues. Phosphorylated Hsp90? then interacts with PXR, causing a subsequent increase in its stability, leading to the induction of P-gp expression. In addition, inhibition of CK2 and Hsp90? enhances the down-regulation of PXR and P-gp expression. The results of this study may facilitate the development of new strategies to prevent multidrug resistance and provide a plausible mechanism for acquired drug resistance by CK2-mediated regulation of P-gp expression. PMID:25995454

  17. Conformational changes in membrane proteins of multidrug-resistant K562 and primary rat hepatocyte cultures as studied by Fourier transform infrared spectroscopy.

    PubMed

    Le Gal, J M; Morjani, H; Fardel, O; Guillouzo, A; Manfait, M

    1994-01-01

    The multidrug resistance (MDR) phenotype has been investigated by means of Fourier transform infrared spectroscopy (FT-IR/S) on cell smears. We investigated K562 cell lines (sensitive and doxorubicin-resistant, the latter being MDR too) and primary cultures of rat hepatocytes (HEP). HEP displayed elevated levels of P-glycoprotein (P-gp) with time in 2-4 day-old culture, thus developing in the same time a MDR phenotype. No functional P-gp activity could be detected in HEP at day 1 after cell seeding. Given the sensitivity of FT-IR/S and using computational treatment of FT-IR data, we found that spectra of MDR-K562 and HEP from day 2 to day 4 displayed close protein conformational changes involving beta-sheets. These changes might be in close relationship with the MDR-phenotype and P-gp overexpression. PMID:7979183

  18. Brain Exposure of Two Selective Dual CDK4 and CDK6 Inhibitors and the Antitumor Activity of CDK4 and CDK6 Inhibition in Combination with Temozolomide in an Intracranial Glioblastoma Xenograft.

    PubMed

    Raub, Thomas J; Wishart, Graham N; Kulanthaivel, Palaniappan; Staton, Brian A; Ajamie, Rose T; Sawada, Geri A; Gelbert, Lawrence M; Shannon, Harlan E; Sanchez-Martinez, Concepcion; De Dios, Alfonso

    2015-09-01

    Effective treatments for primary brain tumors and brain metastases represent a major unmet medical need. Targeting the CDK4/CDK6-cyclin D1-Rb-p16/ink4a pathway using a potent CDK4 and CDK6 kinase inhibitor has potential for treating primary central nervous system tumors such as glioblastoma and some peripheral tumors with high incidence of brain metastases. We compared central nervous system exposures of two orally bioavailable CDK4 and CDK6 inhibitors: abemaciclib, which is currently in advanced clinical development, and palbociclib (IBRANCE; Pfizer), which was recently approved by the U.S. Food and Drug Administration. Abemaciclib antitumor activity was assessed in subcutaneous and orthotopic glioma models alone and in combination with standard of care temozolomide (TMZ). Both inhibitors were substrates for xenobiotic efflux transporters P-glycoprotein and breast cancer resistant protein expressed at the blood-brain barrier. Brain Kp,uu values were less than 0.2 after an equimolar intravenous dose indicative of active efflux but were approximately 10-fold greater for abemaciclib than palbociclib. Kp,uu increased 2.8- and 21-fold, respectively, when similarly dosed in P-gp-deficient mice. Abemaciclib had brain area under the curve (0-24 hours) Kp,uu values of 0.03 in mice and 0.11 in rats after a 30 mg/kg p.o. dose. Orally dosed abemaciclib significantly increased survival in a rat orthotopic U87MG xenograft model compared with vehicle-treated animals, and efficacy coincided with a dose-dependent increase in unbound plasma and brain exposures in excess of the CDK4 and CDK6 Ki values. Abemaciclib increased survival time of intracranial U87MG tumor-bearing rats similar to TMZ, and the combination of abemaciclib and TMZ was additive or greater than additive. These data show that abemaciclib crosses the blood-brain barrier and confirm that both CDK4 and CDK6 inhibitors reach unbound brain levels in rodents that are expected to produce enzyme inhibition; however, abemaciclib brain levels are reached more efficiently at presumably lower doses than palbociclib and are potentially on target for a longer period of time. PMID:26149830

  19. Regulation of Biotransformation Systems and ABC Transporters by Benznidazole in HepG2 Cells: Involvement of Pregnane X-Receptor

    PubMed Central

    Rigalli, Juan P.; Perdomo, Virginia G.; Luquita, Marcelo G.; Villanueva, Silvina S. M.; Arias, Agostina; Theile, Dirk; Weiss, Johanna; Mottino, Aldo D.; Ruiz, María L.; Catania, Viviana A.

    2012-01-01

    Background Benznidazole (BZL) is the only antichagasic drug available in most endemic countries. Its effect on the expression and activity of drug-metabolizing and transporter proteins has not been studied yet. Methodology/Principal Findings Expression and activity of P-glycoprotein (P-gp), Multidrug resistance-associated protein 2 (MRP2), Cytochrome P450 3A4 (CYP3A4), and Glutathione S-transferase (GST) were evaluated in HepG2 cells after treatment with BZL. Expression was estimated by immunoblotting and real time PCR. P-gp and MRP2 activities were estimated using model substrates rhodamine 123 and dinitrophenyl-S-glutathione (DNP-SG), respectively. CYP3A4 and GST activities were evaluated through their abilities to convert proluciferin into luciferin and 1-chloro-2,4-dinitrobenzene into DNP-SG, respectively. BZL (200 µM) increased the expression (protein and mRNA) of P-gp, MRP2, CYP3A4, and GST? class. A concomitant enhancement of activity was observed for all these proteins, except for CYP3A4, which exhibited a decreased activity. To elucidate if pregnane X receptor (PXR) mediates BZL response, its expression was knocked down with a specific siRNA. In this condition, the effect of BZL on P-gp, MRP2, CYP3A4, and GST? protein up-regulation was completely abolished. Consistent with this, BZL was able to activate PXR, as detected by reporter gene assay. Additional studies, using transporter inhibitors and P-gp-knock down cells, demonstrated that P-gp is involved in BZL extrusion. Pre-treatment of HepG2 cells with BZL increased its own efflux, as a consequence of P-gp up-regulation. Conclusions/Significance Modifications in the activity of biotransformation and transport systems by BZL may alter the pharmacokinetics and efficiency of drugs that are substrates of these systems, including BZL itself. PMID:23272261

  20. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells

    PubMed Central

    Chen, Hsin-Hung; Huang, Wen-Chia; Chiang, Wen-Hsuan; Liu, Te-I; Shen, Ming-Yin; Hsu, Yuan-Hung; Lin, Sung-Chyr; Chiu, Hsin-Cheng

    2015-01-01

    In this study, a novel pH-responsive cholesterol-PEG adduct-coated solid lipid nanoparticles (C-PEG-SLNs) carrying doxorubicin (DOX) capable of overcoming multidrug resistance (MDR) breast cancer cells is presented. The DOX-loaded SLNs have a mean hydrodynamic diameter of ~100 nm and a low polydispersity index (under 0.20) with a high drug-loading efficiency ranging from 80.8% to 90.6%. The in vitro drug release profiles show that the DOX-loaded SLNs exhibit a pH-controlled drug release behavior with the maximum and minimum unloading percentages of 63.4% at pH 4.7 and 25.2% at pH 7.4, respectively. The DOX-loaded C-PEG-SLNs displayed a superior ability in inhibiting the proliferation of MCF-7/MDR cells. At a DOX concentration of 80 ?M, the cell viabilities treated with C-PEG-SLNs were approximately one-third of the group treated with free DOX. The inhibition activity of C-PEG-SLNs could be attributed to the transport of C-PEG to cell membrane, leading to the change of the composition of the cell membrane and thus the inhibition of permeability glycoprotein activity. This hypothesis is supported by the confocal images showing the accumulation of DOX in the nuclei of cancer cells and the localization of C-PEG on the cell membranes. The results of in vivo study further demonstrated that the DOX delivered by the SLNs accumulates predominantly in tumor via enhanced permeability and retention effect, the enhanced passive tumor accumulation due to the loose intercellular junctions of endothelial cells lining inside blood vessels at tumor site, and the lack of lymphatic drainage. The growth of MCF-7/MDR xenografted tumor on Balb/c nude mice was inhibited to ~400 mm3 in volume as compared with the free DOX treatment group, 1,140 mm3, and the group treated with 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] solid lipid nanoparticles, 820 mm3. Analysis of the body weight of nude mice and the histology of organs and tumor after the administration of DOX-loaded SLNs show that the SLNs have no observable side effects. These results indicate that the C-PEG-SLN is a promising platform for the delivery of therapeutic agents for MDR cancer chemotherapy. PMID:26346762

  1. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells.

    PubMed

    Chen, Hsin-Hung; Huang, Wen-Chia; Chiang, Wen-Hsuan; Liu, Te-I; Shen, Ming-Yin; Hsu, Yuan-Hung; Lin, Sung-Chyr; Chiu, Hsin-Cheng

    2015-01-01

    In this study, a novel pH-responsive cholesterol-PEG adduct-coated solid lipid nanoparticles (C-PEG-SLNs) carrying doxorubicin (DOX) capable of overcoming multidrug resistance (MDR) breast cancer cells is presented. The DOX-loaded SLNs have a mean hydrodynamic diameter of ~100 nm and a low polydispersity index (under 0.20) with a high drug-loading efficiency ranging from 80.8% to 90.6%. The in vitro drug release profiles show that the DOX-loaded SLNs exhibit a pH-controlled drug release behavior with the maximum and minimum unloading percentages of 63.4% at pH 4.7 and 25.2% at pH 7.4, respectively. The DOX-loaded C-PEG-SLNs displayed a superior ability in inhibiting the proliferation of MCF-7/MDR cells. At a DOX concentration of 80 ?M, the cell viabilities treated with C-PEG-SLNs were approximately one-third of the group treated with free DOX. The inhibition activity of C-PEG-SLNs could be attributed to the transport of C-PEG to cell membrane, leading to the change of the composition of the cell membrane and thus the inhibition of permeability glycoprotein activity. This hypothesis is supported by the confocal images showing the accumulation of DOX in the nuclei of cancer cells and the localization of C-PEG on the cell membranes. The results of in vivo study further demonstrated that the DOX delivered by the SLNs accumulates predominantly in tumor via enhanced permeability and retention effect, the enhanced passive tumor accumulation due to the loose intercellular junctions of endothelial cells lining inside blood vessels at tumor site, and the lack of lymphatic drainage. The growth of MCF-7/MDR xenografted tumor on Balb/c nude mice was inhibited to ~400 mm(3) in volume as compared with the free DOX treatment group, 1,140 mm(3), and the group treated with 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] solid lipid nanoparticles, 820 mm(3). Analysis of the body weight of nude mice and the histology of organs and tumor after the administration of DOX-loaded SLNs show that the SLNs have no observable side effects. These results indicate that the C-PEG-SLN is a promising platform for the delivery of therapeutic agents for MDR cancer chemotherapy. PMID:26346762

  2. The multidrug resistance of tumour cells was reversed by tetrandrine in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells.

    PubMed

    Fu, L W; Zhang, Y M; Liang, Y J; Yang, X P; Pan, Q C

    2002-02-01

    Multidrug resistance (MDR) is one of the main obstacles limiting the efficacy of chemotherapy treatment of tumours. One of the main causes of MDR is linked to the overexpression of P-glycoprotein (P-gp). This study aimed to characterise tetrandrine (Tet), a potent inhibitor of P-gp mediated MDR. Cytotoxicity was determined by the tetrazolium (MTT) assay. A MCF-7/adr cell xenograft model was established to investigate the effect of Tet on reversing MDR in vivo. Mechanistic experiments were conducted to examine the uptake, efflux and accumulation of doxorubicin (Dox) and Fura-2, and to assess lipid membrane fluidity. Tet potentiated the cytotoxicity of Dox; a 20.4-fold reversal of resistance was achieved in the presence of 2.5 micromol/l of Tet. Accumulation and efflux studies with the P-gp substrates, Dox and Fura-2, demonstrated that Tet inhibited the P-gp-mediated drug efflux. In addition, Tet lowered cell membrane fluidity in a concentration-dependent manner. In mice bearing the MDR MCF-7/adr cell xenografts, coadministration of Tet potentiated the antitumour activity of doxorubicin without a significant increase in toxicity. Tet was an extremely potent MDR modulator both in vitro and in vivo, without apparently enhancing the toxicity of the co-administered drugs. Hence, Tet holds great promise as a MDR modulator for the treatment of P-gp-mediated MDR cancers. PMID:11818209

  3. Antitumor Agents 280. Multidrug Resistance-Selective Desmosdumotin B Analogues

    PubMed Central

    Nakagawa-Goto, Kyoko; Chang, Po-Cheng; Lai, Chin-Yu; Hung, Hsin-Yi; Chen, Tzu-Hsuan; Wu, Pei-Chi; Zhu, Hao; Sedykh, Alexander; Bastow, Kenneth F.; Lee, Kuo-Hsiung

    2010-01-01

    6,6,8-Triethyldesmosdumotin B (2) was discovered as a MDR–selective flavonoid with significant in vitro anticancer activity against a multi-drug resistant (MDR) cell line (KB-VIN) but without activity against the parent cells (KB). Additional 2-analogues were synthesized and evaluated to determine the effect of B-ring modifications on MDR-selectivity. Analogues with a B-ring Me (3) or Et (4) group had substantially increased MDR–selectivity. Three new disubstituted analogues, 35, 37 and 49, also had high collateral sensitivity (CS) indices of 273, 250 and 100, respectively. Furthermore, 2–4 also displayed MDR-selectivity in an MDR hepatoma-cell system. While 2–4 showed either no or very weak inhibition of cellular P-glycoprotein (P-gp) activity, they either activated or inhibited the actions of the first generation P-gp inhibitors verapamil or cyclosporin, respectively. PMID:20735140

  4. Poor permeability and absorption affect the activity of four alkaloids from Coptis.

    PubMed

    Cui, Han-Ming; Zhang, Qiu-Yan; Wang, Jia-Long; Chen, Jian-Long; Zhang, Yu-Ling; Tong, Xiao-Lin

    2015-11-01

    Coptidis rhizoma (Coptis) and its alkaloids exert various pharmacological functions in cells and tissues; however, the oral absorption of these alkaloids requires further elucidation. The present study aimed to examine the mechanism underlying the poor absorption of alkaloids, including berberine (BER), coptisine (COP), palmatine (PAL) and jatrorrhizine (JAT). An ultra?performance liquid chromatography (UPLC) method was validated for the determination of BER, COP, PAL and JAT in the above experimental medium. In addition, the apparent oil?water partition coefficient (Po/w); apparent permeability coefficient (Papp), determined using a parallel artificial membrane permeability assay (PAMPA) plate; membrane retention coefficient (R %); and effect of P?glycoprotein (P?gp) inhibitor on the Papp of the four alkaloids were investigated. The intestinal absorption rate constant (Ka) and absorption percentage (A %) of the four alkaloids were also determined. The results of the present study demonstrated that the Po/w of the four alkaloids in 0.1 mol·l?1 HCl medium was significantly higher (P<0.01), compared with those of the alkaloids in phosphate buffer (pH 7.4). The Papp of BER was 1.0?1.2x10?6 cm·s?1, determined using a PAMPA plate, and the Papp of BER, COP, PAL and JAT decreased sequentially. The concentrations of the four alkaloids on the apical?to?basolateral (AP?BL) surface and the basolateral?to?apical (BL?AP) surface increased in a linear manner, with increasing concentrations between 10 and 100 µmol. In addition, the transportation of BER on the BL?AP surface was significantly faster (P<0.01), compared with that on the AP?BL surface and, following the addition of verpamil (a P?gp inhibitor), the Papp (AP?BL) of the four alkaloids increased, whereas the Papp (BL?AP) was significantly decreased (P<0.01). The rat intestinal perfusion experiment demonstrated that the four alkaloids were poorly absorbed; however, the Ka of BER was significantly higher, compared with the three other alkaloids. Furthermore, the A % and Ka provided evidence that the absorption of BER was increased in the jejunum, compared with in the ileum. In conclusion, the four alkaloids from Coptis appeared to be poorly absorbed, determined using a shake flask, pre?coated PAMPA plates, a Caco?2 cell monolayer model and intestinal perfusion; however, absorption was higher in the jejunum than in the ileum. Among the four alkaloids, the permeability of BER was markedly higher than the others, and P?gp efflux had a significant effect on the absorption of those alkaloids. PMID:26352530

  5. Synthesis and Biological Evaluation of Pentacyclic Strychnos Alkaloids as Selective Modulators of the ABCC10 (MRP7) Efflux Pump

    PubMed Central

    2015-01-01

    The selective modulation of ATP-binding cassette (ABC) efflux pumps overexpressed in multidrug resistant cancers (MDR) and attendant resensitization to chemotherapeutic agents represent a promising strategy for treating cancer. We have synthesized four novel pentacyclic Strychnos alkaloids alstolucines B (2), F (3), and A (5) and N-demethylalstogucine (4), in addition to known Strychnos alkaloid echitamidine (16), and we evaluated compounds 1–5 in biochemical assays with ABCC10 and P-glycoprotein (P-gp). Alstolucines B (2) and F (3) inhibited ABCC10 ATPase activity at 12.5 ?M without affecting P-gp function; moreover, they resensitized ABCC10-transfected cell lines to paclitaxel at 10 ?M. Altogether, the alstolucines represent promising lead candidates in the development of modulators of ABCC10 for MDR cancers overexpressing this pump. PMID:25419978

  6. Inhibition of Glucosylceramide Synthase Sensitizes Head and Neck Cancer to Cisplatin.

    PubMed

    Roh, Jong-Lyel; Kim, Eun Hye; Park, Jin Young; Kim, Ji Won

    2015-08-01

    Glucosylceramide synthase (GCS) overexpression is associated with multidrug resistance in several human cancers. GCS blockade, which overcomes multidrug resistance by downregulating P-glycoprotein (P-gp), has not been tested in head and neck cancer (HNC). This study investigates whether GCS is targetable in HNC by assessing whether GCS inhibition sensitizes HNC to cisplatin. The effect of genetic or pharmacologic GCS inhibition (using GCS siRNA/shRNA or d,l-threo-PPMP, respectively) on cisplatin sensitivity was assessed in several human HNC cells and acquired cisplatin-resistant HNC cells by measuring cell viability, cell cycle, death, mRNA and protein expression, ceramide production, and in preclinical tumor xenograft mouse models. GCS and P-gp expression were significantly associated with cisplatin resistance in several HNC cell lines (P = 0.007). Both were significantly increased in HN9-cisR cells, which display acquired cisplatin resistance (P < 0.001). Genetic or pharmacologic inhibition of GCS induced accumulation of increased ceramide levels. GCS inhibition increased cisplatin-induced cell death in HNC cells via P-gp downregulation and proapoptotic protein activation, which were abrogated by siPUMA transfection. Genetic and pharmacologic GCS inhibition sensitized resistant HNC cells to cisplatin in vitro and in vivo. GCS and P-gp overexpression is associated with acquired cisplatin resistance, suggesting a role for these molecules as therapeutic targets for HNC. Genetic or pharmacologic GCS blockade may have therapeutic benefit in cisplatin-resistant HNC. PMID:26063766

  7. Coencapsulated doxorubicin and bromotetrandrine lipid nanoemulsions in reversing multidrug resistance in breast cancer in vitro and in vivo.

    PubMed

    Cao, Xi; Luo, Jingwen; Gong, Tao; Zhang, Zhi-Rong; Sun, Xun; Fu, Yao

    2015-01-01

    Multidrug resistance has remained a major cause of treatment failure in chemotherapy due to the presence of P-glycoproteins (P-gp) that actively pump drugs from inside the cell to the outside. P-gp inhibitors were developed and coadministered with chemotherapeutic drugs to overcome the effect of efflux pumps thus enhancing the chemosensitivity of therapeutics. Our study aimed at developing a lipid nanoemulsion system for the coencapsulation of doxorubicin (DOX) and bromotetrandrine (W198) to reverse multidrug resistance (MDR) in breast cancer. W198 was a potent P-gp inhibitor, and DOX was selected as a model compound which is a common substrate for P-gp. Coencapsulated DOX and W198 lipid nanoemulsions (DOX/W198-LNs) displayed significantly enhanced cytotoxicity in DOX-resistant human breast cancer cells (MCF-7/ADR) compared with DOX loaded lipid nanoemulsions (DOX-LNs) (p < 0.05), which is due to the enhanced intracellular uptake of DOX in MCF-7/ADR cells. The biodistribution study was performed using a nude mice xenograft model, which demonstrates enhanced tumor uptake of DOX in the DOX/W198-LN treated group. Compared with DOX solution, DOX/W198-LNs showed reduced cardiac toxicity and gastrointestinal injury in rats. Taken together, DOX/W198-LNs represent a promising formulation for overcoming MDR in breast cancer. PMID:25469833

  8. TLR signaling modulates side effects of anticancer therapy in the small intestine

    PubMed Central

    Frank, Magdalena; Hennenberg, Eva Maria; Eyking, Annette; Rünzi, Michael; Gerken, Guido; Scott, Paul; Parkhill, Julian; Walker, Alan W.; Cario, Elke

    2014-01-01

    Intestinal mucositis represents the most common complication of intensive chemotherapy, which has a severe adverse impact on quality of life of cancer patients. However, the precise pathophysiology remains to be clarified and there is so far no successful therapeutic intervention. Here, we investigated the role of innate immunity through TLR signaling in modulating genotoxic chemotherapy-induced small intestinal injury in vitro and in vivo. Genetic deletion of TLR2, but not MD-2, in mice resulted in severe chemotherapy-induced intestinal mucositis in the proximal jejunum with villous atrophy, accumulation of damaged DNA, CD11b+-myeloid cell infiltration and significant gene alterations in xenobiotic metabolism, including a decrease in ABCB1/MDR1 p-glycoprotein (p-gp) expression. Functionally, stimulation of TLR2 induced synthesis and drug efflux activity of ABCB1/MDR1 p-gp in murine and human CD11b+-myeloid cells, thus inhibiting chemotherapy-mediated cytotoxicity. Conversely, TLR2 activation failed to protect small intestinal tissues genetically deficient in MDR1A against DNA-damaging drug-induced apoptosis. Gut microbiota depletion by antibiotics led to increased susceptibility to chemotherapy-induced mucosal injury in wildtype mice, which was suppressed by administration of a TLR2 ligand, preserving ABCB1/MDR1 p-gp expression. Findings were confirmed in a preclinical model of human chemotherapy-induced intestinal mucositis using duodenal biopsies, by demonstrating that TLR2 activation limited the toxic-inflammatory reaction and maintained assembly of the drug transporter p-gp. In conclusion, this study identifies a novel molecular link between innate immunity and xenobiotic metabolism. TLR2 acts as a central regulator of xenobiotic defense via the multidrug transporter ABCB1/MDR1 p-gp. Targeting TLR2 may represent a novel therapeutic approach in chemotherapy-induced intestinal mucositis. PMID:25589072

  9. Antitumor Agents 293. Non-toxic Dimethyl-4,4?-dimethoxy-5,6,5?,6?-dimethylenedioxybiphenyl-2,2?-dicarboxylate (DDB) Analogs Chemosensitize Multidrug Resistant Cancer Cells to Clinical Anticancer Drugs

    PubMed Central

    Hung, Hsin-Yi; Ohkoshi, Emika; Goto, Masuo; Bastow, Kenneth F.; Nakagawa-Goto, Kyoko; Lee, Kuo-Hsiung

    2012-01-01

    Novel dimethyl-4,4?-dimethoxy-5,6,5?,6?-dimethylenedioxybiphenyl-2,2?-dicarboxylate (DDB) analogs were designed and synthesized to improve their chemosensitizing action on KBvin (vincristine resistant nasopharyngeal carcinoma) cells, a multi-drug resistant cell line over-expressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic and bulky aliphatic side chains at the 2,2?-positions effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as paclitaxel (TAX), vincristine (VCR), and doxorubicin (DOX). DDB derivatives 16 and 23 showed 5–10 times more effective reversal ability than verapamil (VRP) for TAX and VCR. Analog 6 also exhibited five times greater chemosensitizing effect against DOX than VRP. Importantly, no cytotoxicity was observed by the active DDB analogs against both non-MDR and MDR cells, suggesting that DDB analogs serve as the novel lead compounds for the development of chemosensitizers to overcome MDR phenotype. The mechanism of action studies demonstrated that effective inhibition of P-glycoprotein by DDB analogs dramatically elevated cellular concentration of anticancer drugs. PMID:22612652

  10. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs

    PubMed Central

    Gurunath, S.; Nanjwade, Baswaraj K.; Patila, P.A.

    2013-01-01

    Objective Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. Methods In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2–2%). Gibbs free energy (?Gtro) values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. Results FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Conclusion Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability. PMID:25067902

  11. Evaluation of drug interaction potential of Labisia pumila (Kacip Fatimah) and its constituents

    PubMed Central

    Manda, Vamshi K.; Dale, Olivia R.; Awortwe, Charles; Ali, Zulfiqar; Khan, Ikhlas A.; Walker, Larry A.; Khan, Shabana I.

    2014-01-01

    Labisia pumila (Kacip Fatimah) is a popular herb in Malaysia that has been traditionally used in a number of women’s health applications such as to improve libido, relieve postmenopausal symptoms, and to facilitate or hasten delivery in childbirth. In addition, the constituents of this plant have been reported to possess anticancer, antioxidant, and anti-inflammatory properties. Clinical studies have indicated that cytochrome P450s (CYPs), P-glycoprotein (P-gp), and Pregnane X receptor (PXR) are the three main modulators of drug-drug interactions which alter the absorption, distribution, and metabolism of drugs. Given the widespread use of Kacip Fatimah in dietary supplements, the current study focuses on determining the potential of its constituents to affect the activities of CYPs, P-gp, or PXR using in vitro assays which may provide useful information toward the risk of herb-drug interaction with concomitantly used drugs. Six compounds isolated from the roots of L. pumila (2 saponins and 4 alkyl phenols) were tested, in addition to the methanolic extract. The extract of L. pumila showed a significant time dependent inhibition (TDI) of CYP3A4, reversible inhibition of CYP2C9 and 2C19 and a weak inhibition of 1A2 and 2D6 as well as an inhibition of P-gp and rifampicin-induced PXR activation. The alkyl phenols inhibited CYP3A4 (TDI), CYP2C9, and 2C19 (reversible) while saponins inhibited P-gp and PXR. In conclusion, L. pumila and its constituents showed significant modulation of all three regulatory proteins (CYPs, P-gp, and PXR) suggesting a potential to alter the pharmacokinetic and pharmacodynamic properties of conventional drugs if used concomitantly. PMID:25152732

  12. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide.

    PubMed

    Tournier, Nicolas; Saba, Wadad; Cisternino, Salvatore; Peyronneau, Marie-Anne; Damont, Annelaure; Goutal, Sébastien; Dubois, Albertine; Dollé, Frédéric; Scherrmann, Jean-Michel; Valette, Héric; Kuhnast, Bertrand; Bottlaender, Michel

    2013-10-01

    Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [(11)C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [(11)C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood-brain barrier (BBB). PET revealed the critical role of OATP on liver [(11)C]GLB uptake and its subsequent impact on [(11)C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [(11)C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake. PMID:23907487

  13. Complete restoration of glucocerebrosidase deficiency in Gaucher fibroblasts using a bicistronic MDR retrovirus and a new selection strategy.

    PubMed

    Aran, J M; Licht, T; Gottesman, M M; Pastan, I

    1996-11-10

    Retrovirus-mediated gene transfer is currently the most common method for the application of genetic therapy to cancer and many inherited and acquired disorders. Here we report the generation of an amphotropic producer cell line (CA2) that synthesizes viral particles carrying a bicistronic cassette in which the selectable MDR1 cDNA encoding P-glycoprotein (P-gp) a multidrug efflux pump, and the human glucocerebrosidase (GC) gene are transcriptionally fused. Transduction of human Gaucher fibroblasts with this recombinant virus allowed coordinate expression of P-gp and GC. Treatment of the transduced fibroblasts with various cytotoxic substrates of P-gp selected for cells with increased expression of GC, which paralleled the stringency of drug selection. Thus, selection of the genetically modified Gaucher fibroblasts in 1 microgram/ml colchicine raised their GC activity levels from nearly undetectable to those present in WI-38 normal human fibroblasts, correcting the enzyme deficiency present in Gaucher cells. Moreover, by simultaneously inhibiting the P-gp pump, it was possible to use much lower concentrations of colchicine to select for high-level expression of MDR1 and GC. Thus, selection with colchicine at 5 ng/ml in combination with the P-gp inhibitors verapamil or PSC 833 produced a complete correction of the GC deficiency in the CA2-transduced fibroblasts. These combination regimens, already in clinical use for the treatment of multidrug-resistant malignancies, may prove useful in gene therapy trials when utilized for high level selection of a nonselectable gene such as glucocerebrosidase when transcriptionally fused to the MDR1 gene. PMID:8934230

  14. Modulation of Biotransformation Systems and ABC Transporters by Benznidazole in Rats

    PubMed Central

    Perdomo, Virginia G.; Rigalli, Juan P.; Villanueva, Silvina S. M.; Ruiz, María L.; Luquita, Marcelo G.; Echenique, Claudia G.

    2013-01-01

    The effect of antichagasic benznidazole (BZL; 100 mg/kg body weight/day, 3 consecutive days, intraperitoneally) on biotransformation systems and ABC transporters was evaluated in rats. Expression of cytochrome P-450 (CYP3A), UDP-glucuronosyltransferase (UGT1A), glutathione S-transferases (alpha glutathione S-transferase [GST-?], GST-?, and GST-?), multidrug-resistance-associated protein 2 (Mrp2), and P glycoprotein (P-gp) in liver, small intestine, and kidney was estimated by Western blotting. Increases in hepatic CYP3A (30%) and GST-? (40%) and in intestinal GST-? (72% in jejunum and 136% in ileum) were detected. Significant increases in Mrp2 (300%) and P-gp (500%) proteins in liver from BZL-treated rats were observed without changes in kidney. P-gp and Mrp2 were also increased by BZL in jejunum (170% and 120%, respectively). In ileum, only P-gp was increased by BZL (50%). The activities of GST, P-gp, and Mrp2 correlated well with the upregulation of proteins in liver and jejunum. Plasma decay of a test dose of BZL (5 mg/kg body weight) administered intraduodenally was faster (295%) and the area under the concentration-time curve (AUC) was lower (41%) for BZL-pretreated rats than for controls. The biliary excretion of BZL was higher (60%) in the BZL group, and urinary excretion of BZL did not show differences between groups. The amount of absorbed BZL in intestinal sacs was lower (25%) in pretreated rats than in controls. In conclusion, induction of biotransformation enzymes and/or transporters by BZL could increase the clearance and/or decrease the intestinal absorption of coadministered drugs that are substrates of these systems, including BZL itself. PMID:23877690

  15. Suppression of multidrug resistance by rosiglitazone treatment in human ovarian cancer cells through downregulation of FZD1 and MDR1 genes.

    PubMed

    Zhang, Hui; Jing, Xuanxuan; Wu, Xiaojuan; Hu, Jing; Zhang, Xiaofang; Wang, Xiao; Su, Peng; Li, Weiwei; Zhou, Gengyin

    2015-08-01

    Multidrug resistance (MDR) is a major obstacle in the successful treatment of ovarian cancer. One of the most common causes of MDR is overexpression of P-glycoprotein (P-gp), encoded by the MDR1 gene. The MDR1 gene is a direct target of the Wnt/?-catenin signaling pathway, which plays an important role in ovarian cancer. Peroxisome proliferator-activated receptor ? (PPAR?) ligands have been found to protect against development of cancer through the Wnt/?-catenin pathway. To investigate the effect of PPAR? ligands on MDR1/P-gp expression, we treated a MDR ovarian cancer cell subline, A2780/Taxol, with different concentrations of rosiglitazone (Rosi), a member of the synthetic PPAR? ligands. Rosi downregulated FZD1 and MDR1/P-gp expression in a concentration-dependent manner. In addition, nuclear ?-catenin levels and its transcriptional activity decreased significantly. In conclusion, Rosi may reverse MDR of ovarian cancer cells by downregulating the Wnt/?-catenin pathway with the suppression of FZD1. PMID:26053275

  16. Sinomenine Sensitizes Multidrug-Resistant Colon Cancer Cells (Caco-2) to Doxorubicin by Downregulation of MDR-1 Expression

    PubMed Central

    Liu, Zhen; Duan, Zhi-Jun; Chang, Jiu-Yang; Zhang, Zhi-feng; Chu, Rui; Li, Yu-Ling; Dai, Ke-Hang; Mo, Guang-quan; Chang, Qing-Yong

    2014-01-01

    Chemoresistance in multidrug-resistant (MDR) cells over expressing P-glycoprotein (P-gp) encoded by the MDR1 gene, is a major obstacle to successful chemotherapy for colorectal cancer. Previous studies have indicated that sinomenine can enhance the absorption of various P-gp substrates. In the present study, we investigated the effect of sinomenine on the chemoresistance in colon cancer cells and explored the underlying mechanism. We developed multidrug-resistant Caco-2 (MDR-Caco-2) cells by exposure of Caco-2 cells to increasing concentrations of doxorubicin. We identified overexpression of COX-2 and MDR-1 genes as well as activation of the NF-?B signal pathway in MDR-Caco-2 cells. Importantly, we found that sinomenine enhances the sensitivity of MDR-Caco-2 cells towards doxorubicin by downregulating MDR-1 and COX-2 expression through inhibition of the NF-?B signaling pathway. These findings provide a new potential strategy for the reversal of P-gp-mediated anticancer drug resistance. PMID:24901713

  17. Role of P-glycoprotein in Haemonchus contortus anthelmintic resistance. 

    E-print Network

    Garretson, Pamela Donn

    2009-05-15

    The gastrointestinal parasite, Haemonchus contortus, is of major concern in the sheep and goat industry as well as in zoological settings. Over the years this parasite has developed resistance to the three classes of ...

  18. Prenatal endotoxemia and placental drug transport in the mouse: placental size-specific effects.

    PubMed

    Bloise, Enrrico; Bhuiyan, Manzerul; Audette, Melanie C; Petropoulos, Sophie; Javam, Mohsen; Gibb, William; Matthews, Stephen G

    2013-01-01

    Lipopolysaccharide (LPS) in high doses inhibits placental multidrug resistance P-glycoprotein (P-gp--Abcb1a/b) and breast cancer resistance protein (BCRP--Abcg2). This potentially impairs fetal protection against harmful factors in the maternal circulation. However, it is unknown whether LPS exposure, at doses that mimic sub-lethal clinical infection, alters placental multidrug resistance. We hypothesized that sub-lethal (fetal) LPS exposure reduces placental P-gp activity. Acute LPS (n?=?19;150 µg/kg; ip) or vehicle (n?=?19) were given to C57BL/6 mice at E15.5 and E17.5. Placentas and fetal-units were collected 4 and 24 h following injection. Chronic LPS (n?=?6; 5 µg/kg/day; ip) or vehicle (n?=?5) were administered from E11.5-15.5 and tissues were collected 4 h after final treatment. P-gp activity was assessed by [łH]digoxin accumulation. Placental Abcb1a/b, Abcg2, interleukin-6 (Il-6), Tnf-?, Il-10 and toll-like receptor-4 (Tlr-4) mRNA were measured by qPCR. Maternal plasma IL-6 was determined. At E15.5, maternal IL-6 was elevated 4 h after single (p<0.001) and chronic (p<0.05) LPS, but levels had returned to baseline by 24 h. Placental Il-6 mRNA was also increased after acute and chronic LPS treatments (p<0.05), whereas Abcb1a/b and Abcg2 mRNA were unaffected. However, fetal [łH]digoxin accumulation was increased (p<0.05) 4 h after acute LPS, and maternal [łH]digoxin myocardial accumulation was increased (p<0.05) in mice exposed to chronic LPS treatments. There was a negative correlation between fetal [łH]digoxin accumulation and placental size (p<0.0001). Acute and chronic sub-lethal LPS exposure resulted in a robust inflammatory response in the maternal systemic circulation and placenta. Acute infection decreased placental P-gp activity in a time- and gestational age-dependent manner. Chronic LPS decreased P-gp activity in the maternal myocardium and there was a trend for fetuses with smaller placentas to accumulate more P-gp substrate than their larger counterparts. Collectively, we demonstrate that acute sub-lethal LPS exposure during pregnancy impairs fetal protection against potentially harmful xenobiotics in the maternal circulation. PMID:23762418

  19. [Analysis of molecular mechanism involved in development of acute myeloid leukemia].

    PubMed

    Katsumi, Shigeaki; Kawauchi, Kiyotaka; Ozaki, Koji; Shimizu, Satoru; Kimura, Toshimi; Motoji, Toshiko; Yamada, Osamu

    2013-04-01

    We examined the role of molecules related to drug resistance, such as P-glycoprotein (P-gp) and telomerase (TERT), signaling molecules of STATs and FLT3 in leukemia pathogenesis in de novo acute myeloid leukemia (AML), and myelodysplastic syndrome in the phase of overt leukemia (MDS-OL). Subjects were 18 patients with de novo AML, in which expression of P-gp, TERT, STAT3, STAT5, and FLT3 was observed in 11, 14, 16, 18, and 14 of patients, respectively. Phosphorylation of STAT3, STAT5, and FLT3 in patients with de novo AML was observed in 10 out of 14, 14 out of 18, and 10 out of 14 patients, respectively. Phosphorylation of STAT5 was associated with expression of both P-gp and TERT, suggesting that STAT5 is one of the transcription factors for these genes. On the other hand, P-gp, TERT, STAT3, STAT5, and FLT3 were expressed in 3, 1, 1, 6, and 1 of the 7 patients with MDS-OL, respectively. While phosphorylation of STAT5 was observed in 4 out of 7 patients, phosphorylation of STAT3 or FLT3 was not detected in all cases examined. Telomere length varied from 2.7 kb to 6.0 kb in de novo AML, accompanied by an increased level of telomerase activity in 4 of 5 patients with de novo AML. In contrast, all MDS-OL cases showed a similar telomere length of 4-5 kb. These results indicate that consideration should be given to the differences of molecular mechanisms in the pathogenesis of de novo AML and MDS-OL for the treatment strategy of AML. PMID:23848014

  20. Stearidonic acid, a plant-based dietary fatty acid, enhances the chemosensitivity of canine lymphoid tumor cells.

    PubMed

    Pondugula, Satyanarayana R; Ferniany, Glennie; Ashraf, Farah; Abbott, Kodye L; Smith, Bruce F; Coleman, Elaine S; Mansour, Mahmoud; Bird, R Curtis; Smith, Annette N; Karthikeyan, Chandrabose; Trivedi, Piyush; Tiwari, Amit K

    2015-05-15

    Lymphoma is the most common hematopoietic tumor in dogs and humans, with similar pathogenesis and therapeutic responses. Anticancer drugs like vincristine (VCR) and doxorubicin (DOX) are often used in treating lymphoma. However, the cure rate is generally poor due to chemoresistance. Here, we sought to determine whether stearidonic acid (SDA), a plant-based dietary fatty acid, sensitizes chemoresistant canine lymphoid-tumor cells. GL-1 B-cell lymphoid-tumor cells were found to be highly sensitive to the antitumor-activity of VCR and DOX, while OSW T-cell and 17-71 B-cell lymphoid-tumor cells were moderately and fully resistant, respectively. SDA, at its non-toxic concentrations, significantly promoted the antitumor action of VCR and DOX in both OSW and 17-71 cells. SDA-mediated chemosensitization was associated with SDA inhibition of P-glycoprotein (P-gp) function. This was confirmed in HEK293 cells stably expressing P-gp as well as by increased binding-affinity of SDA to P-gp in P-gp docking analysis. SDA at its chemosensitizing concentrations did not affect the viability of healthy dog peripheral blood mononuclear cells, suggesting that SDA is non-toxic to normal dog peripheral blood leucocytes at its chemosensitizing concentrations. Our study identifies a novel dietary fatty acid that may be used as a dietary supplement in combination with chemotherapy to promote the antitumor efficacy of the chemotherapy drugs in dogs and possibly in humans with chemoresistant lymphoma. PMID:25847597

  1. The PET Radioligand [11 C]MePPEP Binds Reversibly and

    E-print Network

    Pike, Victor W.

    to the concentration of parent radiotracer in plasma. The P-glycoprotein (P-gp) inhibitor DCPQ ((R)- 4-[(1a,6,10b)-1,1-dichloro-1,1a,6,10b-tetrahydrodibenzo[a,e]cyclopropa[c]cyclohepten-6-yl]-[(5-quinolinyloxy)methyl]-1

  2. High affinity and covalent-binding microtubule stabilizing agents show activity in chemotherapy-resistant acute myeloid leukemia cells.

    PubMed

    Pera, Benet; Calvo-Vidal, M Nieves; Ambati, Srikanth; Jordi, Michel; Kahn, Alissa; Díaz, J Fernando; Fang, Weishuo; Altmann, Karl-Heinz; Cerchietti, Leandro; Moore, Malcolm A S

    2015-11-01

    Treatment failure in acute myeloid leukemia (AML) is frequently due to the persistence of a cell population resistant to chemotherapy through different mechanisms, in which drug efflux via ATP-binding cassette (ABC) proteins, specifically P-glycoprotein, is one of the most recognized. However, disappointing results from clinical trials employing inhibitors for these transporters have demonstrated the need to adopt different strategies. We hypothesized that microtubule targeting compounds presenting high affinity or covalent binding could overcome the effect of ABC transporters. We therefore evaluated the activity of the high-affinity paclitaxel analog CTX-40 as well as the covalent binder zampanolide (ZMP) in AML cells. Both molecules were active in chemosensitive as well as in chemoresistant cell lines overexpressing P-glycoprotein. Moreover, ZMP or CTX-40 in combination with daunorubicin showed synergistic killing without increased in vitro hematopoietic toxicity. In a primary AML sample, we further demonstrated that ZMP and CTX-40 are active in progenitor and differentiated leukemia cell populations. In sum, our data indicate that high affinity and covalent-binding anti-microtubule agents are active in AML cells otherwise chemotherapy resistant. PMID:26277539

  3. Isolation of limonoids and alkaloids from Phellodendron amurense and their multidrug resistance (MDR) reversal activity.

    PubMed

    Min, Yong Deuk; Kwon, Hak Cheol; Yang, Min Cheol; Lee, Kyu Ha; Choi, Sang Un; Lee, Kang Ro

    2007-01-01

    Three limonoids and five alkaloids were isolated from the chloroform layer of the MeOH extract of the bark of Phellodendron amurense (Rutaceae). The structures of the compounds isolated were determined to be obacunone (1), limonin (2), 12alpha-hydroxylimonin (3), gamma-fagarine (4), oxyberberine (5), canthin-6-one (6), 4-methoxy-N-methyl-2-quinolone (7) and oxypalmatine (8) based on the physicochemical and spectroscopic data. Compounds 3, 5, 7, and 8 were first isolated from the Phellodendron amurense. The isolated compounds were then tested for their cytotoxicity against five human tumor cell lines in vitro using the SRB method. Compound 5 showed significant cytotoxicity against the five tumor cell lines with ED50 values ranging from 0.30 to 3.0 microg/mL. The marginal or noncytotoxic compounds (1, 2, 3, 4, and 7) were examined for their P-gp related MDR reversal activities. Compound 1 showed significant P-gp MDR inhibition activity in MES-SA/DX5 and HCT15 cells with an ED50 value of 0.028 microg/mL and 0.0011 microg/mL, respectively. PMID:17328243

  4. Physiologically based pharmacokinetic modelling and in vivo [I]/Ki accurately predict P-glycoproteinmediated drug-drug interactions with dabigatran etexilate

    PubMed Central

    Zhao, Yuansheng; Hu, Zhe-Yi

    2014-01-01

    Background and purpose In vitro inhibitory potency (Ki)-based predictions of P-glycoprotein (P-gp)-mediated drug-drug interactions (DDIs) are hampered by the substantial variability in inhibitory potency. In this study, in vivo-based [I]/Ki values were used to predict the DDI risks of a P-gp substrate dabigatran etexilate (DABE) using physiologically based pharmacokinetic (PBPK) modelling. Experimental approach A baseline PBPK model was established with digoxin, a known P-gp substrate. The Km (P-gp transport) of digoxin in the baseline PBPK model was adjusted to Kmi to fit the change of digoxin pharmacokinetics in the presence of a P-gp inhibitor. Then ‘in vivo’ [I]/Ki of this P-gp inhibitor was calculated using Kmi/Km. Baseline PBPK model was developed for DABE, and the ‘in vivo’ [I]/Ki was incorporated into this model to simulate the static effect of P-gp inhibitor on DABE pharmacokinetics. This approach was verified by comparing the observed and the simulated DABE pharmacokinetics in the presence of five different P-gp inhibitors. Key results This approach accurately predicted the effects of five P-gp inhibitors on DABE pharmacokinetics (98–133% and 89–104% for the ratios of AUC and Cmax respectively). The effects of 16 other P-gp inhibitors on the pharmacokinetics of DABE were also confidently simulated. Conclusions and implications ‘In vivo’ [I]/Ki and PBPK modelling, used in combination, can accurately predict P-gp-mediated DDIs. The described framework provides a mechanistic basis for the proper design of clinical DDI studies, as well as avoiding unnecessary clinical DDI studies. PMID:24283665

  5. New anti-cancer characteristics of jatrophane diterpenes from Euphorbia dendroides.

    PubMed

    Peši?, Milica; Bankovi?, Jasna; Aljan?i?, Ivana S; Todorovi?, Nina M; Jadranin, Milka; Vajs, Vlatka E; Teševi?, Vele V; Vu?kovi?, Ivan; Mom?ilovi?, Miljana; Markovi?, Ivanka D; Tani?, Nikola; Ruždiji?, Sabera

    2011-12-01

    Jatrophane diterpenes were shown to be inhibitors of P-glycoprotein (P-gp). There are also evidences on their microtubule-interacting activity in cancer cells. We evaluated new anti-cancer characteristics of two jatrophane type compounds from Euphorbia dendroides. For that purpose, the model system of sensitive non-small cell lung cancer cell line (NCI-H460) and its resistant counterpart (NCI-H460/R) was used. Although both jatrophanes showed inhibitory effect on cancer cell growth, they were non-toxic for peripheral blood mononuclear cells (PBMC). We examined their effects in combination with paclitaxel (PTX), a well-known mitotic spindle interacting chemotherapeutic. Jatrophanes overcome PTX resistance in concentration-dependent manner in MDR cancer cell line (NCI-H460/R). We observed that this synergistic effect is not caused merely by P-gp inhibition. In combination with PTX, jatrophanes induce cell killing and change cell cycle distribution leading to G2/M arrest. Furthermore, they exert an anti-angiogenic effect by decreasing the vascular endothelial growth factor (VEGF) secretion. The reduction of the level of mdr1 mRNA expression in sensitive cells, suggests that these compounds could not contribute to the development of resistance. In conclusion, present study provides a rational basis for the new cancer treatment approach with jatrophanes that are non-toxic to normal cells and have new favorable anti-cancer characteristics. PMID:21996302

  6. Characterization of anthracenediones and their photoaffinity analogs.

    PubMed

    Chou, Kai-Ming; Krapcho, A Paul; Horn, David; Hacker, Miles

    2002-03-15

    In an attempt to overcome the cardiotoxicity and cross-resistance problems caused by the anticancer drugs anthracyclines and anthracenediones during chemotherapy, we have developed a series of aza-anthracenedione compounds by modifying the chromophore and the side arms of anthracyclines and anthracenediones. One of these aza-anthracenediones, 6,9-bis[(2-aminoethyl)amino]benzo[g]isoquinoline-5,10-dione (BBR 2778), which is currently under phase II clinical trials, showed remarkable antitumor activity and appeared to lack a cardiotoxic effect in preclinical studies. However, it was still cross-resistant against multidrug resistance (MDR) cells expressing P-glycoprotein (P-gp). In contrast, another aza-anthracenedione, 6,9-bis[[2-(dimethylamino)ethyl]amino]benzo[g]isoquinoline-5,10-dione, which has side arm structures different from those of BBR 2778, was highly active against MDR cells. In this study, BBR 2778, BBR 2378, and an anthracenedione compound, 1,4-bis[(2-aminoethyl)amino]-5,8-dimethyl-9,10-anthracenedione, were used to assess the relationship between the chemical structures of these drugs and their interactions with DNA and P-gp. In addition, the biological and pharmacological influences of photoaffinity labeling were also studied for BBR 2778 and DEH. As the results indicate, the photolabeled analogs of BBR 2778 and DEH were less DNA-reactive and less cytotoxic. The more lipophilic compound, BBR 2378, and the photolabeled analogs of BBR 2778 and DEH inhibited P-gp labeling by azidopine better than did the more hydrophilic parental compounds. These studies suggested that the DNA binding affinity of BBR 2778 and DEH could be important in determining their cytotoxicity, and that the chemical structure of the side arms and the lipophilicity of these drugs are critical in determining their cross-resistance. PMID:11931847

  7. Chemosensitization of HepG2 cells by suppression of NF-?B/p65 gene transcription with specific-siRNA

    PubMed Central

    Shi, Yun; Wang, Si-Ye; Yao, Min; Sai, Wen-Li; Wu, Wei; Yang, Jun-Ling; Cai, Yin; Zheng, Wen-Jie; Yao, Deng-Fu

    2015-01-01

    AIM: To investigate small interfering RNA (siRNA)-mediated inhibition of nuclear factor-kappa B (NF-?B) activation and multidrug-resistant (MDR) phenotype formation in human HepG2 cells. METHODS: Total RNA was extracted from human HepG2 or LO2 cells. NF-?B/p65 mRNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing. NF-?B/p65 was analyzed by immunohistochemistry. Specific-siRNA was transfected to HepG2 cells to knock down NF-?B/p65 expression. The effects on cell proliferation, survival, and apoptosis were assessed, and the level of NF-?B/p65 or P-glycoprotein (P-gp) was quantitatively analyzed by enzyme-linked immunosorbent assay. RESULTS: HepG2 cells express NF-?B/p65 and express relatively less phosphorylated p65 (P-p65) and little P-gp. After treatment of HepG2 cells with different doses of doxorubicin, the expression of NF-?B/p65, P-p65, and especially P-gp were dose-dependently upregulated. After HepG2 cells were transfected with NF-?B/p65 siRNA (100 nmol/L), the expression of NF-?B/p65, P-p65, and P-gp were downregulated significantly and dose-dependently. The viability of HepG2 cells was decreased to 23% in the combination NF-?B/p65 siRNA (100 nmol/L) and doxorubicin (0.5 ?mol/L) group and 47% in the doxorubicin (0.5 ?mol/L) group (t = 7.043, P < 0.001). CONCLUSION: Knockdown of NF-?B/p65 with siRNA is an effective strategy for inhibiting HepG2 cell growth by downregulating P-gp expression associated chemosensitization and apoptosis induction. PMID:26668505

  8. Evaluation of the Transport, In Vitro Metabolism and Pharmacokinetics of Salvinorin A, a Potent Hallucinogen

    PubMed Central

    Teksin, Zeynep S.; Lee, Insong J.; Nemieboka, Noble N.; Othman, Ahmed A.; Upreti, Vijay V.; Hassan, Hazem E.; Syed, Shariq S.; Prisinzano, Thomas E.; Eddington, Natalie D.

    2009-01-01

    Salvinorin A is an unregulated potent hallucinogen isolated from the leaves of Salvia divinorum. It is the only known non-nitrogenous kappa-opioid selective agonist and rivals synthetic lysergic acid diethylamide (LSD) in potency. This objective of this study was to characterize the in vitro transport, in vitro metabolism, and pharmacokinetic properties of Salvinorin A. The transport characteristics of Salvinorin A were assessed using MDCK-MDR1 cell monolayers. The P-glycoprotein (P-gp) affinity status was assessed by the P-gp ATPase assay. In vitro metabolism studies were performed with various specific human CYP450 isoforms and UGT2B7 to assess the metabolic characteristics of Salvinorin A. Cohorts (n=3) of male Sprague Dawley rats were used to evaluate the pharmacokinetics and brain distribution of Salvinorin A (10 mg/kg, intraperitonal (i.p.) over a 240 min period. A validated UV-HPLC and LC/MS/MS method was used to quantify the hallucinogen concentrations obtained from the in vitro and in vivo studies, respectively. Salvinorin A displayed a high secretory transport in the MDCK-MDR1 cells (4.07±1.34 × 10-5 cm/s). Salvinorin A also stimulated the P-gp ATPase activity in a concentration (5-10 ?m) dependent manner, suggesting that it may be a substrate of P-gp. A significant decrease in Salvinorin A concentration ranging from 14.7±0.80 % to 31.1±1.20 % was observed after incubation with CYP2D6, CYP1A1, CYP2C18, and CYP2E1, respectively. A significant decrease was also observed after incubation with UGT2B7. These results suggest that Salvinorin A may be a substrate of UGT2B7, CYP2D6, CYP1A1, CYP2E1 and CYP2C18. The in vivo pharmacokinetic study showed a relatively fast elimination with a half-life (t1/2) of 75 min and a clearance (Cl/F) of 26 L/h/kg. The distribution was extensive (Vd of 47.1 L/kg), however the brain to plasma ratio was 0.050. Accordingly, the brain half life was relatively short, 36 min. Salvinorin A is rapidly eliminated after i.p. dosing, in accordance with its fast onset and short duration of action. Further, it appears to be a substrate for various oxidative enzymes and multi-drug resistant protein, P-gp. PMID:19462483

  9. Swelling-activated chloride channels in multidrug-sensitive and - resistant cells

    PubMed Central

    1994-01-01

    Resistance to chemotherapeutic agents in neoplastic cells is often mediated by expression of P-glycoprotein, which functions as a drug- efflux pump for a broad range of substrates. We have used a combination of patch clamp and video-imaging techniques to examine the expression and drug-efflux function of P-glycoprotein and to determine the possible correlation with swelling-activated chloride channels in drug- sensitive and -resistant cell lines. Two pairs of cell lines were used in these experiments: (a) control NIH-3T3 cells and a corresponding MDR1-transfectant; and (b) control 8226 myeloma cells and a derivative cell line selected for resistance to chemotherapeutic agents. Control cells lacked detectable P-glycoprotein expression based on Western blotting, immunofluorescence staining with a specific monoclonal antibody, and a functional assay of rhodamine-123 (R123) efflux. Resistant cells expressed P-glycoprotein at high levels and rapidly exported R123. During whole-cell recording using either hyperosmotic pipette solution or hypoosmotic Ringer solution, cell swelling was accompanied by Cl- channel opening in all four cell lines. The rates of induction, biophysical properties and magnitudes of Cl conductance (gCl) were indistinguishable between control and corresponding multidrug-resistant cells: gCl reached 0.96 +/- 0.31 (n = 14) and 0.83 +/- 0.31 nS/pF (mean +/- SD; n = 31) in NIH-3T3 and NIH-3T3/MDR cells, respectively; and 0.31 +/- 0.20 (n = 9) and 0.37 +/- 0.22 nS/pF (n = 7) in 8226 and 8226/Dox40 cells, respectively. gCl exhibited moderate outward rectification in symmetrical Cl- solutions, with a rectification ratio of 1.4 at +/- 50 mV. Cl- channels slowly closed during strong depolarization beyond +60 mV. Using video-imaging techniques with SPQ as a fluorescent probe, we monitored Cl(-)-channel opening in intact drug-sensitive and -resistant cells. gCl, measured either with whole-cell recording or SPQ imaging, was blocked by DIDS (voltage-dependent Kd < 50 microM at +40 mV), NPPB (Kd approximately 30 microM), and tamoxifen (complete and irreversible block approximately 10 microM). None of these blockers inhibited R123 efflux. NPPB accelerated R123 efflux, an effect that was mimicked by CCP, a mitochondrial uncoupler. In contrast, verapamil selectively blocked R123 efflux (Kd = 0.3 to 0.5 microM); 10 microM left gCl unaltered. Induction of gCl was not affected by vincristine or doxorubicin in the pipette solution. Moreover, the rate of R123 efflux did not change during cell swelling. We conclude that P-glycoprotein and swelling- activated chloride channels function independently and are separable by expression and by pharmacological sensitivities. PMID:7699367

  10. Olive-Oil-Derived Oleocanthal Enhances ?-Amyloid Clearance as a Potential Neuroprotective Mechanism against Alzheimer’s Disease: In Vitro and in Vivo Studies

    PubMed Central

    2013-01-01

    Oleocanthal, a phenolic component of extra-virgin olive oil, has been recently linked to reduced risk of Alzheimer’s disease (AD), a neurodegenerative disease that is characterized by accumulation of ?-amyloid (A?) and tau proteins in the brain. However, the mechanism by which oleocanthal exerts its neuroprotective effect is still incompletely understood. Here, we provide in vitro and in vivo evidence for the potential of oleocanthal to enhance A? clearance from the brain via up-regulation of P-glycoprotein (P-gp) and LDL lipoprotein receptor related protein-1 (LRP1), major A? transport proteins, at the blood-brain barrier (BBB). Results from in vitro and in vivo studies demonstrated similar and consistent pattern of oleocanthal in controlling A? levels. In cultured mice brain endothelial cells, oleocanthal treatment increased P-gp and LRP1 expression and activity. Brain efflux index (BEI%) studies of 125I-A?40 showed that administration of oleocanthal extracted from extra-virgin olive oil to C57BL/6 wild-type mice enhanced 125I-A?40 clearance from the brain and increased the BEI% from 62.0 ± 3.0% for control mice to 79.9 ± 1.6% for oleocanthal treated mice. Increased P-gp and LRP1 expression in the brain microvessels and inhibition studies confirmed the role of up-regulation of these proteins in enhancing 125I-A?40 clearance after oleocanthal treatment. Furthermore, our results demonstrated significant increase in 125I-A?40 degradation as a result of the up-regulation of A? degrading enzymes following oleocanthal treatment. In conclusion, these findings provide experimental support that potential reduced risk of AD associated with extra-virgin olive oil could be mediated by enhancement of A? clearance from the brain. PMID:23414128

  11. Cabazitaxel: a novel second-line treatment for metastatic castration-resistant prostate cancer

    PubMed Central

    Paller, Channing J; Antonarakis, Emmanuel S

    2011-01-01

    Until recently, patients with castration-resistant prostate cancer (CRPC) had limited therapeutic options once they became refractory to docetaxel chemotherapy, and no treatments improved survival. This changed in June 2010 when the Food and Drug Administration (FDA) approved cabazitaxel as a new option for patients with CRPC whose disease progresses during or after docetaxel treatment. For most of these patients, cabazitaxel will now replace mitoxantrone (a drug that was FDA-approved because of its palliative effects) as the treatment of choice for docetaxel-refractory disease. The approval of cabazitaxel was based primarily on the TROPIC trial, a large (n = 755) randomized Phase III study showing an overall median survival benefit of 2.4 months for men with docetaxel-pretreated metastatic CRPC receiving cabazitaxel (with prednisone) compared to mitoxantrone (with prednisone). Cabazitaxel is a novel tubulin-binding taxane that differs from docetaxel because of its poor affinity for P-glycoprotein (P-gp), an ATP-dependent drug efflux pump. Cancer cells that express P-gp become resistant to taxanes, and the effectiveness of docetaxel can be limited by its high substrate affinity for P-gp. Preclinical and early clinical studies show that cabazitaxel retains activity in docetaxel-resistant tumors, and this was confirmed by the TROPIC study. Common adverse events with cabazitaxel include neutropenia (including febrile neutropenia) and diarrhea, while neuropathy was rarely observed. Thus, the combination of cabazitaxel and prednisone is an important new treatment option for men with docetaxel-refractory metastatic CRPC, but this agent should be administered cautiously and with appropriate monitoring (especially in men at high risk of neutropenic complications). PMID:21448449

  12. Sensitization of multidrug resistant (MDR) cancer cells to vinblastine by novel acridones: correlation between anti-calmodulin activity and anti-MDR activity.

    PubMed

    Mayur, Y C; Padma, T; Parimala, B H; Chandramouli, K H; Jagadeesh, S; Gowda, N M Made; Thimmaiah, K N

    2006-01-01

    Multidrug resistance (MDR) of cancer cells remains to be an important cause of chemotherapy failure. Search for the new MDR reversal agents is still an unceasing challenge for the scientists. In an attempt to find clinically useful modulators of MDR, a series of 19 N(10)-substituted-2-bromoacridones has been synthesized. Parent compound 1, prepared by the Ullmann condensation of o-chlorobenzoic acid and p-bromoaniline, undergoes N-alkylation in the presence of a phase transfer catalyst. N-(omega-Chloroalkyl) analogues were subjected to iodide catalyzed nucleophilic substitution reaction with various secondary amines to get the products 3-10 and 12-19, which increased the uptake of vinblastine (VLB) in MDR KBCh(R)-8-5 cells to a greater extent (1.25 to 1.9-fold) than did a similar concentration of the standard modulator, verapamil (VRP). Results of the efflux experiment showed that each modulator significantly inhibited the efflux of VLB, suggesting that they may be competitors for P-gp. All the compounds effectively compete with [(3)H] azidopine for binding to P-gp, pointed out this transport membrane protein as their likely site of action. Compounds at IC(10) were evaluated for their efficacy to modulate the cytotoxicity of VLB in KBCh(R)-8-5 cells and found that the modulators enhanced the cytotoxicity of VLB by 3.8 to 34-fold. The study on the structure-activity relationship revealed that substitution of hydrogen atom at position C-2 in acridone nucleus by a bromine atom increased the cytotoxic and anti-MDR activities. The ability of acridones to inhibit calmodulin-dependent cyclic AMP phosphodiesterase has been determined and the results have shown a strong positive correlation between anti-calmodulin activity and cytotoxicity in KBCh(R)-8-5 cells or anti-MDR activity. PMID:16787357

  13. Terpenoids from Maytenus species and assessment of their reversal activity against a multidrug-resistant Leishmania tropica line.

    PubMed

    Kennedy, María L; Llanos, Gabriel G; Castanys, Santiago; Gamarro, Francisco; Bazzocchi, Isabel L; Jiménez, Ignacio A

    2011-12-01

    The phytochemical analysis of the root bark extracts of the Chilean Maytenus, M. chubutensis, and M. magellanica (Celastraceae), led to the isolation of one phenolic nortriterpene, 1, and one diterpene with a nor-ent-kaurene skeleton, 2. In addition, four known compounds were isolated, among which compound 3 has been isolated for the first time from a natural source. Their structures were elucidated by spectroscopic methods, including 1D- and 2D-NMR (COSY, ROESY, HSQC, and HMBC) experiments, comparison with data reported in the literature, and chemical correlations. The isolated compounds were assayed for their reversal activity against a multidrug-resistant Leishmania tropica line, overexpressing a P-glycoprotein related transporter. Compound 1 showed moderate multidrug-resistance reversal activity. PMID:22162167

  14. Ecto-5?-nucleotidase expression is associated with the progression of renal cell carcinoma

    PubMed Central

    YU, YI; WANG, WEI; SONG, LEI; HU, WENTAO; DONG, CHI; PEI, HAILONG; ZHOU, GUANGMING; YUE, ZHONGJIN

    2015-01-01

    Renal cell carcinoma (RCC) is a common tissue tumor that occurs across all age groups and has become one of the types of cancer with the fastest increasing incidence. Due to the resistance of RCC chemo- and radiotherapy, surgery is the only currently effective treatment. Therefore, specific markers for the diagnosis and prognosis of RCC are expected to result in novel methods of treatment. Ecto-5?-nucleotidase, also termed cluster of differentiation (CD)73, is a protein that is activated in several types of aggressive cancer and may promote cancer progression. CD73 was examined in the present study to determine the association between the protein and RCC. The expression levels of CD73 in 159 RCC tissue sections and 30 paratumorous normal renal tissue samples obtained from 235 patients that underwent nephrectomy were examined by immunohistochemical staining. By contrast, the expression level of P-glycoprotein (P-gp), a potential prognostic factor in RCC, was also examined in 85 RCC and 13 normal tissue samples. Intense CD73 expression was identified in 75 out of 159 RCC cell membranes compared with normal renal tissues. In contrast, there was high P-gp expression in the blood vessels of 42 out of 85 RCC tissues and there was no significant difference between the P-gp expression identified in RCC cells (34 out of 85) and the cell membrane of normal renal cells (2 out of 13). The expression level of CD73 in RCC cells was significantly associated with tumor type, tumor node metastasis (TNM) stage, and tumor grade. However, the expression of P-gp in RCC cells was only associated with the TNM stage and tumor grade. Using a multivariable Cox regression analysis, it was found that the median survival rate of RCC patients with intense CD73 expression in RCC cells was 62.06±5.35 months, which was drastically shorter compared with rare CD73 expression (103.72±3.67 months). In conclusion, the expression level of CD73 is significantly associated with RCC tumor progression and may serve as a favorable marker for the diagnosis and prognosis of RCC, in addition to being a therapeutic target for the treatment of RCC. PMID:26137095

  15. Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging.

    PubMed

    Silverberg, Gerald D; Messier, Arthur A; Miller, Miles C; Machan, Jason T; Majmudar, Samir S; Stopa, Edward G; Donahue, John E; Johanson, Conrad E

    2010-10-01

    Reduced clearance of amyloid ? peptides (A?) across the blood-brain barrier contributes to amyloid accumulation in Alzheimer disease. Amyloid ? efflux transport is via the endothelial low-density lipoprotein receptor-related protein 1 (LRP-1) and P-glycoprotein (P-gp), whereas A? influx transport is via the receptor for advanced glycation end products. Because age is the major risk factor for developing Alzheimer disease, we measured LRP-1 and P-gp expression and associated transporter expression with A? accumulation in aging rats. Quantitative LRP-1 and P-gp microvessel expression was measured by immunohistochemistry (IHC); LRP-1 and P-gp expression were assessed in microvessel isolates by Western blotting. There was an age-dependent loss of capillary LRP-1 across all ages (3-36 months) by IHC (linear trend p = 0.0004) and between 3 and 20 months by Western blotting (linear trend p < 0.0001). There was a late (30-36 months) P-gp expression loss by IHC (p < 0.05) and Western blotting (p = 0.0112). Loss of LRP-1 correlated with A?42 accumulation (p = 0.0121) and very nearly with A?40 (p = 0.0599) across all ages. Expression of LRP-1 correlated negatively with the expression of receptor for advanced glycation end products (p < 0.0004). These data indicate that alterations in LRP-1 and P-gp expression seem to contribute progressively to A? accumulation in aging. PMID:20838242

  16. Altered glycaemia differentially modulates efflux transporter expression and activity in hCMEC/D3 cell line.

    PubMed

    Sajja, Ravi K; Cucullo, Luca

    2015-06-26

    The unique phenotype of blood-brain barrier (BBB) endothelium is partly maintained by abundant expression of ATP-binding cassette superfamily of efflux transporters that strictly restrict the CNS access to toxic substances including xenobiotics in circulation. Previously, we have shown that diabetes-related altered glycemic conditions differentially affect and compromise BBB integrity. However, the impact of diabetes on BBB efflux transporters is less understood. In this study, we examined the effects of single or repeated episodes of hypo-and hyperglycemia on major BBB efflux transporters expression/function in human cerebromicrovascular endothelial cell line (hCMEC/D3). Cells were exposed to normal (5.5 mM), hypo (2.2 mM) or hyper (25 or 35 mM)-glycemic media containing D-glucose for 12h (acute) or two 3h episodes/day of hypo- or hyperglycemia with an intercalated 2h normalglycemic exposure for 3 days ("glycemic variability", see Methods). Acute hypoglycemic exposure (12h) up-regulated BBB endothelial mRNA and protein expression of P-glycoprotein, BCRP and other multidrug resistance associated proteins (MRP1 and 4) paralleled by an increase in transporter-specific efflux activity (? 2-fold vs. control). Although, 12h hyperglycemia did not affect the efflux transporter expression (except for MRP4), a significant increase in BCRP activity was observed. By contrast, DNA microarray data revealed that repeated hyperglycemic episodes (but not hypoglycemia) significantly up-regulate P-glycoprotein expression and activity. Thus, this study suggests a differential impact of altered glycemic conditions on major BBB drug efflux transporters expression/function, sensitive to the length of exposure (acute vs. repeated), with an implication for altered CNS drug disposition in diabetic population. PMID:25982326

  17. Suppression of MAPK Signaling and Reversal of mTOR-Dependent MDR1-Associated Multidrug Resistance by 21?-Methylmelianodiol in Lung Cancer Cells

    PubMed Central

    Aldonza, Mark Borris Docdoc; Hong, Ji-Young; Bae, Song Yi; Song, Jayoung; Kim, Won Kyung; Oh, Jedo; Shin, Yoonho; Lee, Seung Ho; Lee, Sang Kook

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide and remains the most prevalent. Interplay between PI3K/AMPK/AKT and MAPK pathways is a crucial effector in lung cancer growth and progression. These signals transduction protein kinases serve as good therapeutic targets for non-small cell lung cancer (NSCLC) which comprises up to 90% of lung cancers. Here, we described whether 21?-Methylmelianodiol (21?-MMD), an active triterpenoid derivative of Poncirus trifoliate, can display anticancer properties by regulating these signals and modulate the occurrence of multidrug resistance in NSCLC cells. We found that 21?-MMD inhibited the growth and colony formation of lung cancer cells without affecting the normal lung cell phenotype. 21?-MMD also abrogated the metastatic activity of lung cancer cells through the inhibition of cell migration and invasion, and induced G0/G1 cell cycle arrest with increased intracellular ROS generation and loss of mitochondrial membrane integrity. 21?-MMD regulated the expressions of PI3K/AKT/AMPK and MAPK signaling which drove us to further evaluate its activity on multidrug resistance (MDR) in lung cancer cells by specifying on P-glycoprotein (P-gp)/MDR1-association. Employing the established paclitaxel-resistant A549 cells (A549-PacR), we further found that 21?-MMD induced a MDR reversal activity through the inhibition of P-gp/MDR1 expressions, function, and transcription with regained paclitaxel sensitivity which might dependently correlate to the regulation of PI3K/mTOR signaling pathway. Taken together, these findings demonstrate, for the first time, the mechanistic evaluation in vitro of 21?-MMD displaying growth-inhibiting potential with influence on MDR reversal in human lung cancer cells. PMID:26098947

  18. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  19. Anticancer activity of sea cucumber triterpene glycosides.

    PubMed

    Aminin, Dmitry L; Menchinskaya, Ekaterina S; Pisliagin, Evgeny A; Silchenko, Alexandra S; Avilov, Sergey A; Kalinin, Vladimir I

    2015-03-01

    Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-?B, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics. PMID:25756523

  20. Anticancer Activity of Sea Cucumber Triterpene Glycosides

    PubMed Central

    Aminin, Dmitry L.; Menchinskaya, Ekaterina S.; Pisliagin, Evgeny A.; Silchenko, Alexandra S.; Avilov, Sergey A.; Kalinin, Vladimir I.

    2015-01-01

    Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-?B, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics. PMID:25756523

  1. Mitochondria of a human multidrug-resistant hepatocellular carcinoma cell line constitutively express inducible nitric oxide synthase in the inner membrane.

    PubMed

    Fantappič, Ornella; Sassoli, Chiara; Tani, Alessia; Nosi, Daniele; Marchetti, Serena; Formigli, Lucia; Mazzanti, Roberto

    2015-06-01

    Mitochondria play a crucial role in pathways of stress conditions. They can be transported from one cell to another, bringing their features to the cell where they are transported. It has been shown in cancer cells overexpressing multidrug resistance (MDR) that mitochondria express proteins involved in drug resistance such as P-glycoprotein (P-gp), breast cancer resistant protein and multiple resistance protein-1. The MDR phenotype is associated with the constitutive expression of COX-2 and iNOS, whereas celecoxib, a specific inhibitor of COX-2 activity, reverses drug resistance of MDR cells by releasing cytochrome c from mitochondria. It is possible that COX-2 and iNOS are also expressed in mitochondria of cancer cells overexpressing the MDR phenotype. This study involved experiments using the human HCC PLC/PRF/5 cell line with and without MDR phenotype and melanoma A375 cells that do not express the MDR1 phenotype but they do iNOS. Western blot analysis, confocal immunofluorescence and immune electron microscopy showed that iNOS is localized in mitochondria of MDR1-positive cells, whereas COX-2 is not. Low and moderate concentrations of celecoxib modulate the expression of iNOS and P-gp in mitochondria of MDR cancer cells independently from inhibition of COX-2 activity. However, A375 cells that express iNOS also in mitochondria, were not MDR1 positive. In conclusion, iNOS can be localized in mitochondria of HCC cells overexpressing MDR1 phenotype, however this phenomenon appears independent from the MDR1 phenotype occurrence. The presence of iNOS in mitochondria of human HCC cells phenotype probably concurs to a more aggressive behaviour of cancer cells. PMID:25691007

  2. Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and S. aureus NorA

    PubMed Central

    2012-01-01

    Thirty-two diverse compounds were evaluated for their ability to inhibit both Pgp-mediated efflux in mouse T-lymphoma L5178 MDR1 and NorA-mediated efflux in S. aureus SA-1199B. Only four compounds were strong inhibitors of both efflux pumps. Three compounds were found to inhibit Pgp exclusively and strongly, while seven compounds inhibited only NorA. These results demonstrate that Pgp and NorA inhibitors do not necessarily overlap, opening the way to safer therapeutic use of effective NorA inhibitors. PMID:24900460

  3. Glyceollin transport, metabolism, and effects on P-glycoprotein function in Caco-2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyceollins are phytoalexins produced in soybeans from their isoflavone precursor daidzein. Their impressive anti-cancer and glucose normalization effects in rodents have generated interest in their therapeutic potential. The aim of the present studies was to begin to understand glyceollin intesti...

  4. Masitinib reverses doxorubicin resistance in canine lymphoid cells by inhibiting the function of P-glycoprotein.

    PubMed

    Zandvliet, M; Teske, E; Chapuis, T; Fink-Gremmels, J; Schrickx, J A

    2013-12-01

    Overexpression of ABC-transporters including Pgp, MRP1, and BCRP has been associated with multidrug resistance (MDR) in both human and canine oncology. Therapeutic interventions to reverse MDR are limited, but include multidrug protocols and the temporary concomitant use of inhibitors of ABC-transporters. Recently, the use of tyrosine kinase inhibitors has been proposed to overcome MDR in human oncology. One of the tyrosine kinase inhibitors, masitinib, is licensed for veterinary use in the treatment of canine mast cell tumors. Therefore, this study aimed to assess the potential of masitinib to revert MDR in canine malignant lymphoma using an in vitro model with canine lymphoid cell lines. Masitinib had a mild antiproliferative effect on lymphoid cells, inhibited Pgp function at concentrations equal to or exceeding 1 ?m and was able to reverse doxorubicin resistance. The current findings provide the rationale for a combined use of masitinib with doxorubicin in the treatment of dogs with doxorubicin-resistant malignant lymphoma but await confirmation in clinical trials. PMID:23363222

  5. Lysosomal trapping of a radiolabeled substrate of P-glycoprotein as a mechanism for signal

    E-print Network

    Pike, Victor W.

    -gp is inhibited, [11 C]dLop, a potent opiate agonist, enters and becomes trapped in the brain. This trapping- dioactivity over time. As we previously demonstrated that this trap- ping was not caused by binding to opiate not wash out from the brain, despite declining plasma concentrations (4, 6). Although dLop is an opiate

  6. Can P-glycoprotein influence the bioavailability of iminosugar-based glucosylceramide synthase inhibitors?

    E-print Network

    -Pick disease, and have been proven in principle in Tay-Sachs and Sandhoff mice models (Jeyakumar et al., 2002 storage diseases (glycosphingolipidoses) affect 1 in 18,000 people and are the most common cause of paediatric neurodegenerative disorder (Meikle et al., 1999). These diseases are caused by defects in one

  7. Sensitization of Chemo-Resistant Human Chronic Myeloid Leukemia Stem-Like Cells to Hsp90 Inhibitor by SIRT1 Inhibition

    PubMed Central

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Kim, Mi-Ju; Hyun, Suh-Kyung; Gong, Eun-Ji; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    Development of effective therapeutic strategies to eliminate cancer stem-like cells (CSCs), which play a major role in drug resistance and disease recurrence, is critical to improve cancer treatment outcomes. The current investigation was undertaken to examine the effectiveness of the combination treatment of Hsp90 inhibitor and SIRT1 inhibitor in inhibiting the growth of chemo-resistant stem-like cells isolated from human chronic myeloid leukemia K562 cells. Inhibition of SIRT1 by use of SIRT1 siRNA or SIRT1 inhibitors (amurensin G and EX527) effectively potentiated sensitivity of Hsp90 inhibitors (17-AAG and AUY922) in CD44high K562 stem-like cells expressing high levels of CSC-related molecules including Oct4, CD34, ?-catenin, c-Myc, mutant p53 (mut p53), BCRP and P-glycoprotein (P-gp) as well as CD44. SIRT1 depletion caused significant down-regulation of heat shock factor 1 (HSF1)/heat shock proteins (Hsps) as well as these CSC-related molecules, which led to the sensitization of CD44high K562 cells to Hsp90 inhibitor by SIRT1 inhibitor. Moreover, 17-AAG-mediated activation of HSF1/Hsps and P-gp-mediated efflux, major causes of Hsp90 inhibitor resistance, was suppressed by SIRT1 inhibitor in K562-CD44high cells. Our data suggest that combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be an effective therapeutic approach to target CSCs that are resistant to current therapies. PMID:26157347

  8. Evaluation of the pharmacokinetics and cardiotoxicity of doxorubicin in rat receiving nilotinib

    SciTech Connect

    Zhou, Zhi-yong; Wan, Li-li; Yang, Quan-jun; Han, Yong-long; Li, Yan; Yu, Qi; Guo, Cheng; Li, Xiao

    2013-10-01

    Doxorubicin (DOX) is a potent chemotherapy drug with a narrow therapeutic window. Nilotinib, a small-molecule Bcr-Abl tyrosine kinase inhibitor, was reported to reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) transmembrane transporters. The present study aimed to investigate nilotinib's affection on the steady-state pharmacokinetics, disposition and cardiotoxicity of DOX. A total of 24 male Sprague–Dawley rats were randomized into four groups (6 in each) and received the following regimens: saline, intravenous DOX (5 mg/kg) alone, and DOX co-administrated with either 20 or 40 mg/kg nilotinib. Blood was withdrawn at 12 time points till 72 h after DOX injection and the concentrations of DOX and its metabolite doxorubicinol (DOXol) in serum and cardiac tissue were assayed by LC–MS–MS method. To determine the cardiotoxicity, the following parameters were investigated: creatine kinase, lactate dehydrogenase, malondialdehyde, and superoxide dismutase. Histopathological examination of heart section was carried out to evaluate the extent of cardiotoxicity after treatments. The results showed that pretreatment of 40 mg/kg nilotinib increased the AUC{sub 0–t} and C{sub max} of DOX and DOXol. However, their accumulation in cardiac tissue was significantly decreased when compared with the group that received DOX alone. In addition, biochemical and histopathological results showed that 40 mg/kg nilotinib reduced the cardiotoxicity induced by DOX administration. In conclusion, co-administration of nilotinib increased serum exposure, but significantly decreased the accumulation of DOX in cardiac tissue. Consistent with in vitro profile, oral dose of 40 mg/kg nilotinib significantly decreased the cardiotoxicity of DOX in rat by enhancing P-gp activity in the heart.

  9. Therapeutic efficiency of everolimus and lapatinib in xenograft model of human colorectal carcinoma with KRAS mutation.

    PubMed

    Chu, Céline; Noël-Hudson, Marie-Sophie; Boige, Valérie; Goéré, Diane; Marion, Sylvie; Polrot, Mélanie; Bigot, Ludovic; Gonin, Patrick; Farinotti, Robert; Bonhomme-Faivre, Laurence

    2013-08-01

    KRAS mutation is a negative predictive prognostic factor during metastatic colorectal cancer treatment with antiepidermal growth factor receptor antibodies. For affected patients, new therapeutics must be explored. Our objective was to study efficacy of two drugs with different mechanisms of action, everolimus (mTOR inhibitor) and lapatinib (tyrosine kinase inhibitor), in a mouse xenograft model. We chose a model obtained after engraftment of a tumor originating from a human tumor collection. The patient was affected by a metastasis colorectal carcinoma resistant to cetuximab with KRAS mutation. From a previous study in mice, we know that everolimus is a P-glycoprotein (P-gp) substrate and that a lapatinib pretreatment increases significantly (2.6-fold) everolimus AUC by inhibiting its intestinal P-gp efflux. We hence tested the effect of these drugs alone or combined. Mice bearing the xenografts were divided in four groups: control, lapatinib, everolimus, and L/E group (L/E: 2?days of lapatinib 200?mg/kg and then 3?days of everolimus 1?mg/kg). Tumor volumes and treatment toxicities were evaluated. Sixteen days after treatment initiation, the group L/E was the first one in which tumor volume average was significantly lower than the one of control group (193?±?90 vs. 395?±?171?mm(3) ; P?=?0.0025). After 4?weeks of treatment, inhibition of tumor growth in lapatinib, everolimus, and L/E groups reached, respectively, 49, 53, and 57%. Each drug showed significant antitumor activity. Only moderate hematologic toxicity signs were observed. These results lead to new perspectives for new oral drugs in metastatic KRAS-mutated colorectal cancer resistant to standard chemotherapy. PMID:22458846

  10. The role of temperature increase rate in combinational hyperthermia chemotherapy treatment

    NASA Astrophysics Data System (ADS)

    Tang, Yuan; McGoron, Anthony J.

    2010-02-01

    Hyperthermia in combination with chemotherapy has been widely used in cancer treatment. Our previous study has shown that rapid rate hyperthermia in combination with chemotherapy can synergistically kill cancer cells whereas a sub-additive effect was found when a slow rate hyperthermia was applied. In this study, we explored the basis of this difference. For this purpose, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted. P-glycoprotein (P-gp) expression, Caspase 3 activity, and heat shock protein 70 (HSP 70) expression following the two different modes of heating were measured. Doxorubicin (DOX) was used as the chemotherapy drug. Indocyanine green (ICG), which absorbs near infrared light at 808nm (ideal for tissue penetration), was chosen for achieving rapid rate hyperthermia. Slow rate hyperthermia was provided by a cell culture incubator. Two sets of thermal doses were delivered by either slow rate or rapid rate hyperthermia. HSP70 expression was highly elevated under low dose slow rate incubator hyperthermia while maintained at the baseline level under the other three treatments. Caspase3 level slightly increased after low dose slow rate incubator hyperthermia while necrotic cell death was found in the other three types of heat treatment. In conclusion, when given at the same thermal dose, slow rate hyperthermia is more likely to induce thermotolerance. Meanwhile, hyperthermia showed a dose dependent capability in reversing P-gp mediated MDR; when MDR is reversed, the combinational treatment induced extensive necrotic cell death. During this process, the rate of heating also played a very important role; necrosis was more dramatic in rapid rate hyperthermia than in slow rate hyperthermia even though they were given at the same dose.

  11. Nanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer

    PubMed Central

    Nourbakhsh, Mahnaz; Jaafari, Mahmoud Reza; Lage, Hermann; Abnous, Khalil; mosaffa, Fatemeh; Badiee, Ali; Behravan, Javad

    2015-01-01

    Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on target cells. We investigated a special class of PEGylated lipid-based nanoparticles (NP), named nanolipoparticles (NLPs), for siRNA-mediated P-gp downregulation. Materials and Methods: NLPs were prepared based on low detergent dialysis method. After characterization, we evaluated the effect of NLPs on siRNA delivery, and P-gp downregulation compared to oligofectamine™ (OFA) in vitro and in vivo. Results: Our results showed a significant decrease in P-gp expression and subsequent enhancement of chemosensitivity to doxorubicin in vitro. Although the effectiveness of NLPs for in vitro siRNA delivery compared to OFA was limited, the results of in vivo studies showed noticeable effectiveness of NLPs for systemic siRNA delivery. siRNA delivery using NLPs could downregulate MDR1 in tumor cells more than 80%, while OFA had a reverse effect on MDR1 expression in vivo. Conclusion: The results indicated that the prepared NLPs could be suitable siRNA delivery systems for tumor therapy. PMID:26019802

  12. Pomalidomide: evaluation of cytochrome P450 and transporter-mediated drug-drug interaction potential in vitro and in healthy subjects.

    PubMed

    Kasserra, Claudia; Assaf, Mahmoud; Hoffmann, Matthew; Li, Yan; Liu, Liangang; Wang, Xiaomin; Kumar, Gondi; Palmisano, Maria

    2015-02-01

    Pomalidomide offers an alternative for patients with relapsed/refractory multiple myeloma who have exhausted treatment options with lenalidomide and bortezomib. Little is known about pomalidomide's potential for drug-drug interactions (DDIs); as pomalidomide clearance includes hydrolysis and cytochrome P450 (CYP450)-mediated hydroxylation, possible DDIs via CYP450 and drug-transporter proteins were investigated in vitro and in a clinical study. In vitro pomalidomide was neither an inducer nor inhibitor of CYP450, nor an inhibitor of transporter proteins P glycoprotein (P-gp), BCRP, OAT1, OAT3, OCT2, OATP1B1, and OATP1B3. Oxidative metabolism of pomalidomide was predominately mediated by CYP1A2 and CYP3A4, and pomalidomide was shown to be a P-gp substrate. In healthy males, co-administration of oral (4?mg) pomalidomide with ketoconazole (CYP3A/P-gp inhibitor) or carbamazepine (CYP3A/P-gp inducer) did not result in clinically relevant changes in pomalidomide exposure. Co-administration of pomalidomide with fluvoxamine (CYP1A2 inhibitor) in the presence of ketoconazole approximately doubled pomalidomide exposure. Pomalidomide appears to have low potential for clinically relevant DDI and is unlikely to affect the clinical exposure of other drugs. Avoid co-administration of strong CYP1A2 inhibitors unless medically necessary. Pomalidomide dose should be reduced by 50% if co-administered with strong CYP1A2 inhibitors and strong CYP3A/P-gp inhibitors. PMID:25159194

  13. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  14. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    PubMed Central

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  15. Activities.

    ERIC Educational Resources Information Center

    Kincaid, Charlene; And Others

    1993-01-01

    Presents an activity in which students collect and organize data from a real-world simulation of the scientific concept of half life. Students collect data using a marble sifter, analyze the data using a graphing calculator, and determine an appropriate mathematical model. Includes reproducible worksheets. (MDH)

  16. Resistance factors and proliferative activity in childhood acute nonlymphoblastic leukemia.

    PubMed

    Sauerbrey, A; Zintl, F; Volm, M

    1994-10-01

    Thirty-four children with newly diagnosed acute nonlymphoblastic leukemia were analysed for the expression of P-glycoprotein (P-170), glutathione S-transferase-pi, (GST-pi) topoisomerase II (Topo II) and the proliferation antigen Ki-67 by the streptavidin-biotin-peroxidase method. Overexpression of P-170 was present in 26 cases (76%) and GST-pi overexpression was seen in 11 patients (32%). Down regulation of Topo II was found in 16 patients (47%) and Ki-67 positive cells (>5%) were detectable in 9 patients (26%). The remission rate was not influenced by P-170 or GST-pi expression, whereas patients with down regulation of Topo II or low Ki-67 expression had lower remission rates. The data were not significant. The probability of continuous first remission (CR) was lower in patients with P-170 expression (p=0.09). A significantly lower probability of CR was also seen in patients with low proliferative activity (p=0.03, log-rank test). The expression of the resistance proteins and the proliferative activity were found to be independent of the clinical parameters age, sex, FAB-type, and initial white blood cell count. PMID:21559650

  17. Molecular mistletoe therapy: friend or foe in established anti-tumor protocols? A multicenter, controlled, retrospective pharmaco-epidemiological study in pancreas cancer.

    PubMed

    Matthes, H; Friedel, W E; Bock, P R; Zänker, K S

    2010-06-01

    Mistletoe is often used as complementary therapy in oncology. The anti-tumor effects of mistletoe (Iscador) are well documented in-vitro in respect to inhibition of cell proliferation, induction of apoptosis, segmental activation of immune competent cells and trapping of chemotherapeutic drugs within cancer cells by modulating the inhibitory potential of P-glycoprotein (P-gp)-mediated transport of cell toxifying substances (cytotoxic drugs). However, the clinical activity of mistletoe treatment remains still controversial. Implementation of mistletoe therapy as supportive care into anti-cancer programs should be based on the best evidence and must continually be evaluated to ensure safety, efficacy, collection of new data, and cost-effectiveness. Useful domains that can be evaluated include symptom control, adherence to conventional treatment protocols, quality of life, individual outcome and potential advantages of a whole-system health approach. Here we report the results of a multicenter, controlled, retrospective and observational pharmaco-epidemiological study in patients suffering from a pancreatic carcinoma. After surgery the patients were treated by adjuvant chemotherapy with gemcitabine supported by Iscador, or with gemcitabine alone, or any other best of care, but not including Iscador. Using a novel methodological pharmaco-epidemiological design and statistical approach it could be shown that Iscador offers benefits--symptom control, overall survival--as supportive care within gemcitabine protocols of patients with surgically resected pancreatic carcinoma. PMID:20455850

  18. Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it.

    PubMed

    Duan, Jingze; Xie, Yan; Luo, Huilin; Li, Guowen; Wu, Tao; Zhang, Tong

    2014-04-01

    Flavonoid isorhamnetin occurs in various plants and herbs, and demonstrates various biological effects in humans. This work will clarify the isorhamnetin absorption mechanism using the Caco-2 monolayer cell model. The isorhamnetin transport characteristics at different concentrations, pHs, temperatures, tight junctions and potential transporters were systemically investigated. Isorhamnetin was poorly absorbed by both passive diffusion and active transport mechanisms. Both trans- and paracellular pathways were involved during isorhamnetin transport. Active transport under an ATP-dependent transport mechanism was mediated by the organic anion transporting peptide (OATP); isorhamnetin's permeability from the apical to the basolateral side significantly decreased after estrone-3-sulfate was added (p<0.01). Efflux transporters, P-glycoproteins (P-gp), breast cancer resistance proteins (BCRP) and multidrug resistance proteins (MRPs) participated in the isorhamnetin transport process. Among them, the MRPs (especially MRP2) were the main efflux transporters for isorhamnetin; transport from the apical to the basolateral side increased 10.8-fold after adding an MRP inhibitor (MK571). This study details isorhamnetin's cellular transport and elaborates isorhamnetin's absorption mechanisms to provide a foundation for further studies. PMID:24525098

  19. Synthesis and evaluation of a series of benzothiophene acrylonitrile analogs as anticancer agents.

    PubMed

    Penthala, Narsimha Reddy; Sonar, Vijayakumar N; Horn, Jamie; Leggas, Markos; Yadlapalli, Jai Shankar K B; Crooks, Peter A

    2013-07-01

    A new library of small molecules with structural features resembling combretastatin analogs was synthesized and evaluated for anticancer activity against a panel of 60 human cancer cell lines. Three novel acrylonitrile analogs (5, 6 and 13) caused a significant reduction in cell growth in almost all the cell lines examined, with GI50 values generally in the range 10-100 nM. Based on the structural characteristics of similar drugs, we hypothesized that the cytotoxic activity was likely due to interaction with tubulin. Furthermore, these compounds appeared to overcome cell-associated P-glycoprotein (P-gp)-mediated resistance, since they were equipotent in inhibiting OVCAR8 and NCI/ADR-Res cell growth. Given that antitubulin drugs are among the most effective agents for the treatment of advanced prostate cancer we sought to validate the results from the 60 cell panel by studying the representative analog 6 utilizing prostate cancer cell lines, as well as exploring the molecular mechanism of the cytotoxic action of this analog. PMID:23956835

  20. Synthesis and evaluation of a series of benzothiophene acrylonitrile analogs as anticancer agents

    PubMed Central

    Penthala, Narsimha Reddy; Sonar, Vijayakumar, N.; Horn, Jamie; Leggas, Markos; Yadlapalli, Jai Shankar K. B.; Crooks, Peter A.

    2013-01-01

    A new library of small molecules with structural features resembling combretastatin analogs was synthesized and evaluated for anticancer activity against a panel of 60 human cancer cell lines. Three novel acrylonitrile analogs (5, 6 and 13) caused a significant reduction in cell growth in almost all the cell lines examined, with GI50 values generally in the range 10–100 nM. Based on the structural characteristics of similar drugs, we hypothesized that the cytotoxic activity was likely due to interaction with tubulin. Furthermore, these compounds appeared to overcome cell-associated P-glycoprotein (P-gp)-mediated resistance, since they were equipotent in inhibiting OVCAR8 and NCI/ADR-Res cell growth. Given that antitubulin drugs are among the most effective agents for the treatment of advanced prostate cancer we sought to validate the results from the 60 cell panel by studying the representative analog 6 utilizing prostate cancer cell lines, as well as exploring the molecular mechanism of the cytotoxic action of this analog. PMID:23956835

  1. The human immunodeficiency virus protease inhibitor ritonavir is potentially active against urological malignancies

    PubMed Central

    Sato, Akinori

    2015-01-01

    The human immunodeficiency virus protease inhibitor ritonavir has recently been shown to have antineoplastic activity, and its use in urological malignancies is under investigation with an eye toward drug repositioning. Ritonavir is thought to exert its antineoplastic activity by inhibiting multiple signaling pathways, including the Akt and nuclear factor-kappaB pathways. It can increase the amount of unfolded proteins in the cell by inhibiting both the proteasome and heat shock protein 90. Combinations of ritonavir with agents that increase the amount of unfolded proteins, such as proteasome inhibitors, histone deacetylase inhibitors, or heat shock protein 90 inhibitors, therefore, induce endoplasmic reticulum stress cooperatively and thereby kill cancer cells effectively. Ritonavir is also a potent cytochrome P450 3A4 and P-glycoprotein inhibitor, increasing the intracellular concentration of combined drugs by inhibiting their degradation and efflux from cancer cells and thereby enhancing their antineoplastic activity. Furthermore, riotnavir’s antineoplastic activity includes modulation of immune system activity. Therapies using ritonavir are thus an attractive new approach to cancer treatment and, due to their novel mechanisms of action, are expected to be effective against malignancies that are refractory to current treatment strategies. Further investigations using ritonavir are expected to find new uses for clinically available drugs in the treatment of urological malignancies as well as many other types of cancer. PMID:25914545

  2. Epigallocatechin-3-gallate potentiates the effect of curcumin in inducing growth inhibition and apoptosis of resistant breast cancer cells.

    PubMed

    Wang, Shengpeng; Chen, Ruie; Zhong, Zhangfeng; Shi, Zhi; Chen, Meiwan; Wang, Yitao

    2014-01-01

    Drug resistance remains an on-going challenge in breast cancer chemotherapy. Combination of two or more drugs is an effective strategy to access context-specific multiple targets and overcome undesirable toxicity that is almost inevitable in single-drug chemotherapy. Many plant food-derived polyphenolic compounds have been proven to modulate many key factors responsible for cancer drug resistance, which makes them a promising group of low toxicity candidates for reversing cancer resistance. In this study, we analyzed the combination effect of two chemopreventive polyphenols, curcumin (Cur) and epigalloca