Sample records for p-glycoprotein p-gp activity

  1. Development of Classification Models for Identifying “True” P-glycoprotein (P-gp) Inhibitors Through Inhibition, ATPase Activation and Monolayer Efflux Assays

    PubMed Central

    Rapposelli, Simona; Coi, Alessio; Imbriani, Marcello; Bianucci, Anna Maria

    2012-01-01

    P-glycoprotein (P-gp) is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external) validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function. PMID:22837672

  2. P-glycoprotein (P-gp)-mediated efflux limits intestinal absorption of the Hsp90 inhibitor SNX-2112 in rats.

    PubMed

    Liu, Hongming; Sun, Hua; Wu, Zhufeng; Zhang, Xingwang; Wu, Baojian

    2014-08-01

    1.?The promising anticancer agent SNX-2112 (a novel Hsp90 inhibitor) is poorly bioavailable after oral administration. Here, we aim to determine the role of P-glycoprotein (P-gp) in the intestinal absorption of SNX-2112. 2.?We found that SNX-2112 significantly stimulated P-gp ATPase activity in in vitro ATPase assay with a small EC50 (the half-maximal effective concentration) value of 0.32?µM. 3.?In the single-pass perfused rat intestine model, absorption of SNX-2112 was not favored in the small intestine with a [Formula: see text] (the wall permeability) value of 0.38-0.64. By contrast, the compound was well absorbed in the colon with a [Formula: see text] value of 1.19. The P-gp inhibitors cyclosporine and elacridar (i.e. GF120918A) markedly enhanced SNX-2112 absorption in all four intestinal segments (i.e. duodenum, jejunum, ileum and colon) and the fold change ranged from 3.1 to 14.1. Pharmacokinetic study revealed that cyclosporine increased the systemic exposure of SNX-2112 by a 2.5-fold after oral administration. 4.?This is the first report that P-gp-mediated efflux is a limiting factor for intestinal absorption of SNX-2112 in rats. PMID:24555822

  3. P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels.

    PubMed

    Anderle, P; Niederer, E; Rubas, W; Hilgendorf, C; Spahn-Langguth, H; Wunderli-Allenspach, H; Merkle, H P; Langguth, P

    1998-06-01

    The influence of cell culture conditions and previous drug exposure on P-glycoprotein (P-gp) expression levels in Caco-2 cells was determined. In this study, the expression of P-gp is demonstrated (i) visually by confocal laser scanning microscopy (CLSM), (ii) functionally by transport studies with substrates of the efflux pump, and (iii) quantitatively by flow cytometry (FCM) analysis using specific monoclonal antibodies (anti P-gp MRK 16 as an external antibody and P-GlycoCheck C219 as an internal antibody). Trypsinization of the cells after reaching confluence led to a decrease of P-gp expression levels, while trypsinization before reaching confluence led to an increase after long-term cultivation. Culturing the cells on polycarbonate filters did not elicit a significant change of P-gp expression over time in culture, whereas in plastic flasks (polystyrene) a decrease was detected. Using CLSM a strong fluorescence on the apical side of Caco-2 cell monolayers was observed, as a result of incubation with MRK 16 as primary and IgG Cy5 as secondary antibody. Previous drug exposure of the cells showed that verapamil, celiprolol, and vinblastine induced the P-gp expression, while metkephamid (MKA) decreased the P-gp expression level as compared to the control. Permeation studies consolidated the theory that P-gp is expressed in the Caco-2 cells examined. For talinolol and MKA, a higher transport from basolateral to apical side than from apical to basolateral could be measured. Incubation of the cell monolayer with MRK 16 reduced the secretion process to the apical side, but did not influence [3H]mannitol flux. Caco-2 cells seem to be a suitable cell line model for P-gp-mediated secretion studies. However, the variability of the P-gp expression requires careful control when this model is to be used in quantitative structure/secretion studies. PMID:9607955

  4. Loss of Cyclosporin and Azidopine Binding Are Associated with Altered ATPase Activity by a Mutant P-glycoprotein with

    E-print Network

    Ford, James

    Loss of Cyclosporin and Azidopine Binding Are Associated with Altered ATPase Activity by a Mutant P-glycoprotein a mutant P-glycoprotein (P-gp) that has a deletion of Phe335 and is resistant to inhibition by cyclosporins transporter P-glycoprotein (P-gp) is an ATP-dependent drug efflux pump that is expressed in both normal

  5. P-glycoprotein activity and biological response

    SciTech Connect

    Vaalburg, W. [Groningen University Hospital, PO Box 30.001, 9700 RB Groningen (Netherlands)]. E-mail: w.vaalburg@pet.umcg.nl; Hendrikse, N.H. [Groningen University Hospital, PO Box 30.001, 9700 RB Groningen (Netherlands); Elsinga, P.H. [Groningen University Hospital, PO Box 30.001, 9700 RB Groningen (Netherlands); Bart, J. [Groningen University Hospital, PO Box 30.001, 9700 RB Groningen (Netherlands); Waarde, A. van [Groningen University Hospital, PO Box 30.001, 9700 RB Groningen (Netherlands)

    2005-09-01

    P-glycoprotein (P-gp) is a transmembrane drug efflux pump encoded by the MDR-1 gene in humans. Most likely P-gp protects organs against endogenous and exogenous toxins by extruding toxic compounds such as chemotherapeutics and other drugs. Many drugs are substrates for P-gp. Since P-gp is also expressed in the blood-brain barrier, P-gp substrates reach lower concentrations in the brain than in P-gp-negative tissues. Failure of response to chemotherapy of malignancies can be due to intrinsic or acquired drug resistance. Many tumors are multidrug resistant (MDR); resistant to several structurally unrelated chemotherapeutic agents. Several mechanisms are involved in MDR of which P-gp is studied most extensively. P-gp extrudes drugs out of tumor cells resulting in decreased intracellular drug concentrations, leading to the MDR phenotype. Furthermore, the MDR-1 gene exhibits several single nucleotide polymorphisms, some of which result in different transport capabilities. P-gp functionality and the effect of P-gp modulation on the pharmacokinetics of novel and established drugs can be studied in vivo by positron emission tomography (PET) using carbon-11 and fluorine-18-labeled P-gp substrates and modulators. PET may demonstrate the consequences of genetic differences on tissue pharmacokinetics. Inhibitors such as calcium-channel blockers (verapamil), cyclosporin A, ONT-093, and XR9576 can modulate the P-gp functionality. With PET the effect of P-gp modulation on the bioavailability of drugs can be investigated in humans in vivo. PET also allows the measurement of the efficacy of newly developed P-gp modulators.

  6. Multidrug-resistance gene 1-type p-glycoprotein (MDR1 p-gp) inhibition by tariquidar impacts on neuroendocrine and behavioral processing of stress

    PubMed Central

    Thoeringer, Christoph K.; Wultsch, Thomas; Shahbazian, Anaid; Painsipp, Evelin; Holzer, Peter

    2015-01-01

    SUMMARY The multidrug-resistance gene 1-type p-glycoprotein (MDR1 p-gp) is a major gate-keeper at the blood-brain barrier (BBB), protecting the central nervous system from accumulation of toxic xenobiotics and drugs. In addition, MDR1 p-gp has been found to control the intracerebral access of glucocorticoid hormones and thus to modulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) system. In view of the implication of glucocorticoids in the control of behavior, we examined how acute pharmacological inhibition of MDR1 p-gp at the BBB by tariquidar (XR9576; 12 mg/kg, PO) impacts on the neuroendocrine and behavioral processing of stress in C57BL/6JIcoHim inbred mice. Inhibition of MDR1 p-gp at the BBB did not alter emotional behavior at baseline. However, mice that were sensitized by water-avoidance stress, a mild psychological stressor, displayed significantly reduced anxiety-related behavior in the elevated plus-maze test when treated with tariquidar. Tariquidar, however, had no effect on stress-coping performance assessed in the forced swim test. Investigating the impact of acute MDR1 p-gp inhibition on the glucocorticoid system, we observed a significant attenuation of the mild stress-induced increase of plasma corticosterone after tariquidar administration. In order to examine whether the anti-anxiety effect of tariquidar in sensitized animals is mediated by glucocorticoids, the animals were treated with corticosterone (1 mg/kg, SC immediately after exposure to water-avoidance stress. Corticosterone caused a significant anxiolytic-like effect in this stress-related anxiety protocol, whereas tariquidar could not further enhance corticosterone’s anti-anxiety effects. The current data show for the first time that pharmacological inhibition of MDR1 p-gp at the murine BBB by tariquidar alters emotional behavior and HPA axis activity. By facilitating the entry of corticosterone into the brain, tariquidar enhances feedback inhibition of the HPA system and in this way improves anxiety-related stress processing. These findings highlight a novel approach to the treatment of stress-related affective disorders in humans. PMID:17881135

  7. Effects of polyoxyethylene (40) stearate on the activity of P-glycoprotein and cytochrome P450

    Microsoft Academic Search

    Saijie Zhu; Rongqin Huang; Minghuang Hong; Yanyan Jiang; Zhuohan Hu; Chen Liu; Yuanying Pei

    2009-01-01

    The present study was aimed to investigate the effects of polyoxyethylene (40) stearate (PS), a non-ionic surfactant, on the activity of P-glycoprotein (P-gp) and six major cytochrome P450 (CYP) isoforms. An in vitro diffusion chamber system was utilized to estimate the effects of PS concentration on the transport characteristics of Rhodamine 123 (R123) and Rhodamine 110 (R110), a standard P-gp

  8. Grapefruit Juice Activates P-Glycoprotein-Mediated Drug Transport

    Microsoft Academic Search

    Andrea Soldner; Uwe Christians; Miki Susanto; Vincent J. Wacher; Jeffrey A. Silverman; Leslie Z. Benet

    1999-01-01

    Purpose. Grapefruit juice (GJ) is known to increase the oral bioavailability of many CYP3A-substrates by inhibiting intestinal phase-I metabolism. However, the magnitude of AUC increase is often insignificant and highly variable. Since we earlier suggested that CYP3A and P-glycoprotein (P-gp) form a concerted barrier to drug absorption, we investigated the role of P-gp in GJ-drug interactions.

  9. Detection of active P-glycoprotein in systemic lupus erythematosus patients with poor disease control

    PubMed Central

    ZHANG, BO; SHI, YING; LEI, TIE-CHI

    2012-01-01

    Active P-glycoprotein (P-gp) molecules have been shown to transport steroids out of peripheral lymphocytes, resulting in poor responses to systemic steroid therapy in patients with systemic lupus erythematosus (SLE). This study was carried out to investigate the correlation between the expression or activity of P-gp in peripheral lymphocytes and disease control in SLE patients with a long history of systemic steroid treatment. A total of 60 SLE patients who had received systemic steroid treatment for longer than 6 months and 30 healthy subjects were monitored. SLE patients were subclassified into those with active and severely active forms of the disease according to their disease activity (estimated by SLEDAI-2000). The expression levels and activity of P-gp in peripheral blood lymphocytes were determined. Lymphocytes, obtained from three patients with severely active SLE, with high levels of P-gp expression were treated with cyclophosphamide, mycophenolic acid or emodin in vitro and Rh123-efflux activity was measured. P-gp expression in the peripheral lymphocytes of the SLE patients was significantly higher compared with that of the healthy controls, and a positive correlation between disease activity and P-gp expression levels was observed in these 60 patients. A significant increase in P-gp expression was observed in the severely active compared with the active SLE group. Treatment of lymphocytes with 100 ?M cyclophosphamide or 100 ?M emodin in vitro induced up to a 2-fold increase in the mean fluorescence intensity, as detected by the Rh123-efflux assay. In conclusion, the high expression levels of P-gp in the peripheral lymphocytes of SLE patients leads to poor disease control by systemic steroids. Emodin, an active ingredient derived from Chinese herbs, possesses a promising effect for overcoming P-gp-mediated steroid resistance by inhibiting the P-gp efflux function. PMID:23170130

  10. Structure-activity relationship study of permethyl ningalin B analogues as P-glycoprotein chemosensitizers.

    PubMed

    Bin, Jin Wen; Wong, Iris L K; Hu, Xuesen; Yu, Zhang Xiao; Xing, Li Fu; Jiang, Tao; Chow, Larry M C; Biao, Wan Sheng

    2013-11-27

    A novel series of permethyl ningalin B analogues were synthesized and evaluated for their P-glycoprotein (P-gp)-modulating activities in a P-gp-overexpressing breast cancer cell line (LCC6MDR). Compounds 35 and 37, which possess one methoxy group and one benzyloxy group at aryl ring C, displayed the most potent P-gp-modulating activity. A 1 ?M concentration of 35 and 37 resensitized LCC6MDR cells toward paclitaxel by 42.7-fold, with respective EC50 values of 93.5 and 110.0 nM. Their mechanism of P-gp modulation is associated with an increase in intracellular drug accumulation. Their advantages also include low cytotoxicity (IC50 for L929 fibroblast >100 ?M) and high therapeutic indexes (>909 after normalization with their EC50 values). 35 is not a substrate of P-gp. They are potentially dual-selective modulators for both P-gp and breast cancer resistance protein transporters. The present study demonstrates that these new compounds can be employed as effective and safe modulators of P-gp-mediated drug resistance in cancer cells. PMID:24171478

  11. P-glycoprotein Inhibition Increases the Brain Distribution and Antidepressant-Like Activity of Escitalopram in Rodents

    PubMed Central

    O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

    2013-01-01

    Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported substrate of human P-gp. Microdialysis-based pharmacokinetic studies demonstrated that administration of the P-gp inhibitor cyclosporin A resulted in increased brain levels of escitalopram without altering plasma escitalopram levels in the rat, thereby showing that P-gp restricts escitalopram transport across the blood–brain barrier (BBB) in vivo. The tail suspension test (TST) was carried out to elucidate the pharmacodynamic impact of P-gp inhibition on escitalopram effect in a mouse model of antidepressant activity. Pre-treatment with the P-gp inhibitor verapamil enhanced the response to escitalopram in the TST. Taken together, these data indicate that P-gp may restrict the BBB transport of escitalopram in humans, potentially resulting in subtherapeutic brain concentrations in certain patients. Moreover, by verifying that increasing escitalopram delivery to the brain by P-gp inhibition results in enhanced antidepressant-like activity, we suggest that adjunctive treatment with a P-gp inhibitor may represent a beneficial approach to augment escitalopram therapy in depression. PMID:23670590

  12. Blonanserin, a novel atypical antipsychotic agent not actively transported as substrate by P-glycoprotein.

    PubMed

    Inoue, Tomoko; Osada, Kenichi; Tagawa, Masaaki; Ogawa, Yuriko; Haga, Toshiaki; Sogame, Yoshihisa; Hashizume, Takanori; Watanabe, Takashi; Taguchi, Atsushi; Katsumata, Takashi; Yabuki, Masashi; Yamaguchi, Noboru

    2012-10-01

    Although blonanserin, a novel atypical antipsychotic agent with dopamine D(2)/serotonin 5-HT(2A) antagonistic properties, displays good brain distribution, the mechanism of this distribution has not been clarified. P-glycoprotein [(P-gp) or multidrug resistance protein 1 (MDR1)] is an efflux transporter expressed in the brain and plays an important role in limiting drug entry into the central nervous system (CNS). In particular, P-gp can affect the pharmacokinetics and efficacy of antipsychotics, and exacerbate or soothe their adverse effects. In this study, we conducted in vitro and in vivo experiments to determine whether blonanserin is a P-gp substrate. Risperidone and its active metabolite 9-hydroxyrisperidone, both of which are P-gp substrates, were used as reference drugs. Affinity of blonanserin, risperidone, and 9-hydroxyrisperidone for P-gp was evaluated by in vitro transcellular transport across LLC-PK1, human MDR1 cDNA-transfected LLC-PK1 (LLC-MDR1), and mouse Mdr1a cDNA-transfected LLC-PK1 (LLC-Mdr1a). In addition, pharmacokinetic parameters in the brain and plasma (B/P ratio) of test compounds were measured in mdr1a/1b knockout (KO) and wild-type (WT) mice. The results of in vitro experiments revealed that P-gp does not actively transport blonanserin as a substrate in humans or mice. In addition, blonanserin displayed comparable B/P ratios in KO and WT mice, whereas B/P ratios of risperidone and 9-hydroxyrisperidone differed markedly in these animals. Our results indicate that blonanserin is not a P-gp substrate and therefore its brain distribution is unlikely to be affected by this transporter. PMID:22691713

  13. Geneva Cocktail for Cytochrome P450 and P-Glycoprotein Activity Assessment Using Dried Blood Spots

    PubMed Central

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-01-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography–tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6?h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session. PMID:24722393

  14. Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots.

    PubMed

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-09-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session. PMID:24722393

  15. P-Glycoprotein Expression and DNA Topoisomerase I and II Activity in Benign Tumors of the Ovary and in Malignant Tumors of the Ovary, before and after Platinum\\/Cyclophosphamide Chemotherapy1

    Microsoft Academic Search

    Steven de Jong; Henk Boonstra; Annette Gouw; Pax H. B. Willemse; Jan G. Zijlstra; Elisabeth G. E. de Vries

    1991-01-01

    P-glycoprotein (P-gp) expression and DNA topoisomerase (Topo) II are important variables in multidrug resistant tumor cell lines. The aim of this study was to evaluate P-gp expression and Topo I and II activity in benign and malignant epithelial ovarian tumors. P-gp expression was analyzed immunohistochemically in cryostat sections of fresh tumor specimens. In the same specimens Topo I and II

  16. Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system

    NASA Astrophysics Data System (ADS)

    Kirthivasan, B.; Singh, D.; Bommana, M. M.; Raut, S. L.; Squillante, E.; Sadoqi, M.

    2012-06-01

    Magnetic nanoparticles (NP) were developed for the active brain targeting of water-soluble P-glycoprotein (P-gp) substrate rhodamine 123 (Rh123). The NP matrix of poly(lactide-co-glycolide) (PLGA) and methoxy poly(ethyleneglycol)-poly(lactic acid) (M-PEG-PLA) was prepared by single emulsion solvent evaporation of polymers with oleic acid-coated magnetic nanoparticles (OAMNP) and Rh123. All formulations were characterized in terms of morphology, particle size, magnetic content and Rh123 encapsulation efficiency. The maximum encapsulation efficiency of Rh123 was 45 ± 3% and of OAMNP was 42 ± 4%. The brain targeting and biodistribution study was performed on Sprague Dawley rats (3 groups, n = 6). Rh123 (0.4 mg kg-1) was administered in saline form, NP containing Rh123, and NP containing Rh123 in the presence of a magnetic field (0.8 T). The fluorimetric analysis of brain homogenates revealed a significant uptake (p < 0.05) of Rh123 in the magnetically targeted group relative to controls. These results were supported by fluorescence microscopy. This study reveals the ability of magnetically targeted nanoparticles to deliver substances to the brain, the permeation of which would otherwise be inhibited by the P-gp system.

  17. Predicting the Outer Boundaries of P-glycoprotein (P-gp)-Based Drug Interactions at the Human Blood-Brain Barrier Based on Rat Studies

    PubMed Central

    Hsiao, Peng; Unadkat, Jashvant D

    2014-01-01

    Using positron emission tomography (PET), 11C-verapamil as the P-gp substrate and cyclosporine A (CsA) as the P-gp inhibitor, we showed that the magnitude of P-gp-based drug interactions at the human blood-brain barrier (BBB) is modest. However, such interactions at clinically relevant CsA blood concentrations may be greater for substrates where P-gp plays an even larger role (fractional contribution of P-gp, ft > 0.97) in preventing the CNS entry of the drug (e.g. nelfinavir). Since we have shown that the rat is an excellent predictor of the verapamil-CsA interaction at the human BBB, we determined the magnitude of drug interaction at the rat BBB between nelfinavir and CsA. Under isoflurane anesthesia, male Sprague Dawley rats were co-administered IV infusions of nelfinavir and escalating doses of CsA to achieve pseudo steady-state plasma/blood and brain concentrations of both drugs (blood CsA ranged 0–264.9 µM, n=3–6/group). The percent increase in the brain:blood nelfinavir concentration ratio (determined by LC/MS) was described by the Hill equation with Emax 6481%, EC50 12.3 µM, and ? 1.6. Then, using these data, as well as in vitro data in LLCPK1 cells expressing the human P-gp, we predicted that CsA (at clinically relevant blood concentration of 1.5 µM) will increase the distribution of nelfinavir into the human brain by 236%. Collectively, our data suggest that clinically significant P-gp based drug interactions at the human BBB are possible for P-gp substrates highly excluded from the brain (ft > 0.97) and should be investigated using non-invasive approaches (e.g. PET). PMID:24364805

  18. Tunicamycin Depresses P-Glycoprotein Glycosylation Without an Effect on Its Membrane Localization and Drug Efflux Activity in L1210 Cells

    PubMed Central

    Šereš, Mário; Cholujová, Dana; Buben?íkova, Tatiana; Breier, Albert; Sulová, Zdenka

    2011-01-01

    P-glycoprotein (P-gp), also known as ABCB1, is a member of the ABC transporter family of proteins. P-gp is an ATP-dependent drug efflux pump that is localized to the plasma membrane of mammalian cells and confers multidrug resistance in neoplastic cells. P-gp is a 140-kDa polypeptide that is glycosylated to a final molecular weight of 170 kDa. Our experimental model used two variants of L1210 cells in which overexpression of P-gp was achieved: either by adaptation of parental cells (S) to vincristine (R) or by transfection with the human gene encoding P-gp (T). R and T cells were found to differ from S cells in transglycosylation reactions in our recent studies. The effects of tunicamycin on glycosylation, drug efflux activity and cellular localization of P-gp in R and T cells were examined in the present study. Treatment with tunicamycin caused less concentration-dependent cellular damage to R and T cells compared with S cells. Tunicamycin inhibited P-gp N-glycosylation in both of the P-gp-positive cells. However, tunicamycin treatment did not alter either the P-gp cellular localization to the plasma membrane or the P-gp transport activity. The present paper brings evidence that independently on the mode of P-gp expression (selection with drugs or transfection with a gene encoding P-gp) in L1210 cells, tunicamycin induces inhibition of N-glycosylation of this protein, without altering its function as plasma membrane drug efflux pump. PMID:22174631

  19. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein

    Microsoft Academic Search

    Caroline Henrike Storch; Dirk Theile; Heike Lindenmaier; Walter Emil Haefeli; Johanna Weiss

    2007-01-01

    Human immunodeficiency virus 1 (HIV-1) infections are treated with HIV-protease inhibitors (PIs), nucleoside (NRTIs), non-nucleoside (NNRTIs), and nucleotide reverse transcriptase inhibitors (NtRTIs). The combined administration of antiretrovirals improves patient outcomes while increasing the likelihood of drug interactions. Indeed, as substrates, inhibitors, and occasionally also inducers of P-glycoprotein (P-gp) PIs may substantially alter the pharmacokinetics of co-administered drugs. However, the P-gp

  20. Rapid and simultaneous measurement of midazolam, 1?-hydroxymidazolam and digoxin by liquid chromatography\\/tandem mass spectrometry: Application to an in vivo study to simultaneously measure P-glycoprotein and Cytochrome P450 3A activity

    Microsoft Academic Search

    Xinping Xue; Min Huang; Huanyu Xiao; Xiaoling Qin; Ling Huang; Guoping Zhong; Huichang Bi

    2011-01-01

    In order to simultaneously determine in vivo P-glycoprotein (P-gp) and Cytochrome P450 3A (CYP3A) activity, a new, rapid and sensitive liquid chromatography\\/tandem mass spectrometry (LC–MS\\/MS) method has been developed and fully validated to simultaneously determine midazolam (MDZ, as CYP3A substrate), 1?-hydroxymidazolam (1?-OHMDZ) and digoxin (DG, as P-gp substrate) in rat plasma using digitoxin as the internal standard (IS). After a

  1. Ixabepilone, a novel microtubule-targeting agent for breast cancer, is a substrate for P-glycoprotein (P-gp/MDR1/ABCB1) but not breast cancer resistance protein (BCRP/ABCG2).

    PubMed

    Shen, H; Lee, F Y; Gan, J

    2011-05-01

    Ixabepilone is the first epothilone to be approved for clinical use. Current data suggest the epothilones have a role in treating taxane-resistant cancers and ixabepilone is unaffected by at least some of the mechanisms underlying chemoresistance. Here, we report a series of cytotoxicity and transport studies to assess the potential role of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in ixabepilone resistance. A significant decrease in ixabepilone-mediated cytotoxicity was observed in Madin-Darby canine kidney cells transfected with human multidrug resistance 1 (MDR1) comparative with the parental cells (IC(50) > 2000 nM versus 90 nM). Overexpression of P-gp also resulted in significantly decreased cell susceptibility to docetaxel, paclitaxel, and vinblastine. Bidirectional transport of ixabepilone across monolayers of porcine kidney-derived cells expressing human MDR1 showed a significantly increased efflux ratio relative to the parental cells. A BCRP-overexpressing cell line was developed by transfecting human embryonic kidney (HEK)-293 cells with BCRP cDNA and confirmed by immunoblotting and bodipy prazosin and mitoxantrone uptake. Neither P-gp nor multidrug resistance protein 2 was detected in the cells by corresponding polyclonal antibodies. This HEK-BCRP cell line demonstrated resistance to docetaxel, paclitaxel, vinblastine, and mitoxantrone, in comparison with the parental cell line (7.3, 4.3, 2.9, and 11.9 resistance factor, respectively). Transport inhibition by BCRP inhibitor fumitremorgin C and broad efflux inhibitor N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) restored drug sensitivity. In contrast, ixabepilone was far less susceptible to BCRP-mediated resistance, resulting in a resistance factor of only 1.2-fold. In summary, these results suggest that P-gp could cause resistance to ixabepilone in tumors and affect the disposition of the drug, but it is unlikely that BCRP mediates any drug resistance to ixabepilone. PMID:21262849

  2. Influence of combinations of digitonin with selected phenolics, terpenoids, and alkaloids on the expression and activity of P-glycoprotein in leukaemia and colon cancer cells.

    PubMed

    Eid, Safaa Yehia; El-Readi, Mahmoud Zaki; Eldin, Essam Eldin Mohamed Nour; Fatani, Sameer Hassan; Wink, Michael

    2013-12-15

    P-glycoprotein (P-gp or MDR1) is an ATP-binding cassette (ABC) transporter. It is involved in the efflux of several anticancer drugs, which leads to chemotherapy failure and multidrug resistance (MDR) in cancer cells. Representative secondary metabolites (SM) including phenolics (EGCG and thymol), terpenoids (menthol, aromadendrene, ?-sitosterol-O-glucoside, and ?-carotene), and alkaloids (glaucine, harmine, and sanguinarine) were evaluated as potential P-gp inhibitors (transporter activity and expression level) in P-gp expressing Caco-2 and CEM/ADR5000 cancer cell lines. Selected SM increased the accumulation of the rhodamine 123 (Rho123) and calcein-AM (CAM) in a dose dependent manner in Caco-2 cells, indicating that they act as competitive inhibitors of P-gp. Non-toxic concentrations of ?-carotene (40?M) and sanguinarine (1?M) significantly inhibited Rho123 and CAM efflux in CEM/ADR5000 cells by 222.42% and 259.25% and by 244.02% and 290.16%, respectively relative to verapamil (100%). Combination of the saponin digitonin (5?M), which also inhibits P-gp, with SM significantly enhanced the inhibition of P-gp activity. The results were correlated with the data obtained from a quantitative analysis of MDR1 expression. Both compounds significantly decreased mRNA levels of the MDR1 gene to 48% (p<0.01) and 46% (p<0.01) in Caco-2, and to 61% (p<0.05) and 1% (p<0.001) in CEM/ADR5000 cells, respectively as compared to the untreated control (100%). Combinations of digitonin with SM resulted in a significant down-regulation of MDR1. Our findings provide evidence that the selected SM interfere directly and/or indirectly with P-gp function. Combinations of different P-gp substrates, such as digitonin alone and together with the set of SM, can mediate MDR reversal in cancer cells. PMID:23999162

  3. In Silico Quantitative StructureActivity Relationship Studies on P-gp Modulators of Tetrahydroisoquinoline-Ethyl-Phenylamine Series

    Microsoft Academic Search

    Changdev G Gadhe; Thirumurthy Madhavan; Gugan Kothandan; Seung Joo Cho

    2011-01-01

    BACKGROUND: Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy. The drug efflux by a transport protein is the main reason for MDR. In humans, MDR mainly occurs when the ATP-binding cassette (ABC) family of proteins is overexpressed simultaneously. P-glycoprotein (P-gp) is most commonly associated with human MDR; it utilizes energy from adenosine triphosphate (ATP) to transport a number

  4. Rapid Identification of P-glycoprotein Substrates and Inhibitors

    Microsoft Academic Search

    Cheng Chang; Praveen M. Bahadduri; James E. Polli; Peter W. Swaan; S. Ekins

    2006-01-01

    Words in Abstract:,204 Words in Introduction:,465 Words in Discussion:,1383 The abbreviations used are: BDDSC, biopharmaceuticsdrug disposition classification system; DDI, drug-drug interaction; P-gp, P-glycoprotein; QSAR, quantitative structure- activity relationship. DMD #12351 3 ABSTRACT

  5. Anthelmintics Are Substrates and Activators of Nematode P Glycoprotein?

    PubMed Central

    Kerboeuf, Dominique; Guégnard, Fabrice

    2011-01-01

    P glycoproteins (Pgp), members of the ABC transporter superfamily, play a major role in chemoresistance. In nematodes, Pgp are responsible for resistance to anthelmintics, suggesting that they are Pgp substrates, as they are in mammalian cells. However, their binding to nematode Pgp and the functional consequences of this interaction have not been investigated. Our study showed that levamisole and most of the macrocyclic lactones (MLs) are Pgp substrates in nematodes. Ivermectin, although a very good substrate in mammalian cells, is poorly transported. In contrast to their inhibitory effect on mammalian Pgp, these drugs had a stimulatory effect on the transport activity of the reference Pgp substrate rhodamine 123 (R123) in the nematode. This may be due to a specific sequence of nematode Pgp, which shares only 44% identity with mammalian Pgp. Other factors, such as the affinity of anthelmintics for Pgp and their concentration in the Pgp microenvironment, could also differ in nematodes, as suggested by the specific relationship observed between the octanol-water partition coefficient (log P) of MLs and R123 efflux. Nevertheless, some similarities were also observed in the functional activities of the mammalian and nematode Pgp. As in mammalian cells, substrates known to bind the H site (Hoechst 33342 and colchicine) activated the R site, resulting in an increased R123 efflux. Our findings thus show that ML anthelmintics, which inhibit Pgp-mediated efflux in mammals, activate transport activity in nematodes and suggest that several substituents in the ML structure are involved in modulating the stimulatory effect. PMID:21300828

  6. [Sex differences of P-glycoprotein functional activity and expression in rabbits].

    PubMed

    Iakusheva, E N; Chernykh, I V; Shchul'kin, A V; Kotliarova, A A; Nikiforov, A A

    2014-08-01

    The research consists in the investigation of the sex differences of P-glycoprotein functional activity and expression in Chinchilla rabbits. P-glycoprotein functional activity was assessed by the pharmacokinetics of its probe substrate--fexofenadine after its single oral administration. P-glycoprotein expression was investigated by immunohistochemistry method. It is shown that male's maximal concentration of fexofenadine, its areas under concentration-time curves, half-life and retention time were higher and its clearance was lower than female's. The efficient differences in pharmacokinetic parameters of fexofenadine confirm more intensive excretion and less intensive absorption in gastro-intestinal tract of fexofenadine. This data indicate that P-glycoprotein activity is more active in female than in male. Immunohistochemistry analysis shows that total liver and intestine P-glycoprotein expression is more intensive in females, than in males that correlates with its more active functioning. PMID:25682686

  7. Demethoxycurcumin modulates human P-glycoprotein function via uncompetitive inhibition of ATPase hydrolysis activity.

    PubMed

    Teng, Yu-Ning; Hsieh, Yow-Wen; Hung, Chin-Chuan; Lin, Hui-Yi

    2015-01-28

    Curcuminoids are major components of Curcuma longa L., which is widely used as spice in food. This study aimed at identifying whether curcumin, demethoxycurcumin, and bisdemethoxycurcumin could modulate efflux function of human P-glycoprotein and be used as chemosensitizers in cancer treatments. Without altering P-glycoprotein expression levels and conformation, the purified curcuminoids significantly inhibited P-glycoprotein efflux function. In rhodamine 123 efflux and calcein-AM accumulation assays, demethoxycurcumin demonstrated the highest inhibition potency (inhibitory IC50 = 1.56 ± 0.13 ?M) among the purified curcuminoids, as well as in the fold of reversal assays. Demethoxycurcumin inhibited P-glycoprotein-mediated ATP hydrolysis under concentrations of <1 ?M and efficiently inhibited 200 ?M verapamil-stimulated ATPase activity, indicating a high affinity of demethoxycurcumin for P-glycoprotein. These results suggested that demethoxycurcumin may be a potential additive natural product in combination with chemotherapeutic agents in drug-resistant cancers. PMID:25594233

  8. Tariquidar inhibits P-glycoprotein drug efflux but activates ATPase activity by blocking transition to an open conformation.

    PubMed

    Loo, Tip W; Clarke, David M

    2014-12-15

    P-glycoprotein (P-gp, ABCB1) is a drug pump that confers multidrug resistance. Inhibition of P-gp would improve chemotherapy. Tariquidar is a potent P-gp inhibitor but its mechanism is unknown. Here, we tested our prediction that tariquidar inhibits P-gp cycling between the open and closed states during the catalytic cycle. Transition of P-gp to an open state can be monitored in intact cells using reporter cysteines introduced into extracellular loops 1 (A80C) and 4 (R741C). Residues A80C/R741C come close enough (<7?) to spontaneously cross-link in the open conformation (<7?) but are widely separated (>30?) in the closed conformation. Cross-linking of A80C/R741C can be readily detected because it causes the mutant protein to migrate slower on SDS-PAGE gels. We tested whether drug substrates or inhibitors could inhibit cross-linking of the mutant. It was found that only tariquidar blocked A80C/R741C cross-linking. Tariquidar was also a more potent pharmacological chaperone than other P-gp substrates/modulators such as cyclosporine A. Only tariquidar promoted maturation of misprocessed mutant F804D to yield mature P-gp. Tariquidar interacted with the transmembrane domains because it could rescue a misprocessed truncation mutant lacking the nucleotide-binding domains. These results show that tariquidar is a potent pharmacological chaperone and inhibits P-gp drug efflux by blocking transition to the open state during the catalytic cycle. PMID:25456855

  9. 1?,25-Dihydroxyvitamin D3-liganded vitamin D receptor increases expression and transport activity of P-glycoprotein in isolated rat brain capillaries and human and rat brain microvessel endothelial cells.

    PubMed

    Durk, Matthew R; Chan, Gary N Y; Campos, Christopher R; Peart, John C; Chow, Edwin C Y; Lee, Eason; Cannon, Ronald E; Bendayan, Reina; Miller, David S; Pang, K Sandy

    2012-12-01

    Induction of the multidrug resistance protein 1 (MDR1)/P-glycoprotein (P-gp) by the vitamin D receptor (VDR) was investigated in isolated rat brain capillaries and rat (RBE4) and human (hCMEC/D3) brain microvessel endothelial cell lines. Incubation of isolated rat brain capillaries with 10 nM of the VDR ligand, 1?,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] for 4 h increased P-gp protein expression fourfold. Incubation with 1,25(OH)(2)D(3) for 4 or 24 h increased P-gp transport activity (specific luminal accumulation of NBD-CSA, the fluorescent P-gp substrate) by 25-30%. In RBE4 cells, Mdr1b mRNA was induced in a concentration-dependent manner by exposure to 1,25(OH)(2)D(3). Concomitantly, P-gp protein expression increased 2.5-fold and was accompanied by a 20-35% reduction in cellular accumulation of the P-gp substrates, rhodamine 6G (R6G), and HiLyte Fluor 488-labeled human amyloid beta 1-42 (hA?(42)). In hCMEC/D3 cells, a 3 day exposure to 100 nM 1,25(OH)(2)D(3) increased MDR1 mRNA expression (40%) and P-gp protein (threefold); cellular accumulation of R6G and hA?(42) was reduced by 30%. Thus, VDR activation up-regulates Mdr1/MDR1 and P-gp protein in isolated rat brain capillaries and rodent and human brain microvascular endothelia, implicating a role for VDR in increasing the brain clearance of P-gp substrates, including hA?(42), a plaque-forming precursor in Alzheimer's disease. PMID:23035695

  10. Modulation of P-glycoprotein activity in Calu-3 cells using steroids and ?-ligands

    E-print Network

    Hamilton, Karen O.; Yazdanian, Mehran; Audus, Kenneth L.

    2001-01-01

    The purpose of this work was to investigate if P-glycoprotein (Pgp) efflux pump activity could be inhibited in the sub-bronchial epithelial cell line, Calu-3, by glucocorticosteroids and ?-ligands. The Pgp modulation efficiency of each compound...

  11. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    SciTech Connect

    Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May

    2012-05-01

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of only 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup ?6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup ?6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ? Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ? Inhaled corticosteroid potent P-gp inducers especially fluticasone and beclomethasone. ? Systemic corticosteroids are weak P-gp inducers. ? Mineralocorticoids not affected by P-gp mediated efflux.

  12. Thyroid Hormone and P-Glycoprotein in Tumor Cells

    PubMed Central

    Davis, Paul J.; Lin, Hung-Yun; Sudha, Thangirala; Mousa, Shaker A.

    2015-01-01

    P-glycoprotein (P-gp; multidrug resistance pump 1, MDR1; ABCB1) is a plasma membrane efflux pump that when activated in cancer cells exports chemotherapeutic agents. Transcription of the P-gp gene (MDR1) and activity of the P-gp protein are known to be affected by thyroid hormone. A cell surface receptor for thyroid hormone on integrin ?v?3 also binds tetraiodothyroacetic acid (tetrac), a derivative of L-thyroxine (T4) that blocks nongenomic actions of T4 and of 3,5,3?-triiodo-L-thyronine (T3) at ?v?3. Covalently bound to a nanoparticle, tetrac as nanotetrac acts at the integrin to increase intracellular residence time of chemotherapeutic agents such as doxorubicin and etoposide that are substrates of P-gp. This action chemosensitizes cancer cells. In this review, we examine possible molecular mechanisms for the inhibitory effect of nanotetrac on P-gp activity. Mechanisms for consideration include cancer cell acidification via action of tetrac/nanotetrac on the Na+/H+ exchanger (NHE1) and hormone analogue effects on calmodulin-dependent processes and on interactions of P-gp with epidermal growth factor (EGF) and osteopontin (OPN), apparently via ?v?3. Intracellular acidification and decreased H+ efflux induced by tetrac/nanotetrac via NHE1 is the most attractive explanation for the actions on P-gp and consequent increase in cancer cell retention of chemotherapeutic agent-ligands of MDR1 protein.

  13. HZ08 Reverse P-Glycoprotein Mediated Multidrug Resistance In Vitro and In Vivo

    PubMed Central

    Hu, Zheyi; Zhou, Zaigang; Hu, Yahui; Wu, Jinhui; Li, Yunman; Huang, Wenlong

    2015-01-01

    Background Multidrug efflux transporter P-glycoprotein (P-gp) is highly expressed on membrane of tumor cells and is implicated in resistance to tumor chemotherapy. HZ08 is synthesized and studied in order to find a novel P-gp inhibitor. Methods MDCK-MDR1 monolayer transport, calcein-AM P-gp inhibition and P-gp ATPase assays were used to confirm the P-gp inhibition capability of HZ08. Furthermore, KB-WT and KB-VCR cells were used to evaluate the P-gp inhibitory activity of HZ08 both in vitro and in vivo. Results Results showed that HZ08 was more potent than verapamil in MDCK-MDR1 monolayer transportation model. Meanwhile, P-gp ATPase assay and calcein-AM P-gp inhibition assay confirmed that HZ08 inhibited P-gp ATPase with a calcein-AM IC50 of 2.44±0.31?M. In addition, significantly greater in vitro multidrug resistance reversing effects were observed when vincristine or paclitaxel was used in combination with 10?M HZ08 compared with 10?M verapamil. Moreover, HZ08 could significantly enhance the sensitivity of vincristine with a similar effect like verapamil in both KB-WT and KB-VCR tumor xenograft models. Conclusions The novel structure HZ08 could be a potent P-gp inhibitor. PMID:25689592

  14. A plausible explanation for enhanced bioavailability of P-gp substrates in presence of piperine: simulation for next generation of P-gp inhibitors.

    PubMed

    Singh, Durg Vijay; Godbole, Madan M; Misra, Krishna

    2013-01-01

    P-glycoprotein (P-gp) has a major role to play in drug pharmacokinetics and pharmacodynamics, since it effluxes many cytotoxic hydrophobic anticancer drugs from gastrointestinal tract, brain, liver and kidney. Piperine is known to enhance the bioavailability of curcumin, as a substrate of P-gp by at least 2000%. Besides these at least 50 other substrates and inhibitors of P-gp have been reported so far. All P-gp inhibitors have diverse structures. Although little is known about binding of some flavonoids and steroids at the NBD (nucleotide binding domain) of P-gp in the vicinity of ATP binding site inhibiting its hydrolysis, a valid explanation of how P-gp accommodates such a diverse set of inhibitors is still awaited. In the present study, piperine up to 100 ?M has not shown observable cytotoxic effect on MDCK cell line, and it has been shown to accumulate rhodamine by fluorescence microscopy and fluorescent activated cell sorter in MDCK cells. Computational simulation for piperine and some first and second generation P-gp inhibitors has shown that these dock at the NBD site of P-gp. A comparative simulation study has been carried out regarding their docking and binding energies. Binding conformation of P-gp co-crystallized complexes with ADP, AMP-PNP (Adenylyl-imidodiphosphate), and ATP were compared with piperine. The receptor based E-pharmacophore of docked piperine has been simulated to find common features amongst P-gp inhibitors. Finally it has been concluded that piperine could be utilized as base molecule for design and development of safe non-toxic inhibitor of P-gp in order to enhance the bioavailability of most of its substrates. PMID:22864626

  15. Predicting P-Glycoprotein-Mediated Drug Transport Based On Support Vector Machine and Three-Dimensional Crystal Structure of P-glycoprotein

    PubMed Central

    Bikadi, Zsolt; Hazai, Istvan; Malik, David; Jemnitz, Katalin; Veres, Zsuzsa; Hari, Peter; Ni, Zhanglin; Loo, Tip W.; Clarke, David M.; Hazai, Eszter; Mao, Qingcheng

    2011-01-01

    Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics, efficacy, safety, or tissue levels of drugs or drug candidates. At present, publicly available, reliable in silico models predicting P-gp substrates are scarce. In this study, a support vector machine (SVM) method was developed to predict P-gp substrates and P-gp-substrate interactions, based on a training data set of 197 known P-gp substrates and non-substrates collected from the literature. We showed that the SVM method had a prediction accuracy of approximately 80% on an independent external validation data set of 32 compounds. A homology model of human P-gp based on the X-ray structure of mouse P-gp as a template has been constructed. We showed that molecular docking to the P-gp structures successfully predicted the geometry of P-gp-ligand complexes. Our SVM prediction and the molecular docking methods have been integrated into a free web server (http://pgp.althotas.com), which allows the users to predict whether a given compound is a P-gp substrate and how it binds to and interacts with P-gp. Utilization of such a web server may prove valuable for both rational drug design and screening. PMID:21991360

  16. The ATPase Activity of the P-glycoprotein Drug Pump Is Highly Activated When the N-terminal and Central Regions of the Nucleotide-binding Domains Are Linked Closely Together*

    PubMed Central

    Loo, Tip W.; Bartlett, M. Claire; Detty, Michael R.; Clarke, David M.

    2012-01-01

    The P-glycoprotein (P-gp, ABCB1) drug pump protects us from toxic compounds and confers multidrug resistance. Each of the homologous halves of P-gp is composed of a transmembrane domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The predicted drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Crystal structures and EM projection images suggest that the two halves of P-gp are separated by a central cavity that closes upon binding of nucleotide. Binding of drug substrates may induce further structural rearrangements because they stimulate ATPase activity. Here, we used disulfide cross-linking with short (8 ?) or long (22 ?) cross-linkers to identify domain-domain interactions that activate ATPase activity. It was found that cross-linking of cysteines that lie close to the LSGGQ (P517C) and Walker A (I1050C) sites of NBD1 and NBD2, respectively, as well as the cytoplasmic extensions of TM segments 3 (D177C or L175C) and 9 (N820C) with a short cross-linker activated ATPase activity over 10-fold. A pyrylium compound that inhibits ATPase activity blocked cross-linking at these sites. Cross-linking between the NBDs was not inhibited by tariquidar, a drug transport inhibitor that stimulates P-gp ATPase activity but is not transported. Cross-linking between extracellular cysteines (T333C/L975C) predicted to lock P-gp into a conformation that prevents close NBD association inhibited ATPase activity. The results suggest that trapping P-gp in a conformation in which the NBDs are closely associated likely mimics the structural rearrangements caused by binding of drug substrates that stimulate ATPase activity. PMID:22700974

  17. Susceptibility of juvenile and adult blood–brain barrier to endothelin-1: regulation of P-glycoprotein and breast cancer resistance protein expression and transport activity

    PubMed Central

    2012-01-01

    Background P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) play a critical role in keeping neurotoxic substances from entering the brain. We and others have previously reported an impact of inflammation on the regulation of adult blood–brain barrier (BBB) efflux transporters. However, studies in children have not been done. From the pediatric clinical perspective, it is important to understand how the central nervous system (CNS) and BBB drug efflux transporters differ in childhood from those of adults under normal and inflammatory conditions. Therefore, we examined and compared the regulation of P-gp and BCRP expression and transport activity in young and adult BBB and investigated the molecular mechanisms underlying inflammatory responses. Methods Rats at postnatal day (P) P21 and P84, corresponding to the juvenile and adult stages of human brain maturation, respectively, were treated with endothelin-1 (ET-1) given by the intracerebroventricular (icv) route. Twenty-four hours later, we measured P-gp and BCRP protein expression in isolated brain capillary by immunoblotting as well as by transport activity in vivo by measuring the unbound drug partitioning coefficient of the brain (Kp,uu,brain) of known efflux transporter substrates administered intravenously. Glial activation was measured by immunohistochemistry. The release of cytokines/chemokines (interleukins-1?, 1-? (IL-1?), -6 (IL-6), -10 (IL-10), monocyte chemoattractant protein (MCP-1/CCL2), fractalkine and tissue inhibitor of metalloproteinases-1 (TIMP-1)) were simultaneously measured in brain and serum samples using the Agilent Technology cytokine microarray. Results We found that juvenile and adult BBBs exhibited similar P-gp and BCRP transport activities in the normal physiological conditions. However, long-term exposure of the juvenile brain to low-dose of ET-1 did not change BBB P-gp transport activity but tended to decrease BCRP transport activity in the juvenile brain, while a significant increase of the activity of both transporters was evidenced at the BBB in the adult brain. Moreover, juvenile and adult brain showed differences in their expression profiles of cytokines and chemokines mediated by ET-1. Conclusions BBB transporter activity during neuroinflammation differs between the juvenile and adult brains. These findings emphasize the importance of considering differential P-gp and BCRP transport regulation mechanisms between adult and juvenile BBB in the context of neuroinflammation. PMID:23253775

  18. Multidrug-resistant cells overexpressing P-glycoprotein are susceptible to DNA crosslinking agents due to attenuated Src/nuclear EGFR cascade-activated DNA repair activity.

    PubMed

    Lee, P-C; Lee, H-J; Kakadiya, R; Sanjiv, K; Su, T-L; Lee, T-C

    2013-02-28

    We synthesized several novel bifunctional alkylating derivatives of 3a-aza-cyclopenta[a]indene (BO-1012, BO-1005, BO-1099 and BO-1101) that are potent DNA interstrand crosslinking agents. In in vitro cytotoxicity assay, these compounds were more cytotoxic to multidrug-resistant (MDR) cells, such as KBvin10, KBtax50 and CEM/VBL, than their parental cells. Using a xenograft model, BO-1012, at a dose of 5?mg/kg, partially suppressed the growth of parental KB cells but completely suppressed the growth of KBvin10 cells in nude mice. In exploring the possible mechanism, we found that DNA double-strand break (DSB) repair activity in MDR cells, KBvin10 and CEM/VBL, was significantly reduced compared with their parental cells, KB and CEM. Reduced DSB repair activity in KBvin10 cells was likely due to a defect in nuclear translocation of DNA-dependent protein kinase (DNA-PK), a component of the non-homologous end-joining repair machinery. Furthermore, BO-1012-induced DNA-PK translocation from the cytosol into the nucleus in KB cells is associated with the activation of the Src/nuclear epidermal growth factor receptor (EGFR) cascade, which is defective in MDR cells. As knockdown of P-glycoprotein (P-gp) by siRNA reactivated the Src/nuclear EGFR cascade, DNA-PK translocation and DNA repair activity in MDR cells, overexpression of P-gp attenuates the activity of DNA DSB repair through suppression of Src/nuclear EGFR cascade. Therefore, DNA interstrand crosslinking agents may have potential therapeutic use against P-gp-overexpressing MDR cells. PMID:22525278

  19. Fas signaling promotes chemoresistance in gastrointestinal cancer by up-regulating P-glycoprotein

    PubMed Central

    Wang, Yadong; Lin, Shiyong; Chen, Jinmin; Wang, Jing; Wang, Zhiqing; Jiang, Bo

    2014-01-01

    Fas signaling promotes metastasis of gastrointestinal (GI) cancer cells by inducing epithelial-mesenchymal transition (EMT), and EMT acquisition has been found to cause cancer chemoresistance. Here, we demonstrated that the response to chemotherapy of GI cancer patients with higher expression of FasL was significantly worse than patients with lower expression. Fas-induced activation of the ERK1/2-MAPK pathway decreased the sensitivity of GI cancer cells to chemotherapeutic agents and promoted the expression of P-glycoprotein (P-gp). FasL promoted chemoresistance of GI cancer cell via upregulation of P-gp by increasing ?-catenin and decreasing miR-145. ?-catenin promoted P-gp gene transcription by binding with P-gp promoter while miR-145 suppressed P-gp expression by interacting with the mRNA 3?UTR of P-gp. Immunostaining and qRT-PCR analysis of human GI cancer samples revealed a positive association among FasL, ?-catenin, and P-gp, but a negative correlation between miR-145 and FasL or P-gp. Altogether, our results showed Fas signaling could promote chemoresistance in GI cancer through modulation of P-gp expression by ?-catenin and miR-145. Our findings suggest that Fas signaling-based cancer therapies should be administered cautiously, as activation of this pathway may not only lead to apoptosis but also induce chemoresistance. PMID:25333257

  20. Investigation of the Functional Role of P-Glycoprotein in Limiting the Oral Bioavailability of Lumefantrine

    PubMed Central

    Raju, Kanumuri S. R.; Singh, Sheelendra P.; Taneja, Isha

    2014-01-01

    In the quest to explore the reason for the low and variable bioavailability of lumefantrine, we investigated the possible role of P-glycoprotein (P-gp) in lumefantrine intestinal absorption. An in situ single-pass intestinal perfusion study in rats with the P-gp inhibitor verapamil or quinidine and an ATPase assay with human P-gp membranes indicated that lumefantrine is a substrate of P-gp which limits its intestinal absorption. To confirm these findings, an in vivo pharmacokinetic study was performed in rats. The oral administration of verapamil (10 mg/kg of body weight) along with lumefantrine caused a significant increase in its bioavailability with a concomitant decrease in clearance. The increase in bioavailability of lumefantrine could be due to inhibition of P-gp and/or cytochrome P450 3A in the intestine/liver by verapamil. However, in a rat intestinal microsomal stability study, lumefantrine was found to be resistant to oxidative metabolism. Further, an in situ permeation study clearly showed a significant role of P-gp in limiting the oral absorption of lumefantrine. Thus, the increase in lumefantrine bioavailability with verapamil is attributed in part to the P-gp-inhibitory ability of verapamil. In conclusion, lumefantrine is a substrate of P-gp, and active efflux by P-gp across the intestine partly contributed to the low/variable bioavailability of lumefantrine. PMID:24189249

  1. Osteoblastic differentiation and P-glycoprotein multidrug resistance in a murine osteosarcoma model

    PubMed Central

    Takeshita, H; Kusuzaki, K; Murata, H; Suginoshita, T; Hirata, M; Hashiguchi, S; Ashihara, T; Gebhardt, M C; Mankin, H J; Hirasawa, Y

    2000-01-01

    A recent study of multidrug resistance (MDR) 1 gene transfected osteosarcoma cells found a cause-effect relationship between increased expression of P-glycoprotein (P-gp) and a low aggressive phenotype. However, several experimental and clinical studies have observed contradictory findings in that P-gp expression has been associated with tumour progression. In the present study, we characterized P-gp-positive and P-gp-negative single-cell clones of a murine osteosarcoma, to further investigate the relationship between P-gp expression and changes in cell phenotype. Although these clones were all selected by doxorubicin (DOX) exposure, they were heterogeneous with respect to MDR1 gene expression. The P-gp-positive clones revealed MDR phenotype, whereas the P-gp-negative clones showed no resistance to drugs. Morphological and functional analysis showed that both the P-gp-positive and P-gp-negative clones were more differentiated than the parent cells in terms of enhanced activity of cellular alkaline phosphatase, an increase in well-organized actin stress fibres and enhanced osteogenic activity. Moreover, these subclones all displayed a decrease in malignant potential such as oncogenic activity, tumour growth rate and metastatic ability, regardless of their P-gp status. These results indicate that the observed osteoblastic differentiation and less aggressive phenotype in DOX-selected osteosarcoma cells may not only be explained by the direct effect of P-gp, and accordingly, consideration of the effect of DOX, as well as P-gp, appears to be important. © 2000 Cancer Research Campaign PMID:10755409

  2. Esters of the Marine-Derived Triterpene Sipholenol A Reverse P-GP-Mediated Drug Resistance.

    PubMed

    Zhang, Yongchao; Zhang, Yun-Kai; Wang, Yi-Jun; Vispute, Saurabh G; Jain, Sandeep; Chen, Yangmin; Li, Jessalyn; Youssef, Diaa T A; Sayed, Khalid A El; Chen, Zhe-Sheng

    2015-01-01

    Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1). Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers. PMID:25874923

  3. The P-glycoprotein Inhibitor GF120918 Modulates Ca2+-Dependent Processes and Lipid Metabolism in Toxoplasma Gondii

    PubMed Central

    Bottova, Iveta; Sauder, Ursula; Olivieri, Vesna; Hehl, Adrian B.; Sonda, Sabrina

    2010-01-01

    Up-regulation of the membrane-bound efflux pump P-glycoprotein (P-gp) is associated with the phenomenon of multidrug-resistance in pathogenic organisms, including protozoan parasites. In addition, P-gp plays a role in normal physiological processes, however our understanding of these P-gp functions remains limited. In this study we investigated the effects of the P-gp inhibitor GF120918 in Toxoplasma gondii, a model apicomplexan parasite and an important human pathogen. We found that GF120918 treatment severely inhibited parasite invasion and replication. Further analyses of the molecular mechanisms involved revealed that the P-gp inhibitor modulated parasite motility, microneme secretion and egress from the host cell, all cellular processes known to depend on Ca2+ signaling in the parasite. In support of a potential role of P-gp in Ca2+-mediated processes, immunoelectron and fluorescence microscopy showed that T. gondii P-gp was localized in acidocalcisomes, the major Ca2+ storage in the parasite, at the plasma membrane, and in the intravacuolar tubular network. In addition, metabolic labeling of extracellular parasites revealed that inhibition or down-regulation of T. gondii P-gp resulted in aberrant lipid synthesis. These results suggest a crucial role of T. gondii P-gp in essential processes of the parasite biology and further validate the potential of P-gp activity as a target for drug development. PMID:20386707

  4. Aripiprazole brain concentration is altered in P-glycoprotein deficient mice.

    PubMed

    Wang, Jun-Sheng; Zhu, Hao-Jie; Donovan, Jennifer L; Yuan, Hong-Jie; Markowitz, John S; Geesey, Mark E; Devane, C Lindsay

    2009-05-01

    P-glycoprotein (P-gp) is a transporter that mediates the tissue disposition of numerous drugs. To evaluate the role of P-glycoprotein (P-gp) in aripiprazole tissue distribution and penetration across the blood-brain barrier, mice deficient in the P-gp gene (Abcb1a/b-/-) were dosed intraperitoneally with 2 microg/g mouse of the antipsychotic drug aripiprazole. Wildtype FVB mice were administered the same dose as transgenic animals. At one, two, and three hours after dosing, blood and tissue samples were collected and assayed for aripiprazole concentration by HPLC. Deficiency of P-gp did not result in significantly altered plasma drug concentrations but had dramatic effects on drug concentrations in brain tissue. At 1, 2, and 3 h after dosing, aripiprazole brain concentrations in the Abcb1a/b-/- mice were 4.6-, 4.1- and 3.0-fold higher, respectively (P<0.01), compared with the wildtype mice. Increases in drug concentration were also observed in testes and muscle in Abcb1a/b -/- mice. All other tissues including gut, lung, heart, kidney, liver, and spleen did not show significant differences between the two groups. These data provide evidence that aripiprazole is a transportable substrate of P-gp. Thus, factors influencing P-gp activity within the blood brain barrier in humans may have implications for the therapeutic effects and tolerability of aripiprazole. PMID:19239981

  5. Host Cell P-glycoprotein Is Essential for Cholesterol Uptake and Replication of Toxoplasma gondii*

    PubMed Central

    Bottova, Iveta; Hehl, Adrian B.; Štefani?, Saša; Fabriŕs, Gemma; Casas, Josefina; Schraner, Elisabeth; Pieters, Jean; Sonda, Sabrina

    2009-01-01

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells. PMID:19389707

  6. Rapid, reversible modulation of blood-brain barrier P-glycoprotein transport activity by vascular endothelial growth factor

    PubMed Central

    Hawkins, Brian T.; Sykes, Destiny B.; Miller, David S.

    2010-01-01

    Increased brain expression of vascular endothelial growth factor (VEGF) is associated with neurological disease, brain injury and blood-brain barrier (BBB) dysfunction. However, the specific effect of VEGF on the efflux transporter P-glycoprotein, a critical component of the BBB, is not known. Using isolated rat brain capillaries and in situ rat brain perfusion, we determined the effect of VEGF exposure on P-glycoprotein activity in vitro and in vivo. In isolated capillaries, VEGF acutely and reversibly decreased P-glycoprotein transport activity without decreasing transport protein expression or opening tight junctions. This effect was blocked by inhibitors of the VEGF receptor flk-1 and Src kinase, but not by inhibitors of phosphatidylinostitol-3-kinase or protein kinase C. VEGF also increased Tyr-14 phosphorylation of caveolin-1, and this was blocked by the Src inhibitor PP2. Pharmacological activation of Src kinase activity mimicked the effects of VEGF on P-glycoprotein activity and Tyr-14 phosphorylation of caveolin-1. In vivo, intracerebroventricular (ICV) injection of VEGF increased brain distribution of P-glycoprotein substrates morphine and verapamil, but not the tight junction marker, sucrose; this effect was blocked by PP2. These findings indicate that VEGF decreases P-glycoprotein activity via activation of flk-1 and Src, and suggest Src-mediated phosphorylation of caveolin-1 may play a role in downregulation of P-glycoprotein activity. These findings also imply that P-glycoprotein activity is acutely diminished in pathological conditions associated with increased brain VEGF expression and that BBB VEGF/Src signaling could be targeted to acutely modulate P-glycoprotein activity and thus improve brain drug delivery. PMID:20107068

  7. Avermectin induces P-glycoprotein expression in S2 cells via the calcium/calmodulin/NF-?B pathway.

    PubMed

    Luo, Liang; Sun, Yin-Jian; Yang, Lin; Huang, Shile; Wu, Yi-Jun

    2013-04-25

    Avermectin (AVM) is a macrocyclic lactone agent widely used as a nematicide, acaricide and insecticide in veterinary medicine and plant protection. P-glycoprotein (P-gp) is an ATP-dependent drug efflux pump for xenobiotic compounds, and is involved in multidrug resistance. To understand the development of AVM resistance in invertebrates, we investigated the mechanisms by which AVM affected P-gp expression in Drosophila S2 cells. We found that AVM induced upregulation of P-gp protein expression, increased P-gp ATPase activity and enhanced cellular efflux of the P-gp substrate rhodamine 123 from cells. Furthermore, we observed that AVM-induced expression of P-gp was due to elevation of intracellular calcium concentration ([Ca(2+)](i)). This occurred both directly, by activating calcium ion channels, and indirectly, by activating chloride ion channels. These results are supported by our observations that verapamil, a Ca(2+) channel blocker, and niflumic acid, a chloride channel antagonist, significantly attenuated AVM-induced [Ca(2+)](i) elevation, thereby reducing P-gp expression. Inhibition of P-gp with anti-P-gp antibody or cyclosporine A (a P-gp inhibitor) reduced the AVM-induced elevation of [Ca(2+)](i), implying that P-gp and [Ca(2+)](i) regulate each other. Finally, we found that trifluoperazine, a calmodulin inhibitor, and pyrrolidine dithiocarbamic acid, an NF-?B inhibitor, attenuated the AVM-induced expression of P-gp, suggesting that AVM induces P-gp protein expression via the calmodulin/Relish (NF-?B) signaling pathway. PMID:23523950

  8. SAR studies on tetrahydroisoquinoline derivatives: the role of flexibility and bioisosterism to raise potency and selectivity toward P-glycoprotein.

    PubMed

    Capparelli, Elena; Zinzi, Laura; Cantore, Mariangela; Contino, Marialessandra; Perrone, Maria Grazia; Luurtsema, Gert; Berardi, Francesco; Perrone, Roberto; Colabufo, Nicola A

    2014-12-11

    The development of P-glycoprotein (P-gp) ligands remains of considerable interest, mostly for investigating the protein's structure and transport mechanism. In recent years, many different generations of ligands have been tested for their ability to modulate P-gp activity. The aim of the present work is to perform SAR studies on tetrahydroisoquinoline derivatives in order to design potent and selective P-gp ligands. For this purpose, the effect of bioisosteric replacement and the role of flexibility have been investigated, and four series of tetrahydroisoquinoline ligands have been developed: (a) 2-aryloxazole bioisosteres, (b) elongated analogues, (c) 2H-chromene, and (d) 2-biphenyl derivatives. The results showed that both 2-biphenyl derivative 20b and elongated derivative 6g behaved as strong P-gp substrates. In conclusion, important aspects for developing potent and selective P-gp ligands have been highlighted, providing a solid starting point for further optimization. PMID:25379609

  9. Bivalent Probes of the Human Multidrug Transporter P-Glycoprotein Marcos M. Pires, Christine A. Hrycyna,* and Jean Chmielewski*

    E-print Network

    Hrycyna, Christine A.

    Bivalent Probes of the Human Multidrug Transporter P-Glycoprotein Marcos M. Pires, Christine A transporter P-glycoprotein (P-gp). The bivalent agents were composed of two copies of the P-gp substrate the over- expression of a plasma membrane polypeptide known as the multidrug transporter or P-glycoprotein

  10. N-desmethyl-Loperamide Is Selective for P-Glycoprotein among Three ATP-Binding Cassette Transporters at the

    E-print Network

    Shen, Jun

    N-desmethyl-Loperamide Is Selective for P-Glycoprotein among Three ATP-Binding Cassette-binding cassette efflux transporters at the blood-brain barrier are P-glycoprotein (P-gp), multidrug resistance-brain barrier, the three most prevalent ABC transporters are P-glycoprotein (P-gp) (encoded by ABCB1), multidrug

  11. New insight into p-glycoprotein as a drug target.

    PubMed

    Breier, Albert; Gibalova, Lenka; Seres, Mario; Barancik, Miroslav; Sulova, Zdenka

    2013-01-01

    Multidrug resistance (MDR) of cancer tissue is a phenomenon in which cancer cells exhibit reduced sensitivity to a large group of unrelated drugs with different mechanisms of pharmacological activity. Mechanisms that reduce cell sensitivity to damage induced by a variety of chemicals were found to be caused by diverse, albeit well-defined, phenotypic alterations. The molecular basis of MDR commonly involves overexpression of the plasma membrane drug efflux pump - P-glycoprotein (P-gp). This glycoprotein is an ABCB1 member of the ABC transporter family. Cells that develop MDR of this type express massive amounts of P-gp that can induce a drug resistance of more than 100 times higher than normal cells to several drugs, which are substrates of P-gp. Expression of P-gp could be inherent to cancer cells with regard to the specialized tissues from which the cells originated. This is often designated as intrinsic Pgp- mediated MDR. However, overexpression of P-gp may be induced by selection and/or adaptation of cells during exposure to anticancer drugs; this particular example is known as acquired P-gp-mediated MDR. Drugs that are potential inducers of P-gp are often substrates of this transporter. However, several substances that have been proven to not be transportable by P-gp (such as cisplatin or alltrans retinoic acid) could induce minor improvements in P-gp overexpression. It is generally accepted that the drug efflux activity of Pgp is a major cause of reduced cell sensitivity to several compounds. However, P-gp may have side effects that are independent of its drug efflux activity. Several authors have described a direct influence of P-gp on the function of proteins involved in regulatory pathways, including apoptotic progression (such as p53, caspase-3 and Pokemon). Moreover, alterations of cell regulatory pathways, including protein expression, glycosylation and phosphorylation, have been demonstrated in cells overexpressing P-gp, which may consequently induce changes in cell sensitivity to substances that are not P-gp substrates or modulators. We recently reported that P-gppositive L1210 cells exhibit reduced sensitivity to cisplatin, concanavalin A, thapsigargin and tunicamycin. Thus, P-gp-mediated MDR represents a more complex process than was expected, and the unintended effects of P-gp overexpression should be considered when describing this phenotype. The present review aims to provide the most current informations about P-gp-mediated MDR while paying particular attention to the possible dual function of this protein as a drug efflux pump and a regulatory protein that influences diverse cell processes. From a clinical standpoint, overexpression of P-gp in cancer cells represents a real obstacle to effective chemotherapy for malignant diseases. Therefore, this protein should be considered as a viable target for pharmaceutical design. PMID:22931413

  12. A Revised Role for P-Glycoprotein in the Brain Distribution of Dexamethasone, Cortisol, and Corticosterone in Wild-Type and ABCB1A\\/B-Deficient Mice

    Microsoft Academic Search

    Brittany L. Mason; Carmine M. Pariante; Sarah A. Thomas

    2008-01-01

    The ABCB1-type multidrug resistance efflux transporter P-glycoprotein (P-gp) has been hypothesized to regulate hy- pothalamic-pituitary-adrenal axis activity by limiting the ac- cess of glucocorticoids to the brain. In vivo systemic admin- istration studies using P-gp-deficient mice have shown increased glucocorticoid entry to the brain compared with wild-type controls. However, these studies did not control for the presence of radiolabeled drug

  13. Reciprocal competition between lipid nanocapsules and P-gp for paclitaxel transport across Caco-2 cells.

    PubMed

    Roger, E; Lagarce, F; Garcion, E; Benoit, J-P

    2010-08-11

    Lipid nanocapsules (LNCs) have been shown to improve paclitaxel (Ptx) bioavailability and transport across an intestinal barrier model. In the present study, the interaction between P-glycoprotein (P-gp) and LNC transport across Caco-2 cells are investigated. Transport experiments have been performed on Caco-2 cells displaying different P-gp activities (early and later cell passages). The permeability of Ptx encapsulated in LNCs has been studied in the presence of P-gp inhibitors (verapamil and vinblastin) or unloaded LNCs. The uptake of dye-labelled LNCs was also observed in the presence of the same inhibitors. It was found that the permeability of Ptx varied depending on the passages with later ones showing higher absolute values (5.74+/-1.21 cms(-1) vs 133.41+/-5.74 cms(-1)). P-gp inhibition obtained with verapamil or vinblastin improved Ptx transport up to 98%. LNCs have also demonstrated their capacity to increase their own transport. Experiments performed with dye-labelled LNCs demonstrated an enhancement of the uptake of dye (Nile red), only in the presence of verapamil. These results demonstrated an effect of P-gp on the transport of Ptx when loaded in LNCs and support a direct effect of P-gp on their endocytosis in Caco-2 cells. These finding may assist in the development of new nanomedicine for oral administration. PMID:20438839

  14. Functional characterization of P-glycoprotein in the intertidal copepod Tigriopus japonicus and its potential role in remediating metal pollution.

    PubMed

    Jeong, Chang-Bum; Kim, Bo-Mi; Kim, Rae-Kwon; Park, Heum Gi; Lee, Su-Jae; Shin, Kyung-Hoon; Leung, Kenneth Mei Yee; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-11-01

    The intertidal copepod Tigriopus japonicus has been widely used in aquatic toxicity testing for diverse environmental pollutants including metals. Despite relatively well-characterized in vivo physiological modulations in response to aquatic pollutants, the molecular mechanisms due to toxicity and detoxification are still unclear. To better understand the mechanisms of metal transport and further detoxification, T. japonicus P-glycoprotein (TJ-P-gp) with conserved motifs/domains was cloned and measured for protein activity against the transcript and protein expression profiles in response to metal exposure. Specifically, we characterized the preliminary efflux activity and membrane topology of TJ-P-gp protein that supports a transport function for chemicals. To uncover whether the efflux activity of TJ-P-gp protein would be modulated by metal treatment, copepods were exposed to three metals (Cd, Cu, and Zn), and were observed for both dose- and time-dependency on the efflux activity of TJ-P-gp protein with or without 10?M of P-gp-specific inhibitors verapamil and zosuquidar (LY335979) for 24h over a wide range of metal concentrations. In particular, treatment with zosuquidar induced metal accumulation in the inner body of T. japonicus. In addition, three metals significantly induced the transporting activity of TJ-P-gp in a concentration-dependent manner in both transcript and protein levels within 24h. Together these data indicate that T. japonicus has a conserved P-gp-mediated metal defense system through the induction of transcriptional up-regulation of TJ-P-gp gene and TJ-P-gp protein activity. This finding provides further understanding of the molecular defense mechanisms involved in P-glycoprotein-mediated metal detoxification in copepods. PMID:25198425

  15. Cytocompatibility and P-glycoprotein inhibition of block copolymers: structure-activity relationship.

    PubMed

    Cambón, A; Brea, J; Loza, M I; Alvarez-Lorenzo, C; Concheiro, A; Barbosa, S; Taboada, P; Mosquera, V

    2013-08-01

    Amphiphilic polymeric micelles greatly improve the solubilization and sustained release of hydrophobic drugs and provide a protective environment for the cargo molecules in aqueous media, which favors lower drug administration doses, reduces adverse side effects, and increases blood circulation times and passive targeting to specific cells. These capabilities depend, among other variables, on the structure and composition of the polymer chains. Composition and, in particular, block length have been shown to play an important role in the modification of cellular responses such as drug internalization processes or transduction pathways when polymeric unimer/micelles are in close contact with cells. Here we present a detailed study about the role copolymer structure and composition play on cell viability and cellular response of several cell lines. To do that, more than 30 structurally related copolymers with diblock and triblock architectures containing different hydrophobic blocks and poly(ethylene oxide) as the common hydrophilic unit have been analyzed regarding cytocompatibility and potential as "active" cell response modifiers by testing their influence on the P-gp pump efflux mechanism responsible of multidrug resistance in cancerous cells. An empirical threshold for cell viability could be established at a copolymer EO/POeffective value above ca. 1.5 for copolymers with triblock structure, whereas no empirical rule could be observed for diblocks. Moreover, some of the tested copolymers (e.g., BO12EO227BO12 and EO57PO46EO57 that notably increased and C16EO455C16 that decreased the P-gp ATPase activity) were observed to act as efficient inhibitors of the P-gp efflux pump promoting an enhanced doxorubicin (DOXO) accumulation inside multidrug resistant (MDR) NCI-ADR-RES cells. PMID:23763603

  16. Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein.

    PubMed

    Figler, R A; Omote, H; Nakamoto, R K; Al-Shawi, M K

    2000-04-01

    Utilizing human P-glycoprotein (P-gp), we investigated methods to enhance the heterologous expression of ATP-binding cassette transporters in Saccharomyces cerevisiae. Human multidrug resistance gene MDR1 cDNA was placed in a high-copy 2 mu yeast expression plasmid under the control of the inducible GAL1 promoter or the strong constitutive PMA1 promoter from which P-gp was expressed in functional form. Yeast cells expressing P-gp were valinomycin resistant. Basal ATPase activity of P-gp in yeast membranes was 0. 4-0.7 micromol/mg/min indicating excellent functionality. P-glycoprotein expressed in the protease-deficient strain BJ5457 was found in the plasma membrane and was not N-glycosylated. By use of the PMA1 promoter, P-gp could be expressed at 3% of total membrane protein. The expression level could be further enhanced to 8% when cells were grown in the presence of 10% glycerol as a chemical chaperone. Similarly, glycerol enhanced protein levels of P-gp expressed under control of the GAL1 promoter. Glycerol was demonstrated to enhance posttranslational stability of P-gp. Polyhistidine-tagged P-gp was purified by metal affinity chromatography and reconstituted into proteoliposomes in milligram quantities and its ATPase activity was characterized. Turnover numbers as high as 12 s(-1) were observed. The kinetic parameters K(MgATP)(M), V(max), and drug activation were dependent on the lipid composition of proteoliposomes and pH of the assay and were similar to P-gp purified from mammalian sources. In conclusion, we developed a system for cost-effective, high-yield, heterologous expression of functional P-gp useful in producing large quantities of normal and mutant P-gp forms for structural and mechanistic studies. PMID:10729188

  17. Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae.

    PubMed

    Figueira-Mansur, J; Ferreira-Pereira, A; Mansur, J F; Franco, T A; Alvarenga, E S L; Sorgine, M H F; Neves, B C; Melo, A C A; Leal, W S; Masuda, H; Moreira, M F

    2013-12-01

    Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P-glycoprotein in the Ae.?aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P-gps. The basal ATPase activity of ATP-binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae.?aegypti P-gp (AaegP-gp) gene expression was detected in temephos-treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP-gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)-mediated silencing of the AaegP-gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide-induced P-gp expression can be involved in the modulation of insecticide efflux. PMID:23980723

  18. Zinc finger nuclease-mediated gene knockout results in loss of transport activity for P-glycoprotein, BCRP, and MRP2 in Caco-2 cells.

    PubMed

    Sampson, Kathleen E; Brinker, Amanda; Pratt, Jennifer; Venkatraman, Neetu; Xiao, Yongling; Blasberg, Jim; Steiner, Toni; Bourner, Maureen; Thompson, David C

    2015-02-01

    Membrane transporters P-glycoprotein [P-gp; multidrug resistance 1 (MDR1)], multidrug resistance-associated protein (MRP) 2, and breast cancer resistance protein (BCRP) affect drug absorption and disposition and can also mediate drug-drug interactions leading to safety/toxicity concerns in the clinic. Challenges arise with interpreting cell-based transporter assays when substrates or inhibitors affect more than one actively expressed transporter and when endogenous or residual transporter activity remains following overexpression or knockdown of a given transporter. The objective of this study was to selectively knock out three drug efflux transporter genes (MDR1, MRP2, and BCRP), both individually as well as in combination, in a subclone of Caco-2 cells (C2BBe1) using zinc finger nuclease technology. The wild-type parent and knockout cell lines were tested for transporter function in Transwell bidirectional assays using probe substrates at 5 or 10 ?M for 2 hours at 37°C. P-gp substrates digoxin and erythromycin, BCRP substrates estrone 3-sulfate and nitrofurantoin, and MRP2 substrate 5-(and-6)-carboxy-2',7'-dichlorofluorescein each showed a loss of asymmetric transport in the MDR1, BCRP, and MRP2 knockout cell lines, respectively. Furthermore, transporter interactions were deduced for cimetidine, ranitidine, fexofenadine, and colchicine. Compared with the knockout cell lines, standard transporter inhibitors showed substrate-specific variation in reducing the efflux ratios of the test compounds. These data confirm the generation of a panel of stable Caco-2 cell lines with single or double knockout of human efflux transporter genes and a complete loss of specific transport activity. These cell lines may prove useful in clarifying complex drug-transporter interactions without some of the limitations of current chemical or genetic knockdown approaches. PMID:25388687

  19. Hydrogel-assisted functional reconstitution of human P-glycoprotein (ABCB1) in giant liposomes.

    PubMed

    Horger, Kim S; Liu, Haiyan; Rao, Divya K; Shukla, Suneet; Sept, David; Ambudkar, Suresh V; Mayer, Michael

    2015-02-01

    This paper describes the formation of giant proteoliposomes containing P-glycoprotein (P-gp) from a solution of small proteoliposomes that had been deposited and partially dried on a film of agarose. This preparation method generated a significant fraction of giant proteoliposomes that were free of internalized vesicles, making it possible to determine the accessible liposome volume. Measuring the intensity of the fluorescent substrate rhodamine 123 (Rho123) inside and outside these giant proteoliposomes determined the concentration of transported substrates of P-gp. Fitting a kinetic model to the fluorescence data revealed the rate of passive diffusion as well as active transport by reconstituted P-gp in the membrane. This approach determined estimates for the membrane permeability coefficient (Ps) of passive diffusion and rate constants of active transport (kT) by P-gp as a result of different experimental conditions. The Ps value for Rho123 was larger in membranes containing P-gp under all assay conditions than in membranes without P-gp indicating increased leakiness in the presence of reconstituted transmembrane proteins. For P-gp liposomes, the kT value was significantly higher in the presence of ATP than in its absence or in the presence of ATP and the competitive inhibitor verapamil. This difference in kT values verified that P-gp was functionally active after reconstitution and quantified the rate of active transport. Lastly, patch clamp experiments on giant proteoliposomes showed ion channel activity consistent with a chloride ion channel protein that co-purified with P-gp. Together, these results demonstrate several advantages of using giant rather than small proteoliposomes to characterize transport properties of transport proteins and ion channels. PMID:25450342

  20. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes.

    PubMed

    Spiegl-Kreinecker, Sabine; Buchroithner, Johanna; Elbling, Leonilla; Steiner, Elisabeth; Wurm, Gabriele; Bodenteich, Angelika; Fischer, Johannes; Micksche, Michael; Berger, Walter

    2002-03-01

    The poor prognosis of glioma patients is partly based on the minor success obtained from chemotherapeutic treatments. Resistance mechanisms at the tumor cell level may be, in addition to the blood-brain barrier, involved in the intrinsic chemo-insensitivity of brain tumors. We investigated the expression of the drug-transporter proteins P-glycoprotein (P-gp) and multidrug-resistance protein 1 (MRP1) in cell lines (N = 24) and primary cell cultures (N = 36) from neuroectodermal tumors, as well as in brain tumor extracts (N = 18) and normal human astrocytes (N = 1). We found that a considerable expression of P-gp was relatively rare in glioma cells, in contrast to MRP1, which was constitutively overexpressed in cells derived from astrocytomas as well as glioblastomas. Also, normal astrocytes cultured in vitro expressed high amounts of MRPI but no detectable P-gp. Meningioma cells frequently co-expressed P-gp and MRP1, while, most of the neuroblastoma cell lines express higher P-gp but lower MRP1 levels as compared to the other tumor types. Both, a drug-exporting and a chemoprotective function of P-gp as well as MRP1 could be demonstrated in selected tumor cells by a significant upregulation of cellular 3H-daunomycin accumulation and daunomycin cytotoxicity via administration of transporter antagonists. Summing up, our data suggest that P-gp contributes to cellular resistance merely in a small subgroup of gliomas, but frequently in neuroblastomas and meningiomas. In contrast, MRP1 is demonstrated to play a constitutive role in the intrinsic chemoresistance of gliomas and their normal cell counterpart. PMID:12125964

  1. Discovery of novel P-glycoprotein-mediated multidrug resistance inhibitors bearing triazole core via click chemistry.

    PubMed

    Liu, Baomin; Qiu, Qianqian; Zhao, Tianxiao; Jiao, Lei; Hou, Jianyu; Li, Yunman; Qian, Hai; Huang, Wenlong

    2014-08-01

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors bearing a triazol-phenethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 5 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity (IC50s > 100 ?m). Compared with VRP, compound 5 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 5 persisted longer chemo-sensitizing effect (>24 h) than VRP (<6 h) with reversibility. Given the low intrinsic cytotoxicity and the potent reversal activity, compound 5 may represent a promising candidate for developing P-gp-mediated MDR inhibitor. PMID:24750961

  2. Regulation of P-glycoprotein by orphan nuclear receptors in human brain microvessel endothelial cells.

    PubMed

    Chan, Gary N Y; Hoque, Md Tozammel; Cummins, Carolyn L; Bendayan, Reina

    2011-07-01

    In mammalian systems, pregnane X receptor (PXR) and constitutive androstane receptor (CAR) have been recognized as xenobiotic-sensors which can up-regulate the functional expression of drug transporters, such as P-glycoprotein (P-gp). In the brain, an increase in P-gp expression can further limit drug permeability across the blood-brain barrier (BBB) and potentially reduce CNS pharmacotherapy efficacy. At present, the involvement of human PXR (hPXR) and CAR (hCAR) in the regulation of P-gp expression at the human BBB is unknown. In this study, we investigate the role of hPXR and hCAR in the regulation of P-gp expression using a human cerebral microvessel endothelial cell culture system. We demonstrate that activation of hPXR and hCAR by their respective ligands leads to P-gp induction at both mRNA and protein levels, while pharmacological inhibitors of hPXR and hCAR prevent ligand-mediated P-gp induction. Ligand-induced nuclear translocation of hPXR is observed, although such effect could not be demonstrated for hCAR. Furthermore, down-regulation of hPXR and hCAR proteins using small-interfering RNA decreased P-gp expression. Our findings provide first evidence for P-gp regulation by hPXR and hCAR at the human BBB and suggest insights on how to achieve selective P-gp regulation at this site. PMID:21517853

  3. Abamectin resistance in Drosophila is related to increased expression of P-glycoprotein via the dEGFR and dAkt pathways.

    PubMed

    Luo, Liang; Sun, Ying-Jian; Wu, Yi-Jun

    2013-08-01

    Many insects have evolved resistance to abamectin but the mechanisms involved in this resistance have not been well characterized. P-glycoprotein (P-gp), an ATP-dependent drug-efflux pump transmembrane protein, may be involved in abamectin resistance. We investigated the role of P-gp in abamectin (ABM) resistance in Drosophila using an ABM-resistant strain developed in the laboratory. A toxicity assay, Western blotting analysis and a vanadate-sensitive ATPase activity assay all demonstrated the existence of a direct relationship between P-gp expression and ABM resistance in these flies. Our observations indicate that P-gp levels in flies' heads were higher than in their thorax and abdomen, and that both P-gp levels and LC(50) values were higher in resistant than in susceptible and P-gp-deficient strains. In addition, P-gp levels in the blood-brain barrier (BBB) of resistant flies were higher than in susceptible and P-gp-deficient flies, which is further evidence that a high level of P-gp in the BBB is related to ABM resistance. Furthermore, we found greater expression of Drosophila EGFR (dEGFR) in the resistant strain than in the susceptible strain, and that the level of Drosophila Akt (dAkt) was much higher in resistant than in susceptible flies, whereas that in P-gp-deficient flies was very low. Compared to susceptible flies, P-gp levels in the resistant strain were markedly suppressed by the dEGFR and dAkt inhibitors lapatinib and wortmannin. These results suggest that the increased P-gp in resistant flies was regulated by the dEGFR and dAkt pathways and that increased expression of P-gp is an important component of ABM resistance in insects. PMID:23648830

  4. Molecular basis of the polyspecificity of P-glycoprotein (ABCB1): recent biochemical and structural studies.

    PubMed

    Chufan, Eduardo E; Sim, Hong-May; Ambudkar, Suresh V

    2015-01-01

    ABCB1 (P-glycoprotein/P-gp) is an ATP-binding cassette transporter well known for its association with multidrug resistance in cancer cells. Powered by the hydrolysis of ATP, it effluxes structurally diverse compounds. In this chapter, we discuss current views on the molecular basis of the substrate polyspecificity of P-gp. One of the features that accounts for this property is the structural flexibility observed in P-gp. Several X-ray crystal structures of mouse P-gp have been published recently in the absence of nucleotide, with and without bound inhibitors. All the structures are in an inward-facing conformation exhibiting different degrees of domain separation, thus revealing a highly flexible protein. Biochemical and biophysical studies also demonstrate this flexibility in mouse as well as human P-gp. Site-directed mutagenesis has revealed the existence of multiple transport-active binding sites in P-gp for a single substrate. Thus, drugs can bind at either primary or secondary sites. Biochemical, molecular modeling, and structure-activity relationship studies suggest a large, common drug-binding pocket with overlapping sites for different substrates. We propose that in addition to the structural flexibility, the molecular or chemical flexibility also contributes to the binding of substrates to multiple sites forming the basis of polyspecificity. PMID:25640267

  5. ORIGINAL ARTICLE P-glycoprotein functions as an immunomodulator in healthy human primary

    E-print Network

    Han, Xue

    ORIGINAL ARTICLE P-glycoprotein functions as an immunomodulator in healthy human primary nasal E. Feldman, BA1 and Xue Han, PhD2 Background: P-glycoprotein (P-gp) is an adenosine triphosphate-AAOA, LLC. Key Words: P-glycoprotein; multidrug resistance; nasal epithelium; cell culture; cytokine

  6. Functional Characterization of Glycosylation-Deficient Human P-Glycoprotein Using A Vaccinia Virus Expression System

    E-print Network

    Hrycyna, Christine A.

    Functional Characterization of Glycosylation-Deficient Human P-Glycoprotein Using A Vaccinia Virus Abstract. P-glycoprotein (P-gp), the product of human MDR1 gene, which functions as an ATP-dependent drug surface, is functional and suitable for structural studies. Key words: Multidrug resistance -- P-glycoprotein

  7. Lysosomal trapping of a radiolabeled substrate of P-glycoprotein as a mechanism for signal

    E-print Network

    Shen, Jun

    Lysosomal trapping of a radiolabeled substrate of P-glycoprotein as a mechanism for signal, 2010) The radiotracer [11 C]N-desmethyl-loperamide (dLop) images the in vivo function of P-glycoprotein | efflux The efflux transporter P-glycoprotein (P-gp; encoded by ABCB1) blocks the entry of various

  8. Effect of a P-Glycoprotein Inhibitor, Cyclosporin A, on the Disposition in

    E-print Network

    Shen, Jun

    Effect of a P-Glycoprotein Inhibitor, Cyclosporin A, on the Disposition in Rodent Brain and Blood Branch, National Institute of Mental Health, Bethesda, Maryland KEY WORDS cyclosporin A; CsA; P-glycoproteinA affected only P-gp in this species. Synapse 61:96­105, 2007. VVC 2006 Wiley-Liss, Inc. INTRODUCTION The P-glycoprotein

  9. Fitting the Elementary Rate Constants of the P-gp Transporter Network in the hMDR1-MDCK Confluent Cell Monolayer Using a Particle Swarm Algorithm

    PubMed Central

    Agnani, Deep; Acharya, Poulomi; Martinez, Esteban; Tran, Thuy Thanh; Abraham, Feby; Tobin, Frank; Ellens, Harma; Bentz, Joe

    2011-01-01

    P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3?1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane. PMID:22028772

  10. P-gp efflux pump inhibition potential of common environmental contaminants determined in vitro.

    PubMed

    Georgantzopoulou, Anastasia; Skoczy?ska, Ewa; Van den Berg, Johannes H J; Brand, Walter; Legay, Sylvain; Klein, Sebastian G; Rietjens, Ivonne M C M; Murk, Albertinka J

    2014-04-01

    Across different species, cellular efflux pumps such as P-glycoprotein (P-gp; also termed multidrug resistance protein 1 [MDR1]) serve as a first line of defense by transporting toxic xenobiotics out of the cell. This mechanism is also active in aquatic organisms such as mussels, fish, and their larvae. Modulation of this resistance mechanism by chemical agents occurring in the environment could result in either higher or lower internal concentrations of toxic or endogenous compounds in cells. The aim of the present study was to explore and quantify the inhibition of the P-gp efflux pumps by several ubiquitous aquatic contaminants. The calcein-acetoxymethyl ester (calcein-AM) assay commonly used in pharmacological research was established with P-gp-overexpressing Madin-Darby canine kidney cells (MDCKII-MDR1) in a 96-well plate, avoiding extra washing, centrifugation, and lysis steps. This calcein-AM-based P-gp cellular efflux pump inhibition assay (CEPIA) was used to study the inhibition by commonly occurring environmental contaminants. Among others, the compounds pentachlorophenol, perfluorooctane sulfonate, and perfluorooctanoate strongly inhibited the P-gp-mediated efflux of calcein-AM while the chloninated alkanes did not seem to interact with the transporter. The fact that common pollutants can be potent modulators of the efflux transporters is a motive to further study whether this increases the toxicity of other contaminants present in the same matrices. PMID:24375866

  11. A novel in vivo regulatory role of P-glycoprotein in alloimmunity

    PubMed Central

    Izawa, Atsushi; Schatton, Tobias; Frank, Natasha Y.; Ueno, Takuya; Yamaura, Kazuhiro; Pendse, Shona S.; Margaryan, Armen; Grimm, Martin; Gasser, Martin; Waaga-Gasser, Ana Maria; Sayegh, Mohamed H.; Frank, Markus H.

    2013-01-01

    P-glycoprotein (P-gp) is required for adaptive immunity through defined functions in T cell activation and antigen presenting cell (APC) maturation. The potential role of P-gp as an in vivo regulator of alloimmunity is currently unknown. Here we show that P-gp blockade prolongs graft survival in a murine heterotopic cardiac allotransplantation model through in vivo inhibition of the T helper 1 (Th1) cytokine IFN-? and the Th2 product IL-4, and via downregulation of the APC-expressed positive costimulatory molecule CD80. In vitro, the P-gp antagonist PSC833, a non-calcineurin-inhibitory cyclosporine A analogue, specifically inhibited cellular efflux of the P-gp substrate rhodamine-123 in wild-type CD3+ T cells and MHC class II+ APCs but not their P-gp knockout counterparts that lacked rhodamine-123 efflux capacity. Additionally, P-gp blockade significantly inhibited murine alloimmune T cell activation in a dose-dependent fashion. In vivo, P-gp blockade significantly prolonged graft survival in Balb/c recipients of C57BL/6 cardiac allografts from 8.5±0.5 to 11.7±0.5 days (P<0.01), similar in magnitude to the effects of monotherapy with cyclosporine A. Moreover, P-gp blockade, compared to controls, attenuated intragraft expression of CD3 and CD80, but not CD86, and inhibited IFN-? and IL-4 production (P<0.05). In the setting of systemic CD86 inhibition, P-gp blockade suppressed IFN-? and IL-4 production significantly further (to 98%and 89% inhibition, respectively) compared to either P-gp or anti-CD86 blockade alone, and markedly prolonged allograft survival compared to anti-CD86 blockade alone (40.5±4.6 vs. 22.5±2.6 days, respectively, P<0.01). Our findings define a novel in vivo regulatory role of P-gp in alloimmunity and identify P-gp as a potential therapeutic target in allotransplantation. PMID:20230790

  12. Sav1866 from Staphylococcus aureus and P-glycoprotein: similarities and differences in ATPase activity assessed with detergents as allocrites.

    PubMed

    Beck, Andreas; Aänismaa, Päivi; Li-Blatter, Xiaochun; Dawson, Roger; Locher, Kaspar; Seelig, Anna

    2013-05-14

    The ATP-binding cassette exporters Sav1866 from Staphylococcus aureus and P-glycoprotein are known to share a certain sequence similarity and disposition for cationic allocrites. Conversely, the two ATPases react very differently to neutral detergents that have previously been shown to be inhibitory allocrites for P-glycoprotein. To gain insight into the functional differences of the two proteins, we compared their basal and detergent-stimulated ATPase activity. P-Glycoprotein was investigated in NIH-MDR1-G185 plasma membrane vesicles and Sav1866 in lipid vesicles exhibiting a membrane packing density and a surface potential similar to those of the plasma membrane vesicles. Under basal conditions, Sav1866 revealed a lower catalytic efficiency and concomitantly a more pronounced sodium chloride and pH dependence than P-glycoprotein. As expected, the cationic allocrites (alkyltrimethylammonium chlorides) induced similar bell-shaped activity curves as a function of concentration for both exporters, suggesting stimulation upon binding of the first and inhibition upon binding of the second allocrite molecule. However, the neutral allocrites (n-alkyl-?-d-maltosides and n-ethylene glycol monododecyl ethers) reduced P-glycoprotein's ATPase activity at concentrations well below their critical micelle concentration (CMC) but strongly enhanced Sav1866's ATPase activity even at concentrations above their CMC. The lack of ATPase inhibition at high concentrations of neutral of detergents could be explained by their comparatively low binding affinity for the transmembrane domains of Sav1866, which seems to prevent binding of a second inhibitory molecule. The high ATPase activity in the presence of hydrophobic, long chain detergents moreover revealed that Sav1866, despite its lower basal catalytic efficiency, is a more efficient floppase for lipidlike amphiphiles than P-glycoprotein. PMID:23600489

  13. P-gp localization in mitochondria and its functional characterization in multiple drug-resistant cell lines.

    PubMed

    Solazzo, Michela; Fantappič, Ornella; Lasagna, Nadia; Sassoli, Chiara; Nosi, Daniele; Mazzanti, Roberto

    2006-12-10

    Multidrug resistance (MDR) phenotype is characterized by the over-expression of P-glycoprotein (P-gp) on cell plasma membranes that extrudes several drugs out of cells. Cells that express the MDR phenotype are resistant to the mitochondrial related apoptosis and to several anticancer drugs. This study assessed the presence of P-gp in mitochondria and its role in parental drug-sensitive (P5) and in P5-derived MDR1 cells P1(0.5) hepatocellular carcinoma (HCC) cell lines and in drug-sensitive (PSI-2) and mdr1-transfected (PN1A) NIH/3T3 cells. By using Western blot analysis, confocal laser microscopy, measurements of Rhodamine 123 transport across mitochondrial membranes, MDR1 small interfering RNA and flow cytometry analysis, experiments indicate that P-gp is expressed in mitochondria of P1(0.5) and PN1A cells and it is functionally active. Rho 123 accumulation was largely reduced in mitochondria of P1(0.5) cells as compared to those of P5 cells; the reduced uptake of fluorescence in mitochondria of MDR cells was due to P-gp-mediated Rho 123 efflux. In conclusion, these data demonstrate that functionally active P-gp is expressed in the mitochondrial membrane of MDR-positive cells and pumps out anticancer drugs from mitochondria into cytosol. Therefore, P-gp could be involved in the protection of mitochondrial DNA from damage due to antiproliferative drugs. PMID:17027968

  14. Convallatoxin: a new P-glycoprotein substrate.

    PubMed

    Gozalpour, Elnaz; Greupink, Rick; Bilos, Albert; Verweij, Vivienne; van den Heuvel, Jeroen J M W; Masereeuw, Rosalinde; Russel, Frans G M; Koenderink, Jan B

    2014-12-01

    Digitalis-like compounds (DLCs), such as digoxin and digitoxin that are derived from digitalis species, are currently used to treat heart failure and atrial fibrillation, but have a narrow therapeutic index. Drug-drug interactions at the transporter level are frequent causes of DLCs toxicity. P-glycoprotein (P-gp, ABCB1) is the primary transporter of digoxin and its inhibitors influence pharmacokinetics and disposition of digoxin in the human body; however, the involvement of P-gp in the disposition of other DLCs is currently unknown. In present study, the transport of fourteen DLCs by human P-gp was studied using membrane vesicles originating from human embryonic kidney (HEK293) cells overexpressing P-gp. DLCs were quantified by liquid chromatography-mass spectrometry (LC-MS). The Lily of the Valley toxin, convallatoxin, was identified as a P-gp substrate (Km: 1.1±0.2 mM) in the vesicular assay. Transport of convallatoxin by P-gp was confirmed in rat in vivo, in which co-administration with the P-gp inhibitor elacridar, resulted in increased concentrations in brain and kidney cortex. To address the interaction of convallatoxin with P-gp on a molecular level, the effect of nine alanine mutations was compared with the substrate N-methyl quinidine (NMQ). Phe343 appeared to be more important for transport of NMQ than convallatoxin, while Val982 was particularly relevant for convallatoxin transport. We identified convallatoxin as a new P-gp substrate and recognized Val982 as an important amino acid involved in its transport. These results contribute to a better understanding of the interaction of DLCs with P-gp. PMID:25264938

  15. Induction of P-Glycoprotein by Antiretroviral Drugs in Human Brain Microvessel Endothelial Cells

    PubMed Central

    Chan, Gary N. Y.; Patel, Rucha; Cummins, Carolyn L.

    2013-01-01

    The membrane-associated drug transporter P-glycoprotein (P-gp) plays an essential role in drug efflux from the brain. Induction of this protein at the blood-brain barrier (BBB) could further affect the ability of a drug to enter the brain. At present, P-gp induction mediated by antiretroviral drugs at the BBB has not been fully investigated. Since P-gp expression is regulated by ligand-activated nuclear receptors, i.e., human pregnane X receptor (hPXR) and human constitutive androstane receptor (hCAR), these receptors could represent potential pathways involved in P-gp induction by antiretroviral drugs. The aims of this study were (i) to determine whether antiretroviral drugs currently used in HIV pharmacotherapy are ligands for hPXR or hCAR and (ii) to examine P-gp function and expression in human brain microvessel endothelial cells treated with antiretroviral drugs identified as ligands of hPXR and/or hCAR. Luciferase reporter gene assays were performed to examine the activation of hPXR and hCAR by antiretroviral drugs. The hCMEC/D3 cell line, which is known to display several morphological and biochemical properties of the BBB in humans, was used to examine P-gp induction following 72 h of exposure to these agents. Amprenavir, atazanavir, darunavir, efavirenz, ritonavir, and lopinavir were found to activate hPXR, whereas abacavir, efavirenz, and nevirapine were found to activate hCAR. P-gp expression and function were significantly induced in hCMEC/D3 cells treated with these drugs at clinical concentrations in plasma. Together, our data suggest that P-gp induction could occur at the BBB during chronic treatment with antiretroviral drugs identified as ligands of hPXR and/or hCAR. PMID:23836171

  16. Induction of P-glycoprotein by antiretroviral drugs in human brain microvessel endothelial cells.

    PubMed

    Chan, Gary N Y; Patel, Rucha; Cummins, Carolyn L; Bendayan, Reina

    2013-09-01

    The membrane-associated drug transporter P-glycoprotein (P-gp) plays an essential role in drug efflux from the brain. Induction of this protein at the blood-brain barrier (BBB) could further affect the ability of a drug to enter the brain. At present, P-gp induction mediated by antiretroviral drugs at the BBB has not been fully investigated. Since P-gp expression is regulated by ligand-activated nuclear receptors, i.e., human pregnane X receptor (hPXR) and human constitutive androstane receptor (hCAR), these receptors could represent potential pathways involved in P-gp induction by antiretroviral drugs. The aims of this study were (i) to determine whether antiretroviral drugs currently used in HIV pharmacotherapy are ligands for hPXR or hCAR and (ii) to examine P-gp function and expression in human brain microvessel endothelial cells treated with antiretroviral drugs identified as ligands of hPXR and/or hCAR. Luciferase reporter gene assays were performed to examine the activation of hPXR and hCAR by antiretroviral drugs. The hCMEC/D3 cell line, which is known to display several morphological and biochemical properties of the BBB in humans, was used to examine P-gp induction following 72 h of exposure to these agents. Amprenavir, atazanavir, darunavir, efavirenz, ritonavir, and lopinavir were found to activate hPXR, whereas abacavir, efavirenz, and nevirapine were found to activate hCAR. P-gp expression and function were significantly induced in hCMEC/D3 cells treated with these drugs at clinical concentrations in plasma. Together, our data suggest that P-gp induction could occur at the BBB during chronic treatment with antiretroviral drugs identified as ligands of hPXR and/or hCAR. PMID:23836171

  17. Oral cyclosporin A inhibits CD4 T cell P-glycoprotein activity in HIV-infected adults initiating treatment with nucleoside reverse transcriptase inhibitors

    Microsoft Academic Search

    Todd Hulgan; John P. Donahue; Laura Smeaton; Minya Pu; Hongying Wang; Michael M. Lederman; Kimberly Smith; Hernan Valdez; Christopher Pilcher; David W. Haas

    2009-01-01

    Purpose  P-glycoprotein limits the tissue penetration of many antiretroviral drugs. The aim of our study was to characterize the effects\\u000a of the P-glycoprotein substrate cyclosporin A on T cell P-glycoprotein activity in human immunodeficiency virus-infected participants\\u000a in the AIDS Clinical Trials Group study A5138.\\u000a \\u000a \\u000a \\u000a Methods  We studied P-glycoprotein activity on CD4 and CD8 T cells in 16 participants randomized to receive oral

  18. P-Glycoprotein-Activity Measurements in Multidrug Resistant Cell Lines: Single-Cell versus Single-Well Population Fluorescence Methods

    PubMed Central

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Marie, Sabine; Rafii, Arash; Guerrouahen, Bella S.; Le Foll, Frank

    2013-01-01

    Background. P-gp expression has been linked to the efflux of chemotherapeutic drugs in human cancers leading to multidrug resistance. Fluorescence techniques have been widely applied to measure the P-gp activity. In this paper, there is a comparison between the advantages of two fluorescence approaches of commonly available and affordable instruments: the microplate reader (MPR) and the flow cytometer to detect the P-gp efflux activity using calcein-AM. Results. The selectivity, sensibility, and reproducibility of the two methods have been defined. Our results showed that the MPR is more powerful for the detection of small inhibition, whereas the flow cytometry method is more reliable at higher concentrations of the inhibitors. We showed that to determine precisely the inhibition efficacy the flow cytometry is better; hence, to get the correct Emax and EC50 values, we cannot only rely on the MPR. Conclusion. Both techniques can potentially be used extensively in the pharmaceutical industry for high-throughput drug screening and in biology laboratories for academic research, monitoring the P-gp efflux in specific assays. PMID:24350282

  19. Different Modalities of Intercellular Membrane Exchanges Mediate Cell-to-cell P-glycoprotein Transfers in MCF-7 Breast Cancer Cells*

    PubMed Central

    Pasquier, Jennifer; Galas, Ludovic; Boulangé-Lecomte, Céline; Rioult, Damien; Bultelle, Florence; Magal, Pierre; Webb, Glenn; Le Foll, Frank

    2012-01-01

    Multi-drug resistance (MDR) is a phenomenon by which tumor cells exhibit resistance to a variety of chemically unrelated chemotherapeutic drugs. The classical form of multidrug resistance is connected to overexpression of membrane P-glycoprotein (P-gp), which acts as an energy dependent drug efflux pump. P-glycoprotein expression is known to be controlled by genetic and epigenetic mechanisms. Until now processes of P-gp gene up-regulation and resistant cell selection were considered sufficient to explain the emergence of MDR phenotype within a cell population. Recently, however, “non-genetic” acquisitions of MDR by cell-to-cell P-gp transfers have been pointed out. In the present study we show that intercellular transfers of functional P-gp occur by two different but complementary modalities through donor-recipient cells interactions in the absence of drug selection pressure. P-glycoprotein and drug efflux activity transfers were followed over 7 days by confocal microscopy and flow cytometry in drug-sensitive parental MCF-7 breast cancer cells co-cultured with P-gp overexpressing resistant variants. An early process of remote transfer was established based on the release and binding of P-gp-containing microparticles. Microparticle-mediated transfers were detected after only 4 h of incubation. We also identify an alternative mode of transfer by contact, consisting of cell-to-cell P-gp trafficking by tunneling nanotubes bridging neighboring cells. Our findings supply new mechanistic evidences for the extragenetic emergence of MDR in cancer cells and indicate that new treatment strategies designed to overcome MDR may include inhibition of both microparticles and Tunneling nanotube-mediated intercellular P-gp transfers. PMID:22228759

  20. 7-Ketocholesterol induces P-glycoprotein through PI3K/mTOR signaling in hepatoma cells

    PubMed Central

    Wang, Sheng-Fan; Chou, Yueh-Ching; Mazumder, Nirmal; Kao, Fu-Jen; Nagy, Leslie D.; Guengerich, F. Peter; Huang, Cheng; Lee, Hsin-Chen; Lai, Ping-Shan; Ueng, Yune-Fang

    2014-01-01

    7-Ketocholesterol (7-KC) is found at an elevated level in patients with cancer and chronic liver disease. The up-regulation of an efflux pump, P-glycoprotein (P-gp) leads to drug resistance. To elucidate the effect of 7-KC on P-gp, P-gp function and expression were investigated in hepatoma cell lines Huh-7 and HepG2 and in primary hepatocyte-derived HuS-E/2 cells. At a subtoxic concentration, 48-h exposure to 7-KC reduced the intracellular accumulation and cytotoxicity of P-gp substrate doxorubicin in hepatoma cells, but not in HuS-E/2 cells. In Huh-7 cells, 7-KC elevated efflux function through the activation of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway. 7-KC activated the downstream protein synthesis initiation factor 4E-BP1 and induced P-gp expression post-transcriptionally. The stimulation of efflux was reversible and could not be prevented by N-acetyl cysteine. Total cellular ATP content remained the same, whereas the lactate production was increased and fluorescence lifetime of protein-bound NADH was shortened. These changes suggested a metabolic shift to glycolysis, but glycolytic inhibitors did not eliminate 7-KC-mediated P-gp induction. These results demonstrate that 7-KC induces P-gp through PI3K/mTOR signaling and decreased the cell-killing efficacy of doxorubicin in hepatoma cells. PMID:23792120

  1. Cyclooxygenase-2 inhibitors prevent trinitrobenzene sulfonic acid-induced P-glycoprotein up-regulation in vitro and in vivo.

    PubMed

    Zrieki, Afraa; Farinotti, Robert; Buyse, Marion

    2010-06-25

    Failed medical therapy is a common problem in inflammatory bowel disease. P-glycoprotein (P-gp), an efflux pump encoded by MDR1 (ABCB1) gene can actively pump drugs out of cells conferring the phenotype of multidrug resistance. Various studies evoked that cyclooxygenase (COX) system may be involved in the regulation of P-gp activity. Since COX-2 isoform is overexpressed in colic inflammatory states, we examined the inhibitory effect of COX-2-inhibitors on P-gp expression and function under COX-2 stimulated conditions mediated by trinitrobenzene sulfonic acid (TNBS) in vitro, in Caco-2 cells, and in TNBS-induced colitis in mice. COX-2 and P-gp expressions were evaluated by real-time PCR and western blot. The activity of P-gp was measured by intracellular accumulation of rhodamine123 (Rho123) in Caco-2 cells and by Rho123 efflux using the intestinal everted loop method in mice. We showed that COX-2 stimulation in Caco-2 cells by 0.1mM TNBS exposure for 24h induced P-gp protein expression and activity. This activation was reversed by simultaneous COX-2-inhibitor treatment. Moreover, this effect was reproduced in vivo, in mice, where an increased P-gp expression and activity were observed 24h post intra-rectal TNBS administration. Induced P-gp expression and activity could be blocked by the oral pre-treatment with indomethacin heptyl ester (IHE) (20mg/kg). Administration of indomethacin heptyl ester had also a protective effect in TNBS-induced colitis. Our observations suggest that the inhibition of P-gp by COX-2-inhibitors could contribute to the improvement of medical response and this finding may have relevance to medical treatment of inflammatory bowel disease patients. PMID:20361960

  2. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery

    PubMed Central

    Davis, Thomas P.; Sanchez-Covarubias, Lucy; Tome, Margaret E.

    2014-01-01

    The primary function of the blood-brain barrier (BBB) /neurovascular unit is to protect the CNS from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain induced changes in P-gp trafficking are associated with changes in P-gp’s association with caveolin-1, a key scaffolding/trafficking protein that co-localizes with P-gp at the luminal membrane of brain microvessels. Changes in co-localization with the phosphorylated and non-phosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization and activation of P-gp “pools” between microvascular endothelial cell subcellular compartments. Since redox sensitive processes may be involved in signaling disassembly of higher order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface providing improved CNS drug delivery. The advantage of therapeutic drug “relocalization” of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. PMID:25307213

  3. Trametenolic acid B reverses multidrug resistance in breast cancer cells through regulating the expression level of P-glycoprotein.

    PubMed

    Zhang, Qiaoyin; Wang, Junzhi; He, Haibo; Liu, Hongbing; Yan, Ximing; Zou, Kun

    2014-07-01

    Trametenolic acid B (TAB) is the main active composition of Trametes lactinea (Berk.) Pat which possesses antitumor activities. There was no report its antitumor effect through regulating P-glycoprotein (P-gp) so far, due toP-gp over expression is one of the most important mechanisms contributing to the multiple drug resistance phenotype. The present aim was to investigate the effects of TAB on P-gp in multidrug-resistant cells;Paclitaxel-resistant cell line MDA-MB-231/Taxol was established by stepwise exposure for 10 months.MDA-MB-231 cells and MDA-MB-231/Taxol cells were treated with TAB, and their growth was evaluated using MTT assays. Paclitaxel accumulation in the cells was analyzed by high performance liquid chromatogram(HPLC). The activity of P-gp was detected by intracellular accumulation of rhodamine 123 (Rho123), and the protein expression of P-gp was evaluated using western blot. Results indicated that the IC50 of MDA-MB-231/Taxol to paclitaxel (Taxol) was 33 times higher than that of nature MDA-MB-231. TAB increased the intracellular concentration of Taxol and inhibited the activity of P-gp and suppressed the expression of P-gp in MDA-MB-231/Taxol cells. Our present results showed that TAB could reverse Taxol resistance in MDA-MB-231/Taxol cells,mainly inhibiting the activity of P-gp and down-regulating the expression level of P-gp, and then enhancing the accumulation of chemotherapy agents. PMID:25289403

  4. Oral Cyclosporin A Inhibits CD4 T cell P-glycoprotein Activity in HIV-Infected Adults Initiating Treatment with Nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Hulgan, Todd; Donahue, John P.; Smeaton, Laura; Pu, Minya; Wang, Hongying; Lederman, Michael M.; Smith, Kimberly; Valdez, Hernan; Pilcher, Christopher; Haas, David W.

    2010-01-01

    Purpose P-glycoprotein limits tissue penetration of many antiretroviral drugs. We characterized effects of the P-glycoprotein substrate cyclosporin A on T cell P-glycoprotein activity in HIV-infected AIDS Clinical Trials Group study A5138 participants. Methods We studied P-glycoprotein activity on CD4 and CD8 T cells in 16 participants randomized to receive oral cyclosporin A (n=9) or not (n=7) during initiation antiretroviral therapy (ART) that did not include protease or non-nucleoside reverse transcriptase inhibitors. Results CD4 T cell P-glycoprotein activity decreased by a median of 8 percentage points with cyclosporin A/ART (difference between cyclosporin A/ART versus ART only P=0.001). Plasma trough cyclosporin A concentrations correlated with change in P-glycoprotein activity in several T cell subsets. Conclusions Oral cyclosporin A can inhibit peripheral blood CD4 T cell P-glycoprotein activity. Targeted P-glycoprotein inhibition might enhance delivery of ART to T cells. PMID:19779705

  5. Molecular and functional characterization of P-glycoprotein in vitro.

    PubMed

    Chan, Gary N Y; Bendayan, Reina

    2011-01-01

    The blood-brain barrier (BBB) physically and metabolically functions as a neurovascular interface between the brain parenchyma and the systemic circulation, and regulates the permeability of several endogenous substrates and xenobiotics in and out of the central nervous system. Several membrane-associated transport proteins, such as P-glycoprotein (P-gp), multidrug resistance-associated proteins, breast cancer resistance protein, and organic anion transporting polypeptides, have been characterized at the BBB and identified to play a major role in regulating the brain bioavailability of several pharmacological agents. This chapter reviews several well-established techniques for the study of the molecular expression, cellular localization, and functional activity of transport proteins in primary and immortalized cell culture systems of the BBB. In particular, we describe the molecular characterization of P-gp/MDR1 at the transcript level using semiquantitative polymerase chain reaction (PCR), at the protein level using immunoblotting, and at the cellular level using immunofluorescence. In addition, the uptake/efflux and transepithelial flux studies, which characterize P-gp transport activity, are described. PMID:21082379

  6. Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model

    PubMed Central

    2011-01-01

    Background Cancer is a proliferation disease affecting a genetically unstable cell population, in which molecular alterations can be somatically inherited by genetic, epigenetic or extragenetic transmission processes, leading to a cooperation of neoplastic cells within tumoural tissue. The efflux protein P-glycoprotein (P-gp) is overexpressed in many cancer cells and has known capacity to confer multidrug resistance to cytotoxic therapies. Recently, cell-to-cell P-gp transfers have been shown. Herein, we combine experimental evidence and a mathematical model to examine the consequences of an intercellular P-gp trafficking in the extragenetic transfer of multidrug resistance from resistant to sensitive cell subpopulations. Methodology and Principal Findings We report cell-to-cell transfers of functional P-gp in co-cultures of a P-gp overexpressing human breast cancer MCF-7 cell variant, selected for its resistance towards doxorubicin, with the parental sensitive cell line. We found that P-gp as well as efflux activity distribution are progressively reorganized over time in co-cultures analyzed by flow cytometry. A mathematical model based on a Boltzmann type integro-partial differential equation structured by a continuum variable corresponding to P-gp activity describes the cell populations in co-culture. The mathematical model elucidates the population elements in the experimental data, specifically, the initial proportions, the proliferative growth rates, and the transfer rates of P-gp in the sensitive and resistant subpopulations. Conclusions We confirmed cell-to-cell transfer of functional P-gp. The transfer process depends on the gradient of P-gp expression in the donor-recipient cell interactions, as they evolve over time. Extragenetically acquired drug resistance is an additional aptitude of neoplastic cells which has implications in the diagnostic value of P-gp expression and in the design of chemotherapy regimens. Reviewers This article was reviewed by Leonid Hanin, Anna Marciniak-Czochra and Marek Kimmel. PMID:21269489

  7. P-glycoprotein efflux pump expression and activity in Calu-3 cells.

    PubMed

    Hamilton, K O; Backstrom, G; Yazdanian, M A; Audus, K L

    2001-05-01

    The purpose of this work was to determine if the sub-bronchial epithelial cell model, Calu-3, expresses the functionally active P-glycoprotein (Pgp) efflux pump. Calu-3 cells express lower levels of Pgp than both Caco-2 and A549 cells as determined by Western Blot analysis. In Calu-3 cells, accumulation of the Pgp substrates rhodamine 123 (Rh123) and calcein acetoxymethyl ester (calcein-AM) was increased in the presence of the specific Pgp inhibitors cyclosporin A (CsA), vinblastine, and taxol. Significant inhibition of Pgp activity was not observed until after 2 h in both cell lines. The organic anion/multidrug resistance associated protein-1 (MRP1) inhibitors, probenecid and indomethacin, did not affect Rh123 accumulation, whereas an increase in calcein accumulation was observed by both agents. The metabolic inhibitor sodium azide decreased the efflux of Rh123 out of Calu-3 cells to the same degree as CsA, supporting inhibition of an active, efflux pathway. The basolateral-to-apical transport of Rh123 was significantly higher than that in the reverse direction, indicating a secretory pathway of efflux that was inhibited 25-fold by CsA. Basolateral-to-apical transport of Rh123 was inhibited slightly with both MRP1 inhibitors; however, no significant effect of Rh123 net secretion was observed. Mixed inhibitor studies demonstrated that Rh123 efflux was mainly Pgp mediated. These results support an energy-dependent Pgp efflux pump pathway that is sensitive to inhibition with CsA in Calu-3 cells. PMID:11288109

  8. Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding

    SciTech Connect

    Aller, Stephen G.; Yu, Jodie; Ward, Andrew; Weng, Yue; Chittaboina, Srinivas; Zhuo, Rupeng; Harrell, Patina M.; Trinh, Yenphuong T.; Zhang, Qinghai; Urbatsch, Ina L.; Chang, Geoffrey; (Scripps); (TTU)

    2009-04-22

    P-glycoprotein (P-gp) detoxifies cells by exporting hundreds of chemically unrelated toxins but has been implicated in multidrug resistance (MDR) in the treatment of cancers. Substrate promiscuity is a hallmark of P-gp activity, thus a structural description of poly-specific drug-binding is important for the rational design of anticancer drugs and MDR inhibitors. The x-ray structure of apo P-gp at 3.8 angstroms reveals an internal cavity of -6000 angstroms cubed with a 30 angstrom separation of the two nucleotide-binding domains. Two additional P-gp structures with cyclic peptide inhibitors demonstrate distinct drug-binding sites in the internal cavity capable of stereoselectivity that is based on hydrophobic and aromatic interactions. Apo and drug-bound P-gp structures have portals open to the cytoplasm and the inner leaflet of the lipid bilayer for drug entry. The inward-facing conformation represents an initial stage of the transport cycle that is competent for drug binding.

  9. The Elementary Mass Action Rate Constants of P-gp Transport for a Confluent Monolayer of MDCKII-hMDR1 Cells

    PubMed Central

    Tran, Thuy Thanh; Mittal, Aditya; Aldinger, Tanya; Polli, Joseph W.; Ayrton, Andrew; Ellens, Harma; Bentz, Joe

    2005-01-01

    The human multi-drug resistance membrane transporter, P-glycoprotein, or P-gp, has been extensively studied due to its importance to human health and disease. Thus far, the kinetic analysis of P-gp transport has been limited to steady-state Michaelis-Menten approaches or to compartmental models, neither of which can prove molecular mechanisms. Determination of the elementary kinetic rate constants of transport will be essential to understanding how P-gp works. The experimental system we use is a confluent monolayer of MDCKII-hMDR1 cells that overexpress P-gp. It is a physiologically relevant model system, and transport is measured without biochemical manipulations of P-gp. The Michaelis-Menten mass action reaction is used to model P-gp transport. Without imposing the steady-state assumptions, this reaction depends upon several parameters that must be simultaneously fitted. An exhaustive fitting of transport data to find all possible parameter vectors that best fit the data was accomplished with a reasonable computation time using a hierarchical algorithm. For three P-gp substrates (amprenavir, loperamide, and quinidine), we have successfully fitted the elementary rate constants, i.e., drug association to P-gp from the apical membrane inner monolayer, drug dissociation back into the apical membrane inner monolayer, and drug efflux from P-gp into the apical chamber, as well as the density of efflux active P-gp. All three drugs had overlapping ranges for the efflux active P-gp, which was a benchmark for the validity of the fitting process. One novel finding was that the association to P-gp appears to be rate-limited solely by drug lateral diffusion within the inner monolayer of the plasma membrane for all three drugs. This would be expected if P-gp structure were open to the lipids of the apical membrane inner monolayer, as has been suggested by recent structural studies. The fitted kinetic parameters show how P-gp efflux of a wide range of xenobiotics has been maximized. PMID:15501934

  10. Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain

    PubMed Central

    Ward, Andrew B.; Szewczyk, Paul; Grimard, Vinciane; Lee, Chang-Wook; Martinez, Lorena; Doshi, Rupak; Caya, Alexandra; Villaluz, Mark; Pardon, Els; Cregger, Cristina; Swartz, Douglas J.; Falson, Pierre Guy; Urbatsch, Ina L.; Govaerts, Cedric; Steyaert, Jan; Chang, Geoffrey

    2013-01-01

    P-glycoprotein (P-gp) is one of the best-known mediators of drug efflux-based multidrug resistance in many cancers. This validated therapeutic target is a prototypic, plasma membrane resident ATP-Binding Cassette transporter that pumps xenobiotic compounds out of cells. The large, polyspecific drug-binding pocket of P-gp recognizes a variety of structurally unrelated compounds. The transport of these drugs across the membrane is coincident with changes in the size and shape of this pocket during the course of the transport cycle. Here, we present the crystal structures of three inward-facing conformations of mouse P-gp derived from two different crystal forms. One structure has a nanobody bound to the C-terminal side of the first nucleotide-binding domain. This nanobody strongly inhibits the ATP hydrolysis activity of mouse P-gp by hindering the formation of a dimeric complex between the ATP-binding domains, which is essential for nucleotide hydrolysis. Together, these inward-facing conformational snapshots of P-gp demonstrate a range of flexibility exhibited by this transporter, which is likely an essential feature for the binding and transport of large, diverse substrates. The nanobody-bound structure also reveals a unique epitope on P-gp. PMID:23901103

  11. Astragaloside IV reduces the expression level of P-glycoprotein in multidrug-resistant human hepatic cancer cell lines

    PubMed Central

    WANG, PEI-PEI; XU, DU-JUAN; HUANG, CAN; WANG, WEI-PING; XU, WEN-KE

    2014-01-01

    Astragaloside is a saponin widely used in traditional Chinese medicine and has been reported to be a potent multidrug resistance (MDR) reversal agent. The present study investigated the role of astragaloside IV (ASIV) in the regulation of P-glycoprotein (P-gp, encoded by the mdr1 gene) and its effect on the reversal of MDR. The activity of ASIV was evaluated using human hepatic cancer cells Bel-7402 and the corresponding 5-fluorouracil (5-FU) resistant cells Bel-7402/FU. ASIV (0.08 mg/ml) potentiated the cytotoxicity of 5-FU which was demonstrated using the MTT assay on Bel-7402/FU cells. ASIV reduced the expression of P-gp as was revealed by immunocytochemistry. Accumulation and efflux studies with the P-gp substrate, rhodamine 123 (Rh123), demonstrated that ASIV inhibited P-gp-mediated drug efflux. Furthermore, it was demonstrated that ASIV enhanced the drug accumulation of 5-FU using a high performance liquid chromatography (HPLC) assay for drug resistant cells. Furthermore, ASIV may downregulate the expression of P-gp, which was examined using western blot analysis and polymerase chain reaction. In conclusion, the results of the present study indicated that ASIV reverses the drug resistance of Bel-7402/FU cells by downregulating the expression of mdr1. ASIV may represent a potent modulator of P-gp-mediated MDR in hepatic cancer therapy. PMID:24676670

  12. Expression of multidrug resistance P-glycoprotein in kidney allografts from cyclosporine A-treated patients

    Microsoft Academic Search

    Michael J Koziolek; Regine Riess; Helmut Geiger; Frank Thévenod; Ingeborg A Hauser

    2001-01-01

    Expression of multidrug resistance P-glycoprotein in kidney allografts from cyclosporine A-treated patients.BackgroundThe multidrug resistance (MDR) gene product P-glycoprotein (P-gp) is a transmembrane efflux pump for hydrophobic, potentially toxic compounds, including the immunosuppressant cyclosporine A (CsA). We have previously shown that CsA increases P-gp expression in proximal tubule and endothelial cells in vitro. The aim of the present study was to

  13. Acetaminophen Modulates P-Glycoprotein Functional Expression at the Blood-Brain Barrier by a Constitutive Androstane Receptor–Dependent Mechanism

    PubMed Central

    Thompson, Brandon J.; Sanchez-Covarrubias, Lucy; Zhang, Yifeng; Laracuente, Mei-Li; Vanderah, Todd W.; Ronaldson, Patrick T.; Davis, Thomas P.

    2013-01-01

    Effective pharmacologic treatment of pain with opioids requires that these drugs attain efficacious concentrations in the central nervous system (CNS). A primary determinant of CNS drug permeation is P-glycoprotein (P-gp), an endogenous blood-brain barrier (BBB) efflux transporter that is involved in brain-to-blood transport of opioid analgesics (i.e., morphine). Recently, the nuclear receptor constitutive androstane receptor (CAR) has been identified as a regulator of P-gp functional expression at the BBB. This is critical to pharmacotherapy of pain/inflammation, as patients are often administered acetaminophen (APAP), a CAR-activating ligand, in conjunction with an opioid. Our objective was to investigate, in vivo, the role of CAR in regulation of P-gp at the BBB. Following APAP treatment, P-gp protein expression was increased up to 1.4–1.6-fold in a concentration-dependent manner. Additionally, APAP increased P-gp transport of BODIPY-verapamil in freshly isolated rat brain capillaries. This APAP-induced increase in P-gp expression and activity was attenuated in the presence of CAR pathway inhibitor okadaic acid or transcriptional inhibitor actinomycin D, suggesting P-gp regulation is CAR-dependent. Furthermore, morphine brain accumulation was enhanced by P-gp inhibitors in APAP-treated animals, suggesting P-gp–mediated transport. A warm-water (50°C) tail-flick assay revealed a significant decrease in morphine analgesia in animals treated with morphine 3 or 6 hours after APAP treatment, as compared with animals treated concurrently. Taken together, our data imply that inclusion of APAP in a pain treatment regimen activates CAR at the BBB and increases P-gp functional expression, a clinically significant drug-drug interaction that modulates opioid analgesic efficacy. PMID:24019224

  14. Multidrug resistance mediated by P-glycoprotein in haematological malignancies.

    PubMed

    Pasman, P C; Schouten, H C

    1993-06-01

    The phenomenon that a tumour, resistant to a cytotoxic drug, is also resistant to a large number of other drugs used in cancer chemotherapy, is called multidrug resistance. A transmembrane protein, known as P-glycoprotein (P-gp), is involved in this resistance pattern. P-gp is able to pump large, lipophilic molecules out of the cell. 'Naturally occurring' drugs such as the anthracyclines and the Vinca alkaloids meet these criteria. To study the future clinical implications of multidrug resistance, we have gathered data in the literature on the presence of P-gp in haematological malignancies. At diagnosis 14-62% of all patients showed P-gp expression. Of previously treated patients 29-62% was positive for P-gp. A slight tendency to find a higher frequency of P-gp positivity in these previously treated patients was observed (so-called 'acquired resistance'). Early mutation and selection by the cytotoxic drug could account for the higher levels in treated patients. Chemotherapy itself could induce the expression of the P-gp pump. With the use of in vitro work various pharmacological agents have been found that can antagonize P-gp's function. Using these agents in clinical trials, some refractory patients showed a response to chemotherapy. We conclude that P-gp is probably just one of many causes of drug resistance in patients with haematological malignancies. Clinical results in some studies look promising, but many problems have still to be solved before common use. PMID:8104318

  15. Pregnane X receptor mediates the induction of P-glycoprotein by spironolactone in HepG2 cells.

    PubMed

    Rigalli, Juan Pablo; Ruiz, María Laura; Perdomo, Virginia Gabriela; Villanueva, Silvina Stella Maris; Mottino, Aldo Domingo; Catania, Viviana Alicia

    2011-07-11

    We evaluated the effect of spironolactone (SL), a well-known inducer of biotransformation and elimination pathways, on the expression and activity of P-glycoprotein (P-gp/ABCB1/MDR1), a major xenobiotic transporter, in HepG2 cells, as well as the potential mediation of pregnane X nuclear receptor (PXR). Cells were exposed to SL (1, 5, 10, 20 or 50 ?M) for 48 h. Expression of P-gp and its mRNA levels were estimated by Western blotting and real time PCR, respectively. P-gp activity was inversely correlated with the ability of the cells to accumulate the model substrate rhodamine 123 (Rh123, 5 ?M), in the presence or absence of verapamil (50 ?M), a P-gp inhibitor. At the highest dose of SL tested, P-gp and MDR1 mRNA levels were significantly increased (73 and 108%) with respect to control cells. Rh123 accumulation was concomitantly reduced and verapamil was able to abolish this effect, confirming P-gp participation. Additionally, we tested the cytotoxicity of doxorubicin, a model substrate of P-gp, under inducing conditions. HepG2 cells treated with SL exhibited higher viability, i.e. less doxorubicin toxicity, than control cells, consistent with P-gp up-regulation. When HepG2 cells were treated with SL in the presence of ketoconazole (KTZ), a non-specific nuclear receptor inhibitor, the up-regulation of P-gp was suppressed. To further identify the nuclear receptor involved, cells were transfected with a siRNA directed against human PXR, leading to a 74% decrease in PXR protein levels, which totally abolished SL induction of P-gp. We conclude that SL up-regulates P-gp expression, likely at transcriptional level, and its efflux activity in HepG2 cells. This effect is mediated by PXR. Thus, ligands of PXR such as SL may alter the disposition and toxicity of other xenobiotics, including drugs of therapeutic use, that are P-gp substrates. PMID:21459122

  16. Inhibition of P-glycoprotein and multidrug resistance-associated proteins modulates the intracellular concentration of lopinavir in cultured CD4 T cells and primary human lymphocytes

    Microsoft Academic Search

    Omar Janneh; Elizabeth Jones; Becky Chandler; Andrew Owen; Saye H. Khoo

    2007-01-01

    Background: HIV protease inhibitors (HPIs) are an important component of highly active antiretroviral therapy. However, the activity of drug efflux transporters, such as P-glycoprotein (P-gp) and multidrug resistance-associated proteins (MRP1\\/MRP2), may limit intracellular drug accumulation. Drugs that inhibit the activity of drug efflux proteins may, in combination with HPIs, enhance the clinical efficacy of the drugs. Methods: The transport of

  17. Marine natural products with P-glycoprotein inhibitor properties.

    PubMed

    Lopez, Dioxelis; Martinez-Luis, Sergio

    2014-01-01

    P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters. PMID:24451193

  18. Edoxaban transport via P-glycoprotein is a key factor for the drug's disposition.

    PubMed

    Mikkaichi, Tsuyoshi; Yoshigae, Yasushi; Masumoto, Hiroshi; Imaoka, Tomoki; Rozehnal, Veronika; Fischer, Thomas; Okudaira, Noriko; Izumi, Takashi

    2014-04-01

    Edoxaban (the free base of DU-176b), an oral direct factor Xa inhibitor, is mainly excreted unchanged into urine and feces. Because active membrane transport processes such as active renal secretion, biliary excretion, and/or intestinal secretion, and the incomplete absorption of edoxaban after oral administration have been observed, the involvement of drug transporters in the disposition of edoxaban was investigated. Using a bidirectional transport assay in human colon adenocarcinoma Caco-2 cell monolayers, we observed the vectorial transport of [(14)C]edoxaban, which was completely inhibited by verapamil, a strong P-glycoprotein (P-gp) inhibitor. In an in vivo study, an increased distribution of edoxaban to the brain was observed in Mdr1a/1b knockout mice when compared with wild-type mice, indicating that edoxaban is a substrate for P-gp. However, there have been no observations of significant transport of edoxaban by renal or hepatic uptake transporters, organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)2, or organic anion transporting polypeptide (OATP)1B1. Edoxaban exhibited no remarkable inhibition of OAT1, OAT3, OCT1, OCT2, OATP1B1, OATP1B3, or P-gp up to 30 ?M; therefore, the risk of clinical drug-drug interactions due to any edoxaban-related transporter inhibition seems to be negligible. Our results demonstrate that edoxaban is a substrate of P-gp but not of other major uptake transporters tested. Because metabolism is a minor contributor to the total clearance of edoxaban and strong P-gp inhibitors clearly impact edoxaban transport, the P-gp transport system is a key factor for edoxaban's disposition. PMID:24459178

  19. Tumor P-Glycoprotein Correlates with Efficacy of PF-3758309 in in vitro and in vivo Models of Colorectal Cancer

    PubMed Central

    Bradshaw-Pierce, Erica Lynn; Pitts, Todd M.; Tan, Aik-Choon; McPhillips, Kelly; West, Mark; Gustafson, Daniel L.; Halsey, Charles; Nguyen, Leslie; Lee, Nathan V.; Kan, Julie L. C.; Murray, Brion William; Eckhardt, S. Gail

    2013-01-01

    P-glycoprotein (P-gp), a member of the ATP-binding cassette transporter family, is overexpressed in a number of different cancers and some studies show that P-gp overexpression can be correlated to poor prognosis or therapeutic resistance. Here we sought to elucidate if PF-3758309 (PF-309), a novel p-21 activated kinase inhibitor, efficacy was influenced by tumor P-gp. Based on in vitro proliferation data, a panel of colorectal cancer cell lines were ranked as sensitive or resistant and ABCB1 (P-gp) expression was evaluated by microarray for these cell lines. P-gp expression was determined by western blot and activity determined by rhodamine efflux assay. Knock down of P-gp and pharmacologic inhibition of P-gp to restore PF-309 activity was performed in vitro. PF-309 activity was evaluated in vivo in cell line xenograft models and in primary patient derived tumor xenografts (PDTX). Mice were treated with 25?mg/kg PF-309 orally, twice daily. On the last day of treatment, tumor and plasma were collected for PF-309 analysis. Here we show that ABCB1 gene expression correlates with resistance to PF-309 treatment in vitro and the expression and activity of P-gp was verified in a panel of resistant cells. Furthermore, inhibition of P-gp increased the sensitivity of resistant cells, resulting in a 4–100-fold decrease in the IC50s. Eleven cell line xenografts and 12 PDTX models were treated with PF-309. From the cell line xenografts, we found a significant correlation between ABCB1 gene expression profiles and tumor response. We evaluated tumor and plasma concentrations for eight tumor models (three cell line xenografts and five PDTX models) and a significant correlation was found between tumor concentration and response. Additionally, we show that tumor concentration is approximately fourfold lower in tumors that express P-gp, verified by western blot. Our in vitro and in vivo data strongly suggests that PF-309 efficacy is influenced by the expression of tumor P-gp. PMID:23524533

  20. P-glycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac.

    PubMed

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M; Thompson, Brandon J; Zhang, Yifeng; Laracuente, Mei-Li; DeMarco, Kristin M; Ronaldson, Patrick T; Davis, Thomas P

    2014-01-01

    Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP), induced by subcutaneous plantar injection of ?-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp) that is endogenously expressed at the blood-brain barrier (BBB). The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID) that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h), as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction. PMID:24520393

  1. P-glycoprotein Modulates Morphine Uptake into the CNS: A Role for the Non-steroidal Anti-inflammatory Drug Diclofenac

    PubMed Central

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M.; Thompson, Brandon J.; Zhang, Yifeng; Laracuente, Mei-Li; DeMarco, Kristin M.; Ronaldson, Patrick T.; Davis, Thomas P.

    2014-01-01

    Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP), induced by subcutaneous plantar injection of ?-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp) that is endogenously expressed at the blood-brain barrier (BBB). The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID) that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h), as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction. PMID:24520393

  2. Opioid Analgesics and P-glycoprotein Efflux Transporters: A Potential Systems-Level Contribution to Analgesic Tolerance

    PubMed Central

    Mercer, Susan L.; Coop, Andrew

    2012-01-01

    Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationship development to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation. PMID:21050174

  3. P-glycoprotein interactions of novel psychoactive substances - Stimulation of ATP consumption and transport across Caco-2 monolayers.

    PubMed

    Meyer, Markus R; Wagmann, Lea; Schneider-Daum, Nicole; Loretz, Brigitta; de Souza Carvalho, Cristiane; Lehr, Claus-Michael; Maurer, Hans H

    2015-04-01

    In contrast to drugs for therapeutic use, there are only few data available concerning interactions between P-glycoprotein (P-gp) and drugs of abuse (DOA). In this work, interactions between structurally diverse DOA and P-gp were investigated using different strategies. First, the effect on the P-gp ATPase activity was studied by monitoring of ATP consumption after addition to recombinant, human P-gp. Second, DOA showing an increased ATP consumption were further characterized regarding their transport across filter grown Caco-2- monolayers. Analyses were performed by luminescence and liquid chromatography-mass spectrometry, respectively. Among the nine DOA initially screened, benzedrone, diclofensine, glaucine, JWH-200, MDBC, WIN-55,212-2 showed an increase of ATP consumption in the ATPase stimulation assay. In Caco-2 transport studies, Glaucine, JWH-200, mitragynine, WIN-55,212-2 could moreover be identified as non-transported substrates, but inhibitors of P-gp activity. Thus, drug-drug or drug-food interactions should be very likely for these compounds. PMID:25637762

  4. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review

    PubMed Central

    Abdallah, Hossam M.; Al-Abd, Ahmed M.; El-Dine, Riham Salah; El-Halawany, Ali M.

    2014-01-01

    Resistance of solid tumors to treatment is significantly attributed to pharmacokinetic reasons at both cellular and multi-cellular levels. Anticancer agent must be bio-available at the site of action in a cytotoxic concentration to exert its proposed activity. P-glycoprotein (P-gp) is a member of the ATP-dependent membrane transport proteins; it is known to pump substrates out of cells in ATP-dependent mechanism. The over-expression of P-gp in tumor cells reduces the intracellular drug concentrations, which decreases the cytotoxicity of a broad spectrum of antitumor drugs. Accordingly, P-gp inhibitors/blockers are potential enhancer for the cellular bioavailability of several clinically important anticancer drugs such as, anthracyclines, taxanes, vinca alkaloids, and podophyllotoxins. Besides several chemically synthesized P-gp inhibitors/blockers, some naturally occurring compounds and plant extracts were reported for their modulation of multidrug resistance; however, this review will focus only on major classes of naturally occurring inhibitors viz., flavonoids, coumarins, terpenoids, alkaloids and saponins. PMID:25685543

  5. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review.

    PubMed

    Abdallah, Hossam M; Al-Abd, Ahmed M; El-Dine, Riham Salah; El-Halawany, Ali M

    2015-01-01

    Resistance of solid tumors to treatment is significantly attributed to pharmacokinetic reasons at both cellular and multi-cellular levels. Anticancer agent must be bio-available at the site of action in a cytotoxic concentration to exert its proposed activity. P-glycoprotein (P-gp) is a member of the ATP-dependent membrane transport proteins; it is known to pump substrates out of cells in ATP-dependent mechanism. The over-expression of P-gp in tumor cells reduces the intracellular drug concentrations, which decreases the cytotoxicity of a broad spectrum of antitumor drugs. Accordingly, P-gp inhibitors/blockers are potential enhancer for the cellular bioavailability of several clinically important anticancer drugs such as, anthracyclines, taxanes, vinca alkaloids, and podophyllotoxins. Besides several chemically synthesized P-gp inhibitors/blockers, some naturally occurring compounds and plant extracts were reported for their modulation of multidrug resistance; however, this review will focus only on major classes of naturally occurring inhibitors viz., flavonoids, coumarins, terpenoids, alkaloids and saponins. PMID:25685543

  6. Apparent active transport of MDMA is not mediated by P-glycoprotein: a comparison with MDCK and Caco-2 monolayers.

    PubMed

    Bertelsen, Kirk M; Greenblatt, David J; von Moltke, Lisa L

    2006-07-01

    Amphetamines and their methylenedioxy derivatives generically display similar behavioral, physiologic and toxic effects. Inconsistent pharmacokinetic and toxicity data for methylenedioxymethamphetamine (MDMA) may suggest that active drug transporters are interacting with these compounds, and thus altering drug absorption and tissue distribution. In vitro models of CNS accumulation and intestinal drug transport were used to assess efflux transport of MDMA. Madin-Darby kidney cell epithelial (MDCK) monolayers displayed a 4-fold increase in accumulation in the basolateral to apical orientation relative to the apical to basolateral orientation, although no differential accumulation was noted between MDCK-WT and MDCK-MDR1 monolayers. Caco-2 monolayers demonstrated an approximate 2-fold increase in accumulation of MDMA. Exposure of various inhibitors of active drug transporters demonstrated mixed results; ritonavir, progesterone and indomethacin produced an approximately 50% reduction of MDMA transport, while verapamil, MK-571 and probenecid had no effect. Based on these data, it is concluded that MDMA efflux is mediated via the activity of a transporter distinct from P-glycoprotein. The possible inhibitory effects of amphetamines on rhodamine-123 transport were also assessed. MDMA, methylenedioxyamphetamine, amphetamine and methamphetamine, at physiologically relevant concentrations, did not significantly alter the transport of rhodamine-123 in Caco-2 monolayers or the LS180 cell line, suggesting that these compounds do not alter the function of P-glycoprotein. PMID:16552717

  7. In vitro experimental system for evaluating inhibitory effect of investigational drugs on P-glycoprotein-mediated transcellular transport of tacrolimus (FK506).

    PubMed

    Oda, Kazuo; Nemoto, Hiroyuki; Nagasaka, Yasuhisa; Kawamura, Akio; Usui, Takashi

    2014-04-01

    In this study, an in vitro experimental system for evaluating the inhibitory effect of investigational drugs on the P-glycoprotein (P-gp, MDR1)-mediated transport of tacrolimus (FK506) was developed using LLC-PK1-MDR1 and LLC-PK1 wild-type (control) cells. The amount of tacrolimus (concentrations: 1 and 5 ?m) transported into P-gp-expressing and control cells increased with time in both the apical-to-basal and basal-to-apical directions at incubation times ranging from 40 min to 2 h. The corrected apparent permeability (Papp) ratio, obtained by dividing the Papp ratio in P-gp-expressing cells by that in the control cells, ranged from 2.6 to 5.3, showing significant differences in the transport of tacrolimus between the P-gp-expressing cells and the control cells. This system was then subsequently used to examine the P-gp transport of tacrolimus in the presence of verapamil (30 ?m), a model inhibitor for P-gp-mediated transport activity. The corrected Papp ratios in the absence and presence of verapamil were 6.9 and 0.8, respectively. Data derived in the present study suggest that our developed system has the ability to detect a sufficient difference in the P-gp transport of tacrolimus between P-gp-expressing and control cells, and we therefore believe our system to be suitable for use in evaluating the inhibitory effects of investigational drugs on the P-gp-mediated transport of tacrolimus. PMID:24822242

  8. Limited Oral Bioavailability and Active Epithelial Excretion of Paclitaxel (Taxol) Caused by P-glycoprotein in the Intestine

    Microsoft Academic Search

    Alex Sparreboom; Judith van Asperen; Ulrich Mayer; Alfred H. Schinkel; Johan W. Smit; Dirk K. F. Meijer; Piet Borst; Willem J. Nooijen; Jos H. Beijnen; Olaf van Tellingen

    1997-01-01

    In mice, the mdr1a and mdr1b genes encode drug-transporting proteins that can cause multidrug resistance in tumor cells by lowering intracellular drug levels. These P-glycoproteins are also found in various normal tissues such as the intestine. Because mdr1b P-glycoprotein is not detectable in the intestine, mice with a homozygously disrupted mdr1a gene [mdr1a(-\\/-) mice] do not contain functional P-glycoprotein in

  9. In silico, in vitro and in situ models to assess interplay between CYP3A and P-gp.

    PubMed

    Mudra, Daniel R; Desino, Kelly E; Desai, Prashant V

    2011-10-01

    The bioavailability, fraction of dose that reaches systemic circulation, of orally administered drugs is often limited by both physical barriers of the intestine (e.g., unstirred-water and mucosal layers, epithelial tight junctions) as well as biochemical barriers such as cytochromes P450 (CYP) and P-glycoprotein (P-gp). Highly expressed in intestine and liver, CYP and P-gp can limit the systemic-availability of parent-drug by metabolism and efflux, respectively, by means of similarly large and flexible active sites that accommodate a variety of structurally-diverse, lipophilic molecules over a wide-range of molecular weights. Consequently, many molecules that are substrates for CYP3A4 also demonstrate affinity for P-gp and numerous studies have reported that for these dual-substrates, CYP3A4 and P-gp afford an interplay that affects bioavailability and clearance in a manner that is non-linear. Several in vitro and in situ models of metabolism and permeability, including transfected cell lines, isolated tissues and perfused organs as well as computational models including physiologically-based pharmacokinetic models of such co-expressing systems have demonstrated this phenomenon of CYP3A/Pgp interplay. Furthermore, recent availability of ligand bound X-ray co-crystal structures of the CYP3A4 and P-gp binding sites coupled with computational docking techniques and other validated in silico models, provide medicinal chemists with tools to inform structural-design modifications that can modify the interaction with one or both proteins. This article provides a review of relevant in silico, in vitro, ex vivo and in situ models that allow for investigation of the extent to which clearance or bioavailability can be affected by CYP/P-gp interplay. PMID:21568936

  10. Corrector-mediated rescue of misprocessed CFTR mutants can be reduced by the P-glycoprotein drug pump.

    PubMed

    Loo, Tip W; Bartlett, M Claire; Shi, Li; Clarke, David M

    2012-02-01

    The most common cause of cystic fibrosis is deletion of Phe508 in the first nucleotide-binding domain (NBD) of the CFTR chloride channel, which inhibits protein folding. ?F508 CFTR can be rescued by indirect approaches such as low temperature but the protein is unstable. Here, we tested our predictions that (1) other CFTR mutants such V232D and H1085R were more stable at the cell surface than ?F508 CFTR after low temperature rescue and (2) the advantages of rescue with specific correctors (pharmacological chaperones) are that they may stabilize ?F508 CFTR and increase the effectiveness of the correctors by bypassing drug pumps such as P-glycoprotein (P-gp) (increased bioavailability). It was found that the stability of mutants V232D and H1085R after low-temperature (30°C) rescue was about 10-fold higher than ?F508 CFTR. We show that the corrector, 4,5,7-trimethyl-N-phenylquinolin-2-amine (5a), could stabilize ?F508 CFTR at the cell surface. Unlike most correctors, corrector 5a showed specificity for CFTR as it did not rescue the G268V P-gp processing mutant nor stimulate the ATPase activity of wild-type P-gp. By contrast, corrector KM11060 was a P-gp substrate as it stimulated P-gp ATPase activity and rescued the G268V mutant. Expression of wild-type P-gp reduced the effectiveness of CFTR rescue by corrector KM11060 by about 5-fold. The results underlie the importance of selecting correctors that are specific for CFTR because their efficiency can be reduced by drug pumps such as P-gp. PMID:22138447

  11. Transmembrane Inhibitors of P-Glycoprotein, an ABC Transporter Nadya I. Tarasova,*, Rishi Seth, Sergey G. Tarasov, Teresa Kosakowska-Cholody, Christine A. Hrycyna,#,

    E-print Network

    Hrycyna, Christine A.

    Transmembrane Inhibitors of P-Glycoprotein, an ABC Transporter Nadya I. Tarasova,*, Rishi Seth for the development of specific inhibitors. P-glycoprotein (P-gp) encoded by the MDR1 gene is a common cause of tumor determined. Optimization of peptide sequences allowed us to obtain potent P-glycoprotein inhibitors

  12. Functional expression of P-glycoprotein in primary cultures of human cytotrophoblasts and BeWo cells

    E-print Network

    Utoguchi, Naoki; Chandorkar, Gurudatt A.; Avery, Michael; Audus, Kenneth L.

    2000-01-01

    The objective of this study was to investigate the functional expression of the efflux transporter, P-glycoprotein (P-gp), in primary cultures of human cytotrophoblasts and BeWo cell monolayers. Uptake studies with primary ...

  13. Multi-drug resistance in a canine lymphoid cell line due to increased P-glycoprotein expression, a potential model for drug-resistant canine lymphoma.

    PubMed

    Zandvliet, M; Teske, E; Schrickx, J A

    2014-12-01

    Canine lymphoma is routinely treated with a doxorubicin-based multidrug chemotherapy protocol, and although treatment is initially successful, tumor recurrence is common and associated with therapy resistance. Active efflux of chemotherapeutic agents by transporter proteins of the ATP-Binding Cassette superfamily forms an effective cellular defense mechanism and a high expression of these transporters is frequently observed in chemotherapy-resistant tumors in both humans and dogs. In this study we describe the ABC-transporter expression in a canine lymphoid cell line and a sub-cell line with acquired drug resistance following prolonged exposure to doxorubicin. This sub-cell line was more resistant to doxorubicin and vincristine, but not to prednisolone, and had a highly increased P-glycoprotein (P-gp/abcb1) expression and transport capacity for the P-gp model-substrate rhodamine123. Both resistance to doxorubicin and vincristine, and rhodamine123 transport capacity were fully reversed by the P-gp inhibitor PSC833. No changes were observed in the expression and function of the ABC-transporters MRP-1 and BCRP. It is concluded that GL-40 cells represent a useful model for studying P-gp dependent drug resistance in canine lymphoid neoplasia, and that this model can be used for screening substances as potential P-gp substrates and their capacity to modulate P-gp mediated drug resistance. PMID:24975508

  14. A comparison of the effects of p-glycoprotein inhibitors on the blood-brain barrier permeation of cyclic prodrugs of an opioid peptide (DADLE).

    PubMed

    Ouyang, Hui; Andersen, Thomas E; Chen, Weiqing; Nofsinger, Rebecca; Steffansen, Bente; Borchardt, Ronald T

    2009-06-01

    The objective of this study was to elucidate the role of P-glycoprotein (P-gp) in restricting the blood-brain barrier (BBB) permeation of cyclic prodrugs of the opioid peptide DADLE (H-Tyr-D-Ala-Gly-Phe-D-Leu-OH). The BBB permeation characteristics of these prodrugs and DADLE were determined using an in situ perfused rat brain model and in vitro cell culture model (MDCK-MDR1 cells) of the BBB. The activities of P-gp in these models were characterized using a known substrate (quinidine) and known inhibitors [cyclosporine A (CyA), GF-120918, PSC-833] of P-gp. Cyclic peptide prodrugs exhibited very poor permeation in both models. Inclusion of GF-120918, CyA, or PSC-833 in the brain perfusion medium or the cell culture medium significantly increased the permeation of these cyclic prodrugs. The order of potency of these P-gp inhibitors, as measured using the cyclic prodrugs as substrates, was, by in vitro MDCK-MDR1 cells: GF-120918 = CyA >or= PSC-833; and by in situ rat brain perfusion: GF-120918 > CyA = PSC-833. In conclusion, P-gp in the BBB is the major factor restricting the brain permeation of these cyclic prodrugs. MDCK-MDR1 cells can predict the order of potencies of the investigated P-gp inhibitors to enhance the rat BBB permeation of quinidine and the cyclic prodrugs. PMID:18855917

  15. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions.

    EPA Science Inventory

    The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  16. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions

    EPA Science Inventory

    The human efflux transporter P-glycoprotein (P-gp, MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  17. Clin Pharmacol Ther . Author manuscript Donor P-gp polymorphisms strongly influence renal function and graft

    E-print Network

    Boyer, Edmond

    3A and the efflux transporter P-glycoprotein (P-gp; ), bothABCB1 abundantly expressed in the kidney. We retrospectively investigated the role of polymorphisms in , andCYP3A4 CYP3A5 ABCB1 kidney graft-Meiers Estimate ; Kidney ; physiology ; Kidney Function Tests ; Kidney Transplantation ; physiology ; Male

  18. Evaluation of first-pass cytochrome P4503A (CYP3A) and P-glycoprotein activities using felodipine and hesperetin in combination in Wistar rats and everted rat gut sacs in vitro.

    PubMed

    Sridhar, V; Surya Sandeep, M; Ravindra Babu, P; Naveen Babu, K

    2014-05-01

    The effects of hesperetin on the pharmacokinetics and the role of P-glycoprotein (P-gp) in the transport of felodipine were investigated in rats and in vitro. Felodipine was administered orally (10?mg/kg) without or with hesperetin (25, 50 and 100?mg/kg) to rats for 15 consecutive days. Blood samples were collected at different time intervals on 1(st) day in single dose pharmacokinetic study (SDS) and on 15(th) day in multiple dose pharmacokinetic study (MDS). The area under the plasma concentration-time curve (AUC0-? ) and the peak plasma concentration (Cmax ) of felodipine were dose-dependently increased in SDS and MDS with hesperetin compared to control (?p?P-gp determined using everted rat gut sacs in vitro by incubating felodipine with or without hesperetin and verapamil (typical P-gp and CYP3A4 inhibitor). The in vitro experiments revealed that the verapamil and hesperetin increased the intestinal absorption of felodipine (p?P-gp in the intestine and the liver. PMID:23881850

  19. Mutational analysis of the P-glycoprotein first intracellular loop and flanking transmembrane domains.

    PubMed

    Kwan, T; Gros, P

    1998-03-10

    The role of individual intracellular (IC) loops linking transmembrane (TM) domains in P-glycoprotein (P-gp) function remains largely unknown. The high degree of sequence conservation of these regions in the P-gp family and other ABC transporters suggests an important role in a common mechanism of action of these proteins. To gain insight into this problem, we have randomly mutagenized a portion of TM2, the entire IC1 loop, TM3, the entire extracellular loop (EC2), and part of TM4, and analyzed the effect of such mutations on P-gp function. Random mutagenesis was carried out using Taq DNA polymerase and dITP under conditions of low polymerase fidelity, and the mutagenized segments were reintroduced in the full length mdr3 cDNA by homologous recombination in the yeast Saccharomyces cerevisiae strain JPY201. The biological activity of mutant P-gp variants was analyzed in yeast by their ability to confer cellular resistance to the antifungal drug FK506 and the peptide ionophore valinomycin, and by their ability to complement the yeast Ste6 gene and restore mating in a yeast strain bearing a null mutation [Raymond, M., et al. (1992) Science 256, 232-4] at this locus. The analysis of 782 independent yeast transformants allowed the identification of 49 independent mutants bearing single amino acid substitutions in the mutagenized segment resulting in an altered P-gp function. The mutants could be phenotypically classified into two major groups, those that resulted in partial or complete overall loss of function and those that seemed to affect substrate specificity. Several of the mutants affecting overall activity mapped in IC1; in particular we identified a segment of four consecutive mutation sensitive residues (TRLT, positions 169-172) with such a phenotype. On the other hand, we identified a cluster of mutants affecting substrate specificity within the short EC2 segment and in the adjacent portion of the neighboring TM4 domain. Expression and partial purification of a representative subset of these mutants showed that in all but two cases, loss of function was associated with loss of drug-induced ATPase activity of P-gp. Therefore, it appears that TM domains, IC and EC loops, are structurally and functionally tightly coupled in the process of drug stimulatable ATPase characteristic of P-gp. PMID:9521654

  20. P-glycoprotein recognition of substrates and circumvention through rational drug design.

    PubMed

    Raub, Thomas J

    2006-01-01

    It is now well recognized that membrane efflux transporters, especially P-glycoprotein (P-gp; ABCB1), play a role in determining the absorption, distribution, metabolism, excretion, and toxicology behaviors of some drugs and molecules in development. An investment in screening structure-activity relationship (SAR) is warranted in early discovery when exposure and/or target activity in an in vivo efficacy model is not achieved and P-gp efflux is identified as a rate-limiting factor. However, the amount of investment in SAR must be placed into perspective by assessing the risks associated with the intended therapeutic target, the potency and margin of safety of the compound, the intended patient population(s), and the market competition. The task of rationally designing a chemistry strategy for circumventing a limiting P-gp interaction can be daunting. The necessity of retaining biological potency and metabolic stability places restrictions on what can be done, and the factors for P-gp recognition of substrates are complicated and poorly understood. The parameters within the assays that affect overall pump efficiency or net efflux, such as passive diffusion, membrane partitioning, and molecular interaction between pump and substrate, should be understood when interpreting data sets associated with chemistry around a scaffold. No single, functional group alone is often the cause, but one group can accentuate the recognition points existing within a scaffold. This can be likened to a rheostat, rather than an on/off switch, where addition or removal of a key group can increase or decrease the pumping efficiency. The most practical approach to de-emphasize the limiting effects of P-gp on a particular scaffold is to increase passive diffusion. Efflux pumping efficiency may be overcome when passive diffusion is fast enough. Eliminating, or substituting with fewer, groups that solvate in water, or decreasing their hydrogen bonding capacity, and adding halogen groups can increase passive diffusion. Reducing molecular size, replacing electronegative atoms, blocking or masking H-bond donors with N-alkylation or bulky flanking groups, introducing constrained conformation, or by promoting intramolecular hydrogen bonds are all examples of steps to take. This review discusses our understanding of how P-gp recognizes and pumps compounds as substrates and describes cases where structural changes were made in a chemical scaffold to circumvent the effects of P-gp interactions. PMID:16686365

  1. Absence of P-glycoprotein transport in the pharmacokinetics and toxicity of the herbicide paraquat.

    PubMed

    Lacher, Sarah E; Gremaud, Julia N; Skagen, Kasse; Steed, Emily; Dalton, Rachel; Sugden, Kent D; Cardozo-Pelaez, Fernando; Sherwin, Catherine M T; Woodahl, Erica L

    2014-02-01

    Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a(-/-)/mdr1b(-/-)) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil-37.0 [95% confidence interval (CI): 33.2-41.4], 46.2 (42.5-50.2), and 34.1 µM (31.2-37.2)-respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice: clearances of 0.47 [95% confidence interval (CI): 0.42-0.52] and 0.78 l/h (0.58-0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50-2.04) and 3.36 liters (2.39-4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and Parkinson disease is not attributed to alterations in paraquat transport. PMID:24297779

  2. P-Glycoprotein inhibitory activity of lipophilic constituents of Echinacea pallida roots in a human proximal tubular cell line.

    PubMed

    Romiti, Nadia; Pellati, Federica; Nieri, Paola; Benvenuti, Stefania; Adinolfi, Barbara; Chieli, Elisabetta

    2008-02-01

    The N-hexane root extracts from Echinacea pallida, Echinacea angustifolia and Echinacea purpurea were evaluated for inhibition of the multidrug transporter P-glycoprotein (Pgp) activity, the product of the ABCB1 gene, involved in cancer multidrug resistance (MDR) and in herb-drug or drug-drug interactions. The biological assay was performed using the human proximal tubule HK-2 cell line that constitutively expresses ABCB1. The N-hexane extracts of all three species reduced the efflux of the Pgp probe calcein-AM from HK-2 cells two-fold in a concentration-dependent manner, and E. pallida was found to be the most active species. For the first time, two polyacetylenes and three polyenes, isolated from the N-hexane extract of E. pallida roots by a bioassay-guided fractionation, were found to be able to reduce Pgp activity. Pentadeca-(8 Z,13 Z)-dien-11-yn-2-one was the most efficient compound, being able to decrease the calcein-AM efflux about three-fold with respect to the control at 30 microg/mL. PMID:18425719

  3. ADMET evaluation in drug discovery. 13. Development of in silico prediction models for P-glycoprotein substrates.

    PubMed

    Li, Dan; Chen, Lei; Li, Youyong; Tian, Sheng; Sun, Huiyong; Hou, Tingjun

    2014-03-01

    P-glycoprotein (P-gp) actively transports a wide variety of chemically diverse compounds out of cells. It is highly associated with the ADMET properties of drugs and drug candidates and, moreover, plays a major role in the multidrug resistance (MDR) phenomenon, which leads to the failure of chemotherapy in cancer treatments. Therefore, the recognition of potential P-gp substrates at the early stages of the drug discovery process is quite important. Here, we compiled an extensive data set containing 423 P-gp substrates and 399 nonsubstrates, which is the largest P-gp substrate/nonsubstrate data set yet published. Comparison of the distributions of eight important physicochemical properties for the substrates and nonsubstrates reveals that molecular weight and molecular solubility are the informative attributes differentiating P-gp substrates from nonsubstrates. Examination of the distributions of eight physicochemical properties for 735 P-gp inhibitors and 423 substrates gives the fact that inhibitors are significantly more hydrophobic than substrates while substrates tend to have more H-bond donors than inhibitors. Then, the classification models based on simple molecular properties, topological descriptors, and molecular fingerprints were developed using the naive Bayesian classification technique. The best naive Bayesian classifier yields a Matthews correlation coefficient of 0.824 and a prediction accuracy of 91.2% for the training set from a 5-fold cross-validation procedure, and a Matthews correlation coefficient of 0.667 and a prediction accuracy of 83.5% for the test set containing 200 molecules. Analysis of the important structural fragments given by the Bayesian classifier shows that the essential H-bond acceptors arranged in distinct spatial patterns and flexibility are quite essential for P-gp substrate-likeness, which affords a deeper understanding on the molecular basis of substrate/P-gp interaction. Finally, the reasons for mispredictions were discussed. It turns out that the presented classifier could be used as a reliable virtual screening tool for identifying potential substrates of P-gp. PMID:24499501

  4. Influence of P-glycoprotein on embryotoxicity of the antifouling biocides to sea urchin ( Strongylocentrotus intermedius )

    Microsoft Academic Search

    Xue XuJingxuan; Jingxuan Fu; Heng Wang; Baidong Zhang; Xia Wang; Yonghua Wang

    2011-01-01

    P-glycoprotein (P-gp), as an ATP-binding cassette transporter, transports a wide variety of substrates varying from small\\u000a molecules like steroids to large polypeptides across the cell membrane in human and animals, even in aquatic animals. Although\\u000a P-gp protein has attracted much attention of research, its effect on the toxicity of environmental toxicants such as antifouling\\u000a biocides is still poorly understood. The

  5. Uptake\\/Efflux Transport of Tramadol Enantiomers and O -Desmethyl-Tramadol: Focus on P Glycoprotein

    Microsoft Academic Search

    Mouna Kanaan; Youssef Daali; Pierre Dayer; Jules Desmeules

    2009-01-01

    The analgesic effect of tramadol (TMD) results from the monoaminergic effect of its two enantiomers, (+)-TMD and ())-TMD as well as its opioid metabolite (+)-O-desmethyl-tramadol (M1). P-glycoprotein (P-gp) might be of importance in the analgesic and tolerability profile variability of TMD. Our study investigated the involvement of P-gp in the transepithelial transport of (+)-TMD, ())-TMD and M1, using a Caco-2

  6. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement

    Microsoft Academic Search

    Manthena V. S Varma; Yasvanth Ashokraj; Chinmoy S Dey; Ramesh Panchagnula

    2003-01-01

    Drug efflux pumps like P-glycoprotein (P-gp) and multidrug resistance (MDR) proteins were recognized to posses functional role in determining the pharmacokinetics of drugs administered by peroral as well as parenteral route. Advancements in molecular biology, to some extent, had revealed the structure, localization and functional role of P-glycoprotein and its mechanism of drug efflux. Broad substrate recognization by this protein

  7. Enhanced Oral Absorption of Paclitaxel in a Novel Self-Microemulsifying Drug Delivery System with or Without Concomitant Use of P-Glycoprotein Inhibitors

    Microsoft Academic Search

    Shicheng Yang; R. Neslihan Gursoy; Gregory Lambert; Simon Benita

    2004-01-01

    Purpose. The objective of this study was to evaluate the pharmacokinetics of paclitaxel in a novel self-microemulsifying drug delivery system (SMEDDS) for improved oral administration with or without P-glycoprotein (P-gp) inhibitors.

  8. Thioridazine specifically sensitizes drug-resistant cancer cells through highly increase in apoptosis and P-gp inhibition.

    PubMed

    Choi, Ae-Ran; Kim, Ju-Hwa; Yoon, Sungpil

    2014-10-01

    This study was designed to identify conditions that induce an increase in the sensitivity of drug-resistant cancer cells compared to sensitive cells. Using cell proliferation assays and microscopic observation, thioridazine (THIO) was found to induce higher sensitization in drug-resistant KBV20C cancer cells compared to sensitive KB parent cells. By studying cleaved PARP, annexin V staining, and Hoechst staining, we found that THIO largely increased apoptosis specifically in KBV20C cells, suggesting that the difference in sensitization between the resistant and sensitive cells can be attributed to the ability of THIO to induce apoptosis. THIO could also inhibit p-glycoprotein (P-gp) activity in the resistant KBV20C cells. These observations suggest that the mechanisms underlying THIO sensitization in resistant KBV20C cells involve both apoptosis and P-gp inhibition. Furthermore, co-treatment with THIO and vinblastine (VIB) induces higher sensitization in KBV20C cells than KB cells. As observed in a single treatment with THIO, the sensitization mechanism induced by the co-treatment also involves both apoptosis and P-gp inhibition. These results suggest that the THIO sensitization mechanism is generally conserved. Our findings may contribute to the development of THIO-based therapies for patients presenting resistance to antimitotic drugs. PMID:24989930

  9. A new method to measure intestinal activity of P-glycoprotein in avian and mammalian species

    Microsoft Academic Search

    Adam K. Green; David M. Barnes; William H. Karasov

    2005-01-01

    Permeability-glycoprotein (Pgp) actively exports numerous potentially toxic compounds once they diffuse into the cell membrane of intestinal epithelial cells. We adapted the everted sleeve technique to make the first measures of intestinal Pgp function in an avian species (chicken) and in wild mammalian species, and compared them to laboratory rats. Tissues maintained both structural and functional integrity, and our method

  10. Cargoing P-gp inhibitors via nanoparticle sensitizes tumor cells against doxorubicin.

    PubMed

    Singh, Manu Smriti; Lamprecht, Alf

    2015-01-30

    Inhibitors against multidrug resistance (MDR) efflux transporters have failed in most clinical settings due to unfavorable pharmacokinetic interactions with co-administered anti-cancer drug and their inherent toxicities. Nanoparticles (NPs) have shown potential to overcome drug efflux by delivering and localizing therapeutic molecules within tumor mass. In this work, we investigated effect of nanocarrier surface charge and formulation parameters for a hydrophilic and lipophilic MDR inhibitor on their ability to reverse drug resistance. Active inhibition of efflux pumps was achieved by encapsulating first and third generation P-gp inhibitors- verapamil and elacridar respectively in non-ionic, anionic and cationic surfactant-based NPs. The ability of NPs to reverse P-glycoprotein (P-gp)-mediated MDR efflux was evaluated in sensitive (A2780) and resistant (A2780Adr) ovarian cancer cell lines by various in vitro accumulation and cytotoxicity assays. Uptake mechanism for NP appears to be caveolae-dependent with 20%-higher internalization in A2780Adr than A2780 cell lines which can be co-related to the biophysical membrane composition. Cationic- CTAB NPs showed highest reversal efficacy followed by PVA and SDS-NP (P+S NP) and PVA-NPs. As compared to doxorubicin treated drug resistant cells lines, blank-, verapamil- and elacridar-CTAB-NPs showed 2.6-, 20- and 193-fold lower IC50 values. This work highlights the importance of inhibitor-loaded charged particles to overcome cancer drug resistance. PMID:25437111

  11. 1?,25-Dihydroxyvitamin D3-Liganded Vitamin D Receptor Increases Expression and Transport Activity of P-glycoprotein in Isolated Rat Brain Capillaries and Human and Rat Brain Microvessel Endothelial Cells

    PubMed Central

    Durk, Matthew R.; Chan, Gary N.Y.; Campos, Christopher R.; Peart, John C.; Chow, Edwin C.Y.; Lee, Eason; Cannon, Ronald E.; Bendayan, Reina; Miller, David S.; Pang, K. Sandy

    2012-01-01

    MDR1/P-gp induction by the vitamin D receptor (VDR) was investigated in isolated rat brain capillaries and rat (RBE4) and human (hCMEC/D3) brain microvessel endothelial cell lines. Incubation of isolated rat brain capillaries with 10 nM of the VDR ligand, 1?,25-dihydroxyvitamin D3 [1,25(OH)2D3] for 4 h increased P-gp protein expression (4-fold). Incubation with 1,25(OH)2D3 for 4 or 24 h increased P-gp transport activity (specific luminal accumulation of NBD-CSA, the fluorescent P-gp substrate) by 25 – 30%. In RBE4 cells, Mdr1b mRNA was induced in a concentration-dependent manner by exposure to 1,25(OH)2D3. Concomitantly, P-gp protein expression increased 2.5-fold and was accompanied by a 20 – 35% reduction in cellular accumulation of the P-gp substrates, rhodamine 6G (R6G) and HiLyte Fluor 488-labeled human amyloid beta 1-42 (hA?42). In hCMEC/D3 cells, a three day exposure to 100 nM 1,25(OH)2D3 increased MDR1 mRNA expression (40%) and P-gp protein (3-fold); cellular accumulation of R6G and hA?42 was reduced by 30%. Thus, VDR activation up-regulates Mdr1/MDR1 and P-gp protein in isolated rat brain capillaries and rodent and human brain microvascular endothelia, implicating a role for VDR in increasing the brain clearance of P-gp substrates, including hA?42 a plaque-forming precursor in Alzheimer’s disease. PMID:23035695

  12. Pharmacokinetic Interactions of Herbs with Cytochrome P450 and P-Glycoprotein

    PubMed Central

    Cho, Hyun-Jong

    2015-01-01

    The concurrent use of drugs and herbal products is becoming increasingly prevalent over the last decade. Several herbal products have been known to modulate cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) which are recognized as representative drug metabolizing enzymes and drug transporter, respectively. Thus, a summary of knowledge on the modulation of CYP and P-gp by commonly used herbs can provide robust fundamentals for optimizing CYP and/or P-gp substrate drug-based therapy. Herein, we review ten popular medicinal and/or dietary herbs as perpetrators of CYP- and P-gp-mediated pharmacokinetic herb-drug interactions. The main focus is placed on previous works on the ability of herbal extracts and their phytochemicals to modulate the expression and function of CYP and P-gp in several in vitro and in vivo animal and human systems. PMID:25632290

  13. Role of P-glycoprotein in the intestinal absorption of glabridin, an active flavonoid from the root of Glycyrrhiza glabra.

    PubMed

    Cao, Jie; Chen, Xiao; Liang, Jun; Yu, Xue-Qing; Xu, An-Long; Chan, Eli; Wei, Duan; Huang, Min; Wen, Jing-Yuan; Yu, Xi-Yong; Li, Xiao-Tian; Sheu, Fwu-Shan; Zhou, Shu-Feng

    2007-04-01

    Glabridin is a major constituent of the root of Glycyrrhiza glabra, which is commonly used in the treatment of cardiovascular and central nervous system diseases. This study aimed to investigate the role of P-glycoprotein (PgP/MDR1) in the intestinal absorption of glabridin. The systemic bioavailability of glabridin was approximately 7.5% in rats, but increased when combined with verapamil. In single-pass perfused rat ileum with mesenteric vein cannulation, the permeability coefficient of glabridin based on drug disappearance in luminal perfusates (P(lumen)) was approximately 7-fold higher than that based on drug appearance in the blood (P(blood)). Glabridin was mainly metabolized by glucuronidation, and the metabolic capacity of intestine microsomes was 1/15 to 1/20 of that in liver microsomes. Polarized transport of glabridin was found in Caco-2 and MDCKII monolayers. Addition of verapamil in both apical (AP) and basolateral (BL) sides abolished the polarized transport of glabridin across Caco-2 cells. Incubation of verapamil significantly altered the intracellular accumulation and efflux of glabridin in Caco-2 cells. The transport of glabridin in the BL-AP direction was significantly higher in MDCKII cells overexpressing PgP/MDR1 than in the control cells. Glabridin inhibited PgP-mediated transport of digoxin with an IC(50) value of 2.56 microM, but stimulated PgP/MDR1 ATPase activity with a K(m) of 25.1 microM. The plasma AUC(0-24h) of glabridin in mdr1a(-/-) mice was 3.8-fold higher than that in wild-type mice. These findings indicate that glabridin is a substrate for PgP and that both PgP/MDR1-mediated efflux and first-pass metabolism contribute to the low oral bioavailability of glabridin. PMID:17220245

  14. Up-regulation of P-glycoprotein by HIV protease inhibitors in a human brain microvessel endothelial cell line.

    PubMed

    Zastre, Jason A; Chan, Gary N Y; Ronaldson, Patrick T; Ramaswamy, Manisha; Couraud, Pierre O; Romero, Ignacio A; Weksler, Babette; Bendayan, Moise; Bendayan, Reina

    2009-03-01

    A major concern regarding the chronic administration of antiretroviral drugs is the potential for induction of drug efflux transporter expression (i.e., P-glycoprotein, P-gp) at tissue sites that can significantly affect drug distribution and treatment efficacy. Previous data have shown that the inductive effect of human immunodeficiency virus protease inhibitors (PIs) is mediated through the human orphan nuclear receptor, steroid xenobiotic receptor (SXR or hPXR). The objectives of this study were to investigate transport and inductive properties on efflux drug transporters of two PIs, atazanavir and ritonavir, at the blood-brain barrier by using a human brain microvessel endothelial cell line, hCMEC/D3. Transport properties of PIs by the drug efflux transporters P-gp and multidrug resistance protein 1 (MRP1) were assessed by measuring the cellular uptake of (3)H-atazanavir or (3)H-ritonavir in P-gp and MRP1 overexpressing cells as well as hCMEC/D3. Whereas the P-gp inhibitor, PSC833, increased atazanavir and ritonavir accumulation in hCMEC/D3 cells by 2-fold, the MRP inhibitor MK571 had no effect. P-gp, MRP1, and hPXR expression and localization were examined by Western blot analysis and immunogold cytochemistry at the electron microscope level. Treatment of hCMEC/D3 cells for 72 hr with rifampin or SR12813 (two well-established hPXR ligands) or PIs (atazanavir or ritonavir) resulted in an increase in P-gp expression by 1.8-, 6-, and 2-fold, respectively, with no effect observed for MRP1 expression. In hCMEC/D3 cells, cellular accumulation of these PIs appears to be primarily limited by P-gp efflux activity. Long-term exposure of atazanavir or ritonavir to brain microvessel endothelium may result in further limitations in brain drug permeability as a result of the up-regulation of P-gp expression and function. PMID:18855943

  15. P-Glycoprotein Acts as an Immunomodulator during Neuroinflammation

    PubMed Central

    Kooij, Gijs; Reijerkerk, Arie; van Horssen, Jack; van der Pol, Susanne M. A.; Drexhage, Joost; Schinkel, Alfred; Dijkstra, Christine D.; den Haan, Joke M. M.; Geijtenbeek, Teunis B. H.; de Vries, Helga E.

    2009-01-01

    Background Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system in which autoreactive myelin-specific T cells cause extensive tissue damage, resulting in neurological deficits. In the disease process, T cells are primed in the periphery by antigen presenting dendritic cells (DCs). DCs are considered to be crucial regulators of specific immune responses and molecules or proteins that regulate DC function are therefore under extensive investigation. We here investigated the potential immunomodulatory capacity of the ATP binding cassette transporter P-glycoprotein (P-gp). P-gp generally drives cellular efflux of a variety of compounds and is thought to be involved in excretion of inflammatory agents from immune cells, like DCs. So far, the immunomodulatory role of these ABC transporters is unknown. Methods and Findings Here we demonstrate that P-gp acts as a key modulator of adaptive immunity during an in vivo model for neuroinflammation. The function of the DC is severely impaired in P-gp knockout mice (Mdr1a/1b?/?), since both DC maturation and T cell stimulatory capacity is significantly decreased. Consequently, Mdr1a/1b ?/? mice develop decreased clinical signs of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Reduced clinical signs coincided with impaired T cell responses and T cell-specific brain inflammation. We here describe the underlying molecular mechanism and demonstrate that P-gp is crucial for the secretion of pro-inflammatory cytokines such as TNF-? and IFN-?. Importantly, the defect in DC function can be restored by exogenous addition of these cytokines. Conclusions Our data demonstrate that P-gp downmodulates DC function through the regulation of pro-inflammatory cytokine secretion, resulting in an impaired immune response. Taken together, our work highlights a new physiological role for P-gp as an immunomodulatory molecule and reveals a possible new target for immunotherapy. PMID:19997559

  16. Enhancing the uptake of dextromethorphan in the CNS of rats by concomitant administration of the P-gp inhibitor verapamil.

    PubMed

    Marier, Jean-Francois; Deschęnes, Jean-Luc; Hage, Amal; Seliniotakis, Eleftheria; Gritsas, Ari; Flarakos, Themis; Beaudry, Francis; Vachon, Pascal

    2005-10-21

    Clinical trials evaluating high doses of dextromethorphan hydrobromide (DM) for the treatment of neurological disorders have resulted in numerous adverse events due to the presence of its active metabolite dextrorphan (DX). Since the uptake of drugs in the CNS can be modulated by P-glycoprotein (P-gp) inhibition at the blood-brain barrier (BBB), we propose to determine whether the P-gp inhibitor verapamil can enhance the uptake of DM in the CNS. Rats (n=42) received an oral dose of DM (20 mg/kg) alone or 15 min after an intravenous dose of verapamil (1 mg/kg). Rats were euthanized at different time points over 12 h, and concentrations of DM and DX (conjugated and unconjugated) were assessed in plasma, brain and spinal cord using a LC-ESI/MS/MS method. Pharmacokinetic parameters were calculated using noncompartmental methods. Verapamil treatments did not affect the biodisposition of DM in plasma. On the other hand, verapamil treatments increased the area under curve of DM in the brain (from 1221 to 2393 ng h/g) and spinal cord (from 1753 to 3221 ng h/g) by approximately 2-fold. The uptake of DX in brain and spinal cord were markedly lower than those of DM and increased by only 15% and 22% following verapamil treatments, respectively. These results suggest that the P-gp inhibitor verapamil can enhance the uptake of DM in the CNS without affecting that of DX. This change is most likely related to an inhibition of P-gp or other transporters located in the BBB since the biodisposition of DM in plasma remained unaffected by verapamil treatments. PMID:15964599

  17. P-Glycoprotein Function at the BloodBrain Barrier in Humans Can Be Quantified with

    E-print Network

    Baker, Chris I.

    ,5). The function of P-gp has been measured with PET using radiolabeled substrates, including 99m/94mTc-sestamibi (6P-Glycoprotein Function at the Blood­Brain Barrier in Humans Can Be Quantified with the Substrate Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and 2PET Department, Clinical

  18. Olanzapine Penetration into Brain is Greater in Transgenic Abcb1a P-glycoprotein-Deficient Mice than FVB1 (Wild-Type) Animals

    Microsoft Academic Search

    Jun-Sheng Wang; Robin Taylor; Ying Ruan; Jennifer L Donovan; John S Markowitz; C Lindsay De Vane; CL DeVane

    2004-01-01

    The transmembrane energy-dependent efflux transporter P-glycoprotein (P-gp) limits a range of drugs from penetrating cells and deposits them into the extracellular space. P-gp is highly expressed in several normal tissues, including the luminal surface of capillary endothelial cells in the brain of humans. In this study, we tested whether olanzapine distribution to tissues highly expressing P-gp or devoid of this

  19. QUINACRINE IS MAINLY METABOLIZED TO MONO-DESETHYL QUINACRINE BY CYP3A4/5 AND ITS BRAIN ACCUMULATION IS LIMITED BY P-GLYCOPROTEIN

    E-print Network

    Mayfield, John

    IS LIMITED BY P-GLYCOPROTEIN Yong Huang, Hideaki Okochi, Barnaby C. H. May, Giuseppe Legname, Stanley B by the potent P-glycoprotein (P-gp) inhibitor GG918 (N-(4-[2-(1,2,3,4- tetrahydro-6,7-dimethoxy-2-iso-1

  20. Multiple Transport-Active Binding Sites Are Available for a Single Substrate on Human P-Glycoprotein (ABCB1)

    PubMed Central

    Chufan, Eduardo E.; Kapoor, Khyati; Sim, Hong-May; Singh, Satyakam; Talele, Tanaji T.; Durell, Stewart R.; Ambudkar, Suresh V.

    2013-01-01

    P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell- and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982) with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [125I]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C) Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available for each substrate. PMID:24349290

  1. Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1).

    PubMed

    Chufan, Eduardo E; Kapoor, Khyati; Sim, Hong-May; Singh, Satyakam; Talele, Tanaji T; Durell, Stewart R; Ambudkar, Suresh V

    2013-01-01

    P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell- and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982) with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [(125)I]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C) Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available for each substrate. PMID:24349290

  2. Evaluation of P-glycoprotein (abcb1a/b) modulation of [(18)F]fallypride in MicroPET imaging studies.

    PubMed

    Piel, Markus; Schmitt, Ulrich; Bausbacher, Nicole; Buchholz, Hans-Georg; Gründer, Gerhard; Hiemke, Christoph; Rösch, Frank

    2014-09-01

    [(18)F]Fallypride ([(18)F]FP) is an important and routinely used D2/D3 antagonist for quantitative imaging of dopaminergic neurotransmission in vivo. Recently it was shown that the brain uptake of the structurally related [(11)C]raclopride is modulated by P-glycoprotein (P-gp), an important efflux transporter at the blood-brain barrier. The purpose of this study was to determine whether the brain uptake of [(18)F]FP is influenced by P-gp. For examination of this possible modulation microPET studies were performed in a rat and a mouse model. Hence, [(18)F]FP was applied to Sprague Dawley rats, half of them being treated with the P-gp inhibitor cyclosporine A (CsA). In a second experimental series the tracer was applied to three different groups of FVB/N mice: wild type, P-gp double knockout (abcb1a/1b (-/-)) and CsA-treated mice. In CsA-treated Sprague Dawley rats [(18)F]FP showed an elevated standard uptake value in the striatum compared to the control animals. In FVB/N mice a similar effect was observed, showing an increasing uptake from wild type to CsA-treated and double knockout mice. Since genetically or pharmacologically induced reduction of P-gp activity increased the uptake of [(18)F]FP markedly, we conclude that [(18)F]FP is indeed a substrate of P-gp and that the efflux pump modulates its brain uptake. This effect - if true for humans - may have particular impact on clinical studies using [(18)F]FP for assessment of D2/3 receptor occupancy by antipsychotic drugs. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. PMID:23994301

  3. A semisynthetic taxane Yg-3-46a effectively evades P-glycoprotein and ?-III tubulin mediated tumor drug resistance in vitro.

    PubMed

    Cai, Pei; Lu, Peihua; Sharom, Frances J; Fang, Wei-Shuo

    2013-12-01

    Tumor resistance, especially that mediated by P-glycoprotein (P-gp) and ?-III tubulin, is a major obstacle to the efficacy of most microtubule-targeting anticancer drugs in clinics. A novel semisynthetic taxane, 2-debenzoyl-2-(3-azidobenzyl)-10-propionyldocetaxel (Yg-3-46a) was shown to be highly cytotoxic to breast cancer cell lines MCF-7 and MCF/ADR which overexpressed P-gp via long term culture with doxorubicin, and cervical cancer cell lines Hela and Hela/?III which overexpressed ?III-tubulin via stable transfection with TUBB3 gene. siRNA transfection experiments also confirmed that Yg-3-46a can circumvent P-gp and ?-III tubulin mediated drug resistance. In addition, its cytotoxicity was lower than that of paclitaxel in the human mammary cell line HBL-100 and the human telomerase-immortalized retinal pigment epithelium cell line (hTERT-RPE1), suggesting a better safety margin for this compound in vivo. It exhibited more potent microtubule polymerization ability than paclitaxel in vitro, and also induced G2/M phase arrest in MCF-7/ADR cells. Moreover, it was found to induce apoptosis in MCF-7/ADR cells through the caspase-dependent death-receptor pathway by enhancing levels of Fas and FasL, and activating caspase-8 and 3. Yg-3-46a was found to be a poorer substrate of P-gp compared to paclitaxel, in both binding and ATPase experiments, which is likely responsible for its ability to circumvent P-gp mediated multidrug resistance (MDR). All of these results indicate that Yg-3-46a is a novel microtubule-stabilizing agent that has the potential to evade drug resistance mediated by P-gp and ?-III tubulin overexpression. PMID:23941826

  4. Molecular insight into conformational transmission of human P-glycoprotein

    SciTech Connect

    Chang, Shan-Yan [Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)] [Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Liu, Fu-Feng, E-mail: fufengliu@tju.edu.cn, E-mail: ysun@tju.edu.cn; Dong, Xiao-Yan; Sun, Yan, E-mail: fufengliu@tju.edu.cn, E-mail: ysun@tju.edu.cn [Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China) [Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2013-12-14

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through ?-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  5. Molecular insight into conformational transmission of human P-glycoprotein

    NASA Astrophysics Data System (ADS)

    Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2013-12-01

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through ?-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  6. Compounds from Chinese herbal medicines as reversal agents for P-glycoprotein-mediated multidrug resistance in tumours.

    PubMed

    Li, C; Sun, B-Q; Gai, X-D

    2014-07-01

    Multidrug resistance (MDR) is a major obstacle to successful cancer chemotherapy. One of the main underlying mechanisms of this resistance is the over-expression of P-glycoprotein (P-gp), an ATP-dependent transmembrane transporter protein encoded by the MDR1 gene. P-gp might transport anti-cancer drugs out of cancer cells and decrease effective intracellular drug concentrations. An effective approach to overcome MDR is to inhibit the function of P-gp or its expression on the surface of cancer cells. Thus, application of MDR reversal agents can be seen as a potentially important means by which to overcome the clinical drug resistance of tumour cells and improve the efficacy of chemotherapy. Recently, research efforts worldwide have focused on reversal mechanisms for MDR and on the identification of reversal agents. Chinese scholars have performed a great deal of exploratory work by screening for efficacy and low toxicity in drug resistance reversal compounds. These compounds may provide more lead compounds with greater activity, leading to the development of more effective therapies for MDR cancer cells. In this review, the function and efficiency of novel compounds derived from traditional Chinese medicines are described. PMID:24643703

  7. Therapeutic potential of nanocarrier for overcoming to P-glycoprotein.

    PubMed

    Kaur, Vimratjeet; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2014-12-01

    Enhancement of targeted therapeutic effect in the body and achievement of high bioavailability are major concern for the researchers due to the complex physiology of human body. There are so many barriers that hinder the absorption and permeation of drugs from the body, thus influencing the bioavailability of therapeutics. P-glycoprotein (P-gp) is one of such barrier present on the apical membranes of various organs such as small intestine, brain, kidney and liver. This protein interacts with vast variety of therapeutics and efflux out them preventing their entrance to the desired site, thus modulating their pharmacokinetic properties. To address this, a concerned number of approaches have been used such as the use of chemo sensitizers along with the therapeutics and various novel techniques. In this review, we are going to discuss the basic introduction to this protein and overview of various strategies used earlier to tackle the problem of P-gp efflux as well as the role of nanocarriers in confronting this issue. Nanocarriers have played great role in the enhancement of the bioavailability of many antineoplastic agents as well as other P-gp substrates. Encapsulation of P-gp inhibitors in the nanocarrier system prevents toxicity and gives site-specific action. PMID:25101945

  8. Expression and significance of glucose transporter-1, P-glycoprotein, multidrug resistance-associated protein and glutathione S-transferase-? in laryngeal carcinoma

    PubMed Central

    MAO, ZHONG-PING; ZHAO, LI-JUN; ZHOU, SHUI-HONG; LIU, MENG-QIN; TAN, WEI-FENG; YAO, HONG-TIAN

    2015-01-01

    Increasing glucose transporter-1 (GLUT-1) activity is one of the most important ways to increase the cellular influx of glucose. We previously demonstrated that increased GLUT-1 expression was an independent predictor of survival in patients with laryngeal carcinoma. Thus, GLUT-1 may present a novel therapeutic target in laryngeal carcinoma. In this study, the expression of GLUT-1, P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and glutathione S-transferase-? (GST-?) in laryngeal carcinomas was investigated by immunohistochemistry. Additionally, possible correlations between GLUT-1 and P-gp, MRP1 and GST-? and various clinicopathological parameters were analyzed. In this study, 52.9% (18/34), 58.8% (20/34), 20.6% (7/34) and 58.8% (20/34) of the laryngeal carcinomas were positive for GLUT-1, P-gp, MRP1 and GST-?, respectively. The expression of GLUT-1, P-gp, MRP1 and GST-? was higher in laryngeal carcinoma specimens when compared with laryngeal precancerous lesions (P<0.05). Pearson’s correlation analysis showed correlations between GLUT-1 and P-gp (r=0.364; P=0.034), GLUT-1 and MRP1 (r=0.359; P=0.037) and P-gp and GST-? (r=0.426; P=0.012). GLUT-1 expression was found to significantly correlate with tumor-node-metastasis classification (P=0.02) and clinical stage (P=0.037). Furthermore, P-gp was found to significantly correlate with clinical stage (P=0.026). Univariate analysis showed that MRP1 expression was significantly associated with poor survival (c2=5.16; P=0.023). Multivariate analysis revealed that lymph node metastasis (P=0.009) and MRP1 overexpression (P=0.023) were significant predictors of poor survival. In the present study, the expression of GLUT-1, P-gp, MRP1 and GST-? in laryngeal carcinomas was investigated, as well as the correlations between these proteins. P-gp was found to significantly correlate with clinical stage, while MRP1 overexpression was significantly associated with poor survival. PMID:25621055

  9. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    PubMed

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions. PMID:19319690

  10. Enhanced Brain Disposition and Effects of ?9Tetrahydrocannabinol in P-Glycoprotein and Breast Cancer Resistance Protein Knockout Mice

    Microsoft Academic Search

    Adena S. Spiro; Alexander Wong; Aurélie A. Boucher; Jonathon C. Arnold

    2012-01-01

    The ABC transporters P-glycoprotein (P-gp, Abcb1) and breast cancer resistance protein (Bcrp, Abcg2) regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis ?9-tetrahydrocannabinol (THC) has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that

  11. A novel hypothesis for the mechanism of action of P-glycoprotein as a multidrug transporter.

    PubMed

    Zhu, B T

    1999-05-01

    For years, P-glycoprotein (P-gp) has been purported to be a membrane transporter capable of selectively transporting many (but not all) lipophilic anticancer drugs with diverse chemical structures. Because the alleged functions of P-gp provide a straightforward, near-perfect explanation for the molecular mechanism of multidrug resistance associated with P-gp overexpression. However, the exact molecular mechanism for P-gp's purported function has never been clearly understood since its initial discovery some 20 yr ago. In this paper, I develop a novel working hypothesis regarding the mechanism of P-gp's action and suggest that P-gp is an energy-dependent efflux pump only for certain conjugated metabolites (probably sulfates) of the lipophilic anticancer drugs but not for the parent compounds, as was always claimed. According to this hypothesis, P-gp overexpression in most cases is not the "culprit" but instead an "accomplice" in P-gp-associated multidrug resistance. The culprit is probably the enhanced function of the metabolizing enzymes for the lipophilic anticancer drugs. This hypothesis also predicts that one of the important physiological functions of P-gp is to be part of an intracellular machinery (together with the phase I and II metabolizing enzymes) for the metabolism, detoxification, and disposition of lipophilic endogenous chemicals as well as xenobiotics, including cytotoxic anticancer drugs. There exists a considerable body of circumstantial evidence in the literature that lends strong support to this mechanistic hypothesis of P-gp's action as well as to the predicted physiological functions of P-gp. It will be of considerable interest to examine this novel hypothesis experimentally. PMID:10331739

  12. Variability in P-Glycoprotein Inhibitory Potency (IC50) Using Various in Vitro Experimental Systems: Implications for Universal Digoxin Drug-Drug Interaction Risk Assessment Decision Criteria

    PubMed Central

    Bentz, Joe; O’Connor, Michael P.; Bednarczyk, Dallas; Coleman, JoAnn; Lee, Caroline; Palm, Johan; Pak, Y. Anne; Perloff, Elke S.; Reyner, Eric; Balimane, Praveen; Brännström, Marie; Chu, Xiaoyan; Funk, Christoph; Guo, Ailan; Hanna, Imad; Herédi-Szabó, Krisztina; Hillgren, Kate; Li, Libin; Hollnack-Pusch, Evelyn; Jamei, Masoud; Lin, Xuena; Mason, Andrew K.; Neuhoff, Sibylle; Patel, Aarti; Podila, Lalitha; Plise, Emile; Rajaraman, Ganesh; Salphati, Laurent; Sands, Eric; Taub, Mitchell E.; Taur, Jan-Shiang; Weitz, Dietmar; Wortelboer, Heleen M.; Xia, Cindy Q.; Xiao, Guangqing; Yabut, Jocelyn; Yamagata, Tetsuo; Zhang, Lei

    2013-01-01

    A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells—Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided. PMID:23620485

  13. Effect of lyophilized grapefruit juice on P-glycoprotein-mediated drug transport in-vitro and in-vivo.

    PubMed

    Ahmed, Iman S; Hassan, Mariame A; Kondo, Takashi

    2015-03-01

    The administration of grapefruit juice (GFJ) has been postulated to inhibit the activity of P-glycoprotein (P-gp) transport system and thus can enhance the uptake of substrate drugs. However, for various reasons, the results obtained have been always swaying between confirmation and refutation. This study aims at re-evaluating the effect of lyophilized freshly-prepared grapefruit juice (LGFJ) prepared from the whole peeled fruit on P-gp activity using the model drug doxorubicin (DOX) in-vitro and timolol maleate (TM) in-vivo. Human uterine sarcoma MES-SA/DX5v cells, grown under nanomolar concentration of DOX and highly expressing P-gp, were used as model cells for in-vitro studies whereas white New Zealand male rabbits were used for in-vivo studies. Results showed that the accumulation of DOX in MES-SA/DX5v cells was increased by 18.3?±?2.0% in presence of LGFJ compared to control experiments. Results from in-vivo absorption studies showed that the relative oral bioavailability of TM ingested with LGFJ was significantly higher by 70% and 43% compared to the oral bioavailability of TM ingested with saline and a commercial GFJ, respectively. This study as such confirms the inhibitory effects of LGFJ on P-gp efflux proteins and highlights the superiority of using lyophilized freshly prepared juices over the commercially available juices in research studies. Also, the results call for further studies to assess the possibility of co-administrating LGFJ with anti-cancer agents to modulate multidrug resistance in their cellular environment or incorporating LGFJ in solid dosage forms to improve oral bioavailability of drugs. PMID:24303901

  14. P-Glycoprotein-Mediated Transport of Itraconazole across the Blood-Brain Barrier

    PubMed Central

    Miyama, Tetsuo; Takanaga, Hitomi; Matsuo, Hirotami; Yamano, Katsuhiro; Yamamoto, Koujirou; Iga, Tatsuji; Naito, Mikihiko; Tsuruo, Takashi; Ishizuka, Hitoshi; Kawahara, Yukinori; Sawada, Yasufumi

    1998-01-01

    The mechanism for the accumulation of itraconazole (ITZ) in its elimination from the brain was studied in rats and mice. The concentration of ITZ in liver tissue declined in parallel with the plasma ITZ concentration until 24 h after intravenous injection of the drug (half-life, 5 h); however, the ITZ in brain tissue rapidly disappeared (half-life, 0.4 h). The time profiles of the brain/plasma ITZ concentration ratio (Kp value) showed a marked overshooting, and the Kp value increased with increasing dose; these phenomena were not observed in the liver tissue. This finding indicates the occurrence of a nonlinear efflux of ITZ from the brain to the blood. Moreover, based on a pharmacokinetic model which hypothesized processes for both nonlinear and linear effluxes of ITZ from the brain to the blood, we found that the efflux rate constant in the saturable process was approximately sevenfold larger than that in the nonsaturable process. The Kp value for the brain tissue was significantly increased in the presence of ketoconazole or verapamil. The brain Kp value for mdr1a knockout mice was also significantly increased compared with that of control mice. Moreover, the uptake of vincristine or vinblastine, both of which are substrates of the P glycoprotein (P-gp), into mouse brain capillary endothelial cells was also significantly increased by ITZ or verapamil. In conclusion, P-gp in the brain capillary endothelial cells participates in a process of active efflux of ITZ from the brain to the blood at the blood-brain barrier, and ITZ can be an inhibitor of various substrates of P-gp. PMID:9661014

  15. Effects of the inhibition of intestinal P-glycoprotein on aliskiren pharmacokinetics in cynomolgus monkeys.

    PubMed

    Tsukimoto, Mikiko; Ohashi, Rikiya; Torimoto, Nao; Togo, Yoko; Suzuki, Takashi; Maeda, Toshio; Kagawa, Yoshiyuki

    2015-01-01

    Aliskiren is a substrate for P-glycoprotein (P-gp) and is metabolized via cytochrome P450 3A4 (CYP3A4). The aim of the present study was to assess whether P-gp influenced the pharmacokinetics of aliskiren and also if drug-drug interactions (DDIs) mediated through P-gp could be reproduced in cynomolgus monkeys. The study investigated the pharmacokinetics of aliskiren in mdr1a/1b gene-deficient (P-gp KO) and wild-type (WT) mice. The area under the plasma concentration-time curve (AUC) following the oral administration of aliskiren was 6.9-fold higher in P-gp KO mice than in WT mice, while no significant differences were observed in the AUC or total plasma clearance following the intravenous administration of aliskiren to P-gp KO mice. Then the pharmacokinetics of aliskiren were evaluated and DDIs between aliskiren and P-gp inhibitors, such as cyclosporin A (CsA) and zosuquidar, examined in cynomolgus monkeys. The AUC for aliskiren were 8.3- and 42.1-fold higher after the oral administration of aliskiren with the concomitant oral administration of zosuquidar and CsA at doses of 10 and 30?mg/kg, respectively. In contrast, the AUC after the intravenous and oral administration of aliskiren was not significantly affected by the oral administration of zosuquidar or intravenous administration of CsA, respectively. These results indicated that P-gp strictly limited the intestinal absorption of aliskiren in mice and monkeys, and also that the effects of intestinal P-gp inhibition by CsA or zosuquidar on the pharmacokinetics of aliskiren were sensitively reproduced in monkeys. In conclusion, aliskiren can be used as a sensitive substrate to evaluate intestinal P-gp inhibition in monkeys. PMID:25264342

  16. In Situ Localization of P-glycoprotein (ABCB1) in Human and Rat Brain

    PubMed Central

    Bendayan, Reina; Ronaldson, Patrick T.; Gingras, Diane; Bendayan, Moise

    2006-01-01

    Transport of several xenobiotics including pharmacological agents into or out of the central nervous system (CNS) involves the expression of ATP-dependent, membrane-bound efflux transport proteins such as P-glycoprotein (P-gp) at the blood-brain barrier (BBB). Previous studies have documented gene and protein expression of P-gp in brain microvessel endothelial cells. However, the exact localization of P-gp, particularly at the abluminal side of the BBB, remains controversial. In the present study we examined the cellular/subcellular distribution of P-gp in situ in rat and human brain tissues using immunogold cytochemistry at the electron microscope level. P-gp localizes to both the luminal and abluminal membranes of capillary endothelial cells as well as to adjacent pericytes and astrocytes. Subcellulary, P-gp is distributed along the nuclear envelope, in caveolae, cytoplasmic vesicles, Golgi complex, and rough endoplasmic reticulum (RER). These results provide evidence for the expression of P-gp in human and rodent brain capillary along their plasma membranes as well as at sites of protein synthesis, glycosylation, and membrane trafficking. In addition, its presence at the luminal and abluminal poles of the BBB, including pericytes and astrocyte plasma membranes, suggests that this glycoprotein may regulate drug transport processes in the entire CNS BBB at both the cellular and subcellular level. PMID:16801529

  17. In situ localization of P-glycoprotein (ABCB1) in human and rat brain.

    PubMed

    Bendayan, Reina; Ronaldson, Patrick T; Gingras, Diane; Bendayan, Moise

    2006-10-01

    Transport of several xenobiotics including pharmacological agents into or out of the central nervous system (CNS) involves the expression of ATP-dependent, membrane-bound efflux transport proteins such as P-glycoprotein (P-gp) at the blood-brain barrier (BBB). Previous studies have documented gene and protein expression of P-gp in brain microvessel endothelial cells. However, the exact localization of P-gp, particularly at the abluminal side of the BBB, remains controversial. In the present study we examined the cellular/subcellular distribution of P-gp in situ in rat and human brain tissues using immunogold cytochemistry at the electron microscope level. P-gp localizes to both the luminal and abluminal membranes of capillary endothelial cells as well as to adjacent pericytes and astrocytes. Subcellularly, P-gp is distributed along the nuclear envelope, in caveolae, cytoplasmic vesicles, Golgi complex, and rough endoplasmic reticulum (RER). These results provide evidence for the expression of P-gp in human and rodent brain capillary along their plasma membranes as well as at sites of protein synthesis, glycosylation, and membrane trafficking. In addition, its presence at the luminal and abluminal poles of the BBB, including pericytes and astrocyte plasma membranes, suggests that this glycoprotein may regulate drug transport processes in the entire CNS BBB at both the cellular and subcellular level. PMID:16801529

  18. Snapshots of ligand entry, malleable binding and induced helical movement in P-glycoprotein

    PubMed Central

    Szewczyk, Paul; Tao, Houchao; McGrath, Aaron P.; Villaluz, Mark; Rees, Steven D.; Lee, Sung Chang; Doshi, Rupak; Urbatsch, Ina L.; Zhang, Qinghai; Chang, Geoffrey

    2015-01-01

    P-glycoprotein (P-gp) is a transporter of great clinical and pharmacological significance. Several structural studies of P-gp and its homologs have provided insights into its transport cycle, but questions remain regarding how P-gp recognizes diverse substrates and how substrate binding is coupled to ATP hydrolysis. Here, four new P-gp co-crystal structures with a series of rationally designed ligands are presented. It is observed that the binding of certain ligands, including an ATP-hydrolysis stimulator, produces a large conformational change in the fourth transmembrane helix, which is positioned to potentially transmit a signal to the nucleotide-binding domains. A new ligand-binding site on the surface of P-gp facing the inner leaflet of the membrane is also described, providing vital insights regarding the entry mechanism of hydrophobic drugs and lipids into P-gp. These results represent significant advances in the understanding of how P-gp and related transporters bind and export a plethora of metabolites, antibiotics and clinically approved and pipeline drugs. PMID:25760620

  19. Snapshots of ligand entry, malleable binding and induced helical movement in P-glycoprotein.

    PubMed

    Szewczyk, Paul; Tao, Houchao; McGrath, Aaron P; Villaluz, Mark; Rees, Steven D; Lee, Sung Chang; Doshi, Rupak; Urbatsch, Ina L; Zhang, Qinghai; Chang, Geoffrey

    2015-03-01

    P-glycoprotein (P-gp) is a transporter of great clinical and pharmacological significance. Several structural studies of P-gp and its homologs have provided insights into its transport cycle, but questions remain regarding how P-gp recognizes diverse substrates and how substrate binding is coupled to ATP hydrolysis. Here, four new P-gp co-crystal structures with a series of rationally designed ligands are presented. It is observed that the binding of certain ligands, including an ATP-hydrolysis stimulator, produces a large conformational change in the fourth transmembrane helix, which is positioned to potentially transmit a signal to the nucleotide-binding domains. A new ligand-binding site on the surface of P-gp facing the inner leaflet of the membrane is also described, providing vital insights regarding the entry mechanism of hydrophobic drugs and lipids into P-gp. These results represent significant advances in the understanding of how P-gp and related transporters bind and export a plethora of metabolites, antibiotics and clinically approved and pipeline drugs. PMID:25760620

  20. Role of P-glycoprotein in regulating cilnidipine distribution to intact and ischemic brain.

    PubMed

    Yano, Kentaro; Takimoto, Shinobu; Motegi, Toshimitsu; Tomono, Takumi; Hagiwara, Mihoko; Idota, Yoko; Morimoto, Kaori; Takahara, Akira; Ogihara, Takuo

    2014-01-01

    Cilnidipine is reported to show antihypertensive and neuroprotective actions in a rat brain ischemia model, but is barely distributed to normal brain, suggesting that its uptake into normal brain is inhibited by efflux transporter(s), such as P-glycoprotein (P-gp). Here, we investigated whether P-gp regulates the brain distribution of cilnidipine. Intracellular accumulation of cilnidipine was decreased in P-gp-overexpressing porcine kidney epithelial cells (LLC-GA5-COL150 cells) compared with control LLC-PK1 cells and the decrease was markedly inhibited by verapamil, a P-gp inhibitor. Further, cilnidipine concentration in the brain of P-gp knockout mice was significantly increased after cilnidipine administration, compared with that in wild-type mice. Moreover, when cilnidipine was administered to male spontaneously hypertensive rats (SHR) with tandem occlusion of the distal middle cerebral and ipsilateral common carotid artery, its concentration in the ischemic hemisphere was 1.6-fold higher than that in the contralateral hemisphere. This result was supported by visualization of cilnidipine distribution using matrix-assisted laser desorption/ionization-time of flight/mass spectrometry (MALDI-TOF/MS) imaging. Our results indicated that cilnidipine is normally excluded from the brain by P-gp-mediated efflux transport, but P-gp function is impaired in ischemic brain and consequently cilnidipine is distributed to the ischemic region. PMID:24366438

  1. Regulation of P-glycoprotein by human immunodeficiency virus-1 in primary cultures of human fetal astrocytes.

    PubMed

    Ashraf, Tamima; Ronaldson, Patrick T; Persidsky, Yuri; Bendayan, Reina

    2011-11-01

    P-glycoprotein (P-gp), a drug efflux pump, is known to alter the bioavailability of antiretroviral drugs at several sites, including the brain. We have previously shown that human immunodeficiency virus-1 (HIV-1) glycoprotein 120 (gp120) induces proinflammatory cytokine secretion and decreases P-gp functional expression in rat astrocytes, a cellular reservoir of HIV-1. However, whether P-gp is regulated in a similar way in human astrocytes is unknown. This study investigates the regulation of P-gp in an in vitro model of gp120-triggered human fetal astrocytes (HFAs). In this system, elevated levels of interleukin-6 (IL-6), IL-1?, and tumor necrosis factor-? were detected in culture supernatants. Pretreatment with CCR5 neutralizing antibody attenuated cytokine secretion, suggesting that gp120-CCR5 interaction mediated cytokine production. Treatment with gp120 (R5-tropic) resulted in reduced P-gp expression (64%) and function as determined by increased (1.6-fold) cellular accumulation of [(3) H]digoxin, a P-gp substrate. Exposure to R5 or R5/X4-tropic viral isolates led to a downregulation in P-gp expression (75% or 90%, respectively), and treatment with IL-6 also showed lower P-gp expression (50%). Moreover, IL-6 neutralizing antibody blocked gp120-mediated P-gp downregulation, suggesting that IL-6 is a key modulator of P-gp. Gp120- or IL-6-mediated downregulation of P-gp was attenuated by SN50 (a nuclear factor-?B [NF-?B] inhibitor), suggesting involvement of NF-?B signaling in P-gp regulation. Our results suggest that, similarly to the case with rodent astrocytes, pathophysiological stressors associated with brain HIV-1 infection have a downregulatory effect on P-gp functional expression in human astrocytes, which may ultimately result in altered antiretroviral drug accumulation within brain parenchyma. PMID:21826700

  2. Regulation of P-Glycoprotein by Human Immunodeficiency Virus-1 in Primary Cultures of Human Fetal Astrocytes

    PubMed Central

    Ashraf, Tamima; Ronaldson, Patrick T.; Persidsky, Yuri; Bendayan, Reina

    2014-01-01

    P-glycoprotein (P-gp), a drug efflux pump, is known to alter the bioavailability of antiretroviral drugs at several sites, including the brain. We have previously shown that human immunodeficiency virus-1 (HIV-1) glycoprotein 120 (gp120) induces proinflammatory cytokine secretion and decreases P-gp functional expression in rat astrocytes, a cellular reservoir of HIV-1. However, whether P-gp is regulated in a similar way in human astrocytes is unknown. This study investigates the regulation of P-gp in an in vitro model of gp120-triggered human fetal astrocytes (HFAs). In this system, elevated levels of interleukin-6 (IL-6), IL-1?, and tumor necrosis factor-? were detected in culture supernatants. Pretreatment with CCR5 neutralizing antibody attenuated cytokine secretion, suggesting that gp120-CCR5 interaction mediated cytokine production. Treatment with gp120 (R5-tropic) resulted in reduced P-gp expression (64%) and function as determined by increased (1.6-fold) cellular accumulation of [3H]digoxin, a P-gp substrate. Exposure to R5 or R5/X4-tropic viral isolates led to a down-regulation in P-gp expression (75% or 90%, respectively), and treatment with IL-6 also showed lower P-gp expression (50%). Moreover, IL-6 neutralizing antibody blocked gp120-mediated P-gp downregulation, suggesting that IL-6 is a key modulator of P-gp. Gp120- or IL-6-mediated downregulation of P-gp was attenuated by SN50 (a nuclear factor-?B [NF-?B] inhibitor), suggesting involvement of NF-?B signaling in P-gp regulation. Our results suggest that, similarly to the case with rodent astrocytes, pathophysiological stressors associated with brain HIV-1 infection have a downregulatory effect on P-gp functional expression in human astrocytes, which may ultimately result in altered antiretroviral drug accumulation within brain parenchyma. PMID:21826700

  3. Inhibitory effect of Thai plant extracts on P-glycoprotein mediated efflux.

    PubMed

    Junyaprasert, Varaporn Buraphacheep; Soonthornchareonnon, Noppamas; Thongpraditchote, Suchitra; Murakami, Teruo; Takano, Mikihisa

    2006-01-01

    Curcuminoids from Curcuma longa L. and extracts of Psidium guajava L., Andrographis paniculata (Burm. f.) Nees, Phyllanthus emblica L. and Solanum trilobatum L. were investigated for their inhibitory effect on P-glycoprotein (P-gp) on the efflux transport of rhodamine 123 (Rho-123 ) in Caco-2 cells and rat ileum. Of the five tested samples, curcuminoids and an extract of P. guajava showed the highest inhibitory effect on P-gp mediated efflux of Rho-123 in Caco-2 cells. Additionally, they were found to have equal potential in inhibiting Rho-123 efflux transport from serosal to mucosal surfaces of the rat ileum. PMID:16397849

  4. P-glycoprotein- and organic anion-transporting polypeptide-mediated transport of periplocin may lead to drug–herb/drug–drug interactions

    PubMed Central

    Liang, Sheng; Deng, Fengchun; Xing, Haiyan; Wen, He; Shi, Xiaoyan; Martey, Orleans Nii; Koomson, Emmanuel; He, Xin

    2014-01-01

    Periplocin, an active and toxic component of the traditional Chinese herbal medicine Periploca sepium Bge, is a cardiac glycoside compound that has been implicated in various clinical accidents. This study investigated the role of transporters in the intestinal absorption and biliary excretion of periplocin, as well as the possible metabolic mechanism of periplocin in liver S9. In a bidirectional transport assay using Madin–Darby canine kidney (MDCK) and MDCK multidrug-resistance protein (MRP)-1 cell monolayers, both in situ intestinal and liver-perfusion models were used to evaluate the role of efflux and uptake transporters on the absorption and biliary excretion of periplocin. In addition, in vitro metabolism of periplocin was investigated by incubating with human/rat liver S9 homogenate fractions to evaluate its metabolic mechanisms in liver metabolic enzymes. The results showed that P-glycoprotein (P-gp) was involved in the intestinal absorption of periplocin, whereas MRP2 and breast cancer-resistance protein were not. The efflux function of P-gp may be partly responsible for the low permeability and bioavailability of periplocin. Moreover, both inhibitors of P-gp and organic anion-transporting polypeptides (OATPs) increased periplocin biliary excretion. No obvious indications of metabolism were observed in the in vitro incubation system, which suggests that periplocin did not interact with the hepatic drug metabolic enzymes. The results of this study showed that the efflux and uptake transporters P-gp and OATPs were involved in the absorption and biliary excretion of periplocin, which may partially account for its low permeability and bioavailability. As a toxic compound, potential drug–herb/herb–herb interactions based on OATPs and P-gp should be taken into account when using P. sepium Bge in the clinic. PMID:24872678

  5. CLINICAL TRIALS AND OBSERVATIONS Randomized use of cyclosporinA(CsA) to modulate P-glycoprotein in children

    E-print Network

    Ford, James

    strategies to improve event-free survival (EFS) and overall sur- vival (OS). Patients were randomized. To interfere with P-glycoprotein (P-gp)­dependent drug efflux, the second randomization tested the benefit of cyclosporine (CsA) added to consolidation chemotherapy. Of the 282 children randomly assigned to receive

  6. In silico screening for inhibitors of p-glycoprotein that target the nucleotide binding domains.

    PubMed

    Brewer, Frances K; Follit, Courtney A; Vogel, Pia D; Wise, John G

    2014-12-01

    Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. PMID:25270578

  7. Bifendate-chalcone hybrids: a new class of potential dual inhibitors of P-glycoprotein and breast cancer resistance protein.

    PubMed

    Gu, Xiaoke; Ren, Zhiguang; Peng, Hui; Peng, Sixun; Zhang, Yihua

    2014-12-12

    We previously described bifendate-chalcone hybrids as potent P-glycoprotein inhibitors. In the present work, we determine whether these compounds could reverse breast cancer resistance protein (BCRP, ABCG2)-mediated multidrug resistance using HEK293/BCRP cells which was BCRP-transfected stable HEK293 cells. Results indicated that compounds 8d, 8f, 8g and 8h could significantly enhance mitoxantrone accumulation in HEK293/BCRP cells via inhibiting BCRP drug efflux function. The most active compound 8g exhibited little intrinsic cytotoxicity (IC??>100 ?M), and could reverse BCRP-mediated drug resistance independent of decreasing BCRP expression level. Notably, 8g had little inhibitory effect on multidrug resistance-associated protein 1 (MRP1, ABCC1), another drug efflux transporter. The present findings, together with the previous results, suggest that 8g might be act as dual inhibitors of P-gp and BCRP. PMID:25446092

  8. Down-regulation of c-fos by shRNA sensitizes adriamycin-resistant MCF-7/ADR cells to chemotherapeutic agents via P-glycoprotein inhibition and apoptosis augmentation.

    PubMed

    Shi, Ruizan; Peng, Hongwei; Yuan, Xiangfei; Zhang, Xiuli; Zhang, Yanjun; Fan, Dongmei; Liu, Xuyi; Xiong, Dongsheng

    2013-08-01

    Multidrug resistance (MDR) is a major hurdle in the treatment of cancer. Research indicated that the main mechanisms of most cancers included so-called "pump" (P-glycoprotein, P-gp) and "non-pump" (apoptosis) resistance. Identification of novel signaling molecules associated with both P-gp and apoptosis will facilitate the development of more effective strategies to overcome MDR in tumor cells. Since the proto-oncogene c-fos has been implicated in cell adaptation to environmental changes, we analyzed its role in mediating "pump" and "non-pump" resistance in MCF-7/ADR, an adriamycin (ADR)-selected human breast cancer cell line with the MDR phenotype. Elevated expression of c-fos in MCF-7/ADR cells and induction of c-fos by ADR in the parental drug-sensitive MCF-7 cells suggested a link between c-fos and MDR phenotype. Down-regulation of c-fos expression via shRNA resulted in sensitization of MCF-7/ADR cells to chemotherapeutic agents, including both P-gp and non-P-gp substrates. Further results proved that c-fos down-regulation in MCF-7/ADR cells resulted in decreased P-gp expression and activity, enhanced apoptosis, and altered expression of apoptosis-associated proteins (i.e., Bax, Bcl-2, p53, and PUMA). All above facts indicate that c-fos is involved in both P-gp- and anti-apoptosis-mediated MDR of MCF-7/ADR cells. Based on these results, we propose that c-fos may represent a potential molecular target for resistant cancer therapy, and suppressing c-fos gene expression may therefore be an effective means to temper breast cancer cell's MDR to cytotoxic chemotherapy. PMID:23494858

  9. Docking applied to the prediction of the affinity of compounds to P-glycoprotein.

    PubMed

    Palestro, Pablo H; Gavernet, Luciana; Estiu, Guillermina L; Bruno Blanch, Luis E

    2014-01-01

    P-glycoprotein (P-gp) is involved in the transport of xenobiotic compounds and responsible for the decrease of the drug accumulation in multi-drug-resistant cells. In this investigation we compare several docking algorithms in order to find the conditions that are able to discriminate between P-gp binders and nonbinders. We built a comprehensive dataset of binders and nonbinders based on a careful analysis of the experimental data available in the literature, trying to overcome the discrepancy noticeable in the experimental results. We found that Autodock Vina flexible docking is the best choice for the tested options. The results will be useful to filter virtual screening results in the rational design of new drugs that are not expected to be expelled by P-gp. PMID:24982867

  10. Inhibitory Effects of Neochamaejasmin B on P-Glycoprotein in MDCK-hMDR1 Cells and Molecular Docking of NCB Binding in P-Glycoprotein.

    PubMed

    Pan, Lanying; Hu, Haihong; Wang, Xiangjun; Yu, Lushan; Jiang, Huidi; Chen, Jianzhong; Lou, Yan; Zeng, Su

    2015-01-01

    Stellera chamaejasme L. (Thymelaeaceae) is widely distributed in Mongolia, Tibet and the northern parts of China. Its roots are commonly used as "Langdu", which is embodied in the Pharmacopoeia of the P.R. China (2010) as a toxic Traditional Chinese Medicine. It is claimed to have antivirus, antitumor and antibacterial properties in China and other Asian countries. Studies were carried out to characterize the inhibition of neochamaejasmin B (NCB) on P-glycoprotein (P-gp, ABCB1, MDR1). Rhodamine-123 (R-123) transport and accumulation studies were performed in MDCK-hMDR1 cells. ABCB1 (MDR1) mRNA gene expression and P-gp protein expression were analyzed. Binding selectivity studies based on molecular docking were explored. R-123 transport and accumulation studies in MDCK-hMDR1 cells indicated that NCB inhibited the P-gp-mediated efflux in a concentration-dependent manner. RT-PCR and Western blot demonstrated that the P-gp expression was suppressed by NCB. To investigate the inhibition type of NCB on P-gp, Ki and Ki' values were determined by double-reciprocal plots in R-123 accumulation studies. Since Ki was greater than Ki', the inhibition of NCB on P-gp was likely a mixed type of competitive and non-competitive inhibition. The results were confirmed by molecular docking in our current work. The docking data indicated that NCB had higher affinity to P-gp than to Lig1 ((S)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one). PMID:25679052

  11. Depsipeptide-resistant KU812 cells show reversible P-glycoprotein expression, hyper-acetylated histones, and modulated gene expression profile

    Microsoft Academic Search

    Hisashi Yamada; Yasuhiro Arakawa; Shinobu Saito; Miyuki Agawa; Yasuhiko Kano; Junko Horiguchi-Yamada

    2006-01-01

    Depsipeptide (FK228), a histone deacetylase inhibitor, is a promising new anticancer agent. The mechanism of resistance to this agent was studied using KU812 cells. Depsipeptide-resistant KU812 cells expressed P-glycoprotein (P-gp) and their resistance was abolished by co-treatment with verapamil. P-gp expression returned to the parental cell level when resistant cells were cultured in depsipeptide-free medium, while resistant cells cultured in

  12. Overexpression of lung resistance-related protein and P-glycoprotein and response to induction chemotherapy in acute myelogenous leukemia.

    PubMed

    Tsuji, Kazue; Wang, Yan-Hua; Takanashi, Minoko; Odajima, Tsuyoshi; Lee, Gabriel A; Sugimori, Hiroki; Motoji, Toshiko

    2012-07-11

    Lung resistance-related protein (LRP) and P-glycoprotein (P-gp) are associated with multidrug resistance. P-gp overexpression reduces intracellular anticancer drug concentrations and is correlated with low remission rates. However, whether the presence of LRP influences the response to induction chemotherapy remains controversial. Therefore, we investigated the relationship of LRP and P-gp overexpression with the response to induction chemotherapy. Univariate analysis revealed that there was a significant difference between complete remission rates for acute myelogenous leukemia patients depending on their blast cell expressions, between LRP positive versus negative, P-gp positive versus negative, and LRP/P-gp double positive versus other groups. Crude odds ratios (ORs) for complete remission were 0.390, 0.360, and 0.307 for LRP positive, for P-gp positive, and LRP/P-gp double positive patients, respectively. After controlling the confounding variables by stepwise multivariate logistical regression analysis, the presence of LRP/P-gp double positivity and P-gp positivity were found to be independent prognostic factors; adjusted ORs were 0.233 and 0.393, respectively. Furthermore, the monoclonal antibody against LRP significantly increased daunorubicin acumulation (P=0.004) in the nuclei of leukemic blast cells with LRP positivity in more than 10% of the cells. An LRP reversing agent, PAK-104P, was found to increase the daunorubicin content with marginal significance (P=0.060). The present results suggest that not only the presence of P-gp, but also LRP in leukemic blast cells is a risk factor for resistance to induction chemotherapy. Inhibiting LRP function, similar to the inhibition of P-gp function, will be necessary to improve the effectiveness of induction chemotherapy. PMID:23087807

  13. Pharmacokinetic Compatibility of Ginsenosides and Schisandra Lignans in Shengmai-san: From the Perspective of P-Glycoprotein

    PubMed Central

    Liang, Yan; Zhou, Yuanyuan; Zhang, Jingwei; Rao, Tai; Zhou, Lijun; Xing, Rong; Wang, Qian; Fu, Hanxu; Hao, Kun; Xie, Lin; Wang, Guangji

    2014-01-01

    Background Phytochemical-mediated alterations in P-glycoprotein (P-gp) activity may result in herb-drug interactions by altering drug pharmacokinetics. Shengmai-san, a traditional Chinese herbal medicine composed by Panax Ginseng, Ophiopogon Japonicus, and Schisandra Chinensis, is routinely being used for treating various coronary heart diseases. In our previous studies, Schisandra Lignans Extract (SLE) was proved as a strong P-gp inhibitor, and herein, the compatibility of Shengmai-san was studied by investigating the influence of SLE on the pharmacokinetics of the ginsenosides from the perspective of P-gp. Methodology Pharmacokinetic experiments were firstly performed based on in vitro uptake, efflux and transport experiments in Caco-2, LLC-PK1 wild-type and MDR1-overexpressing L-MDR1 cells. During the whole experiment, digoxin, a classical P-gp substrate, was used as a positive control drug to verify the cells used are the valid models. Meanwhile, the effects of SLE on the pharmacokinetics of ginsenosides were further investigated in rats after single-dose and multi-dose of SLE. Results and Conclusions The efflux ratios of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 were found more than 3.5 in L-MDR1 cells and can be decreased significantly by verapamil (a classical P-gp inhibitor). Contrarily, the efflux ratios of other ginsenosides (Rh1, F1, Re, and Rg1) were lower than 2.0 and not affected by verapamil. Then, the effects of SLE on the uptake and transport of ginsenosides were investigated, and SLE was found can significantly enhance the uptake and inhibit the efflux ratio of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 in Caco-2 and L-MDR1 cells. Besides, In vivo experiments showed that single-dose and multi-dose of SLE at 500 mg/kg could increase the area under the plasma concentration time curve of Rb2, Rc and Rd significantly without affecting terminal elimination half-time. In conclusion, SLE could enhance the exposure of ginsenosides Rb2, Rc, Rg2, Rg3, Rd and Rb1 significantly. PMID:24922060

  14. First evidence of the P-glycoprotein gene expression and multixenobiotic resistance modulation in earthworm.

    PubMed

    Bošnjak, Ivana; Bielen, Ana; Babi?, Sanja; Sver, Lidija; Popovi?, Natalija Topi?; Strunjak-Perovi?, Ivan?ica; Což-Rakovac, Rozelinda; Klobu?ar, Roberta Sauerborn

    2014-03-01

    Multixenobiotic resistance (MXR) is an important mechanism of cellular efflux mediated by ATP binding cassette (ABC) transporters that bind and actively remove toxic substrates from the cell. This study was the first to identify ABC transporter P-glycoprotein (P-gp/ABCB1) as a representative of the MXR phenotype in earthworm (Eisenia fetida). The identified partial cDNA sequence of ABCB1 overlapped with ABCB1 homologues of other organisms from 58.5 % to 72.5 %. We also studied the effect of five modulators (verapamil, cyclosporine A, MK571, probenecid, and orthovanadate) on the earthworm's MXR activity by measuring the accumulation of model substrates rhodamine B and rhodamine 123 in whole body tissue of the adult earthworm. MK571, orthovanadate, and verapamil significantly inhibited MXR activity, and rhodamine 123 turned out to better reflect MXR activity in that species than rhodamine B. Our results show that E. fetida can serve well as a test organism for environmental pollutants that inhibit MXR activity. PMID:24622780

  15. The Functional Influences of Common ABCB1 Genetic Variants on the Inhibition of P-glycoprotein by Antrodia cinnamomea Extracts

    PubMed Central

    Chen, Ying-Yi; Hung, Chin-Chuan

    2014-01-01

    Antrodia cinnamomea is a traditional healthy food that has been demonstrated to possess anti-inflammatory, antioxidative, and anticacer effects. The purpose of this study was to evaluate whether the ethanolic extract of A. cinnamomea (EEAC) can affect the efflux function of P-glycoprotein (P-gp) and the effect of ABCB1 genetic variants on the interaction between EEAC and P-gp. To investigate the mechanism of this interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established and the expression of P-gp was confirmed by Western blot. The results of the rhodamine 123 efflux assay demonstrated that EEAC efficiently inhibited wild-type P-gp function at an IC50 concentration of 1.51±0.08 µg/mL through non-competitive inhibition. The IC50 concentrations for variant-type 1236T-2677T-3435T P-gp and variant-type 1236T-2677A-3435T P-gp were 5.56±0.49 µg/mL and 3.33±0.67 µg/mL, respectively. In addition, the inhibition kinetics of EEAC also changed to uncompetitive inhibition in variant-type 1236T-2677A-3435T P-gp. The ATPase assay revealed that EEAC was an ATPase stimulator and was capable of reducing verapamil-induced ATPase levels. These results indicate that EEAC may be a potent P-gp inhibitor and higher dosages may be required in subjects carrying variant-types P-gp. Further studies are required to translate this basic knowledge into clinical applications. PMID:24586917

  16. Three- and four-class classification models for P-glycoprotein inhibitors using counter-propagation neural networks.

    PubMed

    Thai, K-M; Huynh, N-T; Ngo, T-D; Mai, T-T; Nguyen, T-H; Tran, T-D

    2015-02-01

    P-glycoprotein (P-gp) is an ATP binding cassette (ABC) transporter that helps to protect several certain human organs from xenobiotic exposure. This efflux pump is also responsible for multi-drug resistance (MDR), an issue of the chemotherapy approach in the fight against cancer. Therefore, the discovery of P-gp inhibitors is considered one of the most popular strategies to reverse MDR in tumour cells and to improve therapeutic efficacy of commonly used cytotoxic drugs. Until now, several generations of P-gp inhibitors have been developed but they have largely failed in preclinical and clinical studies due to lack of selectivity, poor solubility and severe pharmacokinetic interactions. In this study, three models (SION, SIO, SIN) to classify specific 'true' P-gp inhibitors as well as three other models (CPBN, CPB1, CPN) to distinguish between P-gp inhibitors, CYP 3A inhibitors and co-inhibitors of these proteins with rather high accuracy values for the test set and the external set were generated based on counter-propagation neural networks (CPG-NN). Such three and four-class classification models helped provide more information about the bioactivities of compounds not only on one target (P-gp), but also on a combination of multiple targets (P-gp, CYP 3A). PMID:25588022

  17. Chabamide induces cell cycle arrest and apoptosis by the Akt/MAPK pathway and inhibition of P-glycoprotein in K562/ADR cells.

    PubMed

    Ren, Jie; Xu, Yuanyuan; Huang, Qianhui; Yang, Jie; Yang, Meng; Hu, Kun; Wei, Kun

    2015-06-01

    One of the major mechanisms of multidrug resistance in cancer therapy is the overexpression of P-glycoprotein (P-gp). Chabamide, a dimeric alkaloid isolated from Piper chaba Hunter, shows antimalarial, antituberculosis, and cytotoxic activities. However, its mechanism of action has not been elucidated. In this study, the molecular mechanism underlying the cytotoxicity and downregulation of P-gp expression by chabamide in adriamycin-resistant human leukemia cells (K562/ADR) was clarified. Results show that chabamide inhibited the growth of K562/ADR cells in a dose-dependent and time-dependent manner, and significantly inhibited cell proliferation by cell cycle arrest in the G0/G1 phase, which was associated with an obvious increase in p21 and decrease in cyclin D1 and CDK2/4/6 protein expression. Moreover, chabamide could regulate the changes in the mitochondrial membrane potential, increase the expression of apoptosis-related proteins, such as Bax and cytochrome c, and decrease the protein expression levels of Bcl-2, caspase-9, caspase-3, PARP-1, and p-Akt. In addition, we found that JNK, ERK1/2, and p38 were regulated by chabamide in K562/ADR cells. Further studies indicated that the decrease in the reactive oxygen species level inhibited intrinsic P-gp expression. Therefore, chabamide-induced apoptosis in K562/ADR cells was associated with Akt/MAPK and the inhibition of P-gp. These results provide a biochemical basis for possible clinical applications of chabamide in the treatment of leukemia. PMID:25714087

  18. Comparative Study of the Effects of Antituberculosis Drugs and Antiretroviral Drugs on Cytochrome P450 3A4 and P-Glycoprotein

    PubMed Central

    Horita, Yasuhiro

    2014-01-01

    Predicting drug-drug interactions (DDIs) related to cytochrome P450 (CYP), such as CYP3A4 and one of the major drug transporters, P-glycoprotein (P-gp), is crucial in the development of future chemotherapeutic regimens to treat tuberculosis (TB) and TB/AIDS coinfection cases. We evaluated the effects of 30 anti-TB drugs, novel candidates, macrolides, and representative antiretroviral drugs on human CYP3A4 activity using a commercially available screening kit for CYP3A4 inhibitors and a human hepatocyte, HepaRG. Moreover, in order to estimate the interactions of these drugs with human P-gp, screening for substrates was performed. For some substrates, P-gp inhibition tests were carried out using P-gp-expressing MDCK cells. As a result, almost all the compounds showed the expected effects on human CYP3A4 both in the in vitro screening and in HepaRG cells. Importantly, the unproven mechanisms of DDIs caused by WHO group 5 drugs, thioamides, and p-aminosalicylic acid were elucidated. Intriguingly, clofazimine (CFZ) exhibited weak inductive effects on CYP3A4 at >0.25 ?M in HepaRG cells, while an inhibitory effect was observed at 1.69 ?M in the in vitro screening, suggesting that CFZ autoinduces CYP3A4 in the human liver. Our method, based on one of the pharmacokinetics parameters in humans, provides more practical information associated with not only DDIs but also with drug metabolism. PMID:24663015

  19. Raman, SERS, and induced circular dichroism techniques as a probe of pharmaceuticals in their interactions with the human serum albumin and p-glycoprotein

    NASA Astrophysics Data System (ADS)

    Fleury, Fabrice; Ianoul, Anatoli I.; Baggetto, Loris; Jardillier, Jean-Claude; Alix, Alain J.; Nabiev, Igor R.

    1999-04-01

    Camptothecin (CPT) derivatives are the well known inhibitors of the human DNA topoisomerase (topo) I. Two of them, irinotecan and topotecan, are just in the clinics; 9-amino- CPT is on the stage II of clinical trials, and the active search for new derivatives is now in progress. Stability of the CPT derivatives on their way to the target and resistance of cancer cells to these drugs present the crucial problem of the chemotherapy. Human serum albumin (HSA) is the mediator of transport and metabolism of numerous pharmaceuticals in the blood and P-glycoprotein (P- gp) plays a crucial role of the mediator of the multidrug resistance (MDR) of the cancer cells. This paper present the result of analysis of molecular interactions of some drugs of CPT family with the HSA and P-gp. Induced circular dichroism (CD) and Raman techniques have been applied for monitoring molecular interaction of drugs with HSA as well as to identify the conformational transition of the protein induced by the drug binding. Drug molecular determinants responsible for interaction have been identified and their binding sites within the HSA have been localized. New cancer cells lines exhibiting an extremely high level of MDR resistance have been established and were shown to contain the P-gp overproduced in the quantities of 35 percent from the all membrane proteins. The membrane fractions of these cells with the controls presented by the membranes of the parental membrane proteins. The membrane fractions of these cells with the controls presented by the membranes of the parental sensitive cells may be used as a model system for spectroscopic analysis of the specific pharmaceuticals/P-gp interactions.

  20. In vivo induction of P-glycoprotein expression at the mouse blood-brain barrier: an intracerebral microdialysis study.

    PubMed

    Chan, Gary N Y; Saldivia, Victor; Yang, Yingbo; Pang, Henrianna; de Lannoy, Inés; Bendayan, Reina

    2013-11-01

    Intracerebral microdialysis was utilized to investigate the effect of P-glycoprotein (a drug efflux transporter) induction at the mouse blood-brain barrier (BBB) on brain extracellular fluid concentrations of quinidine, an established substrate of P-glycoprotein. Induction was achieved by treating male CD-1 mice for 3 days with 5 mg/kg/day dexamethasone (DEX), a ligand of the nuclear receptor, pregnane X receptor, and a P-glycoprotein inducer. Tandem liquid chromatography mass spectrometric method was used to quantify analytes in dialysate, blood and plasma. P-glycoprotein, pregnane X receptor and Cyp3a11 (metabolizing enzyme for quinidine) protein expression in capillaries and brain homogenates was measured by immunoblot analysis. Following quinidine i.v. administration, the average ratio of unbound quinidine concentrations in brain extracellular fluid (determined from dialysate samples) to plasma at steady state (375-495 min) or Kp, uu, ECF /Plasma in the DEX-treated animals was 2.5-fold lower compared with vehicle-treated animals. In DEX-treated animals, P-glycoprotein expression in brain capillaries was 1.5-fold higher compared with vehicle-treated animals while Cyp3a11 expression in brain capillaries was not significantly different between the two groups. These data demonstrate that P-gp induction mediated by DEX at the BBB can significantly reduce quinidine brain extracellular fluid concentrations by decreasing its brain permeability and further suggest that drug-drug interactions as a result of P-gp induction at the BBB are possible. Applying microdialysis, distribution of quinidine, a P-gp substrate, in mouse brain extracellular fluid (ECF) was investigated following ligand-mediated P-glycoprotein (P-gp) induction at the blood-brain barrier (BBB). We demonstrated that a PXR agonist (dexamethasone) significantly up-regulated P-gp in brain capillaries and reduced quinidine brain ECF concentrations. Our data suggest that drug-drug interactions as a result of P-gp induction at the BBB are possible. PMID:23777437

  1. Effects of Astragalus polysaccharides on P-glycoprotein efflux pump function and protein expression in H22 hepatoma cells in vitro

    PubMed Central

    2012-01-01

    Background Astragalus polysaccharides (APS) are active constituents of Astragalus membranaceus. They have been widely studied, especially with respect to their immunopotentiating properties, their ability to counteract the side effects of chemotherapeutic drugs, and their anticancer properties. However, the mechanism by which APS inhibit cancer and the issue of whether that mechanism involves the reversal of multidrug resistance (MDR) is not completely clear. The present paper describes an investigation of the effects of APS on P-glycoprotein function and expression in H22 hepatoma cell lines resistant to Adriamycin (H22/ADM). Methods H22/ADM cell lines were treated with different concentrations of APS and/or the most common chemotherapy drugs, such as Cyclophosphamid, Adriamycin, 5-Fluorouracil, Cisplatin, Etoposide, and Vincristine. Chemotherapeutic drug sensitivity, P-glycoprotein function and expression, and MDR1 mRNA expression were detected using MTT assay, flow cytometry, Western blotting, and quantitative RT-PCR. Results When used alone, APS had no anti-tumor activity in H22/ADM cells in vitro. However, it can increase the cytotoxicity of certain chemotherapy drugs, such as Cyclophosphamid, Adriamycin, 5-Fluorouracil, Cisplatin, Etoposide, and Vincristine, in H22/ADM cells. It acts in a dose-dependent manner. Compared to a blank control group, APS increased intracellular Rhodamine-123 retention and decreased P-glycoprotein efflux function in a dose-dependent manner. These factors were assessed 24?h, 48?h, and 72?h after administration. APS down regulated P-glycoprotein and MDR1 mRNA expression in a concentration-dependent manner within a final range of 0.8–500?mg/L and in a time-dependent manner from 24–72?h. Conclusion APS can enhance the chemosensitivity of H22/ADM cells. This may involve the downregulation of MDR1 mRNA expression, inhibition of P-GP efflux pump function, or both, which would decrease the expression of the MDR1 protein. PMID:22784390

  2. Clitocine Reversal of P-Glycoprotein Associated Multi-Drug Resistance through Down-Regulation of Transcription Factor NF-?B in R-HepG2 Cell Line

    PubMed Central

    Sun, Jianguo; Yeung, Chilam Au; Co, Ngai Na; Tsang, Tsun Yee; Yau, Esmond; Luo, Kewang; Wu, Ping; Wa, Judy Chan Yuet; Fung, Kwok-Pui; Kwok, Tim-Tak; Liu, Feiyan

    2012-01-01

    Multidrug resistance(MDR)is one of the major reasons for failure in cancer chemotherapy and its suppression may increase the efficacy of therapy. The human multidrug resistance 1 (MDR1) gene encodes the plasma membrane P-glycoprotein (P-gp) that pumps various anti-cancer agents out of the cancer cell. R-HepG2 and MES-SA/Dx5 cells are doxorubicin induced P-gp over-expressed MDR sublines of human hepatocellular carcinoma HepG2 cells and human uterine carcinoma MES-SA cells respectively. Herein, we observed that clitocine, a natural compound extracted from Leucopaxillus giganteus, presented similar cytotoxicity in multidrug resistant cell lines compared with their parental cell lines and significantly suppressed the expression of P-gp in R-HepG2 and MES-SA/Dx5 cells. Further study showed that the clitocine increased the sensitivity and intracellular accumulation of doxorubicin in R-HepG2 cells accompanying down-regulated MDR1 mRNA level and promoter activity, indicating the reversal effect of MDR by clitocine. A 5?-serial truncation analysis of the MDR1 promoter defined a region from position ?450 to ?193 to be critical for clitocine suppression of MDR1. Mutation of a consensus NF-?B binding site in the defined region and overexpression of NF-?B p65 could offset the suppression effect of clitocine on MDR1 promoter. By immunohistochemistry, clitocine was confirmed to suppress the protein levels of both P-gp and NF-?B p65 in R-HepG2 cells and tumors. Clitocine also inhibited the expression of NF-?B p65 in MES-SA/Dx5. More importantly, clitocine could suppress the NF-?B activation even in presence of doxorubicin. Taken together; our results suggested that clitocine could reverse P-gp associated MDR via down-regulation of NF-?B. PMID:22927901

  3. Chemosensitization potential of P-glycoprotein inhibitors in malaria parasites.

    PubMed

    Alcantara, Laura M; Kim, Junwon; Moraes, Carolina B; Franco, Caio H; Franzoi, Kathrin D; Lee, Sukjun; Freitas-Junior, Lucio H; Ayong, Lawrence S

    2013-06-01

    Members of the ATP-binding cassette (ABC)-type transporter superfamily have been implicated in multidrug resistance in malaria, and various mechanistic models have been postulated to explain their interaction with diverse antimalarial drugs. To gain insight into the pharmacological benefits of inhibiting ABC-type transporters in malaria chemotherapy, we investigated the in vitro chemosensitization potential of various P-glycoprotein inhibitors. A fluorescent chloroquine derivative was synthesized and used to assess the efflux dynamics of chloroquine in MDR and wild type Plasmodium falciparum parasites. This novel BODIPY-based probe accumulated in the digestive vacuole (DV) of CQ-sensitive parasites but less so in MDR cells. Pre-exposure of the MDR parasites to non-cytocidal concentrations of unlabeled chloroquine resulted in a diffused cytoplasmic retention of the probe whereas a similar treatment with the CQR-reversing agent, chlorpheniramine, resulted in DV accumulation. A diffused cytoplasmic distribution of the probe was also obtained following treatment with the P-gp specific inhibitors zosuquidar and tariquidar, whereas treatments with the tyrosine kinase inhibitors gefitinib or imatinib produced a partial accumulation within the DV. Isobologram analyses of the interactions between these inhibitors and the antimalarial drugs chloroquine, mefloquine, and artemisinin revealed distinct patterns of drug synergism, additivity and antagonism. Taken together, the data indicate that competitive tyrosine kinase and noncompetitive P-glycoprotein ATPase-specific inhibitors represent two new classes of chemosensitizing agents in malaria parasites, but caution against the indiscriminate use of these agents in antimalarial drug combinations. PMID:23541983

  4. Cell-free microfluidic determination of P-glycoprotein interactions with substrates and inhibitors.

    PubMed

    Eyer, Klaus; Herger, Michael; Krämer, Stefanie D; Dittrich, Petra S

    2014-12-01

    The membrane protein P-glycoprotein (P-gp) plays key roles in the oral bioavailability of drugs, their blood brain barrier passage as well as in multidrug resistance. For new drug candidates it is mandatory to study their interaction with P-gp, according to FDA and EMA regulations. The vast majority of these tests are performed using confluent cell layers of P-gp overexpressing cell lines that render these tests laborious. In this study, we introduce a cell-free microfluidic assay for the rapid testing of drug- P-gp interactions. Cell-derived vesicles are prepared from MDCKII-MDR1 overexpressing cells and immobilized on the surface of a planar microfluidic device. The drug is delivered continuously to the vesicles and calcein accumulation is monitored by means of a fluorescence assay and total internal reflection fluorescence (TIRF) microscopy. Only small amounts of compounds (~10 ?l) are required in concentrations of 5, 25 and 50 ?M for a test that provides within 5 min information on the apparent dissociation constant of the drug and P-gp. We tested 10 drugs on-chip, 9 of which are inhibitors or substrates of P-glycoprotein and one negative control. We benchmarked the measured apparent dissociation constants against an alternative assay on a plate reader and reference data from FDA. These comparisons revealed good correlations between the logarithmic apparent dissociation constants (R(2)?=?0.95 with ATPase assay, R(2)?=?0.93 with FDA data) and show the reliability of the rapid on-chip test. The herein presented assay has an excellent screening window factor (Z'-factor) of 0.8, and is suitable for high-throughput testing. PMID:24928366

  5. Digoxin and ouabain induce P-glycoprotein by activating calmodulin kinase II and hypoxia-inducible factor-1alpha in human colon cancer cells

    SciTech Connect

    Riganti, Chiara, E-mail: chiara.riganti@unito.i [Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena, 5/bis, 10126, Torino (Italy); Research Center on Experimental Medicine (CeRMS), Via Santena, 5/bis, 10126, Torino (Italy); Campia, Ivana; Polimeni, Manuela [Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena, 5/bis, 10126, Torino (Italy); Pescarmona, Gianpiero; Ghigo, Dario; Bosia, Amalia [Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena, 5/bis, 10126, Torino (Italy); Research Center on Experimental Medicine (CeRMS), Via Santena, 5/bis, 10126, Torino (Italy)

    2009-11-01

    Digoxin and ouabain are cardioactive glycosides, which inhibit the Na{sup +}/K{sup +}-ATPase pump and in this way they increase the intracellular concentration of cytosolic calcium ([Ca{sup ++}]{sub i}). They are also strong inducers of the P-glycoprotein (Pgp), a transmembrane transporter which extrudes several drugs, including anticancer agents like doxorubicin. An increased amount of Pgp limits the absorption of drugs through epithelial cells, thus inducing resistance to chemotherapy. The mechanism by which cardioactive glycosides increase Pgp is not known and in this work we investigated whether digoxin and ouabain elicited the expression of Pgp with a calcium-driven mechanism. In human colon cancer HT29 cells both glycosides increased the [Ca{sup ++}]{sub i} and this event was dependent on the calcium influx via the Na{sup +}/Ca{sup ++} exchanger. The increased [Ca{sup ++}]{sub i} enhanced the activity of the calmodulin kinase II enzyme, which in turn activated the transcription factor hypoxia-inducible factor-1alpha. This one was responsible for the increased expression of Pgp, which actively extruded doxorubicin from the cells and significantly reduced the pro-apoptotic effect of the drug. All the effects of glycosides were prevented by inhibiting the Na{sup +}/Ca{sup ++} exchanger or the calmodulin kinase II. This work clarified the molecular mechanisms by which digoxin and oubain induce Pgp and pointed out that the administration of cardioactive glycosides may widely affect the absorption of drugs in colon epithelia. Moreover, our results suggest that the efficacy of chemotherapeutic agent substrates of Pgp may be strongly reduced in patients taking digoxin.

  6. Desipramine treatment has minimal effects on the brain accumulation of glucocorticoids in P-gp-deficient and wild-type mice.

    PubMed

    Mason, Brittany L; Thomas, Sarah A; Lightman, Stafford L; Pariante, Carmine M

    2011-10-01

    Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis in patients with depression can be reduced by antidepressants, which are thought to improve endogenous glucocorticoid-mediated negative feedback. A proportion of peripherally released glucocorticoids need to enter brain tissue, protected by the blood-brain barrier (BBB), in order to achieve this negative feedback effect at the level of the central nervous systems (CNS). The multidrug resistance transporter P-glycoprotein (P-gp) has been shown to actively transport glucocorticoid hormones and has been implicated in the regulation of glucocorticoid access to the CNS. Using an in situ brain/choroid plexus perfusion method, we tested the hypothesis that the antidepressant desipramine increases glucocorticoid accumulation in the mouse brain by inhibiting P-gp, following either chronic treatment (8 days, 20 mg/kg/day, IP) or acute administration (20 min brain perfusion in the presence of either 0.9 ?M or 10 ?M desipramine). Contrary to our hypothesis, chronic treatment with desipramine did not affect the accumulation of [łH]dexamethasone in any sample compared to saline-treated mice. Acute desipramine had limited and variable effects on glucocorticoid accumulation in the CNS, with accumulation of [łH]dexamethasone increased in the cerebellum, accumulation of [łH]cortisol reduced in the frontal cortex, hypothalamus, and cerebellum, and accumulation of [łH]corticosterone (the endogenous glucocorticoid in rodents) not affected. Overall, under the conditions tested, these results do not support the hypothesis that treatment with desipramine can inhibit P-gp at the BBB and subsequently increase the accumulation of glucocorticoids in the brain. PMID:21481537

  7. Desipramine treatment has minimal effects on the brain accumulation of glucocorticoids in P-gp-deficient and wild-type mice

    PubMed Central

    Mason, Brittany L.; Thomas, Sarah A.; Lightman, Stafford L.; Pariante, Carmine M.

    2011-01-01

    Summary Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis in patients with depression can be reduced by antidepressants, which are thought to improve endogenous glucocorticoid-mediated negative feedback. A proportion of peripherally released glucocorticoids need to enter brain tissue, protected by the blood–brain barrier (BBB), in order to achieve this negative feedback effect at the level of the central nervous systems (CNS). The multidrug resistance transporter P-glycoprotein (P-gp) has been shown to actively transport glucocorticoid hormones and has been implicated in the regulation of glucocorticoid access to the CNS. Using an in situ brain/choroid plexus perfusion method, we tested the hypothesis that the antidepressant desipramine increases glucocorticoid accumulation in the mouse brain by inhibiting P-gp, following either chronic treatment (8 days, 20 mg/kg/day, IP) or acute administration (20 min brain perfusion in the presence of either 0.9 ?M or 10 ?M desipramine). Contrary to our hypothesis, chronic treatment with desipramine did not affect the accumulation of [3H]dexamethasone in any sample compared to saline-treated mice. Acute desipramine had limited and variable effects on glucocorticoid accumulation in the CNS, with accumulation of [3H]dexamethasone increased in the cerebellum, accumulation of [3H]cortisol reduced in the frontal cortex, hypothalamus, and cerebellum, and accumulation of [3H]corticosterone (the endogenous glucocorticoid in rodents) not affected. Overall, under the conditions tested, these results do not support the hypothesis that treatment with desipramine can inhibit P-gp at the BBB and subsequently increase the accumulation of glucocorticoids in the brain. PMID:21481537

  8. Optimization of irinotecan chronotherapy with P-glycoprotein inhibition

    SciTech Connect

    Filipski, Elisabeth; Berland, Elodie [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Ozturk, Narin [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Istanbul University Faculty of Pharmacy, Department of Pharmacology, Beyazit TR-34116, Istanbul (Turkey); Guettier, Catherine [Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif F-94807 (France); Horst, Gijsbertus T.J. van der [Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam (Netherlands); Lévi, Francis [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif F-94807 (France); and others

    2014-02-01

    The relevance of P-glycoprotein (P-gp) for irinotecan chronopharmacology was investigated in female B6D2F{sub 1} mice. A three-fold 24 h change in the mRNA expression of Abcb1b was demonstrated in ileum mucosa, with a maximum at Zeitgeber Time (ZT) 15 (p < 0.001). No rhythm was found for abcb1a in ileum mucosa, or for Abcb1a/b in Glasgow osteosarcoma (GOS), a mouse tumor cell line moderately sensitive to irinotecan. Non-tumor-bearing mice received irinotecan (50 mg/kg/day i.v. × 4 days) as a single agent or combined with P-gp inhibitor PSC833 (6.25 mg/kg/day i.p. × 4 days) at ZT3 or ZT15, respectively corresponding to the worst or the best irinotecan tolerability. Endpoints involved survival, body weight change and hematologic toxicity. Antitumor efficacy was studied in GOS-bearing mice receiving irinotecan (25, 30 or 40 mg/kg/day × 4 days) and +/? PSC833 at ZT3 or ZT15, with survival, body weight change, and tumor growth inhibition as endpoints. Non-tumor bearing mice lost an average of 17% or 9% of their body weight according to irinotecan administration at ZT3 or ZT15 respectively (p < 0.001). Dosing at ZT15 rather than ZT3 reduced mean leucopenia (9% vs 53%; p < 0.001). PSC833 aggravated irinotecan lethal toxicity from 4 to ? 60%. In tumor-bearing mice, body weight loss was ? halved in the mice on irinotecan or irinotecan–PSC833 combination at ZT15 as compared to ZT3 (p < 0.001). PSC833–irinotecan at ZT15 increased tumor inhibition by ? 40% as compared to irinotecan only at ZT15. In conclusion, P-gp was an important determinant of the circadian balance between toxicity and efficacy of irinotecan. - Highlights: • Irinotecan chronotolerance and chronoefficacy change as drug was applied with PSC833. • P-glycoprotein is an important player of the toxicity and efficacy of irinotecan. • Timing should be considered if chemotherapy is performed with a MDR1 inhibitor.

  9. [11C]phenytoin revisited: synthesis by [11C]CO carbonylation and first evaluation as a P-gp tracer in rats

    PubMed Central

    2012-01-01

    Background At present, several positron emission tomography (PET) tracers are in use for imaging P-glycoprotein (P-gp) function in man. At baseline, substrate tracers such as R-[11C]verapamil display low brain concentrations with a distribution volume of around 1. [11C]phenytoin is supposed to be a weaker P-gp substrate, which may lead to higher brain concentrations at baseline. This could facilitate assessment of P-gp function when P-gp is upregulated. The purpose of this study was to synthesize [11C]phenytoin and to characterize its properties as a P-gp tracer. Methods [11C]CO was used to synthesize [11C]phenytoin by rhodium-mediated carbonylation. Metabolism and, using PET, brain pharmacokinetics of [11C]phenytoin were studied in rats. Effects of P-gp function on [11C]phenytoin uptake were assessed using predosing with tariquidar. Results [11C]phenytoin was synthesized via [11C]CO in an overall decay-corrected yield of 22?±?4%. At 45 min after administration, 19% and 83% of radioactivity represented intact [11C]phenytoin in the plasma and brain, respectively. Compared with baseline, tariquidar predosing resulted in a 45% increase in the cerebral distribution volume of [11C]phenytoin. Conclusions Using [11C]CO, the radiosynthesis of [11C]phenytoin could be improved. [11C]phenytoin appeared to be a rather weak P-gp substrate. PMID:22747744

  10. A study comparing the efficacy of antimicrobial agents versus enzyme (P-gp) inducers in the treatment of 2,4,6 trinitrobenzenesulfonic acid-induced colitis in rats.

    PubMed

    Toklu, H Z; Kabasakal, L; Imeryuz, N; Kan, B; Celikel, C; Cetinel, S; Orun, O; Yuksel, M; Dulger, G A

    2013-08-01

    The intestinal microflora is an important cofactor in the pathogenesis of intestinal inflammation; and the epithelial cell barrier function is critical in providing protection against the stimulation of mucosal immune system by the microflora. In the present study, therapeutic role of the antibacterial drugs rifampicin and ciprofloxacine were investigated in comparison to spironolactone, an enzyme inducer, in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis of the rats. Drugs were administered for 14 days following induction of colitis. All drug treatments ameliorated the clinical hallmarks of colitis as determined by body weight loss and assessment of diarrhea, colon length, and histology. Oxidative damage and neutrophil infiltration as well as nuclear factor ?B (NF-?B) and tumor necrosis factor ? (TNF-?) expressions that were increased during colitis, were decreased significantly. Rifampicin and ciprofloxacin were probably effective due to their antibacterial and immunomodulating properties. The multidrug resistence gene (MDR1) and its product p-glycoprotein (P-gp) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). In the present study, findings of the P-gp expression were inconclusive but regarding previous studies, it can be suggested that the beneficial effects of rifampicin and spironolactone may be partly due to their action as a P-gp ligand. Spironolactone has been reported to supress the transcription of proinflamatory cytokines that are considered to be of importance in immunoinflammatory diseases. It is also a powerful pregnane X receptor (PXR) inducer; thus, inhibition of the expression of NF-?B and TNF-?, and amelioration of inflammation by spironolactone suggest that this may have been through the activation of PXR. However, our findings regarding PXR expression were inconclusive. Activation of PXR by spironolactone probably also contributed to the induction of P-gp, resulting in extrusion of noxious substances from the tissue. PMID:24101390

  11. Effects of licochalcone A on the bioavailability and pharmacokinetics of nifedipine in rats: possible role of intestinal CYP3A4 and P-gp inhibition by licochalcone A.

    PubMed

    Choi, Jin-Seok; Choi, Jun-Shik; Choi, Dong-Hyun

    2014-10-01

    The purpose of this study was to investigate the possible effects of licochalcone A (a herbal medicine) on the pharmacokinetics of nifedipine and its main metabolite, dehydronifedipine, in rats. The pharmacokinetic parameters of nifedipine and/or dehydronifedipine were determined after oral and intravenous administration of nifedipine to rats in the absence (control) and presence of licochalcone A (0.4, 2.0 and 10 mg/kg). The effect of licochalcone A on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activity was also evaluated. Nifedipine was mainly metabolized by CYP3A4. Licochalcone A inhibited CYP3A4 enzyme activity in a concentration-dependent manner with a 50% inhibition concentration (IC50 ) of 5.9 ?m. In addition, licochalcone A significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. The area under the plasma concentration-time curve from time 0 to infinity (AUC) and the peak plasma concentration (Cmax ) of oral nifedipine were significantly greater and higher, respectively, with licochalcone A. The metabolite (dehydronifedipine)-parent AUC ratio (MR) in the presence of licochalcone A was significantly smaller compared with the control group. The above data could be due to an inhibition of intestinal CYP3A4 and P-gp by licochalcone A. The AUCs of intravenous nifedipine were comparable without and with licochalcone A, suggesting that inhibition of hepatic CYP3A4 and P-gp was almost negligible. PMID:24903704

  12. Characterization of anti-Toxoplasma activity of SDZ 215-918, a cyclosporin derivative lacking immunosuppressive and peptidyl-prolyl-isomerase-inhibiting activity: possible role of a P glycoprotein in Toxoplasma physiology.

    PubMed Central

    Silverman, J A; Hayes, M L; Luft, B J; Joiner, K A

    1997-01-01

    The immunosuppressive agent cyclosporin A (CsA) also possesses broad-spectrum antimicrobial activity. Previous investigators have reported that the obligate intracellular protozoan Toxoplasma gondii is sensitive to CsA. We have measured the sensitivity of Toxoplasma to 26 CsA derivatives that maintain only a subset of the parent compound's activity. We identified one compound, SDZ 215-918, that is a particularly potent inhibitor of parasite invasion and replication, with a 50% inhibitory concentration of 0.45 microg/ml, which is 10-fold lower than that of CsA. Kinetic studies demonstrate that activity has a rapid onset (half-life, < or = 20 min) and is initially reversible, although long-term exposure (> 24 h) to 5 microg/ml is lethal; in contrast, this concentration had no effect on host cell protein synthesis or cell division. SDZ 215-918 acts directly on the parasite, as demonstrated by inhibition of macromolecular synthesis in host-free extracellular parasites. Inhibition of invasion is due to a reduction in parasite motility. SDZ 215-918 does not bind to cyclophilins, the ubiquitous cyclosporin-binding proteins, but is a potent inhibitor of the mammalian P glycoprotein, a member of the ATP binding cassette transporter superfamily and the pump responsible for multidrug resistance in cancer and parasite cell lines. SDZ 215-918 blocks the efflux of rhodamine 123 from extracellular parasites, consistent with inhibition of a P glycoprotein-like pump. We suggest that a P glycoprotein or a related transporter plays a crucial role in the biology of Toxoplasma and may be a novel target for antiparasitic compounds. Preliminary studies with animals indicate that SDZ 215-918 inhibits parasite growth in vivo; its relationship to CsA may make it suitable for clinical development. PMID:9303374

  13. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo

    Microsoft Academic Search

    S. Hoffmeyer; O. Burk; O. von Richter; H. P. Arnold; J. Brockmöller; A. Johne; I. Cascorbi; T. Gerloff; I. Roots; M. Eichelbaum; U. Brinkmann

    2000-01-01

    To evaluate whether alterations in the multidrug-resistance (MDR)-1 gene correlate with intestinal MDR-1 expression and uptake of orally administered P-glycoprotein (PGP) substrates, we analyzed the MDR-1 sequence in 21 volunteers whose PGP expression and function in the duodenum had been determined by Western blots and quantitative immunohistology (n = 21) or by plasma concentrations after orally administered digoxin (n =

  14. Differential effects of the organochlorine pesticide DDT and its metabolite p,p'-DDE on p-glycoprotein activity and expression

    SciTech Connect

    Shabbir, Arsalan [Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029 (United States); DiStasio, Susan [Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029 (United States); Zhao, Jingbo [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); VA Medical Center, Bronx, NY 10468 (United States); Cardozo, Christopher P. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); VA Medical Center, Bronx, NY 10468 (United States); Wolff, Mary S. [Department of Community and Preventative Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Caplan, Avrom J. [Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029 (United States)]. E-mail: avrom.caplan@mssm.edu

    2005-03-01

    1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) is an organochlorine pesticide. Its metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethene (p,p'-DDE) is a persistent environmental contaminant and both compounds accumulate in animals. Because multidrug resistance transporters, such as p-glycoprotein, function as a defense against xenobiotic exposure, we analyzed the ability of DDT and p,p'-DDE to act as efflux modulators. Using a competitive intact cell assay based on the efflux of the fluorescent dye rhodamine 123, we found that DDT, but not p,p'-DDE, stimulated dye retention. Subsequent studies using verapamil as competitor suggested that DDT is a weak p-glycoprotein inhibitor. Further studies addressed the ability of DDT and p,p'-DDE to induce MDR1, the gene encoding p-glycoprotein. In HepG2 cells, we found that both compounds induced MDR1 by twofold to threefold. Similar results were observed in mouse liver after a single dose of p,p'-DDE, although some gender-specific induction differences were noted. By contrast, p,p'-DDE failed to induce MDR1 in HeLa cells, indicating some cell-specific effects for induction. Further expression studies demonstrated increased levels of the endoplasmic reticulum molecular chaperone, Bip, in response to DDT, but not p,p'-DDE. These results suggest that DDT, but not p,p'-DDE, induces an endoplasmic reticulum stress response.

  15. Interactions between antidepressants and P-glycoprotein at the blood–brain barrier: clinical significance of in vitro and in vivo findings

    PubMed Central

    O'Brien, Fionn E; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

    2012-01-01

    The drug efflux pump P-glycoprotein (P-gp) plays an important role in the function of the blood–brain barrier by selectively extruding certain endogenous and exogenous molecules, thus limiting the ability of its substrates to reach the brain. Emerging evidence suggests that P-gp may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. Despite some inconsistency in the literature, clinical investigations of potential associations between functional single nucleotide polymorphisms in ABCB1, the gene which encodes P-gp, and antidepressant response have highlighted a potential link between P-gp function and treatment-resistant depression (TRD). Therefore, co-administration of P-gp inhibitors with antidepressants to patients who are refractory to antidepressant therapy may represent a novel therapeutic approach in the management of TRD. Furthermore, certain antidepressants inhibit P-gp in vitro, and it has been hypothesized that inhibition of P-gp by such antidepressant drugs may play a role in their therapeutic action. The present review summarizes the available in vitro, in vivo and clinical data pertaining to interactions between antidepressant drugs and P-gp, and discusses the potential relevance of these interactions in the treatment of depression. PMID:21718296

  16. Secretion of Sparfloxacin from the Human Intestinal Caco-2 Cell Line Is Altered by P-Glycoprotein Inhibitors

    PubMed Central

    Cormet-Boyaka, Estelle; Huneau, Jean-François; Mordrelle, Agnčs; Boyaka, Prosper N.; Carbon, Claude; Rubinstein, Ethan; Tomé, Daniel

    1998-01-01

    The mechanism of intestinal secretion of the difluorinated quinolone sparfloxacin was investigated with the epithelial cell line Caco-2 and was compared to that of the P-glycoprotein (P-gp) substrate vinblastine. The P-gp inhibitors verapamil and progesterone significantly increased the epithelial cell accumulation of both vinblastine and sparfloxacin. This increase is likely to result from an inhibition of drug secretion since both vinblastine uptake and sparfloxacin uptake are known to proceed through a passive transmembrane diffusion. The unidirectional fluxes across cell monlayers grown on permeable filters indicated that a net secretion of sparfloxacin and vinblastine occurred across Caco-2 cells. These secretions were significantly inhibited by the MDR-reversing agent verapamil. We conclude that the P-gp is likely to be involved in the intestinal elimination of the difluorinated quinolone sparfloxacin. PMID:9756763

  17. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo.

    PubMed

    Cornaire, Gilles; Woodley, John; Hermann, Philippe; Cloarec, Alix; Arellano, Cécile; Houin, Georges

    2004-06-18

    The efflux transporter, P-glycoprotein (P-gp), located in the apical membranes of intestinal absorptive cells, can reduce the bioavailability of a wide range of orally administered drugs. A number of surfactants/excipients have been shown to inhibit P-gp, and thus potentially enhance drug absorption. In this study, the improved everted gut sac technique was used to screen excipients for their ability to enhance the absorption of digoxin and celiprolol in vitro. The most effective excipients with digoxin were (at 0.5%, w/v): Labrasol > Imwitor 742 > Acconon E = Softigen 767 > Cremophor EL > Miglyol > Solutol HS 15 > Sucrose monolaurate > Polysorbate 20 > TPGS > Polysorbate 80. With celiprolol, Cremophor EL and Acconon E had no effect, but transport was enhanced by Softigen 767 > TPGS > Imwitor 742. In vivo, the excipients changed the pharmacokinetic profile of orally administered digoxin or celiprolol, but without increasing the overall AUC. The most consistent change was an early peak of absorption, probably due to the higher concentration of excipient in the proximal intestine where the expression of P-gp is lower. These studies show that many excipients/surfactants can modify the pharmacokinetics of orally administered drugs that are P-gp substrates. PMID:15158955

  18. Verapamil and Rifampin Effect on P-Glycoprotein Expression in Hepatocellular Carcinoma

    PubMed Central

    Jalali, Amir; Ghasemian, Sepideh; Najafzadeh, Hossein; Galehdari, Hamid; Seifi, Masoud Reza; Zangene, Fateme; Dehdardargahi, Shaiesteh

    2014-01-01

    Background: High expression of p-glycoprotein (P-gp) has been associated with a poor prognosis in patients with hepatocellular carcinoma (HCC). It is likely that P-gp overexpression is responsible for multidrug resistance in HCC. Objectives: The aim of this study was to elucidate the effect of potent carcinogen nitrosamine with and without verapamil and rifampin drugs on P-gp expression at the mRNA level in HCC. Materials and Methods: Four groups of rats (n = 5) were selected with different treatments and one group as control. mRNA concentration changes were monitored using quantitative PCR (QPCR). Results: A significant difference was found between verapamil treated group and the control regarding the mRNA level. The mdr1a mRNA was significantly decreased in the verapamil group (P ? 0.001). Rifampin administrated group had a decreased level of the mdr1a mRNA compared to the control group (P ? 0.006). No significant changes were observed in HCC induced rats regarding the mdr1a mRNA level when treated with verapamil and rifampin. An enhanced expression of the mdr1a gene was found In the HCC induced animals when treated with drugs. Conclusions: Verapamil and rifampin were found specific and effective against P-gp expression in HCC. In conclusion, treatment efficacy of most anticancer drugs is increased in combination with verapamil and rifampin against most advanced HCC. PMID:25625052

  19. Echinacea purpurea and P-glycoprotein drug transport in Caco-2 cells.

    PubMed

    Hansen, Torstein Schrřder; Nilsen, Odd Georg

    2009-01-01

    Echinacea is widely used as a medical herbal product, but its interaction potential with the drug efflux transporter P-glycoprotein (P-gp) has not yet been evaluated. The interaction potential of Echinacea purpurea towards P-gp mediated drug transport was studied in human intestinal Caco-2 cells. Digoxin (30 nm) was used as a substrate and verapamil as a control inhibitor. Ethanol, 0.8%, needed for herbal extraction and compatibility with the commercial products, inhibited the net digoxin flux by 18%. E. purpurea influenced to a higher degree the B-A transport of digoxin than the A-B transport. A minor increase in net digoxin flux was observed at low concentrations of E. purpurea, an effect anticipated to be allosteric in nature. At higher concentrations, from 0.4 to 6.36 mg dry weight/mL, a statistically significant linear dose-related decrease was observed in the net digoxin flux, indicating a dose dependent E. purpurea inhibition of P-gp. Both Vmax and Km of the net digoxin flux, calculated to 23.7 nmol/cm2/h and 385 microm, respectively, decreased in the presence of E. purpurea in an uncompetitive fashion. Although the effects of Echinacea purpurea on systemic P-gp mediated drug transport are probably limited, an influence on drug bioavailability can not be excluded. PMID:18688789

  20. The role of P-glycoprotein in drug resistance in multiple myeloma.

    PubMed

    Abraham, Joseph; Salama, Noha N; Azab, Abdel Kareem

    2015-01-01

    Abstract Multiple myeloma (MM) is a malignant neoplastic cancer of the plasma cells that involves the bone marrow. The majority of patients with MM initially respond to chemotherapy, but they eventually become resistant to later drug therapy. One of the reasons for drug resistance in patients with MM is efflux transporters. P-glycoprotein (P-gp) is the most studied of the multidrug resistance proteins, and is up-regulated in response to many chemotherapeutic drugs. This up-regulation of P-gp causes a decrease in the intracellular accumulation of these drugs, limiting their therapeutic efficacy. In this review, we focus on the role of P-gp in drugs used for patients with MM. P-gp has been found to be an important factor with regard to drug resistance in many of the drug classes used in the treatment of MM (proteasome inhibitors, anthracyclines, alkylating agents and immunomodulators are examples). Thus, our further understanding of its mechanism and inhibitory effects will help us decrease drug resistance in patients with MM. PMID:24678978

  1. Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery.

    PubMed

    Gu, Jijin; Fang, Xiaoling; Hao, Junguo; Sha, Xianyi

    2015-03-01

    Multidrug resistance (MDR) remains one of the major reasons for the reductions in efficacy of many chemotherapeutic agents in cancer therapy. As a classical MDR phenotype of human malignancies, the adenosine triphosphate binding cassette (ABC)-transporter P-glycoprotein (MDR1/P-gp) is an efflux protein with aberrant activity that has been linked to multidrug resistance in cancer. For the reversal of MDR by RNA interference (RNAi) technology, an U6-RNA gene promoter-driven expression vector encoding anti-MDR1/P-gp short hairpin RNA (shRNA) molecules was constructed (abbreviated pDNA-iMDR1-shRNA). This study explored the feasibility of using Pluronic P123-conjugated polypropylenimine (PPI) dendrimer (P123-PPI) as a carrier for pDNA-iMDR1-shRNA to overcome tumor drug resistance in breast cancer cells. P123-PPI functionalized with anti-CD44 monoclonal antibody (CD44 receptor targeting ligand) (anti-CD44-P123-PPI) can efficiently condense pDNA into nanocomplexes to achieve efficient delivery of pDNA, tumor specificity and long circulation. The in vitro studies methodically evaluated the effect of P123-PPI and anti-CD44-P123-PPI on pDNA-iMDR1-shRNA delivery and P-gp downregulation. Our in vitro results indicated that the P123-PPI/pDNA and anti-CD44-P123-PPI/pDNA nanocomplexes with low cytotoxicity revealed higher transfection efficiency compared with the PPI/pDNA nanocomplexes and Lipofectamine™ 2000 in the presence of serum. The nanocomplexes loaded with pDNA-iMDR1-shRNA against P-gp could reverse MDR accompanied by the suppression of MDR1/P-gp expression at the mRNA and protein levels and improve the internalization and cytotoxicity of Adriamycin (ADR) in the MCF-7/ADR multidrug-resistant cell line. BALB/c nude mice bearing MCF-7/ADR tumor were utilized as a xenograft model to assess antitumor efficacy in vivo. The results demonstrated that the administration of anti-CD44-P123-PPI/pDNA-iMDR1-shRNA nanocomplexes combined with ADR could inhibit tumor growth more efficiently than ADR alone. The enhanced therapeutic efficacy of ADR may be correlated with increased accumulation of ADR in drug-resistant tumor cells. Consequently, these results suggested that the use of pDNA-iMDR1-shRNA-loaded nanocomplexes may be a promising gene delivery strategy to reverse MDR and improve the effectiveness of chemotherapy. PMID:25662500

  2. Discovery of the Inhibitory Effect of a Phosphatidylinositol Derivative on P-Glycoprotein by Virtual Screening Followed by In Vitro Cellular Studies

    PubMed Central

    Lucas, Xavier; Simon, Silke; Schubert, Rolf; Günther, Stefan

    2013-01-01

    P-glycoprotein is capable of effluxing a broad range of cytosolic and membrane penetrating xenobiotic substrates, thus leading to multi-drug resistance and posing a threat for the therapeutic treatment of several diseases, including cancer and central nervous disorders. Herein, a virtual screening campaign followed by experimental validation in Caco-2, MDKCII, and MDKCII mdr1 transfected cell lines has been conducted for the identification of novel phospholipids with P-gp transportation inhibitory activity. Phosphatidylinositol-(1,2-dioctanoyl)-sodium salt (8?0 PI) was found to significantly inhibit transmembrane P-gp transportation in vitro in a reproducible-, cell line-, and substrate-independent manner. Further tests are needed to determine whether this and other phosphatidylinositols could be co-administered with oral drugs to successfully increase their bioavailability. Moreover, as phosphatidylinositols and phosphoinositides are present in the human diet and are known to play an important role in signal transduction and cell motility, our finding could be of substantial interest for nutrition science as well. PMID:23593281

  3. Novel flavonoid-based biodegradable nanoparticles for effective oral delivery of etoposide by P-glycoprotein modulation: an in vitro, ex vivo and in vivo investigations.

    PubMed

    Fatma, Sharmeen; Talegaonkar, Sushama; Iqbal, Zeenat; Panda, Amulya Kumar; Negi, Lalit Mohan; Goswami, Dinesh Giri; Tariq, Mohammad

    2014-06-17

    Abstract A receptor level interaction of etoposide with P-glycoprotein (P-gp) and subsequent intestinal efflux has an adverse effect on its oral absorption. The present work is aimed to enhance the bioavailability of etoposide by co-administering it with quercetin (a P-gp inhibitor) in dual-loaded polymeric nanoparticle formulation. Poly-lactic-co-glycolic acid (PLGA) nanoparticles were optimized for various parameters like o/w phase volume ratio, poly-vinyl alcohol concentration, PLGA concentration and sonication time. The cytotoxicity studies (MTT assay) revealed a 9- and 11-fold decrease in the IC 50 values for etoposide-loaded nanoparticles (ENP) and etoposide?+?quercetin dual-loaded nanoparticles (EQNP) when compared to that of free etoposide, respectively, and the results were further supported by florescent-activated cell sorter studies. The confocal imaging of the intestinal sections treated with ENP and EQNP containing fluorescent probe (rhodamine) showed the superiority of the EQNP to permeate deeper. Furthermore, pharmacokinetic studies on rats revealed that EQNP exhibited a 2.4-fold increase in bioavailability of etoposide than ENP with no quercetin. The developed loaded nanoparticles have the high potential to enhance the bioavailability of the etoposide and sensitize the resistant cells. PMID:24937381

  4. Modification of marine natural product ningalin B and SAR study lead to potent P-glycoprotein inhibitors.

    PubMed

    Yang, Chao; Wong, Iris L K; Jin, Wen Bin; Jiang, Tao; Chow, Larry M C; Wan, Sheng Biao

    2014-10-01

    In this study, new marine ningalin B analogues containing a piperazine or a benzoloxy group at ring C have been synthesized and evaluated on their P-gp modulating activity in human breast cancer and leukemia cell lines. Their structure-activity relationship was preliminarily studied. Compounds 19 and 20 are potent P-gp inhibitors. These two synthetic analogues of permethyl ningalin B may be potentially used as effective modulators of P-gp-mediated drug resistance in cancer cells. PMID:25329704

  5. Modification of Marine Natural Product Ningalin B and SAR Study Lead to Potent P-Glycoprotein Inhibitors

    PubMed Central

    Yang, Chao; Wong, Iris L. K.; Jin, Wen Bin; Jiang, Tao; Chow, Larry M. C.; Wan, Sheng Biao

    2014-01-01

    In this study, new marine ningalin B analogues containing a piperazine or a benzoloxy group at ring C have been synthesized and evaluated on their P-gp modulating activity in human breast cancer and leukemia cell lines. Their structure-activity relationship was preliminarily studied. Compounds 19 and 20 are potent P-gp inhibitors. These two synthetic analogues of permethyl ningalin B may be potentially used as effective modulators of P-gp-mediated drug resistance in cancer cells. PMID:25329704

  6. Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics.

    PubMed

    Prajapati, Rameshwar; Sangamwar, Abhay T

    2014-11-01

    P-glycoprotein (P-gp) is well known for multidrug resistance in drug therapy. Its over-expression results into the increased efflux of therapeutic agents rendering them inefficacious. A clear understanding of P-gp efflux mechanism and substrate/inhibitor interactions during the course of efflux cycle will be crucial for designing effective P-gp inhibitors, and therapeutic agents that are non-substrate to P-gp. In the present work, we have modeled P-gp in three different catalytic states. These models were utilized for elucidation of P-gp translocation mechanism using multi-targeted molecular dynamics (MTMD). The gradual changes occurring in P-gp structure from inward open to outward open conformation were sampled out. A detailed investigation of conformational changes occurring in trans-membrane domains (TMDs) during the course of catalytic cycle was carried out. Movements of each TM helices in response to pronounced twisting and translatory motion of NBDs were measured quantitatively. The role of intracellular coupling helices (ICHs) during the structural transition of P-gp was studied, and observed as vital links for structural transition. A close observation of displacements and conformational changes in the residues lining drug-binding pocket was also carried out. Further, we have analyzed the molecular interactions of P-gp substrates/inhibitors during the P-gp translocation to find out how stable binding interactions of a compound at drug-binding site(s) in open conformation, becomes highly destabilized in closed conformation. The study revealed striking differences between the molecular interactions of substrate and inhibitor; inhibitors showed a tendency to maintain stable binding interactions during the catalytic transition cycle. PMID:25068895

  7. Interaction of forskolin with the P-glycoprotein multidrug transporter

    SciTech Connect

    Ming s, D.I.; Seamon, K.B. (Food and Drug Administration, Bethesda, MD (United States)); Speicher, L.A.; Tew, K.D. (Fox Chase Cancer Research Center, Philadelphia, PA (United States)); Ruoho, A.E. (Univ. of Wisconsin, Madison (United States))

    1991-08-27

    Forskolin and 1,9-dideoxyforskolin, an analogue that does not activate adenylyl cyclase, were tested for their ability to enhance the cytotoxic effects of adriamycin in human ovarian carcinoma cells, SKOV3, which are sensitive to adriamycin and express low levels of P-glycoprotein, and a variant cell line, SKVLB, which overexpresses the P-glycoprotein and has the multidrug reing ance (MDR) phenotype. Forskolin and 1,9-dideoxyforskolin both increased the cytotoxic effects of adriamycin in SKVLB cells, yet had no effect on SKOV3 cells. Two photoactive derivatives of forskolin have been synthesized, 7-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, and 6-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, which exhibit specificity for labeling the glucose transporter and aing lyl cyclase, respectively. Both photolabels identified a 140-kDa protein in membranes from SKVLB cells whose labeling was inhibited by forskolin and 1,9-dideoxyforskolin. The data are consistent with forskolin binding to the P-glycoprotein analogous to that of other chemosensitizing drugs that have been shown to partially reverse MDR. The ability of forskolin photolabels to specifically label the transporter, the adenylyl cyclase, and the P-glycoprotein suggests that these proteins may share a common biing g domain for forskolin analogues.

  8. Inhibition of P-glycoprotein in the blood-brain barrier alters avermectin neurotoxicity and swimming performance in rainbow trout.

    PubMed

    Kennedy, Christopher J; Tierney, Keith B; Mittelstadt, Matthew

    2014-01-01

    The importance of the blood brain barrier (BBB) and the contribution to its function by the efflux transporter P-glycoprotein (P-gp) in teleosts were examined using the P-gp substrates and central nervous system neurotoxins ivermectin (22,23-dihydroavermectin B1a+22,23-dihydroavermectin B1b) [IVM]) and emamectin benzoate (4?-deoxy-49?epimethylaminoavermectin B1 benzoate [EB]). Trout were injected intraperitoneally with 0.01-1.0 and 1-50mg/kg of IVM or EB, respectively either alone or in combination with cyclosporin A (CsA: a P-gp substrate) at 1mg/kg. IVM affected the swimming performance (critical swimming speed, burst swimming distance, and schooling) at significantly lower concentrations than EB. When fish were exposed to IVM or EB in the presence of CsA, alterations to swimming were increased, suggesting that competition for P-gp in the BBB by CsA increased IVM and EB penetration into the CNS and decreased swimming capabilities. The effect of co-administration of CsA on swimming-related toxicity was different between IVM and EB-treated fish; EB toxicity was increased to a greater extent than IVM toxicity. The greater chemosensitization effect of EB vs. IVM was examined using a P-gp competitive inhibition assay in isolated trout hepatocytes with rhodamine 123 as a substrate. At the cellular level, IVM was a more potent inhibitor of P-gp than EB, which allowed for a greater accumulation of R123 in hepatocytes. These results provide evidence for a role of P-gp in the BBB of fish, and suggest that this protein protects fish from environmental neurotoxins. PMID:24316435

  9. Region-dependent disappearance of vinblastine in rat small intestine and characterization of its P-glycoprotein-mediated efflux system.

    PubMed

    Nakayama, A; Saitoh, H; Oda, M; Takada, M; Aungst, B J

    2000-10-01

    This study was aimed to characterize the absorption behavior of vinblastine (VLB), a well-known substrate of P-glycoprotein (P-gp), from rat small intestine, especially focusing on the regional-dependence of its efflux mediated by P-gp. VLB disappeared from duodenal and ileal loops of male Wistar rats fairly rapidly (30-60% in 30 min). In contrast, its disappearance from the jejunal loop was almost negligible and in some rats >100% of the jejunal dose was recovered. The radioactivity derived from [3H]VLB, which was absorbed from duodenum and ileum, was detected in the jejunal region. The jejunal appearance of radioactivity was increased when unlabeled VLB was present in the region in advance. The basolateral-to-apical transport of [3H]VLB across Caco-2 cell monolayers was greater when unlabeled VLB was added to the apical medium than when VLB-free buffer was applied to the apical side. When verapamil or cyclosporin A, potent modulators of P-gp, was added to the apical medium together with unlabeled VLB, enhanced basolateral-to-apical transport of [3H]VLB was disappeared. It is suggested that VLB absorption is strongly restricted by P-gp, especially in the jejunal region of the rat small intestine, and that the secretory transport via intestinal P-gp may be subject to trans-stimulation. Moreover, intravenously administered methylprednisolone and intramuscularly administered progesterone significantly enhanced the absorption of VLB, suggesting that parenterally administered P-gp modulators could influence the intestinal absorption of P-gp substrates. PMID:11033075

  10. Dynamics and structural changes induced by ATP and/or substrate binding in the inward-facing conformation state of P-glycoprotein

    NASA Astrophysics Data System (ADS)

    Watanabe, Yurika; Hsu, Wei-Lin; Chiba, Shuntaro; Hayashi, Tomohiko; Furuta, Tadaomi; Sakurai, Minoru

    2013-02-01

    P-glycoprotein (P-gp) is a multidrug transporter that catalyzes the transport of a substrate. To elucidate the underlying mechanism of this type of substrate transport, we performed molecular dynamics (MD) simulations using the X-ray crystal structure of P-gp, which has an inward-facing conformation. Our simulations indicated that the dimerization of the nucleotide binding domains (NBDs) is driven by the binding of ATP to the NBDs and/or the binding of the substrate to a cavity in the transmembrane domains (TMDs). Based on these results, we discuss a role of ATP in the allosteric communication that occurs between the NBDs and the TMDs.

  11. Restoration of chemosensitivity by multifunctional micelles mediated by P-gp siRNA to reverse MDR.

    PubMed

    Shen, Jie; Wang, Qiwen; Hu, Qida; Li, Yongbing; Tang, Guping; Chu, Paul K

    2014-10-01

    One of the main obstacles in tumor therapy is multiple drug resistance (MDR) and an underlying mechanism of MDR is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins, especially P-glycoprotein (P-gp). In the synergistic treatment of siRNA and anti-cancer drug doxorubicin, it is crucial that both the siRNA and doxorubicin are simultaneously delivered to the tumor cells and the siRNA can fleetly down-regulate P-g before doxorubicin inactivates the P-gp and is pumped out. Herein, a type of micelles comprising a polycationic PEI-CyD shell to condense the siRNA and hydrophobic core to package doxorubicin is reported. The structure of the polymer is determined by (1)H NMR, FT-IR, DSC, and XRD and the micelles are characterized by DLS, 2D-NOESY NMR, and TEM to study the self-assembly of the micelles with siRNA and drugs. In vitro studies demonstrate controlled release and temporal enhancement of the therapeutic efficacy of P-gp siRNA and doxorubicin. Release of siRNA down-regulates the mRNA and protein levels of P-gp in the MCF-7/ADR cell lines effectively and the accumulated doxorubicin facilitates apoptosis of the cells to reverse MDR. Moreover, in vivo research reveals that the siRNA and doxorubicin loaded micelles induce tumor cell apoptosis and inhibit the growth of MDR tumor. The western blotting and RT-PCR results illustrate that the synergistic treatment of siRNA and doxorubicin leads to efficient reduction of the P-gp expression as well as cell apoptotic induction in MDR tumors at a small dosage of 0.5 mg/kg. The micelles have large clinical potential in drug/RNAi synergistic treatment via restoration of the chemosensitivity in MDR cancer therapy. PMID:25002258

  12. 3-(Benzo[d][1,3]dioxol-5-ylamino)-N-(4-fluorophenyl)thiophene-2-carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P-glycoprotein efflux pump activity.

    PubMed

    Mudududdla, Ramesh; Guru, Santosh K; Wani, Abubakar; Sharma, Sadhana; Joshi, Prashant; Vishwakarma, Ram A; Kumar, Ajay; Bhushan, Shashi; Bharate, Sandip B

    2015-04-14

    3-((Quinolin-4-yl)methylamino)-N-(4-(trifluoromethoxy)phenyl)thiophene-2-carboxamide (OSI-930, 1) is a potent inhibitor of c-kit and VEGFR2, currently under phase I clinical trials in patients with advanced solid tumors. In order to understand the structure-activity relationship, a series of 3-arylamino N-aryl thiophene 2-carboxamides were synthesized by modifications at both quinoline and amide domains of the OSI-930 scaffold. All the synthesized compounds were screened for in vitro cytotoxicity in a panel of cancer cell lines and for VEGFR1 and VEGFR2 inhibition. Thiophene 2-carboxamides substituted with benzo[d][1,3]dioxol-5-yl and 2,3-dihydrobenzo[b][1,4]dioxin-6-yl groups 1l and 1m displayed inhibition of VEGFR1 with IC50 values of 2.5 and 1.9 ?M, respectively. Compounds 1l and 1m also inhibited the VEGF-induced HUVEC cell migration, indicating its anti-angiogenic activity. OSI-930 along with compounds 1l and 1m showed inhibition of P-gp efflux pumps (MDR1, ABCB1) with EC50 values in the range of 35-74 ?M. The combination of these compounds with doxorubicin led to significant enhancement of the anticancer activity of doxorubicin in human colorectal carcinoma LS180 cells, which was evident from the improved IC50 of doxorubicin, the increased activity of caspase-3 and the significant reduction in colony formation ability of LS180 cells after treatment with doxorubicin. Compound 1l showed a 13.8-fold improvement in the IC50 of doxorubicin in LS180 cells. The ability of these compounds to display dual inhibition of VEGFR and P-gp efflux pumps demonstrates the promise of this scaffold for its development as multi-drug resistance-reversal agents. PMID:25758415

  13. Effects of myricetin on the bioavailability of doxorubicin for oral drug delivery in rats: possible role of CYP3A4 and P-glycoprotein inhibition by myricetin.

    PubMed

    Choi, Sang-Joon; Shin, Sang-Chul; Choi, Jun-Shik

    2011-02-01

    The purpose of this study was to investigate the effect of oral myricetin on the bioavailability and pharmacokinetics of orally and intravenously administered doxorubicin (DOX) in rats for oral delivery. The effect of myricetin on the P-glycoprotein (P-gp) and CYP3A4 activity was also evaluated. Myricetin inhibited CYP3A4 enzyme activity with 50% inhibition concentration of 7.8 ?M. In addition, myricetin significantly enhanced the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-gp. The pharmacokinetic parameters of DOX were determined in rats after oral (40 mg/kg) or intravenous (10 mg/kg) administration of DOX to rats in the presence and absence of myricetin (0.4, 2 or 10 mg/kg). Compared to the control group, myricetin significantly (p < 0.05, 2 mg/kg; p < 0.01, 10 mg/kg) increased the area under the plasma concentration-time curve (AUC, 51-117% greater) of oral DOX. Myricetin also significantly (p < 0.05, 2 mg/kg; p < 0.01, 10 mg/kg) increased the peak plasma concentration of DOX. Consequently, the absolute bioavailability of DOX was increased by myricetin compared to that in the control group, and the relative bioavailability of oral DOX was increased by 1.51- to 2.17-fold. The intravenous pharmacokinetics of DOX were not affected by the concurrent use of myricetin in contrast to the oral administration of DOX. Accordingly, the enhanced oral bioavailability in the presence of myricetin, while there was no significant change in the intravenous pharmacokinetics of DOX, could be mainly due to the increased intestinal absorption via P-gp inhibition by myricetin rather than to the reduced elimination of DOX. These results suggest that the increase in the oral bioavailability of DOX might be mainly attributed to enhanced absorption in the gastrointestinal tract via the inhibition of P-gp and to reduced first-pass metabolism of DOX due to inhibition of CYP3A in the small intestine and/or in the liver by myricetin. PMID:21380815

  14. Expression of multidrug resistance proteins, P-gp, MRP1 and LRP, in soft tissue sarcomas analysed according to their histological type and grade.

    PubMed

    Komdeur, R; Plaat, B E C; van der Graaf, W T A; Hoekstra, H J; Hollema, H; van den Berg, E; Zwart, N; Scheper, R J; Molenaar, W M

    2003-05-01

    The biological behaviour of different histological types and grades of soft tissue sarcomas (STS) varies. This might result in a differing sensitivity to cytotoxic drugs. Cross-resistance to functionally and structurally distinct natural-product drugs, known as multidrug resistance (MDR), is associated with the overexpression of P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and lung resistance-related protein (LRP). The purpose of this study was to evaluate the expression of P-gp, MRP1 and LRP in STS according to their histological type and grade. In 141 chemotherapy-naive STS patients, the expression of the three MDR proteins was detected by immunohistochemistry. Nine histological types were documented. These were 19% grade 1, 34% grade 2 and 47% grade 3 tumours. Expression of P-gp and LRP was observed more frequently than the expression of MRP1 (P<0.0001). P-gp expression was most pronounced in malignant fibrous histiocytoma (MFH), but was low in leiomyosarcomas. MRP1 was expressed in most malignant peripheral nerve sheath tumours (MPNST). LRP was strongly expressed in MFH and unspecified sarcomas, but was low in liposarcomas. MRP1 and LRP expression was significantly more common in grades 2 and 3 compared with grade 1 tumours. P-gp expression was correlated with MRP1, especially in grade 3 STS. In conclusion, P-gp, MRP1 and LRP are expressed in the majority of STS, but this expression varies according to the histological type. MRP1 and LRP, but not P-gp expression, were found to be correlated to tumour grade. MDR might contribute to the observed differences in clinical behaviour within the heterogeneous group of STS. PMID:12706359

  15. Biological evaluation, structure-activity relationships, and three-dimensional quantitative structure-activity relationship studies of dihydro-beta-agarofuran sesquiterpenes as modulators of P-glycoprotein-dependent multidrug resistance.

    PubMed

    Reyes, Carolina P; Muńoz-Martínez, Francisco; Torrecillas, Ivan R; Mendoza, Cristina R; Gamarro, Francisco; Bazzocchi, Isabel L; Núńez, Marvin J; Pardo, Leonardo; Castanys, Santiago; Campillo, Mercedes; Jiménez, Ignacio A

    2007-10-01

    Multidrug resistance (MDR) is one of the main challenges in the chemotherapy of cancer, malaria, and other important diseases. Here, we report the inhibitory activity of a series of 76 dihydro-beta-agarofuran sesquiterpenes, tested on NIH-3T3 cells expressing the human P-glycoprotein (Pgp) multidrug transporter, to establish quantitative comparisons of their respective abilities to block the drug transport activity. The screening was performed on the basis of the ability of sesquiterpenes to modulate the intracellular accumulation of the classical Pgp substrate daunorubicin. To understand the structural basis for inhibitory activity and guide the design of more potent Pgp inhibitors, we have performed a three-dimensional quantitative structure-activity relationship model using the comparative molecular similarity indices analysis (CoMSIA). The most salient features of these requirements are in the region of the substituents at the C-2, C-3, and C-8 positions, which seem to be critical for determining the overall effectiveness of sesquiterpenes as Pgp inhibitors. PMID:17850057

  16. Uptake/Efflux Transport of Tramadol Enantiomers and O-Desmethyl-Tramadol: Focus on P-Glycoprotein

    PubMed Central

    Kanaan, Mouna; Daali, Youssef; Dayer, Pierre; Desmeules, Jules

    2009-01-01

    Abstract: The analgesic effect of tramadol (TMD) results from the monoaminergic effect of its two enantiomers, (+)-TMD and (?)-TMD as well as its opioid metabolite (+)-O-desmethyl-tramadol (M1). P-glycoprotein (P-gp) might be of importance in the analgesic and tolerability profile variability of TMD. Our study investigated the involvement of P-gp in the transepithelial transport of (+)-TMD, (?)-TMD and M1, using a Caco-2 cell monolayer model. The bidirectional transport of racemic TMD and M1 (1–100 µM) across the monolayers was investigated at two pH conditions (pH 6.8/7.4 and 7.4/7.4) in the presence and absence of P-gp inhibitor cyclosporine A (10 µM) and assessed with the more potent and specific P-gp inhibitor GF120918 (4 µM). Analytical quantification was performed by liquid chromatography coupled to the fluorescence detector. A net secretion of (+)-TMD, (?)-TMD and M1 was observed when a pH gradient was applied (TR: Papp(B ? A)/Papp(A ? B): 1.8–2.7; P < 0.05). However, the bidirectional transport of all compounds was equal in the non-gradient system. In the presence of P-gp inhibitors, a slight but significant increase of secretory flux was observed (up to 26%; P < 0.05) at both pH conditions. In conclusion, (+)-TMD, (?)-TMD and M1 are not P-gp substrates. However, proton-based efflux pumps may be involved in limiting the gastrointestinal absorption of TMD enantiomers as well as enhancing TMD enantiomers and M1 renal excretion. A possible involvement of uptake carriers in the transepithelial transport of TMD enantiomers and M1 is suggested. PMID:19496778

  17. Drug transporter, P-glycoprotein (MDR1), is an integrated component of the mammalian blood-testis barrier§

    PubMed Central

    Su, Linlin; Cheng, Yan; Mruk, Dolores D.

    2009-01-01

    Throughout spermatogenesis, leptotene spermatocytes traverse the blood-testis barrier (BTB) to enter the adluminal compartment of the seminiferous epithelium for continued development. At the same time, the integrity of the BTB, which is constituted by co-existing tight junctions (TJ), basal ectoplasmic specializations (basal ES) and desmosome-like junctions, must be maintained since a breach in barrier function can result in spermatogenic arrest and infertility. There is evidence to suggest that drug transporters may function at the BTB, but little is known about how they contribute to spermatogenesis. In this study, we investigate the role of P-glycoprotein (P-gp), a drug efflux pump, in BTB dynamics. A survey by RT-PCR revealed several transport proteins to be expressed by the testis, including Mdr1 (gene symbol for P-gp), Mrp1, Abcc5 and Slc15a1. It was also demonstrated that P-gp localizes to the BTB in all stages of the epithelial cycle in the adult rat testis, as well as to the Sertoli cell elongated spermatid interface in stages VII–VIII. We continued our study by examining the levels of several transporters in the testis following oral administration of Adjudin, a compound known to affect Sertoli-germ cell adhesion. In this experiment, the steady-state levels of P-gp, MRP1, ABCG1 and SLC15A1 were all found to increase by several-fold within hours of Adjudin treatment during junction restructuring. More importantly, an increase in P-gp association with TJ proteins (e.g., occludin, claudin-11 and JAM-A) was noted when testis lysates from Adjudin-treated rats were used for co-immunoprecipitation experiments, suggesting that P-gp may enhance BTB function during Sertoli-germ cell junction restructuring. PMID:19720156

  18. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol

    SciTech Connect

    Arora, Annu [Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, M.G. Marg, Lucknow-226001 (India); Seth, Kavita [Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, M.G. Marg, Lucknow-226001 (India); Kalra, Neetu [Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, M.G. Marg, Lucknow-226001 (India); Shukla, Yogeshwer [Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, M.G. Marg, Lucknow-226001 (India)]. E-mail: yogeshwer_shukla@hotmail.com

    2005-02-01

    Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10{sup -3} M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers.

  19. P-glycoprotein is functionally expressed in the placenta-derived bovine caruncular epithelial cell line 1 (BCEC-1).

    PubMed

    Waterkotte, B; Hambruch, N; Döring, B; Geyer, J; Tinneberg, H-R; Pfarrer, C

    2011-02-01

    Drug treatment is critical in pregnant cows due to the possibility of a maternal-to-fetal drug transfer across the placenta. Since the (syn)epitheliochorial bovine placental barrier includes an intact uterine epithelium, which in general limits drug transfer to the fetal trophoblast, the establishment of a species- and organ-specific in vitro model like the bovine caruncular epithelial cell line 1 (BCEC-1) for testing bovine placental drug transport is desirable. P-glycoprotein (P-gp or ABCB1) is an important efflux carrier that limits drug permeability across blood-tissue barriers such as the placenta and transports a wide range of structurally unrelated compounds including many drugs commonly used in veterinary medicine. The aim of the present study was to elucidate the suitability of BCEC-1 as an appropriate in vitro model for P-gp mediated drug transport in the bovine placenta. P-gp mRNA expression was detected by RT-PCR in BCEC-1 and placental tissue. Additionally, the carrier protein was localised in the apical membrane of BCEC-1 by immunofluorescence staining with the mouse monoclonal antibody C494. Drug transport in BCEC-1 was investigated by FACS analysis using the fluorescent P-gp substrate Rhodamine 123. Inhibition of Rhodamine 123 efflux by the P-gp inhibitors Verapamil and PSC833 confirmed functional expression of P-gp in BCEC-1. Furthermore, transport measurements in the transwell-system revealed a basal-to-apical net flux of the P-gp substrate digoxin at concentrations ranging from 10nM to 10 ?M. This transwell digoxin flux was inhibited by Verapamil. In conclusion, P-gp is functionally expressed in BCEC-1 and mediates a basal-to-apical flux of digoxin indicating dominant apical localization of P-gp in this cell culture model. Therefore, BCEC-1 may be an appropriate in vitro model to study drug transport across the maternal epithelium as part of the epitheliochorial placental barrier of the cow. PMID:21145107

  20. Investigating the binding interactions of the anti-Alzheimer's drug donepezil with CYP3A4 and P-glycoprotein.

    PubMed

    McEneny-King, Alanna; Edginton, Andrea N; Rao, Praveen P N

    2015-01-15

    The anti-Alzheimer's agent donepezil is known to bind to the hepatic enzyme CYP3A4, but its relationship with the efflux transporter P-glycoprotein (P-gp) is not as well elucidated. We conducted in vitro inhibition studies of donepezil using human recombinant CYP3A4 and P-gp. These studies show that donepezil is a weak inhibitor of CYP3A4 (IC50=54.68±1.00?M) whereas the reference agent ketoconazole exhibited potent inhibition (CYP3A4 IC50=0.20±0.01?M). P-gp inhibition studies indicate that donepezil exhibits better inhibition relative to CYP3A4 (P-gp EC50=34.85±4.63?M) although it was less potent compared to ketoconazole (P-gp EC50=9.74±1.23?M). At higher concentrations, donepezil exhibited significant inhibition of CYP3A4 (69%, 84% and 87% inhibition at 100, 250 and 500?M, respectively). This indicates its potential to cause drug-drug interactions with other CYP3A4 substrates upon co-administration; however, this scenario is unlikely in vivo due to the low therapeutic concentrations of donepezil. Similarly, donepezil co-administration with P-gp substrates or inhibitors is unlikely to result in beneficial or adverse drug interactions. The molecular docking studies show that the 5,6-dimethoxyindan-1-one moiety of donepezil was oriented closer to the heme center in CYP3A4 whereas in the P-gp binding site, the protonated benzylpiperidine pharmacophore of donepezil played a major role in its binding ability. Energy parameters indicate that donepezil complex with both CYP3A4 and P-gp was less stable (CDOCKER energies=-15.05 and -4.91kcal/mol, respectively) compared to the ketoconazole-CYP3A4 and P-gp complex (CDOCKER energies=-41.89 and -20.03kcal/mol, respectively). PMID:25499431

  1. Clinical drug-drug interaction assessment of ivacaftor as a potential inhibitor of cytochrome P450 and P-glycoprotein.

    PubMed

    Robertson, Sarah M; Luo, Xia; Dubey, Neeraj; Li, Chonghua; Chavan, Ajit B; Gilmartin, Geoffrey S; Higgins, Mark; Mahnke, Lisa

    2015-01-01

    Ivacaftor is approved in the USA for the treatment of cystic fibrosis (CF) in patients with a G551D-CFTR mutation or one of eight other CFTR mutations. A series of in vitro experiments conducted early in the development of ivacaftor indicated ivacaftor and metabolites may have the potential to inhibit cytochrome P450 (CYP) 2C8, CYP2C9, CYP3A, and CYP2D6, as well as P-glycoprotein (P-gp). Based on these results, a series of clinical drug-drug interaction (DDI) studies were conducted to evaluate the effect of ivacaftor on sensitive substrates of CYP2C8 (rosiglitazone), CYP3A (midazolam), CYP2D6 (desipramine), and P-gp (digoxin). In addition, a DDI study was conducted to evaluate the effect of ivacaftor on a combined oral contraceptive, as this is considered an important comedication in CF patients. The results indicate ivacaftor is a weak inhibitor of CYP3A and P-gp, but has no effect on CYP2C8 or CYP2D6. Ivacaftor caused non-clinically significant increases in ethinyl estradiol and norethisterone exposure. Based on these results, caution and appropriate monitoring are recommended when concomitant substrates of CYP2C9, CYP3A and/or P-gp are used during treatment with ivacaftor, particularly drugs with a narrow therapeutic index, such as warfarin. PMID:25103957

  2. Impact of curcumin-induced changes in P-glycoprotein and CYP3A expression on the pharmacokinetics of peroral celiprolol and midazolam in rats.

    PubMed

    Zhang, Wenxia; Tan, Theresa May Chin; Lim, Lee-Yong

    2007-01-01

    The aim of this study was to evaluate whether curcumin could modulate P-glycoprotein (P-gp) and CYP3A expression, and in turn modify the pharmacokinetic profiles of P-gp and CYP3A substrates in male Sprague-Dawley rats. Intragastric gavage of the rats with 60 mg/kg curcumin for 4 consecutive days led to a down-regulation of the intestinal P-gp level. There was a concomitant upregulation of hepatic P-gp level, but the renal P-gp level was unaffected. Curcumin also attenuated the CYP3A level in the small intestine but induced CYP3A expression in the liver and kidney. Regular curcumin consumption also caused the C(max) and area under the concentration-time curve (AUC(0-8) and total AUC) of peroral celiprolol (a P-gp substrate with negligible cytochrome P450 metabolism) at 30 mg/kg to increase, but the apparent oral clearance (CL(oral)) of the drug was reduced. Similarly, rats treated with curcumin for 4 consecutive days showed higher AUC (AUC(0-4) and total AUC) and lower CL(oral) for peroral midazolam (a CYP3A substrate that does not interact with the P-gp) at 20 mg/kg in comparison with vehicle-treated rats. In contrast, curcumin administered 30 min before the respective drug treatments did not significantly modify the pharmacokinetic parameters of the drugs. Analysis of the data suggests that the changes in the pharmacokinetic profiles of peroral celiprolol and midazolam in the rat model were contributed mainly by the curcumin-mediated down-regulation of intestinal P-gp and CYP3A protein levels, respectively. PMID:17050652

  3. Inhibition of P-Glycoprotein Leads to Improved Oral Bioavailability of Compound K, an Anticancer Metabolite of Red Ginseng Extract Produced by Gut Microflora

    PubMed Central

    Yang, Zhen; Wang, Jing-Rong; Niu, Tao; Gao, Song; Yin, Taijun; You, Ming; Jiang, Zhi-Hong

    2012-01-01

    Ginsenosides are hydrolyzed extensively by gut microflora after oral administration, and their metabolites are pharmacologically active against lung cancer cells. In this study, we measured the metabolism of various ginsenosides by gut microflora and determined the mechanisms responsible for the observed pharmacokinetic behaviors of its active metabolite, Compound K (C-K). The results showed that biotransformation into C-K is the major metabolic pathway of ginsenosides after the oral administration of the red ginseng extract containing both protopanaxadiol and protopanaxatriol ginsenosides. Pharmacokinetic studies in normal mice showed that C-K exhibited low oral bioavailability. To define the mechanisms responsible for this low bioavailability, two P-glycoprotein (P-gp) inhibitors, verapamil and cyclosporine A, were used, and their presence substantially decreased C-K's efflux ratio in Caco-2 cells (from 26.6 to <3) and significantly increased intracellular concentrations (by as much as 40-fold). Similar results were obtained when transcellular transport of C-K was determined using multidrug resistance 1 (MDR1)-overexpressing Madin-Darby canine kidney II cells. In MDR1a/b(?/?) FVB mice, its plasma Cmax and AUC0–24h were increased substantially by 4.0- and 11.7-fold, respectively. These increases appear to be due to slower elimination and faster absorption of C-K in MDR1a/b(?/?) mice. In conclusion, C-K is the major active metabolite of ginsenosides after microflora hydrolysis of primary ginsenosides in the red ginseng extract, and inhibition/deficiency of P-gp can lead to large enhancement of its absorption and bioavailability. PMID:22584255

  4. The importance of drug-transporting P-glycoproteins in toxicology

    Microsoft Academic Search

    Olaf van Tellingen

    2001-01-01

    The importance of specific transport in toxicology is becoming increasingly clear and the work on P-glycoprotein has certainly been a major contribution to these growing insights. P-Glycoproteins were discovered by their ability to confer multidrug resistance in mammalian tumour cells. They are localised in the cell membrane where they actively extrude a wide range of compounds including many anti-cancer drugs

  5. P-glycoprotein mediates celecoxib-induced apoptosis in multiple drug-resistant cell lines.

    PubMed

    Fantappič, Ornella; Solazzo, Michela; Lasagna, Nadia; Platini, Francesca; Tessitore, Luciana; Mazzanti, Roberto

    2007-05-15

    In several neoplastic diseases, including hepatocellular carcinoma, the expression of P-glycoprotein and cyclooxygenase-2 (COX-2) are often increased and involved in drug resistance and poor prognosis. P-glycoprotein, in addition to drug resistance, blocks cytochrome c release, preventing apoptosis in tumor cells. Because COX-2 induces P-glycoprotein expression, we evaluated the effect of celecoxib, a specific inhibitor of COX-2 activity, on P-glycoprotein-mediated resistance to apoptosis in cell lines expressing multidrug resistant (MDR) phenotype. Experiments were done using MDR-positive and parental cell lines at basal conditions and after exposure to 10 or 50 micromol/L celecoxib. We found that 10 micromol/L celecoxib reduced P-glycoprotein, Bcl-x(L), and Bcl-2 expression, and induced translocation of Bax from cytosol to mitochondria and cytochrome c release into cytosol in MDR-positive hepatocellular carcinoma cells. This causes the activation of caspase-3 and increases the number of cells going into apoptosis. No effect was shown on parental drug-sensitive or on MDR-positive hepatocellular carcinoma cells after transfection with MDR1 small interfering RNA. Interestingly, although inhibiting COX-2 activity, 50 micromol/L celecoxib weakly increased the expression of COX-2 and P-glycoprotein and did not alter Bcl-x(L) and Bcl-2 expression. In conclusion, these results show that relatively low concentrations of celecoxib induce cell apoptosis in MDR cell lines. This effect is mediated by P-glycoprotein and suggests that the efficacy of celecoxib in the treatment of different types of cancer may depend on celecoxib concentration and P-glycoprotein expression. PMID:17510421

  6. Multifactorial resistance to adriamycin: relationship of DNA repair, glutathione transferase activity, drug efflux, and P-glycoprotein in cloned cell lines of adriamycin-sensitive and -resistant P388 leukemia.

    PubMed

    Deffie, A M; Alam, T; Seneviratne, C; Beenken, S W; Batra, J K; Shea, T C; Henner, W D; Goldenberg, G J

    1988-07-01

    Cloned lines of Adriamycin (ADR)-sensitive and -resistant P388 leukemia have been established, including P388/ADR/3 and P388/ADR/7 that are 5- and 10-fold more resistant than the cloned sensitive cell line P388/4 (Cancer Res., 46: 2978, 1986). A time course of ADR-induced DNA double-strand breaks revealed that in sensitive P388/4 cells, evidence of DNA repair was noted 4 h after removal of drug, whereas in resistant clone 3 and 7 cells repair was observed 1 h after drug removal. The earlier onset of DNA repair was statistically significant (p = 0.0154 for clone 3 cells, and p = 0.0009 for clone 7 cells). By contrast, once the repair process was initiated, the rate of repair was similar for all three cell lines. The level of glutathione transferase activity was determined in whole cell extracts. Enzyme activity (mean +/- SE) in sensitive cells was 9.49 +/- 1.00 nmol/min/mg protein, that in resistant clone 3 cells was 13.36 +/- 1.03 nmol/min/mg, and that in clone 7 cells was 13.96 +/- 1.44 nmol/min/mg; the 1.44-fold increase in enzyme activity in resistant cells was statistically significant (p = 0.01). Further evidence of induction of glutathione transferase was provided by Northern blot analysis using a 32P-labeled cDNA for an anionic glutathione transferase, which demonstrated approximately a twofold increase in mRNA in resistant clone 7 cells. Western blot analysis with a polyvalent antibody against anionic glutathione transferase also revealed a proportionate increase in gene product in resistant cells. Dose-survival studies showed that ADR-resistant cells were cross-resistant to actinomycin D, daunorubicin, mitoxantrone, colchicine, and etoposide, but not to the alkylating agent melphalan; this finding provided evidence that these cells are multidrug resistant. Using a cDNA probe for P-glycoprotein, a phenotypic marker for multidrug resistance, Northern blot analysis showed an increase in the steady state level of mRNA of approximately twofold in resistant clone 3 and 7 cells. Southern analysis with the same cDNA probe showed no evidence of gene amplification or rearrangement. Western blot analysis with monoclonal C219 antibody demonstrated a distinct increase in P-glycoprotein in resistant cells. Efflux of Adriamycin as measured by the efflux rate constant was identical in all three cell lines. Furthermore, the metabolic inhibitors azide and dinitrophenol did not augment drug uptake in either sensitive or resistant cells. These findings suggest that despite the increase in P-glycoprotein, an active extrusion pump was not operational in these cells.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2897875

  7. P-glycoprotein ABCB1: a major player in drug handling by mammals.

    PubMed

    Borst, Piet; Schinkel, Alfred H

    2013-10-01

    Mammalian P-glycoproteins are active drug efflux transporters located in the plasma membrane. In the early nineties, we generated knockouts of the three P-glycoprotein genes of mice, the Mdr1a, Mdr1b, and Mdr2 P-glycoproteins, now known as Abcb1a, Abcb1b, and Abcb4, respectively. In the JCI papers that are the subject of this Hindsight, we showed that loss of Mdr1a (Abcb1a) had a profound effect on the tissue distribution and especially the brain accumulation of a range of drugs frequently used in humans, including dexamethasone, digoxin, cyclosporin A, ondansetron, domperidone, and loperamide. All drugs were shown to be excellent substrates of the murine ABCB1A P-glycoprotein and its human counterpart, the MDR1 P-glycoprotein, ABCB1. We found that the ability of ABCB1 to prevent accumulation of some drugs in the brain is a prerequisite for their clinical use, as absence of the transporter led to severe toxicity or undesired CNS pharmacodynamic effects. Subsequent work has fully confirmed the profound effect of the drug-transporting ABCB1 P-glycoprotein on the pharmacokinetics of drugs in humans. In fact, every new drug is now screened for transport by ABCB1, as this limits oral availability and penetration into sanctuaries protected by ABCB1, such as the brain. PMID:24084745

  8. The P-glycoprotein transport system and cardiovascular drugs.

    PubMed

    Wessler, Jeffrey D; Grip, Laura T; Mendell, Jeanne; Giugliano, Robert P

    2013-06-25

    Permeability glycoprotein (P-gp) mediates the export of drugs from cells located in the small intestine, blood-brain barrier, hepatocytes, and kidney proximal tubule, serving a protective function for the body against foreign substances. Intestinal absorption, biliary excretion, and urinary excretion of P-gp substrates can therefore be altered by either the inhibition or induction of P-gp. A wide spectrum of drugs, such as anticancer agents and steroids, are known P-gp substrates and/or inhibitors, and many cardiovascular drugs have recently been observed to have clinically relevant interactions as well. We review the interactions among commonly prescribed cardiovascular drugs that are P-gp substrates and observe interactions involving P-gp that may be relevant to clinical practice. Cardiovascular drugs with narrow therapeutic indexes (e.g., antiarrhythmic agents, anticoagulant agents) have demonstrated large increases in concentrations when coadministered with potent P-gp inhibitors, thus increasing the risk for drug toxicity. Therefore, dose adjustment or use of alternative agents should be considered when strong P-gp-mediated drug-drug interactions are present. Finally, interactions between novel drugs and known P-gp inhibitors are now being systematically evaluated during drug development, and recommended guidelines for the administration of P-gp substrate drugs will be expanded. PMID:23563132

  9. The B-cell lymphoma 2 (BCL2)-inhibitors, ABT-737 and ABT-263, are substrates for P-glycoprotein

    SciTech Connect

    Vogler, Meike, E-mail: mv62@le.ac.uk [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom)] [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom); Dickens, David, E-mail: David.Dickens@liverpool.ac.uk [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom)] [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Dyer, Martin J.S., E-mail: mjsd1@le.ac.uk [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom); Owen, Andrew, E-mail: aowen@liverpool.ac.uk [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom)] [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Pirmohamed, Munir, E-mail: munirp@liv.ac.uk [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom)] [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Cohen, Gerald M., E-mail: gmc2@le.ac.uk [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom)

    2011-05-06

    Highlights: {yields} The BCL2-inhibitor ABT-263 is a substrate for P-glycoprotein. {yields} Apoptosis is inhibited by P-glycoprotein expression. {yields} Overexpression of P-glycoprotein may contribute to resistance to ABT-263 or ABT-737. -- Abstract: Inhibition of BCL2 proteins is one of the most promising new approaches to targeted cancer therapy resulting in the induction of apoptosis. Amongst the most specific BCL2-inhibitors identified are ABT-737 and ABT-263. However, targeted therapy is often only effective for a limited amount of time because of the occurrence of drug resistance. In this study, the interaction of BCL2-inhibitors with the drug efflux transporter P-glycoprotein was investigated. Using {sup 3}H labelled ABT-263, we found that cells with high P-glycoprotein activity accumulated less drug. In addition, cells with increased P-glycoprotein expression were more resistant to apoptosis induced by either ABT-737 or ABT-263. Addition of tariquidar or verapamil sensitized the cells to BCL2-inhibitor treatment, resulting in higher apoptosis. Our data suggest that the BCL2-inhibitors ABT-737 and ABT-263 are substrates for P-glycoprotein. Over-expression of P-glycoprotein may be, at least partly, responsible for resistance to these BCL2-inhibitors.

  10. Detection of glycomic alterations induced by overexpression of p-glycoprotein on the surfaces of L1210 cells using sialic acid binding lectins.

    PubMed

    Bubencíkova, Tatiana; Cholujová, Dana; Messingerová, Lucia; Mislovicova, Danica; Seres, Mario; Breier, Albert; Sulova, Zdena

    2012-01-01

    P-glycoprotein (P-gp) overexpression is the most frequently observed cause of multidrug resistance in neoplastic cells. In our experiments, P-gp was expressed in L1210 mice leukemia cells (S cells) by selection with vincristine (R cells) or transfection with the gene encoding human P-gp (T cells). Remodeling of cell surface sugars is associated with P-gp expression in L1210 cells as a secondary cellular response. In this study, we monitored the alteration of cell surface saccharides by Sambucus nigra agglutinin (SNA), wheat germ agglutinin (WGA) and Maackia amurensis agglutinin (MAA). Sialic acid is predominantly linked to the surface of S, R and T cells via ?-2,6 branched sugars that tightly bind SNA. The presence of sialic acid linked to the cell surface via ?-2,3 branched sugars was negligible, and the binding of MAA (recognizing this branch) was much less pronounced than SNA. WGA induced greater cell death than SNA, which was bound to the cell surface and agglutinated all three L1210 cell-variants more effectively than WGA. Thus, the ability of lectins to induce cell death did not correlate with their binding efficiency and agglutination potency. Compared to S cells, P-gp positive R and T cells contain a higher amount of N-acetyl-glucosamine on their cell surface, which is associated with improved WGA binding. Both P-gp positive variants of L1210 cells are strongly resistant to vincristine as P-gp prototypical drug. This resistance could not be altered by liberalization of terminal sialyl residues from the cell surface by sialidase. PMID:23203118

  11. Detection of Glycomic Alterations Induced by Overexpression of P-Glycoprotein on the Surfaces of L1210 Cells Using Sialic Acid Binding Lectins

    PubMed Central

    Bubencíkova, Tatiana; Cholujová, Dana; Messingerová, Lucia; Mislovicova, Danica; Seres, Mario; Breier, Albert; Sulova, Zdena

    2012-01-01

    P-glycoprotein (P-gp) overexpression is the most frequently observed cause of multidrug resistance in neoplastic cells. In our experiments, P-gp was expressed in L1210 mice leukemia cells (S cells) by selection with vincristine (R cells) or transfection with the gene encoding human P-gp (T cells). Remodeling of cell surface sugars is associated with P-gp expression in L1210 cells as a secondary cellular response. In this study, we monitored the alteration of cell surface saccharides by Sambucus nigra agglutinin (SNA), wheat germ agglutinin (WGA) and Maackia amurensis agglutinin (MAA). Sialic acid is predominantly linked to the surface of S, R and T cells via ?-2,6 branched sugars that tightly bind SNA. The presence of sialic acid linked to the cell surface via ?-2,3 branched sugars was negligible, and the binding of MAA (recognizing this branch) was much less pronounced than SNA. WGA induced greater cell death than SNA, which was bound to the cell surface and agglutinated all three L1210 cell-variants more effectively than WGA. Thus, the ability of lectins to induce cell death did not correlate with their binding efficiency and agglutination potency. Compared to S cells, P-gp positive R and T cells contain a higher amount of N-acetyl-glucosamine on their cell surface, which is associated with improved WGA binding. Both P-gp positive variants of L1210 cells are strongly resistant to vincristine as P-gp prototypical drug. This resistance could not be altered by liberalization of terminal sialyl residues from the cell surface by sialidase. PMID:23203118

  12. Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2).

    PubMed

    Tournier, Nicolas; Chevillard, Lucie; Megarbane, Bruno; Pirnay, Stéphane; Scherrmann, Jean-Michel; Declčves, Xavier

    2010-08-01

    Drug interaction with P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) may influence its tissue disposition including blood-brain barrier transport and result in potent drug-drug interactions. The limited data obtained using in-vitro models indicate that methadone, buprenorphine, and cannabinoids may interact with human P-gp; but almost nothing is known about drugs of abuse and BCRP. We used in vitro P-gp and BCRP inhibition flow cytometric assays with hMDR1- and hBCRP-transfected HEK293 cells to test 14 compounds or metabolites frequently involved in addiction, including buprenorphine, norbuprenorphine, methadone, ibogaine, cocaine, cocaethylene, amphetamine, N-methyl-3,4-methylenedioxyamphetamine, 3,4-methylenedioxyamphetamine, nicotine, ketamine, Delta9-tetrahydrocannabinol (THC), naloxone, and morphine. Drugs that in vitro inhibited P-gp or BCRP were tested in hMDR1- and hBCRP-MDCKII bidirectional transport studies. Human P-gp was significantly inhibited in a concentration-dependent manner by norbuprenorphine>buprenorphine>methadone>ibogaine and THC. Similarly, BCRP was inhibited by buprenorphine>norbuprenorphine>ibogaine and THC. None of the other tested compounds inhibited either transporter, even at high concentration (100 microm). Norbuprenorphine (transport efflux ratio approoximately 11) and methadone (transport efflux ratio approoximately 1.9) transport was P-gp-mediated; however, with no significant stereo-selectivity regarding methadone enantiomers. BCRP did not transport any of the tested compounds. However, the clinical significance of the interaction of norbuprenorphine with P-gp remains to be evaluated. PMID:19887017

  13. Interaction of tomato lectin with ABC transporter in cancer cells: glycosylation confers functional conformation of P-gp.

    PubMed

    Molnár, Joseph; Kars, Meltem Demirel; Gündüz, Ufuk; Engi, Helga; Schumacher, Udo; Van Damme, Els J; Peumans, Willy J; Makovitzky, Josef; Gyémánt, Nóra; Molnár, Péter

    2009-01-01

    Phospho-glycoprotein (P-gp) is a polytopic plasma membrane protein whose overexpression causes multidrug resistance (MDR) responsible for the failure of cancer chemotherapy. P-gp 170 is a member of the ATP-binding cassette (ABC) transporter superfamily and has two potentially interesting regions for drugs interfering with its efflux function, namely the oligosaccharides on the first extracellular loop with unknown function and the two intracellular ATP-binding regions providing the energy for drug efflux function. The polylactoseamine oligosaccharides on the first loop can specifically bind the tomato lectin (TL). The P-gp efflux activities of TL-pre-treated MDR resistant cells were measured in the presence of structurally unrelated resistance modifiers such as phenothiazines, terpenoids and carotenoids. The inhibition of efflux activity was measured via the increased rhodamine uptake by mouse lymphoma cells transfected in human MDR1 gene and in human brain capillary endothelial cells. The tested resistance modifiers inhibit the function of ABC transporter resulting in increased R123 accumulation in MDR1 expressing cells. TL prevented the inhibitory action of phenothiazine and verapamil on brain capillary endothelial and MDR1-lymphoma cells, presumably due to the stabilization of the functional active conformation of P-gp. Our results indicate that the polylactosamine chains of P-gp are part of the functionally active protein conformation. PMID:19124148

  14. Differential effect of P-gp and MRP2 on cellular translocation of gemifloxacin.

    PubMed

    Vadlapatla, Ramya Krishna; Vadlapudi, Aswani Dutt; Kwatra, Deep; Pal, Dhananjay; Mitra, Ashim K

    2011-11-25

    Fluoroquinolones are broad spectrum antibiotics widely indicated in the treatment of both human and animal diseases. The primary objective of this study was to assess short and long term affinities of gemifloxacin towards efflux transporters (P-gp, MRP2) and nuclear hormone receptor (PXR). Uptake and dose dependent inhibition studies were performed with [(14)C] erythromycin (0.25 ?Ci/ml) on MDCKII-MDR1 and MDCKII-MRP2 cells. Cellular accumulation of calcein-AM was further determined to confirm the affinity of gemifloxacin towards P-gp and MRP2. Transport studies were conducted to determine bi-directional permeability and to assess efflux ratio of gemifloxacin. LS-180 cells were treated with three different concentrations of gemifloxacin for 72 h and real-time PCR analysis was performed to study the quantitative gene expression levels of PXR, MDR1 and MRP2. Further, [(14)C] erythromycin uptake was also performed on LS-180 treated cells to better delineate the functional activity of efflux transporters. Results from our study suggest that gemifloxacin may be a substrate of both the efflux transporters studied. This compound inhibited both P-gp and MRP2 mediated efflux of [(14)C] erythromycin in a dose dependent manner with IC(50) values of 123 ± 2 ?M and 16 ± 2 ?M, respectively. The efflux ratio of [(14)C] erythromycin lowered from 3.56 to 1.63 on MDCKII-MDR1 cells and 4.93 to 1.26 on MDCKII-MRP2 cells. This significant reduction in efflux ratio further confirmed the substrate specificity of gemifloxacin towards P-gp and MRP2. Long term exposure significantly induced the expression of PXR (18 fold), MDR1 (6 fold) and MRP2 (6 fold). A decrease (20%) in [(14)C] erythromycin uptake further confirmed the elevated functional activity of P-gp and MRP2. In conclusion, our studies demonstrated that gemifloxacin is effluxed by both P-gp and MRP2. Long term exposure induced their gene expression and functional activity. This substrate specificity of gemifloxacin towards these efflux transporters may be one of the major factors accounting for low oral bioavailability (71%). Better understanding of these mechanistic interactions may aid in the development of newer strategies to achieve adequate therapeutic levels and higher bioavailability. PMID:21864659

  15. Playing with opening and closing of heterocycles: using the cusmano-ruccia reaction to develop a novel class of oxadiazolothiazinones, active as calcium channel modulators and P-glycoprotein inhibitors.

    PubMed

    Spinelli, Domenico; Budriesi, Roberta; Cosimelli, Barbara; Severi, Elda; Micucci, Matteo; Baroni, Massimo; Fusi, Fabio; Ioan, Pierfranco; Cross, Simon; Frosini, Maria; Saponara, Simona; Matucci, Rosanna; Rosano, Camillo; Viale, Maurizio; Chiarini, Alberto; Carosati, Emanuele

    2014-01-01

    As a result of the ring-into-ring conversion of nitrosoimidazole derivatives, we obtained a molecular scaffold that, when properly decorated, is able to decrease inotropy by blocking L-type calcium channels. Previously, we used this scaffold to develop a quantitative structure-activity relationship (QSAR) model, and we used the most potent oxadiazolothiazinone as a template for ligand-based virtual screening. Here, we enlarge the diversity of chemical decorations, present the synthesis and in vitro data for 11 new derivatives, and develop a new 3D-QSAR model with recent in silico techniques. We observed a key role played by the oxadiazolone moiety: given the presence of positively charged calcium ions in the transmembrane channel protein, we hypothesize the formation of a ternary complex between the oxadiazolothiazinone, the Ca2+ ion and the protein. We have supported this hypothesis by means of pharmacophore generation and through the docking of the pharmacophore into a homology model of the protein. We also studied with docking experiments the interaction with a homology model of P-glycoprotein, which is inhibited by this series of molecules, and provided further evidence toward the relevance of this scaffold in biological interactions. PMID:25317581

  16. Reversal of P-glycoprotein-mediated paclitaxel resistance by new synthetic isoprenoids in human bladder cancer cell line.

    PubMed

    Enokida, Hideki; Gotanda, Takenari; Oku, Shoichi; Imazono, Yoshiharu; Kubo, Hiroyuki; Hanada, Toshikatsu; Suzuki, Shigenori; Inomata, Kouhei; Kishiye, Takao; Tahara, Yoshiyuki; Nishiyama, Kenryu; Nakagawa, Masayuki

    2002-09-01

    We isolated a paclitaxel-resistant cell line (KK47/TX30) from a human bladder cancer cell line (KK47/WT) in order to investigate the mechanism of and reversal agents for paclitaxel resistance. KK47/TX30 cells exhibited 700-fold resistance to paclitaxel and cross-resistance to vinca alkaloids and topoisomerase II inhibitors. Tubulin polymerization assay showed no significant difference in the ratio of polymerized alpha- and beta-tubulin between KK47/WT and KK47/TX30 cells. Western blot analysis demonstrated overexpression of P-glycoprotein (P-gp) and lung resistance-related protein (LRP) in KK47/TX30 cells. Drug accumulation and efflux studies showed that the decreased paclitaxel accumulation in KK47/TX30 cells was due to enhanced paclitaxel efflux. Cell survival assay revealed that verapamil and cepharanthine, conventional P-gp modulators, could completely overcome paclitaxel resistance. To investigate whether new synthetic isoprenoids could overcome paclitaxel resistance, we synthesized 31 isoprenoids based on the structure of N-solanesyl-N,N'-bis(3,4-dimethoxybenzyl)ethylenediamine (SDB), which could reverse multidrug resistance (MDR), as shown previously. Among those examined, trans-N,N'-bis(3,4-dimethoxybenzyl)-N-solanesyl-1,2-diaminocyclohexane (N-5228) could completely reverse paclitaxel resistance in KK47/TX30 cells. N-5228 inhibited photoaffinity labeling of P-gp by [(3)H]azidopine, suggesting that N-5228 could bind to P-gp directly and could be a substrate of P-gp. Next, we investigated structural features of these 31 isoprenoids in order to determine the structural requirements for the reversal of P-gp-mediated paclitaxel resistance, suggesting that the following structural features are important for overcoming paclitaxel resistance: (1) a basic structure of 8 to 10 isoprene units, (2) a cyclohexane ring or benzene ring within the framework, (3) two cationic sites in close proximity to each other, and (4) a benzyl group with 3,4-dimethoxy functionalities, which have moderate electron-donating ability. These findings may provide valuable information for the development of P-gp-mediated MDR-reversing agents. PMID:12359058

  17. Age-Related P-Glycoprotein Expression in the Intestine and Affecting the Pharmacokinetics of Orally Administered Enrofloxacin in Broilers

    PubMed Central

    Sun, Yong; Zhang, Yu; Dong, Lingling; Dai, Xiaohua; Wang, Liping

    2013-01-01

    Bioavailability is the most important factor for the efficacy of any drug and it is determined by P- glycoprotein (P-gp) expression. Confirmation of P-gp expression during ontogeny is needed for understanding the differences in therapeutic efficacy of any drug in juvenile and adult animals. In this study, Abcb1 mRNA levels in the liver and intestine of broilers during ontogeny were analysed by RT qPCR. Cellular distribution of P-gp was detected by immunohistochemstry. Age-related differences of enrofloxacin pharmacokinetics were also studied. It was found that broilers aged 4 week-old expressed significantly (P<0.01) higher levels of P-gp mRNA in the liver, jejunum and ileum, than at other ages. However, there was no significant (P>0.05) age-related difference in the duodenum. Furthermore, the highest and lowest levels of Abcb1 mRNA expression were observed in the jejunum, and duodenum, respectively. P-gp immunoreactivity was detected on the apical surface of the enterocytes and in the bile canalicular membranes of the hepatocytes. Pharmacokinetic analysis revealed that the 8 week-old broilers, when orally administrated enrofloxacin, exhibited significantly higher Cmax (1.97 vs. 0.98 ?g•ml-1, P=0.009), AUC(14.54 vs. 9.35 ?g•ml-1•h, P=0.005) and Ka (1.38 vs. 0.43 h-1, P=0.032), as well as lower Tpeak (1.78 vs. 3.28 h, P=0.048) and T1/2ka (0.6 vs. 1.64 h, P=0.012) than the 4 week-old broilers. The bioavailability of enrofloxacin in 8 week-old broilers was increased by 15.9%, compared with that in 4 week-old birds. Interestingly, combining verapamil, a P-gp modulator, significantly improved pharmacokinetic behaviour of enrofloxacin in all birds. The results indicate juvenile broilers had a higher expression of P-gp in the intestine, affecting the pharmacokinetics and reducing the bioavailability of oral enrofloxacin in broilers. On the basis of our results, it is recommended that alternative dose regimes are necessary for different ages of broilers for effective therapy. PMID:24066110

  18. P-GLYCOPROTEIN IS NOT PRESENT IN MITOCHONDRIAL MEMBRANES

    PubMed Central

    Paterson, Jill K.; Gottesman, Michael M.

    2007-01-01

    Recent reports have indicated the presence of P-glycoprotein in crude mitochondrial membrane fractions, leading to the assumption that P-glycoprotein is present in mitochondrial membranes, and may be involved in transport across these membranes. To determine the validity of this claim, two cell lines overexpressing endogenous P-glycoprotein were investigated. Using various centrifugation steps, mitochondria were purified from these cells and analyzed by Western blot reaction with the anti-P-glycoprotein antibody C219 and organelle-specific antibodies. While P-glycoprotein is present in crude mitochondrial fractions, these fractions are contaminated with plasma membranes. Further purification of the mitochondria to remove plasma membranes revealed that P-glycoprotein is not expressed in mitochondria of the KB-V1 (vinblastine resistant KB-3-1 cells) or MCF-7ADR (adriamycin resistant MCF7 cells) cell lines. To further substantiate these findings, we used confocal microscopy and the anti-P-glycoprotein antibody 17F9. This demonstrated that in intact cells, P-glycoprotein is not present in mitochondria and is primarily localized to the plasma membrane. These findings are consistent with the role of P-glycoprotein in conferring multidrug resistance by decreasing cellular drug accumulation. Therefore, contrary to previous speculation, P-glycoprotein does not confer cellular protection by residing in mitochondrial membranes. PMID:17512524

  19. Benzquinamide inhibits P-glycoprotein mediated drug efflux and potentiates anticancer agent cytotoxicity in multidrug resistant cells.

    PubMed

    Mazzanti, R; Croop, J M; Gatmaitan, Z; Budding, M; Steiglitz, K; Arceci, R; Arias, I M

    1992-01-01

    We have previously shown that efflux of cytotoxic drugs from multidrug resistant (MDR) cell lines can be quantitated at the single cell level using a sensitive fluorescence microscopy technique. Based on the structure of compounds which inhibited the efflux of Rhodamine-123 (Rho-123) using this methodology, we hypothesized that the antiemetic, antihistaminic agent benzquinamide (BZQ) would interfere with P-glycoprotein (P-gp) mediated drug transport and potentiate the effects of anticancer agents in MDR cell lines. We show that BZQ interferes with P-gp mediated drug efflux and increases drug accumulation in MDR cells using Rho-123 as a fluorescent probe. BZQ increases the cytotoxicity of chemotherapeutic agents to both human and hamster MDR cell lines in vitro. A slight increase in cytotoxicity to chemotherapeutic agents is also observed in the parental cell lines with BZQ. BZQ increases [3H]daunorubicin accumulation and inhibits the binding of [125I]iodoaryl azidoprazosin to the P-gp in MDR cells. BZQ is a new agent to increase the cytotoxic effects of anticancer agents in MDR cells and may ultimately prove useful as an adjunct in cancer chemotherapy. PMID:1362504

  20. Reversal of P-glycoprotein-dependent resistance to vinblastine by newly synthesized bisbenzylisoquinoline alkaloids in mouse leukemia P388 cells.

    PubMed

    Wang, Feng-Peng; Wang, Li; Yang, Jin-Song; Nomura, Masaaki; Miyamoto, Ken-Ichi

    2005-10-01

    We examined the ability of partially synthesized new compounds from fangchinoline and tetrandrine to reverse P-glycoprotein (P-gp)-dependent multidrug resistance (MDR) in vitro and in vivo. All compound enhanced the in vitro cyctotoxic effect of vinblastin (VBL) at 0.1 microM as potent as 10 microM verapamil against the resistant cell line P388/ADR. The combination effect tended to be strong by substitution of bulky group, resulting 5,14-dibromotetrandrine (compound #9) showed the strongest effect. Compound #9 increased intracellular VBL accumulation in P388/ADR cells, much stronger than verapamil, as well as cytotoxic combined effect. This mechanism seems to inhibit the function of P-gp, but not the expression of P-gp. In combination with VBL, this compound also synergistically prolonged the life-span of P388/ADR-bearing mice. Bisbenzylisoquinoline alkaloids and their derivatives are possible to be good candidates as modifier of MDR in cancer chemotherapy. PMID:16204959

  1. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids

    PubMed Central

    Ramesh, Radha; Kozhaya, Lina; McKevitt, Kelly; Djuretic, Ivana M.; Carlson, Thaddeus J.; Quintero, Maria A.; McCauley, Jacob L.; Abreu, Maria T.; Unutmaz, Derya

    2014-01-01

    IL-17A–expressing CD4+ T cells (Th17 cells) are generally regarded as key effectors of autoimmune inflammation. However, not all Th17 cells are pro-inflammatory. Pathogenic Th17 cells that induce autoimmunity in mice are distinguished from nonpathogenic Th17 cells by a unique transcriptional signature, including high Il23r expression, and these cells require Il23r for their inflammatory function. In contrast, defining features of human pro-inflammatory Th17 cells are unknown. We show that pro-inflammatory human Th17 cells are restricted to a subset of CCR6+CXCR3hiCCR4loCCR10?CD161+ cells that transiently express c-Kit and stably express P-glycoprotein (P-gp)/multi-drug resistance type 1 (MDR1). In contrast to MDR1? Th1 or Th17 cells, MDR1+ Th17 cells produce both Th17 (IL-17A, IL-17F, and IL-22) and Th1 (IFN-?) cytokines upon TCR stimulation and do not express IL-10 or other anti-inflammatory molecules. These cells also display a transcriptional signature akin to pathogenic mouse Th17 cells and show heightened functional responses to IL-23 stimulation. In vivo, MDR1+ Th17 cells are enriched and activated in the gut of Crohn’s disease patients. Furthermore, MDR1+ Th17 cells are refractory to several glucocorticoids used to treat clinical autoimmune disease. Thus, MDR1+ Th17 cells may be important mediators of chronic inflammation, particularly in clinical settings of steroid resistant inflammatory disease. PMID:24395888

  2. Nano scale self-emulsifying oil based carrier system for improved oral bioavailability of camptothecin derivative by P-Glycoprotein modulation.

    PubMed

    Negi, Lalit Mohan; Tariq, Mohammad; Talegaonkar, Sushama

    2013-11-01

    Irinotecan is a camptothecin derivative with low oral bioavailability due to active efflux by intestinal P-glycoprotein receptors. Hence, no oral formulation is marketed for Irinotecan till date. However, an optimized Self micro emulsifying drug delivery system (SMEDDS), formulated to produce nano range oil droplets by using P-gp modulator excipients can tackle the issue and elevate the systemic availability of Irinotecan. The present work focuses on the development of SMEDDS for Irinotecan and evaluation of its in vitro, ex vivo and in vivo potentials. The SMEDDS were developed using Capmul MCM-C8, Cremophor EL and Pluronic L-121 as oil, surfactant and co-surfactant respectively and has good oil carrying capacity (30%) with competence to produce nano-scale oil droplets (130 ± 2.13 nm) on spontaneous emulsification. A much deeper penetration to the intestine was observed with SMEDDS by using confocal laser scanning microscopy (CLSM). Flow-cytometric studies also revealed the greater uptake of fluorescent probe in Caco-2 cell-lines with the use of SMEDDS. Biochemical estimation of LDH from the intestinal tissues treated with SMEDDS and free drug suspension confirmed that the developed formulation is safe for use. Furthermore, the AUC0 ? t of Irinotecan from the optimized SMEDDS formulation was found to be 4 folds higher than that from Irinotecan suspension on oral administration. The optimized SMEDDS formulation was found to be capable of maintaining the sustained plasma drug level of Irinotecan with better bioavailability. PMID:23850745

  3. Involvement of phospholipase C in heat-shock-induced phosphorylation of P-glycoprotein in multidrug resistant human breast cancer cells.

    PubMed

    Yang, J M; Chin, K V; Hait, W N

    1995-05-01

    The phosphorylation of P-glycoprotein has been appreciated for many years, yet little is known about the factors that initiate this post-translational modification. To determine whether the activation of P-glycoprotein phosphorylation could occur in response to cellular stress and to investigate the possible signal pathways involved, we studied the effect of heat shock on the phosphorylation of P-glycoprotein in sensitive and resistant MCF-7 human breast cancer cells. Treatment of multidrug resistant MCF-7/AdrR cells with heat shock increased the phosphorylation of P-glycoprotein. The response was not seen in the sensitive MCF-7 line, which does not express this drug transporter. Phosphorylation of P-glycoprotein induced by heat shock was not dependent on synthesis of new proteins, since phosphorylation was not inhibited by cycloheximide and the content of P-glycoprotein, as measured by immunoblotting, did not change after heat shock. The activation of P-glycoprotein phosphorylation by heat shock may be initiated through activation of phospholipase C, since heat shock stimulated the activity of this enzyme, as evidenced by increased formation of inositol trisphosphate and diacylglycerol and by phosphorylation of phospholipase C-gamma. U-73122, an inhibitor of phospholipase C and staurosporine, an inhibitor of protein kinase C, both decreased the heat-shock-induced phosphorylation of P-glycoprotein. These results suggest that heat shock induces phosphorylation of P-glycoprotein through the activation of the phospholipase C/protein kinase C pathway. PMID:7741743

  4. P-gp substrate-induced neurotoxicity in an Abcb1a knock-in/Abcb1b knock-out mouse model with a mutated canine ABCB1 targeted insertion.

    PubMed

    Swain, M D; Orzechowski, K L; Swaim, H L; Jones, Y L; Robl, M G; Tinaza, C A; Myers, M J; Jhingory, M V; Buckely, L E; Lancaster, V A; Yancy, H F

    2013-06-01

    Certain dog breeds, especially Collies, are observed to exhibit neurotoxicity to avermectin drugs, which are P-glycoprotein (P-gp) substrates. This neurotoxicity is due to an ABCB1 gene mutation (ABCB1-1?) that results in non-functional P-gp expression. A developed Abcb1a knock-in/Abcb1b knock-out mouse model expressing the ABCB1-1? canine gene was previously reported and mice exhibited sensitivity upon ivermectin administration. Here, model and wild-type mice were administered P-gp substrates doramectin, moxidectin, and digoxin. While knock-in/knock-out mice exhibited ataxia, lethargy and tremor, wild-type mice remained unaffected. In addition, no neurotoxic clinical signs were observed in either mouse type administered domperidone, a P-gp substrate with no reported neurotoxicity in ABCB1-1? Collies. Overall, neurotoxic signs displayed by model mice closely paralleled those observed in ivermectin-sensitive Collies. This model can be used to identify toxic P-gp substrates with altered safety in dog populations and may reduce dog use in safety studies that are part of the drug approval process. PMID:23186803

  5. Haemonchus contortus P-glycoprotein-2: in situ localisation and characterisation of macrocyclic lactone transport.

    PubMed

    Godoy, Pablo; Lian, Jing; Beech, Robin N; Prichard, Roger K

    2015-01-01

    Haemonchus contortus is a veterinary nematode that infects small ruminants, causing serious decreases in animal production worldwide. Effective control through anthelmintic treatment has been compromised by the development of resistance to these drugs, including the macrocyclic lactones. The mechanisms of resistance in H. contortus have yet to be established but may involve efflux of the macrocyclic lactones by nematode ATP-binding-cassette transporters such as P-glycoproteins. Here we report the expression and functional activity of H. contortus P-glycoprotein 2 expressed in mammalian cells and characterise its interaction with the macrocyclic lactones, ivermectin, abamectin and moxidectin. The ability of H. contortus P-glycoprotein 2 to transport different fluorophore substrates was markedly inhibited by ivermectin and abamectin in a dose-dependent and saturable way. The profile of transport inhibition by moxidectin was markedly different. H. contortus P-glycoprotein 2 was expressed in the pharynx, the first portion of the worm's intestine and perhaps in adjacent nervous tissue, suggesting a role for this gene in regulating the uptake of avermectins and in protecting nematode tissues from the effects of macrocyclic lactone anthelmintic drugs. H. contortus P-glycoprotein 2 may thus contribute to resistance to these drugs in H. contortus. PMID:25486495

  6. In Vitro and In Vivo Evidence for Amphotericin B as a P-Glycoprotein Substrate on the Blood-Brain Barrier

    PubMed Central

    Wu, Ji-Qin; Shao, Kun; Wang, Xuan; Wang, Rui-Ying; Cao, Ya-Hui; Yu, Yun-Qiu; Lou, Jin-Ning; Chen, Yan-Qiong; Zhao, Hua-Zhen; Zhang, Qiang-Qiang; Weng, Xin-Hua

    2014-01-01

    Amphotericin B (AMB) has been a mainstay therapy for fungal infections of the central nervous system, but its use has been limited by its poor penetration into the brain, the mechanism of which remains unclear. In this study, we aimed to investigate the role of P-glycoprotein (P-gp) in AMB crossing the blood-brain barrier (BBB). The uptake of AMB by primary brain capillary endothelial cells in vitro was significantly enhanced after inhibition of P-gp by verapamil. The impact of two model P-gp inhibitors, verapamil and itraconazole, on brain/plasma ratios of AMB was examined in both uninfected CD-1 mice and those intracerebrally infected with Cryptococcus neoformans. In uninfected mice, the brain/plasma ratios of AMB were increased 15 min (3.5 versus 2.0; P < 0.05) and 30 min (5.2 versus 2.8; P < 0.05) after administration of verapamil or 45 min (6.0 versus 3.9; P < 0.05) and 60 min (5.4 versus 3.8; P < 0.05) after itraconazole administration. The increases in brain/plasma ratios were also observed in infected mice treated with AMB and P-gp inhibitors. The brain tissue fungal CFU in infected mice were significantly lower in AMB-plus-itraconazole or verapamil groups than in the untreated group (P < 0.005), but none of the treatments protected the mice from succumbing to the infection. In conclusion, we demonstrated that P-gp inhibitors can enhance the uptake of AMB through the BBB, suggesting that AMB is a P-gp substrate. PMID:24867970

  7. P-Glycoprotein Mediated Efflux Limits the Transport of the Novel Anti-Parkinson's Disease Candidate Drug FLZ across the Physiological and PD Pathological In Vitro BBB Models

    PubMed Central

    Liu, Qian; Hou, Jinfeng; Chen, Xiaoguang; Liu, Gengtao; Zhang, Dan; Sun, Hua; Zhang, Jinlan

    2014-01-01

    FLZ, a novel anti-Parkinson's disease (PD) candidate drug, has shown poor blood-brain barrier (BBB) penetration based on the pharmacokinetic study using rat brain. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two important transporters obstructing substrates entry into the CNS as well as in relation to PD neuropathology. However, it is unclear whether P-gp and BCRP are involved in low BBB permeability of FLZ and what the differences of FLZ brain penetration are between normal and Parkinson's conditions. For this purpose, in vitro BBB models mimicking physiological and PD pathological-related BBB properties were constructed by C6 astroglial cells co-cultured with primary normal or PD rat cerebral microvessel endothelial cells (rCMECs) and in vitro permeability experiments of FLZ were carried out. High transepithelial electrical resistance (TEER) and low permeability for sodium fluorescein (NaF) confirmed the BBB functionality of the two models. Significantly greater expressions of P-gp and BCRP were detected in PD rCMECs associated with the lower in vitro BBB permeability of FLZ in pathological BBB model compared with physiological model. In transport studies only P-gp blocker effectively inhibited the efflux of FLZ, which was consistent with the in vivo permeability data. This result was also confirmed by ATPase assays, suggesting FLZ is a substrate for P-gp but not BCRP. The present study first established in vitro BBB models reproducing PD-related changes of BBB functions in vivo and demonstrated that poor brain penetration of FLZ and low BBB permeability were due to the P-gp transport. PMID:25036090

  8. Identification of new P-glycoprotein inhibitors derived from cardiotonic steroids.

    PubMed

    Zeino, Maen; Paulsen, Malte S; Zehl, Martin; Urban, Ernst; Kopp, Brigitte; Efferth, Thomas

    2015-01-01

    P-glycoprotein (ABCB1, MDR1) is capable of extruding chemotherapeutics outside the cell and its overexpression in certain cancer cells may cause failure of chemotherapy. Many attempts were carried out to identify potent inhibitors of this transporter and numerous compounds were shown to exert inhibitory effects in vitro, but so far none were able to make their way to the clinic due to serious complications. Natural compounds represent a great source of therapeutics, which are believed to be safe and effective. Therefore, we have screened a large library of naturally occurring cardiotonic steroids and their derivatives using high throughput flow cytometry. We were able to identify six compounds capable of modulating P-glycoprotein activity. By using P-glycoprotein ATPase assays, molecular docking in silico studies and resazurin reduction assays, the outcome of this high throughput screening platform has been validated. These novel compounds may serve as candidates to reverse doxorubicin resistance in leukemia cells. PMID:25451686

  9. Modulation of P-glycoprotein at the Blood-Brain Barrier: Opportunities to Improve CNS Pharmacotherapy

    PubMed Central

    Miller, David S.; Bauer, Björn; Hartz, Anika M.S.

    2009-01-01

    Pharmacotherapy of CNS disorders, e.g., neurodegenerative diseases, epilepsy, brain cancer, and neuro-AIDS, is limited by the blood-brain barrier. P-glycoprotein, an ATP-driven, drug efflux transporter, is a critical element of that barrier. High level of expression, luminal membrane location, specificity and high transport potency make P-glycoprotein a selective gate-keeper of the blood-brain barrier and thus a primary obstacle to drug delivery into the brain. As such, P-glycoprotein limits entry into the CNS for a large number of prescribed drugs, contributes to the poor success rate of CNS drug candidates and likely contributes to patient-to-patient variability in response to CNS pharmacotherapy. Modulating P-glycoprotein could therefore improve drug delivery into the brain. Here we review the current understanding of signaling mechanisms responsible for the modulation of P-glycoprotein activity/expression at the blood-brain barrier with an emphasis on recent studies from our laboratories. Using intact brain capillaries from rats and mice, we have identified multiple extracellular and intracellular signals that regulate this transporter; several signaling pathways have been mapped. Three pathways are triggered by elements of the brain's innate immune response, one by glutamate, one by xenobiotic-nuclear receptor (PXR) interactions and one by elevated ?-amyloid levels. Signaling is complex, with several pathways sharing common signaling elements (TNF-R1, ETB receptor, PKC, NOS), suggesting a regulatory network. Several pathways utilize autocrine/paracrine elements, involving release of the proinflammatory cytokine, TNF-?, and the polypeptide hormone, ET-1. Finally, several steps in signaling are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the clinic. PMID:18560012

  10. Human Brain Imaging and Radiation Dosimetry of 11C-N-Desmethyl-Loperamide, a PET Radiotracer to Measure the Function of P-Glycoprotein

    Microsoft Academic Search

    Nicholas Seneca; Sami S. Zoghbi; Jeih-San Liow; William Kreisl; Peter Herscovitch; Kimberly Jenko; Robert L. Gladding; Andrew Taku; Victor W. Pike; Robert B. Innis

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that limits the distribution of drugs to several organs of the body. At theblood-brain barrier,P-gpblockstheentryofbothloperamide and its metabolite, N-desmethyl-loperamide (N-dLop), and thereby prevents central opiate effects. Animal studies have shown that 11C-dLop, compared with 11C-loperamide, is an es- pecially promising radiotracer because it generates negligible radiometabolites that enter the brain. The purposes of

  11. [The inhibitory effect of pluronic on P-glycoprotein drug pump].

    PubMed

    Huang, Jian-Geng; Si, Lu-Qin; Zuo, Ke-Yuan; Wu, Xiang-Gen; Qiu, Jun; Li, Gao

    2007-09-01

    To investigate the inhibitory effect of Pluronic on P-glycoprotein (P-gp) drug efflux pump, Caco-2 cells and animal models were established to study the influence of Pluronic on celiprolol transport across Caco-2 cell monolayer and intestinal mucous membrane with verapamil set as a positive control. Drug concentration was measured by HPLC and the apparent permeability coefficient (P(app)), absorption rate constant (k(a)) and the effective permeability coefficient (P(eff)) were calculated. P(app) of basolateral to apical side and apical to basolateral side was (2.10 +/- 0.13) x 10(-6) and (0.333 +/- 0.018) x 10(-6) cm x s(-1), respectively. Transports of celiprolol across Caco-2 cell monolayer were influenced by both verapamil and Pluronic. The absorption constants (k(a)) of celiprolol at duodenum, jejunum, ileum, and colon were (0.09 +/- 0.03), (0.14 +/- 0.04), (0.11 +/- 0.03) and (0.05 +/- 0.02) h(-1), k(a) of celiprolol in verapamil group were (0.14 +/- 0.03), (0.24 +/- 0.02), (0.25 +/- 0.03) and (0.23 +/- 0.02) h(-1), and k(a) of celiprolol in Pluronic group were (0.13 +/- 0.02), (0.22 +/- 0.02), (0.22 +/- 0.03) and (0.20 +/- 0.03) h(-1), respectively. Pluronic showed significant effect on inhibiting P-gp of Caco-2 cell and intestinal mucosa in rats. PMID:18050744

  12. Stereoselective Property of 20(S)-Protopanaxadiol Ocotillol Type Epimers Affects Its Absorption and Also the Inhibition of P-Glycoprotein

    PubMed Central

    Wang, Wenyan; Wu, Xiangmeng; Wang, Li; Meng, Qingguo; Liu, Wanhui

    2014-01-01

    Stereoselectivity has been proved to be tightly related to drug action including pharmacodynamics and pharmacokinetics. (20S,24R)-epoxy-dammarane-3,12,25-triol (24R-epimer) and (20S,24S)-epoxy-dammarane-3,12,25-triol (24S-epimer), a pair of 20(S)-protopanaxadiol (PPD) ocotillol type epimers, were the main metabolites of PPD. Previous studies have shown that 24R-epimer and 24S-epimer had stereoselectivity in pharmacological action and pharmacokinetics. In the present study, the aim was to further study the pharmacokinetic characteristics of both epimers, investigate their absorption mechanism and analyze the selectivity effects of ocotillol type side chain and C24 stereo-configuration on P-glycoprotein (P-gp) in vivo and in vitro. Results showed that the absolute bioavailability of 24R-epimer was about 14-fold higher than that of 24S-epimer, and a linear kinetic characteristic was acquired in doses of 5–20 mg/kg for both epimers after oral administration. Furthermore, the apparent permeability coefficients of 24R-epimer were 5–7 folds higher than that of 24S-epimer having lower efflux ratios in Caco-2 cell models. Moreover, both 24R-epimer and 24S-epimer had similar inhibitory effects on P-gp by increasing cellular retention of rhodamine 123 in Caco-2 cells and decreasing efflux of digoxin across Caco-2 cell monolayers. In situ in vivo experiments showed that the inhibition of 24R-epimer on P-gp was stronger than that of 24S-epimer by single-pass intestinal perfusion of rhodamine 123 in rats. Western blot analyses demonstrated that both epimers had no action on P-gp expression in Caco-2 cells. In conclusion, with respect to the stereoselectivity, C24 S-configuration of the ocotillol type epimers processed a poor transmembrane permeability and could be distinguished by P-gp. Sharing a dammarane skeleton, both 24R-epimer and 24S-epimer were potent inhibitors of P-gp. This study provides a new case of stereoselective pharmacokinetics of chiral compounds which contributes to know the chiral characteristics of P-gp and structure-action relationship of PPD type and ocotillol type ginsenosides as a P-gp inhibitor. PMID:24887182

  13. E. coli Infection Modulates the Pharmacokinetics of Oral Enrofloxacin by Targeting P-Glycoprotein in Small Intestine and CYP450 3A in Liver and Kidney of Broilers

    PubMed Central

    Guo, Mengjie; Sun, Yong; Zhang, Yu; Bughio, Shamsuddin; Dai, Xiaohua; Ren, Weilong; Wang, Liping

    2014-01-01

    P-glycoprotein (P-gp) expression determines the absorption, distribution, metabolism and excretion of many drugs in the body. Also, up-regulation of P-gp acts as a defense mechanism against acute inflammation. This study examined expression levels of abcb1 mRNA and localization of P-gp protein in the liver, kidney, duodenum, jejunum and ileum in healthy and E. coli infected broilers by real time RT-PCR and immunohistochemistry. Meanwhile, pharmacokinetics of orally administered enrofloxacin was also investigated in healthy and infected broilers by HPLC. The results indicated that E. coli infection up-regulated expression of abcb1 mRNA levels significantly in the kidney, jejunum and ileum (P<0.05), but not significantly in the liver and duodenum (P>0.05). However, the expression level of CYP 3A37 mRNA were observed significantly decreased only in liver and kidney of E. coli infected broilers (P<0.05) compared with healthy birds. Furthermore, the infection reduced absorption of orally administered enrofloxacin, significantly decreased Cmax (0.34 vs 0.98 µg mL?1, P?=?0.000) and AUC0-12h (4.37 vs 8.88 µg mL?1 h, P?=?0.042) of enrofloxacin, but increased Tmax (8.32 vs 3.28 h, P?=?0.040), T1/2a(2.66 vs 1.64 h?1, P?=?0.050) and V/F (26.7 vs 5.2 L, P?=?0.040). Treatment with verapamil, an inhibitor of P-gp, significantly improved the absorption of enrofloxacin in both healthy and infected broilers. The results suggest that the E. coli infection induces intestine P-gp expression, altering the absorption of orally administered enrofloxacin in broilers. PMID:24498193

  14. The impact of pharmacologic and genetic knockout of P-glycoprotein on nelfinavir levels in the brain and other tissues in mice.

    PubMed

    Salama, Noha N; Kelly, Edward J; Bui, Tot; Ho, Rodney J Y

    2005-06-01

    Insufficient concentrations of protease inhibitors such as nelfinavir may reduce the effectiveness of HIV dementia treatment. The efflux transporter mdr1 product P-glycoprotein (P-gp) has been demonstrated to play a role in limiting nelfinavir brain levels. The goal of this study was to compare the effect of GF120918 (10 mg/kg, IV), a P-gp inhibitor, on intravenous nelfinavir (10 mg/kg) in vivo disposition and tissue penetration in P-gp-competent mdr1a/1b (+/+) mice versus P-gp double knockout mdr1a/1b (-/-) mice. Intravenous administration with the P-gp inhibitor GF120918 to mdr1a/1b (+/+) mice increased nelfinavir concentrations over a range of 2.3- to 27-fold, whereas nelfinavir distribution in mdr1a/1b (-/-) mice was 2- to 16-fold higher than that in their wild counterparts. Nelfinavir levels after GF120918 coadministration were higher in the heart, liver, and kidneys than those detected with mdr1a/1b knockout mice. In contrast, mdr1a/1b knockout mice exhibited higher nelfinavir levels in the brain (16.1-fold vs. 8.9-fold increase) and spleen (4.1-fold vs. 2.3-fold increase) compared to pharmacological inhibition with GF120918 in wild mice. Most notably, GF120918 provided tissue-specific effects in mdr1a/1b knockout mice with enhanced (p < 0.05) drug accumulation in the brain ( approximately 21-fold) and heart (3.3-fold). Our results suggest mdr1a/1b-independant mechanisms may also contribute to nelfinavir tissue distribution in mice. PMID:15858856

  15. Comparison of 99mTc-Tetrofosmin and 99mTc-Sestamibi Uptake in Glioma Cell Lines: The Role of P-Glycoprotein Expression

    PubMed Central

    Alexiou, George A.; Xourgia, Xanthi; Vartholomatos, Evrysthenis; Kalef-Ezra, John A.; Fotopoulos, Andreas D.; Kyritsis, Athanasios P.

    2014-01-01

    99mTc-Tetrofosmin (99mTc-TF) and 99mTc-Sestamibi (99mTc-MIBI) are SPECT tracers that have been used for brain tumor imaging. Tumor's multidrug resistance phenotype, namely, P-glycoprotein (p-gp), and the multidrug resistance related proteins (MRPs) expression have been suggested to influence both tracers' uptake. In the present study we set out to compare 99mTc-TF and 99mTc-MIBI uptake in high-grade glioma cell lines and to investigate the influence of gliomas p-gp expression on both tracers' uptake. We used four glioma cell lines (U251MG, A172, U87MG, and T98G). The expression of p-gp protein was evaluated by flow cytometry. Twenty ?Ci (7.4·105?Bq) of 99mTc-TF and 99mTc-MIBI were used. The radioactivity in the cellular lysate was measured with a dose calibrator. P-gp was significantly expressed only in the U251MG cell line (P < 0.001). In all gliomas cell lines (U251MG, U87MG, A172, and T98G) the 99mTc-TF uptake was significantly higher than 99mTc-sestamibi. The U251MG cell line, in which significant p-gp expression was documented, exhibited the strongest uptake difference. 99mTc-TF uptake was higher than 99mTc-MIBI in all studied high-grade glioma cell lines. Thus, 99mTc-TF may be superior to 99mTc-MIBI for glioma imaging in vivo. PMID:25436147

  16. A P-glycoprotein protects Caenorhabditis elegans against natural toxins.

    PubMed Central

    Broeks, A; Janssen, H W; Calafat, J; Plasterk, R H

    1995-01-01

    P-glycoproteins can cause resistance of mammalian tumor cells to chemotherapeutic drugs. They belong to an evolutionarily well-conserved family of ATP binding membrane transporters. Four P-glycoprotein gene homologs have been found in the nematode Caenorhabditis elegans; this report describes the functional analysis of two. We found that PGP-3 is expressed in both the apical membrane of the excretory cell and in the apical membrane of intestinal cells, whereas PGP-1 is expressed only in the apical membrane of the intestinal cells and the intestinal valve. By transposon-mediated deletion mutagenesis we generated nematode strains with deleted P-glycoprotein genes and found that the pgp-3 deletion mutant, but not the pgp-1 mutant, is sensitive to both colchicine and chloroquine. Our results suggest that soil nematodes have P-glycoproteins to protect themselves against toxic compounds made by plants and microbes in the rhizosphere. Images PMID:7743993

  17. Identification of key structural characteristics of Schisandra chinensis lignans involved in P-glycoprotein inhibition.

    PubMed

    Slanina, Ji?í; Páchniková, Gabriela; Carnecká, Martina; Porubová Koubíková, Ludmila; Adámková, Lenka; Humpa, Otakar; Smejkal, Karel; Slaninová, Iva

    2014-10-24

    The aim of the present study was to determine the structural requirements for dibenzocyclooctadiene lignans essential for P-glycoprotein inhibition. Altogether 15 structurally related lignans isolated from Schisandra chinensis or prepared by modification of their backbone were investigated, including three pairs of enantiomers. P-Glycoprotein inhibition was quantified using a doxorubicin accumulation assay in human promyelotic leukemia HL60/MDR cells overexpressing P-glycoprotein. A preliminary quantitative structure-activity relationship analysis revealed three main structural features involved in P-glycoprotein inhibition: a 1,2,3-trimethoxy moiety, a 6-acyloxy group, and the absence of a 7-hydroxy group. The most effective inhibitors, (-)-gomisin N (1) and (+)-deoxyschizandrin [(+)-2], were selected for further evaluation of their effects. Both these lignans restored the cytotoxic effect of doxorubicin in HL60/MDR cells and when combined with a subtoxic concentration of this compound increased the proportion of G2/M cells significantly, which is a usual response to treatment with this anticancer drug. PMID:25302569

  18. Dipyridamole enhances digoxin bioavailability via P-glycoprotein inhibition

    Microsoft Academic Search

    Céline Verstuyft; Soraya Strabach; Hakima El Morabet; Reinhold Kerb; Ulrich Brinkmann; Liliane Dubert; Patrice Jaillon; Christian Funck-Brentano; Germain Trugnan; Laurent Becquemont

    2003-01-01

    Background: On the basis of in vitro studies indicating that dipyridamole is an inhibitor for the MDR1 efflux membrane transporter P-glycoprotein, we postulated that dipyridamole could increase the bioavailability of digoxin, a P-glycoprotein substrate.Objectives: The main objective was to determine whether dipyridamole alters the bioavailability of digoxin. The secondary objective was to determine whether the magnitude of the pharmacokinetic interaction

  19. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein

    Microsoft Academic Search

    Christiane Pauli-Magnus; Sabine Rekersbrink; Ulrich Klotz; Martin F. Fromm

    2001-01-01

    Proton pump inhibitors are a class of drugs which are widely prescribed for acid-related diseases. They are primarily metabolized by CYP2C19 and CYP3A4. It is unknown so far whether proton pump inhibitors are also substrates of the ATP-dependent efflux transporter P-glycoprotein. Moreover, it is not established whether proton pump inhibitors are also inhibitors of P-glycoprotein function. The aim of our

  20. (R)-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    PubMed Central

    2011-01-01

    Background Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate. Methods (R)-[11C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on (R)-[11C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. (R)-[11C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM). Results All data analysis approaches indicated only modest differences in brain distribution of (R)-[11C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats. Conclusions P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate. PMID:21199574

  1. Kinetic Validation of the Models for P-Glycoprotein ATP Hydrolysis and Vanadate-Induced Trapping. Proposal for Additional Steps

    PubMed Central

    Lugo, Miguel Ramón; Sharom, Frances Jane

    2014-01-01

    P-Glycoprotein, a member of the ATP-binding cassette (ABC) superfamily, is a multidrug transporter responsible for cellular efflux of hundreds of structurally unrelated compounds, including natural products, many clinically used drugs and anti-cancer agents. Expression of P-glycoprotein has been linked to multidrug resistance in human cancers. ABC transporters are driven by ATP hydrolysis at their two cytoplasmic nucleotide-binding domains, which interact to form a closed ATP-bound sandwich dimer. Intimate knowledge of the catalytic cycle of these proteins is clearly essential for understanding their mechanism of action. P-Glycoprotein has been proposed to hydrolyse ATP by an alternating mechanism, for which there is substantial experimental evidence, including inhibition of catalytic activity by trapping of ortho-vanadate at one nucleotide-binding domain, and the observation of an asymmetric occluded state. Despite many studies of P-glycoprotein ATPase activity over the past 20 years, no comprehensive kinetic analysis has yet been carried out, and some puzzling features of its behaviour remain unexplained. In this work, we have built several progressively more complex kinetic models, and then carried out simulations and detailed analysis, to test the validity of the proposed reaction pathway employed by P-glycoprotein for ATP hydrolysis. To establish kinetic parameters for the catalytic cycle, we made use of the large amount of published data on ATP hydrolysis by hamster P-glycoprotein, both purified and in membrane vesicles. The proposed kinetic scheme(s) include a high affinity priming reaction for binding of the first ATP molecule, and an independent pathway for ADP binding outside the main catalytic cycle. They can reproduce to varying degrees the observed behavior of the protein's ATPase activity and its inhibition by ortho-vanadate. The results provide new insights into the mode of action of P-glycoprotein, and some hypotheses about the nature of the occluded nucleotide-bound state. PMID:24897122

  2. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    SciTech Connect

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong; Kodithuwakku, Nandani Darshika; Fang, Weirong [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Li, Yunman, E-mail: yunmanlicpu@hotmail.com [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Huang, Wenlong [Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity and multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein inhibitors. • The accumulation of HZ08 increased via gene interference targeting P-glycoprotein. • HZ08 competitively bound to P-glycoprotein under the presence of verapamil.

  3. Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine

    E-print Network

    Steinbach, Joe Henry

    Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine Introduction P-glycoprotein regulates brain access and intestinal absorption of numerous drugs. Morphine is a P-glycoprotein substrate in vitro, and P-glycoprotein affects morphine brain access and pharmacodynamics in animals

  4. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein.

    PubMed

    Nabekura, Tomohiro; Hiroi, Takashi; Kawasaki, Tatsuya; Uwai, Yuichi

    2015-03-01

    Drug efflux transporter P-glycoprotein plays an important role in cancer chemotherapy. The nuclear factor-?B (NF-?B) transcription factors play critical roles in development and progression of cancer. In this study, the effects of natural compounds that can inhibit NF-?B activation on the function of P-glycoprotein were investigated using human MDR1 gene-transfected KB/MDR1 cells. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-glycoprotein, in KB/MDR1 cells increased in the presence of caffeic acid phenetyl ester (CAPE), licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol in a concentration-dependent manner. In contrast, lupeol, zerumbone, thymoquinone, emodin, and anethol had no effects. The ATPase activities of P-glycoprotein were stimulated by CAPE, licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol. Tumor necrosis factor (TNF)-? stimulated NF-?B activation was inhibited by CAPE, licochalcone A, anacardic acid, and xanthohumol. KB/MDR1 cells were sensitized to vinblastine cytotoxicity by CAPE, licochalcone A, anacardic acid, xanthohumol, magnolol, and honokiol, showing that these natural NF-?B inhibitors reverse multidrug resistance. These results suggest that natural compounds, such as CAPE, licochalcone A, and anacardic acid, have dual inhibitory effects on the anticancer drug efflux transporter P-glycoprotein and NF-?B activation, and may become useful to enhance the efficacy of cancer chemotherapy. PMID:25776492

  5. Indomethacin-mediated reversal of multidrug resistance and drug efflux in human and murine cell lines overexpressing MRP, but not P-glycoprotein.

    PubMed Central

    Draper, M. P.; Martell, R. L.; Levy, S. B.

    1997-01-01

    Decreased accumulation of the fluorescent dye BCECF [2', 7'-bis-(2-carboxyethyl)-5-(6)- carboxyfluorescein] characterized murine and human multidrug-resistant cell lines overexpressing the multidrug resistance protein (MRP). Indomethacin (10 microM), a known cyclo-oxygenase and glutathione-S-transferase inhibitor as well as a modulator of anion transport, increased accumulation and blocked efflux of BCECF in MRP-expressing murine and human cells. The drug did not affect P-glycoprotein (P-gp)-mediated export of rhodamine 123. The indomethacin effect on BCECF efflux was not reversed by the addition of exogenous prostaglandins, suggesting that the drug acts by a mechanism other than decreasing prostaglandin synthesis. Indomethacin also increased multidrug susceptibility of both murine and human cell lines overexpressing MRP, but not those displaying P-gp-associated resistance. In addition, indomethacin modulated the decreased vincristine accumulation in cells expressing MRP, but not in those expressing P-gp. These data suggest that indomethacin is a specific inhibitor of MRP, possibly functioning by inhibition of glutathione-S-transferase or, alternatively, by direct competition with the drug at the transport site. PMID:9062400

  6. Immunostimulation of Salmo salar L., and its effect on Lepeophtheirus salmonis (Krřyer) P-glycoprotein mRNA expression following subsequent emamectin benzoate exposure.

    PubMed

    Igboeli, O O; Purcell, S L; Wotton, H; Poley, J; Burka, J F; Fast, M D

    2013-03-01

    Control of sea lice, Lepeophtheirus salmonis, on farmed Atlantic salmon, Salmo salar, relies heavily on chemotherapeutants. However, reduced efficacy of many treatments and need for integrated sea lice management plans require innovative strategies. Resistance to emamectin benzoate (EMB), a major sea lice parasiticide, has been linked with P-glycoprotein (P-gp) expression. We hypothesized that host immunostimulation would complement EMB treatment outcome. Lepeophtheirus salmonis-infected Atlantic salmon were fed immunostimulatory or control feeds. Sea lice were collected for 24-h EMB bioassays 1 and 2 weeks prior to commencement of EMB treatment of the fish. Two weeks after cessation of immunostimulant-treated feed, EMB was administered at 150 ?g kg(-1) fish biomass for 7 days. The bioassay revealed stage, gender and immunostimulant-related differences in EMB EC(50) . Sea lice attached to salmon with a history of immunostimulation exhibited significantly greater survival than those on control feeds, despite similar levels of EMB in host tissues. Lepeophtheirus salmonis from salmon with a history of immunostimulation also exhibited higher P-gp mRNA expression as well as greater survivability compared to controls. Administration of immunostimulants prior to EMB treatment caused increased expression of P-gp mRNA which could have consequently caused decreased efficacy of the parasiticide. PMID:23305391

  7. Down-regulation of the HGF/MET autocrine loop induced by celecoxib and mediated by P-gp in MDR-positive human hepatocellular carcinoma cell line.

    PubMed

    Mazzanti, Roberto; Platini, Francesca; Bottini, Consuelo; Fantappič, Ornella; Solazzo, Michela; Tessitore, Luciana

    2009-07-01

    Many tumors are resistant to drug-induced cell-cycle arrest and apoptosis. We have reported that apoptosis can be restored in human multidrug-resistant (MDR) hepatocellular carcinoma cell lines by celecoxib. Here we show that P-glycoprotein (P-gp) mediates cell-cycle arrest and autophagy induced by celecoxib in human MDR overexpressing hepatocellular carcinoma cell line by down-regulation of the HGF/MET autocrine loop and Bcl-2 expression. Exposure of cells to a low concentration of celecoxib down-regulated the expression of mTOR and caused G1 arrest and autophagy, while higher concentration triggered apoptosis. Cell growth inhibition and autophagy were associated with up-regulation of the expression of TGFbeta1, p16(INK4b), p21(Cip1) and p27(Kip1) and down-regulation of cyclin D1, cyclin E, pRb and E2F. The role of P-glycoprotein expression in resistance of MDR cell clone to cell-cycle arrest, autophagy and apoptosis was shown in cells transfected with MDR1 small interfering RNA. These findings demonstrate that the constitutive expression of P-gp is involved in the HGF/MET autocrine loop that leads to increased expression of Bcl-2 and mTor, inhibition of eIF2alpha expression, resistance to autophagy/apoptosis and progression in the cell-cycle. Since mTor inhibitors have been proposed in treatment of "drug resistant" cancer, these data may help explain the reversing effect of mTor inhibitors. PMID:19447220

  8. Expression of Anionic Glutathione5-transferase and P-Glycoprotein Genes in Human Tissues and Tumors

    Microsoft Academic Search

    Jeffrey A. Moscow; Craig R. Fairchild; Mary Jane Madden; David T. Ransom; Harry S. Wieand; Erin E. O'Brien; David G. Poplack; Jeffrey Cossman; Charles E. Myers; Kenneth H. Cowan

    1989-01-01

    The development of multidrug resistance in MCF-7 human breast cancer cells and the acquisition of broad resistance to xenobiotics in rat hyperplastic nodules are both associated with increased P-glycoprotein (mar) gene expression as well as changes in activities of intracellular (Intoxication enzymes; among these changes is a significant increase in the activity of the anionic isozyme of glutathione-S-transferase (GST). We

  9. Crystal Structure of an EAL Domain in Complex with Reaction Product 5?-pGpG

    PubMed Central

    Robert-Paganin, Julien; Nonin-Lecomte, Sylvie; Réty, Stéphane

    2012-01-01

    FimX is a large multidomain protein containing an EAL domain and involved in twitching motility in Pseudomonas aeruginosa. We present here two crystallographic structures of the EAL domain of FimX (residues 438–686): one of the apo form and the other of a complex with 5?-pGpG, the reaction product of the hydrolysis of c-di-GMP. In both crystal forms, the EAL domains form a dimer delimiting a large cavity encompassing the catalytic pockets. The ligand is trapped in this cavity by its sugar phosphate moiety. We confirmed by NMR that the guanine bases are not involved in the interaction in solution. We solved here the first structure of an EAL domain bound to the reaction product 5?-pGpG. Though isolated FimX EAL domain has a very low catalytic activity, which would not be significant compared to other catalytic EAL domains, the structure with the product of the reaction can provides some hints in the mechanism of hydrolysis of the c-di-GMP by EAL domains. PMID:23285035

  10. An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1.

    PubMed

    Helms, Hans Christian; Hersom, Maria; Kuhlmann, Louise Borella; Badolo, Lasina; Nielsen, Carsten Uhd; Brodin, Birger

    2014-09-01

    Efflux transporters of the ATP-binding cassette superfamily including breast cancer resistance protein (Bcrp/Abcg2), P-glycoprotein (P-gp/Abcb1) and multidrug resistance-associated proteins (Mrp's/Abcc's) are expressed in the blood-brain barrier (BBB). The aim of this study was to investigate if a bovine endothelial/rat astrocyte in vitro BBB co-culture model displayed polarized transport of known efflux transporter substrates. The co-culture model displayed low mannitol permeabilities of 0.95?±?0.1?·?10(-6) cm·s(-1) and high transendothelial electrical resistances of 1,177?±?101 ?·cm(2). Bidirectional transport studies with (3)H-digoxin, (3)H-estrone-3-sulphate and (3)H-etoposide revealed polarized transport favouring the brain-to-blood direction for all substrates. Steady state efflux ratios of 2.5?±?0.2 for digoxin, 4.4?±?0.5 for estrone-3-sulphate and 2.4?±?0.1 for etoposide were observed. These were reduced to 1.1?±?0.08, 1.4?±?0.2 and 1.5?±?0.1, by addition of verapamil (digoxin), Ko143 (estrone-3-sulphate) or zosuquidar?+?reversan (etoposide), respectively. Brain-to-blood permeability of all substrates was investigated in the presence of the efflux transporter inhibitors verapamil, Ko143, zosuquidar, reversan and MK 571 alone or in combinations. Digoxin was mainly transported via P-gp, estrone-3-sulphate via Bcrp and Mrp's and etoposide via P-gp and Mrp's. The expression of P-gp, Bcrp and Mrp-1 was confirmed using immunocytochemistry. The findings indicate that P-gp, Bcrp and at least one isoform of Mrp are functionally expressed in our bovine/rat co-culture model and that the model is suitable for investigations of small molecule transport. PMID:24934296

  11. A Multi-System Approach Assessing the Interaction of Anticonvulsants with P-gp

    PubMed Central

    Dickens, David; Yusof, Siti R.; Abbott, N. Joan; Weksler, Babette; Romero, Ignacio A.; Couraud, Pierre-Olivier; Alfirevic, Ana; Pirmohamed, Munir; Owen, Andrew

    2013-01-01

    30% of epilepsy patients receiving antiepileptic drugs (AEDs) are not fully controlled by therapy. The drug transporter hypothesis for refractory epilepsy proposes that P-gp is over expressed at the epileptic focus with a role of P-gp in extruding AEDs from the brain. However, there is controversy regarding whether all AEDs are substrates for this transporter. Our aim was to investigate transport of phenytoin, lamotrigine and carbamazepine by using seven in-vitro transport models. Uptake assays in CEM/VBL cell lines, oocytes expressing human P-gp and an immortalised human brain endothelial cell line (hCMEC/D3) were carried out. Concentration equilibrium transport assays were performed in Caco-2, MDCKII ±P-gp and LLC-PK1±P-gp in the absence or presence of tariquidar, an inhibitor of P-gp. Finally, primary porcine brain endothelial cells were used to determine the apparent permeability (Papp) of the three AEDs in the absence or presence of P-gp inhibitors. We detected weak transport of phenytoin in two of the transport systems (MDCK and LLC-PK1 cells transfected with human P-gp) but not in the remaining five. No P-gp interaction was observed for lamotrigine or carbamazepine in any of the seven validated in-vitro transport models. Neither lamotrigine nor carbamazepine was a substrate for P-gp in any of the model systems tested. Our data suggest that P-gp is unlikely to contribute to the pathogenesis of refractory epilepsy through transport of carbamazepine or lamotrigine. PMID:23741405

  12. Brain penetration of WEB 2086 (Apafant) and dantrolene in Mdr1a (P-glycoprotein) and Bcrp knockout rats.

    PubMed

    Fuchs, Holger; Kishimoto, Wataru; Gansser, Dietmar; Tanswell, Paul; Ishiguro, Naoki

    2014-10-01

    Transporter gene knockout rat models are attracting increasing interest for mechanistic studies of new drugs as transporter substrates or inhibitors in vivo. However, limited data are available on the functional validity of such models at the blood-brain barrier. Therefore, the present study evaluated Mdr1a [P-glycoprotein (P-gp)], Bcrp, and combined Mdr1a/Bcrp knockout rat strains for the influence of P-gp and breast cancer resistance protein (BCRP) transport proteins on brain penetration of the selective test substrates [(14)C]WEB 2086 (3-[4-(2-chlorophenyl)-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo-[4,3-a][1,4]-diazepin-2-yl]-1-(4-morpholinyl)-1-propanon) for P-gp and dantrolene for BCRP. Brain-to-plasma concentration ratios (BPR) were measured after intravenous coinfusions of 5.5 µmol/kg per hour [(14)C]WEB 2086 and 2 µmol/kg per hour dantrolene for 2 hours in groups of knockout or wild-type rats. Compared with wild-type controls, mean BPR of [(14)C]WEB 2086 increased 8-fold in Mdr1a knockouts, 9.5-fold in double Mdr1a/Bcrp knockouts, and 7.3-fold in zosuquidar-treated wild-type rats, but was unchanged in Bcrp knockout rats. Mean BPR of dantrolene increased 3.3-fold in Bcrp knockouts and 3.9-fold in double Mdr1a/Bcrp knockouts compared with wild type, but was unchanged in the Mdr1a knockouts. The human intestinal CaCo-2 cell bidirectional transport system in vitro confirmed the in vivo finding that [(14)C]WEB 2086 is a substrate of P-gp but not of BCRP. Therefore, Mdr1a, Bcrp, and combined Mdr1a/Bcrp knockout rats provide functional absence of these efflux transporters at the blood-brain barrier and are a suitable model for mechanistic studies on the brain penetration of drug candidates. PMID:25053619

  13. The Effect of Bcrp1 (Abcg2) on the In vivo Pharmacokinetics and Brain Penetration of Imatinib Mesylate (Gleevec): Implications for the Use of Breast Cancer Resistance Protein and P-Glycoprotein Inhibitors to Enable the Brain Penetration of Imatinib in Patients

    Microsoft Academic Search

    Pauline Breedveld; Dick Pluim; Greta Cipriani; Peter Wielinga; Olaf van Tellingen; Alfred H. Schinkel; Jan H. M. Schellens

    Imatinib mesylate (signal transduction inhibitor 571, Glee- vec) is a potent and selective tyrosine kinase inhibitor, which was shown to effectively inhibit platelet-derived growth factor-induced glioblastoma cell growth preclini- cally. However, in patients, a limited penetration of imatinib into the brain has been reported. Imatinib is transported in vitro and in vivo by P-glycoprotein (P-gp; ABCB1), which thereby limits its

  14. Overcoming human P-glycoprotein-dependent multidrug resistance with novel dihydro-?-agarofuran sesquiterpenes.

    PubMed

    Perestelo, Nayra R; Sánchez-Cańete, María P; Gamarro, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Bazzocchi, Isabel L

    2011-10-01

    Sixteen (1-16) dihydro-?-agarofuran sesquiterpenes were isolated from the fruits of Maytenus jelskii and evaluated against mammalian cells with a multidrug resistance phenotype mediated by the overexpression of the human P-glycoprotein. Their stereostructures have been elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques, CD studies, chemical correlations and biogenetic means. Eight compounds from this series were discovered as potent chemosensitizers (1, 2, 4, 6, 8, 9, 11 and 14), showing similar effectiveness to or higher than the classical P-glycoprotein reversal agent verapamil, a first-generation chemosensitizer, when reversing resistance to daunomycin and vinblastine. Detailed structure-activity relationships revealed that aromatic substituents at the 6 and 9-position of the sesquiterpene scaffold were able to modulate the intensity of inhibition. PMID:21856049

  15. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies

    SciTech Connect

    Yang, Cuiping, E-mail: yangsophia76@hotmail.com; Zhang, Tianhong, E-mail: wdzth@sina.com; Li, Zheng, E-mail: lizh2524@126.com; Xu, Liang, E-mail: wj24998@163.com; Liu, Fei, E-mail: liufeipharm@163.com; Ruan, Jinxiu, E-mail: ruanjx1936@yahoo.com.cn; Liu, Keliang, E-mail: keliangliu55@126.com; Zhang, Zhenqing, E-mail: zhangzhenqingpharm@163.com

    2013-12-15

    Aconitine (AC) is a highly toxic alkaloid from bioactive plants of the genus Aconitum, some of which have been widely used as medicinal herbs for thousands of years. In this study, we systematically evaluated the potential role of P-glycoprotein (P-gp) in the mechanisms underlying the low and variable bioavailability of oral AC. First, the bidirectional transport of AC across Caco-2 and MDCKII-MDR1 cells was investigated. The efflux of AC across monolayers of these two cell lines was greater than its influx. Additionally, the P-gp inhibitors, verapamil and cyclosporin A, significantly decreased the efflux of AC. An in situ intestinal perfusion study in rats showed that verapamil co-perfusion caused a significant increase in the intestinal permeability of AC, from 0.22 × 10{sup ?5} to 2.85 × 10{sup ?5} cm/s. Then, the pharmacokinetic profile of orally administered AC with or without pre-treatment with verapamil was determined in rats. With pre-treatment of verapamil, the maximum plasma concentration (C{sub max}) of AC increased sharply, from 39.43 to 1490.7 ng/ml. Accordingly, a 6.7-fold increase in the area under the plasma concentration–time curve (AUC{sub 0–12} {sub h}) of AC was observed when co-administered with verapamil. In silico docking analyses suggested that AC and verapamil possess similar P-gp recognition mechanisms. This work demonstrated that P-gp is involved in limiting the intestinal absorption of AC and attenuating its toxicity to humans. Our data indicate that potential P-gp-mediated drug–drug interactions should be considered carefully in the clinical application of aconite and formulations containing AC. - Highlights: • Verapamil and cyclosporin A decreased the efflux of aconitine across Caco-2 cells. • Both inhibitors decreased the efflux of aconitine across MDCKII-MDR1 cells. • Co-perfusion with verapamil increased the intestinal permeability of aconitine. • Co-administration with verapamil sharply increased the C{sub max} and AUC of aconitine. • P-gp interacted with both verapamil and aconitine and recognized them similarly.

  16. Molecular cloning and characterisation of a novel P-glycoprotein in the salmon louse Lepeophtheirus salmonis.

    PubMed

    Heumann, Jan; Carmichael, Stephen; Bron, James E; Tildesley, Andy; Sturm, Armin

    2012-03-01

    The salmon louse, Lepeophtheirus salmonis, is a crustacean ectoparasite of salmonid fish. At present, sea louse control on salmon farms relies heavily upon chemical treatments. Drug efflux transport, mediated by ABC transporters such as P-glycoprotein (Pgp), represents a major mechanism for drug resistance in parasites. We report here the molecular cloning of a new Pgp from the salmon louse, called SL-PGY1. A partial Pgp sequence was obtained by searching sea louse ESTs, and extended by rapid amplification of cDNA ends (RACE). The open reading frame of SL-PGY1 encodes a protein of 1438 amino acids that possesses typical structural traits of P-glycoproteins, and shows a high degree of sequence homology to invertebrate and vertebrate P-glycoproteins. In the absence of drug exposure, SL-PGY1 mRNA expression levels did not differ between a drug-susceptible strain of L. salmonis and a strain showing a ~7-fold decrease in sensitivity against emamectin benzoate, the active component of the in-feed sea louse treatment SLICE (Merck Animal Health). Aqueous exposure of the hyposensitive salmon louse strain to emamectin benzoate (24h, 410 ?g/L) provoked a 2.9-fold upregulation of SL-PGY1. Adult male lice of both strains showed a greater abundance of SL-PGY1 mRNA than adult females. PMID:21867772

  17. “INVESTIGATION OF THE MICELLAR EFFECT OF PLURONIC P85 ON P-GLYCOPROTEIN INHIBITION: CELL ACCUMULATION AND EQUILIBRIUM DIALYSIS STUDIES”

    PubMed Central

    SHAIK, NAVEED; GIRI, NAGDEEP; ELMQUIST, WILLIAM F.

    2009-01-01

    The objective of this study was: (1) to characterize the P-gp inhibitory effect of different concentrations of Pluronic P85 on anti-HIV-1drug cellular accumulation, and (2) to investigate the relationship between cellular accumulation and free fraction of drug. Cellular accumulation studies in MDCKII-WT and MDCKII-MDR1 cell monolayers showed a biphasic dose response characterized by decline in accumulation at Pluronic concentrations greater than the CMC. This phenomenon was independent of the inhibition of P-gp efflux by Pluronic. Cell-free equilibrium dialysis was used to determine the effect of Pluronic P85 on drug free fraction and the affinity of Pluronic micelles for drug was modeled. Nelfinavir and saquinavir associated extensively with micelles and equilibrium free fractions were low at P85 concentrations above the CMC, with association constants being in the order nelfinavir > saquinavir >>> abacavir. Abacavir, a P-gp substrate, showed no association with micelles yet showed a biphasic response in cellular accumulation. These data suggest that, above the CMC, inhibition of P-gp is not affected but rather factors such as micellar trapping could contribute to decreased accumulation. Therefore, the in vitro evaluation of the effect of Pluronic formulations on active transport should take into account both the physicochemical properties of drug and the composition of Pluronic. PMID:19283769

  18. Blood Brain Barrier group Multi drug resistance and P-glycoprotein efflux transporter: physiological roles and

    E-print Network

    Applebaum, David

    1 Blood Brain Barrier group Multi drug resistance and P-glycoprotein efflux transporter: physiological roles and circumvention for drug delivery P-glycoprotein (Pgp) or MDR1 is a member of the ABC (ATP

  19. Multidrug resistance-associated protein: A protein distinct from P-glycoprotein involved in cytotoxic drug expulsion

    Microsoft Academic Search

    Margery A. Barrand; Tanya Bagrij; Soek-Ying Neo

    1997-01-01

    1.1. Multidrug resistance (MDR) is a phenomenon originally seen in cultured tumor cells that, following selection for resistance to a single anticancer agent, become resistant to a range of chemically diverse anticancer agents. These MDR cells show a decrease in intracellular drug accumulation due to active efflux by transporter proteins. The transporter best characterized is P-glycoprotein (Pgp). This protein has

  20. Non-equivalent cooperation between the two nucleotide-binding folds of P-glycoprotein

    E-print Network

    Tucker, Stephen J.

    Non-equivalent cooperation between the two nucleotide-binding folds of P-glycoprotein Yuko Takada P-glycoprotein, a multidrug transporter, we mutated the key lysine residues to methionines cysteine in either of the NBFs blocked vanadate-induced nucleotide trapping of P-glycoprotein

  1. Role of active drug transporters in refractory multiple myeloma.

    PubMed

    Tucci, Marco; Quatraro, Cosima; Dammacco, Franco; Silvestris, Franco

    2009-01-01

    Drug resistance is a major drawback for cancer chemotherapy protocols and previous studies have demonstrated the overexpression of the P-glycoprotein (P-gp) as mechanism by which myeloma cells develop multidrug resistance (MDR). However, other molecules may apparently promote MDR in multiple myeloma (MM). They include both lung resistance-related protein (LRP) and p53 activation. The inhibition of P-gp in MM patients treated with melphalan (PAM) has been associated to increased toxicity, whereas defective apoptosis due to down-modulation of the NF-kB is a feature of MDR+ myeloma cells. On the contrary, clinical trials with proteasome inhibitors have been successfully carried out to overcome MDR despite their toxicity profile. Recently, sigma receptors (sigmaR)(S), namely sigmaR(1) and sigmaR(2), have been found to be overexpressed in breast cancer cells. In addition, their levels correlate with both P-gp upregulation and MDR development. By contrast, selective inhibitors of sigmaR(S) as PB28, disrupt the P-gp signals and restore the apoptosis machinery in malignant cells. We have reviewed the major pathogenetic events promoting MDR in MM and focused on the sigmaR(S) as potential mechanism driving this function. We demonstrate that MDR+ myeloma cells overexpress the sigmaR(2) and that the treatment with PB28 induces P-gp down-modulation through the activation of the caspases enrolled in both extrinsic and intrinsic apoptotic pathways. Thus, sigmaR(2) inhibitors may be tentatively proposed for the treatment of PAM-resistant MM patients. PMID:19200007

  2. Influence of P-glycoprotein inhibition on secretion of ivermectin and doramectin by milk in lactating sheep.

    PubMed

    Antoni?, Jan; Grabnar, Iztok; Mil?inski, Luka; Skibin, Andrej; Süssinger, Adica; Poga?nik, Milan; Cerkvenik-Flajs, Vesna

    2011-06-30

    The aim of to the present study was to evaluate the effects of verapamil (VER) on plasma pharmacokinetics of ivermectin (IVM) and doramectin (DOR) in lactating Istrian Pramenka dairy sheep and to investigate the role of P-glycoprotein (P-gp) in transport of avermectins into milk. Pharmacokinetics of IVM and DOR following subcutaneous administration of 0.2mg/kg b.w. was evaluated in four groups of sheep. They were administered either IVM or DOR alone or in combination with verapamil (VER) at a dose of 3.0mg/kg b.w., 3 times at 12h intervals. Blood plasma and milk samples were collected at defined time intervals over 30 days post-treatment to determine IVM and DOR concentration levels. Pharmacokinetic parameters in sheep injected with IVM or DOR alone corresponded to previously published values. Comparison between sheep injected with IVM only, and sheep injected with IVM in combination with VER (IVM+VER) showed significant difference in pharmacokinetic parameters in blood plasma. Area under the concentration-time curve (AUC) truncated at 2 days (AUC(2)) was 15 and 28 ?g day/L for group IVM and IVM+VER, respectively. With co-administration of VER, apparent plasma clearance (Cl/F) and mean residence time (MRT) of IVM decreased from 135 to 116 L/day and from 5.8 to 3.8 days, respectively. Similar trends were observed for DOR (AUC(2) 48 vs. 68 ?g day/L, Cl/F 61 vs. 46 L/day, and MRT 5.6 vs. 4.4 days for groups DOR and DOR+VER, respectively). This study confirms that co-administration of VER has a significant effect on pharmacokinetic parameters of subcutaneously administered IVM in blood plasma. The influence on DOR pharmacokinetics is much weaker. This could be either due to the difference in lipophilicity or the difference in affinity towards P-gp as a result of structural differences. No significant influence of VER on AUC ratio of IVM and DOR between milk and plasma was observed suggesting that P-gp does not govern transport of avermectins into milk. PMID:21466921

  3. Isoform I (mdr3) is the major form of P-glycoprotein expressed in mouse brain capillaries. Evidence for cross-reactivity of antibody C219 with an unrelated protein.

    PubMed Central

    Jetté, L; Pouliot, J F; Murphy, G F; Béliveau, R

    1995-01-01

    P-glycoprotein (P-gp) is expressed in various non-cancerous tissues such as the endothelial cells of the blood-brain barrier. We used several monoclonal antibodies (mAbs) and isoform-specific polyclonal antibodies to establish which P-gp isoforms are expressed in isolated mouse brain capillaries. P-gp class I isoform was detected in capillaries with a Western immunoblotting procedure using a specific antiserum. No immunoreactivity was observed with either class II- or class III-specific antisera. Immunoreactivity was observed with mAb C219. However, this antibody detected two distinct immunoreactive proteins (155 and 190 kDa) in the isolated brain capillaries. These two proteins comigrated as a broad band when the samples were submitted to heat prior to gel electrophoresis. The glycoprotein nature of these two antigens was evaluated by their sensitivity to N-glycanase treatment. Following this treatment, the size of the proteins was reduced from 190 and 155 kDa to 180 and 120 kDa, respectively. Triton X-114 phase-partitioning studies showed that the 190 kDa immunoreactive protein was poorly solubilized by Triton X-114, while the 155 kDa protein was partitioned in the detergent-rich phase. In labelling experiments, only the 155 kDa protein was photolabelled with [125I]iodoarylazidoprazosin. These results show that a 190 kDa protein detected by antibody C219 is an antigen unrelated to the three P-gp isoforms presently known. Cross-reactivity of C219 with an unrelated protein emphasizes the fact that more than one antibody should be used in the assessment of P-gp expression in cell lines and tissues. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7848274

  4. Expression of Chlamydia muridarum plasmid genes and immunogenicity of pGP3 and pGP4 in different mouse strains.

    PubMed

    Mosolygó, Tímea; Faludi, Ildikó; Balogh, Emese P; Szabó, Ágnes M; Karai, Adrienn; Kerekes, Fanni; Virók, Dezs? P; Endrész, Valéria; Burián, Katalin

    2014-05-01

    Chlamydia muridarum carries a cryptic plasmid (pMoPn) of 7.5kb, which encodes seven genes. Our aims were to describe the transcriptional pattern of the pMoPn genes in C. muridarum-infected mice and to evaluate the host immune responses against pGP3 and pGP4 proteins. BALB/c and C57BL/6N female mice were inoculated intranasally with C. muridarum and sacrificed at different time points, and the total RNA was extracted from the lung suspensions to determine the levels of expression of the different plasmid genes by RT qPCR. The supernatants of the lungs were subjected to the quantitation of recoverable C. muridarum. TCA04 and TCA05, which encode pGP3 and pGP4, respectively, were amplified by PCR and cloned into the pET vector. The proteins were overexpressed in E. coli HB101 and purified. Selected groups of BALB/c and C57BL/6N mice were infected with C. muridarum 1-3 times. The humoral immune responses in the sera of the mice to the proteins encoded by TCA04 and TCA05 were tested by Western blotting, and the cellular immune responses were assessed in lymphocyte proliferation assays. The proteins recognized by the mouse sera were further analysed by a LC/MSMS technique. The kinetics of C. muridarum growth were similar in the mouse strains used, but the pathogen burden was higher in the BALB/c mice in the late phase of infection. All the plasmid genes in the BALB/c mice showed an increased level of expression on day 7, whereas the expression of the same genes did not change on day 7 in the C57BL/6N mice. The levels of expression of the plasmid genes were higher in the C57BL/6N mice at later time points. In Western blot assays, the sera of the singly infected C57BL/6N mice reacted with the monomeric form of pGP3, whereas the sera of the singly infected BALB/c mice reacted with the trimeric form of pGP3. The sera of the multiply infected C57BL/6N mice also recognized pGP4. Similarly to the humoral immune response, cellular immune responses to pGP3 and pGP4 were detected in the C. muridarum-infected C57BL/6N mice, but the spleen cells of BALB/c mice responded with proliferation only to the pGP3 protein. These results suggest that the proteins encoded by pMoPn genes may modulate the host immune response during C. muridarum infection, and that the evolved immune response against plasmid proteins, similarly to that against other chlamydial proteins, depends on the genetic background of the host. PMID:24631212

  5. C-di-GMP Hydrolysis by Pseudomonas aeruginosa HD-GYP Phosphodiesterases: Analysis of the Reaction Mechanism and Novel Roles for pGpG

    PubMed Central

    Stelitano, Valentina; Giardina, Giorgio; Paiardini, Alessandro; Castiglione, Nicoletta; Cutruzzolŕ, Francesca; Rinaldo, Serena

    2013-01-01

    In biofilms, the bacterial community optimizes the strategies to sense the environment and to communicate from cell to cell. A key player in the development of a bacterial biofilm is the second messenger c-di-GMP, whose intracellular levels are modulated by the opposite activity of diguanylate cyclases and phosphodiesterases. Given the huge impact of bacterial biofilms on human health, understanding the molecular details of c-di-GMP metabolism represents a critical step in the development of novel therapeutic approaches against biofilms. In this study, we present a detailed biochemical characterization of two c-di-GMP phosphodiesterases of the HD-GYP subtype from the human pathogen Pseudomonas aeruginosa, namely PA4781 and PA4108. Upstream of the catalytic HD-GYP domain, PA4781 contains a REC domain typical of two-component systems, while PA4108 contains an uncharacterized domain of unknown function. Our findings shed light on the activity and catalytic mechanism of these phosphodiesterases. We show that both enzymes hydrolyse c-di-GMP in a two-step reaction via the linear intermediate pGpG and that they produce GMP in vitro at a surprisingly low rate. In addition, our data indicate that the non-phosphorylated REC domain of PA4781 prevents accessibility of c-di-GMP to the active site. Both PA4108 and phosphorylated PA4781 are also capable to use pGpG as an alternative substrate and to hydrolyse it into GMP; the affinity of PA4781 for pGpG is one order of magnitude higher than that for c-di-GMP. These results suggest that these enzymes may not work (primarily) as genuine phosphodiesterases. Moreover, the unexpected affinity of PA4781 for pGpG may indicate that pGpG could also act as a signal molecule in its own right, thus further widening the c-di-GMP-related signalling scenario. PMID:24066157

  6. P-glycoprotein expression in Ehrlich ascites tumour cells after in vitro and in vivo selection with daunorubicin.

    PubMed Central

    Nielsen, D.; Eriksen, J.; Maare, C.; Jakobsen, A. H.; Skovsgaard, T.

    1998-01-01

    Fluctuation analysis experiments were performed to assess whether selection or induction determines expression of P-glycoprotein and resistance in the murine Ehrlich ascites tumour cell line (EHR2) after exposure to daunorubicin. Thirteen expanded populations of EHR2 cells were exposed to daunorubicin 7.5 x 10(-9) M or 10(-8) M for 2 weeks. Surviving clones were scored and propagated. Only clones exposed to daunorubicin 7.5 x 10(-9) M could be expanded for investigation. Drug resistance was assessed by the tetrazolium dye (MTT) cytotoxicity assay. Western blot was used for determination of P-glycoprotein. Compared with EHR2, the variant cells were 2.5- to 5.2-fold resistant to daunorubicin (mean 3.6-fold). P-glycoprotein was significantly increased in 11 of 25 clones (44%). Analysis of variance supported the hypothesis that spontaneous mutations conferred drug resistance in EHR2 cells exposed to daunorubicin 7.5 x 10(-9) M. At this level (5 log cell killing) of drug exposure, the mutation rate was estimated at 4.1 x 10(-6) per cell generation. In contrast, induction seemed to determine resistance in EHR2 cells in vitro exposed to daunorubicin 10(-8) M. The revertant EHR2/0.8/R was treated in vivo with daunorubicin for 24 h. After treatment, P-glycoprotein increased in EHR2/0.8/R (sevenfold) and the cell line developed resistance to daunorubicin (12-fold), suggesting that in EHR2/0.8/R the mdr1 gene was activated by induction. In conclusion, our study demonstrates that P-glycoprotein expression and daunorubicin resistance are primarily acquired by selection of spontaneously arising mutants. However, under certain conditions the mdr1 gene may be activated by induction. PMID:9820176

  7. P-glycoprotein and cytochrome P450 3A4 involvement in risperidone transport using an in vitro Caco-2/TC7 model and an in vivo model.

    PubMed

    Cousein, Etienne; Barthélémy, Christine; Poullain, Stéphanie; Simon, Nicolas; Lestavel, Sophie; Williame, Virginie; Joiris, Etienne; Danel, Cécile; Clavey, Véronique; Brossard, Denis; Robert, Hugues; Crauste-Manciet, Sylvie; Vaccher, Claude; Odou, Pascal

    2007-05-01

    The possible involvement of P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 in risperidone transport was investigated using in vitro and in vivo models. Firstly, uptake studies were performed on a Caco-2/TC7 cell monolayer; the effects of 1 microg ml(-1) risperidone on apparent permeability were determined for secretory and absorptive directions, in the presence or absence of various P-gp and CYP3A4 inhibitors (verapamil, ketoconazole, erythromycin), and of an associated multidrug-resistant protein inhibitor (indomethacin). Secondly, on a conscious rat model, risperidone pharmacokinetic parameters, notably absorption parameters, were determined using compartmental and deconvolution methods. Three groups of seven rats received respectively an IV risperidone dose, an oral risperidone dose (PO group) and the same oral risperidone dose after verapamil administration (POV group). No formation of 9-hydroxyrisperidone was observed on Caco-2 cells after risperidone administration; there was no evidence that intestinal CYP3A4 is involved in risperidone metabolising. Risperidone secretory permeation was higher than absorptive permeation. Verapamil increased risperidone absorption permeation and decreased its secretory permeation. Indomethacin did not modify these permeation values. In rats, verapamil led to an increase in both risperidone and 9-hydroxyrisperidone plasmatic concentrations. The fraction absorbed in the verapamil group was 3.18 times higher than in the oral group (65.9% and 20.7% for POV group and PO group). The absorption rate constant was lower in the verapamil group. Our results indicate that P-gp decreases the intestinal absorption of risperidone and that intestinal CYP3A4 is not involved in risperidone metabolism. PMID:17337319

  8. Enhanced oral bioavailability of felodipine by naringenin in Wistar rats and inhibition of P-glycoprotein in everted rat gut sacs in vitro.

    PubMed

    Surya Sandeep, M; Sridhar, V; Puneeth, Y; Ravindra Babu, P; Naveen Babu, K

    2014-10-01

    The aim of this study was to investigate the effect of naringenin on the pharmacokinetics (PK) of felodipine in rats and membrane permeability across rat everted gut sacs in vitro. Rats were simultaneously co-administered with felodipine 10?mg/kg, p.o. and naringenin (25, 50 and 100?mg/kg, p.o.) for 15 consecutive days. Rats of the control groups received the corresponding volume of vehicle. Blood samples were withdrawn from retro-orbital plexus on first day in single dose PK study (SDS) and on 15th day in multiple dosing PK study (MDS). The PK parameters were calculated using Thermo kinetica. The co-administration of naringenin significantly elevated the Cmax and increased the AUCtotal of felodipine in dose-dependent manner. The Cmax of felodipine was increased from 173.25?±?14.65 to 275.61?±?44.62 and 223.26?±?26.35 to 561.32?±?62.53?ng/mL in SDS and MDS, respectively, at the dose of naringenin 100?mg/kg. The AUCtotal of felodipine was significantly (p?P-glycoprotein (P-gp) and Cytochrome P450 (CYP)3A4 inhibitor). Felodipine is a substrate of CYP3A4, and naringenin was reported to be a modulator of P-gp and CYP3A4. These results suggest that naringenin significantly increased the Cmax and AUC of felodipine is due to P-gp and CYP3A4 inhibition. PMID:23883365

  9. Development and validation of RP-HPLC-fluorescence method for quantitative determination of quinidine, a probe substrate for P-glycoprotein inhibition assay using Caco-2 cell monolayer.

    PubMed

    Patil, Anand G; Reddy, Dilip; D'Souza, Russell; Damre, Anagha

    2010-06-01

    A simple, sensitive and specific reverse-phase high-performance liquid chromatographic (RP-HPLC) method with fluorescence detection was developed for quantitation of quinidine from HBSS buffer. The method was applicable in the bi-directional transport assay for evaluation of the inhibitory effect of test compounds on P-glycoprotein-mediated quinidine transport; quinidine was used as a probe P-glycoprotein substrate. The calibration curve was linear (correlation coefficient >/=99) in the range 0.30-100.00 nm. The method was validated and is specific and sensitive with limit of quantitation of 300 pm for quinidine. The method was found to be accurate and precise in the working calibration range. Stability studies were carried out at different storage conditions where the analyte was found to be stable. The applicability and reliability of the analytical method was evaluated by successful demonstration of efflux ratio (P(app)B --> A/P(app)A --> B) in the Caco-2 cell monolayer efflux assay. The efflux ratio for quinidine (100 nm) alone was 10.8, which reduced to less than 2 in the presence of the classical P-gp inhibitors verapamil and ketoconazole (100 mum each). PMID:19816852

  10. No effect of CYP450 and P-glycoprotein on hydroxyurea in vitro metabolism.

    PubMed

    Sassi, Hind; Bachir, Dora; Habibi, Anoosha; Astier, Alain; Galactéros, Frédéric; Hulin, Anne

    2010-02-01

    Our objectives were (1) to study the HU metabolism via human cytochromes and (2) to test if HU is a substrate of P-gp. HU metabolism was investigated by determining the appearance of urea and HU decreasing upon incubation with human liver microsomes. Quantification was determined using HPLC coupled with UV-detection at 449 nm. Our method was linear between 5 and 1000 microm, precise (coefficients of variation ranging from 1.7 to 9.9%), accurate (97.7-103.9%). The limit of quantification was 7 microm. The ATPase activity of human P-gp membranes was determined by measuring inorganic phosphate liberation. HU and urea measurements in microsomes were not different between 0 and 60 min whatever HU concentration used from 30 to 300 microm. The presence of NADPH in the medium has no effect on HU and urea measurements. In the absence of verapamil, the ATPase activity was unaffected by HU at concentrations of 10, 30, 100 and 300 microm. HU is unlikely to cause clinically relevant drug interactions with the substrates of these enzymes/transporters. However, it will be necessary to validate these in vitro data in patients with sickle cell anemia to evaluate the impact of genetic polymorphisms of these enzymes in a black population. PMID:19817872

  11. Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity.

    PubMed

    Tang, Jie; Zhang, Li; Gao, Huile; Liu, Yayuan; Zhang, Qianyu; Ran, Rui; Zhang, Zhirong; He, Qin

    2014-12-10

    Abstract To overcome multidrug resistance (MDR) in cancer chemotherapy with high efficiency and safety, a reduction-sensitive liposome (CL-R8-LP), which was co-modified with reduction-sensitive cleavable PEG and octaarginine (R8) to increase the tumor accumulation, cellular uptake and lysosome escape, was applied to co-encapsulate doxorubicin (DOX) and a P-glycoprotein (P-gp) inhibitor of verapamil (VER) in this study. The encapsulation efficiency (EE) of DOX and VER in the binary-drug loaded CL-R8-LP (DOX?+?VER) was about 95 and 70% (w/w), respectively. The uptake efficiencies, the cytotoxicity, and the apoptosis and necrosis-inducing efficiency of CL-R8-LP (DOX?+?VER) were much higher than those of DOX and the other control liposomes in MCF-7/ADR cells or tumor spheroids. Besides, CL-R8-LP (DOX?+?VER) was proven to be uptaken into MCF-7/ADR cells by clathrin-mediated and macropinocytosis-mediated endocytosis, followed by efficient lysosomal escape. In vivo, CL-R8-LP (DOX?+?VER) effectively inhibited the growth of MCF-7/ADR tumor and reduce the toxicity of DOX and VER, which could be ascribed to increased accumulation of drugs in drug-resistant tumor cells and reduced distribution in normal tissues. In summary, the co-delivery of chemotherapeutics and P-gp inhibitors by our reduction-sensitive liposome was a promising approach to overcome MDR, improve anti-tumor effect and reduce the toxicity of chemotherapy. PMID:25491241

  12. ECHINACEA SANGUINEA AND ECHINACEA PALLIDA EXTRACTS STIMULATE GLUCURONIDATION AND BASOLATERAL TRANSFER OF BAUER ALKAMIDES 8 AND 10 AND KETONE 24 AND INHIBIT P-GLYCOPROTEIN TRANSPORTER IN CACO-2 CELLS

    PubMed Central

    Qiang, Zhiyi; Hauck, Cathy; McCoy, Joe-Ann; Widrlechner, Mark P.; Reddy, Manju B.; Murphy, Patricia A.; Hendrich, Suzanne

    2013-01-01

    The use of Echinacea as a medicinal herb is prominent in the United States, and many studies have assessed the effectiveness of Echinacea as an immunomodulator. We hypothesized that Bauer alkamides 8, 10 and 11 and ketone 24 were absorbed similarly either as pure compounds or from Echinacea sanguinea and Echinacea pallida ethanol extracts, and that these Echinacea extracts could inhibit P-glycoprotein transporter (P-gp) in Caco-2 human intestinal epithelial cells. Using HPLC analysis, the permeation rate of Bauer alkamides by passive diffusion across Caco-2 cells corresponded with compound hydrophilicity (alkamide 8 > 10 > 11), independent of the plant extract matrix. Both Echinacea ethanol extracts stimulated apparent glucuronidation and basolateral efflux of glucuronides of alkamides 8 and 10 but not alkamide 11. Bauer ketone 24 was totally metabolized to more hydrophilic metabolites when administered as a single compound, but was also glucuronidated when present in Echinacea extracts. Bauer alkamides 8, 10 and 11 (175–230 ?M) and ethanol extracts of E. sanguinea (1 mg/mL, containing ~90 ?M total alkamides) and E. pallida (5 mg/mL, containing 285 ?M total alkamides) decreased the efflux of the P-gp probe calcein-AM from Caco-2 cells. These results suggest that other constituents in these Echinacea extracts facilitated the metabolism and efflux of alkamides and ketones, which might improve therapeutic benefits. Alkamides and Echinacea extracts might be useful in potentiating some chemotherapeutics which are substrates for P-gp. PMID:23408271

  13. Behavioral Effects and Central Nervous System Levels of the Broadly Available ?-Agonist Hallucinogen Salvinorin A Are Affected by P-Glycoprotein Modulation In Vivo

    PubMed Central

    Caspers, Michael; Lovell, Kimberly M.; Kreek, Mary Jeanne; Prisinzano, Thomas E.

    2012-01-01

    Active blood-brain barrier mechanisms, such as the major efflux transporter P-glycoprotein (mdr1), modulate the in vivo/central nervous system (CNS) effects of many pharmacological agents, whether they are used for nonmedical reasons or in pharmacotherapy. The powerful, widely available hallucinogen salvinorin A (from the plant Salvia divinorum) is a high-efficacy, selective ?-opioid agonist and displays fast-onset behavioral effects (e.g., within 1 min of administration) and relatively short duration of action. In vitro studies suggest that salvinorin A may be a P-glycoprotein substrate; thus, the functional status of P-glycoprotein may influence the behavioral effects of salvinorin A or its residence in CNS after parenteral administration. We therefore studied whether a competing P-glycoprotein substrate (the clinically available agent loperamide; 0.032–0.32 mg/kg) or a selective P-glycoprotein blocker, tariquidar (0.32–3.2 mg/kg) could enhance unconditioned behavioral effects (ptosis and facial relaxation, known to be caused by ?-agonists in nonhuman primates) of salvinorin A, as well as its entry and residence in the CNS, as measured by cerebrospinal fluid sampling. Pretreatment with either loperamide or tariquidar dose-dependently enhanced salvinorin A-induced ptosis, but not facial relaxation. In a control study, loperamide and tariquidar were inactive when given as a pretreatment to ((+)-(5?,7?,8?)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69,593), a ?-agonist known to be a very poor P-glycoprotein substrate. Furthermore, pretreatment with tariquidar (3.2 mg/kg) also enhanced peak levels of salvinorin A in cerebrospinal fluid after intravenous administration. These are the first studies in vivo showing the sensitivity of salvinorin A effects to modulation by the P-glycoprotein transporter, a major functional component of the blood-brain barrier. PMID:22434677

  14. Cellular Localization of the Multidrug-Resistance Gene Product P-glycoprotein in Normal Human Tissues

    Microsoft Academic Search

    Franz Thiebaut; Takashi Tsuruo; Hirofumi Hamada; Michael M. Gottesman; Ira Pastan; Mark C. Willingham

    1987-01-01

    Monoclonal antibody MRK16 was used to determine the location of P-glycoprotein, the product of the multidrug-resistance gene (MDR1), in normal human tissues. The protein was found to be concentrated in a small number of specific sites. Most tissues examined revealed very little P-glycoprotein. However, certain cell types in liver, pancreas, kidney, colon, and jejunum showed specific localization of P-glycoprotein. In

  15. In vitro inhibition of CYP3A4 metabolism and P-glycoprotein-mediated transport by trade herbal products.

    PubMed

    Hellum, Bent H; Nilsen, Odd Georg

    2008-05-01

    Extracts of six commonly used commercially available herbal products, St. John's wort, common valerian, common sage, Ginkgo biloba, Echinacea purpurea and horse chestnut were investigated for their in vitro inhibitory potential of CYP3A4 mediated metabolism and P-glycoprotein efflux transport activity. C-DNA baculovirus expressed CYP3A4 and Caco-2 cells were used. Ketoconazole and verapamil were applied as positive control inhibitors, respectively. A validated high-performance liquid chromatography methodology was used to quantify the formation of 6-OH-testosterone and scintillation counting was used to quantify the transport of (3)H-digoxin. All the investigated herbs inhibited CYP3A4 activity. St. John's wort was the strongest inhibiting herb with an IC(50) value of 15.4 microg/ml, followed by common sage, Ginkgo biloba, common valerian, horse chestnut and Echinacea purpurea. All herbs also inhibited P-glycoprotein activity. Ginkgo biloba was the strongest inhibiting herb, inhibiting the net digoxin flux with an IC(50) value of 23.6 microg/ml, followed by St. John's wort, horse chestnut, common sage, common valerian and Echinacea purpurea. No correlation was found between the herbs inhibitory potentials towards CYP3A4 and P-glycoprotein activities. Ginkgo biloba, horse chestnut and common sage, besides St. John's wort, are suggested candidates for in vivo intestinal herb-drug pharmacokinetic interactions. PMID:18331390

  16. Role of P-glycoprotein in the distribution of the HIV protease inhibitor atazanavir in the brain and male genital tract.

    PubMed

    Robillard, Kevin R; Chan, Gary N Y; Zhang, Guijin; la Porte, Charles; Cameron, William; Bendayan, Reina

    2014-01-01

    The blood-testis barrier and blood-brain barrier are responsible for protecting the male genital tract and central nervous system from xenobiotic exposure. In HIV-infected patients, low concentrations of antiretroviral drugs in cerebrospinal fluid and seminal fluid have been reported. One mechanism that may contribute to reduced concentrations is the expression of ATP-binding cassette drug efflux transporters, such as P-glycoprotein (P-gp). The objective of this study was to investigate in vivo the tissue distribution of the HIV protease inhibitor atazanavir in wild-type (WT) mice, P-gp/breast cancer resistance protein (Bcrp)-knockout (Mdr1a-/-, Mdr1b-/-, and Abcg2-/- triple-knockout [TKO]) mice, and Cyp3a-/- (Cyp) mice. WT mice and Cyp mice were pretreated with a P-gp/Bcrp inhibitor, elacridar (5 mg/kg of body weight), and the HIV protease inhibitor and boosting agent ritonavir (2 mg/kg intravenously [i.v.]), respectively. Atazanavir (10 mg/kg) was administered i.v. Atazanavir concentrations in plasma (Cplasma), brain (Cbrain), and testes (Ctestes) were quantified at various times by liquid chromatography-tandem mass spectrometry. In TKO mice, we demonstrated a significant increase in atazanavir Cbrain/Cplasma (5.4-fold) and Ctestes/Cplasma (4.6-fold) ratios compared to those in WT mice (P<0.05). Elacridar-treated WT mice showed a significant increase in atazanavir Cbrain/Cplasma (12.3-fold) and Ctestes/Cplasma (13.5-fold) ratios compared to those in vehicle-treated WT mice. In Cyp mice pretreated with ritonavir, significant (P<0.05) increases in atazanavir Cbrain/Cplasma (1.8-fold) and Ctestes/Cplasma (9.5-fold) ratios compared to those in vehicle-treated WT mice were observed. These data suggest that drug efflux transporters, i.e., P-gp, are involved in limiting the ability of atazanavir to permeate the rodent brain and genital tract. Since these transporters are known to be expressed in humans, they could contribute to the low cerebrospinal and seminal fluid antiretroviral concentrations reported in the clinic. PMID:24379203

  17. Role of P-Glycoprotein in the Distribution of the HIV Protease Inhibitor Atazanavir in the Brain and Male Genital Tract

    PubMed Central

    Robillard, Kevin R.; Chan, Gary N. Y.; Zhang, Guijin; la Porte, Charles; Cameron, William

    2014-01-01

    The blood-testis barrier and blood-brain barrier are responsible for protecting the male genital tract and central nervous system from xenobiotic exposure. In HIV-infected patients, low concentrations of antiretroviral drugs in cerebrospinal fluid and seminal fluid have been reported. One mechanism that may contribute to reduced concentrations is the expression of ATP-binding cassette drug efflux transporters, such as P-glycoprotein (P-gp). The objective of this study was to investigate in vivo the tissue distribution of the HIV protease inhibitor atazanavir in wild-type (WT) mice, P-gp/breast cancer resistance protein (Bcrp)-knockout (Mdr1a?/?, Mdr1b?/?, and Abcg2?/? triple-knockout [TKO]) mice, and Cyp3a?/? (Cyp) mice. WT mice and Cyp mice were pretreated with a P-gp/Bcrp inhibitor, elacridar (5 mg/kg of body weight), and the HIV protease inhibitor and boosting agent ritonavir (2 mg/kg intravenously [i.v.]), respectively. Atazanavir (10 mg/kg) was administered i.v. Atazanavir concentrations in plasma (Cplasma), brain (Cbrain), and testes (Ctestes) were quantified at various times by liquid chromatography-tandem mass spectrometry. In TKO mice, we demonstrated a significant increase in atazanavir Cbrain/Cplasma (5.4-fold) and Ctestes/Cplasma (4.6-fold) ratios compared to those in WT mice (P < 0.05). Elacridar-treated WT mice showed a significant increase in atazanavir Cbrain/Cplasma (12.3-fold) and Ctestes/Cplasma (13.5-fold) ratios compared to those in vehicle-treated WT mice. In Cyp mice pretreated with ritonavir, significant (P < 0.05) increases in atazanavir Cbrain/Cplasma (1.8-fold) and Ctestes/Cplasma (9.5-fold) ratios compared to those in vehicle-treated WT mice were observed. These data suggest that drug efflux transporters, i.e., P-gp, are involved in limiting the ability of atazanavir to permeate the rodent brain and genital tract. Since these transporters are known to be expressed in humans, they could contribute to the low cerebrospinal and seminal fluid antiretroviral concentrations reported in the clinic. PMID:24379203

  18. Involvement of P-glycoprotein and multidrug resistance associated protein 1 on the transepithelial transport of a mercaptoacetamide-based histone-deacetylase inhibitor in Caco-2 cells.

    PubMed

    Konsoula, Zacharoula; Jung, Mira

    2009-01-01

    Oral bioavailability is one of the important criteria for development of a drug-lead candidate. In this study, the absorptive characteristics and the efflux mechanism of a mercaptoacetamide-based histone deacetyalse (HDAC) inhibitor, coded as W2, were investigated using Caco-2 cells. The transport of W2 was asymmetric as indicated by 1.85 fold higher basolateral to apical (BL to AP) than apical to basolateral (AP to BL) flux. Such asymmetry was associated with multidrug resistance associated protein 1 (MRP1) and P-glycoprotein (P-gp), as evidenced by specific inhibition of these proteins. In the presence of verapamil and cyclosporin A, potent inhibitors of P-gp, the apparent permeability ratio (P(app) BL to AP/P(app) AP to BL) of W2 was decreased from 1.85 to 0.73 and 1.03, respectively, and the absorption from apical to basolateral side was enhanced from 13.3+/-0.2x10(-6) cm/s to 17.3+/-0.12x10(-6) cm/s and 19+/-0.3x10(-6) cm/s, respectively. Upon addition of quinidine, a mixed P-gp and MRP1 inhibitor, the permeation of W2 from the apical side was significantly increased (P(app) 17.1+/-0.32x10(-6) cm/s) while the efflux was inhibited (P(app) 21.3+/-0.19x10(-6) cm/s). Furthermore, the influence of the MRP1 inhibitors, indomethacin and N-benzyl-indomethacin (NBI) was evaluated. NBI treatment attenuated the basolateral to apical flux of W2 (P(app) 20.3+/-0.1x10(-6) cm/s), whereas this effect was completely abrogated by indomethacin (P(app) 11+/-0.4x10(-6) cm/s). The results suggest that P-gp and MRP1 transporters are capable of mediating the efflux of W2 and might play a significant role in its oral absorption. PMID:19122284

  19. Theoretical calculation and prediction of P-glycoprotein-interacting drugs using MolSurf parametrization and PLS statistics

    Microsoft Academic Search

    Thomas Österberg; Ulf Norinder

    2000-01-01

    A method for the modelling and prediction of P-glycoprotein-associated ATPase activity using theoretically computed molecular descriptors and multivariate statistics has been investigated using 22 diverse drug-like compounds. The program MolSurf was used to compute theoretical molecular descriptors related to physicochemical properties such as lipophilicity, polarity, polarizability and hydrogen bonding. The multivariate partial least squares projections to latent structures (PLS) method

  20. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine

    Microsoft Academic Search

    Kenneth S. Lown; Robert R. Mayo; Alan B. Leichtman; Hsiu-ling Hsiao; D. Kim Turgeon; Phyllissa Schmiedlin-Ren; Morton B. Brown; Wensheng Guo; Stephen J. Rossi; Leslie Z. Benet; Paul B. Watkins

    1997-01-01

    Interpatient differences in the oral clearance of cyclosporine (INN, ciclosporin) have been partially attributed to variation in the activity of a single liver enzyme termed CYP3A4. Recently it has been shown that small bowel also contains CYP3A4, as well as P-glycoprotein, a protein able to transport cyclosporine. To assess the importance of these intestinal proteins, the oral pharmacokinetics of cyclosporine

  1. Resistance to Paclitaxel in a Cisplatin-Resistant Ovarian Cancer Cell Line Is Mediated by P-Glycoprotein

    PubMed Central

    Stordal, Britta; Hamon, Marion; McEneaney, Victoria; Roche, Sandra; Gillet, Jean-Pierre; O’Leary, John J.; Gottesman, Michael; Clynes, Martin

    2012-01-01

    The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA) was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A), MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy. PMID:22792399

  2. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine.

    PubMed

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-10-01

    The purpose of this study was to thoroughly characterize the efflux transporters involved in the intestinal permeability of the oral microtubule polymerization inhibitor colchicine and to evaluate the role of these transporters in limiting its oral absorption. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on colchicine bidirectional permeability were studied across Caco-2 cell monolayers, inhibiting one versus multiple transporters simultaneously. Colchicine permeability was then investigated in different regions of the rat small intestine by in situ single-pass perfusion. Correlation with the P-gp/MRP2 expression level throughout different intestinal segments was investigated by immunoblotting. P-gp inhibitors [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), verapamil, and quinidine], and MRP2 inhibitors [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), indomethacin, and p-aminohippuric acid (p-AH)] significantly increased apical (AP)-basolateral (BL) and decreased BL-AP Caco-2 transport in a concentration-dependent manner. No effect was obtained by the BCRP inhibitors fumitremorgin C (FTC) and pantoprazole. P-gp/MRP2 inhibitors combinations greatly reduced colchicine mucosal secretion, including complete abolishment of efflux (GF120918/MK571). Colchicine displayed low (versus metoprolol) and constant permeability along the rat small-intestine. GF120918 significantly increased colchicine permeability in the ileum with no effect in the jejunum, whereas MK571 augmented jejunal permeability without changing the ileal transport. The GF120918/MK571 combination caused an effect similar to that of MK571 alone in the jejunum and to that of GF120918 alone in the ileum. P-gp expression followed a gradient increasing from proximal to distal segments, whereas MRP2 decreased from proximal to distal small intestinal regions. Overall, it was revealed that the combined effect of P-gp and MRP2, but not BCRP, dominates colchicine transepithelial transport, leading to complete coverage of the entire small intestine, and makes the efflux transport dominate the intestinal permeability process. PMID:19589874

  3. Oral intake of curcumin markedly activated CYP 3A4: in vivo and ex-vivo studies.

    PubMed

    Hsieh, Yow-Wen; Huang, Ching-Ya; Yang, Shih-Ying; Peng, Yu-Hsuan; Yu, Chung-Ping; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2014-01-01

    Curcumin, a specific secondary metabolite of Curcuma species, has potentials for a variety of beneficial health effects. It is nowadays used as a dietary supplement. Everolimus (EVL) is an immunosuppressant indicated for allograft rejection and cancer therapy, but with narrow therapeutic window. EVL is a substrate of P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4). This study investigated the effect of coadministration of curcumin on the pharmacokinetics of EVL in rats and the underlying mechanisms. EVL (0.5?mg/kg) was orally administered without and with 50 and 100?mg/kg of curcumin, respectively, in rats. Blood samples were collected at specific time points and EVL concentrations in blood were determined by QMS immunoassay. The underlying mechanisms were evaluated using cell model and recombinant CYP 3A4 isozyme. The results indicated that 50 and 100?mg/kg of curcumin significantly decreased the AUC0-540 of EVL by 70.6% and 71.5%, respectively, and both dosages reduced the Cmax of EVL by 76.7%. Mechanism studies revealed that CYP3A4 was markedly activated by curcumin metabolites, which apparently overrode the inhibition effects of curcumin on P-gp. In conclusion, oral intake of curcumin significantly decreased the bioavailability of EVL, a probe substrate of P-gp/CYP 3A4, mainly through marked activation on CYP 3A4. PMID:25300360

  4. In vitro and in vivo multidrug resistance reversal activity by a Betti-base derivative of tylosin

    PubMed Central

    Gyémánt, N; Engi, H; Schelz, Z; Szatmári, I; Tóth, D; Fülöp, F; Molnár, J; de Witte, P A M

    2010-01-01

    Background: The multidrug resistance (MDR) proteins are present in a majority of human tumours. Their activity is important to understand the chemotherapeutic failure. A search for MDR-reversing compounds was conducted among various Betti-base derivatives of tylosin. Methods: Here, we evaluate the in vitro and in vivo P-glycoprotein (P-gp)-modulating activity of the most promising compound N-tylosil-1-?-amino-(3-bromophenyl)-methyl-2-naphthol (TBN) using human MDR1 gene-transfected and parental L5178 mouse lymphoma cell lines. Results: In vitro experiments showed that TBN dramatically increased the P-gp-mediated cellular uptake of the fluorescent substrate rhodamine 123. Similarly, TBN was found to act as a very potent enhancer of the cytotoxicity of doxorubicin on the resistant cell line. We also provide in vivo evidence using DBA/2 mice in support for an increased tumoural accumulation of doxorubicin, without affecting its tissue distribution, resulting in an enhanced antitumoural effect. Conclusion: Our results suggest that TBN is a potent modulator of the P-gp membrane pump and that the compound could be of clinical relevance to improve the efficacy of chemotherapy in MDR cancers. PMID:20551959

  5. The influence of P-glycoprotein on morphine transport in Caco-2 cells. Comparison with paclitaxel.

    PubMed

    Crowe, Andrew

    2002-04-01

    In vitro monolayer studies using Caco-2 cells were employed here to explore P-glycoprotein mediated transport of morphine. Bi-directional transport studies of 10-75 microM morphine showed efflux to be twofold higher than influx (4 x 10(-6) compared to 2 x 10(-6) cm/s) and cellular accumulation in the efflux direction was eightfold higher. The cyclosporin analogue (PSC-833) equilibrated morphine transport in both directions. Depletion of intracellular glutathione had a greater effect on increasing cellular morphine accumulation than P-glycoprotein inhibitors, suggesting a role for glutathione in morphine transport. P-glycoprotein had a substantially greater effect on paclitaxel accumulation, efflux and bi-directional transport than for morphine. Paclitaxel transport was below detection (<0.1 x 10(-6) cm/s) in the influx direction, yet efflux was very high (18.4 x 10(-6) cm/s) and P-glycoprotein inhibition increased accumulation >100-fold. These results reinforce the substantial role P-glycoprotein has in paclitaxel transport. Conversely, P-glycoprotein regulated morphine transport is weak. Nevertheless, morphine transport rates could be doubled when administered with P-glycoprotein substrates. Therefore, increased analgesia through P-glycoprotein inhibition should be possible. PMID:11959083

  6. Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    E-print Network

    Ernst, Stefan; Zarrabi, Nawid; Wilkens, Stephan; Boersch, Michael

    2011-01-01

    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBD...

  7. P-Glycoprotein conformational changes detected by antibody competition.

    PubMed

    Nagy, H; Goda, K; Arceci, R; Cianfriglia, M; Mechetner, E; Szabó, G

    2001-04-01

    Conformational changes accompanying P-glycoprotein (Pgp) mediated drug transport are reflected by changes in the avidity of certain monoclonal antibodies (mAbs). More of the UIC2 mAb binds to Pgp-expressing cells in the presence of substrates or modulators [Mechetner, E.B., Schott, B., Morse, S.B., Stein, W., Druley, T., Dvis, K.A., Tsuruo, T. & Roninson, I.B. (1997) Proc. Natl Acad. Sci. USA 94, 12908-12913], while the binding of other mAbs (e.g. MM12.10, MRK16, 4E3) is not conformation sensitive. Pre-staining of Pgp+ cells with UIC2 decreased the subsequent binding of MM12.10 mAb by about 30-40%, suggesting that there are Pgp molecules available for both UIC2 and MM12.10, and others accessible only for MM12.10. In the presence of certain substrates/modulators such as vinblastin, cyclosporin A or valinomycin, the MM12.10 reactivity was completely abolished by preincubation with UIC2. However, verapamil, Tween-80 and nifedipine did not influence the ratio of bound mAbs significantly. This is the first assay to our knowledge, sharply distinguishing two classes of modulators. The conformational changes accompanying the mAb competition phenomenon appear to be closely related, though not identical to those accompanying the UIC2-shift, as suggested by the simultaneous assessment of the two phenomena. PMID:11298761

  8. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro-in vivo correlation.

    PubMed Central

    Fricker, G.; Drewe, J.; Huwyler, J.; Gutmann, H.; Beglinger, C.

    1996-01-01

    1. The interaction of cyclosporin A (CyA) with p-glycoprotein during intestinal uptake was investigated by a combination of in vitro experiments with human Caco-2 cells and an intubation study in healthy volunteers. 2. CyA uptake into the cells was not saturable and exhibited only a low temperature sensitivity, suggesting passive diffusion. When the permeation of CyA across Caco-2 monolayers from the apical to the basolateral side was determined, overall transport had an apparently saturable component up to a concentration of 1 microM. At higher concentrations permeation increased over-proportionally. Calculation of the kinetic parameters of apical to basolateral permeation suggested a diffusional process with a KD of 0.5 microliter min-1 per filter, which was overlayed by an active system in basolateral to apical direction with a KM of 3.8 microM and a Jmax of 6.5 picomol min-1 per filter. 3. CyA permeation was significantly higher when the drug was given from the basolateral side as compared to the permeation from the apical side. Apical to basolateral transport of CyA was increased in the presence of vinblastine, daunomycin and a non-immunosuppressive CyA-derivative. All compounds inhibit p-glycoprotein-mediated transport processes. Basolateral to apical permeation of CyA showed a dose-dependent decrease in the presence of vinblastine. Permeation of daunomycin across Caco-2 cell monolayers was also higher from the basolateral to the apical side than vice versa. Basolateral to apical permeation was decreased in the presence of SDZ PSC 833 and cyclosporin A. 4. Western blot analysis of Caco-2 cells with the monoclonal antibody C219 confirmed the presence of p-glycoprotein in the used cell system. 5. When the absorption of CyA in the gastrointestinal (GI)-tract of healthy volunteers was determined, a remarkable decrease of the plasma AUC could be observed dependent on the location of absorption in the rank order stomach > jejunum/ileum > colon. The decrease in absorption exhibited a marked correlation (r = 0.994) to the expression of mRNA for p-glycoprotein over the GI-tract (stomach < jejunum < colon). 6. All data provide evidence that CyA is a substrate of p-glycoprotein in the GI-tract, which might explain the local differences and the high variability in cyclosporin absorption found in vivo. PMID:8842452

  9. Multidrug-resistant Human Sarcoma Cells with a Mutant P-Glycoprotein, Altered Phenotype, and Resistance to Cyclosporins*

    E-print Network

    Ford, James

    and the cyclosporin D analogue PSC 833, a potent inhibitor of the multidrug transporter P-glycoprotein. The variant DxMultidrug-resistant Human Sarcoma Cells with a Mutant P-Glycoprotein, Altered Phenotype. The mutant P- glycoprotein has a decreased affinity for PSC 833 and vinblastine and a decreased ability

  10. Liquid Chromatographic Method for Irinotecan Estimation: Screening of P-gp Modulators.

    PubMed

    Tariq, M; Negi, L M; Talegaonkar, Sushama; Ahmad, F J; Iqbal, Zeenat; Khan, A M

    2015-01-01

    The present work is aimed to develop a simple, sensitive, robust and reliable HPLC method for the estimation of irinotecan in the physiological media in order to assess the permeability profile of irinotecan, using the everted gut sac, in the presence of various P-gp modulators. Separation was achieved using, C18 column with mobile phase consisting of acetonitrile and 0.045 µM sodium dihydrogen phosphate dihydrate buffer containing ion pair agent heptane sulphonic acid sodium salt (0.0054 µM), pH 3. The flow rate was maintained at 1 ml/min and analysis was performed at 254.9 nm using PDA detector. Calibration data showed an excellent linear relationship between peak-area verses drug concentration (r(2), 0.9999). Linearity was found to be in the range of 0.060-10.0 µg/ml. Limits of detection and quantification were found to ~0.020 µg/ml and ~0.060 µg/ml, respectively. The developed method was found to be precise (RSD < 1.5%, for repeatability and <2.55% for intermediate precision, acceptable ranges of precision), accurate (The recovered content of irinotecan in the presence of various P-gp modulators varied from 96.11-101.51%, within acceptable range, 80-120%), specific and robust (% RSD < 2). Developed method has been applied successfully for the evaluation of eleven P-gp modulators from diverse chemical class. PMID:25767314

  11. Liquid Chromatographic Method for Irinotecan Estimation: Screening of P-gp Modulators

    PubMed Central

    Tariq, M.; Negi, L. M.; Talegaonkar, Sushama; Ahmad, F. J.; Iqbal, Zeenat; Khan, A. M.

    2015-01-01

    The present work is aimed to develop a simple, sensitive, robust and reliable HPLC method for the estimation of irinotecan in the physiological media in order to assess the permeability profile of irinotecan, using the everted gut sac, in the presence of various P-gp modulators. Separation was achieved using, C18 column with mobile phase consisting of acetonitrile and 0.045 µM sodium dihydrogen phosphate dihydrate buffer containing ion pair agent heptane sulphonic acid sodium salt (0.0054 µM), pH 3. The flow rate was maintained at 1 ml/min and analysis was performed at 254.9 nm using PDA detector. Calibration data showed an excellent linear relationship between peak-area verses drug concentration (r2, 0.9999). Linearity was found to be in the range of 0.060-10.0 µg/ml. Limits of detection and quantification were found to ~0.020 µg/ml and ~0.060 µg/ml, respectively. The developed method was found to be precise (RSD < 1.5%, for repeatability and <2.55% for intermediate precision, acceptable ranges of precision), accurate (The recovered content of irinotecan in the presence of various P-gp modulators varied from 96.11-101.51%, within acceptable range, 80-120%), specific and robust (% RSD < 2). Developed method has been applied successfully for the evaluation of eleven P-gp modulators from diverse chemical class. PMID:25767314

  12. Effect of ketoconazole and rifampicin on the pharmacokinetics of ranitidine in healthy human volunteers: a possible role of P-glycoprotein.

    PubMed

    Machavaram, Krishna K; Gundu, Jayasagar; Yamsani, Madhusudan R

    2006-01-01

    The aims of this study were to determine the effect of ketoconazole and rifampicin on the oral pharmacokinetics of ranitidine in human volunteers and to investigate the role of P-glycoprotein (P-gp) using in vitro systems. A randomized, placebo controlled crossover oral pharmacokinetic study was conducted in 12 healthy male human volunteers and in vitro (everted sac) and in situ (intestinal loop) studies were conducted in rats to study the role of P-gp. There was a statistically significant (p < 0.05) difference observed in the pharmacokinetic parameters C(max), AUC and MRT after pretreatment with rifampicin (600 mg orally once per day for 7 days). The C(max), AUC(0-infinity), and MRT were decreased by 53%, 52%, and 18%, respectively. Ketoconazole treatment (200 mg orally once per day for 5 days) increased the C(max), AUC(0-infinity) and T1/2 by 78%, 74%, and 56%, respectively, whereas T(max) was decreased by 31%. No statistically significant differences were observed in renal clearance (CLR) of ranitidine after treatment with either ketoconazole or rifampicin. Presence of ketoconazole significantly reduced the mean cumulative efflux concentrations (serosal to mucosal) of ranitidine to 35%, 41% and 55% in the duodenal, jejunum and ileal regions of the everted sacs, respectively, whereas, the mean cumulative efflux concentrations of ranitidine were increased by 14%, 36% and 25% in duodenal, jejunal and ileal regions of the rat small intestine, respectively, after pretreatment with rifampicin. The presence of ketoconazole improved the absorption of ranitidine significantly by increasing the percentage of total dose disappearing from the loops of duodenum, jejunum and ileum of rat small intestine by 82%, 84% and 85%, respectively. In contrast, treatment with rifampicin decreased the absorption of ranitidine by decreasing the percentage of total dose disappearing in duodenal, jejunal and ileal regions of the intestinal loops by 40%, 39% and 25%, respectively. Ranitidine was shown to be a P-gp substrate in vivo in human volunteers and it was found that oral bioavailability of ranitidine was influenced at the intestinal absorption phase. PMID:17152347

  13. Localization of P-glycoprotein at the nuclear envelope of rat brain cells.

    PubMed

    Babakhanian, Karlo; Bendayan, Moise; Bendayan, Reina

    2007-09-21

    P-glycoprotein is a plasma membrane drug efflux protein implicated in extrusion of cytotoxic compounds out of a cell. There is now evidence that suggests expression of this transporter at several subcellular sites, including the nucleus, mitochondria, and Golgi apparatus. This study investigated the localization and expression of P-glycoprotein at the nuclear membrane of rat brain microvessel endothelial (RBE4) and microglial (MLS-9) cell lines. Immunocytochemistry at the light and electron microscope levels using P-glycoprotein monoclonals antibodies demonstrated the localization of the protein at the nuclear envelope of RBE4 and MLS-9 cells. Western blot analysis revealed a single band of 170-kDa in purified nuclear membranes prepared from isolated nuclei of RBE4 and MLS-9 cells. These findings indicate that P-glycoprotein is expressed at the nuclear envelope of rat brain cells and suggest a role in multidrug resistance at this subcellular site. PMID:17651695

  14. Localization of P-glycoprotein at the nuclear envelope of rat brain cells

    SciTech Connect

    Babakhanian, Karlo [Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ont. M5S 3M2 (Canada); Bendayan, Moise [Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal, CP 6128 Succursale Centre-ville, Montreal, Que. H3T 1J4 (Canada); Bendayan, Reina [Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ont. M5S 3M2 (Canada)]. E-mail: r.bendayan@utoronto.ca

    2007-09-21

    P-Glycoprotein is a plasma membrane drug efflux protein implicated in extrusion of cytotoxic compounds out of a cell. There is now evidence that suggests expression of this transporter at several subcellular sites, including the nucleus, mitochondria, and Golgi apparatus. This study investigated the localization and expression of P-glycoprotein at the nuclear membrane of rat brain microvessel endothelial (RBE4) and microglial (MLS-9) cell lines. Immunocytochemistry at the light and electron microscope levels using P-glycoprotein monoclonals antibodies demonstrated the localization of the protein at the nuclear envelope of RBE4 and MLS-9 cells. Western blot analysis revealed a single band of 170-kDa in purified nuclear membranes prepared from isolated nuclei of RBE4 and MLS-9 cells. These findings indicate that P-glycoprotein is expressed at the nuclear envelope of rat brain cells and suggest a role in multidrug resistance at this subcellular site.

  15. Co-treatment with the anti-malarial drugs mefloquine and primaquine highly sensitizes drug-resistant cancer cells by increasing P-gp inhibition.

    PubMed

    Kim, Ju-Hwa; Choi, Ae-Ran; Kim, Yong Kee; Yoon, Sungpil

    2013-11-22

    The purpose of this study was to identify conditions that will increase the sensitivity of resistant cancer cells to anti-mitotic drugs. Currently, atovaquine (ATO), chloroquine (CHL), primaquine (PRI), mefloquine (MEF), artesunate (ART), and doxycycline (DOY) are the most commonly used anti-malarial drugs. Herein, we tested whether anti-malarial drugs can sensitize drug-resistant KBV20C cancer cells. None of the six tested anti-malarial drugs was found to better sensitize the drug-resistant cells compared to the sensitive KB cells. With an exception of DOY, all other anti-malarial drugs tested could sensitize both KB and KBV20C cells to a similar extent, suggesting that anti-malarial drugs could be used for sensitive as well as resistant cancer cells. Furthermore, we examined the effects of anti-malarial drugs in combination with an antimitotic drug, vinblastine (VIN) on the sensitisation of resistant KBV20C cells. Using viability assay, microscopic observation, assessment of cleaved PARP, and Hoechst staining, we identified that two anti-malarial drugs, PRI and MEF, highly sensitized KBV20C-resistant cells to VIN treatment. Moreover, PRI- or MEF-induced sensitisation was not observed in VIN-treated sensitive KB parent cells, suggesting that the observed effect is specific to resistant cancer cells. We demonstrated that the PRI and MEF sensitisation mechanism mainly depends on the inhibition of p-glycoprotein (P-gp). Our findings may contribute to the development of anti-malarial drug-based combination therapies for patients resistant to anti-mitotic drugs. PMID:24284282

  16. Does P-glycoprotein play a role in anticancer drug pharmacokinetics?

    Microsoft Academic Search

    Alex Sparreboom; Kees Nooter

    2000-01-01

    The multidrug-resistance P-glycoprotein is a drug efflux transport protein abundantly present in various types of human cancer. The protein is encoded by the MDR1 gene and its function is sensitive to modulation by competitive inhibition. Clinical studies have indicated that inhibitors of P-glycoprotein function dramatically decrease the systemic clearance of anticancer agents, necessitating dose reduction. This dose reduction not only

  17. Discovery of a new series of jatrophane and lathyrane diterpenes as potent and specific P-glycoprotein modulators.

    PubMed

    Barile, Elisa; Borriello, Marianna; Di Pietro, Attilio; Doreau, Agnčs; Fattorusso, Caterina; Fattorusso, Ernesto; Lanzotti, Virginia

    2008-05-21

    A new series of diterpenes, the jatrophanes euphoscopin M (1), euphoscopin N (2) and euphornin L (3), and the lathyrane euphohelioscopin C (7) were isolated from plants of Euphorbia helioscopia L., together with four other known analogues, euphoscopin C (4), euphornin (5), epieuphoscopin B (6) and euphohelioscopin A (8). The new compound stereostructures were elucidated by NMR analysis and computational data. The resulting isolated diterpenes were found to be potent inhibitors of P-glycoprotein (ABCB1), while showing an absence of significant activity against BCRP (ABCG2), despite the high substrate overlapping of these transporters, thus including them in the third-generation class of specific multidrug transporter modulators. PMID:18452010

  18. Poly(styrene oxide)-poly(ethylene oxide) block copolymers: From "classical" chemotherapeutic nanocarriers to active cell-response inducers.

    PubMed

    Cambón, A; Rey-Rico, A; Barbosa, S; Soltero, J F A; Yeates, S G; Brea, J; Loza, M I; Alvarez-Lorenzo, C; Concheiro, A; Taboada, P; Mosquera, V

    2013-04-10

    Two poly(styrene oxide)-poly(ethylene oxide) (PSO-PEO) triblock copolymers with different chain lengths were analyzed as potential chemotherapeutic nanocarriers, and their ability to inhibit the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line were measured in order to establish possible cell-responses induced by the presence of the copolymer molecules. Thus, EO33SO14EO33 and EO38SO10EO38 polymeric micelles were tested regarding doxorubicin (DOXO) entrapment efficiency (solubilization test), physical stability (DLS), cytocompatibility (fibroblasts), release profiles at various pHs (in vitro tests), as well as P-gp inhibition and evasion and cytotoxicity of the DOXO-loaded micelles in an ovarian MDR NCI-ADR/RES cell line and in DOXO-sensitive MCF-7 cells. EO33SO14EO33 and EO38SO10EO38 formed spherical micelles (~13nm) at lower concentration than other copolymers under clinical evaluation (e.g. Pluronic®), exhibited 0.2% to 1.8% loading capacity, enhancing more than 60 times drug apparent solubility, and retained the cargo for long time. The copolymer unimers inhibited P-gp ATPase activity in a similar way as Pluronic P85, favoring DOXO accumulation in the resistant cell line, but not in the sensitive cell line. DOXO loaded in the micelles accumulated more slowly inside the cells, but caused greater cytotoxicity than free drug solutions in the NCI-ADR-RES cell line, which overexpressed P-gp. Hence, PSO-PEO block copolymers offer interesting features as new biological response modifiers to be used in the design of efficient nanocarriers for cancer chemotherapy. PMID:23352909

  19. Regulation of mdr2 P-glycoprotein expression by bile salts.

    PubMed Central

    Frijters, C M; Ottenhoff, R; van Wijland, M J; van Nieuwkerk, C M; Groen, A K; Oude Elferink, R P

    1997-01-01

    The phosphatidyl translocating activity of the mdr2 P-glycoprotein (Pgp) in the canalicular membrane of the mouse hepatocyte is a rate-controlling step in the biliary secretion of phospholipid. Since bile salts also regulate the secretion of biliary lipids, we investigated the influence of the type of bile salt in the circulation on mdr2 Pgp expression and activity. Male mice were led a purified diet to which either 0.1% (w/w) cholate or 0.5% (w/w) ursodeoxycholate was added. This led to a near-complete replacement of the endogenous bile salt pool (mainly tauromuricholate) by taurocholate or tauroursodeoxycholate respectively. The phospholipid secretion capacity was then determined by infusion of increasing amounts of tauroursodeoxycholate. Cholate feeding resulted in a 55% increase in maximal phospholipid secretion compared with that in mice on the control diet. Northern blotting revealed that cholate feeding increased mdr2 Pgp mRNA levels by 42%. Feeding with ursodeoxycholate did not influence the maximum rate of phospholipid output or the mdr2 mRNA content. Female mice had a higher basal mdr2 Pgp mRNA level than male mice, and this was also correlated with a higher phospholipid secretion capacity. This could be explained by the 4-fold higher basal cholate content in the bile of female compared with male mice. Our results suggest that the type of bile salts in the circulation influences the expression of the mdr2 gene. PMID:9020871

  20. Effect of Tacrolimus on the pharmacokinetics of bioactive lignans of Wuzhi tablet (Schisandra sphenanthera extract) and the potential roles of CYP3A and P-gp.

    PubMed

    Qin, Xiao-ling; Chen, Xiao; Zhong, Guo-ping; Fan, Xiao-mei; Wang, Ying; Xue, Xin-ping; Wang, Ying; Huang, Min; Bi, Hui-chang

    2014-04-15

    We recently reported that Wuzhi tablet (WZ), a preparation of the ethanol extract of Wuweizi (Schisandra sphenanthera), had significant effects on blood concentrations of Tacrolimus (FK506) in renal transplant recipients and rats. The active lignans in WZ are schisandrin A, schisandrin B, schisandrin C, schisandrol A, schisandrol B, schisantherin A, and schisantherin B. Until now, whether the pharmacokinetics of these lignans in WZ would be affected by FK506 remained unknown. Therefore, this study aimed to investigate whether and how FK506 affected pharmacokinetics of lignans in WZ in rats and the potential roles of CYP3A and P-gp. After a single oral co-administration of FK506 and WZ, the blood concentration of lignans in WZ was decreased by FK506; furthermore, the AUC of schisantherin A, schisandrin A, schisandrol A and schisandrol B was only 64.5%, 47.2%, 55.1% and 57.4% of that of WZ alone group, respectively. Transport study in Caco-2 cells showed that these lignans were not substrates of P-gp, suggesting decreased blood concentration of lignans by FK506 was not via P-gp pathway. Metabolism study in the human recombinant CYP 3A showed that these lignans had higher affinity to CYP3A than that of FK506, and thus had a stronger CYP3A-mediated metabolism. It was concluded that the blood concentrations of these lignans were decreased and their CYP3A-mediated metabolisms were increased in the presence of FK506 since these lignans had higher affinity to CYP3A. PMID:24462213

  1. A novel application of t-statistics to objectively assess the quality of IC50 fits for P-glycoprotein and other transporters.

    PubMed

    O'Connor, Michael; Lee, Caroline; Ellens, Harma; Bentz, Joe

    2015-02-01

    Current USFDA and EMA guidance for drug transporter interactions is dependent on IC50 measurements as these are utilized in determining whether a clinical interaction study is warranted. It is therefore important not only to standardize transport inhibition assay systems but also to develop uniform statistical criteria with associated probability statements for generation of robust IC50 values, which can be easily adopted across the industry. The current work provides a quantitative examination of critical factors affecting the quality of IC50 fits for P-gp inhibition through simulations of perfect data with randomly added error as commonly observed in the large data set collected by the P-gp IC50 initiative. The types of errors simulated were (1) variability in replicate measures of transport activity; (2) transformations of error-contaminated transport activity data prior to IC50 fitting (such as performed when determining an IC50 for inhibition of P-gp based on efflux ratio); and (3) the lack of well defined "no inhibition" and "complete inhibition" plateaus. The effect of the algorithm used in fitting the inhibition curve (e.g., two or three parameter fits) was also investigated. These simulations provide strong quantitative support for the recommendations provided in Bentz et al. (2013) for the determination of IC50 values for P-gp and demonstrate the adverse effect of data transformation prior to fitting. Furthermore, the simulations validate uniform statistical criteria for robust IC50 fits in general, which can be easily implemented across the industry. A calibration of the t-statistic is provided through calculation of confidence intervals associated with the t-statistic. PMID:25692007

  2. A novel application of t-statistics to objectively assess the quality of IC50 fits for P-glycoprotein and other transporters

    PubMed Central

    O'Connor, Michael; Lee, Caroline; Ellens, Harma; Bentz, Joe

    2015-01-01

    Current USFDA and EMA guidance for drug transporter interactions is dependent on IC50 measurements as these are utilized in determining whether a clinical interaction study is warranted. It is therefore important not only to standardize transport inhibition assay systems but also to develop uniform statistical criteria with associated probability statements for generation of robust IC50 values, which can be easily adopted across the industry. The current work provides a quantitative examination of critical factors affecting the quality of IC50 fits for P-gp inhibition through simulations of perfect data with randomly added error as commonly observed in the large data set collected by the P-gp IC50 initiative. The types of errors simulated were (1) variability in replicate measures of transport activity; (2) transformations of error-contaminated transport activity data prior to IC50 fitting (such as performed when determining an IC50 for inhibition of P-gp based on efflux ratio); and (3) the lack of well defined “no inhibition” and “complete inhibition” plateaus. The effect of the algorithm used in fitting the inhibition curve (e.g., two or three parameter fits) was also investigated. These simulations provide strong quantitative support for the recommendations provided in Bentz et al. (2013) for the determination of IC50 values for P-gp and demonstrate the adverse effect of data transformation prior to fitting. Furthermore, the simulations validate uniform statistical criteria for robust IC50 fits in general, which can be easily implemented across the industry. A calibration of the t-statistic is provided through calculation of confidence intervals associated with the t-statistic. PMID:25692007

  3. Acetylcholine receptor subunit and P-glycoprotein transcription patterns in levamisole-susceptible and -resistant Haemonchus contortus

    PubMed Central

    Sarai, Ranbir S.; Kopp, Steven R.; Coleman, Glen T.; Kotze, Andrew C.

    2013-01-01

    The mechanism of resistance to the anthelmintic levamisole in parasitic nematodes is poorly understood, although there is some evidence implicating changes in expression of nicotinic acetylcholine receptor (nAChR) subunit genes. Hence, in order to define levamisole resistance mechanisms in some Australian field-derived isolates of Haemonchus contortus we examined gene expression patterns and SNPs in nAChR subunit genes, as well as expression levels for P-glycoprotein (P-gp) and receptor ancillary protein genes, in various life stages of one levamisole-sensitive and three levamisole-resistant isolates of this species. Larvae of two isolates showed high-level resistance to levamisole (resistance ratios at the IC50 > 600) while the third isolate showed a degree of heterogeneity, with a resistance factor of only 1.1-fold at the IC50 alongside the presence of a resistant subpopulation. Transcription patterns for nAChR subunit genes showed a great degree of variability across the different life stages and isolates. The most consistent observation was the down-regulation of Hco-unc-63a in adults of all resistant isolates. Transcription of this gene was also reduced in the L3 stage of the two most resistant isolates, highlighting its potential as a resistance marker in the readily accessible free-living stages. There was down regulation of all four Hco-unc-29 paralogs in adults of one resistant isolate. There were no consistent changes in expression of P-gps or ancillary protein genes across the resistant isolates. The present study has demonstrated a complex pattern of nAChR subunit gene expression in H. contortus, and has highlighted several instances where reduced expression of subunit genes (Hco-unc-63a, Hco-unc-29) may be associated with the observed levamisole resistance. The data also suggests that it will be difficult to detect resistance using gene transcription-based methods on pooled larval samples from isolates containing only a resistant subpopulation due to the averaging of gene expression data across the whole population. PMID:24533293

  4. Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation

    SciTech Connect

    Piwnica-Worms, D.; Vallabhaneni, V.R. [Washington Univ. Medical School, St. Louis, MO (United States); Kronauge, J.F. [Harvard Medical School, Boston, MA (United States)] [and others

    1995-09-26

    Multidrug resistance (MDR) in mammalian cells and tumors is associated with overexpression of an {approximately}170 integral membrane efflux transporter, the MDR1 P-glycoprotein. Hexakis(2-methoxyisobutyl isonitrile) technetium(I) (Tc-SESTAMIBI), a {gamma}-emitting lipophilic cationic metallopharmaceutical, has recently been shown to be a P-glycoprotein transport substrate. Exploiting the negligible lipid membrane adsorption properties of this organometallic substrate, we studied the transport kinetics, pharmacology, drug binding, and modulation of P-glycoprotein in cell preparations derived from a variety of species and selection strategies, including SW-1573, V79, Alex, and CHO drug-sensitive cells and in 77A, LZ-8, and Alex/A.5 MDR cells. Rapid cell accumulation (T{sub 1/2} {approx} 6 min) of the agent to a steady state was observed which was inversely proportional to immunodetectable levels of P-glycoprotein. Many MDR cytotoxic agents inhibited P-glycoprotein-mediated Tc-SESTAMIBI efflux, thereby enhancing organometallic cation accumulation. 70 refs., 7 figs., 2 tabs.

  5. Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance

    Microsoft Academic Search

    James H. Gerlach; Jane A. Endicott; Peter F. Juranka; Graham Henderson; Farida Sarangi; Kathryn L. Deuchars; Victor Ling

    1986-01-01

    Increased expression of P-glycoprotein, a plasma membrane glycoprotein of relative molecular mass (Mr) 170,000 (170K), occurs in a wide variety of cell lines that exhibit pleiotropic resistance to unrelated drugs1-4. The presence of P-glycoprotein in human cancers refractory to chemotherapy suggests that tumour cells with multidrug resistance can arise during malignant progression5. We have discovered striking homology between P-glycoprotein and

  6. Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Ernst, S.; Verhalen, B.; Zarrabi, N.; Wilkens, S.; Börsch, M.

    2011-03-01

    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBDs undergo significant movements during catalysis. Duty cycle-optimized alternating laser excitation (DCO-ALEX) is applied to minimize FRET artifacts and to select the appropriate molecules. The data show that Pgp is a highly dynamic enzyme that appears to fluctuate between at least two major conformations during steady state turnover.

  7. Comparison of steroid substrates and inhibitors of P-glycoprotein by 3D-QSAR analysis

    NASA Astrophysics Data System (ADS)

    Li, Yan; Wang, Yong-Hua; Yang, Ling; Zhang, Shu-Wei; Liu, Chang-Hou; Yang, Sheng-Li

    2005-01-01

    Steroid derivatives show a complex interaction with P-glycoprotein (Pgp). To determine the essential structural requirements of a series of structurally related and functionally diverse steroids for Pgp-mediated transport or inhibition, a three-dimensional quantitative structure activity relationship study was performed by comparative similarity index analysis modeling. Twelve models have been explored to well correlate the physiochemical features with their biological functions with Pgp on basis of substrate and inhibitor datasets, in which the best predictive model for substrate gave cross-validated q2=0.720, non-cross-validated r2=0.998, standard error of estimate SEE=0.012, F=257.955, and the best predictive model for inhibitor gave q2=0.536, r2=0.950, SEE=1.761 and F=45.800. The predictive ability of all models was validated by a set of compounds that were not included in the training set. The physiochemical similarities and differences of steroids as Pgp substrate and inhibitor, respectively, were analyzed to be helpful in developing new steroid-like compounds.

  8. Keratinocyte growth factor-2 stimulates P-glycoprotein expression and function in intestinal epithelial cells

    PubMed Central

    Priyamvada, Shubha; Kumar, Anoop; Akhtar, Maria; Soni, Vikas; Anbazhagan, Arivarasu Natarajan; Alakkam, Anas; Alrefai, Waddah A.; Dudeja, Pradeep K.; Gill, Ravinder K.

    2013-01-01

    Intestinal P-glycoprotein (Pgp/multidrug resistance 1), encoded by the ATP-binding cassette B1 gene, is primarily involved in the transepithelial efflux of toxic metabolites and xenobiotics from the mucosa into the gut lumen. Reduced Pgp function and expression has been shown to be associated with intestinal inflammatory disorders. Keratinocyte growth factor-2 (KGF2) has emerged as a potential target for modulation of intestinal inflammation and maintenance of gut mucosal integrity. Whether KGF2 directly regulates Pgp in the human intestine is not known. Therefore, the present studies were undertaken to determine the modulation of Pgp by KGF2 using Caco-2 cells. Short-term treatment of Caco-2 cells with KGF2 (10 ng/ml, 1 h) increased Pgp activity (?2-fold, P < 0.05) as measured by verapamil-sensitive [3H]digoxin flux. This increase in Pgp function was associated with an increase in surface Pgp levels. The specific fibroblast growth factor receptor (FGFR) antagonist PD-161570 blocked the KGF2-mediated increase in Pgp activity. Inhibition of the mitogen-activated protein kinase (MAPK) pathway by PD-98059 attenuated the stimulatory effects of KGF2 on Pgp activity. Small-interfering RNA knockdown of Erk1/2 MAPK blocked the increase in surface Pgp levels by KGF2. Long-term treatment with KGF2 (10 ng/ml, 24 h) also significantly increased PgP activity, mRNA, protein expression, and promoter activity. The long-term effects of KGF2 on Pgp promoter activity were also blocked by the FGFR antagonist and mediated by the Erk1/2 MAPK pathway. In conclusion, our findings define the posttranslational and transcriptional mechanisms underlying stimulation of Pgp function and expression by KGF2 that may contribute to the beneficial effects of KGF2 in intestinal inflammatory disorders. PMID:23328208

  9. Interaction of anthelmintic drugs with P-glycoprotein in recombinant LLC-PK1-mdr1a cells.

    PubMed

    Dupuy, Jacques; Alvinerie, Michel; Ménez, Cecile; Lespine, Anne

    2010-08-01

    Given the widespread use of formulations combining anthelmintics which are possible P-glycoprotein interfering agents, the understanding of drug interactions with efflux ABC transporters is of concern for improving anthelmintic control. We determined the ability of 14 anthelmintics from different classes to interact with abcb1a (mdr1a, P-glycoprotein, Pgp) by following the intracellular accumulation of rhodamine 123 (Rho 123), a fluorescent Pgp substrate, in LLC-PK1 cells overexpressing Pgp. The cytotoxicity of the compounds that are able to interfere with Pgp activity was evaluated in cells overexpressing Pgp and compared with parental cells using the MTS viability assay. Among all the anthelmintics used, ivermectin (IVM), triclabendazole (TCZ), triclabendazole sulfoxide (TCZ-SO), closantel (CLOS) and rafoxanide (RAF) increased the intracellular Rho 123 in Pgp overexpressing cells, while triclabendazole sulfone, albendazole, mebendazole, oxfendazole, thiabendazole, nitroxynil, levamisole, praziquantel and clorsulon failed to have any effect. The concentration needed to reach the maximal Rho 123 accumulation (E(max)) was obtained with 10 microM for IVM, 80 microM for CLOS, 40 microM for TCZ and TCZ-SO, and 80 microM for RAF. We showed that for these five drugs parental cell line was more sensitive to drug toxicity compared with Pgp recombinant cell line. Such in vitro approach constitutes a powerful tool to predict Pgp-drug interactions when formulations combining several anthelmintics are administered and may contribute to the required optimization of efficacy of anthelmintics. PMID:20513441

  10. MDR1 P-Glycoprotein Is a Lipid Translocase of Broad Specificity, While MDR3 P-Glycoprotein Specifically Translocates Phosphatidylcholine

    Microsoft Academic Search

    Ardy van Helvoort; Alexander J Smith; Hein Sprong; Ingo Fritzsche; Alfred H Schinkel; Piet Borst; Gerrit van Meer

    1996-01-01

    The human MDR1 P-glycoprotein (Pgp) extrudes a variety of drugs across the plasma membrane. The homologous MDR3 Pgp is required for phosphatidylcholine secretion into bile. After stable transfection of epithelial LLC-PK1 cells, MDR1 and MDR3 Pgp were localized in the apical membrane. At 15°C, newly synthesized short-chain analogs of various membrane lipids were recovered in the apical albumin-containing medium of

  11. Cytochrome P450 3A4 and P-glycoprotein Expression in Human Small Intestinal Enterocytes and Hepatocytes: A Comparative Analysis in Paired Tissue Specimens

    Microsoft Academic Search

    Oliver von Richter; Oliver Burk; Martin F. Fromm; Klaus P. Thon; Michel Eichelbaum; Kari T. Kivistö

    2004-01-01

    Objectives: Our objectives were to determine the content of cytochrome P450 (CYP) 3A4, CYP3A5, and P-glycoprotein and to measure CYP3A4-dependent catalytic activity in paired human small intestinal and liver specimens.Methods: Samples of duodenum or proximal jejunum and liver wedge biopsy specimens were obtained from 15 patients undergoing a gastrointestinal operation. Enterocytes were isolated from the intestinal samples. The contents of

  12. Zuo Jin Wan, a Traditional Chinese Herbal Formula, Reverses P-gp-Mediated MDR In Vitro and In Vivo

    PubMed Central

    Sui, Hua; Liu, Xuan; Jin, Bao-Hui; Pan, Shu-Fang; Zhou, Li-Hong; Yu, Nikitin Alexander; Cai, Jian-Feng; Fan, Zhong-Ze; Zhu, Hui-Rong; Li, Qi

    2013-01-01

    Zuo Jin Wan (ZJW), a typical traditional Chinese medicine (TCM) formula, has been identified to have anticancer activity in recent studies. In this study, we determined the underlying mechanism of ZJW in the reversal effect of multidrug resistance on colorectal cancer in vitro and in vivo. Our results showed that ZJW significantly enhanced the sensitivity of chemotherapeutic drugs in HCT116/L-OHP, SGC7901/DDP, and Bel/Fu MDR cells. Moreover, combination of chemotherapy with ZJW could reverse the drug resistance of HCT116/L-OHP cells, increase the sensitivity of HCT116/L-OHP cells to L-OHP, DDP, 5-Fu, and MMC in vitro, and inhibit the tumor growth in the colorectal MDR cancer xenograft model. ICP-MS results showed that ZJW could increase the concentration of chemotherapeutic drugs in HCT116/L-OHP cells in a dose-dependent manner. Furthermore, we showed that ZJW could reverse drug resistance of colorectal cancer cells by decreasing P-gp level in vitro and in vivo, which has been represented as one of the major mechanisms that contribute to the MDR phenotype. Our study has provided the first direct evidence that ZJW plays an important role in reversing multidrug resistance of human colorectal cancer and may be considered as a useful target for cancer therapy. PMID:23533531

  13. Comparative tissue pharmacokinetics and efficacy of moxidectin, abamectin and ivermectin in lambs infected with resistant nematodes: Impact of drug treatments on parasite P-glycoprotein expression?

    PubMed Central

    Lloberas, Mercedes; Alvarez, Luis; Entrocasso, Carlos; Virkel, Guillermo; Ballent, Mariana; Mate, Laura; Lanusse, Carlos; Lifschitz, Adrian

    2012-01-01

    The high level of resistance to the macrocyclic lactones has encouraged the search for strategies to optimize their potential as antiparasitic agents. There is a need for pharmaco-parasitological studies addressing the kinetic-dynamic differences between various macrocyclic lactones under standardized in vivo conditions. The current work evaluated the relationship among systemic drug exposure, target tissue availabilities and the pattern of drug accumulation within resistant Haemonchus contortus for moxidectin, abamectin and ivermectin. Drug concentrations in plasma, target tissues and parasites were measured by high performance liquid chromatography. Additionally, the efficacy of the three molecules was evaluated in lambs infected with resistant nematodes by classical parasitological methods. Furthermore, the comparative determination of the level of expression of P-glycoprotein (P-gp2) in H. contortus recovered from lambs treated with each drug was performed by real time PCR. A longer persistence of moxidectin (P < 0.05) concentrations in plasma was observed. The concentrations of the three compounds in the mucosal tissue and digestive contents were significant higher than those measured in plasma. Drug concentrations were in a range between 452 ng/g (0.5 day post-treatment) and 32 ng/g (2 days post-treatment) in the gastrointestinal (GI) contents (abomasal and intestinal). Concentrations of the three compounds in H. contortus were in a similar range to those observed in the abomasal contents (positive correlation P = 0.0002). Lower moxidectin concentrations were recovered within adult H. contortus compared to abamectin and ivermectin at day 2 post-treatment. However, the efficacy against H. contortus was 20.1% (ivermectin), 39.7% (abamectin) and 89.6% (moxidectin). Only the ivermectin treatment induced an enhancement on the expression of P-gp2 in the recovered adult H. contortus, reaching higher values at 12 and 24 h post-administration compared to control (untreated) worms. This comparative pharmacological evaluation of three of the most used macrocyclic lactones compounds provides new insights into the action of these drugs. PMID:24533290

  14. Comparative tissue pharmacokinetics and efficacy of moxidectin, abamectin and ivermectin in lambs infected with resistant nematodes: Impact of drug treatments on parasite P-glycoprotein expression.

    PubMed

    Lloberas, Mercedes; Alvarez, Luis; Entrocasso, Carlos; Virkel, Guillermo; Ballent, Mariana; Mate, Laura; Lanusse, Carlos; Lifschitz, Adrian

    2013-12-01

    The high level of resistance to the macrocyclic lactones has encouraged the search for strategies to optimize their potential as antiparasitic agents. There is a need for pharmaco-parasitological studies addressing the kinetic-dynamic differences between various macrocyclic lactones under standardized in vivo conditions. The current work evaluated the relationship among systemic drug exposure, target tissue availabilities and the pattern of drug accumulation within resistant Haemonchus contortus for moxidectin, abamectin and ivermectin. Drug concentrations in plasma, target tissues and parasites were measured by high performance liquid chromatography. Additionally, the efficacy of the three molecules was evaluated in lambs infected with resistant nematodes by classical parasitological methods. Furthermore, the comparative determination of the level of expression of P-glycoprotein (P-gp2) in H. contortus recovered from lambs treated with each drug was performed by real time PCR. A longer persistence of moxidectin (P < 0.05) concentrations in plasma was observed. The concentrations of the three compounds in the mucosal tissue and digestive contents were significant higher than those measured in plasma. Drug concentrations were in a range between 452 ng/g (0.5 day post-treatment) and 32 ng/g (2 days post-treatment) in the gastrointestinal (GI) contents (abomasal and intestinal). Concentrations of the three compounds in H. contortus were in a similar range to those observed in the abomasal contents (positive correlation P = 0.0002). Lower moxidectin concentrations were recovered within adult H. contortus compared to abamectin and ivermectin at day 2 post-treatment. However, the efficacy against H. contortus was 20.1% (ivermectin), 39.7% (abamectin) and 89.6% (moxidectin). Only the ivermectin treatment induced an enhancement on the expression of P-gp2 in the recovered adult H. contortus, reaching higher values at 12 and 24 h post-administration compared to control (untreated) worms. This comparative pharmacological evaluation of three of the most used macrocyclic lactones compounds provides new insights into the action of these drugs. PMID:24533290

  15. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    PubMed

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  16. Enhanced Oral Bioavailability of Paclitaxel by Coadministration of the P-Glycoprotein Inhibitor KR30031

    Microsoft Academic Search

    Jong Soo Woo; Chang Hyun Lee; Chang Koo Shim; Sung-Joo Hwang

    2003-01-01

    Purpose. In an attempt to improve the oral bioavailability of paclitaxel, a novel P-glycoprotein inhibitor, KR30031, which is verapamil analog with fewer cardiovascular effects, was coadministered with paclitaxel, and to elucidate other possible causes of the low oral bioavailability of paclitaxel, an inhibitor of hepatic metabolism, ketoconazole, was also coadministered with paclitaxel.

  17. P-glycoprotein is expressed in parathyroid epithelium and is regulated by calcium

    Microsoft Academic Search

    C. A. Axiotis; D. Bani; S. Bianchi; P. Pioli; A. Tanini; M. L. Brandi

    1995-01-01

    P-glycoprotein (Pgp), the multidrug resistance (mdr) gene product, has been described in normal tissues with diverse physiologic functions. A broad role as a transporter protein for toxins, hormones, and physiologic metabolites has been provisionally deduced, based on structural analysis and immunoanatomic localization. Recently, significant levels of Pgp have been demonstrated in endocrine and hormonally responsive tissues and tumors. We examined

  18. Novel dihydro-beta-agarofuran sesquiterpenes as potent modulators of human P-glycoprotein dependent multidrug resistance.

    PubMed

    Torres-Romero, David; Muńoz-Martínez, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Gamarro, Francisco; Bazzocchi, Isabel L

    2009-12-21

    P-Glycoprotein (Pgp) overexpression is one factor contributing to multidrug resistance (MDR) in cancer cells and represents one drawback in the treatment of cancer. In an attempt to find more specific and less toxic anticancer MDR-reversal agents, we report herein the isolation, structure elucidation and biological activity of nine new (, and ) and seven known (, and ) dihydro-beta-agarofuran sesquiterpenes from the leaves of Celastrus vulcanicola. Their stereostructures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques, CD studies and biogenetic means. All the compounds were assayed on human MDR1-transfected NIH-3T3 cells, in order to determine their ability to reverse the MDR phenotype due to Pgp overexpression. Six compounds from these series (, , , , and ) showed an effectiveness that was similar to (or higher than) the classical Pgp reversal agent verapamil for the reversal of resistance to daunomycin and vinblastine. The structure-activity relationships are discussed. PMID:20024113

  19. Amino acid prodrug of quinidine: an approach to circumvent P-glycoprotein mediated cellular efflux.

    PubMed

    Patel, Mitesh; Mandava, Nanda K; Pal, Dhananjay; Mitra, Ashim K

    2014-04-10

    In the present study, we investigated the effect of large neutral amino acid modification in overcoming P-gp mediated cellular efflux of quinidine. L-isoleucine ester prodrug of quinidine (Ile-quinidine) was synthesized in our laboratory. [14C]-erythromycin was selected as a model substrate to study interaction of quinidine and Ile-quinidine with P-gp. Transport studies were conducted to study translocation kinetics of quinidine and Ile-quinidine in MDCK-MDR1 cells. In cellular accumulation study, uptake rate of [14C]-erythromycin elevated drastically in presence of cyclosporine A and GF 120918. This result indicates that [14C]-erythromycin is an excellent substrate of P-gp. Similarly, uptake rate of [14C]-erythromycin was enhanced significantly in presence of quinidine (25 and 50 ?M). However, [14C]-erythromycin uptake rate remained fairly constant in presence of Ile-quinidine (25 ?M). Apparent A-B and B-A permeability of quinidine observed in MDCK-MDR1 cells were 1.6 ± 0.2 × 10(-6) and 7.0 ± 0.4 × 10(-6)cm/s, a 4.4-fold difference. Moreover, A-B permeability of quinidine increased dramatically in the presence of cyclosporine A and GF 120918. Apparent permeability values of Ile-quinidine observed from A-B and B-A direction were 4.3 ± 0.9 × 10(-6) and 5.5 ± 0.4 × 10(-6)cm/s, a 1.3-fold difference. Importantly, A-B transport of Ile-quinidine did not change dramatically in the presence of cyclosporine and GF 120918. Based on these results, it was apparent that quinidine displayed higher substrate affinity toward P-gp relative to Ile-quinidine. Chemical or enzymatic hydrolysis of Ile-quinidine resulted in regeneration of low quantities of quinidine during transport studies. Competitive inhibition studies demonstrated that Ile-quinidine was recognized by multiple amino acid transporters such as LAT1, LAT2 and cationic amino acid transporter. In conclusion, chemical modification of quinidine with neutral amino acids results in circumvention of P-gp mediated drug efflux. Hence, amino acid transporter targeted prodrug delivery seems to be a viable strategy for improving drug accumulation in P-gp overexpressing cells. PMID:24440401

  20. ABC transporters and drug resistance in leukemia: was P-gp nothing but the first head of the Hydra?

    PubMed

    Steinbach, D; Legrand, O

    2007-06-01

    More than 30 years ago it was discovered that permeability glycoprotein (P-gp) can cause drug resistance. Over the following decades numerous studies showed that high expression of P-gp is associated with poor prognosis in acute myeloid leukemia in adults and that it causes multidrug resistance via ATP-dependent drug efflux. It was hoped that an inhibition of P-gp could sensitize resistant leukemic cells to chemotherapy and thus improve treatment results. Today we know that the family of ATP-binding cassette transporters (ABC transporters) comprises 48 different proteins. Some of them seem to be able to cause drug resistance as well as P-gp. This review focuses on emerging data on the clinical relevance of other ABC transporters, such as BCRP, MRP3, and ABCA3. When Heracles fought the ancient Hydra, he had to fight all the heads at ones but only one head was vital for the beast. Can we block all the relevant ABC transporters at once? Is there one transporter that is more important than the others? PMID:17429427

  1. P-glycoprotein-dependent resistance of cancer cells toward the extrinsic TRAIL apoptosis signaling pathway.

    PubMed

    Galski, Hanan; Oved-Gelber, Tamar; Simanovsky, Masha; Lazarovici, Philip; Gottesman, Michael M; Nagler, Arnon

    2013-09-01

    The TNF-related apoptosis-inducing ligand (TRAIL or Apo2L) preferentially cause apoptosis of malignant cells in vitro and in vivo without severe toxicity. Therefore, TRAIL or agonist antibodies to the TRAIL DR4 and DR5 receptors are used in cancer therapy. However, many malignant cells are intrinsically resistant or acquire resistance to TRAIL. It has been previously proposed that the multidrug transporter P-glycoprotein (Pgp) might play a role in resistance of cells to intrinsic apoptotic pathways by interfering with components of ceramide metabolism or by modulating the electrochemical gradient across the plasma membrane. In this study we investigated whether Pgp also confers resistance toward extrinsic death ligands of the TNF family. To this end we focused our study on HeLa cells carrying a tetracycline-repressible plasmid system which shuts down Pgp expression in the presence of tetracycline. Our findings demonstrate that expression of Pgp is a significant factor conferring resistance to TRAIL administration, but not to other death ligands such as TNF-? and Fas ligand. Moreover, blocking Pgp transport activity sensitizes the malignant cells toward TRAIL. Therefore, Pgp transport function is required to confer resistance to TRAIL. Although the resistance to TRAIL-induced apoptosis is Pgp specific, TRAIL itself is not a direct substrate of Pgp. Pgp expression has no effect on the level of the TRAIL receptors DR4 and DR5. These findings might have clinical implications since the combination of TRAIL therapy with administration of Pgp modulators might sensitize TRAIL resistant tumors. PMID:23774624

  2. Nitric oxide and P-glycoprotein modulate the phagocytosis of colon cancer cells

    PubMed Central

    Kopecka, Joanna; Campia, Ivana; Brusa, Davide; Doublier, Sophie; Matera, Lina; Ghigo, Dario; Bosia, Amalia; Riganti, Chiara

    2011-01-01

    Abstract The anticancer drug doxorubicin induces the synthesis of nitric oxide, a small molecule that enhances the drug cytotoxicity and reduces the drug efflux through the membrane pump P-glycoprotein (Pgp). Doxorubicin also induces the translocation on the plasma membrane of the protein calreticulin (CRT), which allows tumour cells to be phagocytized by dendritic cells. We have shown that doxorubicin elicits nitric oxide synthesis and CRT exposure only in drug-sensitive cells, not in drug-resistant ones, which are indeed chemo-immunoresistant. In this work, we investigate the mechanisms by which nitric oxide induces the translocation of CRT and the molecular basis of this chemo-immunoresistance. In the drug-sensitive colon cancer HT29 cells doxorubicin increased nitric oxide synthesis, CRT exposure and cells phagocytosis. Nitric oxide promoted the translocation of CRT in a guanosine monophosphate (cGMP) and actin cytoskeleton-dependent way. CRT translocation did not occur in drug-resistant HT29-dx cells, where the doxorubicin-induced nitric oxide synthesis was absent. By increasing nitric oxide with stimuli other than doxorubicin, the CRT exposure was obtained also in HT29-dx cells. Although in sensitive cells the CRT translocation was followed by the phagocytosis, in drug-resistant cells the phagocytosis did not occur despite the CRT exposure. In HT29-dx cells CRT was bound to Pgp and only by silencing the latter the CRT-operated phagocytosis was restored, suggesting that Pgp impairs the functional activity of CRT and the tumour cells phagocytosis. Our work suggests that the levels of nitric oxide and Pgp critically modulate the recognition of the tumour cells by dendritic cells, and proposes a new potential therapeutic approach against chemo-immunoresistant tumours. PMID:20716130

  3. A Gene Optimization Strategy that Enhances Production of Fully Functional P-Glycoprotein in Pichia pastoris

    PubMed Central

    Protasevich, Irina I.; Brouillette, Christie G.; Harrell, Patina M.; Hildebrandt, Ellen; Gasser, Brigitte; Mattanovich, Diethard; Ward, Andrew; Chang, Geoffrey; Urbatsch, Ina L.

    2011-01-01

    Background Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. Methodology/Principal Findings Codon-optimized “Opti-Pgp” and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (?130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ?15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from Tm ?40°C to 49°C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids. Conclusion The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins. PMID:21826197

  4. Short communication The sea urchin embryo as a model for studying

    E-print Network

    inhibitor) or 5 lM PSC833 (specific inhibitor of p-glycoprotein). Cell division status was then scored after fertilization. Activity results from p-glycoprotein (p-gp) and MRP type transporters which protect: Efflux transporters; p-Glycoprotein; Sea urchin; Apoptosis; Energetics It is well appreciated that efflux

  5. The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice

    Microsoft Academic Search

    Jian Wang; Michael Figurski; Leslie M. Shaw; Gilbert J. Burckart

    2008-01-01

    Considerable variability has been observed in the exposure to mycophenolic acid (MPA) in transplant patients. The objective of this study was to clarify the roles of two important transporters, P-gp and Mrp2, in MPA absorption using an in vivo model. FVB strain wild-type, Mdr1a\\/1b?\\/? and Mrp2?\\/? mice were subjected to the administration of mycophenolate mofetil (MMF) alone or MMF in

  6. pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor.

    PubMed

    Zhao, Yong; Zhou, Yanxia; Wang, Dishi; Gao, Yajie; Li, Jinwen; Ma, Shujin; Zhao, Lei; Zhang, Chao; Liu, Yan; Li, Xinru

    2015-04-15

    The combination of a chemotherapeutic drug with a P-glycoprotein (P-gp) inhibitor has emerged as a promising strategy for treating multidrug resistance (MDR) cancer. To ensure that two drugs can be co-delivered to the tumor region and quickly released in tumor cells, tumor-targeted and pH-sensitive polymeric micelles were designed and prepared by combining cationic ring-opening polymerization of 2-ethyl-2-oxazoline (EOz) with anionic ring-opening polymerization of d,l-lactide (LA), and then encapsulating doxorubicin (DOX) and d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS1000) into the micelles self-assembled by poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) (PEOz-PLA) and DSPE-PEG-folate. PEOz-PLA exhibited a low critical micelle concentration and negligible cytotoxicity. The micelles enabled the rapid release of DOX when pH decreased from 7.4 to 5.0. The targeting ability of the micelles was demonstrated by in vitro flow cytometry in KBv cells and in vivo real time near-infrared fluorescence imaging in KBv tumor-bearing nude mice. The efficiency of MDR reversion for the micelles was testified by enhancement of intracellular DOX accumulation and cytotoxicity. The efficient drug delivery by the micelles was attributed to synergistic effects of folate-mediated targeting, pH-triggered drug release and TPGS1000-aroused P-gp inhibition. Therefore, the designed multifunctional polymeric micelles may have significant promise for therapeutic application of MDR cancer. PMID:25612838

  7. The impact of P-glycoprotein and Mrp2 on mycophenolic acid levels in mice.

    PubMed

    Wang, Jian; Figurski, Michael; Shaw, Leslie M; Burckart, Gilbert J

    2008-07-01

    Considerable variability has been observed in the exposure to mycophenolic acid (MPA) in transplant patients. The objective of this study was to clarify the roles of two important transporters, P-gp and Mrp2, in MPA absorption using an in vivo model. FVB strain wild-type, Mdr1a/1b(-/-) and Mrp2(-/-) mice were subjected to the administration of mycophenolate mofetil (MMF) alone or MMF in combination with cyclosporine (CsA), an immunosuppressive inhibitor of P-gp and Mrp2. At 30 min following treatment, the MPA levels in Mdr1a/1b(-/-) and Mrp2(-/-) mice were markedly increased as compared to wild-type mice. In contrast to the reduced MPA concentrations observed at 60 and 120 min in the CsA-treated groups, CsA produced increased mycophenolate glucuronide (MPAG) plasma levels in CsA-treated mice at each sampling time. Brain concentrations of MPA were elevated in the Mdr1a/1b(-/-) mice at 30 min after MMF in conjunction with increased plasma MPA concentrations, but not in the wild-type or the Mrp2(-/-) mice. This study demonstrated that: a) MPA appears to be a substrate for P-gp, and b) MPA plasma concentrations are influenced by multiple membrane transporters. Drug-transporter interactions must be considered in patients receiving mycophenolic acid products. PMID:18586494

  8. Effect of GF120918, a Potent P-glycoprotein Inhibitor, on Morphine Pharmacokinetics and Pharmacodynamics in the Rat

    Microsoft Academic Search

    Stephen P. Letrent; Gary M. Pollack; Kenneth R. Brouwer; Kim L. R. Brouwer

    1998-01-01

    Purpose. The objective of this study was to evaluate the effect of a potent P-gp inhibitor, GF120918, on the systemic pharmacokinetics and antinociceptive pharmacodynamics of a single intravenous dose of morphine in rats.

  9. P-glycoprotein alters blood–brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy

    PubMed Central

    Ma, Aimei; Wang, Cuicui; Chen, Yinghui; Yuan, Weien

    2013-01-01

    P-glycoprotein is one of the earliest known multidrug transporters and plays an important role in resistance to chemotherapeutic drugs. In this study, we detected levels of P-glycoprotein and its mRNA expression in a rat brain model of medically intractable epilepsy established by amygdala kindling and drug selection. We investigated whether inhibition of P-glycoprotein affects the concentration of antiepileptic drugs in cortical extracellular fluid. We found that levels of P-glycoprotein and its mRNA expression were upregulated in epileptic cerebral tissue compared with cerebral tissue from normal rats. The concentrations of two antiepileptic drugs, carbamazepine and phenytoin, were very low in the cortical extracellular fluid of rats with medically intractable epilepsy, and were restored after blockade of P-glycoprotein by verapamil. These results show that increased P-glycoprotein levels alter the ability of carbamazepine and phenytoin to penetrate the blood–brain barrier and reduce the concentrations of these agents in extracellular cortical fluid. High P-glycoprotein levels may be involved in resistance to antiepileptic drugs in medically intractable epilepsy. PMID:24348021

  10. Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs.

    PubMed

    Gouazé, Valérie; Liu, Yong-Yu; Prickett, Carlton S; Yu, Jing Y; Giuliano, Armando E; Cabot, Myles C

    2005-05-01

    Overexpression of glucosylceramide synthase (GCS), a pivotal enzyme in glycolipid biosynthesis, contributes to cancer cell resistance to chemotherapy. We previously showed that transfection of doxorubicin-resistant MCF-7-AdrR cells with GCS antisense restored cell sensitivity to doxorubicin and greatly enhanced sensitivity to vinblastine and paclitaxel. In that study, doxorubicin promoted generation of ceramide in MCF-7-AdrR/GCS antisense cells; the present study implicates factors in addition to ceramide that augment sensitivity to chemotherapy. Although GCS antisense cells showed enhanced ceramide formation compared with MCF-7-AdrR when challenged with paclitaxel, GCS antisense cells also showed a 10-fold increase in levels of intracellular drug (paclitaxel and vinblastine). In addition, transfected cells had dramatically decreased expression (80%) of P-glycoprotein and a 4-fold decrease in the level of cellular gangliosides. Chemical inhibition of GCS produced the same effects as antisense transfection: exposure of MCF-7-AdrR cells to the GCS inhibitor 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP, 5.0 micromol/L, 4 days) decreased ganglioside levels, restored sensitivity to vinblastine, enhanced vinblastine uptake 3-fold, and diminished expression of MDR1 by 58%, compared with untreated controls. A similar effect was shown in vinblastin-resistant KB-V0.01 cells; after 7 days with PPMP (10 micromol/L), MDR1 expression fell by 84% and P-glycoprotein protein levels decreased by 50%. MCF-7-AdrR cells treated with small interfering RNAs to specifically block GCS also showed a dramatic decrease in MDR1 expression. This work shows that limiting GCS activity down-regulates the expression of MDR1, a phenomenon that may drive the chemosensitization associated with blocking ceramide metabolism. The data suggest that lipids play a role in the expression of multidrug resistance. PMID:15867385

  11. J. Biol. Chem., Vol. 266, Issue 28, 18427-18430, Oct, 1991 Heavy metal resistance: a new role for P-glycoproteins in Leishmania

    E-print Network

    Beverley, Stephen M.

    J. Biol. Chem., Vol. 266, Issue 28, 18427-18430, Oct, 1991 Heavy metal resistance: a new role for P-glycoproteins Medical School, Boston, Massachusetts 02115. P-glycoproteins are responsible for multidrug resistance report that a P-glycoprotein gene in the H region of the trypanosomatid protozoan Leishmania confers

  12. Cell Surface P-Glycoprotein Associated with Multidrug Resistance in Mammalian Cell Lines

    Microsoft Academic Search

    Norbert Kartner; John R. Riordan; Victor Ling

    1983-01-01

    The plasma membranes of hamster, mouse, and human tumor cell lines that display multiple resistance to drugs were examined by gel electrophoresis and immunoblotting. In every case, increased expression of a 170,000-dalton surface antigen was found to be correlated with multidrug resistance. This membrane component is of identical molecular size and shares some immunogenic homology with the previously characterized P-glycoprotein

  13. Functional Imaging of Multidrug-resistant P-Glycoprotein with an Organotechnetium Complex1

    Microsoft Academic Search

    David Piwnica-Worms; Mark Budding; James F. Kronauge; Robert A. Kramer; James M. Croop

    1993-01-01

    The multidrug-resistant P-glycoprotein (Pgp), a M, 170,000 plasma membrane protein encoded by the mammalian multidrug resistance gene (MI)Kl ), appears to function as an energy-dependent efflux pump. Many of the drugs that interact with Pgp are lipophilic and cationic at physio logical pH. We tested the hypothesis that the synthetic -\\/-emitting organ- otechnetium complex, hexakis(2-methoxyisobutylisonitrile)technetium(I) ((\\

  14. Influence of P-Glycoprotein Inhibitors on Accumulation of Macrolides in J774 Murine Macrophages

    Microsoft Academic Search

    Cristina Seral; Jean-Michel Michot; Hugues Chanteux; Marie-Paule Mingeot-Leclercq; Paul M. Tulkens; Francoise Van Bambeke

    2003-01-01

    The influence of inhibitors of P-glycoprotein (verapamil (VE), cyclosporine (CY), and GF120918 (GF)) on the cell handling of macrolides (erythromycin (ERY), clarithromycin (CLR), roxithromycin (ROX), azithro- mycin (AZM), and telithromycin (TEL)) was examined in J774 murine macrophages. The net influx rates of AZM and TEL were increased from 2- to 3.5-fold in the presence of these inhibitors, but their efflux

  15. PGP4, an ATP Binding Cassette P-Glycoprotein, Catalyzes Auxin Transport in Arabidopsis thaliana Roots

    Microsoft Academic Search

    Kazuyoshi Terasaka; Joshua J. Blakeslee; Boosaree Titapiwatanakun; Wendy A. Peer; Anindita Bandyopadhyay; Srinivas N. Makam; Ok Ran Lee; Elizabeth L. Richards; Angus S. Murphy; Fumihiko Sato; Kazufumi Yazakic

    2005-01-01

    Members of the ABC (for ATP binding cassette) superfamily of integral membrane transporters function in cellular detoxification, cell-to-cell signaling, and channel regulation. More recently, members of the multidrug resistance P-glycoprotein (MDR\\/PGP) subfamily of ABC transporters have been shown to function in the transport of the phytohormone auxin in both monocots and dicots. Here, we report that the Arabidopsis thaliana MDR\\/PGP

  16. Evaluation of the role of P-glycoprotein in ivermectin uptake by primary cultures of bovine brain microvessel endothelial cells

    E-print Network

    Rose, Jayna M.; Peckham, Sara L.; Scism, Jamie L.; Audus, Kenneth L.

    1998-01-01

    The P-glycoprotein efflux system located on the apical membrane of brain capillary endothelial cells functions as part of the blood-brain barrier. In this study, primary cultures of bovine brain microvessel endothelial cells (BMECs) were...

  17. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects

    Microsoft Academic Search

    Ingolf Cascorbi; Thomas Gerloff; Andreas Johne; Christian Meisel; Sven Hoffmeyer; Matthias Schwab; Elke Schaeffeler; Michel Eichelbaum; Ulrich Brinkmann; Ivar Roots

    2001-01-01

    Background: P-glycoprotein, the gene product of MDR1, confers multidrug resistance against antineoplastic agents but also plays an important role in the bioavailability of common drugs in medical treatment. Various polymorphisms in the MDR1 gene were recently identified. A silent mutation in exon 26 (C3435T) was correlated with intestinal P-glycoprotein expression and oral bioavailability of digoxin.Objective: We wanted to establish easy-to-use

  18. Multidrug-Resistance Gene (P-glycoprotein) is Expressed by Endothelial Cells at Blood--Brain Barrier Sites

    Microsoft Academic Search

    Carlos Cordon-Cardo; James P. O'Brien; Dolors Casals; Lana Rittman-Grauer; June L. Biedler; Myron R. Melamed; Joseph R. Bertino

    1989-01-01

    Endothelial cells of human capillary blood vessels at the blood--brain and other blood--tissue barrier sites express P-glycoprotein as detected by mouse monoclonal antibodies against the human multidrug-resistance gene product. This pattern of endothelial cell expression may indicate a physiological role for P-glycoprotein in regulating the entry of certain molecules into the central nervous system and other anatomic compartments, such as

  19. Effect of endotoxin on doxorubicin transport across blood–brain barrier and P-glycoprotein function in mice

    Microsoft Academic Search

    Ying Lan Zhao; Jun Du; Hiroaki Kanazawa; Ayako Sugawara; Kenji Takagi; Kiyoyuki Kitaichi; Yasuaki Tatsumi; Kenzo Takagi; Takaaki Hasegawa

    2002-01-01

    The aim of this study was to investigate whether Klebsiella pneumoniae endotoxin modifies transport of doxorubicin, a P-glycoprotein substrate, across the blood–brain barrier and P-glycoprotein function in mice. Doxorubicin (30 mg\\/kg) was administered into the tail vein or fluorescein isothiocyanate-labeled dextran (FD-4) was infused (20 ?g\\/min) into the right jugular vein of mice intravenously injected with endotoxin (10 mg\\/kg) 6

  20. The role of multi-drug resistance p-glycoprotein in glucocorticoid function: Studies in animals and relevance in humans

    Microsoft Academic Search

    Carmine M. Pariante

    2008-01-01

    Entry of glucocorticoid hormones into cells is tightly regulated by membrane transporters. One of these transporters, the multi-drug resistance p-glycoprotein, has been extensively described to confer treatment resistance to tumour cells as well as to regulate the intracellular levels of glucocorticoid hormones. Moreover, multi-drug resistance p-glycoprotein is also present on the endothelial cells of the blood–brain-barrier, and in neurones, where

  1. The role of different P-glycoproteins in hepatobiliary secretion of fluorescently labeled short-chain phospholipids

    Microsoft Academic Search

    Charles M. G. Frijters; Coosje J. Tuijn; Roelof Ottenhoff; Bart N. Zegers; Albert K. Groen; Ronald P. J. Oude Elferink

    1999-01-01

    Class III P-glycoproteins (Pgps) mediate biliary phosphatidylcholine (PC) secretion. Recent findings that class I P-glycoproteins are able to transport several short- chain phospholipid analogues raises questions about the role of these Pgps in physiological lipid transport. We inves- tigated the biliary secretion of C6-7-nitro-2,1,3-benzoxadia- zol-4-yl (NBD)-labeled ceramide and its metabolites in Mdr1 a\\/ b and Mdr2 knockout mice compared to

  2. siRNA-based targeting of antiapoptotic genes can reverse chemoresistance in P-glycoprotein expressing chondrosarcoma cells

    PubMed Central

    Kim, Dae Won; Kim, Kyung-Ok; Shin, Mike J; Ha, Jung Hee; Seo, Sung Wook; Yang, Jay; Lee, Francis Y

    2009-01-01

    Background High expression of P-glycoprotein is one of the well-known mechanisms of chemoresistance in chondrosarcomas. However, the role of antiapoptotic proteins, a common mechanism responsible for chemoresistance in other tumors, has not been well studied in chondrosarcomas. We examined the importance of P-glycoprotein and antiapoptotic proteins in the chemoresistance to doxorubicin of two Grade II chondrosarcoma cell lines, JJ012 and SW1353. Results We confirmed that both chondrosarcoma cell types expressed P-glycoprotein and antiapoptotic proteins (Bcl-2, Bcl-xL and XIAP). siRNA knockdown as well as pharmacologic inhibitors of cell survival proteins (Bcl-2, Bcl-xL and XIAP) enhanced apoptosis of chemoresistant chondrosarcoma cells by up to 5.5 fold at 0.1 ?mol and 5.5 fold at 1 ?mol doxorubicin. These chemosensitizing effects were comparable to those of P-glycoprotein inhibition by siRNA or pharmacologic inhibitor. Conclusion These findings suggest that antiapoptotic proteins play a significant role in the chemoresistance of chondrosarcoma cells independent of P-glycoprotein. Based on the results, a new siRNA-based therapeutic strategy targeting antiapoptotic genes can be designed to overcome the chemoresistance of chondrosarcomas which is often conferred by P-glycoprotein. PMID:19445670

  3. Effect of pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism.

    PubMed

    Huang, Jiangeng; Si, Luqin; Jiang, Lingli; Fan, Zhaoze; Qiu, Jun; Li, Gao

    2008-05-22

    The aim of this work was to investigate the effects of pluronic F68 block copolymer on the P-gp-mediated transport of celiprolol (CEL) and CYP3A4-mediated formation of midazolam (MDZ) metabolite 1'-hydroxymidazolam. Over a range from 0.03 to 0.3%, pluronic F68 increased apical-to-basolateral permeability (AP-BL) and decreased basolateral-to-apical permeability (BL-AP) of the P-gp substrate CEL in Caco-2 cell monolayer with the efflux ratio values of 2.8+/-0.3 (0.03%), 2.6+/-0.3 (0.1%), 2.3+/-0.2 (0.3%), respectively. CEL transport across the intestinal mucosa in the everted gut sac model was also enhanced by the P-gp inhibitor verapamil and the pharmaceutical excipient pluronic F68. Furthermore, CYP3A4-catalyzed formation of 1'-hydroxymidazolam was inhibited by pluronic F68 with IC(50) and K(i) values of 0.11 and 0.16 mg/ml, respectively. The results indicate that pluronic F68 is a potent in vitro inhibitor of both P-gp and CYP3A4, suggesting a potential for pluronic F68 to modify the pharmacokinetics of orally administered drugs that are P-gp and/or CYP3A4 substrates in vivo. PMID:18242899

  4. Study on the pharmacokinetics profiles of Polyphyllin I and its bioavailability enhancement through co-administration with P-glycoprotein inhibitors by LC-MS/MS method.

    PubMed

    Zhu, He; Zhu, Si-Can; Shakya, Shailendra; Mao, Qian; Ding, Chuan-Hua; Long, Min-Hui; Li, Song-Lin

    2015-03-25

    Polyphyllin I (PPI), one of the steroidal saponins in Paris polyphylla, is a promising natural anticancer candidate. Although the anticancer activity of PPI has been well demonstrated, information regarding the pharmacokinetics and bioavailability is limited. In this study, a series of reliable and rapid liquid chromatography-tandem mass spectrometry methods were developed and successfully applied to determinate PPI in rat plasma, cell incubation media and cell homogenate. Then the pharmacokinetics of PPI in rats was studied and the result revealed that PPI was slowly eliminated with low oral bioavailability (about 0.62%) at a dose of 50mg/kg, and when co-administrated with verapamil (VPL) and cyclosporine A (CYA), the oral bioavailability of PPI could increase from 0.62% to 3.52% and 3.79% respectively. In addition, in vitro studies showed that with the presence of VPL and CYA in Caco-2 cells, the efflux ratio of PPI decreased from 12.5 to 2.96 and 2.22, and the intracellular concentrations increased 5.8- and 5.0-fold respectively. These results demonstrated that PPI, with poor oral bioavailability, is greatly impeded by P-gp efflux, and inhibition of P-gp can enhance its bioavailability. PMID:25590941

  5. Reversal effects of pantoprazole on multidrug resistance in human gastric adenocarcinoma cells by down-regulating the V-ATPases/mTOR/HIF-1?/P-gp and MRP1 signaling pathway in vitro and in vivo.

    PubMed

    Chen, Min; Huang, Shu-Ling; Zhang, Xiao-Qi; Zhang, Bin; Zhu, Hao; Yang, Vincent W; Zou, Xiao-Ping

    2012-07-01

    To investigate reversal effects of pantoprazole (PPZ) on multidrug resistance (MDR) in human gastric adenocarcinoma cells in vivo and in vitro. Human gastric adenocarcinoma cell SGC7901 was cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum and antibiotics in a humidified 5% CO(2) atmosphere at 37°C. Adriamycin (ADR)-resistant cells were cultured with addition of 0.8?µg/ml of ADR maintaining MDR phenotype. ADR was used to calculate ADR releasing index; CCK-8 Assay was performed to evaluate the cytotoxicity of anti-tumor drugs; BCECF-AM pH-sensitive fluorescent probe was used to measure intracellular pH (pHi) value of cells, whereas pH value of medium was considered as extracellular pH (pHe) value; Western blotting and immunofluorescent staining analyses were employed to determine protein expressions and intracellular distributions of vacuolar H(+) -ATPases (V-ATPases), mTOR, HIF-1?, P-glycoprotein (P-gp), and multidrug resistant protein 1 (MRP1); SGC7901 and SGC7901/ADR cells were inoculated in athymic nude mice. Thereafter, effects of ADR with or without PPZ pretreatment were compared by determining the tumor size and weight, apoptotic cells in tumor tissues were detected by TUNEL assay. At concentrations greater than 20 µg/ml, PPZ pretreatment reduced ADR releasing index and significantly enhanced intracellular ADR concentration of SGC7901 (P < 0.01). Similarly, PPZ pretreatment significantly decreased ADR releasing index of SGC7901/ADR dose-dependently (P < 0.01). PPZ pretreatment also decreased cell viabilities of SGG7901 and SGC7901/ADR dose-dependently. After 24-h PPZ pretreatment, administration of chemotherapeutic agents demonstrated maximal cytotoxic effects on SGC7901 and SGC7901/ADR cells (P < 0.05). The resistance index in PPZ pretreatment group was significantly lower than that in non-PPZ pretreatment group (3.71 vs. 14.80). PPZ at concentration >10 µg/ml significantly decreased pHi in SGC7901 and SGC7901/ADR cells and diminished or reversed transmembrane pH gradient (P < 0.05). PPZ pretreatment also significantly inhibited protein expressions of V-ATPases, mTOR, HIF-1?, P-gp, and MRP1, and alter intracellular expressions in parent and ADR-resistant cells (P < 0.05). In vivo experiments further confirmed that PPZ pretreatment could enhance anti-tumor effects of ADR on xenografted tumor of nude mice and also improve the apoptotic index in xenografted tumor tissues. PPZ pretreatment enhances the cytotoxic effects of anti-tumor drugs on SGC7901 and reverse MDR of SGC7901/ADR by downregulating the V-ATPases/mTOR/HIF-1?/P-gp and MRP1 signaling pathway. PMID:22396185

  6. Cellular and biophysical evidence for interactions between adenosine triphosphate and P-glycoprotein substrates: functional implications for adenosine triphosphate/drug cotransport in P-glycoprotein overexpressing tumor cells and in P-glycoprotein low-level expressing erythrocytes.

    PubMed

    Abraham, E H; Shrivastav, B; Salikhova, A Y; Sterling, K M; Johnston, N; Guidotti, G; Scala, S; Litman, T; Chan, K C; Arceci, R J; Steiglitz, K; Herscher, L; Okunieff, P

    2001-01-01

    P-glycoprotein is involved with the removal of drugs, most of them cations, from the plasma membrane and cytoplasm. Pgp is also associated with movement of ATP, an anion, from the cytoplasm to the extracellular space. The central question of this study is whether drug and ATP transport associated with the expression of Pgp are in any way coupled. We have measured the stoichiometry of transport coupling between drug and ATP release. The drug and ATP transport that is inhibitable by the sulfonylurea compound, glyburide (P. E. Golstein, A. Boom, J. van Geffel, P. Jacobs, B. Masereel, and R. Beauwens, Pfluger's Arch. 437, 652, 1999), permits determination of the transport coupling ratio, which is close to 1:1. In view of this result, we asked whether ATP interacts directly with Pgp substrates. We show by measuring the movement of Pgp substrates in electric fields that ATP and drug movement are coupled. The results are compatible with the view that substrates for Pgp efflux are driven by the movement of ATP through electrostatic interaction and effective ATP-drug complex formation with net anionic character. This mechanism not only pertains to drug efflux from tumor cells overexpressing Pgp, but also provides a framework for understanding the role of erythrocytes in drug resistance. The erythrocyte consists of a membrane surrounding a millimolar pool of ATP. Mammalian RBCs have no nucleus or DNA drug/toxin targets. From the perspective of drug/ATP complex formation, the RBC serves as an important electrochemical sink for toxins. The presence in the erythrocyte membrane of approximately 100 Pgp copies per RBC provides a mechanism for eventual toxin clearance. The RBC transport of toxins permits their removal from sensitive structures and ultimate clearance from the organism via the liver and/or kidneys. PMID:11358379

  7. Relationship of the Expression of the Multidrug Resistance Gene Product (P-Glycoprotein) in Human Colon Carcinoma to Local Tumor Aggressiveness and Lymph Node Metastasis1

    Microsoft Academic Search

    Ronald S. Weinstein; Shriram M. Jakute; Jose M. DomĂ; Miriam D. Lebovitz; George K. Koukoulis; Jerome R. Kuszak; Larry F. Klusens; Thomas M. Grogan; Theodore J. Saclarides; Igor B. Roninson; John S. Coon

    P-glycoprotein mediates classic multidrug resistance by functioning as an efflux pump that excretes lipophilic chemotherapeutic drugs from cancer cells. We now report an association of P-glycoprotein in colon carcinomas with another tumor property, i.e.. enhancement of local tumor aggressiveness. P-glycoprotein was detected with monoclonal antibody immunohistochemistry in 65 of 95 primary colon adenocarcinomas, which were stage Bl or greater. In

  8. Effect of the P-Glycoprotein Inhibitor, Cyclosporine A, on the Distribution of Rhodamine123 to the Brain: An in Vivo Microdialysis Study in Freely Moving Rats

    Microsoft Academic Search

    Q. Wang; H. Yang; D. W. Miller; W. F. Elmquist

    1995-01-01

    The p-glycoprotein is a transmembrane efflux transporter found on the luminal side of the capillary endothelial cells that comprise the blood-brain barrier. This study examined the effect of a p-glycoprotein inhibitor, cyclosporin A, on the distribution to the brain of a p-glycoprotein substrate, rhodamine-123, in freely moving rats using intracerebral microdialysis coupled with on-line HPLC analysis. Results from crossover experiments

  9. Two repeated low doses of doxorubicin are more effective than a single high dose against tumors overexpressing P-glycoprotein.

    PubMed

    Riganti, Chiara; Gazzano, Elena; Gulino, Giulia Rossana; Volante, Marco; Ghigo, Dario; Kopecka, Joanna

    2015-05-01

    Standard chemotherapeutic protocols, based on maximum tolerated doses, do not prevent nor overcome chemoresistance caused by the efflux transporter P-glycoprotein (Pgp). We compared the effects of two consecutive low doses versus a single high dose of doxorubicin in drug-sensitive Pgp-negative and drug-resistant Pgp-positive human and murine cancer cells. Two consecutive low doses were significantly more cytotoxic in vitro and in vivo against drug-resistant tumors, while a single high dose failed to do so. The greater efficacy of two consecutive low doses of doxorubicin could be linked to increased levels of intracellular reactive oxygen species. These levels were produced by high electron flux from complex I to complex III of the mitochondrial respiratory chain, unrelated to the synthesis of ATP. This process induced mitochondrial oxidative damage, loss of mitochondrial potential and activation of the cytochrome c/caspase 9/caspase 3 pro-apoptotic axis in drug-resistant cells. Our work shows that the "apparent" ineffectiveness of doxorubicin against drug-resistant tumors overexpressing Pgp can be overcome by changing the timing of its administration and its doses. PMID:25681670

  10. The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals

    E-print Network

    Sotka, Erik

    of the ABCB (P-glycoprotein; P-gp or MDR) and ABCC (multidrug resistance-associated protein or MRP toxins. In vivo dye assays with specific inhibitors of efflux transporters demonstrated the activity of P

  11. Effect of Endotoxin on P-Glycoprotein-Mediated Biliary and Renal Excretion of Rhodamine-123 in Rats

    PubMed Central

    Ando, Hideyuki; Nishio, Yuki; Ito, Katsuki; Nakao, Akimasa; Wang, Li; Zhao, Ying Lan; Kitaichi, Kiyoyuki; Takagi, Kenzo; Hasegawa, Takaaki

    2001-01-01

    The effects of Klebsiella pneumoniae endotoxin on the biliary excretion and renal handling of rhodamine-123 were investigated in rats at different times after intraperitoneal injection (1 mg/kg of body weight). The typical substrates for P glycoprotein, i.e., cyclosporine, colchicine, and erythromycin, inhibited the biliary clearance of rhodamine-123, whereas a substrate for organic cation transporter, cimetidine, did not inhibit clearance, suggesting that rhodamine-123 is transported mainly by P glycoprotein. The biliary, renal, and tubular secretory clearances of rhodamine-123 and the glomerular filtration rate significantly decreased 6 h after injection of endotoxin but returned to control levels by 24 h. These results suggest that endotoxin-induced decreases in P-glycoprotein-mediated biliary excretion and renal handling of rhodamine-123 were probably due to impairment of P-glycoprotein-mediated transport ability. Pretreatment with pentoxifylline (50 mg/kg) significantly inhibited endotoxin-induced increases in tumor necrosis factor alpha (TNF-?) levels in plasma, which ameliorated the endotoxin-induced reduction of the biliary excretion of rhodamine-123. It is likely that endotoxin-induced impairment of the transport of rhodamine-123 is caused, in part, by overproduction of TNF-?. The effect of endotoxin on the expression of P-glycoprotein mRNA in liver and kidneys of rats was investigated by using a reverse transcriptase PCR. The expression of Mdr1a mRNA in both liver and kidney decreased 6 h after endotoxin injection and returned to control levels after 24 h, whereas the expression of Mdr1b mRNA in liver increased at both times and that in kidney decreased at 24 h. These findings suggest that K. pneumoniae endotoxin dramatically decreases P-glycoprotein-mediated biliary and renal excretion of rhodamine-123 probably by decreasing the expression of Mdr1a, which is likely due to increased plasma TNF-? levels. PMID:11709325

  12. Development and characterization of an open tubular column containing immobilized P-glycoprotein for rapid on-line screening for P-glycoprotein substrates.

    PubMed

    Moaddel, Ruin; Bullock, Peter L; Wainer, Irving W

    2004-01-25

    Cellular membranes from a cell line expressing P-glycoprotein (Pgp(+)) and from a cell line that does not express Pgp (Pgp(-)) were immobilized on the surface of glass capillaries (25 cm x 100 microm i.d.) by non-covalent interactions using the avidin-biotin coupling system to create two open tubular columns, Pgp(+)-OT and Pgp(-)-OT. Frontal displacement chromatography on the Pgp(+)-OT demonstrated that the immobilized Pgp retained its ability to specifically bind the known Pgp substrates vinblastin and ketoconazole. The calculated affinities, expressed as K(d), for vinblastin and ketoconazole were 97 nM and 12.1 microM, which were comparable with previously reported K(d) values of 37 nM and 8.6 microM, respectively. The results confirm that the Pgp(+)-OT can be used to quantitatively estimate binding affinities for the Pgp. Frontal displacement chromatography on the Pgp(-)-OT demonstrated that the immobilized membranes retained the ability to bind some Pgp substrates, but that the binding was not due to specific binding to Pgp. A cohort of compounds containing high affinity Pgp substrates (vinblastin, prazosin) and moderate-low affinity Pgp substrates (doxorubicin, verapamil, ketoconazole) and a non-substrate (nicotine) were chromatographed on the Pgp(+)-OT and Pgp(-)-OT using fast frontal analysis and mass spectrometric detection. The results demonstrated that when the retention on the Pgp(+)-OT was corrected by subtraction of the retention on the Pgp(-)-OT, the test compounds could be accurately sorted into high, moderate-low and non-substrate categories. The data from the study indicates that a single 30-min parallel chromatographic experiment can be used to rank a compound based upon its relative affinity for the immobilized Pgp. PMID:14670744

  13. Differential Sensitivities of the Human ATP-Binding Cassette Transporters ABCG2 and P-Glycoprotein to Cyclosporin A

    E-print Network

    Hrycyna, Christine A.

    Differential Sensitivities of the Human ATP-Binding Cassette Transporters ABCG2 and P of structurally unrelated chemotherapy agents from cells. In this study, we demonstrate that human ABCG2 and P. In this study, we used human ABCG2 and human P-gp, each expressed separately in drug-selected MCF-7 sublines

  14. A Novel Approach for Predicting P-glycoprotein (ABCB1) Inhibition Using Molecular Interaction Fields

    PubMed Central

    Broccatelli, Fabio; Carosati, Emanuele; Neri, Annalisa; Frosini, Maria; Goracci, Laura; Oprea, Tudor I.; Cruciani, Gabriele

    2011-01-01

    P-glycoprotein (Pgp or ABCB1) is an ABC transporter protein involved in intestinal absorption, drug metabolism and brain penetration, and its inhibition can seriously alter a drug's bioavailability and safety. In addition, inhibitors of Pgp can be used to overcome multidrug resistance. Given this dual-purpose, reliable in silico procedures to predict Pgp inhibition are of great interest. A large and accurate literature collection yielded more than 1200 structures; a model was then constructed using various MIF-based technologies, considering pharmacophoric features and those physico-chemical properties related to membrane partitioning. High accuracy was demonstrated internally, with two different validation sets, and moreover using a number of molecules, for which Pgp inhibition was not experimentally available but was evaluated `in-house'. All the validations confirmed the robustness of the model and its suitability to help medicinal chemists in drug discovery. The information derived from the model was rationalized as a pharmacophore for competitive Pgp inhibition. PMID:21341745

  15. Interindividual Variability in Hepatic Organic Anion-Transporting Polypeptides and P-Glycoprotein (ABCB1) Protein Expression: Quantification by Liquid Chromatography Tandem Mass Spectroscopy and Influence of Genotype, Age, and Sex

    PubMed Central

    Prasad, Bhagwat; Evers, Raymond; Gupta, Anshul; Hop, Cornelis E. C. A.; Salphati, Laurent; Shukla, Suneet; Ambudkar, Suresh V.

    2014-01-01

    Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ?40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling. PMID:24122874

  16. Interindividual variability in hepatic organic anion-transporting polypeptides and P-glycoprotein (ABCB1) protein expression: quantification by liquid chromatography tandem mass spectroscopy and influence of genotype, age, and sex.

    PubMed

    Prasad, Bhagwat; Evers, Raymond; Gupta, Anshul; Hop, Cornelis E C A; Salphati, Laurent; Shukla, Suneet; Ambudkar, Suresh V; Unadkat, Jashvant D

    2014-01-01

    Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ?40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling. PMID:24122874

  17. Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (?/?) Mice and Effects on Mammalian GABA(A) Channel Activity

    PubMed Central

    Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne

    2012-01-01

    The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(?/?) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(?/?) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(?/?) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat ?1?2?2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688

  18. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells

    Microsoft Academic Search

    Songyot Anuchapreeda; Pranee Leechanachai; Melissa M Smith; Suresh V Ambudkar; Porn-ngarm Limtrakul

    2002-01-01

    Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in the tumor cells of a patient, resulting from enhanced drug efflux. It is often related to the overexpression of P-glycoprotein (Pgp) on the surface of tumor cells, thereby reducing drug cytotoxicity. In this study, curcumin was tested for its potential ability to modulate the

  19. Immunogold Localisation of P-glycoprotein in Supported Lipid Bilayers by Transmission Electron Microscopy and Atomic Force Microscopy

    Microsoft Academic Search

    Irene Ruspantini; Marco Diociaiuti; Rodolfo Ippoliti; Eugenio Lendaro; Maria Cristina Gaudiano; Maurizio Cianfriglia; Pietro Chistolini; Giuseppe Arancia; Agnese Molinari

    2001-01-01

    In this study, purified P-glycoprotein molecules, a membrane drug pump responsible for the multidrug resistance phenomenon, were incorporated in model membranes deposited onto solid supports, according to the method described by Puu and Gustafson (1997). The insertion of proteins into planar supported model membranes is of interest, as the films are fundamental in biosensor applications and for the investigation of

  20. Effect of the P-glycoprotein inhibitor, SDZ PSC 833, on the blood and brain pharmacokinetics of colchicine

    Microsoft Academic Search

    Sandrine Desrayaud; Pierrette Guntz; Jean-Michel Scherrmann; Michel Lemaire

    1997-01-01

    The effect of the multidrug resistance-reversing agent, SDZ PSC 833, on blood and brain pharmacokinetics of a P-glycoprotein substrate, colchicine, was investigated using simultaneous blood and brain microdialysis in freely moving rats. The use of microdialysis for pharmacokinetic studies was validated by comparing the blood concentrations of colchicine obtained by microdialysis with those obtained by direct blood sampling. The rats

  1. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog

    SciTech Connect

    Akiyama, S.; Cornwell, M.M.; Kuwano, M.; Pastan, I.; Gottesman, M.M.

    1988-02-01

    Multidrug-resistant human KB carcinoma cells express a 170,000-dalton membrane glycoprotein (P-glycoprotein) that can be photoaffinity labeled with the vinblastine analog N-(p-azido-(3-/sup 125/I)salicyl)-N'-(beta-aminoethyl)vindesine. Several agents that suppress the multidrug-resistant phenotype, including N-solanesyl-N,N'-bis(3,4-dimethylbenzyl)ethylenediamine, cepharanthine, quinidine, and reserpine, were found to inhibit photolabeling of P-glycoprotein at doses comparable to those that reverse multidrug resistance. However, the phenothiazines chlorpromazine and trifluoperazine, which also effectively reverse multidrug resistance, were poor inhibitors of the photoaffinity labeling of P-glycoprotein. Chloroquine, propranolol, or atropine, which only partially reversed the drug resistance, also did not inhibit photolabeling. Naphthalene sulfonamide calmodulin inhibitors, W7 and W5, as well as many other drugs that did not circumvent multidrug resistance, did not inhibit photolabeling. These studies suggest that most, but not all, agents that phenotypically suppress multidrug resistance also inhibit drug binding to a site on P-glycoprotein with which a photoaffinity analog of vinblastine interacts.

  2. Synthesis, activity and pharmacophore development for isatin-?-thiosemicarbazones with selective activity towards multidrug resistant cellsa

    PubMed Central

    Hall, Matthew D.; Salam, Noeris K.; Hellawell, Jennifer L.; Fales, Henry M.; Kensler, Caroline B.; Ludwig, Joseph A.; Szakacs, Gergely; Hibbs, David E.; Gottesman, Michael M.

    2009-01-01

    We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-?-thiosemicarbazones from our initial study have been validated, and a range of analogs synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1-selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone, and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicty of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity, and aid in directing the search for the mechanism of action of 1. PMID:19397322

  3. Doxorubicin-loaded micelles of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers as efficient "active" chemotherapeutic agents.

    PubMed

    Cambón, A; Rey-Rico, A; Mistry, D; Brea, J; Loza, M I; Attwood, D; Barbosa, S; Alvarez-Lorenzo, C; Concheiro, A; Taboada, P; Mosquera, V

    2013-03-10

    Five reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BOnEOmBOn, with BO ranging from 8 to 21 units and EO from 90 to 411 were synthesized and evaluated as efficient chemotherapeutic drug delivery nanocarriers and inhibitors of the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line. The copolymers were obtained by reverse polymerization of poly(butylene oxide), which avoids transfer reaction and widening of the EO block distribution, commonly found in commercial poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamers). BOnEOmBOn copolymers formed spherical micelles of 10-40 nm diameter at lower concentrations (one order of magnitude) than those of equivalent poloxamers. The influence of copolymer block lengths and BO/EO ratios on the solubilization capacity and protective environment for doxorubicin (DOXO) was investigated. Micelles showed drug loading capacity ranging from ca. 0.04% to 1.5%, more than 150 times the aqueous solubility of DOXO, and protected the cargo from hydrolysis for more than a month due to their greater colloidal stability in solution. Drug release profiles at various pHs, and the cytocompatibility and cytotoxicity of the DOXO-loaded micelles were assessed in vitro. DOXO loaded in the polymeric micelles accumulated more slowly inside the cells than free DOXO due to its sustained release. All copolymers were found to be cytocompatible, with viability extents larger than 95%. In addition, the cytotoxicity of DOXO-loaded micelles was higher than that observed for free drug solutions in a MDR ovarian NCI-ADR-RES cell line which overexpressed P-gp. The inhibition of the P-gp efflux pump by some BOnEOmBOn copolymers, similar to that measured for the common P-gp inhibitor verapamil, favored the retention of DOXO inside the cell increasing its cytotoxic activity. Therefore, poly(butylene oxide)-poly(ethylene oxide) block copolymers offer interesting features as cell response modifiers to complement their role as efficient nanocarriers for cancer chemotherapy. PMID:23380628

  4. Is P-glycoprotein (ABCB1) a phase 0 or a phase 3 colchicine transporter depending on colchicine exposure conditions?

    SciTech Connect

    Decleves, Xavier. E-mail: xavier.decleves@univ-paris5.fr; Niel, Elisabeth; Debray, Marcel; Scherrmann, Jean-Michel

    2006-12-01

    This study investigates the P-glycoprotein (Pgp)-mediated transport of its substrates in accumulation or efflux modes under steady-state conditions. The kinetics of colchicine uptake and efflux, a substrate of both Pgp and intracellular tubulin, were studied in HL60 and HL60/DNR cells; HL60/DNR cells contain 25 times more Pgp than do HL60 cells. HL60/DNR cells in a medium containing 6.25 nM colchicine, which mimics therapeutic conditions, reached steady-state twice as rapidly as did HL60 cells, and accumulated 24-times less colchicine than did HL60 cells. The Pgp inhibitor GF120918, increased colchicine uptake by HL60 cells 1.2-fold and that of HL60/DNR cells 17-fold, while it had no effect on colchicine efflux from either cell line that had been incubated with colchicine for 24 h. Colchicine kinetics fitted well a two closed-compartment model, showing that the low intracellular accumulation of colchicine in HL60/DNR cells resulted from a 11-fold decrease in colchicine uptake and a 2.3-fold increase in colchicine efflux, that could be attributed to Pgp-mediated efflux activity in HL60/DNR cells. Intracellular colchicine was mainly and similarly distributed in the cytosol in both cell lines. These data demonstrate that the kinetics of the intracellular colchicine accumulation depend on the density of Pgp and that Pgp is more a phase 0 (preventing cellular uptake) than a phase 3 (effluxing intracellular substrate) transporter under steady-state conditions, although the situation is reversed after a short incubation time (30 min), when intracellular free colchicine concentration is probably high enough for it to be removed from the cell by Pgp.

  5. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein.

    PubMed

    Karlsson, J; Kuo, S M; Ziemniak, J; Artursson, P

    1993-11-01

    1. The transepithelial transport of the beta-adrenoceptor blocking drug, celiprolol, was investigated in monolayers of the well differentiated human intestinal epithelial cell line, Caco-2. 2. The basal-to-apical transport (secretion) of [14C]-celiprolol (50 microM) was 5 times higher than apical-to-basal transport (absorption). In the presence of an excess (5 mM) of unlabelled celiprolol the basal-to-apical transport was reduced by more than 80%, whereas the apical-to-basal transport remained unchanged. 3. Net celiprolol secretion obtained in the concentration range 0.01 to 5 mM displayed saturable kinetics with an apparent Km of 1.00 +/- 0.23 mM and Vmax of 113 +/- 11 pmol/10(6) cells min-1. These results are consistent with saturable active secretion and provide an explanation for the dose-dependent bioavailability of celiprolol. 4. The secretion of celiprolol was sensitive to pH, and decreased in the absence of sodium and in the presence of ouabain, suggesting that transport was coupled to proton and sodium gradients. 5. The secretion of celiprolol was inhibited by substrates for P-glycoprotein (vinblastine, verapamil and nifedipine) and either inhibited or stimulated by typical substrates for the renal organic cation-H+ exchanger (cimetidine, N1-methylnicotinamide, tetraethylammonium and choline), suggesting that there are at least two distinct transport systems. 6. The secretion of celiprolol was also inhibited by other beta-adrenoceptor blocking drugs (acebutolol, atenolol, metoprolol, pafenolol and propranolol) and by the diuretics, acetazolamide, chlorthalidone and hydrochlorothiazide, suggesting that the clinically observed effect of chlorthalidone on the bioavailability of celiprolol occurs at the level of the intestinal epithelium. PMID:7905337

  6. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein.

    PubMed Central

    Karlsson, J.; Kuo, S. M.; Ziemniak, J.; Artursson, P.

    1993-01-01

    1. The transepithelial transport of the beta-adrenoceptor blocking drug, celiprolol, was investigated in monolayers of the well differentiated human intestinal epithelial cell line, Caco-2. 2. The basal-to-apical transport (secretion) of [14C]-celiprolol (50 microM) was 5 times higher than apical-to-basal transport (absorption). In the presence of an excess (5 mM) of unlabelled celiprolol the basal-to-apical transport was reduced by more than 80%, whereas the apical-to-basal transport remained unchanged. 3. Net celiprolol secretion obtained in the concentration range 0.01 to 5 mM displayed saturable kinetics with an apparent Km of 1.00 +/- 0.23 mM and Vmax of 113 +/- 11 pmol/10(6) cells min-1. These results are consistent with saturable active secretion and provide an explanation for the dose-dependent bioavailability of celiprolol. 4. The secretion of celiprolol was sensitive to pH, and decreased in the absence of sodium and in the presence of ouabain, suggesting that transport was coupled to proton and sodium gradients. 5. The secretion of celiprolol was inhibited by substrates for P-glycoprotein (vinblastine, verapamil and nifedipine) and either inhibited or stimulated by typical substrates for the renal organic cation-H+ exchanger (cimetidine, N1-methylnicotinamide, tetraethylammonium and choline), suggesting that there are at least two distinct transport systems. 6. The secretion of celiprolol was also inhibited by other beta-adrenoceptor blocking drugs (acebutolol, atenolol, metoprolol, pafenolol and propranolol) and by the diuretics, acetazolamide, chlorthalidone and hydrochlorothiazide, suggesting that the clinically observed effect of chlorthalidone on the bioavailability of celiprolol occurs at the level of the intestinal epithelium. PMID:7905337

  7. Evaluation of Memory Enhancing Clinically Available Standardized Extract of Bacopa monniera on P-Glycoprotein and Cytochrome P450 3A in Sprague-Dawley Rats

    PubMed Central

    Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar

    2013-01-01

    Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6?-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp. PMID:24015255

  8. Inward transport of [3H]-1-methyl-4-phenylpyridinium in rat isolated hepatocytes: putative involvement of a P-glycoprotein transporter.

    PubMed Central

    Martel, F.; Martins, M. J.; Hipólito-Reis, C.; Azevedo, I.

    1996-01-01

    1. The liver has an important role in the detoxification of organic cations from the circulation. [3H]-1-methyl-4-phenylpyridinium ([3H]-MPP+), a low molecular weight organic cation, is efficiently taken up and accumulated by rat hepatocytes through mechanisms partially unknown. 2. The aim of the present work was to characterize further the uptake of MPP+ by rat isolated hepatocytes. The putative interactions of a wide range of drugs, including inhibitors/substrates of P-glycoprotein, were studied. 3. The uptake of MPP+ was investigated in rat freshly isolated hepatocytes (incubated in Krebs-Henseleit medium with 200 nM [3H]-MPP+ for 5 min) and in the rat liver in situ (perfused with Krebs-Henseleit/BSA medium with 200 nM [3H]-MPP+ for 30 min). [3H]-MPP+ accumulation in the cells and in tissue was determined by liquid scintillation counting. 4. Verapamil (100 microM), quinidine (100 microM), amiloride (1 mM), (+)-tubocurarine (100 microM), vecuronium (45 microM), bilirubin (200 microM), progesterone (200 microM), daunomycin (100 microM), vinblastine (100 microM), cyclosporin A (100 microM) and cimetidine (100 microM) had a significant inhibitory effect on the accumulation of [3H]-MPP+ in isolated hepatocytes. Tetraethylammonium (100 microM) had no effect. 5. In the rat perfused liver, both cyclosporin A (100 microM) and verapamil (100 microM) had much less marked inhibitory effects as compared to their effects on isolated hepatocytes (0% against 35% and 45% against 96% of inhibition, respectively). 6. Inhibition of alkaline phosphatase activity by increasing or decreasing the pH of the incubation medium or by the presence of vanadate (1 mM) or homoarginine (500 microM) led to a significant increase in the accumulation of [3H]-MPP+ in isolated hepatocytes. 7. It was concluded that, in addition to the type I organic cation hepatic transporter, [3H]-MPP+ is taken up by rat hepatocytes through P-glycoprotein, a canalicular transport system that usually excretes endobiotics and xenobiotics. We proposed that the reversal of transport through P-glycoprotein may be related to the loss of efficacy of alkaline in isolated hepatocytes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8982496

  9. Characterizing the binding interactions between P-glycoprotein and eight known cardiovascular transport substrates

    PubMed Central

    Jagodinsky, Justin C; Akgun, Ugur

    2015-01-01

    The multidrug efflux pump P-glycoprotein (Pgp) is upregulated in cardiomyocytes following chronic ischemia from infarction and hypoxia caused by sleep apnea. This report summarizes the molecular dynamic studies performed on eight cardiovascular drugs to determine their corresponding binding sites on mouse Pgp. Selected Pgp transport ligands include: Amiodarone, Bepridil, Diltiazem, Dipyridamole, Nicardipine, Nifedipine, Propranolol, and Quinidine. Extensive molecular dynamic equilibration simulations were performed to determine drug docking interactions. Distinct binding sites were not observed, but rather a binding belt was seen with multiple residues playing a role in each studied drug's stable docking. Three key drug–protein interactions were identified: hydrogen bonding, hydrophobic packing, and the formation of a “cage” of aromatic residues around the drug. After drug stabilization, water molecules were observed to leak into the binding belt and condense around the drug. Water influx into the binding domain of Pgp may play a role in catalytic transition and drug expulsion. The cytoplasmic recruitment theory was also tested, and the drugs were observed to interact with conserved loops of residues with a strong affinity. A free energy change of astronomical value is required to recruit the drug from the cytoplasm to the binding belt within the transmembrane domain of Pgp. PMID:25729581

  10. Characterizing the binding interactions between P-glycoprotein and eight known cardiovascular transport substrates.

    PubMed

    Jagodinsky, Justin C; Akgun, Ugur

    2015-03-01

    The multidrug efflux pump P-glycoprotein (Pgp) is upregulated in cardiomyocytes following chronic ischemia from infarction and hypoxia caused by sleep apnea. This report summarizes the molecular dynamic studies performed on eight cardiovascular drugs to determine their corresponding binding sites on mouse Pgp. Selected Pgp transport ligands include: Amiodarone, Bepridil, Diltiazem, Dipyridamole, Nicardipine, Nifedipine, Propranolol, and Quinidine. Extensive molecular dynamic equilibration simulations were performed to determine drug docking interactions. Distinct binding sites were not observed, but rather a binding belt was seen with multiple residues playing a role in each studied drug's stable docking. Three key drug-protein interactions were identified: hydrogen bonding, hydrophobic packing, and the formation of a "cage" of aromatic residues around the drug. After drug stabilization, water molecules were observed to leak into the binding belt and condense around the drug. Water influx into the binding domain of Pgp may play a role in catalytic transition and drug expulsion. The cytoplasmic recruitment theory was also tested, and the drugs were observed to interact with conserved loops of residues with a strong affinity. A free energy change of astronomical value is required to recruit the drug from the cytoplasm to the binding belt within the transmembrane domain of Pgp. PMID:25729581

  11. Chemoprevention and inhibition of P-glycoprotein in cancer cells by Chinese medicinal herbs.

    PubMed

    Engi, Helga; Hohmann, Judit; Gang, Geng; Pusztai, Rozália; Rédei, Dóra; Kovács, Orsolya; Schelz, Zsuzsanna; Molnár, Joseph

    2008-12-01

    Many of the herbal extracts used in the Chinese clinical medical routine inhibit the growth of tumor cells. In the present work, extracts of 12 selected herbs were prepared with methanol, chloroform, ethyl acetate and water, and the effects of these on the multidrug resistance (MDR) and P-glycoprotein of mouse lymphoma cells transfected with the human mdr1 gene and on a human lung alveolar epithelial cell line were investigated. The extracts were tested for antiproliferative effects, and the reversal of MDR in mouse lymphoma cells. The possible chemopreventive effect of the chloroform extracts was studied on the expression of cytomegalovirus (CMV) immediate-early (IE) antigen in human lung cancer cells (A549). The antimicrobial effects of the extracts were tested on some representative micro-organisms. Certain of the chloroform extracts of the plant materials were the most effective compounds on the reversal of MDR. Two of the chloroform extracts enhanced the antiproliferative effect of doxorubicin on MDR mouse lymphoma cells. The selected extracts did not show any antibacterial effect with the agar diffusion method. Certain chloroform extracts decreased the intermediate IE antigen expression of CMV in A459 cells. PMID:18690658

  12. Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues.

    PubMed

    Wang, Yue-Hu; Goto, Masuo; Wang, Li-Ting; Hsieh, Kan-Yen; Morris-Natschke, Susan L; Tang, Gui-Hua; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-10-15

    Twenty-five amide alkaloids (1-25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39-48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50=4.94 ?M) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 ?M) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype. PMID:25241925

  13. The Antidepressant Desipramine Requires the ABCB1 (Mdr1)Type p-Glycoprotein to Upregulate the Glucocorticoid Receptor in Mice

    Microsoft Academic Search

    Joyce L W Yau; June Noble; Sarah Thomas; Robert Kerwin; Phillip E Morgan; Stafford Lightman; Jonathan R Seckl; Carmine M Pariante

    2007-01-01

    The mechanisms by which antidepressants regulate the hypothalamic-pituitary-adrenal (HPA) axis are still unknown. The ABCB1-type multiple drug resistance (MDR) p-glycoprotein (PGP) regulates the HPA axis by limiting the access of glucocorticoids to the brain in mice and humans. Previous work in cell cultures has found that antidepressants enhance glucocorticoid receptor (GR) function in vitro by inhibiting MDR PGP, and therefore

  14. Possible Involvement of the Drug Transporters P Glycoprotein and Multidrug Resistance-Associated Protein Mrp2 in Disposition of Azithromycin

    PubMed Central

    Sugie, Masami; Asakura, Emiko; Zhao, Ying Lan; Torita, Shoko; Nadai, Masayuki; Baba, Kenji; Kitaichi, Kiyoyuki; Takagi, Kenji; Takagi, Kenzo; Hasegawa, Takaaki

    2004-01-01

    P glycoprotein and multidrug resistance-associated protein 2 (Mrp2), ATP-dependent membrane transporters, exist in a variety of normal tissues and play important roles in the disposition of various drugs. The present study seeks to clarify the contribution of P glycoprotein and/or Mrp2 to the disposition of azithromycin in rats. The disappearance of azithromycin from plasma after intravenous administration was significantly delayed in rats treated with intravenous injection of cyclosporine, a P-glycoprotein inhibitor, but was normal in rats pretreated with intraperitoneal injection erythromycin, a CYP3A4 inhibitor. When rats received an infusion of azithromycin, cyclosporine and probenecid, a validated Mrp2 inhibitor, significantly decreased the steady-state biliary clearance of azithromycin to 5 and 40% of the corresponding control values, respectively. However, both inhibitors did not alter the renal clearance of azithromycin, suggesting the lack of renal tubular secretion of azithromycin. Tissue distribution experiments showed that azithromycin is distributed largely into the liver, kidney, and lung, whereas both inhibitors did not alter the tissue-to-plasma concentration ratio of azithromycin. Significant reduction in the biliary excretion of azithromycin was observed in Eisai hyperbilirubinemic rats, which have a hereditary deficiency in Mrp2. An in situ closed-loop experiment showed that azithromycin was excreted from the blood into the gut lumen, and the intestinal clearance of azithromycin was significantly decreased by the presence of cyclosporine in the loop. These results suggest that azithromycin is a substrate for both P glycoprotein and Mrp2 and that the biliary and intestinal excretion of azithromycin is mediated via these two drug transporters. PMID:14982769

  15. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel.

    PubMed

    Wang, Xiaoying; Chen, Yihang; Dahmani, Fatima Zohra; Yin, Lifang; Zhou, Jianping; Yao, Jing

    2014-08-01

    An amphiphilic carboxymethyl chitosan-quercetin (CQ) conjugate was designed and synthesized for oral delivery of paclitaxel (PTX) to improve its oral bioavailability by increasing its water solubility and bypassing the P-gp drug efflux pumps. CQ conjugate had low critical micelle concentration (55.14 ?g/mL), and could self assemble in aqueous condition to form polymeric micelles (PMs). PTX-loaded CQ PMs displayed a particle size of 185.8 ± 4.6 nm and polydispersity index (PDI) of 0.134 ± 0.056. The drug-loading content (DL) and entrapment efficiency (EE) were 33.62 ± 1.34% and 85.63 ± 1.26%, respectively. Moreover, PTX-loaded CQ PMs displayed similar sustained-release profile in simulated gastrointestinal fluids (pH 1.2/pH 6.8) and PBS (pH 7.4). In situ intestinal absorption experiment showed that PTX-loaded CQ PMs significantly improved the effective permeability of PTX as compared to verapamil (P < 0.01). Likewise, PTX-loaded CQ PMs significantly enhanced the oral bioavailability of PTX, resulting in strong antitumor efficacy against tumor xenograft models with better safety profile as compared to Taxol(®) and Taxol(®) with verapamil. Overall, the results implicate that CQ PMs are promising vehicles for the oral delivery of water-insoluble anticancer drugs. PMID:24927684

  16. Glyceollin Transport, Metabolism, and Effects on P-Glycoprotein Function in Caco-2 Cells

    PubMed Central

    Chimezie, Chukwuemezie; Ewing, Adina C.; Quadri, Syeda S.; Cole, Richard B.; Boué, Stephen M.; Omari, Christopher F.; Bratton, Melyssa; Glotser, Elena; Skripnikova, Elena; Townley, Ian

    2014-01-01

    Abstract Glyceollins are phytoalexins produced in soybeans from their isoflavone precursor daidzein. Their impressive anticancer and glucose normalization effects in rodents have generated interest in their therapeutic potential. The aim of the present studies was to begin to understand glyceollin intestinal transport and metabolism, and their potential effects on P-glycoprotein (Pgp) in Caco-2 cells. At 10 and 25 ?M, glyceollin permeability was 2.4±0.16×10?4 cm/sec and 2.1±0.15×10?4 cm/sec, respectively, in the absorptive direction. Basolateral to apical permeability at 25 ?M was 1.6±0.10×10?4 cm/sec. Results suggest high absorption potential of glyceollin by a passive-diffusion-dominated mechanism. A sulfate conjugate at the phenolic hydroxyl position was observed following exposure to Caco-2 cells. In contrast to verapamil inhibition of the net secretory permeability of rhodamine 123 (R123) and its enhancement of calcein AM uptake into Caco-2 cells, neither glyceollin nor genistein inhibited Pgp (MDR1; ABCB1) up to 300 ?M. There was no significant change in MDR1 mRNA expression, Pgp protein expression, or R123 transport in cells exposed to glyceollin or genistein for 24?h up to 100 ?M. Collectively, these results suggest that glyceollin has the potential to be well absorbed, but that, similar to the isoflavone genistein, its absorption may be reduced substantially by intestinal metabolism; further, they indicate that glyceollin does not appear to alter Pgp function in Caco-2 cells. PMID:24476214

  17. On the Origin of Large Flexibility of P-glycoprotein in the Inward-facing State*

    PubMed Central

    Wen, Po-Chao; Verhalen, Brandy; Wilkens, Stephan; Mchaourab, Hassane S.; Tajkhorshid, Emad

    2013-01-01

    P-glycoprotein (Pgp) is one of the most biomedically relevant transporters in the ATP binding cassette (ABC) superfamily due to its involvement in developing multidrug resistance in cancer cells. Employing molecular dynamics simulations and double electron-electron resonance spectroscopy, we have investigated the structural dynamics of membrane-bound Pgp in the inward-facing state and found that Pgp adopts an unexpectedly wide range of conformations, highlighted by the degree of separation between the two nucleotide-binding domains (NBDs). The distance between the two NBDs in the equilibrium simulations covers a range of at least 20 ?, including, both, more open and more closed NBD configurations than the crystal structure. The double electron-electron resonance measurements on spin-labeled Pgp mutants also show wide distributions covering both longer and shorter distances than those observed in the crystal structure. Based on structural and sequence analyses, we propose that the transmembrane domains of Pgp might be more flexible than other structurally known ABC exporters. The structural flexibility of Pgp demonstrated here is not only in close agreement with, but also helps rationalize, the reported high NBD fluctuations in several ABC exporters and possibly represents a fundamental difference in the transport mechanism between ABC exporters and ABC importers. In addition, during the simulations we have captured partial entrance of a lipid molecule from the bilayer into the lumen of Pgp, reaching the putative drug binding site. The location of the protruding lipid suggests a putative pathway for direct drug recruitment from the membrane. PMID:23658020

  18. Catalytic Transitions in the Human MDR1 P-Glycoprotein Drug Binding Sites

    PubMed Central

    2012-01-01

    Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp. Crystal structures of homologues in four different conformations were used as intermediate targets in the dynamics simulations. Transitions from conformations that were wide open to the cytoplasm to transition state conformations that were wide open to the extracellular space were studied. Twenty-six nonredundant transitional protein structures were identified from these targeted molecular dynamics simulations using evolutionary structure analyses. Coupled movement of nucleotide binding domains (NBDs) and transmembrane domains (TMDs) that form the drug binding cavities were observed. Pronounced twisting of the NBDs as they approached each other as well as the quantification of a dramatic opening of the TMDs to the extracellular space as the ATP hydrolysis transition state was reached were observed. Docking interactions of 21 known transport ligands or inhibitors were analyzed with each of the 26 transitional structures. Many of the docking results obtained here were validated by previously published biochemical determinations. As the ATP hydrolysis transition state was approached, drug docking in the extracellular half of the transmembrane domains seemed to be destabilized as transport ligand exit gates opened to the extracellular space. PMID:22647192

  19. Characterization of a novel brain barrier ex vivo insect-based P-glycoprotein screening model

    PubMed Central

    Andersson, Olga; Badisco, Liesbeth; Hansen, Ane Hĺkansson; Hansen, Steen Honoré; Hellman, Karin; Nielsen, Peter Aadal; Olsen, Line Rřrbćk; Verdonck, Rik; Abbott, N Joan; Vanden Broeck, Jozef; Andersson, Gunnar

    2014-01-01

    In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain barrier of the desert locust (Schistocerca gregaria). In an in vivo study on the locust, we found an increased uptake of the two well-known Pgp substrates, rhodamine 123 and loperamide after co-administration with the Pgp inhibitors cyclosporine A or verapamil. Furthermore, ex vivo studies on isolated locust brains demonstrated differences in permeation of high and low permeability compounds. The vertebrate Pgp inhibitor verapamil did not affect the uptake of passively diffusing compounds but significantly increased the brain uptake of Pgp substrates in the ex vivo model. In addition, studies at 2°C and 30°C showed differences in brain uptake between Pgp-effluxed and passively diffusing compounds. The transcriptome data show a high degree of sequence identity of the locust Pgp transporter protein sequences to the human Pgp sequence (37%), as well as the presence of conserved domains. As in vertebrates, the locust brain–barrier function is morphologically confined to one specific cell layer and by using a whole-brain ex vivo drug exposure technique our locust model may retain the major cues that maintain and modulate the physiological function of the brain barrier. We show that the locust model has the potential to act as a robust and convenient model for assessing BBB permeability in early drug discovery. PMID:25505597

  20. On the origin of large flexibility of P-glycoprotein in the inward-facing state.

    PubMed

    Wen, Po-Chao; Verhalen, Brandy; Wilkens, Stephan; Mchaourab, Hassane S; Tajkhorshid, Emad

    2013-06-28

    P-glycoprotein (Pgp) is one of the most biomedically relevant transporters in the ATP binding cassette (ABC) superfamily due to its involvement in developing multidrug resistance in cancer cells. Employing molecular dynamics simulations and double electron-electron resonance spectroscopy, we have investigated the structural dynamics of membrane-bound Pgp in the inward-facing state and found that Pgp adopts an unexpectedly wide range of conformations, highlighted by the degree of separation between the two nucleotide-binding domains (NBDs). The distance between the two NBDs in the equilibrium simulations covers a range of at least 20 ?, including, both, more open and more closed NBD configurations than the crystal structure. The double electron-electron resonance measurements on spin-labeled Pgp mutants also show wide distributions covering both longer and shorter distances than those observed in the crystal structure. Based on structural and sequence analyses, we propose that the transmembrane domains of Pgp might be more flexible than other structurally known ABC exporters. The structural flexibility of Pgp demonstrated here is not only in close agreement with, but also helps rationalize, the reported high NBD fluctuations in several ABC exporters and possibly represents a fundamental difference in the transport mechanism between ABC exporters and ABC importers. In addition, during the simulations we have captured partial entrance of a lipid molecule from the bilayer into the lumen of Pgp, reaching the putative drug binding site. The location of the protruding lipid suggests a putative pathway for direct drug recruitment from the membrane. PMID:23658020

  1. Heterocyclic cyclohexanone monocarbonyl analogs of curcumin can inhibit the activity of ATP-binding cassette transporters in cancer multidrug resistance.

    PubMed

    Revalde, Jezrael L; Li, Yan; Hawkins, Bill C; Rosengren, Rhonda J; Paxton, James W

    2015-02-01

    Curcumin (CUR) is a phytochemical that inhibits the xenobiotic ABC efflux transporters implicated in cancer multidrug resistance (MDR), such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins 1 and 5 (MRP1 and MRP5). The use of CUR in the clinic however, is complicated by its instability and poor pharmacokinetic profile. Monocarbonyl analogs of CUR (MACs) are compounds without CUR's unstable ?-diketone moiety and were reported to have improved stability and in vivo disposition. Whether the MACs can be used as MDR reversal agents is less clear, as the absence of a ?-diketone may negatively impact transporter inhibition. In this study, we investigated 23 heterocyclic cyclohexanone MACs for inhibitory effects against P-gp, BCRP, MRP1 and MRP5. Using flow cytometry and resistance reversal assays, we found that many of these compounds inhibited the transport activity of the ABC transporters investigated, often with much greater potency than CUR. Overall the analogs were most effective at inhibiting BCRP and we identified three compounds, A12 (2,6-bis((E)-2,5-dimethoxy-benzylidene)cyclohexanone), A13 (2,6-bis((E)-4-hydroxyl-3-methoxybenzylidene)-cyclohexanone) and B11 (3,5-bis((E)-2-fluoro-4,5-dimethoxybenzylidene)-1-methylpiperidin-4-one), as the most promising BCRP inhibitors. These compounds inhibited BCRP activity in a non-cell line, non-substrate-specific manner. Their inhibition occurred by direct transporter interaction rather than modulating protein or cell surface expression. From these results, we concluded that MACs, such as the heterocyclic cyclohexanone analogs in this study, also have potential as MDR reversal agents and may be superior alternatives to the unstable parent compound, CUR. PMID:25543853

  2. Binary and ternary combinations of anti-HIV protease inhibitors: effect on gene expression and functional activity of CYP3A4 and efflux transporters

    PubMed Central

    Kwatra, Deep; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Khurana, Varun; Pal, Dhananjay; Mitra, Ashim K.

    2015-01-01

    Background The purpose of this study is to identify the effect of binary and ternary combinations of anti-HIV protease inhibitors (PIs) on the expression of metabolizing enzyme (CYP3A4) and efflux transporters [multidrug resistance-associated protein 2 (MRP2), P-glycoprotein (P-gp) and breast cancer resistant protein (BCRP)] in a model intestinal cell line (LS-180). Methods LS-180 cells were treated with various combinations of PIs (amprenavir, indinavir, saquinavir and lopinavir), and the mRNA expression levels of metabolizing enzyme and efflux transporters were measured using quantitative reverse transcription polymerase chain reaction. The alteration of gene expression was further correlated to the expression of nuclear hormone receptor PXR. Uptake of fluorescent and radioactive substrates was carried out to study the functional activity of these proteins. Cytotoxicity and adenosine triphosphate (ATP) assays were carried out to measure stress responses. Results Binary and ternary combinations of PIs appeared to modulate the expression of CYP3A4, MRP2, P-gp and BCRP in a considerable manner. Unlike the individual PIs, their binary combinations showed much greater induction of metabolizing enzyme and efflux proteins. However, such pronounced induction was not observed in the presence of ternary combinations. The observed trend of altered mRNA expression was found to correlate well with the change in expression levels of PXR. The gene expression was found to correlate with activity assays. Lack of cytotoxicity and ATP activity was observed in the treatment samples, suggesting that these alterations in expression levels were probably not stress responses. Conclusions In the present study, we demonstrated that combinations of drugs can have serious consequences toward the treatment of HIV infection by altering their bioavailability and disposition. PMID:24399676

  3. Cerebral uptake of mefloquine enantiomers with and without the P-gp inhibitor elacridar (GF1210918) in mice

    PubMed Central

    de Lagerie, Sylvie Barraud; Comets, Emmanuelle; Gautrand, Céline; Fernandez, Christine; Auchere, Daniel; Singlas, Eric; Mentre, France; Gimenez, François

    2004-01-01

    Mefloquine is a chiral neurotoxic antimalarial agent showing stereoselective brain uptake in humans and rats. It is a substrate and an inhibitor of the efflux protein P-glycoprotein. We investigated the stereoselective uptake and efflux of mefloquine in mice, and the consequences of the combination with an efflux protein inhibitor, elacridar (GF120918) on its brain transport. Racemic mefloquine (25 mg kg?1) was administered intraperitoneally with or without elacridar (10 mg kg?1). Six to seven mice were killed at each of 11 time-points between 30 min and 168 h after administration. Blood and brain concentrations of mefloquine enantiomers were determined using liquid chromatography. A three-compartment model with zero-order absorption from the injection site was found to best represent the pharmacokinetics of both enantiomers in blood and brain. (?)Mefloquine had a lower blood and brain apparent volume of distribution and a lower efflux clearance from the brain, resulting in a larger brain/blood ratio compared to (+)mefloquine. Elacridar did not modify blood concentrations or the elimination rate from blood for either enantiomers. However, cerebral AUCinf of both enantiomers were increased, with a stronger effect on (+)mefloquine. The efflux clearance from the brain decreased for both enantiomers, with a larger decrease for (+)mefloquine. After administration of racemic mefloquine in mice, blood and brain pharmacokinetics are stereoselective, (+)mefloquine being excreted from brain more rapidly than its antipode, showing that mefloquine is a substrate of efflux proteins and that mefloquine enantiomers undergo efflux in a stereoselective manner. Moreover, pretreatment with elacridar reduced the brain efflux clearances with a more pronounced effect on (+)mefloquine. PMID:15023856

  4. Penetration of Dexamethasone into Brain Glucocorticoid Targets Is Enhanced in mdr1A P-Glycoprotein Knockout Mice

    Microsoft Academic Search

    O. C. Meijer; DE LANGE; D. D. BREIMER; A. G. DE BOER; J. O. WORKEL; E. R. DE KLOET

    1998-01-01

    Mice with a genetic disruption of the multiple drug resistance (mdr1a) gene were used to examine the effect of the absence of its drug-transporting P-glycoprotein product from the blood-brain bar- rier on the distribution and cell nuclear uptake of (3H)-dexametha- sone in the brain. (3H)-dexamethasone (4 mg\\/kg mouse) was admin- istered sc to adrenalectomized mdr1a (2\\/2) and mdr1a (1\\/1) mice.

  5. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model.

    PubMed

    Cirrito, John R; Deane, Rashid; Fagan, Anne M; Spinner, Michael L; Parsadanian, Maia; Finn, Mary Beth; Jiang, Hong; Prior, Julie L; Sagare, Abhay; Bales, Kelly R; Paul, Steven M; Zlokovic, Berislav V; Piwnica-Worms, David; Holtzman, David M

    2005-11-01

    Accumulation of amyloid-beta (Abeta) within extracellular spaces of the brain is a hallmark of Alzheimer disease (AD). In sporadic, late-onset AD, there is little evidence for increased Abeta production, suggesting that decreased elimination from the brain may contribute to elevated levels of Abeta and plaque formation. Efflux transport of Abeta across the blood-brain barrier (BBB) contributes to Abeta removal from the brain. P-glycoprotein (Pgp) is highly expressed on the luminal surface of brain capillary endothelial cells and contributes to the BBB. In Pgp-null mice, we show that [I]Abeta40 and [I]Abeta42 microinjected into the CNS clear at half the rate that they do in WT mice. When amyloid precursor protein-transgenic (APP-transgenic) mice were administered a Pgp inhibitor, Abeta levels within the brain interstitial fluid significantly increased within hours of treatment. Furthermore, APP-transgenic, Pgp-null mice had increased levels of brain Abeta and enhanced Abeta deposition compared with APP-transgenic, Pgp WT mice. These data establish a direct link between Pgp and Abeta metabolism in vivo and suggest that Pgp activity at the BBB could affect risk for developing AD as well as provide a novel diagnostic and therapeutic target. PMID:16239972

  6. Alkamides from Echinacea angustifolia Interact with P-glycoprotein of primary brain capillary endothelial cells isolated from porcine brain blood vessels.

    PubMed

    Mahringer, Anne; Ardjomand-Woelkart, Karin; Bauer, Rudolf; Fricker, Gert; Efferth, Thomas

    2013-03-01

    The blood-brain barrier prevents the passage of toxic compounds from blood circulation into brain tissue. Unfortunately, drugs for the treatment of neurodegenerative diseases, brain tumors, and other diseases also do not cross the blood-brain barrier. In the present investigation, we used isolated porcine brain capillary endothelial cells and a flow cytometric calcein-AM assay to analyze inhibition of P-glycoprotein, a major constituent of the blood-brain barrier. We tested 8 alkamides isolated from Echinacea angustifolia and found that four of them inhibited P-glycoprotein-mediated calcein transport in porcine brain capillary endothelial cells. PMID:23322561

  7. Epithelial secretion of vinblastine by human intestinal adenocarcinoma cell (HCT-8 and T84) layers expressing P-glycoprotein.

    PubMed Central

    Hunter, J.; Hirst, B. H.; Simmons, N. L.

    1991-01-01

    P-glycoprotein expression was demonstrated in two human intestinal adenocarcinoma cell-lines (HCT-8, ileocaecal and T84, colonic) by immunoprecipitation of a 170-180 kDa protein with monoclonal antibody JSB-1. Both HCT-8 and T84 formed functional epithelial cell layers of high transepithelial electrical resistance (greater than 700 omega.cm2) when grown on permeable matrices. These epithelial layers demonstrated vectorial secretion (net vinblastine fluxes in the basal-to-apical direction of 0.135 and 0.452 pmol h-1 cm-2 in HCT-8 and T84 cell layers, respectively, from bathing solutions containing 10 nM vinblastine). These vectorial vinblastine secretions were sensitive to inhibition by verapamil. Passive transepithelial vinblastine permeation was limited by the presence of intercellular (tight) junctions, as demonstrated by the high transepithelial electrical resistance, and verapamil increased this passive vinblastine permeation concomitant with a reduction in the electrical resistance. Cellular vinblastine loading was significantly greater from the basal side, and this was also susceptible to inhibition by basal verapamil. The demonstration of vectorial transport of vinblastine in human intestinal colonic adenocarcinoma cell layers is direct evidence in favour of the hypothesis that the function of mdr1 in epithelial from the gastrointestinal tract is to promote detoxification by a process of epithelial secretion. This study also highlights that cellular vinblastine accumulation depends not only upon P-glycoprotein function, but also upon differential apparent membrane permeabilities and the presence of intercellular (tight) junctions that may restrict drug permeation and cellular accumulation to apical or basal membrane domains. Images Figure 5 PMID:1680366

  8. Oleanolic and maslinic acid sensitize soft tissue sarcoma cells to doxorubicin by inhibiting the multidrug resistance protein MRP-1, but not P-glycoprotein.

    PubMed

    Villar, Victor Hugo; Vögler, Oliver; Barceló, Francisca; Gómez-Florit, Manuel; Martínez-Serra, Jordi; Obrador-Hevia, Antňnia; Martín-Broto, Javier; Ruiz-Gutiérrez, Valentina; Alemany, Regina

    2014-04-01

    The pentacyclic triterpenes oleanolic acid (OLA) and maslinic acid (MLA) are natural compounds present in many plants and dietary products consumed in the Mediterranean diet (e.g., pomace and virgin olive oils). Several nutraceutical activities have been attributed to OLA and MLA, whose antitumoral effects have been extensively evaluated in human adenocarcinomas, but little is known regarding their effectiveness in soft tissue sarcomas (STS). We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of OLA and MLA as single agents or in combination with doxorubicin (DXR) in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound, MLA (10-100 ?M) was more potent than OLA, inhibiting the growth of SW982 and SK-UT-1 cells by 70.3 ± 1.11% and 68.8 ± 1.52% at 80 ?M, respectively. Importantly, OLA (80 ?M) or MLA (30 ?M) enhanced the antitumoral effect of DXR (0.5-10 ?M) by up to 2.3-fold. On the molecular level, efflux activity of the multidrug resistance protein MRP-1, but not of the P-glycoprotein, was inhibited. Most probably as a consequence, DXR accumulated in these cells. Kinetic studies showed that OLA behaved as a competitive inhibitor of substrate-mediated MRP-1 transport, whereas MLA acted as a non-competitive one. Moreover, none of both triterpenes induced a compensatory increase in MRP-1 expression. In summary, OLA or MLA sensitized cellular models of STS to DXR and selectively inhibited MRP-1 activity, but not its expression, leading to a higher antitumoral effect possibly relevant for clinical treatment. PMID:24491315

  9. Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/?-catenin pathway

    PubMed Central

    Riganti, Chiara; Salaroglio, Iris Chiara; Caldera, Valentina; Campia, Ivana; Kopecka, Joanna; Mellai, Marta; Annovazzi, Laura; Bosia, Amalia; Ghigo, Dario; Schiffer, Davide

    2013-01-01

    Background Glioblastoma multiforme stem cells display a highly chemoresistant phenotype, whose molecular basis is poorly known. We aim to clarify this issue and to investigate the effects of temozolomide on chemoresistant stem cells. Methods A panel of human glioblastoma cultures, grown as stem cells (neurospheres) and adherent cells, was used. Results Neurospheres had a multidrug resistant phenotype compared with adherent cells. Such chemoresistance was overcome by apparently noncytotoxic doses of temozolomide, which chemosensitized glioblastoma cells to doxorubicin, vinblastine, and etoposide. This effect was selective for P-glycoprotein (Pgp) substrates and for stem cells, leading to an investigation of whether there was a correlation between the expression of Pgp and the activity of typical stemness pathways. We found that Wnt3a and ABCB1, which encodes for Pgp, were both highly expressed in glioblastoma stem cells and reduced by temozolomide. Temozolomide-treated cells had increased methylation of the cytosine–phosphate–guanine islands in the Wnt3a gene promoter, decreased expression of Wnt3a, disrupted glycogen synthase-3 kinase/?-catenin axis, reduced transcriptional activation of ABCB1, and a lower amount and activity of Pgp. Wnt3a overexpression was sufficient to transform adherent cells into neurospheres and to simultaneously increase proliferation and ABCB1 expression. On the contrary, glioblastoma stem cells silenced for Wnt3a lost the ability to form neurospheres and reduced at the same time the proliferation rate and ABCB1 levels. Conclusions Our work suggests that Wnt3a is an autocrine mediator of stemness, proliferation, and chemoresistance in human glioblastoma and that temozolomide may chemosensitize the stem cell population by downregulating Wnt3a signaling. PMID:23897632

  10. Evaluation of the clinical relevance of the expression and function of P-glycoprotein, multidrug resistance protein and lung resistance protein in patients with primary acute myelogenous leukemia

    Microsoft Academic Search

    Apostolia-Maria Tsimberidou; George Paterakis; George Androutsos; Nikolaos Anagnostopoulos; Athanasios Galanopoulos; Themistoklis Kalmantis; John Meletis; Yiannis Rombos; Alexandros Sagriotis; Argyrios Symeonidis; Maria Tiniakou; Nikolaos Zoumbos; Xenophon Yataganas

    2002-01-01

    The multidrug resistance (MDR) transporter-proteins P-glycoprotein (Pgp), multidrug resistance protein (MRP) and lung resistance protein (LRP) have been associated with treatment failure. The aim of this study was to investigate prospectively the clinical significance of expression and function of the MDR proteins, considering other prognostic factors, such as age, immunophenotype, and cytogenetics. Mononuclear cells of peripheral blood or bone marrow

  11. Co-amplification of double minute chromosomes, multiple drug resistance, and cell surface P-glycoprotein in DNA-mediated transformants of mouse cells.

    PubMed Central

    Robertson, S M; Ling, V; Stanners, C P

    1984-01-01

    A genetic system comprised of mammalian cell mutants which demonstrate concomitant resistance to a number of unrelated drugs has been described previously. The resistance is due to reduced cell membrane permeability and is correlated with the presence of large amounts of a plasma membrane glycoprotein termed P-glycoprotein. This system could represent a model for multiple drug resistance which develops in cancer patients treated with chemotherapeutic drugs. We demonstrate here that the multiple drug resistance phenotype can be transferred to mouse cells with DNA from a drug-resistant mutant and then amplified quantitatively by culture in media containing increasing concentrations of drug. The amount of P-glycoprotein was correlated directly with the degree of drug resistance in the transformants and amplified transformants. In addition, the drug resistance and expression of P-glycoprotein of the transformants were unstable and associated quantitatively with the number of double minute chromosomes. We suggest that the gene for multiple drug resistance and P-glycoprotein is contained in these extrachromosomal particles and is amplified by increases in double minute chromosome number. The potential use of this system for manipulation of mammalian genes in general is discussed. Images PMID:6144041

  12. Macrocyclic Lactones Differ in Interaction with Recombinant P-Glycoprotein 9 of the Parasitic Nematode Cylicocylus elongatus and Ketoconazole in a Yeast Growth Assay

    PubMed Central

    Kaschny, Maximiliane; Demeler, Janina; Janssen, I. Jana I.; Kuzmina, Tetiana A.; Besognet, Bruno; Kanellos, Theo; Kerboeuf, Dominique; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2015-01-01

    Macrocyclic lactones (MLs) are widely used parasiticides against nematodes and arthropods, but resistance is frequently observed in parasitic nematodes of horses and livestock. Reports claiming resistance or decreased susceptibility in human nematodes are increasing. Since no target site directed ML resistance mechanisms have been identified, non-specific mechanisms were frequently implicated in ML resistance, including P-glycoproteins (Pgps, designated ABCB1 in vertebrates). Nematode genomes encode many different Pgps (e.g. 10 in the sheep parasite Haemonchus contortus). ML transport was shown for mammalian Pgps, Pgps on nematode egg shells, and very recently for Pgp-2 of H. contortus. Here, Pgp-9 from the equine parasite Cylicocyclus elongatus (Cyathostominae) was expressed in a Saccharomyces cerevisiae strain lacking seven endogenous efflux transporters. Pgp was detected on these yeasts by flow cytometry and chemiluminescence using the monoclonal antibody UIC2, which is specific for the active Pgp conformation. In a growth assay, Pgp-9 increased resistance to the fungicides ketoconazole, actinomycin D, valinomycin and daunorubicin, but not to the anthelmintic fungicide thiabendazole. Since no fungicidal activity has been described for MLs, their interaction with Pgp-9 was investigated in an assay involving two drugs: Yeasts were incubated with the highest ketoconazole concentration not affecting growth plus increasing concentrations of MLs to determine competition between or modulation of transport of both drugs. Already equimolar concentrations of ivermectin and eprinomectin inhibited growth, and at fourfold higher ML concentrations growth was virtually abolished. Selamectin and doramectin did not increase susceptibility to ketoconazole at all, although doramectin has been shown previously to strongly interact with human and canine Pgp. An intermediate interaction was observed for moxidectin. This was substantiated by increased binding of UIC2 antibodies in the presence of ivermectin, moxidectin, daunorubicin and ketoconazole but not selamectin. These results demonstrate direct effects of MLs on a recombinant nematode Pgp in an ML-specific manner. PMID:25849454

  13. Macrocyclic Lactones Differ in Interaction with Recombinant P-Glycoprotein 9 of the Parasitic Nematode Cylicocylus elongatus and Ketoconazole in a Yeast Growth Assay.

    PubMed

    Kaschny, Maximiliane; Demeler, Janina; Janssen, I Jana I; Kuzmina, Tetiana A; Besognet, Bruno; Kanellos, Theo; Kerboeuf, Dominique; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2015-04-01

    Macrocyclic lactones (MLs) are widely used parasiticides against nematodes and arthropods, but resistance is frequently observed in parasitic nematodes of horses and livestock. Reports claiming resistance or decreased susceptibility in human nematodes are increasing. Since no target site directed ML resistance mechanisms have been identified, non-specific mechanisms were frequently implicated in ML resistance, including P-glycoproteins (Pgps, designated ABCB1 in vertebrates). Nematode genomes encode many different Pgps (e.g. 10 in the sheep parasite Haemonchus contortus). ML transport was shown for mammalian Pgps, Pgps on nematode egg shells, and very recently for Pgp-2 of H. contortus. Here, Pgp-9 from the equine parasite Cylicocyclus elongatus (Cyathostominae) was expressed in a Saccharomyces cerevisiae strain lacking seven endogenous efflux transporters. Pgp was detected on these yeasts by flow cytometry and chemiluminescence using the monoclonal antibody UIC2, which is specific for the active Pgp conformation. In a growth assay, Pgp-9 increased resistance to the fungicides ketoconazole, actinomycin D, valinomycin and daunorubicin, but not to the anthelmintic fungicide thiabendazole. Since no fungicidal activity has been described for MLs, their interaction with Pgp-9 was investigated in an assay involving two drugs: Yeasts were incubated with the highest ketoconazole concentration not affecting growth plus increasing concentrations of MLs to determine competition between or modulation of transport of both drugs. Already equimolar concentrations of ivermectin and eprinomectin inhibited growth, and at fourfold higher ML concentrations growth was virtually abolished. Selamectin and doramectin did not increase susceptibility to ketoconazole at all, although doramectin has been shown previously to strongly interact with human and canine Pgp. An intermediate interaction was observed for moxidectin. This was substantiated by increased binding of UIC2 antibodies in the presence of ivermectin, moxidectin, daunorubicin and ketoconazole but not selamectin. These results demonstrate direct effects of MLs on a recombinant nematode Pgp in an ML-specific manner. PMID:25849454

  14. Reduced ABCB1 Expression and Activity in the Presence of Acrylic Copolymers

    PubMed Central

    Mohammadzadeh, Ramin; Baradaran, Behzad; Valizadeh, Hadi; Yousefi, Bahman; Zakeri-Milani, Parvin

    2014-01-01

    Purpose: P-glycoprotein (P-gp; ABCB1), an integral membrane protein in the apical surface of human intestinal epithelial cells, plays a crucial role in the intestinal transport and efflux leading to changes in the bioavailability of oral pharmaceutical compounds. This study was set to examine the potential effects of three Eudragits RL100, S100 and L100 on the intestinal epithelial membrane transport of rhodammine-123 (Rho-123), a substrate of P-gp using a monolayer of human colon cancer cell line (Caco-2). Methods: The least non-cytotoxic concentrations of the excipients were assessed in Caco-2 cells by the MTT assay. Then the transepithelial transport of Rho-123 across Caco-2 monolayers was determined with a fluorescence spectrophotometer. Besides, the expression of the P-gp in cells exposed to the polymers was demonstrated using Western-blotting analysis. Results: Treatment of cells with Eudragit RL100 and L100 led to a very slight change while Eudragit S100 showed 61% increase in Rho-123 accumulation (P<0.001) and also reduced transporter expression. Conclusion: Our studies suggest that using proper concentrations of the Eudragit S100 in drug formulation would improve intestinal permeability and absorption of p-gp substrate drugs. PMID:24754004

  15. Evidence of P-glycoprotein mediated apical to basolateral transport of flunisolide in human broncho-tracheal epithelial cells (Calu-3)

    PubMed Central

    Florea, Bogdan I; van der Sandt, Inez C J; Schrier, S Mariette; Kooiman, Klazina; Deryckere, Koen; de Boer, Albertus G; Junginger, Hans E; Borchard, Gerrit

    2001-01-01

    Transepithelial transport of flunisolide was studied in reconstituted cell monolayers of Calu-3, LLC-PK1 and the MDR1-P-glycoprotein transfected LLC-MDR1 cells.Flunisolide transport was polarized in the apical (ap) to basolateral (bl) direction in Calu-3 cells and was demonstrated to be ATP-dependent. In LLC-MDR1 cells, flunisolide was transported in the bl to ap direction and showed no polarization in LLC-PK1 cells.Non-specific inhibition of cellular metabolism at low temperature (4°C) or by 2-deoxy-D-glucose (2-d-glu) and sodium azide (NaN3) abolished the polarized transport. Polarized flunisolide transport was also inhibited by the specific Pgp inhibitors verapamil, SDZ PSC 833 and LY335979.Under all experimental conditions and in the presence of all used inhibitors, no decrease in the TransEpithelial Electrical Resistance (TEER) values was detected. From all inhibitors used, only the general metabolism inhibitors 2-deoxy-D-glucose and NaN3, decreased the survival of Calu-3 cells.Western blotting analysis and confocal laser scanning microscopy demonstrated the presence of MDR1-Pgp at mainly the basolateral side of the plasma membrane in Calu-3 cells and at the apical side in LLC-MDR1 cells. Mass spectroscopy studies demonstrated that flunisolide is transported unmetabolized across Calu-3 cells.In conclusion, these results show that the active ap to bl transport of flunisolide across Calu-3 cells is facilitated by MDR1-Pgp located in the basolateral plasma membrane. PMID:11724763

  16. In vitro and in vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques.

    PubMed

    Jekerle, Veronika; Klinkhammer, Werner; Scollard, Deborah A; Breitbach, Kerstin; Reilly, Raymond M; Piquette-Miller, Micheline; Wiese, Michael

    2006-07-15

    Overexpression of the multidrug resistance proteins P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) results in treatment failure of many malignancies including ovarian cancer. Dual inhibition of Pgp and BCRP may restore the sensitivity of resistant cells to anticancer drugs. We report the synthesis and characterization of a novel anthranilic-acid based Pgp and BCRP modulator, WK-X-34. In vitro inhibition of Pgp activity was evaluated using 99mTc-Sestamibi and daunorubicin accumulation in Pgp overexpressing human ovarian cancer cells (A2780/Adr) and its sensitive counterpart (A2780/wt). Interaction with BCRP was examined with a mitoxantrone-efflux assay in BCRP-overexpressing MCF7/mx cells, with flow cytometry. Interactions with the multidrug resistance associated proteins (MRP) were evaluated in transfected MRP1, MRP2 and MRP3 cell lines, using a 5-CFDA efflux assay. In vivo 99mTc-Sestamibi imaging of human ovarian cancer xenografts was used to evaluate the in vivo efficacy of WK-X-34 in mice. Daunorubicin accumulation in A2780/Adr cells was inhibited by WK-X-34 at nanomolar concentrations (IC50: 82.1 +/- 6 nM). WK-X-34 inhibited mitoxantrone accumulation in BCRP-overexpressing cells at micromolar concentrations (IC50 = 26.5 +/- 4.6 microM), whereas WK-X-34 did not significantly alter 5-CFDA accumulation in MRP transfected cells. In vivo, uptake of 99mTc-Sestamibi was significantly increased in A2780/Adr xenograft tumors, brain and intestine (AUCs(0-4h) 136%, 147% and 138%; p < 0.05) in mice dosed with WK-X-34 (20 mg/kg i.p.). WK-X-34 selectively modulates Pgp and BCRP in vitro and in vivo in multidrug resistant ovarian cancer cells, and thus may have potential utility in the treatment of multidrug resistant tumors. PMID:16646006

  17. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of p-glycoprotein and multidrug resistance-associated proteins.

    PubMed

    Sandow, Nora; Kim, Simon; Raue, Claudia; Päsler, Dennis; Klaft, Zin-Juan; Antonio, Leandro Leite; Hollnagel, Jan Oliver; Kovacs, Richard; Kann, Oliver; Horn, Peter; Vajkoczy, Peter; Holtkamp, Martin; Meencke, Heinz-Joachim; Cavalheiro, Esper A; Pragst, Fritz; Gabriel, Siegrun; Lehmann, Thomas-Nicolas; Heinemann, Uwe

    2015-01-01

    Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs [carbamazepine (CBZ), sodium valproate, phenytoin] and two unspecific inhibitors of Pgp and MRPs [verapamil (VPM) and probenecid (PBN)] on seizure-like events (SLEs) induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices) were studied. Although in slice preparations the blood brain barrier is not functional, we found that SLEs predominantly persisted in the presence of anticonvulsant drugs (90%) and also in the presence of VPM and PBN (86%). Following subsequent co-administration of anti-epileptic drugs and drug transport inhibitors, SLEs continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30%) or as suppression (7%), particularly by perfusion with CBZ in PBN containing solutions (43, 9%). Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7% of patients. Patients whose tissue was completely or partially sensitive (65%) presented with higher seizure frequencies than those with resistant tissue (35%). However, corresponding subgroups of patients do not differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue. PMID:25741317

  18. Evidence for the involvement of P-glycoprotein on the extrusion of taken up L-DOPA in cyclosporine A treated LLC-PK1 cells

    PubMed Central

    Soares-da-Silva, P; Serrăo, M P; Vieira-Coelho, M A; Pestana, M

    1998-01-01

    The present work has examined the effects of short- (30?min) and long-term (14?h) exposure to cyclosporine A (CsA) on the uptake of L-DOPA, its decarboxylation to dopamine and the cellular extrusion of taken up L-DOPA and of newly-formed amine in monolayers of LLC-PK1 cells.In the presence of benserazide (50??M), L-DOPA was rapidly accumulated in LLC-PK1 cells (cultured in collagen-treated plastic) attaining equilibrium at 30?min of incubation. Non-linear analysis of the saturation curves revealed a Km of 113±16??M and a Vmax of 5581±297?pmol?mg?1 protein 6?min?1.In the absence of benserazide, LLC-PK1 cells incubated with increasing concentrations of L-DOPA (10 to 500??M) for 6?min accumulate newly-formed dopamine by a saturable process with apparent Km and Vmax values of 31±6??M and 1793±91?pmol?mg?1 protein 6?min?1, respectively. The fractional outflow of newly-formed dopamine was found to be 20%. Up to 200??M of intracellular newly-formed dopamine, the outward transfer of the amine was found to be a non-saturable process.Short-term exposure to CsA (0.3, 1.0 and 3.0??g?ml?1) was found not to change the intracellular concentrations of newly-formed dopamine, but increased the levels of dopamine in the incubation medium (143% to 224% increase) and the total amount of dopamine formed (31% to 59% increase). Long-term exposure to CsA (0.03 to 3.0??g?ml?1) reduced the total amount of dopamine (15% to 39% reduction) and the intracellular levels of the amine (11% to 56% reduction), without changing dopamine levels in the incubation medium. Both short- and long-term exposure to CsA resulted in a concentration-dependent increase in the fractional outflow of newly-formed dopamine.Short-term exposure to CsA (3.0??g?ml?1) reduced the apical extrusion of intracellular L-DOPA by 15% (P<0.05), whereas long-term exposure to CsA reverted this effect and decreased its intracellular availability (15% reduction; P<0.05).Detection of P-glycoprotein activity was carried out by measuring verapamil- or UIC2-sensitive rhodamine 123 accumulation. Both UIC2 (3??g?ml?1) and verapamil (25??M) significantly increased the accumulation of rhodamine 123 in LLC-PK1 cells. A 30?min exposure to CsA was found not to affect the accumulation of rhodamine 123 in the presence of verapamil (25??M), whereas a 14?h exposure to CsA was found to reduce the accumulation of rhodamine 123.In conclusion, the increase and the reduction in the formation of dopamine after short- and long-term exposure to CsA, respectively, correlate with the effects of the immunosuppressant on the apical cell extrusion of taken up L-DOPA, suggesting the involvement of P-glycoprotein. The effects of CsA on the fractional outflow of newly-formed dopamine appear to be mediated by a different mechanism. PMID:9484849

  19. PARP Inhibitors as P-glyoprotein Substrates.

    PubMed

    Lawlor, Denise; Martin, Patricia; Busschots, Steven; Thery, Julien; O'Leary, John J; Hennessy, Bryan T; Stordal, Britta

    2014-06-01

    The cytotoxicity of PARP inhibitors olaparib, veliparib, and CEP-8983 were investigated in two P-glycoprotein (P-gp) overexpressing drug-resistant cell models (IGROVCDDP and KB-8-5-11). IGROVCDDP and KB-8-5-11 were both resistant to olaparib and resistance was reversible with the P-gp inhibitors elacridar, zosuquidar, and valspodar. In contrast, the P-gp overexpressing models were not resistant to veliparib or CEP-8983. Olaparib and veliparib did not induce protein expression of P-gp in IGROVCDDP or KB-8-5-11 at doses that successfully inhibit PARP. Olaparib therefore appears to be a P-gp substrate. Veliparib and CEP-8983 do not appear to be substrates. Veliparib and CEP-8983 may therefore be more useful in combined chemotherapy regimens with P-gp substrates and may be active in platinum and taxane-resistant ovarian cancer. PMID:24700236

  20. Schistosoma mansoni P-glycoprotein levels increase in response to praziquantel exposure and correlate with reduced praziquantel susceptibility

    PubMed Central

    Messerli, Shanta M.; Kasinathan, Ravi S.; Morgan, William; Spranger, Stefani; Greenberg, Robert M.

    2009-01-01

    One potential physiological target for new antischistosomals is the parasite’s system for excretion of wastes and xenobiotics. P-glycoprotein (Pgp), a member of the ATP-binding cassette superfamily of proteins, is an ATP-dependent efflux pump involved in transport of toxins and xenobiotics from cells. In vertebrates, increased expression of Pgp is associated with multidrug resistance in tumor cells. Pgp may also play a role in drug resistance in helminths. In this report, we examine the relationship between praziquantel (PZQ), the current drug of choice against schistosomiasis, and Pgp expression in Schistosoma mansoni. We show that levels of RNA for SMDR2, a Pgp homolog from S. mansoni, increase transiently in adult male worms following exposure to sublethal concentrations (100 – 500 nM) of PZQ. A corresponding, though delayed, increase in anti-Pgp immunoreactive protein expression occurs in adult males following exposure to PZQ. The level of anti-Pgp immunoreactivity in particular regions of adult worms also increases in response to PZQ. Adult worms from an Egyptian S. mansoni isolate with reduced sensitivity to PZQ express increased levels of SMDR2 RNA and anti-Pgp-immunoreactive protein, perhaps indicating a role for multidrug resistance proteins in development or maintenance of PZQ resistance. PMID:19406169

  1. Equilibrated Atomic Models of Outward-Facing P-glycoprotein and Effect of ATP Binding on Structural Dynamics

    PubMed Central

    Pan, Lurong; Aller, Stephen G.

    2015-01-01

    P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that alternates between inward- and outward-facing conformations to capture and force substrates out of cells like a peristaltic pump. The high degree of similarity in outward-facing structures across evolution of ABC transporters allowed construction of a high-confidence outward-facing Pgp atomic model based on crystal structures of outward-facing Sav1866 and inward-facing Pgp. The model adhered to previous experimentally determined secondary- and tertiary- configurations during all-atom molecular dynamics simulations in the presence or absence of MgATP. Three long lasting (>100 ns) meta-stable states were apparent in the presence of MgATP revealing new insights into alternating access. The two ATP-binding pockets are highly asymmetric resulting in differential control of overall structural dynamics and allosteric regulation of the drug-binding pocket. Equilibrated Pgp has a considerably different electrostatic profile compared to Sav1866 that implicates significant kinetic and thermodynamic differences in transport mechanisms. PMID:25600711

  2. Molecular Cloning and Characterization of a P-Glycoprotein from the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Tian, Lixia; Yang, Jiaqiang; Hou, Wenjie; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Zhou, Xuguo; Wu, Qingjun

    2013-01-01

    Macrocyclic lactones such as abamectin and ivermectin constitute an important class of broad-spectrum insecticides. Widespread resistance to synthetic insecticides, including abamectin and ivermectin, poses a serious threat to the management of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major pest of cruciferous plants worldwide. P-glycoprotein (Pgp), a member of the ABC transporter superfamily, plays a crucial role in the removal of amphiphilic xenobiotics, suggesting a mechanism for drug resistance in target organisms. In this study, PxPgp1, a putative Pgp gene from P. xylostella, was cloned and characterized. The open reading frame (ORF) of PxPgp1 consists of 3774 nucleotides, which encodes a 1257-amino acid peptide. The deduced PxPgp1 protein possesses structural characteristics of a typical Pgp, and clusters within the insect ABCB1. PxPgp1 was expressed throughout all developmental stages, and showed the highest expression level in adult males. PxPgp1 was highly expressed in midgut, malpighian tubules and testes. Elevated expression of PxPgp1 was observed in P. xylostella strains after they were exposed to the abamectin treatment. In addition, the constitutive expressions of PxPgp1 were significantly higher in laboratory-selected and field-collected resistant strains in comparison to their susceptible counterpart. PMID:24264038

  3. Modulation of the multidrug resistance P-glycoprotein: Detection with technetium-99m-sestamibi in vivo

    SciTech Connect

    Luker, G.D.; Fracasso, P.M.; Dobkin, J.; Piwnica-Worms, D. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1997-03-01

    Overexpression of the multidrug resistance (MDR1) P-glycoprotein (Pgp) has been documented in nearly all forms of human cancers and increased levels of Pgp in some tumors correlate with poor response to treatment. Technetium-99m-sestamibi has recently been validated as a Pgp transport substrate. Pgp is also normally expressed along the biliary canalicular surface of hepatocytes and the luminal side of proximal tubule cells in the kidney, while not expressed in heart. Focused on these organs with known Pgp status, we present the findings on {sup 99m}Tc-sestamibi showed normal, prompt clearance of the radiotracer from the liver and kidneys relative to the heart. After administration of the Pgp modulator, {sup 99m}Tc-sestamibi was selectively retained in the liver and kidneys. Hepatobiliary and renal clearance of {sup 99m}Tc-sestamibi are Pgp-mediated, and inhibition of Pgp transport in these organs can be successfully imaged using {sup 99m}Tc-sestamibi in patients. Similar results might be expected with this and related radiopharmaceuticals for functional imaging of Pgp transport and modulation in tumors. 34 refs., 2 figs.

  4. Equilibrated atomic models of outward-facing P-glycoprotein and effect of ATP binding on structural dynamics.

    PubMed

    Pan, Lurong; Aller, Stephen G

    2015-01-01

    P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that alternates between inward- and outward-facing conformations to capture and force substrates out of cells like a peristaltic pump. The high degree of similarity in outward-facing structures across evolution of ABC transporters allowed construction of a high-confidence outward-facing Pgp atomic model based on crystal structures of outward-facing Sav1866 and inward-facing Pgp. The model adhered to previous experimentally determined secondary- and tertiary- configurations during all-atom molecular dynamics simulations in the presence or absence of MgATP. Three long lasting (>100 ns) meta-stable states were apparent in the presence of MgATP revealing new insights into alternating access. The two ATP-binding pockets are highly asymmetric resulting in differential control of overall structural dynamics and allosteric regulation of the drug-binding pocket. Equilibrated Pgp has a considerably different electrostatic profile compared to Sav1866 that implicates significant kinetic and thermodynamic differences in transport mechanisms. PMID:25600711

  5. 6?,7?-Dihydroxybergamottin in grapefruit juice and Seville orange juice: Effects on cyclosporine disposition, enterocyte CYP3A4, and P-glycoprotein

    Microsoft Academic Search

    David J. Edwards; Michael E. Fitzsimmons; Erin G. Schuetz; Kazuto Yasuda; Murray P. Ducharme; Lawrence H. Warbasse; Patrick M. Woster; John D. Schuetz; Paul Watkins

    1999-01-01

    Background: 6?,7?-Dihydroxybergamottin is a furanocoumarin that inhibits CYP3A4 and is found in grapefruit juice and Seville orange juice. Grapefruit juice increases the oral bioavailability of many CYP3A4 substrates, including cyclosporine (INN, ciclosporin), but intestinal P-glycoprotein may be a more important determinant of cyclosporine availability. Objectives: To evaluate the contribution of 6?,7?-dihydroxybergamottin to the effects of grapefruit juice on cyclosporine disposition

  6. 99m Tc-Sestamibi, A Sensitive Probe for In Vivo Imaging of P-Glycoprotein Inhibition by Modulators and mdr1 Antisense Oligodeoxynucleotides

    Microsoft Academic Search

    Veronika Jekerle; Jing-Hung Wang; Deborah A. Scollard; Raymond M. Reilly; Michael Wiese; Micheline Piquette-Miller

    2006-01-01

    Purpose   We tested the suitability of 99mTc-sestamibi to image the inhibition of P-glycoprotein (Pgp)-mediated multidrug resistance in tumor cells and xenografts after antisense treatment and\\/or inhibition with a novel Pgp modulator WK-X-34.Procedure   Pgp inhibition was measured by daunorubicin transport assays and fluorescence microscopy in resistant A2780\\/Adr cells treated with WK-X-34 and antisense. A2780\\/Adr xenograft mice were dosed with mdr1 antisense

  7. Influence of verapamil on the pharmacokinetics of the antiparasitic drugs ivermectin and moxidectin in sheep

    Microsoft Academic Search

    M. B. Molento; A. Lifschitz; J. Sallovitz; C. Lanusse; R. Prichard

    2004-01-01

    P-Glycoprotein (P-GP) is a transport protein that participates in the mechanism of active secretion of different molecules from the bloodstream to the gastrointestinal tract. The aim of the current work was to evaluate the effect of verapamil, a P-GP substrate, on the pharmacokinetic behaviour of the anthelmintics ivermectin and moxidectin in sheep. Thirty-two sheep were divided into four groups and

  8. The effect of pomelo mix ethyl acetate extract on CYP3A6 and P-glycoprotein gene transcripts in rabbits.

    PubMed

    Irshaid, Yacoub M; Zihlef, Malek A; Zmeili, Suheil M; Al-Antary, Eman T; Zmaily, Mais G; Al-Embideen, Somya N; Amireh, Abdallah O

    2014-07-01

    Pomelo fruit juice and pomelo ethylacetate extract have been shown to increase the bioavailability of some CYP3A substrates. The purpose of this study was to investigate if this effect might be contributed to by changes in CYP3A and p-glycoprotein mRNAs levels in the liver and proximal small intestine. The ethyl acetate extract of pomelo mix was administered for 7 days to 10 rabbits. Nine rabbits were administered tap water for 7 days. The administration was through oral intubation to the stomach. On the 8(th) day, the rabbits were sacrificed, and the liver and the proximal 15 cm of the small intestine were dissected. Total RNA was extracted from the specimens and cDNA was prepared by quantitative real-time-polymerase chain reaction (RT-PCR) using specific primers. The ethyl acetate extract of pomelo mix reduced the mRNA expression of CYP3A6 almost 5-folds in the intestine and 2-folds in the liver. In contrast, a 1-fold increase to the p-glycoprotein mRNA expression was observed under the same experimental conditions. In conclusion, the ethyl acetate extract of pomelo mix reduced the mRNA expression of CYP3A6 in both intestine and liver but to different degrees, while the p-glycoprotein mRNA expression was not reduced. PMID:24856265

  9. P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans.

    PubMed Central

    Schuetz, E G; Schinkel, A H; Relling, M V; Schuetz, J D

    1996-01-01

    The P-glycoprotein (Pgp) efflux pump can influence the hepatocellular concentration of xenobiotics that are modulators and substrates of cytochrome P4503A (CYP3A). We tested the hypothesis that Pgp is a determinant of drug-inducible expression of CYP3A. The magnitude of CYP3A induction by rifampicin was compared in the human parental colon carcinoma cell line LS 180/WT (wild type) and in two derivative clones overexpressing the human multidrug resistance gene MDR1 (also designated PGY1) because of either drug selection (LS 180/ADR) or transfection with MDRI cDNA (LS 180/MDR). In both MDR1 cDNA-overexpressing clones, rifampicin induction of CYP3A mRNA and protein was decreased and required greater rifampicin concentrations compared with parental cells. The role of Pgp in regulation of CYP3A expression in vivo was analyzed in mice carrying a targeted disruption of the mdr1a mouse gene. Oral treatment with increasing doses of rifampicin resulted in elevated drug levels in the livers of mdr1a (-/-) mice compared with mdr1a (+/+) mice at all doses. Consistent with the enhanced accumulation of rifampicin in mdr1a (-/-) mice, lower doses of rifampicin were required for induction of CYP3A proteins, and the magnitude of CYP3A induction was greater at all doses of rifampicin in mdr1a (-/-) mice compared with mdr1a (+/+) mice. We conclude that Pgp-mediated transport is a critical element influencing the CYP3A inductive response. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8633005

  10. Complex Interplay between the P-Glycoprotein Multidrug Efflux Pump and the Membrane: Its Role in Modulating Protein Function

    PubMed Central

    Sharom, Frances Jane

    2014-01-01

    Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1), which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter’s transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the drug-binding pocket and suggested routes by which substrates can enter it from the membrane. Detergents have profound effects on Pgp function, and several appear to be substrates. Biochemical and biophysical studies in vitro, some using purified reconstituted protein, have explored the effects of the membrane environment. They have demonstrated that Pgp is involved in a complex relationship with its lipid environment, which modulates the behavior of its substrates, as well as various functions of the protein, including ATP hydrolysis, drug binding, and drug transport. Membrane lipid composition and fluidity, phospholipid headgroup and acyl chain length all influence Pgp function. Recent studies focusing on thermodynamics and kinetics have revealed some important principles governing Pgp–lipid and substrate–lipid interactions, and how these affect drug-binding and transport. In some cells, Pgp is associated with cholesterol-rich microdomains, which may modulate its functions. The relationship between Pgp and cholesterol remains an open question; however, it clearly affects several aspects of its function in addition to substrate–membrane partitioning. The action of Pgp modulators appears to depend on their membrane permeability, and membrane fluidizers and surfactants reverse drug resistance, likely via an indirect mechanism. A detailed understanding of how the membrane affects Pgp substrates and Pgp’s catalytic cycle may lead to new strategies to combat clinical drug resistance. PMID:24624364

  11. Genetic Variants and Increased Expression of Parascaris equorum P-glycoprotein-11 in Populations with Decreased Ivermectin Susceptibility

    PubMed Central

    Janssen, I. Jana I.; Krücken, Jürgen; Demeler, Janina; Basiaga, Marta; Korna?, S?awomir; von Samson-Himmelstjerna, Georg

    2013-01-01

    Macrocyclic lactones (MLs) represent the major drug class for control of parasitic infections in humans and animals. However, recently reports of treatment failures became more frequent. In addition to human and ruminant parasitic nematodes this also is the case for the horse-nematode Parascaris equorum. Nevertheless, to date the molecular basis of ML resistance is still not understood. Unspecific resistance mechanisms involving transporters such as P-glycoproteins (Pgps) are expected to contribute to ML resistance in nematodes. Here, complete sequences of two P. equorum Pgps were cloned and identified as orthologs of Caenorhabditis elegans Ppg-11 and an unnamed Caenorhabditis briggsae Pgp designated as Pgp-16 using phylogenetic analysis. Quantitative real-time PCR was used to compare expression between tissues. Significantly higher PeqPgp-11 expression was found in the gut for both genders, whereas for PeqPgp-16 the body wall was identified as predominant expression site. Furthermore, Pgps were analyzed regarding their participation in resistance development. Using SeqDoC analyses, Pgp-sequences of P. equorum populations with different ML susceptibility were compared. This approach revealed three single nucleotide polymorphisms (SNPs) causing missense mutations in the PeqPgp-11 sequence which correlated with decreased ML susceptibility. However, no resistance associated differences in mRNA expression levels were detected between embryonated eggs of these populations. In contrast, comparison of two pre-adult groups with different ivermectin (IVM) susceptibility revealed the presence of the three SNPs and in addition statistically significant PeqPgp-11 overexpression in the group of worms with reduced susceptibility. These results indicate that Pgp-11 might be involved in IVM resistance in P. equorum as it shows increased expression in an IVM exposed life-cycle stage of an IVM resistant population as well as occurrence of putatively resistance associated SNPs in populations with reduced IVM susceptibility. These SNPs are promising diagnostic candidates for detection of ML resistance with potential also for other parasitic nematode species. PMID:23637871

  12. The Dual Cyclooxygenase/5-Lipoxygenase Inhibitor Licofelone Attenuates P-Glycoprotein-Mediated Drug Resistance in the Injured Spinal Cord

    PubMed Central

    Dulin, Jennifer N.; Moore, Meredith L.

    2013-01-01

    Abstract There are currently no proven effective treatments that can improve recovery of function in spinal cord injury (SCI) patients. Many therapeutic compounds have shown promise in pre-clinical studies, but clinical trials have been largely unsuccessful. P-glycoprotein (Pgp, Abcb1b) is a drug efflux transporter of the blood–spinal cord barrier that limits spinal cord penetration of blood-borne xenobiotics. Pathological Pgp upregulation in diseases such as cancer causes heightened resistance to a broad variety of therapeutic drugs. Importantly, several drugs that have been evaluated for the treatment of SCI, such as riluzole, are known substrates of Pgp. We therefore examined whether Pgp-mediated pharmacoresistance diminishes delivery of riluzole to the injured spinal cord. Following moderate contusion injury at T10 in male Sprague–Dawley rats, we observed a progressive, spatial spread of increased Pgp expression from 3 days to 10 months post-SCI. Spinal cord uptake of i.p.-delivered riluzole was significantly reduced following SCI in wild type but not Abcb1a-knockout rats, highlighting a critical role for Pgp in mediating drug resistance following SCI. Because inflammation can drive Pgp upregulation, we evaluated the ability of the new generation dual anti-inflammatory drug licofelone to promote spinal cord delivery of riluzole following SCI. We found that licofelone both reduced Pgp expression and enhanced riluzole bioavailability within the lesion site at 72?h post-SCI. This work highlights Pgp-mediated drug resistance as an important obstacle to therapeutic drug delivery for SCI, and suggests licofelone as a novel combinatorial treatment strategy to enhance therapeutic drug delivery to the injured spinal cord. PMID:22947335

  13. Experimental validation of in silico target predictions on synergistic protein targets

    E-print Network

    Cortes-Ciriano, Isidro; Koutsoukas, Alexios; Abian, Olga; Bender, Andreas; Velazquez-Campoy, Adrian

    2013-03-22

    xenobiotics (such as P-gp 1 and CYP450 enzymes). Sub- sequently, ten compounds from an external library (Hit- Finder) predicted to be active on two of the enriched targets, P-glycoprotein 1 and Topoisomerase I, were tested in vitro. Hoechst 33342 dye uptake, P... -gp ATPase activity and Topoisomerase I DNA relaxation assays were able to identify two inhibitors of P-gp with IC50 values of 37 ± 5 and 28 ± 2 ?M, respectively, comparable to the activity of Verapamil (12 ?M). Also identified were five moderate inhibitors...

  14. (R)-[11C]verapamil is selectively transported by murine and human P-glycoprotein at the blood–brain barrier, and not by MRP1 and BCRP

    PubMed Central

    Römermann, Kerstin; Wanek, Thomas; Bankstahl, Marion; Bankstahl, Jens P.; Fedrowitz, Maren; Müller, Markus; Löscher, Wolfgang; Kuntner, Claudia; Langer, Oliver

    2013-01-01

    Introduction Positron emission tomography (PET) with [11C]verapamil, either in racemic form or in form of the (R)-enantiomer, has been used to measure the functional activity of the adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) at the blood–brain barrier (BBB). There is some evidence in literature that verapamil inhibits two other ABC transporters expressed at the BBB, i.e. multidrug resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP). However, previous data were obtained with micromolar concentrations of verapamil and do not necessarily reflect the transporter selectivity of verapamil at nanomolar concentrations, which are relevant for PET experiments. The aim of this study was to assess the selectivity of verapamil, in nanomolar concentrations, for Pgp over MRP1 and BCRP. Methods Concentration equilibrium transport assays were performed with [3H]verapamil (5 nM) in cell lines expressing murine or human Pgp, human MRP1, and murine Bcrp1 or human BCRP. Paired PET scans were performed with (R)-[11C]verapamil in female FVB/N (wild-type), Mrp1(?/?), Mdr1a/b(?/?), Bcrp1(?/?) and Mdr1a/b(?/?)Bcrp1(?/?) mice, before and after Pgp inhibition with 15 mg/kg tariquidar. Results In vitro transport experiments exclusively showed directed transport of [3H]verapamil in Mdr1a- and MDR1-overexpressing cells which could be inhibited by tariquidar (0.5 ?M). In PET scans acquired before tariquidar administration, brain-to-blood ratio (Kb,brain) of (R)-[11C]verapamil was low in wild-type (1.3 ± 0.1), Mrp1(?/?) (1.4 ± 0.1) and Bcrp1(?/?) mice (1.8 ± 0.1) and high in Mdr1a/b(?/?) (6.9 ± 0.8) and Mdr1a/b(?/?)Bcrp1(?/?) mice (7.9 ± 0.5). In PET scans after tariquidar administration, Kb,brain was significantly increased in Pgp-expressing mice (wild-type: 5.0 ± 0.3-fold, Mrp1(?/?): 3.2 ± 0.6-fold, Bcrp1(?/?): 4.3 ± 0.1-fold) but not in Pgp knockout mice (Mdr1a/b(?/?) and Mdr1a/b(?/?)Bcrp1(?/?)). Conclusion Our combined in vitro and in vivo data demonstrate that verapamil, in nanomolar concentrations, is selectively transported by Pgp and not by MRP1 and BCRP at the BBB, which supports the use of (R)-[11C]verapamil or racemic [11C]verapamil as PET tracers of cerebral Pgp function. PMID:23845421

  15. P-glycoprotein and breast cancer resistance protein in acute myeloid leukaemia cells treated with the Aurora-B Kinase Inhibitor barasertib-hQPA

    PubMed Central

    2011-01-01

    Background Aurora kinases play an essential role in orchestrating chromosome alignment, segregation and cytokinesis during mitotic progression, with both aurora-A and B frequently over-expressed in a variety of human malignancies. Over-expression of the ABC drug transporter proteins P-glycoprotein (Pgp) and Breast cancer resistance protein (BCRP) is a major obstacle for chemotherapy in many tumour types with Pgp conferring particularly poor prognosis in acute myeloid leukaemia (AML). Barasertib-hQPA is a highly selective inhibitor of aurora-B kinase that has shown tumouricidal activity against a range tumour cell lines including those of leukaemic AML origin. Methods Effect of barasertib-hQPA on the pHH3 biomarker and cell viability was measured in a panel of leukaemic cell lines and 37 primary AML samples by flow cytometry. Pgp status was determined by flow cytometry and BCRP status by flow cytometry and real-time PCR. Results In this study we report the creation of the cell line OCI-AML3DNR, which over-expresses Pgp but not BCRP or multidrug resistance-associated protein (MRP), through prolonged treatment of OCI-AML3 cells with daunorubicin. We demonstrate that Pgp (OCI-AML3DNR and KG-1a) and BCRP (OCI-AML6.2) expressing AML cell lines are less sensitive to barasertib-hQPA induced pHH3 inhibition and subsequent loss of viability compared to transporter negative cell lines. We also show that barasertib-hQPA resistance in these cell lines can be reversed using known Pgp and BCRP inhibitors. We report that barasertib-hQPA is not an inhibitor of Pgp or BCRP, but by using 14[C]-barasertib-hQPA that it is effluxed by these transporters. Using phosphoHistone H3 (pHH3) as a biomarker of barasertib-hQPA responsiveness in primary AML blasts we determined that Pgp and BCRP positive primary samples were less sensitive to barasertib-hQPA induced pHH3 inhibition (p = <0.001) than samples without these transporters. However, we demonstrate that IC50 inhibition of pHH3 by barasertib-hQPA was achieved in 94.6% of these samples after 1 hour drug treatment, in contrast to the resistance of the cell lines. Conclusion We conclude that Pgp and BCRP status and pHH3 down-regulation in patients treated with barasertib should be monitored in order to establish whether transporter-mediated efflux is sufficient to adversely impact on the efficacy of the agent. PMID:21679421

  16. Development and characterization of P-glycoprotein 1 (Pgp1, ABCB1)-mediated doxorubicin-resistant PLHC-1 hepatoma fish cell line

    SciTech Connect

    Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Caminada, Daniel [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute of Ecopreneurship, Gruendenstrasse 40, CH-4132 Muttenz (Switzerland); University of Zuerich, Institute of Plant Biology, Division of Limnology, Seestrasse 187, CH-8802 Kilchberg (Switzerland); Loncar, Jovica [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute of Ecopreneurship, Gruendenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH), Department of Environmental Sciences, CH-8092 Zurich (Switzerland); Smital, Tvrtko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)], E-mail: smital@irb.hr

    2008-03-01

    The development of the multidrug resistance (MDR) phenotype in mammals is often mediated by the overexpression of the P-glycoprotein1 (Pgp, ABCB1) or multidrug resistance-associated protein (MRP)-like ABC transport proteins. A similar phenomenon has also been observed and considered as an important part of the multixenobiotic resistance (MXR) defence system in aquatic organisms. We have recently demonstrated the presence of ABC transporters in the widely used in vitro fish model, the PLHC-1 hepatoma cell line. In the present study we were able to select a highly resistant PLHC-1 sub-clone (PLHC-1/dox) by culturing the wild-type cells in the presence of 1 {mu}M doxorubicin. Using quantitative PCR a 42-fold higher expression of ABCB1 gene was determined in the PLHC-1/dox cells compared to non-selected wild-type cells (PLHC-1/wt). The efflux rates of model fluorescent Pgp1 substrates rhodamine 123 and calcein-AM were 3- to 4-fold higher in the PLHC-1/dox in comparison to the PLHC-1/wt cells. PLHC-1/dox were 45-fold more resistant to doxorubicin cytotoxicity than PLHC-1/wt. Similarly to mammalian cell lines, typical cross-resistance to cytotoxicity of other chemotherapeutics such as daunorubicin, vincristine, vinblastine, etoposide and colchicine, occurred. Furthermore, cyclosporine A, verapamil and PSC833, specific inhibitors of Pgp1 transport activity, completely reversed resistance of PLHC-1/dox cells to all tested drugs, resulting in EC50 values similar to the EC50 values found for PLHC-1/wt. In contrast, MK571, a specific inhibitor of MRP type of efflux transporters, sensitized PLHC-1/dox cells, neither to doxorubicin, nor to any other of the chemotherapeutics used in the study. These data demonstrate for the first time that a specific Pgp1-mediated doxorubicin resistance mechanism is present in the PLHC-1 fish hepatoma cell line. In addition, the fact that low micromolar concentrations of specific inhibitors may completely reverse a highly expressed doxorubicin resistance points to the fragility of Pgp1-mediated MXR defence mechanism in fish.

  17. Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog 1 Note: Nucleotide sequence data reported in this paper have been submitted to the GenBank data base with the accession number AF 003908. 1

    Microsoft Academic Search

    Ming Xu; Marcelo Molento; William Blackhall; Paula Ribeiro; Robin Beech; Roger Prichard

    1998-01-01

    Resistance to ivermectin and related drugs is an increasing problem for parasite control. The mechanism of ivermectin resistance in nematode parasites is currently unknown. Some P-glycoproteins and multidrug resistance proteins have been found to act as membrane transporters which pump drugs from the cell. A disruption of the mdr1a gene, which encodes a P-glycoprotein in mice, results in hypersensitivity to

  18. Mice with Homozygous Disruption of the mdr2 P-Glycoprotein Gene A Novel Animal Model for Studies of Nonsuppurative Inflammatory Cholangitis and Hepatocarcinogenesis

    PubMed Central

    Mauad, Thais H.; van Nieuwkerk, Carin M. J.; Dingemans, Koert P.; Smit, Jaap J. M.; Schinkel, Alfred H.; Notenboom, Robbert G. E.; van den Bergh Weerman, Marius A.; Verkruisen, Ronald P.; Groen, Albert K.; Oude Elferink, Ronald P. J.; van der Valk, Martin A.; Borst, Piet; Offerhaus, G. Johan A.

    1994-01-01

    The mouse mdr2gene (and its human homologue MDR3, also called MDR2) encodes a P-glycoprotein that is present in high concentration in the bile canalicular membrane of hepatocytes. The 129/OlaHsd mice with a homozygous disruption of the mdr2 gene (-/-mice) lack this P-glycoprotein in the canalicular membrane. These mice are unable to secrete phospholipids into bile, showing an essential role for the mdr2 P-glycoprotein in the transport of phosphatidylcholine across the canalicular membrane. The complete absence of phospholipids from bile leads to a hepatic disease, which becomes manifest shortly after birth and shows progression to an end stage in the course of 3 months. The liver pathology is that of a nonsuppurative inflammatory cholangitis with portal inflammation and ductular proliferation, consistent with toxic in-jury of the biliary system from bile salts unaccompanied by phospholipids. Thus, the mdr2 (-/-) mice can serve as an animal model for studying mechanisms and potential interventions in nonsuppurative inflammatory cholangitis (in a generic sense) in human disease, be it congenital or acquired. When the mice are 4 to 6 months of age, preneoplastic lesions develop in the liver, progressing to metastatic liver cancer in the terminal phase. The mdr2 (-/-) mice therefore also provide a tumor progression model of value for the study of hepatic carcinogenesis. Interestingly, also in this regard, the model mimicks human disease, because chronic inflammation of the biliary system in humans may similarly carry increased cancer risk. ImagesFigure 2Figure 3Figure 4Figure 5Figure 6 PMID:7977654

  19. P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR16 and Bcl2 expressions in hepatocellular carcinoma cells

    Microsoft Academic Search

    Tsun Yee Tsang; Wan Yee Tang; Judy Yuet Wa Chan; Ngai Na Co; Chi Lam Au Yeung; Pak Lun Yau; Siu Kai Kong; Kwok Pui Fung; Tim Tak Kwok

    2011-01-01

    P-glycoprotein (Pgp), an efflux pump, was confirmed the first time to regulate the expressions of miR\\/gene in cells. Pgp is\\u000a known to be associated with multidrug resistance. RHepG2 cells, the multidrug resistant subline of human hepatocellular carcinoma\\u000a HepG2 cells, expressed higher levels of Pgp as well as miR-16, and lower level of Bcl-2 than the parental cells. In addition,\\u000a RHepG2

  20. Alternation of adriamycin penetration kinetics in MCF-7 cells from 2D to 3D culture based on P-gp expression through the Chk2/p53/NF-?B pathway.

    PubMed

    Lu, Meng; Zhou, Fang; Hao, Kun; Liu, Jiali; Chen, Qianying; Ni, Ping; Zhou, Honghao; Wang, Guangji; Zhang, Jingwei

    2015-01-15

    Monolayer cells are largely different from tumor masses, and might misguide drug screenings. 3D in vitro cell culture models simulate the characteristics of tumor masses in vivo and have recently been used in many studies of anti-cancer drugs. Among various 3D cell culture models, multi-cellular layer (MCL) models allow for the direct quantitative assessment of the penetration of chemotherapeutic agents through solid tissue environments without requiring the use of fluorescently labeled drugs or imaging molecules. Therefore, in our present study, a 3D-no base and embedded MCF-7 MCL model was successfully developed for a 14-day culture. Over time, its thickness and cell layers increased and exhibited highly proliferative properties and drug resistance to adriamycin (ADR) with markedly elevated IC50 values. Meanwhile, G2/M stage cycle arrest was also observed, which likely up-regulated P-gp expression through the Chk2/p53/NF-?B pathway. The elevated P-gp expression altered the ADR penetration kinetics in MCF-7 MCLs in vitro by accelerating the apparent penetration of ADR through the intercellular spaces of the MCLs. Additionally, a decreased ADR retention within tumor cells was observed, but could be significantly reversed by a P-gp inhibitor. The attenuated ADR retention in the deeper cells of tumor masses was confirmed in xenografted mice in vivo. This phenomenon could be elucidated by the mathematical modeling of penetration kinetics parameters. Our study provided a new model that evaluated and improved the quantification of the drug penetration kinetics, revealed the relationship between P-gp and drug penetration through tumor masses, and suggested the potential molecular mechanisms. PMID:25478729

  1. A Pharmacodynamic Study of the P-glycoprotein Antagonist CBT-1® in Combination With Paclitaxel in Solid Tumors

    PubMed Central

    Kelly, Ronan J.; Robey, Robert W.; Chen, Clara C.; Draper, Deborah; Luchenko, Victoria; Barnett, Daryl; Oldham, Robert K.; Caluag, Zinnah; Frye, A. Robin; Steinberg, Seth M.; Fojo, Tito

    2012-01-01

    Background: This pharmacodynamic trial evaluated the effect of CBT-1® on efflux by the ATP binding cassette (ABC) multidrug transporter P-glycoprotein (Pgp/MDR1/ABCB1) in normal human cells and tissues. CBT-1® is an orally administered bisbenzylisoquinoline Pgp inhibitor being evaluated clinically. Laboratory studies showed potent and durable inhibition of Pgp, and in phase I studies CBT-1® did not alter the pharmacokinetics of paclitaxel or doxorubicin. Methods: CBT-1® was dosed at 500 mg/m2 for 7 days; a 3-hour infusion of paclitaxel at 135 mg/m2 was administered on day 6. Peripheral blood mononuclear cells (PBMCs) were obtained prior to CBT-1® administration and on day 6 prior to the paclitaxel infusion. 99mTc-sestamibi imaging was performed on the same schedule. The area under the concentration–time curve from 0–3 hours (AUC0–3) was determined for 99mTc-sestamibi. Results: Twelve patients were planned and enrolled. Toxicities were minimal and related to paclitaxel (grade 3 or 4 neutropenia in 18% of cycles). Rhodamine efflux from CD56+ PBMCs was a statistically significant 51%–100% lower (p < .0001) with CBT-1®. Among 10 patients who completed imaging, the 99mTc-sestamibi AUC0–3 for liver (normalized to the AUC0–3 of the heart) increased from 34.7% to 100.8% (median, 71.9%; p < .0001) after CBT-1® administration. Lung uptake was not changed. Conclusion: CBT-1® is able to inhibit Pgp-mediated efflux from PBMCs and normal liver to a degree observed with Pgp inhibitors studied in earlier clinical trials. Combined with its ease of administration and lack of toxicity, the data showing inhibition of normal tissue Pgp support further studies with CBT-1® to evaluate its ability to modulate drug uptake in tumor tissue. Discussion: Although overexpression of ABCB1 and other ABC transporters has been linked with poor outcome following chemotherapy efforts to negate that through pharmacologic inhibition have generally failed. This is thought to be a result of several factors, including (a) failure to select patients with tumors in which ABCB1 is a dominant resistance mechanism; (b) inhibitors that were not potent, or that impaired drug clearance; and (c) the existence of other mechanisms of drug resistance, including other ABC transporters. Although an animal model for Pgp has been lacking, recent studies have exploited a Brca1?/?; p53?/? mouse model of hereditary breast cancer that develops sporadic tumors similar to cancers in women harboring BRCA1 mutations. Treatment with doxorubicin, docetaxel, or the poly(ADP-ribose) polymerase inhibitor olaparib brings about shrinkage, but resistance eventually emerges. Overexpression of the Abcb1a gene, the mouse ortholog of human ABCB1, has been shown to be a mechanism of resistance in a subset of these tumors. Treating mice with resistant tumors with olaparib plus the Pgp inhibitor tariquidar resensitized the tumors to olaparib. Although results in this animal model support a new look at Pgp as a target, in this era of “targeted therapies,” trial designs that directly assess modulation of drug uptake, including quantitative nuclear imaging, should be pursued before clinical efficacy assessments are undertaken. Such assessment should be performed with compounds that inhibit tissue Pgp without altering the pharmacokinetics of chemotherapeutic agents. This pharmacodynamic study demonstrated that CBT-1®, inhibits Pgp-mediated efflux from PBMCs and normal liver. PMID:22416063

  2. Preferential Expression of a Mutant Allele of the Amplified MDR1 (ABCB1) Gene in Drug-Resistant

    E-print Network

    Ford, James

    and a cyclosporin inhibitor of P-glycoprotein (P-gp). Allele-specific oligonucleotide hybridization showed transporter P-glycoprotein (P-gp) is an ATP-dependent drug efflux pump, encoded in man by the MDR1 (ABCB1 of revertant cells with doxorubicin in either the presence or the absence of the P-gp inhibitor resulted

  3. Multidrug-resistant transport activity protects oocytes from

    E-print Network

    Wessel, Gary M.

    -resistant (MDR) transporter, P-glycoprotein (MDR-1), oocyte, chemotherapy Discuss: You can discuss this article, and this activity was significantly reduced in the presence of the MDR inhibitor PSC 833. Geminal vesicle oocytes

  4. UNCORRECTED Modulation of resistance to idarubicin by the cyclosporin

    E-print Network

    Ford, James

    with regard to the cross-resistance of IDA in multidrug-resistant (MDR) cells expressing P-glycoprotein (P for P-gp. Keywords: Anthracyclines, idarubicin, P-glycoprotein, multidrug resistance INTRODUCTION (ABCB1) gene. The MDR1 gene product P-glycoprotein (P-gp) is an ATP-dependent efflux pump for