These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Multidrug-resistant cancer cells contain two populations of P-glycoprotein with differently stimulated P-gp ATPase activities: evidence from atomic force microscopy and biochemical analysis.  

PubMed

Considerable interest exists about the localization of P-gp (P-glycoprotein) in DRMs (detergent-resistant membranes) of multidrug resistant cancer cells, in particular concerning the potential modulating role of the closely related lipids and proteins on P-gp activity. Our observation of the opposite effect of verapamil on P-gp ATPase activity from DRM and solubilized-membrane fractions of CEM-resistant leukaemia cells, and results from Langmuir experiments on membrane monolayers from resistant CEM cells, strongly suggest that two functional populations of P-gp exist. The first is located in DRM regions: it displays its optimal P-gp ATPase activity, which is almost completely inhibited by orthovanadate and activated by verapamil. The second is located elsewhere in the membrane; it displays a lower P-gp ATPase activity that is less sensitive to orthovanadate and is inhibited by verapamil. A 40% cholesterol depletion of DRM caused the loss of 52% of the P-gp ATPase activity. Cholesterol repletion allowed recovery of the initial P-gp ATPase activity. In contrast, in the solubilized-membrane-containing fractions, cholesterol depletion and repletion had no effect on the P-gp ATPase activity whereas up to 100% saturation with cholesterol induced a 58% increased P-gp ATPase activity, while no significant modification was observed for the DRM-enriched fraction. DRMs were analysed by atomic force microscopy: 40-60% cholesterol depletion was necessary to remove P-gp from DRMs. In conclusion, P-gp in DRMs appears to contain closely surrounding cholesterol that can stimulate P-gp ATPase activity to its optimal value, whereas cholesterol in the second population seems deprived of this function. PMID:15693753

Barakat, Stéphane; Gayet, Landry; Dayan, Guila; Labialle, Stéphane; Lazar, Adina; Oleinikov, Vladimir; Coleman, Anthony W; Baggetto, Loris G

2005-06-01

2

A pilot study to assess simultaneous administration of oral midazolam (MDZ) and fexofenadine (FEX) for the evaluation of cytochrome (CYP) 3A4 and P-glycoprotein (P-GP) activities  

Microsoft Academic Search

Background: Many drug interactions may involve both CYP3A4 and P-gp. Such interactions reflect overlapping substrate specificities and modulators between CYP3A4 and P-gp. MDZ and FEX are ideal in vivo probe substrates for the assessment of CYP3A4 and P-gp mediated interactions, respectively. It is desirable to evaluate the effect of an investigational drug on CYP3A4 and P-gp activities by administering these

M. Garrett; J. Smeraglia; X. Lin; L. Tan; J. Tran

2005-01-01

3

The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane  

Microsoft Academic Search

P-glycoprotein (P-gp) is a plasma membrane ATP-binding cassette transporter, responsible for multidrug resistance in tumor cells. P-gp catalyzes the ATP hydrolysis-dependent efflux of numerous amphiphilic compounds of unrelated chemical structures. In the absence of any identified substrate, P-gp exhibits an apparently futile, basal ATPase activity. By using native membrane vesicles containing high amounts of P-gp, we show here that (i)

Alexia Garrigues; Alexandre E. Escargueil; Stéphane Orlowski

2002-01-01

4

P-glycoprotein activity and biological response  

SciTech Connect

P-glycoprotein (P-gp) is a transmembrane drug efflux pump encoded by the MDR-1 gene in humans. Most likely P-gp protects organs against endogenous and exogenous toxins by extruding toxic compounds such as chemotherapeutics and other drugs. Many drugs are substrates for P-gp. Since P-gp is also expressed in the blood-brain barrier, P-gp substrates reach lower concentrations in the brain than in P-gp-negative tissues. Failure of response to chemotherapy of malignancies can be due to intrinsic or acquired drug resistance. Many tumors are multidrug resistant (MDR); resistant to several structurally unrelated chemotherapeutic agents. Several mechanisms are involved in MDR of which P-gp is studied most extensively. P-gp extrudes drugs out of tumor cells resulting in decreased intracellular drug concentrations, leading to the MDR phenotype. Furthermore, the MDR-1 gene exhibits several single nucleotide polymorphisms, some of which result in different transport capabilities. P-gp functionality and the effect of P-gp modulation on the pharmacokinetics of novel and established drugs can be studied in vivo by positron emission tomography (PET) using carbon-11 and fluorine-18-labeled P-gp substrates and modulators. PET may demonstrate the consequences of genetic differences on tissue pharmacokinetics. Inhibitors such as calcium-channel blockers (verapamil), cyclosporin A, ONT-093, and XR9576 can modulate the P-gp functionality. With PET the effect of P-gp modulation on the bioavailability of drugs can be investigated in humans in vivo. PET also allows the measurement of the efficacy of newly developed P-gp modulators.

Vaalburg, W. [Groningen University Hospital, PO Box 30.001, 9700 RB Groningen (Netherlands)]. E-mail: w.vaalburg@pet.umcg.nl; Hendrikse, N.H. [Groningen University Hospital, PO Box 30.001, 9700 RB Groningen (Netherlands); Elsinga, P.H. [Groningen University Hospital, PO Box 30.001, 9700 RB Groningen (Netherlands); Bart, J. [Groningen University Hospital, PO Box 30.001, 9700 RB Groningen (Netherlands); Waarde, A. van [Groningen University Hospital, PO Box 30.001, 9700 RB Groningen (Netherlands)

2005-09-01

5

Chalcogenopyrylium compounds as modulators of the ATP-binding cassette transporters P-glycoprotein (P-gp/ABCB1) and multidrug resistance protein 1 (MRP1/ABCC1).  

PubMed

Twenty-seven chalcogenopyrylium derivatives varying in the heteroatom of the pyrylium core and substituents at the 2-, 4-, and 6-positions were examined for their effect on human MRP1-mediated uptake of tritiated estradiol glucuronide into inside-out membrane vesicles, their affinity for and ability to stimulate the ATPase activity of purified human P-glycoprotein (P-gp)-His(10), and their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant cells. Differences in their effects on MRP1 and P-gp activity were noted, and a second set of thiopyrylium compounds with systematic substituent changes was examined to refine these differences further. Derivatives with tert-butyl substituents in the 2- and 6-positions had the lowest inhibitory activity toward both transporters. Derivatives with thioamide functionality in the 4-position were more active against MRP1 than derivatives with amide functionality. Conversely, derivatives with amide functionality in the 4-position were more active in P-gp than derivatives with thioamide functionality. PMID:22533905

Ebert, Sean P; Wetzel, Bryan; Myette, Robert L; Conseil, Gwenaëlle; Cole, Susan P C; Sawada, Geri A; Loo, Tip W; Bartlett, M Claire; Clarke, David M; Detty, Michael R

2012-05-24

6

P-glycoprotein inhibits caspase-8 activation but not formation of the death inducing signal complex (disc) following Fas ligation  

Microsoft Academic Search

Previous studies by our laboratory have shown that the drug transporter protein P-glycoprotein, P-gp, can specifically inhibit Fas-induced caspase-3 activation and apoptosis. Importantly, inhibition of both caspase-3 activation and cell death could be reversed by pharmacological and antibody inhibitors of P-gp function. However, the molecular mechanisms underpinning P-gp-mediated resistance to Fas-induced cell death and caspase activation remained unknown. We therefore

A A Ruefli; K M Tainton; P K Darcy; M J Smyth; R W Johnstone

2002-01-01

7

Quantitative Proteomics of Transporter Expression in Brain Capillary Endothelial Cells Isolated from P-Glycoprotein (P-gp), Breast Cancer Resistance Protein (Bcrp), and P-gp/Bcrp Knockout Mice  

PubMed Central

The objective of this study was to quantitatively examine the protein expression of relevant transporters and other proteins in the brain capillary endothelial cells isolated from wild-type mice and P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and P-gp/Bcrp knockout mice. After the isolation of brain capillary endothelial cells, a highly sensitive liquid chromatography-tandem mass spectrometry method with multiple reaction monitoring was used to determine the quantitative expression of membrane transporters at the blood-brain barrier (BBB) of the various mouse genotypes. Quantitative expression of 29 protein molecules, including 12 ATP-binding cassette transporters, 10 solute carrier transporters, five receptors, and two housekeeping proteins, was examined by quantitative proteomics in the four mouse genotypes. There was no significant difference in the expression of P-gp between the wild-type and Bcrp1(?/?) mice. Likewise, Bcrp expression was not significantly different between the wild-type and Mdr1a/b(?/?) mice. There was no significant difference in the expression of any of the measured proteins in the brain capillary endothelial cells across the genotypes, except for the lack of expression of the corresponding protein in the mice that had a genetic deletion of P-gp or Bcrp. In conclusion, using a quantitative proteomic approach, we have shown that there are no changes in the expression of several relevant transporters in brain capillary endothelial cells isolated from single and combination knockout mice. These data suggest that the mechanism behind the functional compensation between P-gp and Bcrp at the BBB is not related to compensatory changes in transporter expression. PMID:22401960

Agarwal, Sagar; Uchida, Yasuo; Mittapalli, Rajendar K.; Sane, Ramola; Terasaki, Tetsuya

2012-01-01

8

P-glycoprotein Inhibition Increases the Brain Distribution and Antidepressant-Like Activity of Escitalopram in Rodents  

PubMed Central

Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported substrate of human P-gp. Microdialysis-based pharmacokinetic studies demonstrated that administration of the P-gp inhibitor cyclosporin A resulted in increased brain levels of escitalopram without altering plasma escitalopram levels in the rat, thereby showing that P-gp restricts escitalopram transport across the blood–brain barrier (BBB) in vivo. The tail suspension test (TST) was carried out to elucidate the pharmacodynamic impact of P-gp inhibition on escitalopram effect in a mouse model of antidepressant activity. Pre-treatment with the P-gp inhibitor verapamil enhanced the response to escitalopram in the TST. Taken together, these data indicate that P-gp may restrict the BBB transport of escitalopram in humans, potentially resulting in subtherapeutic brain concentrations in certain patients. Moreover, by verifying that increasing escitalopram delivery to the brain by P-gp inhibition results in enhanced antidepressant-like activity, we suggest that adjunctive treatment with a P-gp inhibitor may represent a beneficial approach to augment escitalopram therapy in depression. PMID:23670590

O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

2013-01-01

9

Structure-activity relationships for xenobiotic transport substrates and inhibitory ligands of P-glycoprotein.  

PubMed Central

The multixenobiotic resistance phenotype is characterized by the reduced accumulation of xenobiotics by cells or organisms due to increased efflux of the compounds by P-glycoprotein (P-gp) or related transporters. An extensive xenobiotic database, consisting primarily of pesticides, was utilized in this study to identify molecular characteristics that render a xenobiotic susceptible to transport by or inhibition of P-gp. Transport substrates were differentiated by several molecular size/shape parameters, lipophilicity, and hydrogen bonding potential. Electrostatic features differentiated inhibitory ligands from compounds not catagorized as transport substrates and that did no interact with P-gp. A two-tiered system was developed using the derived structure-activity relationships to identify P-gp transport substrates and inhibitory ligands. Prediction accuracy of the approach was 82%. We then validated the system using six additional pesticides of which tow were predicted to be P-gp inhibitors and four were predicted to be noninteractors, based upon the structure-activity analyses. Experimental determinations using cells transfected with the human MDR1 gene demonstrated that five of the six pesticides were properly catagorized by the structure-activity analyses (83% accuracy). Finally, structure-activity analyses revealed that among P-gp inhibitors, relative inhibitory potency can be predicted based upon the surface area or volume of the compound. These results demonstrate that P-gp transport substrates and inhibitory ligands can be distinguished using molecular characteristics. Molecular characteristics of transport substrates suggest that P-gp may function in the elimination of hydroxylated metabolites of xenobiotics. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D Figure 1. E Figure 1. F Figure 1. G Figure 1. H Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 3. A Figure 3. B PMID:9347896

Bain, L J; McLachlan, J B; LeBlanc, G A

1997-01-01

10

Development of Novel Rifampicin-Derived P-Glycoprotein Activators/Inducers. Synthesis, In Silico Analysis and Application in the RBE4 Cell Model, Using Paraquat as Substrate  

PubMed Central

P-glycoprotein (P-gp) is a 170 kDa transmembrane protein involved in the outward transport of many structurally unrelated substrates. P-gp activation/induction may function as an antidotal pathway to prevent the cytotoxicity of these substrates. In the present study we aimed at testing rifampicin (Rif) and three newly synthesized Rif derivatives (a mono-methoxylated derivative, MeORif, a peracetylated derivative, PerAcRif, and a reduced derivative, RedRif) to establish their ability to modulate P-gp expression and activity in a cellular model of the rat’s blood–brain barrier, the RBE4 cell line P-gp expression was assessed by western blot using C219 anti-P-gp antibody. P-gp function was evaluated by flow cytometry measuring the accumulation of rhodamine123. Whenever P-gp activation/induction ability was detected in a tested compound, its antidotal effect was further tested using paraquat as cytotoxicity model. Interactions between Rif or its derivatives and P-gp were also investigated by computational analysis. Rif led to a significant increase in P-gp expression at 72 h and RedRif significantly increased both P-gp expression and activity. No significant differences were observed for the other derivatives. Pre- or simultaneous treatment with RedRif protected cells against paraquat-induced cytotoxicity, an effect reverted by GF120918, a P-gp inhibitor, corroborating the observed P-gp activation ability. Interaction of RedRif with P-gp drug-binding pocket was consistent with an activation mechanism of action, which was confirmed with docking studies. Therefore, RedRif protection against paraquat-induced cytotoxicity in RBE4 cells, through P-gp activation/induction, suggests that it may be useful as an antidote for cytotoxic substrates of P-gp. PMID:23991219

Vilas-Boas, Vania; Silva, Renata; Palmeira, Andreia; Sousa, Emilia; Ferreira, Luisa Maria; Branco, Paula Serio; Carvalho, Felix; Bastos, Maria de Lourdes; Remiao, Fernando

2013-01-01

11

Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots.  

PubMed

The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session. PMID:24722393

Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

2014-09-01

12

P-glycoprotein in sheep liver and small intestine: gene expression and transport efflux activity.  

PubMed

The role of the transporter P-glycoprotein (P-gp) in the disposition kinetics of different drugs therapeutically used in veterinary medicine has been demonstrated. Considering the anatomo-physiological features of the ruminant species, the constitutive expression of P-gp (ABCB1) along the sheep gastrointestinal tract was studied. Additionally, the effect of repeated dexamethasone (DEX) administrations on the ABCB1 gene expression in the liver and small intestine was also assessed. The ABCB1 mRNA expression was determined by real-time quantitative PCR. P-gp activity was evaluated in diffusion chambers to determine the efflux of rhodamine 123 (Rho 123) in the ileum from experimental sheep. The constitutive ABCB1 expression was 65-fold higher in the liver than in the intestine (ileum). The highest ABCB1 mRNA expression along the small intestine was observed in the ileum (between 6- and 120-fold higher). The treatment with DEX did not elicit a significant effect on the P-gp gene expression levels in any of the investigated gastrointestinal tissues. Consistently, no significant differences were observed in the intestinal secretion of Rho 123, between untreated control (Peff S-M = 3.99 × 10(-6)  ± 2.07 × 10(-6) ) and DEX-treated animals (Peff S-M = 6.00 × 10(-6)  ± 2.5 × 10(-6) ). The understanding of the efflux transporters expression and activity along the digestive tract may help to elucidate clinical implications emerging from drug interactions in livestock. PMID:23409949

Ballent, M; Wilkens, M R; Maté, L; Muscher, A S; Virkel, G; Sallovitz, J; Schröder, B; Lanusse, C; Lifschitz, A

2013-12-01

13

Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system  

NASA Astrophysics Data System (ADS)

Magnetic nanoparticles (NP) were developed for the active brain targeting of water-soluble P-glycoprotein (P-gp) substrate rhodamine 123 (Rh123). The NP matrix of poly(lactide-co-glycolide) (PLGA) and methoxy poly(ethyleneglycol)-poly(lactic acid) (M-PEG-PLA) was prepared by single emulsion solvent evaporation of polymers with oleic acid-coated magnetic nanoparticles (OAMNP) and Rh123. All formulations were characterized in terms of morphology, particle size, magnetic content and Rh123 encapsulation efficiency. The maximum encapsulation efficiency of Rh123 was 45 ± 3% and of OAMNP was 42 ± 4%. The brain targeting and biodistribution study was performed on Sprague Dawley rats (3 groups, n = 6). Rh123 (0.4 mg kg-1) was administered in saline form, NP containing Rh123, and NP containing Rh123 in the presence of a magnetic field (0.8 T). The fluorimetric analysis of brain homogenates revealed a significant uptake (p < 0.05) of Rh123 in the magnetically targeted group relative to controls. These results were supported by fluorescence microscopy. This study reveals the ability of magnetically targeted nanoparticles to deliver substances to the brain, the permeation of which would otherwise be inhibited by the P-gp system.

Kirthivasan, B.; Singh, D.; Bommana, M. M.; Raut, S. L.; Squillante, E.; Sadoqi, M.

2012-06-01

14

Predicting the outer boundaries of P-glycoprotein (P-gp)-based drug interactions at the human blood-brain barrier based on rat studies.  

PubMed

Using positron emission tomography (PET), (11)C-verapamil as the P-gp substrate, and cyclosporine A (CsA) as the P-gp inhibitor, we showed that the magnitude of P-gp-based drug interactions at the human blood-brain barrier (BBB) is modest. However, such interactions at clinically relevant CsA blood concentrations may be greater for substrates where P-gp plays an even larger role (fractional contribution of P-gp, ft > 0.97) in preventing the CNS entry of the drug (e.g., nelfinavir). Since we have shown that the rat is an excellent predictor of the verapamil-CsA interaction at the human BBB, we determined the magnitude of drug interaction at the rat BBB between nelfinavir and CsA. Under isoflurane anesthesia, male Sprague-Dawley rats were coadministered IV infusions of nelfinavir and escalating doses of CsA to achieve pseudo steady-state plasma/blood and brain concentrations of both drugs (blood CsA ranged 0-264.9 ?M, n = 3-6/group). The percent increase in the brain:blood nelfinavir concentration ratio (determined by LC/MS) was described by the Hill equation with Emax = 6481%, EC50 = 12.3 ?M, and ? = 1.6. Then, using these data, as well as in vitro data in LLCPK1 cells expressing the human P-gp, we predicted that CsA (at clinically relevant blood concentration of 1.5 ?M) will increase the distribution of nelfinavir into the human brain by 236%. Collectively, our data suggest that clinically significant P-gp based drug interactions at the human BBB are possible for P-gp substrates highly excluded from the brain (ft > 0.97) and should be investigated using noninvasive approaches (e.g., PET). PMID:24364805

Hsiao, Peng; Unadkat, Jashvant D

2014-02-01

15

Catfish egg lectin causes rapid activation of multidrug resistance 1 P-glycoprotein as a lipid translocase.  

PubMed

Rhamnose-binding lectin from catfish (Silurus asotus) eggs (SAL) has the ability to induce externalization of phosphatidylserine (PS), followed by cell shrinkage in globotriaosylceramide (Gb3)-expressing Burkitt's lymphoma Raji cells. Because phospholipid scramblase and aminophospholipid translocase did not participate in SAL-induced PS externalization, we examined the relationship of ATP-binding cassette (ABC) transporters, such as multidrug resistance (MDR) 1 P-glycoprotein (MDR1 P-gp) and MDR-associated protein 1 (MRP1), for translocation of PS. Since cyclosporin A (MDR1 P-gp inhibitor) but not MK571 (MRP1 inhibitor) inhibited SAL-induced PS externalization, it was suggested that MDR1 P-gp is involved in this phenomenon. On the other hand, SAL activated both of the ABC transporters for efflux of rhodamine123 (MDR1 P-gp substrate, Rho123) and 5-carboxyfluorescein diacetate (MRP1 substrate, 5-CFDA) in Raji cells. In contrast, SAL did not activate these two transporters in Gb3-negative cell lines, such as K562 and doxorubicin-resistant K562 cells, involving not only PS externalization but also efflux of Rho123 or 5-CFDA. Since Gb3 and both transporters in Raji cells are located in the glycosphingolipid-enriched microdomain (GEM), it is suggested that the binding of SAL to Gb3 localized in the GEM specifically induces MDR1 P-gp activation in Raji cells. PMID:15744065

Sugawara, Shigeki; Hosono, Masahiro; Ogawa, Yukiko; Takayanagi, Motoaki; Nitta, Kazuo

2005-03-01

16

Pregnancy Does Not Increase CYP3A or P-Glycoprotein Activity in the Non-Human Primate, Macaca nemestrina  

PubMed Central

Plasma concentrations of protease inhibitors are lower in pregnant women than in nonpregnant women or men. Using nelfinavir as a model protease inhibitor, we have shown that this phenomenon can be reproduced in a representative non-human primate model, Macaca nemestrina (J Pharmacol Exp Ther 329:1016–1022, 2009). Nelfinavir is cleared from the body predominantly by CYP3A metabolism and P-glycoprotein (P-gp) efflux. Therefore, using midazolam (MDZ) as a CYP3A probe and digoxin (DIG) as a P-gp probe, we determined the antepartum (73–118 days) and postpartum (61–130 days) in vivo intestinal and hepatic CYP3A or P-gp activity in the macaque. Although the systemic clearance of MDZ was significantly increased (?70%) during pregnancy after intra-arterial (IA) administration of the drug (15N-labeled MDZ; 40 ?g/kg), pregnancy did not affect the oral clearance of the drug administered simultaneously (1 mg/kg p.o.) with the IA dose. In vitro studies in hepatic and intestinal S-9 fractions indicated no effect of pregnancy on CYP3A activity or protein expression in the small intestine or liver. In contrast, neither the oral (100 ?g/kg) nor the IA (10 ?g/kg) clearance of DIG was significantly altered by pregnancy, indicating no effect of pregnancy on P-gp activity. Assuming that MDZ and DIG are selective substrates of the macaque CYP3A enzymes and P-gp, respectively, these results suggest that factors other than increased CYP3A or P-gp activity contribute to the increased clearance of protease inhibitors during M. nemestrina pregnancy. PMID:19478134

Zhang, Huixia; Wu, Xiaohui; Naraharisetti, Suresh Babu; Chung, Francisco; Whittington, Dale; Mirfazaelian, Ahmad; Unadkat, Jashvant D.

2009-01-01

17

In vitro activity of uva-ursi against cytochrome P450 isoenzymes and P-glycoprotein.  

PubMed

Some natural health products (NHPs) affect drug metabolism enzymes and transport proteins, potentially affecting the safety and efficacy of the drug or other NHPs. This study was undertaken to characterize the effect of uva-ursi (Arctostaphylos uva-ursi) on cytochrome P450 isozyme (3A4, 3A5, 3A7, 2C19, and 19)-mediated metabolism and P-glycoprotein (P-gp) transport. Three bulk and 2 capsulated uva-ursi samples were obtained from commercial outlets. The capsules were batched, and herbal samples were ground to a common consistency. Aqueous and methanol extracts were freshly prepared. Cytochrome P450 isozyme-mediated metabolism was determined by using in vitro bioassays. P-gp transport function was determined by using a rhodamine 123 (Rh123) uptake test in human (THP-1) monocytes and human Caco-2 cells. All products were analyzed by HPLC for arbutin, gallic acid, myricitrin, and isoquercetin. A large variation was observed in the biomarkers found between the bulk and capsulated samples. Our data indicate that both the aqueous and methanol extracts of all 5 uva-ursi products showed high cytochrome P450 isozyme inhibition, with the exception of the methanol extracts against cytochromes P3A4 and P19, which had low to moderate activity. The aqueous extracts of uva-ursi showed an inhibitory effect on Rh123 efflux by P-gp at 1 h and an inductive effect at 18 h for both cell lines. Our results show that the uva-ursi herbal products tested here have pharmacological properties, including the potential capacity to affect drug safety and efficacy. Further studies are warranted against a wider range of cytochrome P450 isozymes and to determine whether these effects are clinically significant. PMID:18066112

Chauhan, B; Yu, C; Krantis, A; Scott, I; Arnason, J T; Marles, R J; Foster, B C

2007-11-01

18

Antitumour activity of novel taxanes that act at the same time as cytotoxic agents and P-glycoprotein inhibitors.  

PubMed

Taxanes antitumour agents such as paclitaxel and docetaxel represent a successful family of chemotherapeutic drugs. Unfortunately, acquired and innate resistance represents a clinical problem for these drugs. We investigated, on a panel of 7 human cancer cell lines, the growth inhibition effect of 3 newly developed taxanes (SB-T-1213, SB-T-1250 and SB-T-101187) with modification at the C10 and C3' positions of the taxane framework. These positions have been previously characterized as critical to make taxanes highly active against cells overexpressing the efflux pump P-glycoprotein (P-gp). Paclitaxel and docetaxel were used as reference compounds. Results unambiguously indicate the exceptional activity of the novel taxanes toward P-gp positive cells (up to >400 fold higher potency than that of paclitaxel). SB-T-1213 and SB-T-1250 are also substantially more active than the reference compounds against P-gp negative cells. To better understand the mechanisms underlying the enhanced activity of the newly developed taxanes, we performed cell cycle and apoptosis analysis. This study demonstrates that the striking growth inhibition effect exhibited by the novel taxanes is ascribed to their increased ability in inducing apoptosis and G(2)/M cell cycle block. SB-T-1213 and SB-T-1250 are also more active than reference compounds in inducing intracellular accumulation of the beta-tubulin subunits. Finally, it is revealed that these novel taxanes have ability to inhibit the function of the P-gp efflux pump on the basis of the Rhodamine 123 assay. These findings strongly suggest that SB-T-1213, SB-T-1250 and SB-T-101187 represent a new tool to overcome innate or acquired P-gp mediated taxane-resistance. PMID:11104578

Ferlini, C; Distefano, M; Pignatelli, F; Lin, S; Riva, A; Bombardelli, E; Mancuso, S; Ojima, I; Scambia, G

2000-12-01

19

Antitumour activity of novel taxanes that act at the same time as cytotoxic agents and P-glycoprotein inhibitors  

PubMed Central

Taxanes antitumour agents such as paclitaxel and docetaxel represent a successful family of chemotherapeutic drugs. Unfortunately, acquired and innate resistance represents a clinical problem for these drugs. We investigated, on a panel of 7 human cancer cell lines, the growth inhibition effect of 3 newly developed taxanes (SB-T-1213, SB-T-1250 and SB-T-101187) with modification at the C10 and C3? positions of the taxane framework. These positions have been previously characterized as critical to make taxanes highly active against cells overexpressing the efflux pump P-glycoprotein (P-gp). Paclitaxel and docetaxel were used as reference compounds. Results unambiguously indicate the exceptional activity of the novel taxanes toward P-gp positive cells (up to >400 fold higher potency than that of paclitaxel). SB-T-1213 and SB-T-1250 are also substantially more active than the reference compounds against P-gp negative cells. To better understand the mechanisms underlying the enhanced activity of the newly developed taxanes, we performed cell cycle and apoptosis analysis. This study demonstrates that the striking growth inhibition effect exhibited by the novel taxanes is ascribed to their increased ability in inducing apoptosis and G 2/M cell cycle block. SB-T-1213 and SB-T-1250 are also more active than reference compounds in inducing intracellular accumulation of the beta-tubulin subunits. Finally, it is revealed that these novel taxanes have ability to inhibit the function of the P-gp efflux pump on the basis of the Rhodamine 123 assay. These findings strongly suggest that SB-T-1213, SB-T-1250 and SB-T-101187 represent a new tool to overcome innate or acquired P-gp mediated taxane-resistance. © 2000 Cancer Research Campaign http://www.bjcancer.com PMID:11104578

Ferlini, C; Distefano, M; Pignatelli, F; Lin, S; Riva, A; Bombardelli, E; Mancuso, S; Ojima, I; Scambia, G

2000-01-01

20

Interaction of Common Azole Antifungals with P Glycoprotein  

Microsoft Academic Search

Both eucaryotic and procaryotic cells are resistant to a large number of antibiotics because of the activities of export transporters. The most studied transporter in the mammalian ATP-binding cassette transporter superfamily, P glycoprotein (P-gp), ejects many structurally unrelated amphiphilic and lipophilic xenobiotics. Observed clinical interactions and some in vitro studies suggest that azole antifungals may interact with P-gp. Such an

Er-jia Wang; Karen Lew; Christopher N. Casciano; Robert P. Clement; William W. Johnson

2002-01-01

21

Protein kinase C epsilon mediates the induction of P-glycoprotein in LNCaP prostate carcinoma cells.  

PubMed

P-glycoprotein (P-gp) mediates drug resistance. Protein kinase C (PKC) expression correlates with drug resistance in several types of cancer. We determined whether PKC signals the induction of P-gp in LNCaP human prostate cancer cells, and identified a specific isozyme involved, in a model of aspirin-induced P-glycoprotein expression. An inhibitor of PKC activity, and a specific peptide inhibitor of PKC epsilon translocation, suppressed the induction of P-gp. The PKC activator ingenol, but not OAG, induced P-gp expression in a dose-dependent manner. Based on our results, we conclude that PKC epsilon mediates the induction of P-gp. Accordingly, PKC epsilon is activated and translocates from the membrane fraction to the cytoskeleton fraction in aspirin-treated cells. The findings of this study point to PKC epsilon as a signalling molecule for the induction of P-gp in LNCaP prostate cancer cells. PMID:11747987

Flescher, Eliezer; Rotem, Ronit

2002-01-01

22

Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport.  

PubMed

Flavonoids are constituents of fruits, vegetables, and plant-derived beverages, as well as components in herbal-containing dietary supplements. The objective of this investigation was to characterize the effect of flavonoids on P-glycoprotein (P-gp)-mediated cellular efflux and to determine the molecular mechanism(s) of the flavonoid-drug interaction. Studies were conducted in the sensitive and multidrug resistant human breast cancer cell lines MCF-7 and MDA435/LCC6 and examined the effects of the flavonoids biochanin A, morin, phloretin, and silymarin on daunomycin (DNM) accumulation and doxorubicin cytotoxicity. The potential mechanism(s) involved in the interaction was evaluated by determining flavonoid effects on 1) P-gp ATPase activity, 2) [(3)H]azidopine photoaffinity labeling of P-gp, and 3) cellular P-gp levels. The flavonoids increased [(3)H]DNM accumulation in P-gp positive cells, but not P-gp negative cells, and these effects were both flavonoid concentration- and P-gp expression level-dependent. Biochanin A and silymarin potentiated doxorubicin cytotoxicity in P-gp positive cells. Biochanin A and phloretin stimulated, whereas morin and silymarin inhibited P-gp ATPase activity, confirming that these flavonoids interact with P-gp. Morin and silymarin significantly inhibited [(3)H]azidopine photoaffinity labeling of P-gp, suggesting a direct interaction with P-gp substrate binding. A 24-h preincubation with all flavonoids, followed by flavonoid removal, did not alter cellular P-gp level in P-gp positive cells. In conclusion, biochanin A, morin, phloretin, and silymarin all inhibited P-gp-mediated cellular efflux and the mechanism of the interaction involved, at least in part, a direct interaction. The findings of this study indicate a potential for significant flavonoid-drug interactions with P-gp substrates. PMID:12604704

Zhang, Shuzhong; Morris, Marilyn E

2003-03-01

23

Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux  

SciTech Connect

There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of only 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup ?6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup ?6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ? Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ? Inhaled corticosteroid potent P-gp inducers especially fluticasone and beclomethasone. ? Systemic corticosteroids are weak P-gp inducers. ? Mineralocorticoids not affected by P-gp mediated efflux.

Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May

2012-05-01

24

Algal products as naturally occurring substrates for p-glycoprotein in Mytilus californianus  

Microsoft Academic Search

Mytilus californianus is a filter feeder that removes seaweed particulates, phytoplankton, and their byproducts from the water. The gills of this animal express high multixenobiotic resistance (MXR) and multixenobiotic transport activity that is related to the mammalian p-glycoprotein (p-gp). The high p-gp observed in mussel gills may provide the mussel protection from natural toxins in the diet. To test this

N. Eufemia; S. Clerte; S. Girshick; D. Epel

2002-01-01

25

Influence of the pro-inflammatory cytokines on P-glycoprotein expression and functionality  

Microsoft Academic Search

Purpose: P-glycoprotein (P-gp) is involved in the transport of many drugs at different barriers with consequence in terms of drug distribution and elimina- tion. The expression and activity of P-gp can be modu- lated by different factors and pathologies. The present article reviews the knowledge regarding the effect of pro-inflammatory cytokines (TNF?, IL-1?, IL-6, IL-2, IFN? ) on the expression

Christine Fernandez; Marion Buyse; Michčle German-Fattal; François Gimenez

26

In Silico Quantitative Structure-Activity Relationship Studies on P-gp Modulators of Tetrahydroisoquinoline-Ethyl-Phenylamine Series  

PubMed Central

Background Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy. The drug efflux by a transport protein is the main reason for MDR. In humans, MDR mainly occurs when the ATP-binding cassette (ABC) family of proteins is overexpressed simultaneously. P-glycoprotein (P-gp) is most commonly associated with human MDR; it utilizes energy from adenosine triphosphate (ATP) to transport a number of substrates out of cells against concentration gradients. By the active transport of substrates against concentration gradients, intracellular concentrations of substrates are decreased. This leads to the cause of failure in cancer chemotherapy. Results Herein, we report Topomer CoMFA (Comparative Molecular Field Analysis) and HQSAR (Hologram Quantitative Structure Activity Relationship) models for third generation MDR modulators. The Topomer CoMFA model showed good correlation between the actual and predicted values for training set molecules. The developed model showed cross validated correlation coefficient (q2) = 0.536 and non-cross validated correlation coefficient (r2) = 0.975 with eight components. The best HQSAR model (q2 = 0.777, r2 = 0.956) with 5-8 atom counts was used to predict the activity of test set compounds. Both models were validated using test set compounds, and gave a good predictive values of 0.604 and 0.730. Conclusions The contour map near R1 indicates that substitution of a bulkier and polar group to the ortho position of the benzene ring enhances the inhibitory effect. This explains why compounds with a nitro group have good inhibitory potency. Molecular fragment analyses shed light on some essential structural and topological features of third generation MDR modulators. Fragments analysis showed that the presence of tertiary nitrogen, a central phenyl ring and an aromatic dimethoxy group contributed to the inhibitory effect. Based on contour map information and fragment information, five new molecules with variable R1 substituents were designed. The activity of these designed molecules was predicted by the Topomer CoMFA and HQSAR models. The novel compounds showed higher potency than existing compounds. PMID:21269449

2011-01-01

27

Susceptibility of juvenile and adult blood-brain barrier to endothelin-1: regulation of P-glycoprotein and breast cancer resistance protein expression and transport activity  

PubMed Central

Background P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) play a critical role in keeping neurotoxic substances from entering the brain. We and others have previously reported an impact of inflammation on the regulation of adult blood–brain barrier (BBB) efflux transporters. However, studies in children have not been done. From the pediatric clinical perspective, it is important to understand how the central nervous system (CNS) and BBB drug efflux transporters differ in childhood from those of adults under normal and inflammatory conditions. Therefore, we examined and compared the regulation of P-gp and BCRP expression and transport activity in young and adult BBB and investigated the molecular mechanisms underlying inflammatory responses. Methods Rats at postnatal day (P) P21 and P84, corresponding to the juvenile and adult stages of human brain maturation, respectively, were treated with endothelin-1 (ET-1) given by the intracerebroventricular (icv) route. Twenty-four hours later, we measured P-gp and BCRP protein expression in isolated brain capillary by immunoblotting as well as by transport activity in vivo by measuring the unbound drug partitioning coefficient of the brain (Kp,uu,brain) of known efflux transporter substrates administered intravenously. Glial activation was measured by immunohistochemistry. The release of cytokines/chemokines (interleukins-1?, 1-? (IL-1?), -6 (IL-6), -10 (IL-10), monocyte chemoattractant protein (MCP-1/CCL2), fractalkine and tissue inhibitor of metalloproteinases-1 (TIMP-1)) were simultaneously measured in brain and serum samples using the Agilent Technology cytokine microarray. Results We found that juvenile and adult BBBs exhibited similar P-gp and BCRP transport activities in the normal physiological conditions. However, long-term exposure of the juvenile brain to low-dose of ET-1 did not change BBB P-gp transport activity but tended to decrease BCRP transport activity in the juvenile brain, while a significant increase of the activity of both transporters was evidenced at the BBB in the adult brain. Moreover, juvenile and adult brain showed differences in their expression profiles of cytokines and chemokines mediated by ET-1. Conclusions BBB transporter activity during neuroinflammation differs between the juvenile and adult brains. These findings emphasize the importance of considering differential P-gp and BCRP transport regulation mechanisms between adult and juvenile BBB in the context of neuroinflammation. PMID:23253775

2012-01-01

28

The ATPase activity of the P-glycoprotein drug pump is highly activated when the N-terminal and central regions of the nucleotide-binding domains are linked closely together.  

PubMed

The P-glycoprotein (P-gp, ABCB1) drug pump protects us from toxic compounds and confers multidrug resistance. Each of the homologous halves of P-gp is composed of a transmembrane domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The predicted drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Crystal structures and EM projection images suggest that the two halves of P-gp are separated by a central cavity that closes upon binding of nucleotide. Binding of drug substrates may induce further structural rearrangements because they stimulate ATPase activity. Here, we used disulfide cross-linking with short (8 ?) or long (22 ?) cross-linkers to identify domain-domain interactions that activate ATPase activity. It was found that cross-linking of cysteines that lie close to the LSGGQ (P517C) and Walker A (I1050C) sites of NBD1 and NBD2, respectively, as well as the cytoplasmic extensions of TM segments 3 (D177C or L175C) and 9 (N820C) with a short cross-linker activated ATPase activity over 10-fold. A pyrylium compound that inhibits ATPase activity blocked cross-linking at these sites. Cross-linking between the NBDs was not inhibited by tariquidar, a drug transport inhibitor that stimulates P-gp ATPase activity but is not transported. Cross-linking between extracellular cysteines (T333C/L975C) predicted to lock P-gp into a conformation that prevents close NBD association inhibited ATPase activity. The results suggest that trapping P-gp in a conformation in which the NBDs are closely associated likely mimics the structural rearrangements caused by binding of drug substrates that stimulate ATPase activity. PMID:22700974

Loo, Tip W; Bartlett, M Claire; Detty, Michael R; Clarke, David M

2012-08-01

29

The ATPase Activity of the P-glycoprotein Drug Pump Is Highly Activated When the N-terminal and Central Regions of the Nucleotide-binding Domains Are Linked Closely Together*  

PubMed Central

The P-glycoprotein (P-gp, ABCB1) drug pump protects us from toxic compounds and confers multidrug resistance. Each of the homologous halves of P-gp is composed of a transmembrane domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The predicted drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Crystal structures and EM projection images suggest that the two halves of P-gp are separated by a central cavity that closes upon binding of nucleotide. Binding of drug substrates may induce further structural rearrangements because they stimulate ATPase activity. Here, we used disulfide cross-linking with short (8 ?) or long (22 ?) cross-linkers to identify domain-domain interactions that activate ATPase activity. It was found that cross-linking of cysteines that lie close to the LSGGQ (P517C) and Walker A (I1050C) sites of NBD1 and NBD2, respectively, as well as the cytoplasmic extensions of TM segments 3 (D177C or L175C) and 9 (N820C) with a short cross-linker activated ATPase activity over 10-fold. A pyrylium compound that inhibits ATPase activity blocked cross-linking at these sites. Cross-linking between the NBDs was not inhibited by tariquidar, a drug transport inhibitor that stimulates P-gp ATPase activity but is not transported. Cross-linking between extracellular cysteines (T333C/L975C) predicted to lock P-gp into a conformation that prevents close NBD association inhibited ATPase activity. The results suggest that trapping P-gp in a conformation in which the NBDs are closely associated likely mimics the structural rearrangements caused by binding of drug substrates that stimulate ATPase activity. PMID:22700974

Loo, Tip W.; Bartlett, M. Claire; Detty, Michael R.; Clarke, David M.

2012-01-01

30

Intracellular trafficking of P-glycoprotein.  

PubMed

Overexpression of P-glycoprotein (P-gp) is a major cause of multidrug resistance in cancer. P-gp is mainly localized in the plasma membrane and can efflux structurally and chemically unrelated substrates, including anticancer drugs. P-gp is also localized in intracellular compartments, such as endoplasmic reticulum (ER), Golgi, endosomes and lysosomes, and cycles between endosomal compartments and the plasma membrane in a microtubular-actin dependent manner. Intracellular trafficking pathways for P-gp and participation of different Rab proteins depend on cellular polarization and choice of primary culture, cell line or neoplasm. Interruption of P-gp trafficking to the plasma membrane increases intracellular P-gp accumulation and anticancer drug levels, suggesting a potential approach to overcome P-gp-mediated multidrug resistance in cancer. PMID:22212176

Fu, Dong; Arias, Irwin M

2012-03-01

31

Structure-Activity Relationships, Ligand Efficiency, and Lipophilic Efficiency Profiles of Benzophenone-Type Inhibitors of the Multidrug Transporter P-Glycoprotein  

PubMed Central

The drug efflux pump P-glycoprotein (P-gp) has been shown to promote multidrug resistance (MDR) in tumors as well as to influence ADME properties of drug candidates. Here we synthesized and tested a series of benzophenone derivatives structurally analogous to propafenone-type inhibitors of P-gp. Some of the compounds showed ligand efficiency and lipophilic efficiency (LipE) values in the range of compounds which entered clinical trials as MDR modulators. Interestingly, although lipophilicity plays a dominant role for P-gp inhibitors, all compounds investigated showed LipE values below the threshold for promising drug candidates. Docking studies of selected analogues into a homology model of P-glycoprotein suggest that benzophenones show an interaction pattern similar to that previously identified for propafenone-type inhibitors. PMID:22452412

2012-01-01

32

Host Cell P-glycoprotein Is Essential for Cholesterol Uptake and Replication of Toxoplasma gondii*  

PubMed Central

P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells. PMID:19389707

Bottova, Iveta; Hehl, Adrian B.; Stefanic, Sasa; Fabrias, Gemma; Casas, Josefina; Schraner, Elisabeth; Pieters, Jean; Sonda, Sabrina

2009-01-01

33

P-Glycoprotein- and cytochrome P-450-mediated herbal drug interactions.  

PubMed

P-Glycoprotein (P-gp), the most extensively studied ATP-binding cassette transporter, functions as a biological barrier by extruding toxic substances and xenobiotics out of cells. Drug efflux pumps such as P-gp play a functional role in determining the pharmacokinetics of drugs administered by oral and parenteral routes. Determining the activity of drug efflux transport proteins has important implications in the identification of substrates and/or inhibitors. The significant role of the small intestine in reducing the oral bioavailability of drugs is due to metabolic enzymes and efflux transporters. The role of cytochrome P-450 3A (CYP3A) and P-gp in intestinal drug disposition has been highlighted. This review examines the structure, localisation and functional role of P-gp, the mechanism of drug efflux and drug-herb interactions. PMID:21417789

Kumar, Yamsani Shravan; Adukondalu, Devandla; Sathish, Dharani; Vishnu, Yamsani Vamshi; Ramesh, Gannu; Latha, Athukuri Bharagavi; Reddy, Palem Chinna; Sarangapani, Manda; Rao, Yamsani Madhusudan

2010-01-01

34

Differential Involvement of P-Glycoprotein (ABCB1) in Permeability, Tissue Distribution, and Antinociceptive Activity of Methadone, Buprenorphine, and Diprenorphine: In Vitro and In Vivo Evaluation  

PubMed Central

Conclusions based on either in vitro or in vivo approach to evaluate the P-gp affinity status of opioids may be misleading. For example, in vitro studies indicated that fentanyl is a P-gp inhibitor while in vivo studies indicated that it is a P-gp substrate. Quite the opposite was evident for meperidine. The objective of this study was to evaluate the P-gp affinity status of methadone, buprenorphine and diprenorphine to predict P-gp-mediated drug-drug interactions and to determine a better candidate for management of opioid dependence. Two in vitro (P-gp ATPase and monolayer efflux) assays and two in vivo (tissue distribution and antinociceptive evaluation in mdr1a/b (?/?) mice) assays were used. Methadone stimulated the P-gp ATPase activity only at higher concentrations, while verapamil and GF120918 inhibited its efflux (p <0.05). The brain distribution and antinociceptive activity of methadone were enhanced (p <0.05) in P-gp knockout mice. Conversely, buprenorphine and diprenorphine were negative in all assays. P-gp can affect the PK/PD of methadone, but not buprenorphine or diprenorphine. Our report is in favor of buprenorphine over methadone for management of opioid dependence. Buprenorphine most likely is not a P-gp substrate and concerns regarding P-gp-mediated drug-drug interaction are not expected. PMID:19370547

HASSAN, HAZEM E.; MYERS, ALAN L.; COOP, ANDREW; EDDINGTON, NATALIE D.

2012-01-01

35

Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein.  

PubMed

The human multidrug resistance P-glycoprotein (P-gp) uses ATP to transport a wide variety of structurally unrelated cytotoxic compounds out of the cell. The relatively high expression of P-gp in organs such as the intestine, kidney, blood-brain/testes barrier and in some tumor cells can compromise chemotherapy treatments for patients with cancer or AIDS/HIV. It has been difficult to inhibit P-gp during chemotherapy with noncovalent inhibitors because the relatively high levels of inhibitors have severe side effects. An alternative approach to inhibit P-gp would be to covalently modify cysteine residues within the NBDs. In this study, we tested whether metabolites of disulfiram, a drug currently used to treat chronic alcoholism, could inhibit P-gp. We show that the disulfiram metabolites, S-methyl N,N-diethylthiocarbamate sulfoxide and S-methyl N,N-diethylthiocarbamate sulfone inhibited the verapamil-stimulated ATPase activity of P-gp with IC50 values (concentrations that result in 50% inhibition of activity) of 9 and 4.8 microM, respectively. Similarly, S-methyl N,N-diethylthiocarbamate sulfoxide and S-methyl N,N-diethylthiocarbamate sulfone inhibited the activity of aldehyde dehydrogenase with IC50 values of 3.2 and 1.7 microM, respectively. Inhibition of P-gp by the metabolites was not reversed by addition of the reducing compound, dithiothreitol. We then determined which endogenous cysteine residue was responsible for inhibiting P-gp activity after exposure to the disulfiram metabolites. Treatment of P-gp mutants containing a single cysteine residue showed that inactivation was primarily due to modification of Cys1074 in NBD2. These results indicate that metabolites of disulfiram can covalently inactivate P-gp. Covalent modification of drug transporters could be a useful approach for inhibiting their activities during chemotherapy. PMID:16028354

Loo, Tip W; Bartlett, M Claire; Clarke, David M

2004-01-01

36

Drug-stimulated ATPase activity of human P-glycoprotein is blocked by disulfide cross-linking between the nucleotide-binding sites.  

PubMed

P-glycoprotein (P-gp) is an ATP-dependent drug pump that contains two nucleotide-binding domains (NBDs). Disulfide cross-linking analysis was done to determine if the two NBDs are close to each other. Residues within or close to the Walker A (GNSGCGKS in NDB1 and GSSGCGKS in NBD2) sequences for nucleotide binding were replaced with cysteine, and the mutant P-gps were subjected to oxidative cross-linking. Cross-linking was detected in two mutants, G427C(NBD1)/Cys-1074(NBD2) and L439C(NBD1)/Cys-1074(NBD2), because the cross-linked proteins migrated slower in SDS gels. Mutants G427C(NBD1)/Cys-1074(NBD2) and L439C(NBD1)/Cys-1074(NBD2) retained 10% and 82%, respectively, of the drug-stimulated ATPase activity relative to that of Cys-less P-gp. The cross-linking properties of the more active mutant L439C(NBD1)/Cys-1074(NBD2) were then studied. Cross-linking was reversed by addition of dithiothreitol and could be prevented by pretreatment of the mutant with N-ethylmaleimide. Cross-linking was also inhibited by MgATP, but not by the verapamil. Oxidative cross-linking of mutant L439C(NBD1)/Cys-1074(NBD2) resulted in almost complete inhibition of drug-stimulated ATPase activity. More than 60% of the drug-stimulated ATPase activity, however, was recovered after treatment with dithiothreitol. The results indicate that the two predicted nucleotide-binding sites are close to each other and that cross-linking inhibits ATP hydrolysis. PMID:10806188

Loo, T W; Clarke, D M

2000-06-30

37

Role of P-Glycoprotein on the Brain Penetration and Brain Pharmacodynamic Activity of the MEK Inhibitor Cobimetinib.  

PubMed

Cobimetinib is a MEK inhibitor currently in clinical trials as an anticancer agent. The objectives of this study were to determine in vitro and in vivo if cobimetinib is a substrate of P-glycoprotein (P-gp) and/or breast cancer resistance protein (Bcrp1) and to assess the implications of efflux on cobimetinib pharmacokinetics (PK), brain penetration, and target modulation. Cell lines transfected with P-gp or Bcrp1 established that cobimetinib was a substrate of P-gp but not a substrate of Bcrp1. In vivo, after intravenous and oral administration of cobimetinib to FVB (wild-type; WT), Mdr1a/b(-/-), Bcrp1 (-/-), and Mdr1a/b(-/-)/Bcrp(-/-) knockout (KO) mice, clearance was similar in WT (35.5 ± 16.7 mL/min/kg) and KO animals (22.0 ± 3.6 to 27.6 ± 5.2 mL/min/kg); oral exposure was also similar between WT and KO animals. After an oral 10 mg/kg dose of cobimetinib, the mean total brain to plasma ratio (Kp) at 6 h postdose was 0.3 and 0.2 in WT and Bcrp1(-/-) mice, respectively. In Mdr1a/b(-/-) and Mdr1a/1b/Bcrp1(-/-) KO mice and WT mice treated with elacridar (a P-gp and BCRP inhibitor), Kp increased to 11, 6, and 7, respectively. Increased brain exposure in Mdr1a/b(-/-) and Mdr1a/1b/Bcrp1(-/-) KO and elacridar treated mice was accompanied by up to ?65% suppression of the target (pErk) in brain tissue, compared to WT mice. By MALDI imaging, the cobimetinib signal intensity was relatively high and was dispersed throughout the brain of Mdr1a/1b/Bcrp1(-/-) KO mice compared to low/undetectable signal intensity in WT mice. The efflux of cobimetinib by P-gp may have implications for the treatment of patients with brain tumors/metastases. PMID:25243894

Choo, Edna F; Ly, Justin; Chan, Jocelyn; Shahidi-Latham, Sheerin K; Messick, Kirsten; Plise, Emile; Quiason, Cristine M; Yang, Lulu

2014-11-01

38

A Role for P-Glycoprotein in Environmental Toxicology  

Microsoft Academic Search

P-Glycoprotein (P-gp) is a transmembrane protein, playing significant roles in the process of drug discovery and development and in pest resistance to pesticides. P-gp affects absorption, disposition, and elimination of different compounds and is mainly expressed in intestines, liver, kidneys, heart, colon, and placenta. The expression of P-gp in the blood-brain barrier (BBB) has been associated with the restricted access

Aqel Abu-Qare; Eman Elmasry; Mohamed Abou-Donia

2003-01-01

39

Epstein-Barr virus-negative aggressive natural killer-cell leukaemia with high P-glycoprotein activity and phosphorylated extracellular signal-regulated protein kinases 1 and 2  

PubMed Central

Aggressive natural killer-cell leukaemia (ANKL) is a rare type of disease with fulminant course and poor outcome. The disease is more prevalent among Asians than in other ethnic groups and shows strong association with Epstein-Barr virus (EBV) and P-glycoprotein (P-gp) expression associated with multidrug resistance. Here we present a case of a 47 year old Caucasian female with a prior medical history of azathioprine treated ulcerative colitis who developed EBV-negative form of ANKL. The patient presented with hepatosplenomegaly, fever and nausea with peripheral blood and bone marrow infiltration with up to 70% of atypical lymphoid cells positive for cCD3, CD2, CD7, CD56, CD38, CD45, TIA1 and granzyme B, and negative for sCD3, CD4, CD5, CD8, CD34 and CD123 indicative of ANKL. Neoplastic CD56+ NK-cells showed high level of P-glycoprotein expression and activity, but also strong expression of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) MAP kinase. The patient was treated with an intensive polychemotherapy regimen designed for treatment of acute lymphoblastic leukaemia, but one month after admission developed sepsis, coma and died of cardiorespiratory arrest. We present additional evidence that, except for the immunophenotype, leukaemic NK-cells resemble normal NK-cells in terms of P-gp functional capacity and expression of phosphorylated ERK1/2 signalling molecule. In that sense drugs that block P-glycoprotein activity and activated signalling pathways might represent new means for targeted therapy. PMID:23087805

Perkovic, Sanja; Basic-Kinda, Sandra; Gasparovic, Vladimir; Krznaric, Zeljko; Babel, Jaksa; Ilic, Ivana; Aurer, Igor; Batinic, Drago

2012-01-01

40

Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae.  

PubMed

Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P-glycoprotein in the Ae.?aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P-gps. The basal ATPase activity of ATP-binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae.?aegypti P-gp (AaegP-gp) gene expression was detected in temephos-treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP-gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)-mediated silencing of the AaegP-gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide-induced P-gp expression can be involved in the modulation of insecticide efflux. PMID:23980723

Figueira-Mansur, J; Ferreira-Pereira, A; Mansur, J F; Franco, T A; Alvarenga, E S L; Sorgine, M H F; Neves, B C; Melo, A C A; Leal, W S; Masuda, H; Moreira, M F

2013-12-01

41

Grape Seed Procyanidin Reversal of P-glycoprotein Associated Multi-Drug Resistance via Down-regulation of NF-?B and MAPK/ERK Mediated YB-1 Activity in A2780/T Cells  

PubMed Central

The expression and function of P-glycoprotein (P-gp) is associated with the phenotype of multi-drug resistance (MDR), leading chemotherapy failure of patients suffered with cancer. Grape seed procyanidin(GSP) is a natural polyphenol supplement with anti-inflammatory effect. Present study assessed a new use of GSP on the MDR reversal activity and its possible molecular mechanisms in MDR1-overpressing paclitaxel resistant ovarian cancer cells. Our results showed GSP significantly enhanced the cytotoxicity of paclitaxel and adriamycin in paclitaxel resistant A2780/T cells but its parental A2780 cells. Furthermore, GSP strongly inhibited P-gp expression by blocking MDR1 gene transcription, as well as, increased the intracellular accumulation of the P-gp substrate rhodamine-123 in A2780/T cells. Nuclear factor-?B(NF-?B) activity, I?B degradation level and NF-?B/p65 nuclear translocation induced by lipopolysaccharide (LPS) and receptor activator for nuclear factor-?B ligand (RANKL) were markedly inhibited by pre-treatment with GSP. Meanwhile, GSP inhibited MAPK/ERK pathway by decreasing the phosphorylation of ERK1/2, resulting in reduced the Y-box binding protein 1 (YB-1) activation with blocking its nuclear translocation. Moreover, the up-regulation of P-gp expression, the activation of AKT/NF-?B and MAPK/ERK pathway induced by LPS was attenuated by GSP administration. Compared with PDTC and U1026, inhibitor of NF-?B and MAPK/ERK respectively, GSP showed the same tendency of down-regulating NF-?B and MAPK/ERK mediated YB-1 activities. Thus, GSP reverses P-gp associated MDR by inhibiting the function and expression of P-gp through down-regulation of NF-?B activity and MAPK/ERK pathway mediated YB-1 nuclear translocation, offering insight into the mechanism of reversing MDR by natural polyphenol supplement compounds. GSP could be a new potential MDR reversal agent used for combination therapy with chemotherapeutics in clinic. PMID:23967153

Wang, Sheng-qi; Duan, Lian; Huo, Qi-lu; Ren, Fei; Li, Guo-feng

2013-01-01

42

Oxycodone Induces Overexpression of P-Glycoprotein (ABCB1) and Affects Paclitaxel's Tissue Distribution in Sprague Dawley Rats  

PubMed Central

Previous studies suggest that P-glycoprotein (P-gp) modulates the PK/PD of many compounds including opioid agonists and chemotherapeutic agents. The objective of this study was to assess the P-gp affinity status of oxycodone, the P-gp expression, and the paclitaxel’s tissue distribution in oxycodone-treated rats. P-gp ATPase assay, Caco-2 transepithelial permeability studies, and mdr1a/b (?/?) mice were used to assess the P-gp affinity status of oxycodone. P-gp expression was determined by Western blot analysis while [14C] paclitaxel’s distributions in the liver, kidney, brain, and plasma tissues were determined by liquid scintillation counter. Oxycodone stimulated the P-gp ATPase activity in a concentration-dependant manner. The Caco-2 secretory transport of oxycodone was reduced from 3.64 ×10?5 to 1.96 × 10?5 cm/s (p <0.05) upon preincubation with the P-gp inhibitor, verapamil. The brain levels of oxycodone in mdr1a/b (+/+) were not detectable (<15 ng/mL) while in mdr1a/b (?/?) the average levels were 115 ± 39 ng/mL. The P-gp protein levels were increased by 1.3–4.0 folds while paclitaxel’s tissue distributions were decreased by 38–90% (p <0.05) in oxycodone-treated rats. These findings display that oxycodone is a P-gp substrate, induces overexpression of P-gp, and affects paclitaxel’s tissue distribution in a manner that may influence its chemotherapeutic activity. PMID:17593551

HASSAN, HAZEM E.; MYERS, ALAN L.; LEE, INSONG J.; COOP, ANDREW; EDDINGTON, NATALIE D.

2012-01-01

43

Sav1866 from Staphylococcus aureus and P-glycoprotein: similarities and differences in ATPase activity assessed with detergents as allocrites.  

PubMed

The ATP-binding cassette exporters Sav1866 from Staphylococcus aureus and P-glycoprotein are known to share a certain sequence similarity and disposition for cationic allocrites. Conversely, the two ATPases react very differently to neutral detergents that have previously been shown to be inhibitory allocrites for P-glycoprotein. To gain insight into the functional differences of the two proteins, we compared their basal and detergent-stimulated ATPase activity. P-Glycoprotein was investigated in NIH-MDR1-G185 plasma membrane vesicles and Sav1866 in lipid vesicles exhibiting a membrane packing density and a surface potential similar to those of the plasma membrane vesicles. Under basal conditions, Sav1866 revealed a lower catalytic efficiency and concomitantly a more pronounced sodium chloride and pH dependence than P-glycoprotein. As expected, the cationic allocrites (alkyltrimethylammonium chlorides) induced similar bell-shaped activity curves as a function of concentration for both exporters, suggesting stimulation upon binding of the first and inhibition upon binding of the second allocrite molecule. However, the neutral allocrites (n-alkyl-?-d-maltosides and n-ethylene glycol monododecyl ethers) reduced P-glycoprotein's ATPase activity at concentrations well below their critical micelle concentration (CMC) but strongly enhanced Sav1866's ATPase activity even at concentrations above their CMC. The lack of ATPase inhibition at high concentrations of neutral of detergents could be explained by their comparatively low binding affinity for the transmembrane domains of Sav1866, which seems to prevent binding of a second inhibitory molecule. The high ATPase activity in the presence of hydrophobic, long chain detergents moreover revealed that Sav1866, despite its lower basal catalytic efficiency, is a more efficient floppase for lipidlike amphiphiles than P-glycoprotein. PMID:23600489

Beck, Andreas; Aänismaa, Päivi; Li-Blatter, Xiaochun; Dawson, Roger; Locher, Kaspar; Seelig, Anna

2013-05-14

44

Fitting the Elementary Rate Constants of the P-gp Transporter Network in the hMDR1-MDCK Confluent Cell Monolayer Using a Particle Swarm Algorithm  

PubMed Central

P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3?1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane. PMID:22028772

Agnani, Deep; Acharya, Poulomi; Martinez, Esteban; Tran, Thuy Thanh; Abraham, Feby; Tobin, Frank; Ellens, Harma; Bentz, Joe

2011-01-01

45

Biochemical interaction of anti-HCV telaprevir with the ABC transporters P-glycoprotein and breast cancer resistance protein  

PubMed Central

Background The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp)/ABCB1 and breast cancer resistance protein (BCRP)/ABCG2 are involved in the intestinal absorption and renal excretion of various substrate drugs. Their activities affect sub-therapeutic drug concentrations and excretion of natural transporter substrates. The new oral anti-HCV drug telaprevir has dramatically improved the efficacy of hepatitis-C virus (HCV) treatment, and recent studies have suggested a possible pharmacological interaction between telaprevir and P-gp. We studied the kinetics of in vitro interactions between telaprevir and P-gp and BCRP to understand the molecular basis of that interaction. Findings The effect of telaprevir on P-gp- and BCRP-mediated transport was evaluated by an in vitro vesicle transporter assay using different transport substrates, and the kinetics of transporter inhibition was determined. The results showed that telaprevir could inhibit P-gp- and BCRP-mediated transport in the in vitro vesicle transport assay, with each IC50 values of???7 ?mol/L and???30 ?mol/L, respectively. Analyses of Lineweaver–Burk plots showed that telaprevir was likely to be a competitive inhibitor against P-gp and BCRP. Photoaffinity labeling experiments were employed to observe competitive inhibition by telaprevir using iodoarylazidoprazosin (IAAP) as a binding substrate for P-gp and BCRP. These experiments revealed that telaprevir inhibited [125I]-IAAP-binding with P-gp and BCRP. Conclusion Telaprevir competitively inhibited P-gp and BCRP, and P-gp-mediated transport was more sensitive to telaprevir compared with BCRP-mediated transport. These data suggest that telaprevir represses the transporter functions of P-gp and BCRP via direct inhibition. PMID:24196382

2013-01-01

46

Inhibition of the Multidrug Resistance P-Glycoprotein: Time for a Change of Strategy?  

PubMed Central

P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to “block” P-gp–mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application. PMID:24492893

Luk, Frederick; Bebawy, Mary

2014-01-01

47

P-glycoprotein expression in Perna viridis after exposure to Prorocentrum lima, a dinoflagellate producing DSP toxins.  

PubMed

Bivalves naturally exposed to toxic algae have mechanisms to prevent from harmful effects of diarrhetic shellfish poisoning (DSP) toxins. However, quite few studies have examined the mechanisms associated, and the information currently available is still insufficient. Multixenobiotic resistance (MXR) is ubiquitous in aquatic invertebrates and plays an important role in defense against xenobiotics. Here, to explore the roles of P-glycoprotein (P-gp) in the DSP toxins resistance in shellfish, complete cDNA of P-gp gene in the mussel Perna viridis was cloned and analyzed. The accumulation of okadaic acid (OA), a main component of DSP toxins, MXR activity and expression of P-gp in gills of P. viridis were detected after exposure to Prorocentrum lima, a dinoflagellate producing DSP toxins in the presence or absence of P-gp inhibitors PGP-4008, verapamil (VER) and cyclosporin A (CsA). The mussel P. viridis P-gp closely matches MDR/P-gp/ABCB protein from various organisms, having a typical sequence organization as full transporters from the ABCB family. After exposure to P. lima, OA accumulation, MXR activity and P-gp expression significantly increased in gills of P. viridis. The addition of P-gp-specific inhibitors PGP-4008 and VER decreased MXR activity induced by P. lima, but had no effect on the OA accumulation in gills of P. viridis. However, CsA, a broad-spectrum inhibitor of ABC transporter not only decreased MXR activity, but also increased OA accumulation in gills of P. viridis. Together with the ubiquitous presence of other ABC transporters such as MRP/ABCC in bivalves and potential compensatory mechanism in P-gp and MRP-mediated resistance, we speculated that besides P-gp, other ABC transporters, especially MRP might be involved in the resistance mechanisms to DSP toxins. PMID:24811006

Huang, Lu; Wang, Jie; Chen, Wen-Chang; Li, Hong-Ye; Liu, Jie-Sheng; Tao Jiang; Yang, Wei-Dong

2014-08-01

48

Equivalent death of P-glycoprotein expressing and nonexpressing cells induced by the protein kinase C inhibitor staurosporine.  

PubMed

P-glycoprotein (P-gp) is an ATP-dependent drug pump that confers multidrug resistance. In addition to its ability to efflux toxins P-gp can also inhibit apoptosis induced by a wide array of cell death stimuli that rely on activation of intracellular caspases for full function. We have previously demonstrated that stimuli including drugs such as hexamethylene bisacetamide (HMBA), the cytotoxic lymphocyte granule protein granzyme B, and pore-forming proteins such as perforin, kill P-gp positive cells in a caspase-independent manner. We therefore hypothesised that drugs that are not effluxed by P-gp and which induce cell death in the absence of caspase activation could induce death of P-gp expressing cells. Staurosporine has been previously shown to kill cells in the absence of caspase activation. Consistent with our hypothesis, we demonstrate here that staurosporine can equivalently kill P-gp(+ve) and P-gp(-ve) tumor cell lines in a caspase-independent manner. PMID:11006111

Tainton, K M; Ruefli, A A; Smyth, M J; Johnstone, R W

2000-09-16

49

Trametenolic acid B reverses multidrug resistance in breast cancer cells through regulating the expression level of P-glycoprotein.  

PubMed

Trametenolic acid B (TAB) is the main active composition of Trametes lactinea (Berk.) Pat which possesses antitumor activities. There was no report its antitumor effect through regulating P-glycoprotein (P-gp) so far, due toP-gp over expression is one of the most important mechanisms contributing to the multiple drug resistance phenotype. The present aim was to investigate the effects of TAB on P-gp in multidrug-resistant cells;Paclitaxel-resistant cell line MDA-MB-231/Taxol was established by stepwise exposure for 10 months.MDA-MB-231 cells and MDA-MB-231/Taxol cells were treated with TAB, and their growth was evaluated using MTT assays. Paclitaxel accumulation in the cells was analyzed by high performance liquid chromatogram(HPLC). The activity of P-gp was detected by intracellular accumulation of rhodamine 123 (Rho123), and the protein expression of P-gp was evaluated using western blot. Results indicated that the IC50 of MDA-MB-231/Taxol to paclitaxel (Taxol) was 33 times higher than that of nature MDA-MB-231. TAB increased the intracellular concentration of Taxol and inhibited the activity of P-gp and suppressed the expression of P-gp in MDA-MB-231/Taxol cells. Our present results showed that TAB could reverse Taxol resistance in MDA-MB-231/Taxol cells,mainly inhibiting the activity of P-gp and down-regulating the expression level of P-gp, and then enhancing the accumulation of chemotherapy agents. PMID:25289403

Zhang, Qiaoyin; Wang, Junzhi; He, Haibo; Liu, Hongbing; Yan, Ximing; Zou, Kun

2014-07-01

50

Reaction dynamics of ATP hydrolysis catalyzed by P-glycoprotein.  

PubMed

P-glycoprotein (P-gp) is a member of the ABC transporter family that confers drug resistance to many tumors by catalyzing their efflux, and it is a major component of drug-drug interactions. P-gp couples drug efflux with ATP hydrolysis by coordinating conformational changes in the drug binding sites with the hydrolysis of ATP and release of ADP. To understand the relative rates of the chemical step for hydrolysis and the conformational changes that follow it, we exploited isotope exchange methods to determine the extent to which the ATP hydrolysis step is reversible. With ?(18)O4-labeled ATP, no positional isotope exchange is detectable at the bridging ?-phosphorus-O-?-phosphorus bond. Furthermore, the phosphate derived from hydrolysis includes a constant ratio of three (18)O/two (18)O/one (18)O that reflects the isotopic composition of the starting ATP in multiple experiments. Thus, H2O-exchange with HPO4(2-) (Pi) was negligible, suggesting that a [P-gp·ADP·Pi] is not long-lived. This further demonstrates that the hydrolysis is essentially irreversible in the active site. These mechanistic details of ATP hydrolysis are consistent with a very fast conformational change immediately following, or concomitant with, hydrolysis of the ?-phosphate linkage that ensures a high commitment to catalysis in both drug-free and drug-bound states. PMID:24506763

Scian, Michele; Acchione, Mauro; Li, Mavis; Atkins, William M

2014-02-18

51

Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding  

SciTech Connect

P-glycoprotein (P-gp) detoxifies cells by exporting hundreds of chemically unrelated toxins but has been implicated in multidrug resistance (MDR) in the treatment of cancers. Substrate promiscuity is a hallmark of P-gp activity, thus a structural description of poly-specific drug-binding is important for the rational design of anticancer drugs and MDR inhibitors. The x-ray structure of apo P-gp at 3.8 angstroms reveals an internal cavity of -6000 angstroms cubed with a 30 angstrom separation of the two nucleotide-binding domains. Two additional P-gp structures with cyclic peptide inhibitors demonstrate distinct drug-binding sites in the internal cavity capable of stereoselectivity that is based on hydrophobic and aromatic interactions. Apo and drug-bound P-gp structures have portals open to the cytoplasm and the inner leaflet of the lipid bilayer for drug entry. The inward-facing conformation represents an initial stage of the transport cycle that is competent for drug binding.

Aller, Stephen G.; Yu, Jodie; Ward, Andrew; Weng, Yue; Chittaboina, Srinivas; Zhuo, Rupeng; Harrell, Patina M.; Trinh, Yenphuong T.; Zhang, Qinghai; Urbatsch, Ina L.; Chang, Geoffrey; (Scripps); (TTU)

2009-04-22

52

Interaction of Verapamil with Lipid Membranes and P-Glycoprotein: Connecting Thermodynamics and Membrane Structure with Functional Activity  

PubMed Central

Verapamil and amlodipine are calcium ion influx inhibitors of wide clinical use. They are partially charged at neutral pH and exhibit amphiphilic properties. The noncharged species can easily cross the lipid membrane. We have measured with solid-state NMR the structural changes induced by verapamil upon incorporation into phospholipid bilayers and have compared them with earlier data on amlodipine and nimodipine. Verapamil and amlodipine produce a rotation of the phosphocholine headgroup away from the membrane surface and a disordering of the fatty acid chains. We have determined the thermodynamics of verapamil partitioning into neutral and negatively charged membranes with isothermal titration calorimetry. Verapamil undergoes a pK-shift of ?pKa = 1.2 units in neutral lipid membranes and the percentage of the noncharged species increases from 5% to 45%. Verapamil partitioning is increased for negatively charged membranes and the binding isotherms are strongly affected by the salt concentration. The electrostatic screening can be explained with the Gouy-Chapman theory. Using a functional phosphate assay we have measured the affinity of verapamil, amlodipine, and nimodipine for P-glycoprotein, and have calculated the free energy of drug binding from the aqueous phase to the active center of P-glycoprotein in the lipid phase. By combining the latter results with the lipid partitioning data it was possible, for the first time, to determine the true affinity of the three drugs for the P-glycoprotein active center if the reaction takes place exclusively in the lipid matrix. PMID:16877510

Meier, M.; Blatter, X. Li; Seelig, A.; Seelig, J.

2006-01-01

53

Modulation of P-glycoprotein activity in Calu-3 cells using steroids and ?-ligands  

E-print Network

in the uterus during pregnancy (Arceci et al., 1990). On the other hand, dexamethasone modulation of Pgp expression appears to be tissue specific (Sérée et al., 1998; Demeule et al., 1999). In contrast, there are few reports in the literature.... Pharm. Sci. Gruol, D.J. and Bourgeois, S., 1997. Chemosensitizing steroids: glucocorticoid receptor agonists capable of inhibiting P-glycoprotein function. Cancer Res., 54:720-727. Gruol, D.J., Bourgeois, S., 1994. Expression of the mdr1 P...

Hamilton, Karen O.; Yazdanian, Mehran; Audus, Kenneth L.

2001-01-01

54

Spinosad is a potent inhibitor of canine P-glycoprotein.  

PubMed

Inhibition of the drug transporter P-glycoprotein (P-gp) by the oral flea preventative spinosad has been suggested as the underlying cause of the drug-drug interaction with ivermectin. In this study, an in vitro model consisting of canine cells was validated to describe the inhibitory effect of drugs on canine P-gp. In this model, ivermectin, cyclosporin, verapamil, loperamide and ketoconazole inhibited P-gp function with IC50 values ranging from 0.1 to 3.7 ?mol/L. Spinosad was a potent inhibitor of canine P-gp with an IC50 value of 0.27 ?mol/L or 0.2 ?g/mL. The risk of spinosad causing P-gp related drug-drug interactions in the dog could be predicted by the IC50 value, the oral dosage and plasma concentrations. PMID:24582422

Schrickx, Johannes A

2014-04-01

55

Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain.  

PubMed

P-glycoprotein (P-gp) is one of the best-known mediators of drug efflux-based multidrug resistance in many cancers. This validated therapeutic target is a prototypic, plasma membrane resident ATP-Binding Cassette transporter that pumps xenobiotic compounds out of cells. The large, polyspecific drug-binding pocket of P-gp recognizes a variety of structurally unrelated compounds. The transport of these drugs across the membrane is coincident with changes in the size and shape of this pocket during the course of the transport cycle. Here, we present the crystal structures of three inward-facing conformations of mouse P-gp derived from two different crystal forms. One structure has a nanobody bound to the C-terminal side of the first nucleotide-binding domain. This nanobody strongly inhibits the ATP hydrolysis activity of mouse P-gp by hindering the formation of a dimeric complex between the ATP-binding domains, which is essential for nucleotide hydrolysis. Together, these inward-facing conformational snapshots of P-gp demonstrate a range of flexibility exhibited by this transporter, which is likely an essential feature for the binding and transport of large, diverse substrates. The nanobody-bound structure also reveals a unique epitope on P-gp. PMID:23901103

Ward, Andrew B; Szewczyk, Paul; Grimard, Vinciane; Lee, Chang-Wook; Martinez, Lorena; Doshi, Rupak; Caya, Alexandra; Villaluz, Mark; Pardon, Els; Cregger, Cristina; Swartz, Douglas J; Falson, Pierre Guy; Urbatsch, Ina L; Govaerts, Cedric; Steyaert, Jan; Chang, Geoffrey

2013-08-13

56

Acetaminophen Modulates P-Glycoprotein Functional Expression at the Blood-Brain Barrier by a Constitutive Androstane Receptor-Dependent Mechanism  

PubMed Central

Effective pharmacologic treatment of pain with opioids requires that these drugs attain efficacious concentrations in the central nervous system (CNS). A primary determinant of CNS drug permeation is P-glycoprotein (P-gp), an endogenous blood-brain barrier (BBB) efflux transporter that is involved in brain-to-blood transport of opioid analgesics (i.e., morphine). Recently, the nuclear receptor constitutive androstane receptor (CAR) has been identified as a regulator of P-gp functional expression at the BBB. This is critical to pharmacotherapy of pain/inflammation, as patients are often administered acetaminophen (APAP), a CAR-activating ligand, in conjunction with an opioid. Our objective was to investigate, in vivo, the role of CAR in regulation of P-gp at the BBB. Following APAP treatment, P-gp protein expression was increased up to 1.4–1.6-fold in a concentration-dependent manner. Additionally, APAP increased P-gp transport of BODIPY-verapamil in freshly isolated rat brain capillaries. This APAP-induced increase in P-gp expression and activity was attenuated in the presence of CAR pathway inhibitor okadaic acid or transcriptional inhibitor actinomycin D, suggesting P-gp regulation is CAR-dependent. Furthermore, morphine brain accumulation was enhanced by P-gp inhibitors in APAP-treated animals, suggesting P-gp–mediated transport. A warm-water (50°C) tail-flick assay revealed a significant decrease in morphine analgesia in animals treated with morphine 3 or 6 hours after APAP treatment, as compared with animals treated concurrently. Taken together, our data imply that inclusion of APAP in a pain treatment regimen activates CAR at the BBB and increases P-gp functional expression, a clinically significant drug-drug interaction that modulates opioid analgesic efficacy. PMID:24019224

Thompson, Brandon J.; Sanchez-Covarrubias, Lucy; Zhang, Yifeng; Laracuente, Mei-Li; Vanderah, Todd W.; Ronaldson, Patrick T.; Davis, Thomas P.

2013-01-01

57

Interaction of digitalis-like compounds with p-glycoprotein.  

PubMed

Digitalis-like compounds (DLCs), or cardiac glycosides, are produced and sequestered by certain plants and animals as a protective mechanism against herbivores or predators. Currently, the DLCs digoxin and digitoxin are used in the treatment of cardiac congestion and some types of cardiac arrhythmia, despite a very narrow therapeutic index. P-glycoprotein (P-gp; ABCB1) is the only known ATP-dependent efflux transporter that handles digoxin as a substrate. Ten alanine mutants of human P-gp drug-binding amino acids-Leu(65), Ile(306), Phe(336), Ile(340), Phe(343), Phe(728), Phe(942), Thr(945), Leu(975), and Val(982)-were generated and expressed in HEK293 cells with a mammalian baculovirus system. The uptake of [(3)H]-N-methyl-quinidine (NMQ), the P-gp substrate in vesicular transport assays, was determined. The mutations I306A, F343A, F728A, T945A, and L975A abolished NMQ transport activity of P-gp. For the other mutants, the apparent affinities for six DLCs (cymarin, digitoxin, digoxin, peruvoside, proscillaridin A, and strophanthidol) were determined. The affinities of digoxin, proscillaridin A, peruvoside, and cymarin for mutants F336A and I340A were decreased two- to fourfold compared with wild type, whereas that of digitoxin and strophanthidol did not change. In addition, the presence of a hydroxyl group at position 12? seems to reduce the apparent affinity when the side chain of Phe(336) and Phe(942) is absent. Our results showed that a ?-lactone ring and a sugar moiety at 3? of the steroid body are favorable for DLC binding to P-gp. Moreover, DLC inhibition is increased by hydroxyl groups at positions 5? and 19, whereas inhibition is decreased by those at positions 1?, 11?, 12?, and 16?. The understanding of the P-gp-DLC interaction improves our insight into DLCs toxicity and might enhance the replacement of digoxin with other DLCs that have less adverse drug effects. PMID:23104431

Gozalpour, Elnaz; Wittgen, Hanneke G M; van den Heuvel, Jeroen J M W; Greupink, Rick; Russel, Frans G M; Koenderink, Jan B

2013-02-01

58

Marine Natural Products with P-Glycoprotein Inhibitor Properties  

PubMed Central

P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters. PMID:24451193

Lopez, Dioxelis; Martinez-Luis, Sergio

2014-01-01

59

Edoxaban transport via P-glycoprotein is a key factor for the drug's disposition.  

PubMed

Edoxaban (the free base of DU-176b), an oral direct factor Xa inhibitor, is mainly excreted unchanged into urine and feces. Because active membrane transport processes such as active renal secretion, biliary excretion, and/or intestinal secretion, and the incomplete absorption of edoxaban after oral administration have been observed, the involvement of drug transporters in the disposition of edoxaban was investigated. Using a bidirectional transport assay in human colon adenocarcinoma Caco-2 cell monolayers, we observed the vectorial transport of [(14)C]edoxaban, which was completely inhibited by verapamil, a strong P-glycoprotein (P-gp) inhibitor. In an in vivo study, an increased distribution of edoxaban to the brain was observed in Mdr1a/1b knockout mice when compared with wild-type mice, indicating that edoxaban is a substrate for P-gp. However, there have been no observations of significant transport of edoxaban by renal or hepatic uptake transporters, organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)2, or organic anion transporting polypeptide (OATP)1B1. Edoxaban exhibited no remarkable inhibition of OAT1, OAT3, OCT1, OCT2, OATP1B1, OATP1B3, or P-gp up to 30 ?M; therefore, the risk of clinical drug-drug interactions due to any edoxaban-related transporter inhibition seems to be negligible. Our results demonstrate that edoxaban is a substrate of P-gp but not of other major uptake transporters tested. Because metabolism is a minor contributor to the total clearance of edoxaban and strong P-gp inhibitors clearly impact edoxaban transport, the P-gp transport system is a key factor for edoxaban's disposition. PMID:24459178

Mikkaichi, Tsuyoshi; Yoshigae, Yasushi; Masumoto, Hiroshi; Imaoka, Tomoki; Rozehnal, Veronika; Fischer, Thomas; Okudaira, Noriko; Izumi, Takashi

2014-04-01

60

Tetrandrine potentiates the hypoglycemic efficacy of berberine by inhibiting P-glycoprotein function.  

PubMed

This study was designed to improve the absorption and hypoglycemic efficacy of berberine (BBR), which is a substrate of P-glycoprotein (P-gp), by combination with a P-gp inhibitor tetrandrine (Tet). Flow cytometry and LC-MS/MS were used to determine the cellular efflux or retention of chemicals. Pharmacokinetic study was performed in ICR mice following oral administration of the study compounds. The hypoglycemic efficacies of the compounds were evaluated in diabetic KK-Ay mice. In the in vitro experiments, Tet significantly inhibited the efflux and increased the uptake of P-gp substrates rhodamine-123 as well as BBR in MCF7/DOX cells and Caco-2 intestinal cells. Meanwhile, Tet greatly reduced the expression of P-gp in Caco-2 cells. The inhibition of BBR efflux by Tet was translated into improved pharmacokinetics in vivo. When co-administered, Tet dose-dependently increased the average maximum concentration (C(max)) and area under concentration-time curve (AUC????) of BBR in mice. Tet itself had no impact on glucose metabolism. However, it greatly potentiated the hypoglycemic efficacy of BBR in diabetic KK-Ay mice. In addition, we found that Tet had moderate inhibitory effect on the catalytic activity of CYP3A4, which played a role in the bio-transformation of BBR, and this may also take part in the improvement of the pharmacokinetics of BBR. In summary, combination with P-gp inhibitors such as Tet can improve the pharmacokinetics and hypoglycemic efficacy of BBR greatly; this implicates a feasible strategy for exploring the therapeutic effects of BBR and other pharmaceuticals which are substrates of P-gp. PMID:23924821

Shan, Yong-Qiang; Zhu, Yan-Ping; Pang, Jing; Wang, Yan-Xiang; Song, Dan-Qing; Kong, Wei-Jia; Jiang, Jian-Dong

2013-01-01

61

Fumagillin, a new P-glycoprotein-interfering agent able to modulate moxidectin efflux in rat hepatocytes.  

PubMed

We have tested the ability of two compounds licensed in veterinary medicine: fumagillin and diminazene diaceturate to increase intracellular moxidectin quantity in rat hepatocytes. These compounds significantly increased the quantity of 14C-moxidectin (expressed as area under the time curve concentrations) in cultured rat hepatocytes by 44% and 65% for diminazene and fumagillin treatments respectively. In addition, we have tested these drugs for their interference with P-glycoprotein (P-gp) function in porcine kidney epithelial cells transfected with murine mdr1a (Mdr1a-LLCPK1). We examined the intracellular accumulation of rhodamine 123 (Rho 123) as a functional test to evaluate the effects of these two drugs on P-gp activity. In this model, only fumagillin led to a marked intracellular accumulation of Rho 123. After transforming the data to express the results as a percentage of the accumulation in the presence of the P-gp inhibitor valspodar (VSP), the maximal Rho 123 accumulation was 47% of that with VSP for 100 microm fumagillin. The EC50, the concentration needed to determine 50% of the maximal effect was 34 microm. Fumagillin interacts with P-gp function and appears as a promising compound among registered drugs available, which may optimize the therapeutic use of macrocyclic lactones (MLs). PMID:17083452

Dupuy, J; Lespine, A; Sutra, J F; Alvinerie, M

2006-12-01

62

P-glycoprotein Modulates Morphine Uptake into the CNS: A Role for the Non-steroidal Anti-inflammatory Drug Diclofenac  

PubMed Central

Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP), induced by subcutaneous plantar injection of ?-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp) that is endogenously expressed at the blood-brain barrier (BBB). The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID) that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h), as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction. PMID:24520393

Sanchez-Covarrubias, Lucy; Slosky, Lauren M.; Thompson, Brandon J.; Zhang, Yifeng; Laracuente, Mei-Li; DeMarco, Kristin M.; Ronaldson, Patrick T.; Davis, Thomas P.

2014-01-01

63

Discovery and characterization of OC144-093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance.  

PubMed

OC144-093 is a novel substituted diarylimidazole (Mr 495) generated using the OntoBLOCK system, a solid-phase combinatorial chemistry technology, in combination with high-throughput cell-based screening. OC144-093 reversed multidrug resistance (MDR) to doxorubicin, paclitaxel, and vinblastine in human lymphoma, breast, ovarian, uterine, and colorectal carcinoma cell lines expressing P-glycoprotein (P-gp) with an average EC50 of 0.032 microM. Inhibition of MDR by OC144-093 was reversible, but the effect persisted for at least 12 h after removal of compound from the culture medium. OC144-093 had no effect on the response to cytotoxic agents by cells in vitro lacking P-gp expression or expressing a multidrug resistance-associated protein (MRP-1). OC144-093 was not cytotoxic by itself against 15 normal, nontransformed, or tumor cell lines, regardless of P-gp status, with an average cytostatic IC50 of >60 microM. OC144-093 blocked the binding of [3H]azidopine to P-gp and inhibited P-gp ATPase activity. The compound was >50% p.o. bioavailable in rodents and dogs and did not alter the plasma pharmacokinetics of i.v.-administered paclitaxel. OC144-093 increased the life span of doxorubicin-treated mice engrafted with MDR P388 leukemia cells by >100% and significantly enhanced the in vivo antitumor activity of paclitaxel in MDR human breast and colon carcinoma xenograft models, without a significant increase in doxorubicin or paclitaxel toxicity. The results demonstrate that OC144-093 is an orally active, potent, and nontoxic inhibitor of P-gp-mediated multidrug resistance that exhibits all of the desired properties for treatment of P-gp-mediated MDR, as well as for prevention of MDR prior to selection and/or induction of refractory disease. PMID:10850444

Newman, M J; Rodarte, J C; Benbatoul, K D; Romano, S J; Zhang, C; Krane, S; Moran, E J; Uyeda, R T; Dixon, R; Guns, E S; Mayer, L D

2000-06-01

64

Functional expression of P-glycoprotein in primary cultures of human cytotrophoblasts and BeWo cells  

E-print Network

The objective of this study was to investigate the functional expression of the efflux transporter, P-glycoprotein (P-gp), in primary cultures of human cytotrophoblasts and BeWo cell monolayers. Uptake studies with primary ...

Utoguchi, Naoki; Chandorkar, Gurudatt A.; Avery, Michael; Audus, Kenneth L.

2000-01-01

65

Mitochondrial localization of P-glycoprotein and peptide transporters in corneal epithelial cells -Novel strategies for intracellular drug targeting  

PubMed Central

PURPOSE This study was designed to investigate functional localization of both efflux (P-glycoprotein, P-gp) and influx (peptide) transporters in the mitochondrial membrane of cultured rabbit primary corneal epithelial cells (rPCECs). METHODS Isolation and purification of mitochondria was performed by optimized cell fractionation method. Mitochondrial integrity was measured by JC-1 uptake experiment. The efflux activity of P-gp was assessed by performing in vitro uptake studies on isolated mitochondria with Rhodamine 123 (Rho-123) alone and in the presence of P-gp inhibitors (quinidine and cyclosporine A) using fluorimetry and flow cytometry analysis. Functional activity of peptide transporter was assessed by performing in vitro uptake studies of [3H] Gly-sar on isolated mitochondria in the presence or absence of peptide transporter substrate (Val-Val). Molecular characterization of P-gp and peptide transporter was assessed by western blot and confocal analysis. RESULTS Enhanced JC-1 accumulation in the isolated fraction confirmed mitochondrial membrane integrity. Significantly higher uptake of Rho-123 on isolated mitochondria was observed in the presence of quinidine (75 and 100 ?M) and cyclosporine A (10?M). Significantly lower uptake of [3H] Gly-sar was observed in the presence of val-val due to competitive inhibition of peptide transporter on isolated mitochondria. Western blot and confocal analysis further confirmed the presence of P-gp and peptide transporter on the mitochondrial membrane of rPCECs. CONCLUSIONS The present study demonstrates the functional and molecular characterization of P-gp and peptide transporters in the mitochondrial membranes of rPCECs. This knowledge of mitochondrial existence of P-gp and peptide transporter will aid in the development of subcellular ocular drug delivery strategies. PMID:23116562

Barot, Megha; Gokulgandhi, Mitan R.; Pal, Dhananjay; Mitra, Ashim K.

2012-01-01

66

Multi-drug resistance in a canine lymphoid cell line due to increased P-glycoprotein expression, a potential model for drug-resistant canine lymphoma.  

PubMed

Canine lymphoma is routinely treated with a doxorubicin-based multidrug chemotherapy protocol, and although treatment is initially successful, tumor recurrence is common and associated with therapy resistance. Active efflux of chemotherapeutic agents by transporter proteins of the ATP-Binding Cassette superfamily forms an effective cellular defense mechanism and a high expression of these transporters is frequently observed in chemotherapy-resistant tumors in both humans and dogs. In this study we describe the ABC-transporter expression in a canine lymphoid cell line and a sub-cell line with acquired drug resistance following prolonged exposure to doxorubicin. This sub-cell line was more resistant to doxorubicin and vincristine, but not to prednisolone, and had a highly increased P-glycoprotein (P-gp/abcb1) expression and transport capacity for the P-gp model-substrate rhodamine123. Both resistance to doxorubicin and vincristine, and rhodamine123 transport capacity were fully reversed by the P-gp inhibitor PSC833. No changes were observed in the expression and function of the ABC-transporters MRP-1 and BCRP. It is concluded that GL-40 cells represent a useful model for studying P-gp dependent drug resistance in canine lymphoid neoplasia, and that this model can be used for screening substances as potential P-gp substrates and their capacity to modulate P-gp mediated drug resistance. PMID:24975508

Zandvliet, M; Teske, E; Schrickx, J A

2014-12-01

67

Diurnal variation in P-glycoprotein-mediated transport and cerebrospinal fluid turnover in the brain.  

PubMed

Nearly all bodily processes exhibit circadian rhythmicity. As a consequence, the pharmacokinetic and pharmacodynamic properties of a drug may also vary with time of day. The objective of this study was to investigate diurnal variation in processes that regulate drug concentrations in the brain, focusing on P-glycoprotein (P-gp). This efflux transporter limits the distribution of many drugs in the brain. To this end, the exposure to the P-gp substrate quinidine was determined in the plasma and brain tissue after intravenous administration in rats at six different time points over the 24-h period. Our results indicate that time of administration significantly affects the exposure to quinidine in the brain. Upon inhibition of P-gp, exposure to quinidine in brain tissue is constant over the 24-h period. To gain more insight into processes regulating brain concentrations, we used intracerebral microdialysis to determine the concentration of quinidine in brain extracellular fluid (ECF) and cerebrospinal fluid (CSF) after intravenous administration at two different time points. The data were analyzed by physiologically based pharmacokinetic modeling using NONMEM. The model shows that the variation is due to higher activity of P-gp-mediated transport from the deep brain compartment to the plasma compartment during the active period. Furthermore, the analysis reveals that CSF flux is higher in the resting period compared to the active period. In conclusion, we show that the exposure to a P-gp substrate in the brain depends on time of administration, thereby providing a new strategy for drug targeting to the brain. PMID:24917180

Kervezee, Laura; Hartman, Robin; van den Berg, Dirk-Jan; Shimizu, Shinji; Emoto-Yamamoto, Yumi; Meijer, Johanna H; de Lange, Elizabeth C M

2014-09-01

68

Clin Pharmacol Ther . Author manuscript Donor P-gp polymorphisms strongly influence renal function and graft  

E-print Network

3A and the efflux transporter P-glycoprotein (P-gp; ), bothABCB1 abundantly expressed in the kidney. We retrospectively investigated the role of polymorphisms in , andCYP3A4 CYP3A5 ABCB1 kidney graft-Meiers Estimate ; Kidney ; physiology ; Kidney Function Tests ; Kidney Transplantation ; physiology ; Male

Boyer, Edmond

69

The human multidrug resistance P-glycoprotein is inactive when its maturation is inhibited: potential for a role in cancer chemotherapy  

Microsoft Academic Search

The human multidrug resistance P- glycoprotein (P-gp) contributes to the phenomenon of multidrug resistance during cancer and AIDS chemotherapy. A potential novel strategy to circum- vent the effects of P-gp during chemotherapy is to prevent maturation of P-gp during biosynthesis so that the transporter does not reach the cell surface. Here we report that immature, core-glycosylated P-gp that is prevented

TIP W. LOO; DAVID M. CLARKE

70

P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions.  

EPA Science Inventory

The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

71

P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions  

EPA Science Inventory

The human efflux transporter P-glycoprotein (P-gp, MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

72

Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome of Coptis japonica Makino.  

PubMed

Six protoberberine alkaloids were isolated from the chloroform layer of the rhizome of Coptis japonica Makino (Ranunculaceae). The structures of the isolated compounds were determined to be 6-([1,3]dioxolo[4,5-g]isoquinoline-5-carbonyl)-2,3-dimethoxy-benzoic acid methyl ester (1), oxyberberine (2), 8-oxo-epiberberine (3), 8-oxocoptisine (4), berberine (5) and palmatine (6) by physicochemical and spectroscopic methods. The compound 3 (8-oxo-epiberberine) was first isolated from natural sources. The compounds were tested for cytotoxicity against five tumor cell lines in vitro by SRB method, and also tested for the MDR reversal activities. Compound 4 was of significant P-gp MDR inhibition activity with ED50 value 0.018 microg/mL in MES-SA/DX5 cell and 0.0005 microg/mL in HCT15 cell, respectively. PMID:17024849

Min, Yong Deuk; Yang, Min Cheol; Lee, Kyu Ha; Kim, Kyung Ran; Choi, Sang Un; Lee, Kang Ro

2006-09-01

73

Evaluation of first-pass cytochrome P4503A (CYP3A) and P-glycoprotein activities using felodipine and hesperetin in combination in Wistar rats and everted rat gut sacs in vitro.  

PubMed

The effects of hesperetin on the pharmacokinetics and the role of P-glycoprotein (P-gp) in the transport of felodipine were investigated in rats and in vitro. Felodipine was administered orally (10?mg/kg) without or with hesperetin (25, 50 and 100?mg/kg) to rats for 15 consecutive days. Blood samples were collected at different time intervals on 1(st) day in single dose pharmacokinetic study (SDS) and on 15(th) day in multiple dose pharmacokinetic study (MDS). The area under the plasma concentration-time curve (AUC0-? ) and the peak plasma concentration (Cmax ) of felodipine were dose-dependently increased in SDS and MDS with hesperetin compared to control (?p?P-gp determined using everted rat gut sacs in vitro by incubating felodipine with or without hesperetin and verapamil (typical P-gp and CYP3A4 inhibitor). The in vitro experiments revealed that the verapamil and hesperetin increased the intestinal absorption of felodipine (p?P-gp in the intestine and the liver. PMID:23881850

Sridhar, V; Surya Sandeep, M; Ravindra Babu, P; Naveen Babu, K

2014-05-01

74

Absence of P-glycoprotein transport in the pharmacokinetics and toxicity of the herbicide paraquat.  

PubMed

Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a(-/-)/mdr1b(-/-)) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil-37.0 [95% confidence interval (CI): 33.2-41.4], 46.2 (42.5-50.2), and 34.1 µM (31.2-37.2)-respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice: clearances of 0.47 [95% confidence interval (CI): 0.42-0.52] and 0.78 l/h (0.58-0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50-2.04) and 3.36 liters (2.39-4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and Parkinson disease is not attributed to alterations in paraquat transport. PMID:24297779

Lacher, Sarah E; Gremaud, Julia N; Skagen, Kasse; Steed, Emily; Dalton, Rachel; Sugden, Kent D; Cardozo-Pelaez, Fernando; Sherwin, Catherine M T; Woodahl, Erica L

2014-02-01

75

Effects of the selective bisindolylmaleimide protein kinase C inhibitor GF 109203X on P-glycoprotein-mediated multidrug resistance.  

PubMed Central

Inhibition of protein kinase C (PKC) is discussed as a new approach for overcoming multidrug resistance (MDR) in cancer chemotherapy. For evaluation of this concept we applied the bisindolylmaleimide GF 109203X, which shows a highly selective inhibition of PKC isozymes alpha, beta 1, beta 2, gamma, delta and epsilon in vitro. The efficacy of this compound in modulation of MDR was examined using several P-glycoprotein (P-gp)-overexpressing cell lines including a MDR1-transfected HeLa clone, and was compared with the activities of dexniguldipine-HCI (DNIG) and dexverapamil-HC1 (DVER), both of which essentially act via binding to P-gp. As PKC alpha has been suggested to play a major role in P-gp-mediated MDR, cell lines exhibiting different expression levels of this PKC isozyme were chosen. On crude PKC preparations or in a cellular assay using a cfos(-711)CAT-transfected NIH 3T3 clone, the inhibitory qualities of the bisindolylmaleimide at submicromolar concentrations were demonstrated. At up 1 microM final concentrations of the PKC inhibitor GF 109203X, a concentration at which many PKC isozymes should be blocked substantially, no cytotoxic or MDR-reversing effects whatsoever were seen, as monitored by 72 h tetrazolium-based colorimetric MTT assays or a 90 min rhodamine 123 accumulation assay. Moreover, depletion of PKC alpha by phorbol ester in HeLa-MDR1 transfectants had no influence on rhodamine 123 accumulation after 24 or 48 h. MDR reversal activity of GF 109203X was seen at higher final drug concentrations, however. Remarkably, [3H]vinblastine-sulphate binding competition experiments using P-gp-containing crude membrane preparations demonstrated similar dose dependencies as found for MDR reversion by the three modulators, i.e. decreasing efficacy in the series dexniguldipine-HCl > dexverapamil-HCl > GF 109203X. Similar interaction with the P-gp in the micromolar concentration range was revealed by competition of GF 109203X with photoincorporation of [3H]azidopine into P-gp-containing crude membrane preparations. No significant effect of the PKC inhibitor on MDR1 expression was seen, which was examined by cDNA-PCR. Thus, the bisindolylmaleimide GF 109203X probably influences MDR mostly via direct binding to P-gp. Our work identifies the bisindolylmaleimide GF 109203X as a new type of drug interacting with P-gp directly, but does not support the concept of a major contribution of PKC to a P-gp-associated MDR, at least using the particular cellular model systems and the selective, albeit general, PKC inhibitor GF 109203X. Images Figure 1 Figure 3 Figure 10 PMID:8826855

Gekeler, V.; Boer, R.; Uberall, F.; Ise, W.; Schubert, C.; Utz, I.; Hofmann, J.; Sanders, K. H.; Schachtele, C.; Klemm, K.; Grunicke, H.

1996-01-01

76

10.1177/0091270004269705ARTICLEKHARASCH ET ALEVALUATION OF CYP3A AND P-GLYCOPROTEIN ACTIVITIES USING ALFENTANIL AND FEXOFENADINEDRUG METABOLISM AND TRANSPORT Evaluation of First-Pass Cytochrome P4503A  

E-print Network

absorption.1-3 Cytochrome P450s (CYP) of the 3A family (specifi- cally, CYPs 3A4 and 3A5) are the most10.1177/0091270004269705ARTICLEKHARASCH ET ALEVALUATION OF CYP3A AND P-GLYCOPROTEIN ACTIVITIESA (CYP3A) and P-Glycoprotein Activities Using Alfentanil and Fexofenadine in Combination Evan D

Steinbach, Joe Henry

77

Elevation of P-glycoprotein function by a catechin in green tea  

Microsoft Academic Search

The ABC transporter P-glycoprotein (P-gp) exerts a critical role in the systemic disposition of and exposure to lipophilic and amphipathic drugs, carcinogens, toxins, and other xenobiotics. The ability of P-gp to transfer a wide variety of structurally unrelated compounds from the cell interior across the membrane bilayer remains intriguing. Since dietary chemicals in green tea (and several other foods) appear

Er-jia Wang; Mary Barecki-Roach; William W Johnson

2002-01-01

78

P-glycoprotein is not a swelling-activated Cl- channel; possible role as a Cl- channel regulator.  

PubMed Central

1. The whole-cell configuration of the patch-clamp technique was used to determine if P-glycoprotein (Pgp) is a swelling-activated Cl- channel. 2. Hamster pgp1 cDNA was transfected into a mouse fibroblast cell line resulting in expression of functional Pgp in the plasma membrane. This cell line was obtained without exposure to chemotherapeutic agents. 3. Swelling-activated whole-cell Cl- current (ICl,swell) was elicited by lowering the bath osmolality. ICl,swell was characterized in detail in the pgp1-transfected mouse cell line and compared with that of its parental cell line. Expression of Pgp did not modify the magnitude or properties of ICl,swell, except that addition of the anti-Pgp antibody C219 to the pipette solution inhibited this current by 75% only in the Pgp-expressing cells. 4. ICl,swell in the mouse Pgp-expressing cell line was compared with that in a Pgp-expressing hamster fibroblast cell line. The characteristics of ICl,swell (voltage dependence, blocker sensitivity, anion selectivity sequence, requirement for hydrolysable ATP) in Pgp-expressing cells were different between the two cell lines. These results suggest that the channel(s) responsible for ICl,swell are different between the two cell lines. In addition, C219 inhibited ICl,swell in both Pgp-expressing cell lines, even though they seem to express different swelling-activated Cl- channels. 5. We conclude that firstly, Pgp is not a swelling-activated Cl- channel; secondly, it possibly functions as a Cl- channel regulator; and thirdly, ICl,swell is underlined by different Cl- channels in different cells. Images Figure 1 PMID:9263907

Vanoye, C G; Altenberg, G A; Reuss, L

1997-01-01

79

P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs.  

PubMed Central

The mouse mdr1a (also called mdr3) P-GP is abundant in the blood-brain barrier, and its absence in mdr1a (-/-) mice leads to highly increased levels of the drugs ivermectin, vinblastine, digoxin, and cyclosporin A in the brain. We show here that the drugs loperamide, domperidone, and ondansetron are transported substrates for the mouse mdr1a P-GP and its human homologue MDR1. Phenytoin is a relatively weaker substrate for each, and the drugs haloperidol, clozapine, and flunitrazepam are transported hardly or not at all. Tissue distribution studies demonstrated that the relative brain penetration of radiolabeled ondansetron and loperamide (and their metabolites) is increased four- and sevenfold, respectively, in mdr1a (-/-) mice. A pilot toxicity study with oral loperamide showed that this peripherally acting antidiarrheal agent gains potent opiatelike activity in the central nervous system of mdr1a (-/-) mice. mdr1a (-/-) mice also showed increased sensitivity to neurolepticlike side effects of oral domperidone. These results point to the possible role that the drug-transporting P-GP(s) may play in the clinical use of many drugs, especially those with potential targets in the central nervous system. PMID:8647944

Schinkel, A H; Wagenaar, E; Mol, C A; van Deemter, L

1996-01-01

80

1?,25-Dihydroxyvitamin D3-Liganded Vitamin D Receptor Increases Expression and Transport Activity of P-glycoprotein in Isolated Rat Brain Capillaries and Human and Rat Brain Microvessel Endothelial Cells  

PubMed Central

MDR1/P-gp induction by the vitamin D receptor (VDR) was investigated in isolated rat brain capillaries and rat (RBE4) and human (hCMEC/D3) brain microvessel endothelial cell lines. Incubation of isolated rat brain capillaries with 10 nM of the VDR ligand, 1?,25-dihydroxyvitamin D3 [1,25(OH)2D3] for 4 h increased P-gp protein expression (4-fold). Incubation with 1,25(OH)2D3 for 4 or 24 h increased P-gp transport activity (specific luminal accumulation of NBD-CSA, the fluorescent P-gp substrate) by 25 – 30%. In RBE4 cells, Mdr1b mRNA was induced in a concentration-dependent manner by exposure to 1,25(OH)2D3. Concomitantly, P-gp protein expression increased 2.5-fold and was accompanied by a 20 – 35% reduction in cellular accumulation of the P-gp substrates, rhodamine 6G (R6G) and HiLyte Fluor 488-labeled human amyloid beta 1-42 (hA?42). In hCMEC/D3 cells, a three day exposure to 100 nM 1,25(OH)2D3 increased MDR1 mRNA expression (40%) and P-gp protein (3-fold); cellular accumulation of R6G and hA?42 was reduced by 30%. Thus, VDR activation up-regulates Mdr1/MDR1 and P-gp protein in isolated rat brain capillaries and rodent and human brain microvascular endothelia, implicating a role for VDR in increasing the brain clearance of P-gp substrates, including hA?42 a plaque-forming precursor in Alzheimer’s disease. PMID:23035695

Durk, Matthew R.; Chan, Gary N.Y.; Campos, Christopher R.; Peart, John C.; Chow, Edwin C.Y.; Lee, Eason; Cannon, Ronald E.; Bendayan, Reina; Miller, David S.; Pang, K. Sandy

2012-01-01

81

P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases  

PubMed Central

Autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are chronic inflammatory disorders of unknown etiology characterized by a wide range of abnormalities of the immune system that may compromise the function of several organs, such as kidney, heart, joints, brain and skin. Corticosteroids (CCS), synthetic and biologic immunosuppressive agents have demonstrated the capacity to improve the course of autoimmune diseases. However, a significant number of patients do not respond or develop resistance to these therapies over time. P-glycoprotein (P-gp) is a transmembrane protein that pumps several drugs out of the cell, including CCS and immunosuppressants; thus, its over-expression or hyper-function has been proposed as a possible mechanism of drug resistance in patients with autoimmune disorders. Recently, different authors have demonstrated that P-gp inhibitors, such as cyclosporine A (CsA) and its analogue Tacrolimus, are able to reduce P-gp expression and or function in SLE, RA and PsA patients. These observations suggest that P-gp antagonists could be adopted to revert drug resistance and improve disease outcome. The complex inter-relationship among drug resistance, P-gp expression and autoimmunity still remains elusive. PMID:24658440

Picchianti-Diamanti, Andrea; Rosado, Maria Manuela; Scarsella, Marco; Lagana, Bruno; D'Amelio, Raffaele

2014-01-01

82

Investigation of the coordinated functional activities of cytochrome P450 3A4 and P-glycoprotein in limiting the absorption of xenobiotics in Caco-2 cells.  

PubMed

The coordination of the functional activities of intestinal CYP3A4 and P-gp in limiting the absorption of xenobiotics in Caco-2 cells was investigated. Growing Caco-2 cells were exposed to increasing concentrations of doxorubicin (1-2 microM) in plastic flasks to encourage a subpopulation of cells, that displayed an intrinsically higher multidrug resistance (mdr) phenotype than the parent cells, to survive and grow. Doxorubicin-exposed (hereinafter referred to as type I cells) and nonexposed Caco-2 cells (parent cells) on collagen-coated inserts were also treated with either 0 (control) or 0.25 microM 1alpha,25-dihydroxyvitamin D(3) to promote cellular CYP3A4 expression. Increased P-gp protein expression, as detected by Western blotting, was noted in type I cells (213 +/- 54.35%) compared to that of parent cells (100 +/- 6.05%). Furthermore, they retained significantly less [(3)H]vincristine sulphate (p < 0.05), a P-gp substrate, after efflux (272.89 +/- 11.86 fmol/mg protein) than the parent cells (381.39 +/- 61.82 fmol/mg protein). The expression of CYP3A4 in parental cells after 1alpha,25-dihydroxyvitamin D(3) treatment was quantified to be 76.2 +/- 7.6 pmol/mg protein and comparable with that found in human jejunal enterocytes (70.0 +/- 20.0 pmol/mg protein). Type I cells, however, expressed a very low quantity of CYP3A4 both before and after the treatment that was beyond the minimum detection limit of Western blotting. Functionally, the rates of 1-hydroxylation of midazolam by CYP3A for both cell types ranged from 257.0 +/- 20.0 to 1057.0 +/- 46.0 pmol/min/mg protein. Type I cells, although having a higher P-gp expression and activity comparatively, metabolized midazolam less extensively than the parent cells. The results suggested that there were noncoordinated functional activities of intestinal CYP3A4 and P-gp in Caco-2 cells, although they both functioned independently to minimize intestinal epithelial absorption of xenobiotics. PMID:11782903

Tran, Christine D H; Timmins, Peter; Conway, Barbara R; Irwin, William J

2002-01-01

83

Enhancing the uptake of dextromethorphan in the CNS of rats by concomitant administration of the P-gp inhibitor verapamil.  

PubMed

Clinical trials evaluating high doses of dextromethorphan hydrobromide (DM) for the treatment of neurological disorders have resulted in numerous adverse events due to the presence of its active metabolite dextrorphan (DX). Since the uptake of drugs in the CNS can be modulated by P-glycoprotein (P-gp) inhibition at the blood-brain barrier (BBB), we propose to determine whether the P-gp inhibitor verapamil can enhance the uptake of DM in the CNS. Rats (n=42) received an oral dose of DM (20 mg/kg) alone or 15 min after an intravenous dose of verapamil (1 mg/kg). Rats were euthanized at different time points over 12 h, and concentrations of DM and DX (conjugated and unconjugated) were assessed in plasma, brain and spinal cord using a LC-ESI/MS/MS method. Pharmacokinetic parameters were calculated using noncompartmental methods. Verapamil treatments did not affect the biodisposition of DM in plasma. On the other hand, verapamil treatments increased the area under curve of DM in the brain (from 1221 to 2393 ng h/g) and spinal cord (from 1753 to 3221 ng h/g) by approximately 2-fold. The uptake of DX in brain and spinal cord were markedly lower than those of DM and increased by only 15% and 22% following verapamil treatments, respectively. These results suggest that the P-gp inhibitor verapamil can enhance the uptake of DM in the CNS without affecting that of DX. This change is most likely related to an inhibition of P-gp or other transporters located in the BBB since the biodisposition of DM in plasma remained unaffected by verapamil treatments. PMID:15964599

Marier, Jean-Francois; Deschęnes, Jean-Luc; Hage, Amal; Seliniotakis, Eleftheria; Gritsas, Ari; Flarakos, Themis; Beaudry, Francis; Vachon, Pascal

2005-10-21

84

Saturable active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier leads to nonlinear distribution of elacridar to the central nervous system.  

PubMed

The study objective was to investigate factors that affect the central nervous system (CNS) distribution of elacridar. Elacridar inhibits transport mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and has been used to study the influence of transporters on brain distribution of chemotherapeutics. Adequate distribution of elacridar across the blood-brain barrier (BBB) and into the brain parenchyma is necessary to target tumor cells in the brain that overexpress transporters and reside behind an intact BBB. We examined the role of P-gp and Bcrp on brain penetration of elacridar using Friend leukemia virus strain B wild-type, Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)Bcrp1(-/-) mice. Initially, the mice were administered 2.5 mg/kg of elacridar intravenously, and the plasma and brain concentrations were determined. The brain-to-plasma partition coefficient of elacridar in the wild-type mice was 0.82, as compared with 3.5 in Mdr1a/b(-/-) mice, 6.6 in Bcrp1(-/-) mice, and 15 in Mdr1a/b(-/-)Bcrp1(-/-) mice, indicating that both P-gp and Bcrp limit the brain distribution of elacridar. The four genotypes were then administered increasing doses of elacridar, and the CNS distribution of elacridar was determined. The observed and model predicted maximum brain-to-plasma ratios (Emax) at the highest dose were not significantly different in all genotypes. However, the ED50 was lower for Mdr1a/b(-/-) mice compared with Bcrp1(-/-) mice. These findings correlate with the relative expression of P-gp and Bcrp at the BBB in these mice and demonstrate the quantitative enhancement in elacridar CNS distribution as a function of its dose. Overall, this study provides useful concepts for future applications of elacridar as an adjuvant therapy to improve targeting of chemotherapeutic agents to tumor cells in the brain parenchyma. PMID:23397054

Sane, Ramola; Agarwal, Sagar; Mittapalli, Rajendar K; Elmquist, William F

2013-04-01

85

Transmembrane segment 1 of human P-glycoprotein contributes to the drug-binding pocket  

PubMed Central

P-glycoprotein (P-gp; ABCB1) actively transports a broad range of structurally unrelated compounds out of the cell. An important step in the transport cycle is coupling of drug binding with ATP hydrolysis. Drug substrates such as verapamil bind in a common drug-binding pocket at the interface between the TM (transmembrane) domains of P-gp and stimulate ATPase activity. In the present study, we used cysteine-scanning mutagenesis and reaction with an MTS (methanethiosulphonate) thiol-reactive analogue of verapamil (MTS-verapamil) to test whether the first TM segment [TM1 (TM segment 1)] forms part of the drug-binding pocket. One mutant, L65C, showed elevated ATPase activity (10.7-fold higher than an untreated control) after removal of unchanged MTS-verapamil. The elevated ATPase activity was due to covalent attachment of MTS-verapamil to Cys65 because treatment with dithiothreitol returned the ATPase activity to basal levels. Verapamil covalently attached to Cys65 appears to occupy the drug-binding pocket because verapamil protected mutant L65C from modification by MTS-verapamil. The ATPase activity of the MTS-verapamil-modified mutant L65C could not be further stimulated with verapamil, calcein acetoxymethyl ester or demecolcine. The ATPase activity could be inhibited by cyclosporin A but not by trans-(E)-flupentixol. These results suggest that TM1 contributes to the drug-binding pocket. PMID:16492138

Loo, Tip W.; Bartlett, M. Claire; Clarke, David M.

2006-01-01

86

Actin disruption inhibits endosomal traffic of P-glycoprotein-EGFP and resistance to daunorubicin accumulation.  

PubMed

Intracellular traffic of human P-glycoprotein (P-gp), a membrane transporter responsible for multidrug resistance in cancer chemotherapy, was investigated using a P-gp and enhanced green fluorescent fusion protein (P-gp-EGFP) in human breast cancer MCF-7 cells. The stably expressed P-gp-EGFP from a clonal cell population was functional as a drug efflux pump, as demonstrated by the inhibition of daunorubicin accumulation and the conferring of resistance of the cells to colchicine and daunorubicin. Colocalization experiments demonstrated that a small fraction of the total P-gp-EGFP expressed was localized intracellularly and was present in early endosome and lysosome compartments. P-gp-EGFP traffic was shown to occur via early endosome transport to the plasma membrane. Subsequent movement of P-gp-EGFP away from the plasma membrane occurred by endocytosis to the early endosome and lysosome. The component of the cytoskeleton responsible for P-gp-EGFP traffic was demonstrated to be actin rather than microtubules. In functional studies it was shown that in parallel with the interruption of the traffic of P-gp-EGFP, cellular accumulation of the P-gp substrate daunorubicin was increased after cells were treated with actin inhibitors, and cell proliferation was inhibited to a greater extent than in the presence of daunorubicin alone. The actin dependence of P-gp traffic and the parallel changes in cytotoxic drug accumulation demonstrated in this study delineates the pathways of P-gp traffic and may provide a new approach to overcoming multidrug resistance in cancer chemotherapy. PMID:17122416

Fu, Dong; Roufogalis, Basil D

2007-04-01

87

Aureobasidins: structure-activity relationships for the inhibition of the human MDR1 P-glycoprotein ABC-transporter.  

PubMed

Cyclic depsipeptide cyclo-[D-Hmp(1)-L-MeVal(2)-L-Phe(3)-L-MePhe(4)-L-Pro(5)-L-aIle+ ++(6)-L-MeVal(7)-L-Leu(8)-L-betaHOMeVal(9)], the antifungal antibiotic aureobasidin A (AbA), was reported to interfere with ATP-binding cassette (ABC) transporters in yeast and mammalian cells, particularly the MDR1 P-glycoprotein (Pgp), a transmembrane phospholipid flippase or "hydrophobic vacuum cleaner" that mediates multidrug resistance (MDR) of cancer cells. In a standardized assay that measures Pgp function by the Pgp-mediated efflux of the calcein-AM Pgp substrate and uses human lymphoblastoid MDR-CEM (VBL(100)) cells as highly resistant Pgp-expressing cells and the cyclic undecapeptide cyclosporin A (CsA) as a reference MDR-reversing agent (IC(50) of 3.4 microM), AbA was found to be a more active Pgp inhibitor (IC(50) of 2.3 microM). Out of seven natural analogues and 18 chemical derivatives of AbA, several were shown to display even more potent Pgp-inhibitory activity. The Pgp-inhibitory activity was increased about 2-fold by some minor modifications such as those found in the naturally occurring aureobasidins AbB ([D-Hiv(1)]-AbA), AbC ([Val(6)]-AbA), and AbD [gammaHOMeVal(9)]-AbA). The replacement of the [Phe(3)-MePhe(4)-Pro(5)] tripeptide by an 8-aminocaprylic acid or the N(7)()-desmethylation of MeVal(7) led to only a 3.3-fold decreased capacity to inhibit Pgp function, suggesting that the Pgp inhibitory potential of aureobasidins, though favored by the establishment of an antiparallel beta-sheet between the [D-Hmp(1)-L-MeVal(2)-L-Phe(3)] and [L-aIle(6)-L-MeVal(7)-L-Leu(8)-] tripeptides, does not critically depend on the occurrence of the [L-Phe(3)-L-MePhe(4)-L-Pro(5)-L-aIle(6)] type II' beta-turn secondary structure. In contrast, the most potent Pgp inhibitors were found among AbA analogues with [betaHO-MeVal(9)] residue alterations, with some data suggesting a negative impact of the [L-Leu(8)-L-betaHOMeVal(9)-D-Hmp(1)] gamma-turn secondary structure on Pgp inhibitory potential. The [2,3-dehydro-MeVal(9)]-AbA was the most potent Pgp inhibitory aureobasidin, being 13-fold more potent than AbA and 19-fold more potent (on a molar basis) than CsA. Finally, there was no correlation between the SAR for the human MDR1 Pgp inhibition and the SAR for Saccharomyces cerevisiae antifungal activity, which is mediated by an inositol phosphoceramide synthase activity. PMID:10891114

Tiberghien, F; Kurome, T; Takesako, K; Didier, A; Wenandy, T; Loor, F

2000-06-29

88

Suitability of digoxin as a P-glycoprotein probe: implications of other transporters on sensitivity and specificity.  

PubMed

The study of transporter-mediated drug-drug interactions (DDI) requires use of appropriate probes to reflect transporter function. Digoxin is often used as a probe in DDI studies involving P-glycoprotein (P-gp) and is recommended by FDA for this purpose, despite several lingering questions regarding suitability of digoxin as P-gp probe. This review aims to critically evaluate use of digoxin as a probe for P-gp-mediated clinical DDI studies, with focus on sensitivity and specificity of digoxin for P-gp. Although previous reviews have evaluated digoxin transport by P-gp, the purpose of the current review is to critically evaluate such literature in light of newly evolving literature suggesting digoxin transport by non-P-gp transporters. PMID:24166743

Nader, Ahmed M; Foster, David R

2014-01-01

89

Therapeutic potential of nanocarrier for overcoming to P-glycoprotein.  

PubMed

Abstract Enhancement of targeted therapeutic effect in the body and achievement of high bioavailability are major concern for the researchers due to the complex physiology of human body. There are so many barriers that hinder the absorption and permeation of drugs from the body, thus influencing the bioavailability of therapeutics. P-glycoprotein (P-gp) is one of such barrier present on the apical membranes of various organs such as small intestine, brain, kidney and liver. This protein interacts with vast variety of therapeutics and efflux out them preventing their entrance to the desired site, thus modulating their pharmacokinetic properties. To address this, a concerned number of approaches have been used such as the use of chemo sensitizers along with the therapeutics and various novel techniques. In this review, we are going to discuss the basic introduction to this protein and overview of various strategies used earlier to tackle the problem of P-gp efflux as well as the role of nanocarriers in confronting this issue. Nanocarriers have played great role in the enhancement of the bioavailability of many antineoplastic agents as well as other P-gp substrates. Encapsulation of P-gp inhibitors in the nanocarrier system prevents toxicity and gives site-specific action. PMID:25101945

Kaur, Vimratjeet; Garg, Tarun; Rath, Goutam; Goyal, Amit K

2014-12-01

90

Impact of genetic deficiencies of P-glycoprotein and breast cancer resistance protein on pharmacokinetics of aripiprazole and dehydroaripiprazole.  

PubMed

1. We investigated how deficiencies in P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) affect the pharmacokinetics of atypical antipsychotics aripiprazole and its active metabolite (dehydroaripiprazole) using normal Friend leukemia virus strain B (FVB) mice, BCRP knockout (Bcrp[-/-]) mice, and P-gp and BCRP triple knockout (Mdr1a/1b[-/-]Bcrp[-/-]) mice. 2. While plasma concentrations of aripiprazole and dehydroaripiprazole after oral administration were slightly higher in both Bcrp(-/-) and Mdr1a/1b(-/-)/Bcrp(-/-) mice than in normal FVB mice, the difference was not marked. The increase in absolute bioavailability (F) compared with normal mice (approximately 1.3-fold increase) was comparable between Bcrp(-/-) and Mdr1a/1b(-/-)/Bcrp(-/-) mice. This finding suggests that BCRP may be involved in the intestinal absorption of aripiprazole in mice, albeit with minimal contribution to absorption at best. 3. In contrast, the brain-to-plasma concentration ratio (Kp,brain) for aripiprazole and dehydroaripiprazole after oral administration was significantly higher in Mdr1a/1b(-/-)/Bcrp(-/-) mice than in normal mice, whereas Bcrp(-/-) mice exhibited Kp,brain values similar to those in normal mice. In addition, the Kp,brain values in Mdr1a/1b(-/-)/Bcrp(-/-) mice were not drastically different from those previously reported in Mdr1a/1b(-/-) mice, suggesting that brain penetration of aripiprazole and dehydroaripiprazole can be affected by P-gp, but with little synergistic effect of BCRP. PMID:24666334

Nagasaka, Yasuhisa; Sano, Tomokazu; Oda, Kazuo; Kawamura, Akio; Usui, Takashi

2014-10-01

91

A genetic algorithm- back propagation artificial neural network model to quantify the affinity of flavonoids toward P-glycoprotein.  

PubMed

Flavonoids, the most diverse class of plant secondary metabolites, exhibit high affinity toward the purified cytosolic NBD2(C-terminal nucleotide-binding domain) of P-glycoprotein (P-gp). To explore the affinity of flavonoids for P-gp, quantitative structure-activity relationships (QSARs) models were developed using back-propagation artificial neural networks (BPANN) and multiple linear regression (MLR). Molecular descriptors were calculated using PaDELDescriptor, and the number of descriptors was then reduced using a genetic algorithm (GA) and stepwise regression. The MLR (R(2)=0.855, q(2)=0.8138, Rext(2)=0.6916), 14-3-1 BPANN (R(2)=0.8514, q(2)=0.7695, Rext (2)=0.8142), 14-4-1 BPANN(R(2)=0.9199, q(2)=0.7733, Rext(2) =0.8731), and 14-5-1 BPANN (R(2)=0.8660, q(2)=0.7432, Rext(2)=0.8292) models all showed good robustness. While BPANN models exceeded significantly MLR in predictable performance for their flexible characters, could be used to predict the affinity of flavonoids for P-gp and applied in further drug screening. PMID:24206113

Shen, Jibin; Cui, Ying; Gu, Jun; Li, Yaxiao; Li, Lingzhi

2014-02-01

92

Transport of dietary phenethyl isothiocyanate is mediated by multidrug resistance protein 2 but not P-glycoprotein  

Microsoft Academic Search

We demonstrated recently that phenethyl isothiocyanate (PEITC), a potent anticarcinogen present in cruciferous vegetables, inhibited P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP1) and that MRP1 can transport PEITC and\\/or its metabolites. In this study, we have examined whether PEITC is transported by P-gp and MRP2, two transporters with high expression in human intestine, liver and kidney. Using 14C-PEITC, no

Yan Ji; Marilyn E. Morris

2005-01-01

93

mdm2 gene mediates the expression of mdr1 gene and P-glycoprotein in a human glioblastoma cell line  

Microsoft Academic Search

The overexpression of the multidrug resistance (mdr1) gene and its product, P-glycoprotein (P-gp), is thought to limit the successful chemotherapy of human tumours. The mechanism by which mdr1 gene and P-gp are overexpressed in human tumours, however, is not yet clear. In this report, we show that the mdm2 (murine double minute 2) gene induced the expression of the mdr1

S Kondo; Y Kondo; H Hara; R Kaakaji; JW Peterson; T Morimura; J Takeuchi; GH Barnett

1996-01-01

94

Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells  

Microsoft Academic Search

The over-expression of P-glycoprotein (P-gp) has been associated with the development of multidrug resistance (MDR) in cancer cells. In this study, we examined whether transferrin receptor (Tf-R) targeted liposomes can efficiently deliver encapsulated doxorubicin (DXR) into MDR cells (SBC-3\\/ADM) via Tf-R-mediated endocytosis thus overcoming MDR by by-passing P-gp-mediated drug efflux. We prepared four types of liposome, i.e. untargeted and Tf-R-targeted,

Tomotaka Kobayashi; Tatsuhiro Ishida; Yurie Okada; Saori Ise; Hideyoshi Harashima; Hiroshi Kiwada

2007-01-01

95

Variability in P-glycoprotein inhibitory potency (IC??) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria.  

PubMed

A P-glycoprotein (P-gp) IC?? working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC?? determinations. Each laboratory followed its in-house protocol to determine in vitro IC?? values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells--Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC?? values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC?? values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC?? values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC?? values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC?? values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC?? determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided. PMID:23620485

Bentz, Joe; O'Connor, Michael P; Bednarczyk, Dallas; Coleman, Joann; Lee, Caroline; Palm, Johan; Pak, Y Anne; Perloff, Elke S; Reyner, Eric; Balimane, Praveen; Brännström, Marie; Chu, Xiaoyan; Funk, Christoph; Guo, Ailan; Hanna, Imad; Herédi-Szabó, Krisztina; Hillgren, Kate; Li, Libin; Hollnack-Pusch, Evelyn; Jamei, Masoud; Lin, Xuena; Mason, Andrew K; Neuhoff, Sibylle; Patel, Aarti; Podila, Lalitha; Plise, Emile; Rajaraman, Ganesh; Salphati, Laurent; Sands, Eric; Taub, Mitchell E; Taur, Jan-Shiang; Weitz, Dietmar; Wortelboer, Heleen M; Xia, Cindy Q; Xiao, Guangqing; Yabut, Jocelyn; Yamagata, Tetsuo; Zhang, Lei; Ellens, Harma

2013-07-01

96

Variability in P-Glycoprotein Inhibitory Potency (IC50) Using Various in Vitro Experimental Systems: Implications for Universal Digoxin Drug-Drug Interaction Risk Assessment Decision Criteria  

PubMed Central

A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells—Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided. PMID:23620485

Bentz, Joe; O'Connor, Michael P.; Bednarczyk, Dallas; Coleman, JoAnn; Lee, Caroline; Palm, Johan; Pak, Y. Anne; Perloff, Elke S.; Reyner, Eric; Balimane, Praveen; Brannstrom, Marie; Chu, Xiaoyan; Funk, Christoph; Guo, Ailan; Hanna, Imad; Heredi-Szabo, Krisztina; Hillgren, Kate; Li, Libin; Hollnack-Pusch, Evelyn; Jamei, Masoud; Lin, Xuena; Mason, Andrew K.; Neuhoff, Sibylle; Patel, Aarti; Podila, Lalitha; Plise, Emile; Rajaraman, Ganesh; Salphati, Laurent; Sands, Eric; Taub, Mitchell E.; Taur, Jan-Shiang; Weitz, Dietmar; Wortelboer, Heleen M.; Xia, Cindy Q.; Xiao, Guangqing; Yabut, Jocelyn; Yamagata, Tetsuo; Zhang, Lei

2013-01-01

97

Pharmacoproteomics-based reconstruction of in vivo p-glycoprotein function at blood-brain barrier and brain distribution of substrate verapamil in pentylenetetrazole-kindled epilepsy, spontaneous epilepsy, and phenytoin treatment models.  

PubMed

The purpose of this study was to demonstrate experimentally that alterations of in vivo transporter function at the blood-brain barrier (BBB) in disease and during pharmacotherapy can be reconstructed from in vitro data based on our established pharmacoproteomic concept of reconstructing in vivo function by integrating intrinsic transport activity per transporter molecule and absolute protein expression level at the BBB. Pentylenetetrazole (PTZ)-kindled and spontaneous model of epilepsy (EL) mice were used as models of chemically induced and spontaneous epilepsy, respectively. A mouse model of antiepileptic drug treatment was prepared by consecutive 5-week administration of phenytoin (PHT). Quantitative targeted absolute proteomic analysis of 31 membrane proteins showed that P-glycoprotein (P-gp/mdr1a) protein expression levels were significantly increased in brain capillaries of PTZ (129%), EL (143%), and PHT mice (192%) compared with controls. The brain-to-plasma concentration ratios (Kp brain) of P-gp/mdr1a substrate verapamil were 0.563, 0.394, 0.432, and 0.234 in control, PTZ, EL, and PHT mice, respectively. In vivo P-gp/mdr1a function at the BBB was reconstructed from the measured P-gp/mdr1a protein expression levels and intrinsic transport activity for verapamil per P-gp/mdr1a previously reported by our group. Then, the reconstructed P-gp/mdr1a functional activities were integrated with unbound fractions of verapamil in plasma and brain to reconstruct Kp brain of verapamil. In all mice, reconstructed Kp brain values agreed well with the observed values within a 1.21-fold range. These results demonstrate that altered P-gp functions at the BBB in epilepsy and during pharmacotherapy can be reconstructed from in vitro data by means of our pharmacoproteomic approach. PMID:25061162

Uchida, Yasuo; Ohtsuki, Sumio; Terasaki, Tetsuya

2014-10-01

98

Expression of P-gp in acute myeloid leukemia and the reversal function of As2O3 on drug resistance  

PubMed Central

To study the expression of P-glycoprotein (P-gp) and the reversal function of As2O3, the active ingredient of arsenic, on drug resistance in acute myeloid leukemia (AML) patients, P-gp and cluster of differentiation 34 (CD34) were examined in primary mononuclear and resistant cells, with or without As2O3. In addition, multidrug resistance gene 1 (MDR1) mRNA expression was investigated in K562/D cells and AML patients. In total, 28.6% of newly-treated (NT) patients and 59.1% of relapsed/refractory (RR) patients were P-gpfunction+, and 31.7% of NT patients and 59.1% of RR patients were CD34+. The positivity rate of P-gpfunction and CD34+ expression in the RR group were significantly higher compared with that in the NT group (P<0.05). In addition, higher CD34+, P-gpexpression+ and P-gpfunction+ values were observed in older patients compared with younger patients. MDR1 expression was downregulated in certain patients following treatment with AS2O3. In the present study, the overexpression of P-gp was the primary cause of drug resistance in the AML patients, and MDR1 expression was downregulated by As2O3 in primary leukemia and drug-resistant cells.

GAO, FENG; DONG, WANWEI; YANG, WEI; LIU, JIA; ZHENG, ZHIHONG; SUN, KAILAI

2015-01-01

99

In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576.  

PubMed

The overexpression of P-glycoprotein (P-gp) on the surface of tumor cells causes multidrug resistance (MDR). This protein acts as an energy-dependent drug efflux pump reducing the intracellular concentration of structurally unrelated drugs. Modulators of P-gp function can restore the sensitivity of MDR cells to such drugs. XR9576 is a novel anthranilic acid derivative developed as a potent and specific inhibitor of P-gp, and in this study we evaluate the in vitro and in vivo modulatory activity of this compound. The in vitro activity of XR9576 was evaluated using a panel of human (H69/LX4, 2780AD) and murine (EMT6 AR1.0, MC26) MDR cell lines. XR9576 potentiated the cytotoxicity of several drugs including doxorubicin, paclitaxel, etoposide, and vincristine; complete reversal of resistance was achieved in the presence of 25-80 nM XR9576. Direct comparative studies with other modulators indicated that XR9576 was one of the most potent modulators described to date. Accumulation and efflux studies with the P-gp substrates, [3H]daunorubicin and rhodamine 123, demonstrated that XR9576 inhibited P-gp-mediated drug efflux. The inhibition of P-gp function was reversible, but the effects persisted for >22 h after removal of the modulator from the incubation medium. This is in contrast to P-gp substrates such as cyclosporin A and verapamil, which lose their activity within 60 min, suggesting that XR9576 is not transported by P-gp. Also, XR9576 was a potent inhibitor of photoaffinity labeling of P-gp by [3H]azidopine implying a direct interaction with the protein. In mice bearing the intrinsically resistant MC26 colon tumors, coadministration of XR9576 potentiated the antitumor activity of doxorubicin without a significant increase in toxicity; maximum potentiation was observed at 2.5-4.0 mg/kg dosed either i.v. or p.o. In addition, coadministration of XR9576 (6-12 mg/kg p.o.) fully restored the antitumor activity of paclitaxel, etoposide, and vincristine against two highly resistant MDR human tumor xenografts (2780AD, H69/LX4) in nude mice. Importantly all of the efficacious combination schedules appeared to be well tolerated. Furthermore, i.v. coadministration of XR9576 did not alter the plasma pharmacokinetics of paclitaxel. These results demonstrate that XR9576 is an extremely potent, selective, and effective modulator with a long duration of action. It exhibits potent i.v. and p.o. activity without apparently enhancing the plasma pharmacokinetics of paclitaxel or the toxicity of coadministered drugs. Hence, XR9576 holds great promise for the treatment of P-gp-mediated MDR cancers. PMID:11212278

Mistry, P; Stewart, A J; Dangerfield, W; Okiji, S; Liddle, C; Bootle, D; Plumb, J A; Templeton, D; Charlton, P

2001-01-15

100

Effect of pregnancy on cytochrome P450 3a and P-glycoprotein expression and activity in the mouse: mechanisms, tissue specificity, and time course  

PubMed Central

The plasma concentrations of orally administered anti-HIV protease inhibitors are significantly reduced during human and mouse pregnancy. We have shown that in the mouse, at gestational day 19, this reduction is due to increased hepatic cytochrome P450 3a (Cyp3a) protein expression and activity. In the current study, we investigated the mechanisms by which Cyp3a activity is increased by pregnancy and the time course of change in expression of Cyp3a and P-gp in various tissues. We found hepatic transcripts of Cyp3a16, Cyp3a41 and Cyp3a44 were significantly increased during pregnancy, while those of Cyp3a11 and Cyp3a25 were significantly decreased. This resulted in a net increase in Cyp3a protein expression and activity in the liver during pregnancy. The increase in Cyp3a41 and Cyp3a44 transcripts was positively correlated (p<0.05) with HNF6 and ER? transcripts. The pregnancy-related factors that transcriptionally activated mouse Cyp3a isoforms also activated the human CYP3A4 promoter in pregnant CYP3A4-promoter-luciferase transgenic (CYP3A4-tg) mice. In contrast, intestinal Cyp3a protein expressions were not significantly affected by pregnancy. No change in P-gp protein expression was observed in the liver or kidney during pregnancy, though a significant decrease was observed in the placenta. Since hepatic CYP3A activity also appears to be induced during human pregnancy, the mouse (including CYP3A4-tg mouse) appears to be an excellent animal model to determine the molecular mechanisms for such induction. PMID:18509067

Zhang, Huixia; Wu, Xiaohui; Wang, Honggang; Mikheev, Andrei M.; Mao, Qingcheng; Unadkat, Jashvant D.

2008-01-01

101

Inhibition of Wnt/?-catenin signaling downregulates P-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma.  

PubMed

The development of multi-drug resistance (MDR) represents a major obstacle in the successful treatment of cancers. However, the factors and mechanisms that lead to MDR in cholangiocarcinoma (CCA), a chemoresistant bile duct carcinoma with a poor prognosis, remain unclear. In this study, we established a human MDR CCA cell line QBC939/5-FU. Compared with QBC939 cells, a rounder shape, a higher nuclear-cytoplasmic ratio, a shorter cell cycle, faster growth and resistance to chemotherapeutics are major characteristics of QBC939/5-FU cells. P-glycoprotein (P-gp) and ?-catenin were upregulated in QBC939/5-FU cells. Furthermore, the drug susceptibility of QBC939 cells to common chemotherapeutics was significantly decreased after Wnt3a treatment, whereas inhibition of Wnt/?-catenin pathway by ?-catenin siRNA reversed the MDR of QBC939/5-FU cells to chemotherapeutics. Molecular study revealed that activation of Wnt/?-catenin pathway resulted in upregulation of P-gp and contributed to MDR of QBC939/5-FU cells. Extraction of Siamese Crocodile 3 (ESC-3) bile enhanced the drug sensitivity of QBC939/5-FU cells to 5-FU, paralleled with downregulation of ?-catenin and P-gp. The association of Wnt/?-catenin pathway and P-gp was further confirmed by the clinical data for CCA tissues. Our study represents the first implication of Wnt/?-catenin activation in the MDR of CCA, which may be a beneficial target for the clinical treatment of CCA. PMID:23822562

Shen, Dong-Yan; Zhang, Wei; Zeng, Xin; Liu, Chang-Qin

2013-10-01

102

Role of P-glycoprotein in regulating cilnidipine distribution to intact and ischemic brain.  

PubMed

Cilnidipine is reported to show antihypertensive and neuroprotective actions in a rat brain ischemia model, but is barely distributed to normal brain, suggesting that its uptake into normal brain is inhibited by efflux transporter(s), such as P-glycoprotein (P-gp). Here, we investigated whether P-gp regulates the brain distribution of cilnidipine. Intracellular accumulation of cilnidipine was decreased in P-gp-overexpressing porcine kidney epithelial cells (LLC-GA5-COL150 cells) compared with control LLC-PK1 cells and the decrease was markedly inhibited by verapamil, a P-gp inhibitor. Further, cilnidipine concentration in the brain of P-gp knockout mice was significantly increased after cilnidipine administration, compared with that in wild-type mice. Moreover, when cilnidipine was administered to male spontaneously hypertensive rats (SHR) with tandem occlusion of the distal middle cerebral and ipsilateral common carotid artery, its concentration in the ischemic hemisphere was 1.6-fold higher than that in the contralateral hemisphere. This result was supported by visualization of cilnidipine distribution using matrix-assisted laser desorption/ionization-time of flight/mass spectrometry (MALDI-TOF/MS) imaging. Our results indicated that cilnidipine is normally excluded from the brain by P-gp-mediated efflux transport, but P-gp function is impaired in ischemic brain and consequently cilnidipine is distributed to the ischemic region. PMID:24366438

Yano, Kentaro; Takimoto, Shinobu; Motegi, Toshimitsu; Tomono, Takumi; Hagiwara, Mihoko; Idota, Yoko; Morimoto, Kaori; Takahara, Akira; Ogihara, Takuo

2014-01-01

103

In Situ Localization of P-glycoprotein (ABCB1) in Human and Rat Brain  

PubMed Central

Transport of several xenobiotics including pharmacological agents into or out of the central nervous system (CNS) involves the expression of ATP-dependent, membrane-bound efflux transport proteins such as P-glycoprotein (P-gp) at the blood-brain barrier (BBB). Previous studies have documented gene and protein expression of P-gp in brain microvessel endothelial cells. However, the exact localization of P-gp, particularly at the abluminal side of the BBB, remains controversial. In the present study we examined the cellular/subcellular distribution of P-gp in situ in rat and human brain tissues using immunogold cytochemistry at the electron microscope level. P-gp localizes to both the luminal and abluminal membranes of capillary endothelial cells as well as to adjacent pericytes and astrocytes. Subcellulary, P-gp is distributed along the nuclear envelope, in caveolae, cytoplasmic vesicles, Golgi complex, and rough endoplasmic reticulum (RER). These results provide evidence for the expression of P-gp in human and rodent brain capillary along their plasma membranes as well as at sites of protein synthesis, glycosylation, and membrane trafficking. In addition, its presence at the luminal and abluminal poles of the BBB, including pericytes and astrocyte plasma membranes, suggests that this glycoprotein may regulate drug transport processes in the entire CNS BBB at both the cellular and subcellular level. PMID:16801529

Bendayan, Reina; Ronaldson, Patrick T.; Gingras, Diane; Bendayan, Moise

2006-01-01

104

Influence of exogenous RAR alpha gene on MDR1 expression and P-glycoprotein function in human and rodent cell lines.  

PubMed Central

The goal of our study was to obtain direct evidence of co-ordinated regulation of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) and differentiation in tumour cells and to study some signalling pathways involved in joint regulation of these two cell phenotypes. The sublines of human melanoma (mS) and hepatoma (human HepG2 and rat McA RH 7777) cell lines were obtained by retroviral infection of the wild-type cells with the cDNA of the human retinoic acid receptor alpha (RAR alpha). The resulting sublines stably overexpressed exogenous RAR alpha gene. The infectants became more differentiated than the parental cells as determined by a decrease in the synthesis of the embryo-specific alpha-fetoprotein in HepG2 and McA RH 7777 hepatoma cells and by an increase in melanin synthesis in mS cells. The differentiation of human cells was accompanied by an increase in the amounts of MDR1 mRNA but not by an increase in P-gp activity as a drug transporter, in contrast, in the rat RAR alpha overexpressing cells P-gp functional activity was elevated. Treatment with cytotoxic drug (colchicine) or retinoic acid (RA) resulted in a slight increase in P-gp activity in the parental and RAR alpha-infected melanoma cells, whereas the increase in P-gp function in the infected hepatoma cells (both human and rat) was very prominent. Thus, we provide new evidence that cell differentiation caused by the overexpression of the gene participating in the differentiation programme leads to overexpression of MDR1 gene and drug resistance and that this effect is tissue and species specific. These data imply that the activation of the RA-controlled signalling pathway up-regulates MDR1 gene expression. Images Figure 1 Figure 2 Figure 4 PMID:9667638

Stromskaya, T. P.; Rybalkina, E. Y.; Shtil, A. A.; Zabotina, T. N.; Filippova, N. A.; Stavrovskaya, A. A.

1998-01-01

105

Effect of P-glycoprotein on the rat intestinal permeability and metabolism of the BDDCS class 1 drug verapamil.  

PubMed

The Biopharmaceutics Drug Disposition Classification System (BDDCS) predicts intestinal transporter effects to be clinically insignificant following oral dosing for highly soluble and highly permeable/metabolized drugs (class 1 drugs). We investigated the effect of inhibiting P-glycoprotein (P-gp) on the in vitro rat intestinal permeability (Papp) and metabolism of the class 1 drug verapamil. Jejunal segments from Sprague-Dawley rats fasted overnight were mounted in Ussing chambers filled with 10 mL of Krebs-Ringer buffer (KRB). For P-gp inhibition studies, GG918 0.5 ?M was added to the KRB solution. The experiment started by the addition of verapamil (1 or 10 ?M) to either apical or basolateral sides. Samples from verapamil donor and receiver compartments were collected at 30 s and 0.166, 0.5, 1, 1.83 and 3 h after the start of the experiment. Analysis of verapamil and its major metabolite, norverapamil, in the samples and intracellularly at 3 h was performed by HPLC. The same experiment was repeated with norverapamil 10 ?M (verapamil metabolite), digoxin 100 nM (positive control for P-gp activity) and atorvastatin 1 and 10 ?M (example of a class 2 drug). For 1 ?M verapamil, efflux ratio (B to A Papp/A to B Papp) was 4.6 and markedly decreased by GG918 (efflux ratio = 1.1). For 10 ?M verapamil efflux ratio was 4.1 (control) vs 1.8 (GG918), comparable to the change seen for digoxin 100 nM with an efflux ratio of 3.6 (control) vs 1.6 (with GG918) and atorvastatin (efflux ratio of 5.2 and 3.0 for atorvastatin 1.0 and 10 ?M, respectively, changed to 1.0 and 0.65 with GG918). The changes observed in the norverapamil 10 ?M experiment were also significant, where efflux ratio decreased from 13.5 (control) to 1.5 (GG918). The extraction ratio (ER) of 10 ?M verapamil to norverapamil decreased from 0.41 after an apical dose to 0.21 after a basolateral dose, but was unaffected by the incubation with GG918. The results suggest that P-gp inhibition has an effect on class 1 drug verapamil and class 2 drug atorvastatin Papp in the rat intestine. Moreover, a stronger P-gp effect on the Papp of the more polar norverapamil metabolite was observed. Papp changes caused by the P-gp inhibitor GG918 do not affect the extent of verapamil metabolism. PMID:24044638

Estudante, Margarida; Maya, Manuela; Morais, José G; Soveral, Graça; Benet, Leslie Z

2013-11-01

106

Thunbergia laurifolia extract minimizes the adverse effects of toxicants by regulating P-glycoprotein activity, CYP450, and lipid metabolism gene expression in HepG2 cells.  

PubMed

Thunbergia laurifolia (TL) is widely used as an antidote in Thai traditional medicine against toxic substances such as alcohol, pesticides, arsenic, and strychnine. We found that the lyophilized form of TL in 80% ethanol possessed the antioxidant levels within the range 23,163.9 ± 1457.4 Trolox equivalents mM/kg dry mass and 899.8 ± 14.5 gallic acid equivalents mM/kg dry mass using the oxygen radical absorbance capacity assay and the Folin Ciocalteu phenol assay, respectively. TL extract (TLE) at a high dose (3000 mg/L) induced cytotoxicity according to the neutral red assay and the MTT assay. However, TLE doses of 800-3000 mg/L could reduce intracellular oxidative stress in a dose-dependent manner (P < 0.05) using the dichlorodihydrofluorescein diacetate assay. TLE significantly enhanced the mRNA expression of CYP1A1, CYP1A2, CYP2B6, CYP3A4, and PPARg, but it significantly inhibited the mRNA expression of CYP3A7, CYP2D6, and CYP2E1 (P < 0.05) by reverse transcription-polymerase chain reaction. Moreover, TLE could increase the activity of a multidrug transporter, P-glycoprotein, which accelerated the excretion of toxic substances from HepG2 cells. It is suggested that TLE may be beneficial for detoxification by reducing oxidative stress, minimizing toxicity by regulating the expression CYP450 mRNAs for suitable production of CYP450 isoenzymes, and increasing PPAR? mRNA expression and P-glycoprotein activity in HepG2 cells, thereby maintaining xenobiotic biotransformation balance. PMID:24446304

Rocejanasaroj, A; Tencomnao, T; Sangkitikomol, W

2014-01-01

107

Effect of Organic Isothiocyanates on the P-Glycoprotein- and MRP1-Mediated Transport of Daunomycin and Vinblastine  

Microsoft Academic Search

Purpose. Organic isothiocyanates (ITCs), or mustard oils, are non-nutrient components present in the diet, especially in cruciferous vegetables. The purpose of this investigation was to examine the effect of ITCs on P-glycoprotein (P-gp)- and multidrug resistance-associated Protein (MRP1)-mediated transport in multidrug resistant (MDR) human cancer cell lines.

Elaine Tseng; Amrita Kamath; Marilyn E. Morris

2002-01-01

108

Glucose Depletion Enhances P-Glycoprotein Expression in Hepatoma Cells: Role of Endoplasmic Reticulum Stress Response1  

Microsoft Academic Search

P-Glycoprotein (P-gp) encoded by the MDR gene is one of the main factors in multidrug resistance. Its expression in cancer cells, which compromises cancer outcome, can be enhanced by some stress signals. Energy depletion, frequently observed in malignant cells, was shown to induce chemoresistance and could be one of these signals. To test this hypothesis, we studied the effect of

Severine Ledoux; Ruchung Yang; Gerard Friedlander; Denise Laouari

2003-01-01

109

P-glycoprotein- and organic anion-transporting polypeptide-mediated transport of periplocin may lead to drug–herb/drug–drug interactions  

PubMed Central

Periplocin, an active and toxic component of the traditional Chinese herbal medicine Periploca sepium Bge, is a cardiac glycoside compound that has been implicated in various clinical accidents. This study investigated the role of transporters in the intestinal absorption and biliary excretion of periplocin, as well as the possible metabolic mechanism of periplocin in liver S9. In a bidirectional transport assay using Madin–Darby canine kidney (MDCK) and MDCK multidrug-resistance protein (MRP)-1 cell monolayers, both in situ intestinal and liver-perfusion models were used to evaluate the role of efflux and uptake transporters on the absorption and biliary excretion of periplocin. In addition, in vitro metabolism of periplocin was investigated by incubating with human/rat liver S9 homogenate fractions to evaluate its metabolic mechanisms in liver metabolic enzymes. The results showed that P-glycoprotein (P-gp) was involved in the intestinal absorption of periplocin, whereas MRP2 and breast cancer-resistance protein were not. The efflux function of P-gp may be partly responsible for the low permeability and bioavailability of periplocin. Moreover, both inhibitors of P-gp and organic anion-transporting polypeptides (OATPs) increased periplocin biliary excretion. No obvious indications of metabolism were observed in the in vitro incubation system, which suggests that periplocin did not interact with the hepatic drug metabolic enzymes. The results of this study showed that the efflux and uptake transporters P-gp and OATPs were involved in the absorption and biliary excretion of periplocin, which may partially account for its low permeability and bioavailability. As a toxic compound, potential drug–herb/herb–herb interactions based on OATPs and P-gp should be taken into account when using P. sepium Bge in the clinic. PMID:24872678

Liang, Sheng; Deng, Fengchun; Xing, Haiyan; Wen, He; Shi, Xiaoyan; Martey, Orleans Nii; Koomson, Emmanuel; He, Xin

2014-01-01

110

An in vitro evaluation of guanfacine as a substrate for P-glycoprotein  

PubMed Central

Background With a US Food and Drug Administration-labeled indication to treat attention-deficit/hyperactivity disorder (ADHD), the nonstimulant guanfacine has become the preferred ?2-agonist for ADHD treatment. However, significant interindividual variability has been observed in response to guanfacine. Consequently, hypotheses of a contributing interaction with the ubiquitously expressed drug transporter, P-glycoprotein (P-gp), have arisen. We performed an in vitro study to determine if guanfacine is indeed a substrate of P-gp. Methods Intracellular accumulation of guanfacine was compared between P-gp expressing LLC-PK1/MDR1 cells and P-gp-negative LLC-PK1 cells to evaluate the potential interaction between P-gp and guanfacine. Cellular retention of guanfacine was analyzed using a high-performance liquid chromatographic-ultraviolet method. Rhodamine6G, a known P-gp substrate, was included in the study as a positive control. Results At guanfacine concentrations of 50 ?M and 5 ?M, intracellular accumulation of guanfacine in LLC-PK1/MDR1 cells was, 35.9% ± 4.8% and 49.0% ± 28.3% respectively, of that in LLC-PK1 cells. In comparison, the concentration of rhodamine6G, the positive P-gp substrate, in LLC-PK1/MDR1 cells was only 5% of that in LLC-PK1 cells. Conclusion The results of the intracellular accumulation study suggest that guanfacine is, at best, a weak P-gp substrate. Therefore, it is unlikely that P-gp, or any genetic variants thereof, are a determining factor in the interindividual variability of response observed with guanfacine therapy. PMID:21931492

Gillis, Nancy K; Zhu, Hao-Jie; Markowitz, John S

2011-01-01

111

In silico screening for inhibitors of p-glycoprotein that target the nucleotide binding domains.  

PubMed

Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. PMID:25270578

Brewer, Frances K; Follit, Courtney A; Vogel, Pia D; Wise, John G

2014-12-01

112

Expression of P-glycoprotein in the intestinal epithelium of dogs with lymphoplasmacytic enteritis.  

PubMed

Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory disease of the stomach, the small intestine and/or the large intestine. Loss of integrity of the intestinal barrier may be an important factor in the pathogenesis of IBD. In dogs, lymphoplasmacytic enteritis (LPE) is one of the recognized forms of IBD. P-glycoprotein (P-gp) is a membrane-bound efflux pump constituting an important component of the intestinal barrier. Changes in P-gp expression at the level of the intestinal barrier may be important in the pathogenesis of canine LPE, as this may lead to variable protection against xenobiotics and bacterial products in the intestine. The aim of the present study was to evaluate the expression of epithelial P-gp in the intestine in dogs with LPE compared with disease-free animals. Formalin-fixed intestinal biopsy samples from 57 dogs with histopathological evidence of LPE were immunolabelled with anti-P-gp antibodies (C494 and C219). Endoscopic biopsy samples of the duodenum and colon from 16 healthy beagles were used as controls. None of the control dogs had P-gp expression in the apical membrane of duodenal enterocytes, but all had P-gp labelling at the colonic epithelial surface. Twenty out of 57 dogs with LPE had P-gp expression at the apical surface membrane of villus epithelial cells in the duodenum, jejunum and/or ileum. Six out of 16 colonic samples from dogs with LPE had decreased P-gp expression at the epithelial surface compared with controls. It is unclear whether these changes in P-gp expression in dogs with LPE are a cause or a consequence of the inflammation. The observed changes could affect bioavailability of therapeutic drugs used in LPE. PMID:21334003

Van der Heyden, S; Vercauteren, G; Daminet, S; Paepe, D; Chiers, K; Polis, I; Waelbers, T; Hesta, M; Schauvliege, S; Wegge, B; Ducatelle, R

2011-01-01

113

Inhibition of P-glycoprotein-mediated transport by extracts of and monoterpenoids contained in Zanthoxyli Fructus  

SciTech Connect

Citrus (rutaceous) herbs are often used in traditional medicine and Japanese cuisine and can be taken concomitantly with conventional medicine. In this study, the effect of various citrus-herb extracts on P-glycoprotein (P-gp)-mediated transport was examined in vitro to investigate a possible interaction with P-gp substrates. Component monoterpenoids of the essential oil in Zanthoxyli Fructus was screened to find novel P-gp inhibitors. LLC-GA5-COL150 cells transfected with human MDR1 cDNA encoding P-gp were used. Cellular accumulation of [{sup 3}H]digoxin was measured in the presence or absence of P-gp inhibitors or test samples. Aurantii Fructus, Evodiae Fructus, Aurantii Fructus Immaturus, Aurantii Nobilis Pericarpium, Phellodendri Cortex, and Zanthoxyli Fructus were extracted with hot water (decocted) and then fractionated with ethyl acetate. The cell to medium ratio of [{sup 3}H]digoxin accumulation increased significantly in the presence of the decoction of Evodiae Fructus, Aurantii Nobilis Pericarpium, and Zanthoxyli Fructus, and the ethyl acetate fraction of all citrus herbs used. The ethyl acetate fraction of Zanthoxyli Fructus exhibited the strongest inhibition of P-gp among tested samples with an IC{sub 5} value of 166 {mu}g/mL. Then its component monoterpenoids, geraniol, geranyl acetate (R)-(+)-limonene, (R)-(+)-linalool, citronellal (R)-(+)-citronellal, DL-citronellol (S)-(-)-{beta}-citronellol, and cineole, were screened. (R)-(+)-citronellal and (S)-(-)-{beta}-citronellol inhibited P-gp with IC{sub 5} values of 167 {mu}M and 504 {mu}M, respectively. These findings suggest that Zanthoxyli Fructus may interact with P-gp substrates and that some monoterpenoids with the relatively lower molecular weight of about 150 such as (R)-(+)-citronellal can be potent inhibitors of P-gp.

Yoshida, Naoko [Department of Hospital Pharmacy, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194 (Japan); Takagi, Akiyoshi [Department of Hospital Pharmacy, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194 (Japan); Kitazawa, Hidenori [Department of Hospital Pharmacy, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194 (Japan); Kawakami, Junichi [Department of Hospital Pharmacy, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194 (Japan)]. E-mail: kawakami-tym@umin.ac.jp; Adachi, Isao [Department of Hospital Pharmacy, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194 (Japan)

2005-12-01

114

Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux.  

PubMed

P-glycoprotein (P-gp) is an ATP-dependent drug pump that can transport a broad range of hydrophobic compounds out of the cell. The protein is clinically important because of its contribution to the phenomenon of multidrug resistance during AIDS/HIV and cancer chemotherapy. P-gp is a member of the ATP-binding cassette (ABC) family of proteins. It is a single polypeptide that contains two repeats joined by a linker region. Each repeat has a transmembrane domain consisting of six transmembrane segments followed by a hydrophilic domain containing the nucleotide-binding domain. In this mini-review, we discuss recent progress in determining the structure and mechanism of human P-glycoprotein. PMID:16456713

Loo, T W; Clarke, D M

2005-08-01

115

Docking Applied to the Prediction of the Affinity of Compounds to P-Glycoprotein  

PubMed Central

P-glycoprotein (P-gp) is involved in the transport of xenobiotic compounds and responsible for the decrease of the drug accumulation in multi-drug-resistant cells. In this investigation we compare several docking algorithms in order to find the conditions that are able to discriminate between P-gp binders and nonbinders. We built a comprehensive dataset of binders and nonbinders based on a careful analysis of the experimental data available in the literature, trying to overcome the discrepancy noticeable in the experimental results. We found that Autodock Vina flexible docking is the best choice for the tested options. The results will be useful to filter virtual screening results in the rational design of new drugs that are not expected to be expelled by P-gp. PMID:24982867

Palestro, Pablo H.; Gavernet, Luciana; Estiu, Guillermina L.; Bruno Blanch, Luis E.

2014-01-01

116

Retrospective analysis of P-glycoprotein-mediated drug-drug interactions at the blood-brain barrier in humans.  

PubMed

To date, the in vitro-in vivo correlation (IVIVC) of P-glycoprotein (P-gp)-mediated drug-drug interaction (DDI) at the blood-brain barrier (BBB) in rats indicated that the cutoff value to significantly affect the brain penetration of digoxin was [I,unbound/Ki] of 1, where I,unbound is the unbound plasma concentration of P-gp inhibitors. On the basis of the IVIVC in rats, we speculated that clinically used P-gp inhibitors do not cause DDI at the human BBB, because none of the compounds studied was [I,unbound/Ki]>1 at therapeutic doses. Recently, positron emission tomography studies with P-gp substrates, such as [(11)C]verapamil, [(11)C]N-desmethyl loperamide, and [(11)C]loperamide, together with potent P-gp inhibitors, have indicated that increases in the influx rate constant for brain entry were observed in humans. Therefore, we aimed to retrospectively analyze the results of P-gp-mediated DDIs with in vitro P-gp inhibition assays and to confirm the appropriate cutoff value. In vitro P-gp inhibition assays using verapamil, N-desmethyl loperamide, and loperamide as P-gp probe substrates were performed in human multidrug resistance protein 1-expressing LLC-PK1 cells. The efflux ratios decreased in the presence of P-gp inhibitors, and the Ki of tariquidar was 10 nmol/L, regardless of probe substrates. Taking the in vitro Ki and unbound plasma concentrations in clinical DDI studies together, the criterion [I,unbound/Ki] of 1 was an appropriate cutoff limit to observe significant P-gp-mediated DDI at the BBB in humans. On the other hand, no significant DDI was observed in cases in which [I,unbound/Ki] was less than 0.1. This criterion was comparable to the previous IVIVC result in rats. PMID:23340958

Sugimoto, Hiroshi; Hirabayashi, Hideki; Amano, Nobuyuki; Moriwaki, Toshiya

2013-04-01

117

A?1-42 reduces P-glycoprotein in the blood-brain barrier through RAGE-NF-?B signaling.  

PubMed

The reduced clearance of amyloid-? peptide (A?) from the brain partly accounts for the neurotoxic accumulation of A? in Alzheimer's disease (AD). Recently, it has been suggested that P-glycoprotein (P-gp), which is an efflux transporter expressed on the luminal membrane of the brain capillary endothelium, is capable of transporting A? out of the brain. Although evidence has shown that restoring P-gp reduces brain A? in a mouse model of AD, the molecular mechanisms underlying the decrease in P-gp expression in AD is largely unknown. We found that A?1-42 reduced P-gp expression in the murine brain endothelial cell line bEnd.3, which was consistent with our in vivo data that P-gp expression was significantly reduced, especially near amyloid plaques in the brains of five familial AD mutations (5XFAD) mice that are used as an animal model for AD. A neutralizing antibody against the receptor for advanced glycation end products (RAGE) and an inhibitor of nuclear factor-kappa B (NF-?B) signaling prevented the decrease in A?1-42-induced P-gp expression, suggesting that A? reduced P-gp expression through NF-?B signaling by interacting with RAGE. In addition, we observed that the P-gp reduction by A? was rescued in bEnd.3 cells receiving inductive signals or factors from astrocytes making contacts with endothelial cells (ECs). These results support that alterations of astrocyte-EC contacts were closely associated with P-gp expression. This suggestion was further supported by the observation of a loss of astrocyte polarity in the brains of 5XFAD mice. Taken together, we found that P-gp downregulation by A? was mediated through RAGE-NF-?B signaling pathway in ECs and that the contact between astrocytes and ECs was an important factor in the regulation of P-gp expression. PMID:24967961

Park, R; Kook, S-Y; Park, J-C; Mook-Jung, I

2014-01-01

118

Homodimers of the Antiviral Abacavir as Modulators of P-glycoprotein Transport in Cell Culture: Probing Tether Length  

PubMed Central

A major hurdle in permanently eliminating HIV from the body is the persistence of viral reservoirs, including those of the brain. One potential strategy towards eradicating HIV reservoirs of the brain is to block efflux transporters, such as P-glycoprotein (P-gp), that contribute to the limited penetration of antiviral agents across the blood-brain barrier (BBB). Herein, we described a series of dimeric inhibitors of P-gp based on the nucleoside reverse transcriptase inhibitor and P-gp substrate, abacavir. Varying tether lengths were used to generate abacavir dimers to probe tether requirements for inhibitory potency. These dimeric agents were evaluated in two cell lines that express P-gp at varying levels: a P-gp over-expressing CD4+ T-lymphocyte cell line (12D7-MDR) and a human brain capillary endothelial cell line as an in vitro model of the BBB (hCMEC/D3) that expresses endogenous levels of P-gp. All dimeric abacavir analogs were inhibitors of P-gp efflux in the two cell lines with potencies that varied with tether length; the most potent agents displayed low micromolar inhibition. P-gp inhibition in a highly P-gp over-expressing cell line (MCF-7/DX1) was also observed with a range of therapeutic substrates. Competition studies with the photoaffinity substrate [125I]iodoarylazidoprazosin demonstrated that abacavir dimers act by competing for the substrate binding sites of P-gp. These data demonstrate that the tether length of dimeric abacavir derivatives has a significant effect on inhibition of P-gp drug efflux, with up to a 35-fold increase in potency observed with longer tether linkages. PMID:24273637

Namanja, Hilda A.; Emmert, Dana; Hrycyna, Christine A.; Chmielewski, Jean

2013-01-01

119

Influence of P-glycoprotein on embryotoxicity of the antifouling biocides to sea urchin (Strongylocentrotus intermedius).  

PubMed

P-glycoprotein (P-gp), as an ATP-binding cassette transporter, transports a wide variety of substrates varying from small molecules like steroids to large polypeptides across the cell membrane in human and animals, even in aquatic animals. Although P-gp protein has attracted much attention of research, its effect on the toxicity of environmental toxicants such as antifouling biocides is still poorly understood. The goal of this study is to evaluate whether copper pyrithione (CuPT), Sea-Nine 211, dichlofluanid and tolylfluanid, four widely used antifouling agents, can be transported by P-gp in embryos of sea urchin Strongylocentrotus intermedius in the presence and absence of the P-gp inhibitor verapamil. Cytotoxcicities of Sea-Nine 211 (EC50 = 99 nM, at 4-arm pluteus) and dichlofluanid (EC50 = 144 nM, at multi-cell) are enhanced by the addition of the P-gp inhibitor, indicating that the two biocides are potential P-gp substrates. Tolylfluanid and CuPT are not transported by P-gp out of the cell, since no obvious changes in the cytotoxicities of the two biocides are observed no matter whether verapamil is added or not. In addition, to understand the mechanisms of ligand binding and its interaction with P-gp, a three-dimensional model of the sea urchin P-gp is generated based on the mouse crystal structure by using homology modeling approach. With this model, a flexible docking is performed and the results indicate that Sea-Nine 211 and dichlofluanid share the same binding site with verapamil, composed of key residues Lys677, Lys753, Thr756, Ala780, Met1033 and Phe1037, whereas tolylfluanid and CuPT display totally different binding modes to P-gp. This further demonstrates that Sea-Nine 211 and dichlofluanid are P-gp substrates, which provides us with new insights into the interactions of P-gp with the antifouling contaminants in aquatic invertebrate embryos. PMID:21229388

Xu, Xue; Fu, Jingxuan; Wang, Heng; Zhang, Baidong; Wang, Xia; Wang, Yonghua

2011-03-01

120

Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein  

Microsoft Academic Search

For cancer chemotherapy, avoiding the side effects of chemotherapeutic agents is difficult. Multidrug resistance is one of the major obstacles to successful cancer chemotherapy. P-Glycoprotein (P-gp) serves as an efflux pump and plays a key role in the multidrug resistance. We examined the effect of MRK-16, a monoclonal antibody against P-gp, modified liposomes (MRK-Lip) on the human myelogenous leukemia K-562

Hirotami Matsuo; Masahiro Wakasugi; Hitomi Takanaga; Hisakazu Ohtani; Mikihiko Naito; Takashi Tsuruo; Yasufumi Sawada

2001-01-01

121

Reversion of P-glycoprotein-mediated multidrug resistance by diallyl trisulfide in a human osteosarcoma cell line.  

PubMed

Diallyl trisulfide (DATS), the main sulfuric compound in garlic, has been shown to have antitumor effects. The present study aimed to ascertain whether DATS reverses the drug resistance of human osteosarcoma cells in vitro and to investigate its potential mechanisms. Human osteosarcoma U2-OS cells were treated with different concentrations of DATS. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while P-glycoprotein (P-gp) expression and the proportion of apoptotic cells were measured by flow cytometry. Morphological changes were observed under an optical microscope. ?uclear factor-?B (NF-?B) and inhibitor of NF-?B (I?B) activities were measured by PCR and western blot analysis. Results showed that the proliferation of U2-OS cells treated with different concentrations of DATS was significantly decreased in a concentration- and time-dependent manner. DATS increased the toxic effect of adriamycin on U2-OS cells. Moreover, P-gp expression was decreased and the apoptosis rate was increased in a concentration-dependent manner following treatment of DATS. Additionally, NF-?B activity was inhibited by DATS while expression of I?B was increased. Our data clearly suggest that DATS has significant anticancer effects on human osteosarcoma cells. The potential mechanisms include reducing the multidrug resistance and inducing apoptosis. NF-?B suppression may be involved in DATS-induced inhibition of cell proliferation. PMID:24788927

Wang, Zhiyong; Xia, Qing; Cui, Jia; Diao, Yutao; Li, Jianmin

2014-06-01

122

Hyperglycemia induced down-regulation of renal P-glycoprotein expression.  

PubMed

The purpose of this study is to investigate the regulation of P-glycoprotein expression in the kidney under diabetic condition. Renal P-glycoprotein expression was examined in inbred mice with type 1 or type 2 diabetes by Western blotting. The underlying mechanisms of P-glycoprotein regulation were examined in Madin-Darby canine kidney type II (MDCK-II) cells by Western blotting or qRT-PCR. (3)H-digoxin uptake was measured for P-glycoprotein activity in cells under various treatments. The results showed that P-glycoprotein expression was lower in kidneys of diabetic mice than in controls. In MDCK-II cells, treatments with insulin or IL-6 did not cause any change in P-glycoprotein expression, whereas TNF-? tended to increase P-glycoprotein expression at a concentration of 1 ng/ml. On the other hand, P-glycoprotein expression was reduced under high glucose conditions (450 mg/dl), while superoxide production was increased, and the reduction in P-glycoprotein expression was abolished by N-acetylcysteine (an antioxidant) and staurosporine (a nonselective PKC inhibitor). Treatment with oxidizing agents (H(2)O(2), BSO) or PMA (a PKC activator) reduced P-glycoprotein expression. Antioxidant (N-acetylcysteine or glutathione) co-treatment abolished the H(2)O(2)-induced and BSO-induced reduction in P-glycoprotein expression, whereas it did not prevent the effect of PMA. The PMA-induced P-glycoprotein down-regulation was prevented by co-treatment of LY333531 (a PKC-? inhibitor). (3)H-digoxin levels were higher in MDCK-II cells with high glucose, PMA or H(2)O(2) treatments. In conclusion, P-glycoprotein expression is lower in kidneys of diabetic mice and in MDCK-II cells under high glucose conditions. Hyperglycemia induced reactive oxygen species and activated PKC in MDCK-II cells, leading to the decrease in P-glycoprotein expression. PMID:22721613

Yeh, Szu-Yu; Pan, Huei-Ju; Lin, Chung-Cheng; Kao, Yu-Han; Chen, Yen-Hui; Lin, Chun-Jung

2012-09-01

123

The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein  

PubMed Central

The kinetics and nature of equilibrium binding were used to characterize the molecular interaction of the anthranilic acid derivative [3H]-XR9576 with the multidrug resistance P-glycoprotein (P-gp). XR9576 displayed specific high-affinity binding to P-gp (Bmax=275?pmol?mg?1, Kd=5.1?nM). The transport substrates [3H]-vinblastine and [3H]-paclitaxel displayed 4 fold and 20 fold lower affinity respectively for P-gp. The duration of action of XR9576 with P-gp was increased in comparison to that of vinblastine which displayed a slower rate of association and a faster dissociation rate.The relative affinities of several modulators and transport substrates to interact with P-gp were determined from displacement drug equilibrium binding assays. Vinblastine and paclitaxel could only fractionally displace [3H]-XR9576 binding, displaying Ki values significantly different from their measured Kd values. This suggests a non-competitive interaction between XR9576 and the P-gp substrates vinblastine and paclitaxel.XR9576 was shown to be a potent modulator of P-gp mediated [3H]-vinblastine and [3H]-paclitaxel transport as it increased the steady-state accumulation of these cytotoxics in CHrB30 cells to levels observed in non-P-gp-expressing AuxB1 cells (EC50=487±50?nM). This inhibition of drug transport is not mediated through competition for transport since [3H]-XR9576 accumulation was not influenced by P-gp expression or function.These results demonstrate that the P-gp modulator XR9576 exhibits greater selectivity, duration of inhibition and potency of interaction with this transporter than any other reported modulators. Several lines of evidence suggest that XR9576 inhibits P-gp function by binding at a site which is distinct from the site of interaction of transport substrates. The two sites may be classified as serving modulatory or transport functions. PMID:10510451

Martin, Catherine; Berridge, Georgina; Mistry, Prakash; Higgins, Christopher; Charlton, Peter; Callaghan, Richard

1999-01-01

124

First evidence of the P-glycoprotein gene expression and multixenobiotic resistance modulation in earthworm.  

PubMed

Multixenobiotic resistance (MXR) is an important mechanism of cellular efflux mediated by ATP binding cassette (ABC) transporters that bind and actively remove toxic substrates from the cell. This study was the first to identify ABC transporter P-glycoprotein (P-gp/ABCB1) as a representative of the MXR phenotype in earthworm (Eisenia fetida). The identified partial cDNA sequence of ABCB1 overlapped with ABCB1 homologues of other organisms from 58.5 % to 72.5 %. We also studied the effect of five modulators (verapamil, cyclosporine A, MK571, probenecid, and orthovanadate) on the earthworm's MXR activity by measuring the accumulation of model substrates rhodamine B and rhodamine 123 in whole body tissue of the adult earthworm. MK571, orthovanadate, and verapamil significantly inhibited MXR activity, and rhodamine 123 turned out to better reflect MXR activity in that species than rhodamine B. Our results show that E. fetida can serve well as a test organism for environmental pollutants that inhibit MXR activity. PMID:24622780

Bošnjak, Ivana; Bielen, Ana; Babi?, Sanja; Sver, Lidija; Popovi?, Natalija Topi?; Strunjak-Perovi?, Ivan?ica; Což-Rakovac, Rozelinda; Klobu?ar, Roberta Sauerborn

2014-03-01

125

Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1? and P-glycoprotein overexpression  

PubMed Central

Background and purpose: Artemisinin is an antimalarial drug exerting pleiotropic effects, such as the inhibition of the transcription factor nuclear factor-kappa B and of the sarcoplasmic/endoplasmic reticulum Ca++-ATPase (SERCA) of P. falciparum. As the sesquiterpene lactone thapsigargin, a known inhibitor of mammalian SERCA, enhances the expression of P-glycoprotein (Pgp) by increasing the intracellular Ca++ ([Ca++]i) level, we investigated whether artemisinin and its structural homologue parthenolide could inhibit SERCA in human colon carcinoma HT29 cells and induce a resistance to doxorubicin. Experimental approach: HT29 cells were incubated with artemisinin or parthenolide and assessed for SERCA activity, [Ca++]i levels, Pgp expression, doxorubicin accumulation and toxicity, and translocation of the hypoxia-inducible factor, HIF-1?. Key results: Artemisinin and parthenolide, like the specific SERCA inhibitors thapsigargin and cyclopiazonic acid, reduced the activity of SERCA. They also increased intracellular calcium concentration ([Ca++]i) and Pgp expression and decreased doxorubicin accumulation and cytotoxicity. The intracellular Ca++ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N?,N?-tetraacetic acid, and the inhibitor of calmodulin-dependent kinase II (CaMKII) KN93 prevented these effects. CaMKII is known to promote the phosphorylation and the activation of HIF-1?, which may induce Pgp. In HT29 cells, artemisinin and parthenolide induced the phosphorylation of HIF-1?, which was inhibited by KN93. Conclusions and implications: Our results suggest that artemisinin and parthenolide may act as SERCA inhibitors and, like other SERCA inhibitors, induce resistance to doxorubicin in human colon cancer cells, via the CaMKII-dependent activation of HIF-1? and the induction of Pgp. PMID:19298255

Riganti, C; Doublier, S; Viarisio, D; Miraglia, E; Pescarmona, G; Ghigo, D; Bosia, A

2009-01-01

126

The Functional Influences of Common ABCB1 Genetic Variants on the Inhibition of P-glycoprotein by Antrodia cinnamomea Extracts  

PubMed Central

Antrodia cinnamomea is a traditional healthy food that has been demonstrated to possess anti-inflammatory, antioxidative, and anticacer effects. The purpose of this study was to evaluate whether the ethanolic extract of A. cinnamomea (EEAC) can affect the efflux function of P-glycoprotein (P-gp) and the effect of ABCB1 genetic variants on the interaction between EEAC and P-gp. To investigate the mechanism of this interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established and the expression of P-gp was confirmed by Western blot. The results of the rhodamine 123 efflux assay demonstrated that EEAC efficiently inhibited wild-type P-gp function at an IC50 concentration of 1.51±0.08 µg/mL through non-competitive inhibition. The IC50 concentrations for variant-type 1236T-2677T-3435T P-gp and variant-type 1236T-2677A-3435T P-gp were 5.56±0.49 µg/mL and 3.33±0.67 µg/mL, respectively. In addition, the inhibition kinetics of EEAC also changed to uncompetitive inhibition in variant-type 1236T-2677A-3435T P-gp. The ATPase assay revealed that EEAC was an ATPase stimulator and was capable of reducing verapamil-induced ATPase levels. These results indicate that EEAC may be a potent P-gp inhibitor and higher dosages may be required in subjects carrying variant-types P-gp. Further studies are required to translate this basic knowledge into clinical applications. PMID:24586917

Chen, Ying-Yi; Hung, Chin-Chuan

2014-01-01

127

Digoxin and ouabain induce P-glycoprotein by activating calmodulin kinase II and hypoxia-inducible factor-1alpha in human colon cancer cells  

SciTech Connect

Digoxin and ouabain are cardioactive glycosides, which inhibit the Na{sup +}/K{sup +}-ATPase pump and in this way they increase the intracellular concentration of cytosolic calcium ([Ca{sup ++}]{sub i}). They are also strong inducers of the P-glycoprotein (Pgp), a transmembrane transporter which extrudes several drugs, including anticancer agents like doxorubicin. An increased amount of Pgp limits the absorption of drugs through epithelial cells, thus inducing resistance to chemotherapy. The mechanism by which cardioactive glycosides increase Pgp is not known and in this work we investigated whether digoxin and ouabain elicited the expression of Pgp with a calcium-driven mechanism. In human colon cancer HT29 cells both glycosides increased the [Ca{sup ++}]{sub i} and this event was dependent on the calcium influx via the Na{sup +}/Ca{sup ++} exchanger. The increased [Ca{sup ++}]{sub i} enhanced the activity of the calmodulin kinase II enzyme, which in turn activated the transcription factor hypoxia-inducible factor-1alpha. This one was responsible for the increased expression of Pgp, which actively extruded doxorubicin from the cells and significantly reduced the pro-apoptotic effect of the drug. All the effects of glycosides were prevented by inhibiting the Na{sup +}/Ca{sup ++} exchanger or the calmodulin kinase II. This work clarified the molecular mechanisms by which digoxin and oubain induce Pgp and pointed out that the administration of cardioactive glycosides may widely affect the absorption of drugs in colon epithelia. Moreover, our results suggest that the efficacy of chemotherapeutic agent substrates of Pgp may be strongly reduced in patients taking digoxin.

Riganti, Chiara, E-mail: chiara.riganti@unito.i [Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena, 5/bis, 10126, Torino (Italy); Research Center on Experimental Medicine (CeRMS), Via Santena, 5/bis, 10126, Torino (Italy); Campia, Ivana; Polimeni, Manuela [Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena, 5/bis, 10126, Torino (Italy); Pescarmona, Gianpiero; Ghigo, Dario; Bosia, Amalia [Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena, 5/bis, 10126, Torino (Italy); Research Center on Experimental Medicine (CeRMS), Via Santena, 5/bis, 10126, Torino (Italy)

2009-11-01

128

Analysis of the Chinese Hamster P-Glycoprotein\\/Multi drug Resistance Gene pgpl Reveals That the AP1 Site Is Essential for Full Promoter Activity  

Microsoft Academic Search

Recent studies have revealed that the expression of P- glycoprotein\\/multidrug resistance genes is crucial for the development of resistance to a number of lipophilic cancer chemotherapeutic agents. To better understand the regulatory mechanisms of pgp gene expression, we isolated and charaderized a DNA fragment containing the 5' portion of a Chinese hamster pgp gene. DNA sequence analysis revealed that this

Larry D. Teeter; Tristen Eckersberg; Ying Tsai; M. Tien

129

Raman, SERS, and induced circular dichroism techniques as a probe of pharmaceuticals in their interactions with the human serum albumin and p-glycoprotein  

NASA Astrophysics Data System (ADS)

Camptothecin (CPT) derivatives are the well known inhibitors of the human DNA topoisomerase (topo) I. Two of them, irinotecan and topotecan, are just in the clinics; 9-amino- CPT is on the stage II of clinical trials, and the active search for new derivatives is now in progress. Stability of the CPT derivatives on their way to the target and resistance of cancer cells to these drugs present the crucial problem of the chemotherapy. Human serum albumin (HSA) is the mediator of transport and metabolism of numerous pharmaceuticals in the blood and P-glycoprotein (P- gp) plays a crucial role of the mediator of the multidrug resistance (MDR) of the cancer cells. This paper present the result of analysis of molecular interactions of some drugs of CPT family with the HSA and P-gp. Induced circular dichroism (CD) and Raman techniques have been applied for monitoring molecular interaction of drugs with HSA as well as to identify the conformational transition of the protein induced by the drug binding. Drug molecular determinants responsible for interaction have been identified and their binding sites within the HSA have been localized. New cancer cells lines exhibiting an extremely high level of MDR resistance have been established and were shown to contain the P-gp overproduced in the quantities of 35 percent from the all membrane proteins. The membrane fractions of these cells with the controls presented by the membranes of the parental membrane proteins. The membrane fractions of these cells with the controls presented by the membranes of the parental sensitive cells may be used as a model system for spectroscopic analysis of the specific pharmaceuticals/P-gp interactions.

Fleury, Fabrice; Ianoul, Anatoli I.; Baggetto, Loris; Jardillier, Jean-Claude; Alix, Alain J.; Nabiev, Igor R.

1999-04-01

130

Cell-Free Microfluidic Determination of P-glycoprotein Interactions with Substrates and Inhibitors.  

PubMed

The membrane protein P-glycoprotein (P-gp) plays key roles in the oral bioavailability of drugs, their blood brain barrier passage as well as in multidrug resistance. For new drug candidates it is mandatory to study their interaction with P-gp, according to FDA and EMA regulations. The vast majority of these tests are performed using confluent cell layers of P-gp overexpressing cell lines that render these tests laborious. In this study, we introduce a cell-free microfluidic assay for the rapid testing of drug- P-gp interactions. Cell-derived vesicles are prepared from MDCKII-MDR1 overexpressing cells and immobilized on the surface of a planar microfluidic device. The drug is delivered continuously to the vesicles and calcein accumulation is monitored by means of a fluorescence assay and total internal reflection fluorescence (TIRF) microscopy. Only small amounts of compounds (~10 ?l) are required in concentrations of 5, 25 and 50 ?M for a test that provides within 5 min information on the apparent dissociation constant of the drug and P-gp. We tested 10 drugs on-chip, 9 of which are inhibitors or substrates of P-glycoprotein and one negative control. We benchmarked the measured apparent dissociation constants against an alternative assay on a plate reader and reference data from FDA. These comparisons revealed good correlations between the logarithmic apparent dissociation constants (R(2)?=?0.95 with ATPase assay, R(2)?=?0.93 with FDA data) and show the reliability of the rapid on-chip test. The herein presented assay has an excellent screening window factor (Z'-factor) of 0.8, and is suitable for high-throughput testing. PMID:24928366

Eyer, Klaus; Herger, Michael; Krämer, Stefanie D; Dittrich, Petra S

2014-12-01

131

[11C]phenytoin revisited: synthesis by [11C]CO carbonylation and first evaluation as a P-gp tracer in rats  

PubMed Central

Background At present, several positron emission tomography (PET) tracers are in use for imaging P-glycoprotein (P-gp) function in man. At baseline, substrate tracers such as R-[11C]verapamil display low brain concentrations with a distribution volume of around 1. [11C]phenytoin is supposed to be a weaker P-gp substrate, which may lead to higher brain concentrations at baseline. This could facilitate assessment of P-gp function when P-gp is upregulated. The purpose of this study was to synthesize [11C]phenytoin and to characterize its properties as a P-gp tracer. Methods [11C]CO was used to synthesize [11C]phenytoin by rhodium-mediated carbonylation. Metabolism and, using PET, brain pharmacokinetics of [11C]phenytoin were studied in rats. Effects of P-gp function on [11C]phenytoin uptake were assessed using predosing with tariquidar. Results [11C]phenytoin was synthesized via [11C]CO in an overall decay-corrected yield of 22?±?4%. At 45 min after administration, 19% and 83% of radioactivity represented intact [11C]phenytoin in the plasma and brain, respectively. Compared with baseline, tariquidar predosing resulted in a 45% increase in the cerebral distribution volume of [11C]phenytoin. Conclusions Using [11C]CO, the radiosynthesis of [11C]phenytoin could be improved. [11C]phenytoin appeared to be a rather weak P-gp substrate. PMID:22747744

2012-01-01

132

Clitocine Reversal of P-Glycoprotein Associated Multi-Drug Resistance through Down-Regulation of Transcription Factor NF-?B in R-HepG2 Cell Line  

PubMed Central

Multidrug resistance(MDR)is one of the major reasons for failure in cancer chemotherapy and its suppression may increase the efficacy of therapy. The human multidrug resistance 1 (MDR1) gene encodes the plasma membrane P-glycoprotein (P-gp) that pumps various anti-cancer agents out of the cancer cell. R-HepG2 and MES-SA/Dx5 cells are doxorubicin induced P-gp over-expressed MDR sublines of human hepatocellular carcinoma HepG2 cells and human uterine carcinoma MES-SA cells respectively. Herein, we observed that clitocine, a natural compound extracted from Leucopaxillus giganteus, presented similar cytotoxicity in multidrug resistant cell lines compared with their parental cell lines and significantly suppressed the expression of P-gp in R-HepG2 and MES-SA/Dx5 cells. Further study showed that the clitocine increased the sensitivity and intracellular accumulation of doxorubicin in R-HepG2 cells accompanying down-regulated MDR1 mRNA level and promoter activity, indicating the reversal effect of MDR by clitocine. A 5?-serial truncation analysis of the MDR1 promoter defined a region from position ?450 to ?193 to be critical for clitocine suppression of MDR1. Mutation of a consensus NF-?B binding site in the defined region and overexpression of NF-?B p65 could offset the suppression effect of clitocine on MDR1 promoter. By immunohistochemistry, clitocine was confirmed to suppress the protein levels of both P-gp and NF-?B p65 in R-HepG2 cells and tumors. Clitocine also inhibited the expression of NF-?B p65 in MES-SA/Dx5. More importantly, clitocine could suppress the NF-?B activation even in presence of doxorubicin. Taken together; our results suggested that clitocine could reverse P-gp associated MDR via down-regulation of NF-?B. PMID:22927901

Sun, Jianguo; Yeung, Chilam Au; Co, Ngai Na; Tsang, Tsun Yee; Yau, Esmond; Luo, Kewang; Wu, Ping; Wa, Judy Chan Yuet; Fung, Kwok-Pui; Kwok, Tim-Tak; Liu, Feiyan

2012-01-01

133

Effects of licochalcone A on the bioavailability and pharmacokinetics of nifedipine in rats: possible role of intestinal CYP3A4 and P-gp inhibition by licochalcone A.  

PubMed

The purpose of this study was to investigate the possible effects of licochalcone A (a herbal medicine) on the pharmacokinetics of nifedipine and its main metabolite, dehydronifedipine, in rats. The pharmacokinetic parameters of nifedipine and/or dehydronifedipine were determined after oral and intravenous administration of nifedipine to rats in the absence (control) and presence of licochalcone A (0.4, 2.0 and 10 mg/kg). The effect of licochalcone A on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activity was also evaluated. Nifedipine was mainly metabolized by CYP3A4. Licochalcone A inhibited CYP3A4 enzyme activity in a concentration-dependent manner with a 50% inhibition concentration (IC50 ) of 5.9 ?m. In addition, licochalcone A significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. The area under the plasma concentration-time curve from time 0 to infinity (AUC) and the peak plasma concentration (Cmax ) of oral nifedipine were significantly greater and higher, respectively, with licochalcone A. The metabolite (dehydronifedipine)-parent AUC ratio (MR) in the presence of licochalcone A was significantly smaller compared with the control group. The above data could be due to an inhibition of intestinal CYP3A4 and P-gp by licochalcone A. The AUCs of intravenous nifedipine were comparable without and with licochalcone A, suggesting that inhibition of hepatic CYP3A4 and P-gp was almost negligible. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24903704

Choi, Jin-Seok; Choi, Jun-Shik; Choi, Dong-Hyun

2014-10-01

134

Differential effects of the organochlorine pesticide DDT and its metabolite p,p'-DDE on p-glycoprotein activity and expression  

SciTech Connect

1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) is an organochlorine pesticide. Its metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethene (p,p'-DDE) is a persistent environmental contaminant and both compounds accumulate in animals. Because multidrug resistance transporters, such as p-glycoprotein, function as a defense against xenobiotic exposure, we analyzed the ability of DDT and p,p'-DDE to act as efflux modulators. Using a competitive intact cell assay based on the efflux of the fluorescent dye rhodamine 123, we found that DDT, but not p,p'-DDE, stimulated dye retention. Subsequent studies using verapamil as competitor suggested that DDT is a weak p-glycoprotein inhibitor. Further studies addressed the ability of DDT and p,p'-DDE to induce MDR1, the gene encoding p-glycoprotein. In HepG2 cells, we found that both compounds induced MDR1 by twofold to threefold. Similar results were observed in mouse liver after a single dose of p,p'-DDE, although some gender-specific induction differences were noted. By contrast, p,p'-DDE failed to induce MDR1 in HeLa cells, indicating some cell-specific effects for induction. Further expression studies demonstrated increased levels of the endoplasmic reticulum molecular chaperone, Bip, in response to DDT, but not p,p'-DDE. These results suggest that DDT, but not p,p'-DDE, induces an endoplasmic reticulum stress response.

Shabbir, Arsalan [Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029 (United States); DiStasio, Susan [Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029 (United States); Zhao, Jingbo [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); VA Medical Center, Bronx, NY 10468 (United States); Cardozo, Christopher P. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); VA Medical Center, Bronx, NY 10468 (United States); Wolff, Mary S. [Department of Community and Preventative Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Caplan, Avrom J. [Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029 (United States)]. E-mail: avrom.caplan@mssm.edu

2005-03-01

135

4,5-Di-substituted benzyl-imidazol-2-substituted amines as the structure template for the design and synthesis of reversal agents against P-gp-mediated multidrug resistance breast cancer cells.  

PubMed

Over-expression of P-glycoprotein (P-gp), a primary multidrug transporter which is located in plasma membranes, plays a major role in the multidrug resistance (MDR) of cytotoxic chemotherapy. Naamidines are a class of marine imidazole alkaloids isolated from Leucetta and Clathrina sponges, possessing a Y-shaped scaffold. Based on the results previously obtained from the third-generation MDR modulator ONT-093 and other modulators developed in our group, we designed and synthesized a series of novel 4,5-di-substituted benzyl-1-methyl-1H-imidazol-2-substituted amines using the Naamidine scaffold as the structure template. Subsequently, their reversing activity for Taxol resistance has been evaluated in P-gp-mediated multidrug resistance breast cancer cell line MDA435/LCC6MDR. Compounds 12c with a Y-shaped scaffold, and compound 17c which is 'X-shaped' scaffold and possesses a 4-diethylamino group at aryl ring B, turned out to be the most potent P-gp modulators. It appears that compounds 12c and 17c at 1 ?M concentration can sensitize LCC6MDR cells toward Taxol by 26.4 and 24.5 folds, with an EC50 212.5 and 210.5 nM, respectively. These two compounds are about 5-6 folds more potent than verapamil (RF = 4.5). Moreover, compounds 12c and 17c did not exhibit obvious cytotoxicity in either cancer cell lines or normal mouse fibroblast cell lines. This study has demonstrated that the synthetic Naamidine analogues can be potentially employed as effective, safe modulators for the P-gp-mediated drug resistance cancer cells. PMID:24952376

Zhang, Nan; Zhang, Zhaohui; Wong, Iris L K; Wan, Shengbiao; Chow, Larry M C; Jiang, Tao

2014-08-18

136

Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans  

Microsoft Academic Search

Background and methods: The antiepileptic drug carbamazepine is known to be an inducer of cytochrome P450 (CYP) 3A4 after binding to the nuclear pregnane X receptor. To evaluate whether it also regulates the multidrug transporter proteins P-glycoprotein (P-gp) and multidrug resistance protein MRP2 in humans, duodenal expression of multidrug resistance gene MDR1 messenger ribonucleic acid (mRNA) and MRP2 mRNA, content

Thomas Giessmann; Karen May; Christiane Modess; Danilo Wegner; Ute Hecker; Michael Zschiesche; Peter Dazert; Markus Grube; Eike Schroeder; Rolf Warzok; Ingolf Cascorbi; Heyo K. Kroemer; Werner Siegmund

2004-01-01

137

Nilotinib Counteracts P-Glycoprotein-Mediated Multidrug Resistance and Synergizes the Antitumoral Effect of Doxorubicin in Soft Tissue Sarcomas  

Microsoft Academic Search

The therapeutic effect of doxorubicin (DXR) in the treatment of soft tissue sarcomas (STS) is limited by its toxicity and the development of multidrug resistance (MDR), the latter mainly induced by high expression of efflux pumps (e.g., P-glycoprotein [P-gp]). Therefore, the search for alternative therapies, which sensitize these tumors to chemotherapy while maintaining a low toxicity profile, is a rational

Victor Hugo Villar; Oliver Vögler; Jordi Martínez-Serra; Rafael Ramos; Silvia Calabuig-Farińas; Antonio Gutiérrez; Francisca Barceló; Javier Martín-Broto; Regina Alemany

2012-01-01

138

Pro-Inflammatory Cytokine Regulation of P-glycoprotein in the Developing Blood-Brain Barrier  

PubMed Central

Placental P-glycoprotein (P-gp) acts to protect the developing fetus from exogenous compounds. This protection declines with advancing gestation leaving the fetus and fetal brain vulnerable to these compounds and potential teratogens in maternal circulation. This vulnerability may be more pronounced in pregnancies complicated by infection, which is common during pregnancy. Pro-inflammatory cytokines (released during infection) have been shown to be potent inhibitors of P-gp, but nothing is known regarding their effects at the developing blood-brain barrier (BBB). We hypothesized that P-gp function and expression in endothelial cells of the developing BBB will be inhibited by pro-inflammatory cytokines. We have derived brain endothelial cell (BEC) cultures from various stages of development of the guinea pig: gestational day (GD) 50, 65 (term ?68 days) and postnatal day (PND) 14. Once these cultures reached confluence, BECs were treated with various doses (100–104 pg/mL) of pro-inflammatory cytokines: interleukin-1? (IL-1?), interleukin-6 (IL-6) or tumor necrosis factor- ? (TNF-?). P-gp function or abcb1 mRNA (encodes P-gp) expression was assessed following treatment. Incubation of GD50 BECs with IL-1?, IL-6 or TNF-? resulted in no change in P-gp function. GD65 BECs displayed a dose-dependent decrease in function with all cytokines tested; maximal effects at 42%, 65% and 34% with IL-1?, IL-6 and TNF-? treatment, respectively (P<0.01). Inhibition of P-gp function by IL-1?, IL-6 and TNF-? was even greater in PND14 BECs; maximal effects at 36% (P<0.01), 84% (P<0.05) and 55% (P<0.01), respectively. Cytokine-induced reductions in P-gp function were associated with decreased abcb1 mRNA expression. These data suggest that BBB P-gp function is increasingly responsive to the inhibitory effects of pro-inflammatory cytokines, with increasing developmental age. Thus, women who experience infection and take prescription medication during pregnancy may expose the developing fetal brain to greater amounts of exogenous compounds – many of which are considered potentially teratogenic. PMID:22973436

Iqbal, Majid; Ho, Hay Lam; Petropoulos, Sophie; Moisiadis, Vasilis G.; Gibb, William; Matthews, Stephen G.

2012-01-01

139

Clarification of P-glycoprotein inhibition-related drug-drug interaction risks based on a literature search of the clinical information.  

PubMed

Abstract 1. ?Recently, the Food and Drug Administration (FDA) and European Medicines Agency have shown decision trees to determine whether a drug candidate is an inhibitor of P-glycoprotein (P-gp). However, there has been no clear information on whether P-gp inhibition can be significant in clinical drug-drug interactions (DDIs). The purpose of this study was to confirm the effect of P-gp inhibition through comprehensive analysis of the clinical DDI studies. 2. ?Clinical information on P-gp inhibition was collected using the University of Washington Metabolism and Transport Drug Interaction Database™. The risks of P-gp inhibition-related DDI were qualitatively evaluated in terms of the contribution of CYP3A inhibition. The degrees of DDI risk were categorized using the area under the plasma concentration-time curve increase ratio (AUCR), according to the FDA DDI criteria. 3. ?When both P-gp and CYP3A were inhibited, the DDI risks were potent in 25% of the studies. When CYP3A inhibition did not contribute to the DDI, no study was categorized as potent DDI risk, and the detailed analysis revealed that AUCRs were basically <3.0. The DDI risk caused by P-gp inhibition solely would be limited, although the use of P-gp substrates with narrow therapeutic range should be carefully controlled. PMID:24937160

Umeyama, Yukari; Fujioka, Yasushi; Okuda, Teruaki

2014-12-01

140

Murine P-glycoprotein Deficiency Alters Intestinal Injury Repair and Blunts Lipopolysaccharide-Induced Radioprotection  

PubMed Central

P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE2) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a?/? mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a?/?mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a?/?distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1?, in B6 wild-type controls but not in B6.mdr1a?/? animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1?/? animals, indicating a role for IL-1? in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1? gene expression in response to systemic exposure to LPS. PMID:22780103

Staley, Elizabeth M.; Yarbrough, Vanisha R.; Schoeb, Trenton R.; Daft, Joseph G.; Tanner, Scott M.; Steverson, Dennis; Lorenz, Robin G.

2012-01-01

141

The process behind the expression of mdr-1/P-gp and mrp/MRP in human leukemia/lymphoma.  

PubMed

There is a controversy over the link between phenotypes of multidrug resistance (MDR) and clinical outcome in leukemia/lymphoma patients. This may be because the process behind the induction and loss of expression of genotypes and phenotypes by which MDR develops and the role of MDR in fresh cells of human leukemia/lymphoma are not clearly defined. P-glycoprotein (P-gp) increased and decreased along with mdr-1 expression in three cell lines out of five vincristine (VCR)-resistant cell lines. MRP appeared with increased mrp expression in the other two cell lines. After the drug was removed from the culture system, mdr-1/P-gp changed in parallel with the level of VCR resistance, although mrp and MRP did not. It was concluded that P-gp is directly derived from mdr-1 and that mdr-1/P-gp supports the VCR-resistance but mrp/MRP is not directly linked to the VCR-resistance. These results should contribute to a better understanding of MDR phenomenon in cancer. PMID:19414348

Hirose, Masao

2009-04-01

142

Correlation between c-erbB-2 and P-glycoprotein Expression inEsophageal Carcinoma  

Microsoft Academic Search

Objective: To investigate the correlation between c-erbB-2 and multidrug resistance (MDR)\\u000aand its clinical significance. Methods: Immunohistochemistry stain was used to examine the expression of\\u000ac-erbB-2 and flow cytometry was used to detect the expression of P-glycoprotein (P-gp) in samples from 46\\u000apatients with esophageal carcinoma. Results: The positive expression rate of c-erbB-2 was 26.1% (12\\/46)\\u000ain the 46 cases

Shenhua XU; Dan SU; Xinghao NI; Yutian LING; Gu ZHANG; Chihong ZHU

2005-01-01

143

A structural model for the mass action kinetic analysis of P-gp mediated transport through confluent cell monolayers.  

PubMed

The structural model for P-gp mediated transport across confluent cell monolayers uses the generally accepted mass action reactions for P-gp binding and efflux, together with the known structural parameters for P-gp (large substrate binding site accessible from the membrane) and the apical plasma membrane in which it resides (lipid bilayer partition coefficient of substrate and volume of apical plasma membrane allow estimation of substrate concentration at binding site). The model considers binding of substrate to P-gp from within the inner leaflet of the apical membrane, with an on rate constant, k 1 (M(-1)s(-1)), and off rate constant k r (s(-1)), as well as an efflux rate constant from P-gp into the apical chamber, k 2 (s(-1)). The model also explicitly estimates the active P-gp protein level, known as P-gp efflux active surface density T(0). For each new drug, fitting these parameters requires use of multiple initial drug concentrations and multiple time points at each concentration, until steady state is reached between P-gp-mediated efflux into the apical chamber and passive permeability from apical chamber back into the cytosol. Although this model optimally requires a larger than usual dataset for analysis, it does provide important mechanistic information through estimates of these on, off and efflux rate constants, as well as efflux active P-gp surface density. This more detailed description of efflux from polarized confluent cell monolayers has (1) provided insight into the unexpected relationship between P-gp IC50 and K i in this system, (2) highlighted the kinetic need for GF120918 inhibitable apical and basolateral uptake transporters for digoxin, and (3) provided possible explanations for the extreme lab-to-lab variability in P-gp IC50 values observed for inhibition of digoxin transport. This model can also be used to distinguish between efflux active P-gp and total apical plasma membrane P-gp, which may be important when P-gp is expressed in a microvillous membrane. PMID:24523118

Bentz, Joe; Ellens, Harma

2014-01-01

144

Disulfide cross-linking analysis shows that transmembrane segments 5 and 8 of human P-glycoprotein are close together on the cytoplasmic side of the membrane.  

PubMed

Human P-glycoprotein (P-gp) transports a wide variety of structurally diverse compounds out of the cell. Knowledge about the packing of the transmembrane (TM) segments is essential for understanding the mechanism of drug recognition and transport. We used cysteine-scanning mutagenesis and disulfide cross-linking analysis to determine which TM segment in the COOH half of P-gp was close to TMs 5 and 6 since these segments in the NH(2) half are important for drug binding. An active Cys-less P-gp mutant cDNA was used to generate 240 double cysteine mutants that contained 1 cysteine in TMs 5 or 6 and another in TMs 7 or 8. The mutants were subjected to oxidative cross-linking analysis. No disulfide cross-linking was observed in the 140 TM6/TM7 or TM6/TM8 mutants. By contrast, cross-linking was detected in several P-gp TM5/TM8 mutants. At 4 degrees C, when thermal motion is low, P-gp mutants N296C(TM5)/G774C(TM8), I299C(TM5)/F770C(TM8), I299C(TM5)/G774C(TM8), and G300C(TM5)/F770C(TM8) showed extensive cross-linking with oxidant. These mutants retained drug-stimulated ATPase activity, but their activities were inhibited after treatment with oxidant. Similarly, disulfide cross-linking was inhibited by vanadate trapping of nucleotide. These results indicate that significant conformational changes must occur between TMs 5 and 8 during ATP hydrolysis. We revised the rotational symmetry model for TM packing based on our results and by comparison to the crystal structure of MsbA (Chang, G. (2003) J. Mol. Biol. 330, 419-430) such that TM5 is adjacent to TM8, TM2 is adjacent to TM11, and TMs 1 and 7 are next to TMs 6 and 12, respectively. PMID:14670948

Loo, Tip W; Bartlett, M Claire; Clarke, David M

2004-02-27

145

Impact of P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) on the Brain Distribution of a Novel BRAF Inhibitor: Vemurafenib (PLX4032)  

PubMed Central

Vemurafenib [N-(3-{[5-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]carbonyl}-2,4-difluorophenyl)propane-1-sulfonamide(PLX4032)] is a novel small-molecule BRAF inhibitor, recently approved by the Food and Drug Administration for the treatment of patients with metastatic melanoma with a BRAFV600E mutation. The objective of this study was to investigate the role of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in the distribution of vemurafenib to the central nervous system. In vitro studies conducted in transfected Madin-Darby canine kidney II cells show that the intracellular accumulation of vemurafenib is significantly restricted because of active efflux by P-gp and BCRP. Bidirectional flux studies indicated greater transport in the basolateral-to-apical direction than the apical-to-basolateral direction because of active efflux by P-gp and BCRP. The selective P-gp and BCRP inhibitors zosuquidar and (3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino(1?,2?:1,6)pyrido(3,4-b)indole-3-propanoic acid-1,1-dimethylethyl ester (Ko143) were able to restore the intracellular accumulation and bidirectional net flux of vemurafenib. The in vivo studies revealed that the brain distribution coefficient (area under the concentration time profile of brain/area under the concentration time profile of plasma) of vemurafenib was 0.004 in wild-type mice. The steady-state brain-to-plasma ratio of vemurafenib was 0.035 ± 0.009 in Mdr1a/b(?/?) mice, 0.009 ± 0.006 in Bcrp1(?/?) mice, and 1.00 ± 0.19 in Mdr1a/b(?/?)Bcrp1(?/?) mice compared with 0.012 ± 0.004 in wild-type mice. These data indicate that the brain distribution of vemurafenib is severely restricted at the blood-brain barrier because of active efflux by both P-gp and BCRP. This finding has important clinical significance given the ongoing trials examining the efficacy of vemurafenib in brain metastases of melanoma. PMID:22454535

Mittapalli, Rajendar K.; Vaidhyanathan, Shruthi; Sane, Ramola

2012-01-01

146

The Connection between the Toxicity of Anthracyclines and Their Ability to Modulate the P-Glycoprotein-Mediated Transport in A549, HepG2, and MCF-7 Cells  

PubMed Central

Multidrug resistance (MDR) is a major obstacle to the successful chemotherapy of solid tumors. We compared the resistance of the most popular solid tumors, breast adenocarcinoma (MCF-7 cell line) and nonsmall cell lung (A549 cell line) hepatocellular liver carcinoma (HepG2 cells), to aclarubicin (ACL) and doxorubicin (DOX). This research aimed at determining the relation between the toxicity of ACL and DOX, their cell accumulation, and then effect on P-glycoprotein functionality. ACL is more cytotoxic for tumor cells compared to DOX. The intracellular concentration of drugs in cancer cells was dependent on the dose of the drugs and the time of incubation. The P-gp inhibitor Verapamil (V) increased DOX accumulation in all tested cell lines. By contrast, the intracellular level of ACL was not affected by this modifying agent. The assessment of the uptake of 5,5?,6,6?-tetrachloro-1,1?,3,3?-tetraethylbenzimidazolocarbocyanine iodide (JC-1) or Rhodamine 123 (R123) allows the evaluation of the different influence of drugs on P-gp activity which is in agreement with the estimation of expression measured by MDR-1 shift assay. These data suggest that ACL is less P-gp dependent than DOX and consequently may be used in a clinical setting to increase treatment efficacy in resistant human tumors. PMID:24574923

Szwed, Marzena; Rychlik, Blazej

2014-01-01

147

Relationship between P-glycoprotein expression and cyclosporin A in kidney. An immunohistological and cell culture study.  

PubMed Central

P-glycoprotein (P-gp), encoded in humans by the mdr-1 gene, acts physiologically as an efflux pump to expel hydrophobic substances from cells. This glycoprotein is closely related to multidrug resistance in tumor cells and can be modulated by cyclosporin A (CsA). We investigated the relationship between CsA and P-gp in 52 renal allograft biopsies and in cultures of Madin-Darby canine kidney (MDCK) renal tubule cells to determine whether the intrarenal accumulation of CsA or chronic stimulation with the drug modified the expression of P-gp. Expression of P-gp and CsA was analyzed by immunohistochemistry. Immunostaining was evaluated semiquantitatively. Modulation of P-gp in MDCK cells after chronic stimulation with CsA for 7, 30, and 60 days was analyzed by flow cytometry. P-gp and CsA immunostaining in renal post-transplant biopsies showed considerable overlap in all cases (Spearman's test, r = 0.577, P < 0.001). After 7 days in vitro, the number of cells expressing P-gp increased progressively; a further increase in mean fluorescence was found after 60 days (P < 0.001, Student's t-test). Our findings suggest that in non-neoplastic cells, CsA may stimulate P-gp as a mechanism of detoxification. Individual differences in the adaptive responses to glycoprotein may be responsible for the appearance of nephrotoxicity or a CsA-resistant rejection reaction in cases of overexpression on lymphocytes and macrophages. Images Figure 1 PMID:7856751

Garcia del Moral, R.; O'Valle, F.; Andujar, M.; Aguilar, M.; Lucena, M. A.; Lopez-Hidalgo, J.; Ramirez, C.; Medina-Cano, M. T.; Aguilar, D.; Gomez-Morales, M.

1995-01-01

148

Stereoselective Regulations of P-Glycoprotein by Ginsenoside Rh2 Epimers and the Potential Mechanisms From the View of Pharmacokinetics  

PubMed Central

Chirality is an interesting topic and it is meaningful to explore the interactions between chiral small molecules and stereoselective biomacromolecules, with pre-clinical and clinical significances. We have previously demonstrated that 20(S)-ginsenoside Rh2 is an effective P-glycoprotein (P-gp) inhibitor in vitro and in vivo. Considering the stereochemistry of ginsenoside Rh2, in our present study, the regulatory effects of 20(R)-Rh2 on P-gp were assayed in vivo, and the differential regulations of P-gp by ginsenoside Rh2 epimers in vivo were compared and studied. Results showed that 20(S)-Rh2 enhanced the oral absorption of digoxin in rats in a dose-dependent manner; 20(R)-Rh2 at low dosage increased the oral absorption of digoxin, but this effect diminished with elevated dosage of 20(R)-Rh2. Further studies indicated stereoselective pharmacokinetic profiles and intestinal biotransformations of Rh2 epimers. In vitro studies showed that Rh2 epimers and their corresponding deglycosylation metabolites protopanaxadiol (Ppd) epimers all exhibited stereoselective regulations of P-gp. In conclusion, in view of the in vitro and in vivo dispositions of Rh2 and the regulations of P-gp by Rh2 and Ppd, it is suggested that the P-gp regulatory effect of Rh2 in vivo actually is a double actions of both Rh2 and Ppd, and the net effect is determined by the relative balance between Rh2 and Ppd with the same configuration. Our study provides new evidence of the chiral characteristics of P-gp, and is helpful to elucidate the stereoselective P-gp regulation mechanisms of ginsenoside Rh2 epimers in vivo from a pharmacokinetic view. PMID:22530069

Niu, Fang; Lu, Meng; Wu, Xiaolan; Sun, Jianguo; Wang, Guangji

2012-01-01

149

Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line  

PubMed Central

Background: Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. Materials and Methods: The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. Results: The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. Conclusion: This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer.

Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai

2014-01-01

150

P-Glycoprotein-ATPase Modulation: The Molecular Mechanisms  

PubMed Central

P-glycoprotein-ATPase is an efflux transporter of broad specificity that counteracts passive allocrit influx. Understanding the rate of allocrit transport therefore matters. Generally, the rates of allocrit transport and ATP hydrolysis decrease exponentially with increasing allocrit affinity to the transporter. Here we report unexpectedly strong down-modulation of the P-glycoprotein-ATPase by certain detergents. To elucidate the underlying mechanism, we chose 34 electrically neutral and cationic detergents with different hydrophobic and hydrophilic characteristics. Measurement of the P-glycoprotein-ATPase activity as a function of concentration showed that seven detergents activated the ATPase as expected, whereas 27 closely related detergents reduced it significantly. Assessment of the free energy of detergent partitioning into the lipid membrane and the free energy of detergent binding from the membrane to the transporter revealed that the ratio, q, of the two free energies of binding determined the rate of ATP hydrolysis. Neutral (cationic) detergents with a ratio of q = 2.7 ± 0.2 (q > 3) followed the aforementioned exponential dependence. Small deviations from the optimal ratio strongly reduced the rates of ATP hydrolysis and flopping, respectively, whereas larger deviations led to an absence of interaction with the transporter. P-glycoprotein-ATPase inhibition due to membrane disordering by detergents could be fully excluded using 2H-NMR-spectroscopy. Similar principles apply to modulating drugs. PMID:22455921

Li-Blatter, Xiaochun; Beck, Andreas; Seelig, Anna

2012-01-01

151

Discovery of the inhibitory effect of a phosphatidylinositol derivative on P-glycoprotein by virtual screening followed by in vitro cellular studies.  

PubMed

P-glycoprotein is capable of effluxing a broad range of cytosolic and membrane penetrating xenobiotic substrates, thus leading to multi-drug resistance and posing a threat for the therapeutic treatment of several diseases, including cancer and central nervous disorders. Herein, a virtual screening campaign followed by experimental validation in Caco-2, MDKCII, and MDKCII mdr1 transfected cell lines has been conducted for the identification of novel phospholipids with P-gp transportation inhibitory activity. Phosphatidylinositol-(1,2-dioctanoyl)-sodium salt (8?0 PI) was found to significantly inhibit transmembrane P-gp transportation in vitro in a reproducible-, cell line-, and substrate-independent manner. Further tests are needed to determine whether this and other phosphatidylinositols could be co-administered with oral drugs to successfully increase their bioavailability. Moreover, as phosphatidylinositols and phosphoinositides are present in the human diet and are known to play an important role in signal transduction and cell motility, our finding could be of substantial interest for nutrition science as well. PMID:23593281

Lucas, Xavier; Simon, Silke; Schubert, Rolf; Günther, Stefan

2013-01-01

152

Discovery of the Inhibitory Effect of a Phosphatidylinositol Derivative on P-Glycoprotein by Virtual Screening Followed by In Vitro Cellular Studies  

PubMed Central

P-glycoprotein is capable of effluxing a broad range of cytosolic and membrane penetrating xenobiotic substrates, thus leading to multi-drug resistance and posing a threat for the therapeutic treatment of several diseases, including cancer and central nervous disorders. Herein, a virtual screening campaign followed by experimental validation in Caco-2, MDKCII, and MDKCII mdr1 transfected cell lines has been conducted for the identification of novel phospholipids with P-gp transportation inhibitory activity. Phosphatidylinositol-(1,2-dioctanoyl)-sodium salt (8?0 PI) was found to significantly inhibit transmembrane P-gp transportation in vitro in a reproducible-, cell line-, and substrate-independent manner. Further tests are needed to determine whether this and other phosphatidylinositols could be co-administered with oral drugs to successfully increase their bioavailability. Moreover, as phosphatidylinositols and phosphoinositides are present in the human diet and are known to play an important role in signal transduction and cell motility, our finding could be of substantial interest for nutrition science as well. PMID:23593281

Lucas, Xavier; Simon, Silke; Schubert, Rolf; Gunther, Stefan

2013-01-01

153

Modification of Marine Natural Product Ningalin B and SAR Study Lead to Potent P-Glycoprotein Inhibitors.  

PubMed

In this study, new marine ningalin B analogues containing a piperazine or a benzoloxy group at ring C have been synthesized and evaluated on their P-gp modulating activity in human breast cancer and leukemia cell lines. Their structure-activity relationship was preliminarily studied. Compounds 19 and 20 are potent P-gp inhibitors. These two synthetic analogues of permethyl ningalin B may be potentially used as effective modulators of P-gp-mediated drug resistance in cancer cells. PMID:25329704

Yang, Chao; Wong, Iris L K; Jin, Wen Bin; Jiang, Tao; Chow, Larry M C; Wan, Sheng Biao

2014-01-01

154

Modification of Marine Natural Product Ningalin B and SAR Study Lead to Potent P-Glycoprotein Inhibitors  

PubMed Central

In this study, new marine ningalin B analogues containing a piperazine or a benzoloxy group at ring C have been synthesized and evaluated on their P-gp modulating activity in human breast cancer and leukemia cell lines. Their structure-activity relationship was preliminarily studied. Compounds 19 and 20 are potent P-gp inhibitors. These two synthetic analogues of permethyl ningalin B may be potentially used as effective modulators of P-gp-mediated drug resistance in cancer cells. PMID:25329704

Yang, Chao; Wong, Iris L. K.; Jin, Wen Bin; Jiang, Tao; Chow, Larry M. C.; Wan, Sheng Biao

2014-01-01

155

Doxorubicin delivery enhanced by electroporation to gastrointestinal adenocarcinoma cells with P-gp overexpression.  

PubMed

Electroporation (EP) can effectively support the penetration of macromolecules from the extracellular space into cells. Electropores induced by the influence of electromagnetic field generate additional paths of transport for macromolecules. The aim of this study was evaluation of the electroporation effect on doxorubicin transport efficiency to human colon (LoVo and LoVo/DX) and gastric (EPG85-257/P and EPG85-257/RDB) adenocarcinoma cells with overexpression of P-glycoprotein and murine macrophage cell line (P388/D1). In our EP experiments cells were placed into a cuvette with aluminum electrodes and pulsed with five square electric pulses of 1300V/cm and duration of 50?s each. Cells were also treated with low doxorubicin concentration ([DOX]=1.7?M). The ultrastructure (TEM) and changes of P-glycoprotein expression of tumor cells subjected to electric field were monitored. The mitochondrial cell function and trypan blue staining were evaluated after 24h. Our results indicate the most pronounced effect of EP with DOX and disturbed ultrastructure in resistant gastric and colon cells with decrease of P-gp expression. Electroporation may be an attractive delivery method of cytostatic drugs in chemotherapy, enabling reduction of drug dose, exposure time and side effects. PMID:24767854

Kulbacka, Julita; Daczewska, Ma?gorzata; Dubi?ska-Magiera, Magda; Choroma?ska, Anna; Rembia?kowska, Nina; Surowiak, Pawe?; Kulbacki, Marek; Kotulska, Ma?gorzata; Saczko, Jolanta

2014-12-01

156

Immunohistochemical detection of DNA topoisomerase IIalpha, P-glycoprotein and multidrug resistance protein (MRP) in small-cell and non-small-cell lung cancer.  

PubMed Central

Non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) differ significantly in their clinical response to topoisomerase IIalpha (topo-IIalpha)-directed drugs, such as etoposide and teniposide, as NSCLC is virtually insensitive to single-agent therapy, while SCLC responds in two-thirds of cases. Preclinical studies have indicated that resistance to topo-IIalpha drugs depends on topo-IIalpha content and/or activity, the altered-topo-II multidrug resistance phenotype (at-MDR) and/or one of two different drug efflux pumps, P-glycoprotein (P-gp) and the multidrug resistance protein (MRP). Immunohistochemical analysis on paraffin-embedded tissue from 27 cases of untreated NSCLC and 29 cases of untreated SCLC (of which additional tumour biopsies after treatment with topo-IIalpha-directed drugs were available in ten cases) yielded the following results: NSCLC had significantly less topo-IIalpha than SCLC (P < 0.0001), as only 5 out of 27 NSCLC cases had > 5% positive cells compared with 28 out of 29 SCLC, and 0 out of 27 NSCLC had > 25% positive cells compared with 26 out of 29 SCLC. P-gp was detected in > 5% of cells in only 3 out of 27 NSCLC and in 6 out of 29 SCLC, and MRP in 5 out of 27 of NSCLC and 9 out of 29 SCLC. After treatment of patients with SCLC with either etoposide or teniposide, which are topo-IIalpha-directed drugs, there was an increase in MRP (P < 0.1) and P-gp (P < 0.05) positivity, while topo-IIalpha decreased (P < 0.05). In conclusion, the major difference between untreated NSCLC and SCLC was in topo-IIalpha content. In the small series of ten patients treated for SCLC, all three MDR phenotypes appeared to increase. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9652763

Kreisholt, J.; Sorensen, M.; Jensen, P. B.; Nielsen, B. S.; Andersen, C. B.; Sehested, M.

1998-01-01

157

Aureobasidins as new inhibitors of P-glycoprotein in multidrug resistant tumor cells.  

PubMed

Cyclic depsipeptide antibiotic aureobasidin A (AbA) and its analogs were tested for the inhibitory activity of P-glycoprotein in multidrug resistant cancer cells as well as for the antifungal activity. Some analogs with lower antifungal activity than AbA showed higher inhibition of P-glycoproteins indicating difference of the structure-activity relationships between the two activities. Among AbA analogs tested, [D-beta-hydroxy-methylvalyl9]-AbA newly prepared by chemical synthesis, which had much lower antifungal activity than AbA, showed 10-fold higher inhibitory activity of P-glycoprotein than AbA. PMID:9589072

Kurome, T; Takesako, K; Kato, I

1998-03-01

158

Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using ( R )-[ 11 C]verapamil PET  

Microsoft Academic Search

Purpose  Overactivity of the multidrug efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) is believed to play\\u000a an important role in resistance to central nervous system drug treatment. (R)-[11C]verapamil (VPM) PET can be used to measure the function of P-gp at the BBB, but low brain uptake of VPM hampers the mapping\\u000a of regional differences in cerebral P-gp function and

Claudia Kuntner; Jens P. Bankstahl; Marion Bankstahl; Johann Stanek; Thomas Wanek; Gloria Stundner; Rudolf Karch; Rebecca Brauner; Martin Meier; Xiaoqi Ding; Markus Müller; Wolfgang Löscher; Oliver Langer

2010-01-01

159

Reversal Effect of ST6GAL 1 on Multidrug Resistance in Human Leukemia by Regulating the PI3K/Akt Pathway and the Expression of P-gp and MRP1  

PubMed Central

?-galactoside ?2, 6-sialyltransferse gene (ST6GAL) family has two members, which encode corresponding enzymes ST6Gal I and ST6Gal II. The present atudy was to investigate whether and how ST6GAL family involved in multidrug resistance (MDR) in human leukemia cell lines and bone marrow mononuclear cells (BMMC) of leukemia patients. Real-time PCR showed a high expression level of ST6GAL1 gene in both MDR cells and BMMCs (*P<0.05). Alternation of ST6GAL1 levels had a significant impact on drug-resistant phenotype changing of K562 and K562/ADR cells both in vitro and in vivo. However, no significant changes were observed of ST6GAL2 gene. Further data revealed that manipulation of ST6GAL1 modulated the activity of phosphoinositide 3 kinase (PI3K)/Akt signaling and consequently regulated the expression of P-glycoprotein (P-gp, *P<0.05) and multidrug resistance related protein 1 (MRP1, *P<0.05), which are both known to be associated with MDR. Therefore we postulate that ST6GAL1 is responsible for the development of MDR in human leukemia cells probably through medicating the activity of PI3K/Akt signaling and the expression of P-gp and MRP1. PMID:24454800

Hao, Keji; Li, Yanping; Song, Xiaobo; Zhou, Huimin; Jia, Li

2014-01-01

160

Biliary excretion of technetium-99m-sestamibi in wild-type dogs and in dogs with intrinsic (ABCB1-1Delta mutation) and extrinsic (ketoconazole treated) P-glycoprotein deficiency.  

PubMed

P-glycoprotein (P-gp), the product of ABCB1 gene, is thought to play a role in the biliary excretion of a variety of drugs, but specific studies in dogs have not been performed. Because a number of endogenous (ABCB1 polymorphisms) and exogenous (pharmacological P-gp inhibition) factors can interfere with normal P-gp function, a better understanding of P-gp's role in biliary drug excretion is crucial in preventing adverse drug reactions and drug-drug interactions in dogs. The objectives of this study were to compare biliary excretion of technetium-99m-sestamibi ((99m)Tc-MIBI), a radio-labelled P-gp substrate, in wild-type dogs (ABCB1 wild/wild), and dogs with intrinsic and extrinsic deficiencies in P-gp function. Dogs with intrinsic P-gp deficiency included ABCB1 mut/mut dogs, and dogs with presumed intermediate P-gp phenotype (ABCB1 mut/wild). Dogs with extrinsic P-gp deficiency were considered to be ABCB1 wild/wild dogs treated with the P-gp inhibitor ketoconazole (5 mg/kg PO q12h x 9 doses). Results from this study indicate that ABCB1 mut/mut dogs have significantly decreased biliary excretion of (99m)Tc-MIBI compared with ABCB1 wild/wild dogs. Treatment with ketoconazole significantly decreased biliary excretion of (99m)Tc-MIBI in ABCB1 wild/wild dogs. P-gp appears to play an important role in the biliary excretion of (99m)Tc-MIBI in dogs. It is likely that concurrent administration of a P-gp inhibitor such as ketoconazole will decrease P-gp-mediated biliary excretion of other substrate drugs as well. PMID:19754906

Coelho, J C; Tucker, R; Mattoon, J; Roberts, G; Waiting, D K; Mealey, K L

2009-10-01

161

Parguerenes: Marine red alga bromoditerpenes as inhibitors of P-glycoprotein (ABCB1) in multidrug resistant human cancer cells.  

PubMed

High intrinsic or acquired expression of membrane spanning, adenosine triphosphate binding cassette (ABC) transporter proteins, such as P-glycoprotein (P-gp), in cancers represents a major impediment to chemotherapy, with accelerated drug efflux leading to multi-drug resistance (MDR). Although ABC transporter inhibitors offer the prospect of reversing the MDR phenotype, no inhibitors have advanced to the clinic. We employed a range of intracellular fluorescence and radio-ligand accumulation and efflux assays, together with cytotoxicity and MDR reversal assays, as well as flow cytometry, fluorescence microscopy and radioimmunoprecipitation, to discover and evaluate new P-gp inhibitors from a unique library of southern Australian and Antarctic marine natural products. This study successfully characterized two rare bromoditerpenes, parguerenes I and II, sourced from a southern Australian collection of the red alga Laurencia filiformis, as P-gp inhibitors. We determined that the parguerenes were non-cytotoxic, dose-dependent inhibitors of P-gp mediated drug efflux, that modify the extracellular antibody binding epitope of P-gp in a manner that differs markedly from that of the known inhibitors verapamil and cyclosporine A. We confirmed that parguerenes were capable of reversing P-gp mediated vinblastine, doxorubicin and paclitaxel MDR, that inhibitory properties span both P-gp and multidrug resistant protein 1 (MRP1), but do not extend to breast cancer resistance protein (BCRP), and that parguerene II is superior (more potent) to verapamil. Our investigations validate the proposition that marine natural products can deliver new ABC transporter inhibitor scaffolds, with structure characteristics fundamentally different from existing inhibitor classes. PMID:23415901

Huang, Xiao-Cong; Sun, Yue-Li; Salim, Angela A; Chen, Zhe-Sheng; Capon, Robert J

2013-05-01

162

Inhibition of P-glycoprotein in the blood-brain barrier alters avermectin neurotoxicity and swimming performance in rainbow trout.  

PubMed

The importance of the blood brain barrier (BBB) and the contribution to its function by the efflux transporter P-glycoprotein (P-gp) in teleosts were examined using the P-gp substrates and central nervous system neurotoxins ivermectin (22,23-dihydroavermectin B1a+22,23-dihydroavermectin B1b) [IVM]) and emamectin benzoate (4?-deoxy-49?epimethylaminoavermectin B1 benzoate [EB]). Trout were injected intraperitoneally with 0.01-1.0 and 1-50mg/kg of IVM or EB, respectively either alone or in combination with cyclosporin A (CsA: a P-gp substrate) at 1mg/kg. IVM affected the swimming performance (critical swimming speed, burst swimming distance, and schooling) at significantly lower concentrations than EB. When fish were exposed to IVM or EB in the presence of CsA, alterations to swimming were increased, suggesting that competition for P-gp in the BBB by CsA increased IVM and EB penetration into the CNS and decreased swimming capabilities. The effect of co-administration of CsA on swimming-related toxicity was different between IVM and EB-treated fish; EB toxicity was increased to a greater extent than IVM toxicity. The greater chemosensitization effect of EB vs. IVM was examined using a P-gp competitive inhibition assay in isolated trout hepatocytes with rhodamine 123 as a substrate. At the cellular level, IVM was a more potent inhibitor of P-gp than EB, which allowed for a greater accumulation of R123 in hepatocytes. These results provide evidence for a role of P-gp in the BBB of fish, and suggest that this protein protects fish from environmental neurotoxins. PMID:24316435

Kennedy, Christopher J; Tierney, Keith B; Mittelstadt, Matthew

2014-01-01

163

Dynamics and structural changes induced by ATP and/or substrate binding in the inward-facing conformation state of P-glycoprotein  

NASA Astrophysics Data System (ADS)

P-glycoprotein (P-gp) is a multidrug transporter that catalyzes the transport of a substrate. To elucidate the underlying mechanism of this type of substrate transport, we performed molecular dynamics (MD) simulations using the X-ray crystal structure of P-gp, which has an inward-facing conformation. Our simulations indicated that the dimerization of the nucleotide binding domains (NBDs) is driven by the binding of ATP to the NBDs and/or the binding of the substrate to a cavity in the transmembrane domains (TMDs). Based on these results, we discuss a role of ATP in the allosteric communication that occurs between the NBDs and the TMDs.

Watanabe, Yurika; Hsu, Wei-Lin; Chiba, Shuntaro; Hayashi, Tomohiko; Furuta, Tadaomi; Sakurai, Minoru

2013-02-01

164

Synthesis and Evaluation of [N-methyl-11C]N-Desmethyl-loperamide as a New and Improved PET Radiotracer for Imaging P-gp Function  

PubMed Central

[11C]Loperamide has been proposed for imaging P-glycoprotein (P-gp) function with positron emission tomography (PET), but its metabolism to [N-methyl-11C]N-desmethyl-loperamide ([11C]dLop; [11C]3) precludes quantification. We considered that [11C]3 might itself be a superior radiotracer for imaging brain P-gp function and therefore aimed to prepare [11C]3 and characterize its efficacy. An amide precursor (2) was synthesized and methylated with [11C]iodomethane to give [11C]3. After administration of [11C]3 to wild type mice, brain radioactivity uptake was very low. In P-gp (mdr-1a (?/?)) knockout mice, brain uptake of radioactivity at 30 min increased about 3.5 fold by PET measures, and over seven-fold by ex vivo measures. In knockout mice, brain radioactivity was predominantly (90%) unchanged radiotracer. In monkey PET experiments, brain radioactivity uptake was also very low, but after P-gp blockade increased more than seven-fold. [11C]3 is an effective new radiotracer for imaging brain P-gp function and, in favor of future successful quantification, appears free of extensive brain-penetrant radiometabolites. PMID:18783208

Lazarova, Neva; Zoghbi, Sami S.; Hong, Jinsoo; Seneca, Nicholas; Tuan, Ed; Gladding, Robert L.; Liow, Jeih-San; Taku, Andrew; Innis, Robert B.; Pike, Victor W.

2009-01-01

165

Effects of spice constituents on P-glycoprotein-mediated transport and CYP3A4-mediated metabolism in vitro.  

PubMed

The effects of eight components from six commonly consumed spices on P-glycoprotein (P-gp) transport and CYP3A4 metabolism were evaluated in vitro. P-gp-mediated [(3)H]digoxin fluxes across the L-MDR1 (LLC-PK1 cells transfected with human MDR1 gene) and Caco-2 (human colon carcinoma) cell monolayers showed a marked asymmetry compared with that in the LLC-PK1 (porcine kidney epithelial cells) cell monolayers. Curcumin (from turmeric) at 30 to 60 microM and 6-gingerol (from ginger) at 100 to 500 microM were observed to inhibit P-gp-mediated [(3)H]digoxin transport in L-MDR1 and Caco-2 cells. Effects of spices on midazolam (MDZ) 1'-hydroxylation and 4-hydroxylation of CYP3A4 activity were determined in pooled human liver microsomes (HLM). The following IC(50) values for effects of spices on MDZ 1'-hydroxylation in HLM were obtained: 29 microM for curcumin, 1.17 mM for allyl methyl disulfide (AMD) (from Chinese chive), 1.02 mM for 1,8-cineole (from coriander), and 1.28 mM for beta-caryophyllene (from curry leaf). CYP3A4-mediated 4-hydroxylation of MDZ was inhibited by curcumin at 30, 45, and 60 microM (4-hydroxy-MDZ formation was decreased to 52, 30, and 29%, respectively, compared with control), by 6-gingerol at 60, 100, and 500 microM (71, 68, and 38%), by AMD at 1 and 4 mM (29 and 14%), by d-limonene (from coriander) at 4 mM (65%), by 1,8-cineole at 0.5, 1, and 4 mM (74, 64, and 59%), and by citral (from lemongrass) at 1 mM (59%). Among the spices that showed inhibitory effect on MDZ metabolism in HLM, only AMD showed a preincubation time-dependent inhibitory effect on MDZ metabolism in HLM, suggesting the AMD as an irreversible CYP3A4 inhibitor. PMID:18385293

Zhang, Wenxia; Lim, Lee-Yong

2008-07-01

166

Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle  

PubMed Central

P-glycoprotein (P-gp) is an ABC (ATP-binding cassette) transporter, which hydrolyses ATP and extrudes cytotoxic drugs from mammalian cells. P-gp consists of two transmembrane domains (TMDs) that span the membrane multiple times, and two cytoplasmic nucleotide-binding domains (NBDs). We have determined projection structures of P-gp trapped at different steps of the transport cycle and correlated these structures with function. In the absence of nucleotide, an ?10 ? resolution structure was determined by electron cryo-microscopy of two-dimensional crystals. The TMDs form a chamber within the membrane that appears to be open to the extracellular milieu, and may also be accessible from the lipid phase at the interfaces between the two TMDs. Nucleotide binding causes a repacking of the TMDs and reduction in drug binding affinity. Thus, ATP binding, not hydrolysis, drives the major conformational change associated with solute translocation. A third distinct conformation of the protein was observed in the post-hydrolytic transition state prior to release of ADP/Pi. Biochemical data suggest that these rearrangements may involve rotation of transmembrane ?-helices. A mechanism for transport is suggested. PMID:11598005

Rosenberg, Mark F.; Velarde, Giles; Ford, Robert C.; Martin, Catherine; Berridge, Georgina; Kerr, Ian D.; Callaghan, Richard; Schmidlin, Andreas; Wooding, Carol; Linton, Kenneth J.; Higgins, Christopher F.

2001-01-01

167

Development of predictive in silico model for cyclosporine- and aureobasidin-based P-glycoprotein inhibitors employing receptor surface analysis.  

PubMed

P-glycoprotein (Pgp) is implicated in multiple drug resistance (MDR) exhibited by several types of cancer against a multitude of anticancer chemotherapeutic agents. This problem prompted several research groups to search for effective P-gp inhibitors. Cyclosporine A (CsA), aureobasidin A (AbA) and related analogues were reported to possess potent inhibitory actions against Pgp. In this work we employed receptor surface analysis (RSA) to construct two satisfactory receptor surface models (RSMs) for cyclosporine- and aureobasidin-based Pgp inhibitors. These pseudoreceptors were combined to achieve satisfactory three-dimensional quantitative structure activity relationship (3D-QSAR) for 68 different cyclosporine and aureobasidin derivatives. Upon validation against an external set of 16 randomly selected Pgp inhibitors, the optimal 3D-QSAR was found to be self-consistent and predictive (r(LOO)(2)=0.673, r(PRESS)(2)=0.600). The resulting 3D-QSAR was employed to probe the structural factors that control the inhibitory activities of cyclosporine and aureobasidin analogues against Pgp. PMID:18789739

Zalloum, Hiba M; Taha, Mutasem O

2008-11-01

168

P-glycoprotein, multidrug resistance and protein kinase C.  

PubMed

The multidrug resistant (MDR) phenotype is a well-studied subject that has been recognized as a determinant underlying specific types of drug resistance in human cancer. Although it is clear that the P-glycoprotein plays a major role in MDR, it is not clear whether post-translational modifications such as phosphorylation have any major impact on its modulation. The laboratory of Dr. Bruce Chabner was one of the first to describe increased expression and activity of protein kinase C (PKC) associated with the MDR phenotype. Since that time, a similar correlation has been observed in many other MDR cell lines. Most of these studies have been performed with doxorubicin-selected cells that have acquired MDR and have shown increased PKC activity, mainly for PKC-alpha isoenzyme. Intrinsic MDR in human renal cell carcinoma lines has been shown to correlate directly with PKC activity, but further studies with intrinsic MDR cell lines are needed before any conclusions can be drawn. More recent evidence suggests that there is a complex biochemical process by which PKC isoenzymes differentially phosphorylate specific serine residues in the linker region of P-glycoprotein which may lead to alterations in P-glycoprotein ATPase and drug-binding functions. To further complicate matters, PKC plays an important role in anti-apoptotic pathways, which can confound the dissection and elucidation of drug-resistance mechanisms. However, these areas are still under active investigation and not fully answered. Further studies are needed to specifically answer the question of whether PKC directly modulates basal and/or drug-stimulated P-glycoprotein function. This manuscript reviews the majority of the literature on PKC and MDR, as well as offers caveats for interpretation of these studies to answer the above questions. PMID:8820951

Fine, R L; Chambers, T C; Sachs, C W

1996-01-01

169

Histopathological assessment of multidrug resistance in gastric cancer: Expression of P-glycoprotein, multidrug resistance-associated protein, and lung-resistance protein  

Microsoft Academic Search

Because local recurrence is common after a curative resection for advanced gastric cancer, there has been significant interest\\u000a in adjuvant chemotherapy. However, the overall effect of chemotherapy remains debatable regarding patients with advanced gastric\\u000a adenocarcinoma. Multidrug resistance is thought to be a major cause of failure in cancer chemotherapy, and thus the expression\\u000a of P-glycoprotein (P-Gp), multidrug resistance-associated protein (MRP),

Delamou Alexander; Tetsu Yamamoto; Shizuo Kato; Shinichi Kasai

1999-01-01

170

In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression  

SciTech Connect

Piperine, a major component of black pepper, is used as spice and nutrient enhancer. The purpose of the present study was to evaluate the effects of acute and prolonged piperine exposure on cellular P-gp expression and function in vitro and in vivo. Piperine at concentrations ranging from 10 to 100 {mu}M, determined by MTT assay to be non-cytotoxic, was observed to inhibit P-gp mediated efflux transport of [{sup 3}H]-digoxin across L-MDR1 and Caco-2 cell monolayers. The acute inhibitory effect was dependent on piperine concentration, with abolishment of [{sup 3}H]-digoxin polarized transport attained at 50 {mu}M of piperine. In contrast, prolonged (48 and 72 h) co-incubation of Caco-2 cell monolayers with piperine (50 and 100 {mu}M) increased P-gp activity through an up-regulation of cellular P-gp protein and MDR1 mRNA levels. The up-regulated protein was functionally active, as demonstrated by a higher degree of [{sup 3}H]-digoxin efflux across the cell monolayers, but the induction was readily reversed by the removal of the spice from the culture medium. Peroral administration of piperine at the dose of 112 {mu}g/kg body weight/day to male Wistar rats for 14 consecutive days also led to increased intestinal P-gp levels. However, there was a concomitant reduction in the rodent liver P-gp although the kidney P-gp level was unaffected. Our data suggest that caution should be exercised when piperine is to be co-administered with drugs that are P-gp substrates, particularly for patients whose diet relies heavily on pepper.

Han Yi [Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543 (Singapore); Chin Tan, Theresa May [Department of Biochemistry, National University of Singapore, 18 Science Drive 4, 117543 (Singapore); Lim, Lee-Yong [Pharmacy, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, WA 6009 (Australia)], E-mail: limly@cyllene.uwa.edu.au

2008-08-01

171

Identification of Residues in the Drug Translocation Pathway of the Human Multidrug Resistance P-glycoprotein by Arginine Mutagenesis*  

PubMed Central

P-glycoprotein (P-gp, ATP-binding cassette B1) is a drug pump that extracts toxic drug substrates from the plasma membrane and catalyzes their ATP-dependent efflux. To map the residues in the drug translocation pathway, we performed arginine-scanning mutagenesis on all transmembrane (TM) segments (total = 237 residues) of a P-gp processing mutant (G251V) defective in folding (15% maturation efficiency) (glycosylation state used to monitor folding). The rationale was that arginines introduced into the drug-binding sites would mimic drug rescue and enhance maturation of wild-type or processing mutants of P-gp. It was found that 38 of the 89 mutants that matured had enhanced maturation. Enhancer mutations were found in 11 of the 12 TM segments with the largest number found in TMs 6 and 12 (seven in each), TMs that are critical for P-gp-drug substrate interactions. Modeling of the TM segments showed that the enhancer arginines were found on the hydrophilic face, whereas inhibitory arginines were located on a hydrophobic face that may be in contact with the lipid bilayer. It was found that many of the enhancer arginines caused large alterations in P-gp-drug interactions in ATPase assays. For example, mutants A302R (TM5), L339R (TM6), G872R (TM10), F942R (TM11), Q946R (TM11), V982R (TM12), and S993R (TM12) reduced the apparent affinity for verapamil by ?10-fold, whereas the F336R (TM6) and M986R (TM12) mutations caused at least a 10-fold increase in apparent affinity for rhodamine B. The results suggest that P-gp contains a large aqueous-filled drug translocation pathway with multiple drug-binding sites that can accommodate the bulky arginine side chains to promote folding of the protein. PMID:19581304

Loo, Tip W.; Bartlett, M. Claire; Clarke, David M.

2009-01-01

172

Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol  

SciTech Connect

Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10{sup -3} M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers.

Arora, Annu [Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, M.G. Marg, Lucknow-226001 (India); Seth, Kavita [Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, M.G. Marg, Lucknow-226001 (India); Kalra, Neetu [Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, M.G. Marg, Lucknow-226001 (India); Shukla, Yogeshwer [Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, M.G. Marg, Lucknow-226001 (India)]. E-mail: yogeshwer_shukla@hotmail.com

2005-02-01

173

Design, synthesis and structure-activity relationships of novel taxane-based multidrug resistance reversal agents.  

PubMed

A series of novel taxane-based multidrug resistance (MDR) reversal agents (TRAs) has been designed and synthesized. Structure-activity relationship (SAR) study clearly indicates that modification of the C-7 position with hydrophobic arenecarbonylcinnamoyl groups brings about high potency against drug efflux mediated by P-glycoprotein (P-gp). Six TRAs exhibit ability to modulate a wide range of ATP-binding cassette (ABC) transporters, such as P-gp, multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein (BCRP), which may serve as novel broad-spectrum modulators of ABC transporters. PMID:15771464

Ojima, Iwao; Borella, Christopher P; Wu, Xinyuan; Bounaud, Pierre-Yves; Oderda, Cecilia Fumero; Sturm, Matthew; Miller, Michael L; Chakravarty, Subrata; Chen, Jin; Huang, Qing; Pera, Paula; Brooks, Tracy A; Baer, Maria R; Bernacki, Ralph J

2005-03-24

174

Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells.  

PubMed

Overexpression of P-glycoprotein (P-gp), the MDR1 gene product, confers multidrug resistance (MDR) to cancer cells. Clinically, MDR is one of the major causes for chemotherapeutic treatment failure in cancer patients. To explore a new approach to circumventing MDR, we adopted RNA interference to target MDR1 gene expression. RNA interference is a conserved biological response to double-stranded RNA, which results in sequence-specific gene silencing [G. J. Hannon, Nature (Lond.), 418: 244-251, 2002]. We report that introduction of an MDR1-targeted small interfering RNA duplex into drug-resistant cancer cells markedly inhibited the expression of MDR1 mRNA and P-gp, as determined by reverse transcription-PCR and Western blot. Inhibition of P-gp expression by small interfering RNA enhanced the intracellular accumulation of and selectively restored sensitivity to drugs transported by P-gp. These studies indicate that RNA interference can modulate MDR in preclinical models. PMID:12670898

Wu, Hao; Hait, William N; Yang, Jin-Ming

2003-04-01

175

Evaluation of the P-glycoprotein (Abcb1) affinity status of a series of morphine analogs: Comparative study with meperidine analogs to identify opioids with minimal P-glycoprotein interactions  

PubMed Central

One of the major shortcomings of many commonly used opioids is the fact that they are P-gp substrates, which represents a major obstacle towards effective pain management. P-gp can affect opioids’ oral absorption, CNS accumulation, systemic clearance, antinociceptive activity, and tolerance development to their analgesic effects. Moreover, P-gp can be the locus of drug–drug interactions between opioids and other concomitantly administered drugs that are P-gp substrates/inhibitors. The objective of this study was to identify opioids that are non-P-gp substrates to overcome some of the mentioned shortcomings. We evaluated the P-gp affinity status (substrate, non-substrate, or inhibitor) of a series of morphine analogs (10 opioid agonist and 2 opioid antagonists) and compared them to previously reported meperidine analogs. The fold stimulation of the morphine analogs ranged from 1.01 to 1.54 while for the meperidine analogs the fold stimulation ranged from 1.10 to 3.66. From each series (morphine and meperidine analogs) we selected potential candidate opioids that are non-P-gp substrates and conducted in vivo assessments of their antinociceptive effects using P-gp knockout and P-gp competent mice. 6-Desoxymorphine, meperidine and N-phenylbutyl normeperidine did not significantly (p > 0.05) stimulate the basal P-gp ATPase activity, where, the fold stimulations of the basal P-gp ATPase activity were 1.01 ± 0.11, 1.51 ± 0.29 and 1.10 ± 0.23, respectively. Evaluation of the influence of P-gp ablation on their antinociceptive effects indicated that P-gp did not significantly (p > 0.05) affect their antinociceptive effects. Among the evaluated opioids in vivo, 6-desoxymorphine showed high potency and induced no apparent toxicity upon low- and high-dose administration. 6-Desoxymorphine is therefore an ideal lead compound to create a library of opioids that have negligible P-gp affinity for better management of pain. PMID:19481690

Hassan, Hazem E.; Mercer, Susan L.; Cunningham, Christopher W.; Coop, Andrew; Eddington, Natalie D.

2012-01-01

176

In vitro modulation of P-glycoprotein, MRP-1 and BCRP expression by mangiferin in doxorubicin-treated MCF-7 cells.  

PubMed

The multidrug resistance phenotype is one of the major problems in development of cancer cell resistance to chemotherapy. Some natural compounds from medicinal plants have demonstrated promising capacity in enhancing anticancer effects in drug resistant cancer cells. We aimed to investigate whether mangiferin might have an ability to re-sensitize MCF-7 breast cancer cells previously treated with short-term doxorubicin in vitro, through the modulation of efflux transporters, P-glycoprotein (P-gp), MRP1 and BCRP. We exposed MCF-7 breast cancer cells pretreated with doxorubicin for 10 days to mangiferin (10, 25 or 50 ?M) for 96 hours. Afterwards, we evaluated influence on cell viability and level of mRNA expression of P-gp, MRP1 and BCRP. Doxorubicin given in combination with mangiferin at low concentrations (10 and 25 ?M) failed to give significant reduction in cell viability, while at the highest concentrations, the combination significantly reduced cell viability. The mRNA expression analysis of P-gp, MRP1 and BCRP showed that mangiferin had inhibitory effects on P-gp but no effects on MRP1 and BCRP. In conclusion, we suggest that mangiferin at high concentrations can be used as chemosensitizer for doxorubicin therapy. This effect might be attributed by inhibitory effects of mangiferin on P-glycoprotein expression. PMID:24641381

Louisa, Melva; Soediro, Tjahjani Mirawati; Suyatna, Frans Dhyanagiri

2014-01-01

177

Inhibition of Multidrug Resistance-Linked P-Glycoprotein (ABCB1) Function by 5?-Fluorosulfonylbenzoyl 5?-Adenosine: Evidence for an ATP Analog That Interacts With Both Drug-Substrate- and Nucleotide-Binding Sites†  

PubMed Central

5?-fluorosulfonylbenzonyl 5?-adenosine (FSBA) is an ATP analog that covalently modifies several residues in the nucleotide-binding domains (NBDs) of several ATPases, kinases and other proteins. P-glycoprotein (P-gp, ABCB1) is a member of the ATP-binding cassette (ABC) transporter superfamily that utilizes energy from ATP hydrolysis for the efflux of amphipathic anticancer agents from cancer cells. We investigated the interactions of FSBA with P-gp to study the catalytic cycle of ATP hydrolysis. Incubation of P-gp with FSBA inhibited ATP hydrolysis (IC50= 0.21 mM) and the binding of 8-azido[?–32P]ATP (IC50= 0.68 mM). In addition, 14C-FSBA crosslinks to P-gp, suggesting that FSBA-mediated inhibition of ATP hydrolysis is irreversible due to covalent modification of P-gp. However, when the NBDs were occupied with a saturating concentration of ATP prior to treatment, FSBA stimulated ATP hydrolysis by P-gp. Furthermore, FSBA inhibited the photocrosslinking of P-gp with [125I]-Iodoaryl-azidoprazosin (IAAP; IC50 = 0.17 mM). As IAAP is a transport substrate for P-gp, this suggests that FSBA affects not only the NBDs, but also the transport-substrate site in the transmembrane domains. Consistent with these results, FSBA blocked efflux of rhodamine 123 from P-gp-expressing cells. Additionally, mass spectrometric analysis identified FSBA crosslinks to residues within or nearby the NBDs but not in the transmembrane domains and docking of FSBA in a homology model of human P-gp NBDs supports the biochemical studies. Thus, FSBA is an ATP analog that interacts with both the drug-binding and ATP-binding sites of P-gp, but fluorosulfonyl-mediated crosslinking is observed only at the NBDs. PMID:21452853

Ohnuma, Shinobu; Chufan, Eduardo; Nandigama, Krishnamachary; Miller Jenkins, Lisa M.; Durell, Stewart R.; Appella, Ettore; Sauna, Zuben E.; Ambudkar, Suresh V.

2011-01-01

178

ABC Transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) Expression in the Developing Human CNS  

PubMed Central

P-glycoprotein (P-gp/ABCB1), multidrug resistance protein 1 (MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2) are plasma membrane efflux pumps that limit the intracellular uptake and retention of numerous lipophilic, amphipathic xeno- and endobiotics. Little is known about the neonatal and developmental expression of P-gp/ABCB1, MRP1/ABCC1, and BCRP/ABCG2 in the human central nervous system (CNS), therefore postmortem CNS tissue from infants born 220/7- 420/7 week gestation and adults was immunostained to determine their ontogeny and cellular localization. P-gp/ABCB1 imunostaining was observed in microvessel endothelial cells as early as 220/7 weeks, increasing in prevalence and intensity with maturation, and later in gestation in large pyramidal neurons. MRP1/ABCC1 immunostaining was prominent early in the choroid plexus and ventricular ependyma, and noted later in large pyramidal neurons. BCRP/ABCG2 expression was limited to microvessel endothelial cells. P-gp/ABCB1, MRP1/ABCC1 and BCRP/ABCG2 in adult brain matched term newborn CNS but with more intense immunostaining. We conclude that P-gp/ABCB1, MRP1/ABCC1, and BCRP/ABCG2 are expressed in a developmental, cell specific, fashion in the human CNS. The complementary pattern of P-gp/ABCB1 and BCRP/ABCG2 at the blood-brain with MRP1/ABCC1 at the blood-CSF barriers may limit CNS uptake and retention of drugs and toxins in neonates. PMID:19165709

Daood, Monica J.; Tsai, Cathy; Ahdab-Barmada, Mamdouha; Watchko, Jon F.

2010-01-01

179

Prognostic implication of immunodetection of P glycoprotein in Ewing's sarcoma  

Microsoft Academic Search

Increased expression of P glycoprotein is associated with multidrug resistance in many cell lines. P glycoprotein has been detected in different human tumors. To assess the implication of multidrug resistance in the prognosis of Ewing's sarcoma the expression of P glycoprotein was studied immunohistochemically in pre- and post-therapeutic tumor tissues of 21 cases treated according to the CESS 81 or

A. Roessner; Y. Ueda; B. Bockhorn-Dworniczak; S. Blasius; A. Peters; P. Wuisman; J. Ritter; M. Paulussen; H. Jürgens; W. Böcker

1993-01-01

180

Multidrug resistance protein P-gp interaction with nanoparticles (fullerenes and carbon nanotube) to assess their drug delivery potential: a theoretical molecular docking study.  

PubMed

P-glycoprotein (P-gp)-mediated efflux system plays an important role to maintain chemical balance in mammalian cells for endogenous and exogenous chemical compounds. However, despite the extensive characterisation of P-gp potential interaction with drug-like molecules, the interaction of carbon nanoparticles with this type of protein molecule is poorly understood. Thus, carbon nanoparticles were analysed, such as buckminsterfullerenes (C20, C60, C70), capped armchair single-walled carbon nanotube (SWCNT or C168), and P-gp interactions using different molecular docking techniques, such as gradient optimisation algorithm (ADVina), Lamarckian genetic algorithm (FastDock), and shape-based approach (PatchDock) to estimate the binding affinities between these structures. The theoretical results represented in this work show that fullerenes might be P-gp binders because of low levels of Gibbs free energy of binding (?G) and potential of mean force (PMF) values. Furthermore, the SWCNT binding is energetically unfavourable, leading to a total decrease in binding affinity by elevation of the residual area (Ares), which also affects the ?-? stacking mechanisms. Further, the obtained data could potentially call experimental studies using carbon nanostructures, such as SWCNT for development of drug delivery vehicles, to administer and assess drug-like chemical compounds to the target cells since organisms probably did not develop molecular sensing elements to detect these types of carbon molecules. PMID:24088267

Shityakov, Sergey; Förster, Carola

2013-01-01

181

Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin  

PubMed Central

The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration(IC50) of 4.1 µM and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the AUC0-? of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions. PMID:23776402

Lee, Chong-Ki; Choi, Jun-Shik

2013-01-01

182

Inhibition of P-Glycoprotein Leads to Improved Oral Bioavailability of Compound K, an Anticancer Metabolite of Red Ginseng Extract Produced by Gut Microflora  

PubMed Central

Ginsenosides are hydrolyzed extensively by gut microflora after oral administration, and their metabolites are pharmacologically active against lung cancer cells. In this study, we measured the metabolism of various ginsenosides by gut microflora and determined the mechanisms responsible for the observed pharmacokinetic behaviors of its active metabolite, Compound K (C-K). The results showed that biotransformation into C-K is the major metabolic pathway of ginsenosides after the oral administration of the red ginseng extract containing both protopanaxadiol and protopanaxatriol ginsenosides. Pharmacokinetic studies in normal mice showed that C-K exhibited low oral bioavailability. To define the mechanisms responsible for this low bioavailability, two P-glycoprotein (P-gp) inhibitors, verapamil and cyclosporine A, were used, and their presence substantially decreased C-K's efflux ratio in Caco-2 cells (from 26.6 to <3) and significantly increased intracellular concentrations (by as much as 40-fold). Similar results were obtained when transcellular transport of C-K was determined using multidrug resistance 1 (MDR1)-overexpressing Madin-Darby canine kidney II cells. In MDR1a/b(?/?) FVB mice, its plasma Cmax and AUC0–24h were increased substantially by 4.0- and 11.7-fold, respectively. These increases appear to be due to slower elimination and faster absorption of C-K in MDR1a/b(?/?) mice. In conclusion, C-K is the major active metabolite of ginsenosides after microflora hydrolysis of primary ginsenosides in the red ginseng extract, and inhibition/deficiency of P-gp can lead to large enhancement of its absorption and bioavailability. PMID:22584255

Yang, Zhen; Wang, Jing-Rong; Niu, Tao; Gao, Song; Yin, Taijun; You, Ming; Jiang, Zhi-Hong

2012-01-01

183

Differential effect of P-gp and MRP2 on cellular translocation of gemifloxacin.  

PubMed

Fluoroquinolones are broad spectrum antibiotics widely indicated in the treatment of both human and animal diseases. The primary objective of this study was to assess short and long term affinities of gemifloxacin towards efflux transporters (P-gp, MRP2) and nuclear hormone receptor (PXR). Uptake and dose dependent inhibition studies were performed with [(14)C] erythromycin (0.25 ?Ci/ml) on MDCKII-MDR1 and MDCKII-MRP2 cells. Cellular accumulation of calcein-AM was further determined to confirm the affinity of gemifloxacin towards P-gp and MRP2. Transport studies were conducted to determine bi-directional permeability and to assess efflux ratio of gemifloxacin. LS-180 cells were treated with three different concentrations of gemifloxacin for 72 h and real-time PCR analysis was performed to study the quantitative gene expression levels of PXR, MDR1 and MRP2. Further, [(14)C] erythromycin uptake was also performed on LS-180 treated cells to better delineate the functional activity of efflux transporters. Results from our study suggest that gemifloxacin may be a substrate of both the efflux transporters studied. This compound inhibited both P-gp and MRP2 mediated efflux of [(14)C] erythromycin in a dose dependent manner with IC(50) values of 123 ± 2 ?M and 16 ± 2 ?M, respectively. The efflux ratio of [(14)C] erythromycin lowered from 3.56 to 1.63 on MDCKII-MDR1 cells and 4.93 to 1.26 on MDCKII-MRP2 cells. This significant reduction in efflux ratio further confirmed the substrate specificity of gemifloxacin towards P-gp and MRP2. Long term exposure significantly induced the expression of PXR (18 fold), MDR1 (6 fold) and MRP2 (6 fold). A decrease (20%) in [(14)C] erythromycin uptake further confirmed the elevated functional activity of P-gp and MRP2. In conclusion, our studies demonstrated that gemifloxacin is effluxed by both P-gp and MRP2. Long term exposure induced their gene expression and functional activity. This substrate specificity of gemifloxacin towards these efflux transporters may be one of the major factors accounting for low oral bioavailability (71%). Better understanding of these mechanistic interactions may aid in the development of newer strategies to achieve adequate therapeutic levels and higher bioavailability. PMID:21864659

Vadlapatla, Ramya Krishna; Vadlapudi, Aswani Dutt; Kwatra, Deep; Pal, Dhananjay; Mitra, Ashim K

2011-11-25

184

Increased Expression of P-Glycoprotein and Doxorubicin Chemoresistance of Metastatic Breast Cancer Is Regulated by miR-298  

PubMed Central

MicroRNAs (miRNAs) are short, noncoding RNA molecules that regulate the expression of a number of genes involved in cancer; therefore, they offer great diagnostic and therapeutic targets. We have developed doxorubicin-resistant and -sensitive metastatic human breast cancer cell lines (MDA-MB-231) to study the chemoresistant mechanisms regulated by miRNAs. We found that doxorubicin localized exclusively to the cytoplasm and was unable to reach the nuclei of resistant tumor cells because of the increased nuclear expression of MDR1/P-glycoprotein (P-gp). An miRNA array between doxorubicin-sensitive and -resistant breast cancer cells showed that reduced expression of miR-298 in doxorubicin-resistant human breast cancer cells was associated with increased expression of P-gp. In a transient transfection experiment, miR-298 directly bound to the MDR1 3? untranslated region and regulated the expression of firefly luciferase reporter in a dose-dependent manner. Overexpression of miR-298 down-regulated P-gp expression, increasing nuclear accumulation of doxorubicin and cytotoxicity in doxorubicin-resistant breast cancer cells. Furthermore, down-regulation of miR-298 increased P-gp expression and induced doxorubicin resistance in sensitive breast cancer cells. In summary, these results suggest that miR-298 directly modulates P-gp expression and is associated with the chemoresistant mechanisms of metastatic human breast cancer. Therefore, miR-298 has diagnostic and therapeutic potential for predicting doxorubicin chemoresistance in human breast cancer. PMID:22521303

Bao, Lili; Hazari, Sidhartha; Mehra, Smriti; Kaushal, Deepak; Moroz, Krzysztof; Dash, Srikanta

2012-01-01

185

Selenorhodamine photosensitizers for photodynamic therapy of p-glycoprotein-expressing cancer cells.  

PubMed

We examined a series of selenorhodamines with amide and thioamide functionality at the 5-position of a 9-(2-thienyl) substituent on the selenorhodamine core for their potential as photosensitizers for photodynamic therapy (PDT) in P-glycoprotein (P-gp) expressing cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their uptake into Colo-26 cells in the absence or presence of verapamil, for their dark and phototoxicity toward Colo-26 cells, for their rates of transport in monolayers of multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells, and for their colocalization with mitochondrial specific agents in Colo-26 cells. Thioamide derivatives 16b and 18b were more effective photosensitizers than amide derivatives 15b and 17b. Selenorhodamine thioamides 16b and 18b were useful in a combination therapy to treat Colo-26 cells in vitro: a synergistic therapeutic effect was observed when Colo-26 cells were exposed to PDT and treatment with the cancer drug doxorubicin. PMID:25250825

Hill, Jacqueline E; Linder, Michelle K; Davies, Kellie S; Sawada, Geri A; Morgan, Janet; Ohulchanskyy, Tymish Y; Detty, Michael R

2014-10-23

186

Dual-functionalized PAMAM dendrimers with improved P-glycoprotein inhibition and tight junction modulating effect.  

PubMed

This study aims to surface modify poly(amido amine) or PAMAM dendrimers by sequentially grafting poly(ethylene glycol) or PEG and 4-thiobutylamidine (TBA) so as to reduce PAMAM cytotoxicity while improving the ability of PAMAM to modulate P-glycoprotein (P-gp) efflux and tight junction integrity. Conjugation of functional groups was determined by NMR spectroscopy, FT-IR, thiol group quantification and molecular weight estimation. The yield of the dual-functionalized dendrimers was >80%. The dual-functionalized dendrimer could significantly reduce PAMAM cytotoxicity to <15% as reflected by LDH release in Caco-2 and MDCK/MDR1 cells after 72 h of exposure. Thiolated dendrimers could increase cellular accumulation and permeation of the P-gp substrate R-123, and such effect could be affected by the extent of PEGylation of the dendrimer. Surface-modified PAMAM dendrimers, either by single or dual functionalization, could better modulate tight junction integrity in comparison with unmodified PAMAM, as demonstrated through immunostaining of the tight junction marker ZO-1, permeation of the model compound Lucifer Yellow (LY) and transepithelial electrical resistance (TEER). Of importance, reversible tight junction modulating effect was only observed in the dual-functionalized dendrimers. Collectively, dual functionalization with PEG and TBA represented a promising approach in altering PAMAM dendrimer surface for potential application in oral drug delivery. PMID:24219381

Liu, Yuanjie; Chiu, Gigi N C

2013-12-01

187

Reversion of P-Glycoprotein-Mediated Multidrug Resistance in Human Leukemic Cell Line by Diallyl Trisulfide  

PubMed Central

Multidrug resistance (MDR) is the major obstacle in chemotherapy, which involves multiple signaling pathways. Diallyl trisulfide (DATS) is the main sulfuric compound in garlic. In the present study, we aimed to explore whether DATS could overcome P-glycoprotein-(P-gp-)mediated MDR in K562/A02 cells, and to investigate whether NF-?B suppression is involved in DATS-induced reversal of MDR. MTT assay revealed that cotreatment with DATS increased the response of K562/A02 cells to adriamycin (the resistance reversal fold was 3.79) without toxic side effects. DATS could enhance the intracellular concentration of adriamycin by inhibiting the function and expression of P-gp, as shown by flow cytometry, RT-PCR, and western blot. In addition, DATS resulted in more K562/A02 cell apoptosis, accompanied by increased expression of caspase-3. The expression of NF-?B/p65 (downregulation) was significantly linked to the drug-resistance mechanism of DATS, whereas the expression of I?B? was not affected by DATS. Our findings demonstrated that DATS can serve as a novel, nontoxic modulator of MDR, and can reverse the MDR of K562/A02 cells in vitro by increasing intracellular adriamycin concentration and inducing apoptosis. More importantly, we proved for the first time that the suppression of NF-?B possibly involves the molecular mechanism in the course of reversion by DATS. PMID:22919419

Xia, Qing; Wang, Zhi-Yong; Li, Hui-Qing; Diao, Yu-Tao; Li, Xiao-Li; Cui, Jia; Chen, Xue-Liang; Li, Hao

2012-01-01

188

Annotating Human P-Glycoprotein Bioassay Data.  

PubMed

Huge amounts of small compound bioactivity data have been entering the public domain as a consequence of open innovation initiatives. It is now the time to carefully analyse existing bioassay data and give it a systematic structure. Our study aims to annotate prominent in vitro assays used for the determination of bioactivities of human P-glycoprotein inhibitors and substrates as they are represented in the ChEMBL and TP-search open source databases. Furthermore, the ability of data, determined in different assays, to be combined with each other is explored. As a result of this study, it is suggested that for inhibitors of human P-glycoprotein it is possible to combine data coming from the same assay type, if the cell lines used are also identical and the fluorescent or radiolabeled substrate have overlapping binding sites. In addition, it demonstrates that there is a need for larger chemical diverse datasets that have been measured in a panel of different assays. This would certainly alleviate the search for other inter-correlations between bioactivity data yielded by different assay setups. PMID:23293680

Zdrazil, Barbara; Pinto, Marta; Vasanthanathan, Poongavanam; Williams, Antony J; Balderud, Linda Zander; Engkvist, Ola; Chichester, Christine; Hersey, Anne; Overington, John P; Ecker, Gerhard F

2012-08-01

189

Playing with opening and closing of heterocycles: using the cusmano-ruccia reaction to develop a novel class of oxadiazolothiazinones, active as calcium channel modulators and p-glycoprotein inhibitors.  

PubMed

As a result of the ring-into-ring conversion of nitrosoimidazole derivatives, we obtained a molecular scaffold that, when properly decorated, is able to decrease inotropy by blocking L-type calcium channels. Previously, we used this scaffold to develop a quantitative structure-activity relationship (QSAR) model, and we used the most potent oxadiazolothiazinone as a template for ligand-based virtual screening. Here, we enlarge the diversity of chemical decorations, present the synthesis and in vitro data for 11 new derivatives, and develop a new 3D-QSAR model with recent in silico techniques. We observed a key role played by the oxadiazolone moiety: given the presence of positively charged calcium ions in the transmembrane channel protein, we hypothesize the formation of a ternary complex between the oxadiazolothiazinone, the Ca2+ ion and the protein. We have supported this hypothesis by means of pharmacophore generation and through the docking of the pharmacophore into a homology model of the protein. We also studied with docking experiments the interaction with a homology model of P-glycoprotein, which is inhibited by this series of molecules, and provided further evidence toward the relevance of this scaffold in biological interactions. PMID:25317581

Spinelli, Domenico; Budriesi, Roberta; Cosimelli, Barbara; Severi, Elda; Micucci, Matteo; Baroni, Massimo; Fusi, Fabio; Ioan, Pierfranco; Cross, Simon; Frosini, Maria; Saponara, Simona; Matucci, Rosanna; Rosano, Camillo; Viale, Maurizio; Chiarini, Alberto; Carosati, Emanuele

2014-01-01

190

Flurazepam inhibits the P-glycoprotein transport function: an insight to revert multidrug-resistance phenotype.  

PubMed

P-glycoprotein mediated drug transport may lead to a multidrug resistance phenotype often associated with a poor response to the successful treatment of a variety of human disorders. Several agents have been found to modulate P-glycoprotein drug resistance, most probably by blocking its transport function. The aim of this study was to examine the effects of some benzodiazepines (bromazepam, chlordiazepoxide, diazepam and flurazepam) able to bind to P-glycoprotein in proteoliposomes on its transport function and ATPase activity in the human cancer cell line, KB-V1. The toxicity of the benzodiazepines drugs towards KB-V1 cells was first evaluated and the non toxic drugs concentrations were used to assess the drug efflux and the ATPase activity. Using the flow cytometry approach, the accumulation and efflux of daunorubicin were followed by measuring the daunorubicin associated geometric mean fluorescence intensity. Vanadate was employed as a comparative inhibitory compound. Flurazepam was able to inhibit the daunorubicin efflux in 80%. ATPase activity determined by a colorimetric assay revealed that flurazepam inhibits the P-glycoprotein enzymatic activity, indicating coupling between drug transport and ATP hydrolysis. Bromazepam, chlordiazepoxide and diazepam behaved as activators of the P-glycoprotein ATPase activity, suggesting a role as transported substrates and did not interfere in the daunorubicin transport. PMID:18190907

Lima, Sofia A C; Tavares, Joana; Gameiro, Paula; de Castro, Baltazar; Cordeiro-da-Silva, Anabela

2008-02-26

191

Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2).  

PubMed

Drug interaction with P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) may influence its tissue disposition including blood-brain barrier transport and result in potent drug-drug interactions. The limited data obtained using in-vitro models indicate that methadone, buprenorphine, and cannabinoids may interact with human P-gp; but almost nothing is known about drugs of abuse and BCRP. We used in vitro P-gp and BCRP inhibition flow cytometric assays with hMDR1- and hBCRP-transfected HEK293 cells to test 14 compounds or metabolites frequently involved in addiction, including buprenorphine, norbuprenorphine, methadone, ibogaine, cocaine, cocaethylene, amphetamine, N-methyl-3,4-methylenedioxyamphetamine, 3,4-methylenedioxyamphetamine, nicotine, ketamine, Delta9-tetrahydrocannabinol (THC), naloxone, and morphine. Drugs that in vitro inhibited P-gp or BCRP were tested in hMDR1- and hBCRP-MDCKII bidirectional transport studies. Human P-gp was significantly inhibited in a concentration-dependent manner by norbuprenorphine>buprenorphine>methadone>ibogaine and THC. Similarly, BCRP was inhibited by buprenorphine>norbuprenorphine>ibogaine and THC. None of the other tested compounds inhibited either transporter, even at high concentration (100 microm). Norbuprenorphine (transport efflux ratio approoximately 11) and methadone (transport efflux ratio approoximately 1.9) transport was P-gp-mediated; however, with no significant stereo-selectivity regarding methadone enantiomers. BCRP did not transport any of the tested compounds. However, the clinical significance of the interaction of norbuprenorphine with P-gp remains to be evaluated. PMID:19887017

Tournier, Nicolas; Chevillard, Lucie; Megarbane, Bruno; Pirnay, Stéphane; Scherrmann, Jean-Michel; Declčves, Xavier

2010-08-01

192

Anthracyclines, proteasome activity and multi-drug-resistance  

PubMed Central

Background P-glycoprotein is responsible for the ATP-dependent export of certain structurally unrelated compounds including many chemotherapeutic drugs. Amplification of P-glycoprotein activity can result in multi-drug resistance and is a common cause of chemotherapy treatment failure. Therefore, there is an ongoing search for inhibitors of P-glycoprotein. Observations that cyclosporin A, and certain other substances, inhibit both the proteasome and P-glycoprotein led us to investigate whether anthracyclines, well known substrates of P-gp, also inhibit the function of the proteasome. Methods Proteasome function was measured in cell lysates from ECV304 cells incubated with different doses of verapamil, doxorubicin, daunorubicin, idarubicin, epirubicin, topotecan, mitomycin C, and gemcitabine using a fluorogenic peptide assay. Proteasome function in living cells was monitored using ECV304 cells stably transfected with the gene for an ubiquitin/green fluorescent protein fusion protein. The ability of the proteasome inhibitor MG-132 to affect P-glycoprotein function was monitored by fluorescence due to accumulation of daunorubicin in P-glycoprotein overexpressing KB 8-5 cells. Results Verapamil, daunorubicin, doxorubicin, idarubicin, and epirubicin inhibited 26S chymotrypsin-like function in ECV304 extracts in a dose-dependent fashion. With the exception of daunorubicin, 20S proteasome function was also suppressed. The proteasome inhibitor MG-132 caused a dose-dependent accumulation of daunorubicin in KB 8-5 cells that overexpress P-glycoprotein, suggesting that it blocked P-glycoprotein function. Conclusion Our data indicate that anthracyclines inhibit the 26S proteasome as well as P-glycoprotein. Use of inhibitors of either pathway in cancer therapy should take this into consideration and perhaps use it to advantage, for example during chemosensitization by proteasome inhibitors. PMID:16159384

Fekete, Mirela R; McBride, William H; Pajonk, Frank

2005-01-01

193

A simplified protocol employing elacridar in rodents: a screening model in drug discovery to assess P-gp mediated efflux at the blood brain barrier.  

PubMed

In the present study we have developed a simple, time, and cost effective in vivo rodent protocol to screen the susceptibility of a test compound for P-glycoprotein (P-gp) mediated efflux at the blood brain barrier (BBB) during early drug discovery. We used known P-gp substrates as test compounds (quinidine, digoxin, and talinolol) and elacridar (GF120918) as a chemical inhibitor to establish the model. The studies were carried out in both mice and rats. Elacridar was dosed intravenously at 5 mg/kg, 0.5 h prior to probe substrate administration. Plasma and brain samples were collected and analyzed using UPLC-MS/MS. In the presence of elacridar, the ratio of brain to plasma area under the curve (B/P) in mouse increased 2, 4, and 38-fold, respectively, for talinolol, digoxin, and quinidine; whereas in rat, a 70-fold increase was observed for quinidine. Atenolol, a non P-gp substrate, exhibited poor brain penetration in the presence or absence of elacridar in both species (B/P ratio ~ 0.1). Elacridar had no significant effect on the systemic clearance of digoxin or quinidine; however, a trend towards increasing volume of distribution and half life was observed. Our results support the utility of elacridar in evaluation of the influence of P-gp mediated efflux on drug distribution to the brain. Our protocol employing a single intravenous dose of elacridar and test compound provides a cost effective alternative to expensive P-gp knockout mice models during early drug discovery. PMID:23061481

Kallem, Rajareddy; Kulkarni, Chetan P; Patel, Dakshay; Thakur, Megha; Sinz, Michael; Singh, Sheelendra P; Mahammad, S Shahe; Mandlekar, Sandhya

2012-06-01

194

HIF-1? Inhibition Reverses Multidrug Resistance in Colon Cancer Cells via Downregulation of MDR1/P-Glycoprotein  

PubMed Central

Background Multidrug resistance (MDR) is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1) and the multidrug resistance (MDR1) gene/transporter P-glycoprotein (P-gp) remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1?. Methods A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS). The apoptotic level induced by different drugs was examined by flow cytometry (FCM). Binding of HIF-1? to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP). The relationship between HIF-1?/P-gp expression and sensitivity to chemotherapy was analyzed. Results The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1? gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1?, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1? and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1? significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1? was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1? and P-gp were more resistant to chemotherapy than that with non expression. Conclusions HIF-1? inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1? and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance in colon cancer. PMID:24901645

Peng, Yonghai; Pan, Feng; Li, Jianjun; Zou, Lan; Zhang, Yanling; Liang, Houjie

2014-01-01

195

Effects of nonionic detergents on P-glycoprotein drug binding and reversal of multidrug resistance.  

PubMed

Multidrug-resistant cells are thought to maintain low intracellular cytotoxic drug concentration though the active efflux of drugs across the cell membrane. It is presently believed that P-glycoprotein mediates this energy-dependent drug efflux by interacting directly with various lipophilic compounds. In this report, we have used [3H]azidopine in a photoaffinity labeling assay to study the effect of detergents and denaturing agents on P-glycoprotein drug binding in intact cells. Nonionic detergents such as Triton X-100 or Nonidet P-40 at very low concentrations were found to completely abolish azidopine photolabeling to P-glycoprotein and are able to reverse the multidrug resistance phenotype. In contrast, high concentrations of the denaturing agent urea or the zwitterionic detergent 1-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate did not inhibit azidopine photolabeling to P-glycoprotein. A comparison between verapamil and Triton X-100 revealed that the latter was more effective in inhibiting azidopine photolabeling to P-glycoprotein while verapamil was more effective in potentiating [3H]vinblastine accumulation in drug-resistant cells. Drug transport studies showed that [3H]Triton X-100 accumulated in both drug-sensitive and -resistant cells, and its accumulation was not modulated by excess vinblastine, verapamil, or colchicine. Taken together, these findings suggest that low concentrations of Triton X-100 reverse the multidrug resistance phenotype by inhibiting P-glycoprotein drug binding. In addition, it is also suggested that the site(s) of P-glycoprotein drug binding is localized to sequences found within the lipid bilayer. PMID:7903200

Zordan-Nudo, T; Ling, V; Liu, Z; Georges, E

1993-12-15

196

P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) restrict brain accumulation of the active sunitinib metabolite N-desethyl sunitinib.  

PubMed

N-desethyl sunitinib is a major and pharmacologically active metabolite of the tyrosine kinase inhibitor and anticancer drug sunitinib. Because the combination of N-desethyl sunitinib and sunitinib represents total active drug exposure, we investigated the impact of several multidrug efflux transporters on plasma pharmacokinetics and brain accumulation of N-desethyl sunitinib after sunitinib administration to wild-type and transporter knockout mice. In vitro, N-desethyl sunitinib was a good transport substrate of human ABCB1 and ABCG2 and murine Abcg2, but not ABCC2 or Abcc2. At 5 ?M, ABCB1 and ABCG2 contributed almost equally to N-desethyl sunitinib transport. In vivo, the systemic exposure of N-desethyl sunitinib after oral dosing of sunitinib malate (10 mg/kg) was unchanged when Abcb1 and/or Abcg2 were absent. However, brain accumulation of N-desethyl sunitinib was markedly increased (13.7-fold) in Abcb1a/1b(-/-)/Abcg2(-/-) mice, but not in Abcb1a/1b(-/-) or Abcg2(-/-) mice. In the absence of the ABCB1 and ABCG2 inhibitor elacridar, brain concentrations of N-desethyl sunitinib were detectable only in Abcb1a/1b(-/-)/Abcg2(-/-) mice after sunitinib administration. Combined elacridar plus N-desethyl sunitinib treatment increased N-desethyl sunitinib plasma and brain exposures, but not brain-to-plasma ratios in wild-type mice. In conclusion, brain accumulation of N-desethyl sunitinib is effectively restricted by both Abcb1 and Abcg2. The effect of elacridar treatment in improving brain accumulation of N-desethyl sunitinib in wild-type mice was limited compared with its effect on sunitinib brain accumulation. PMID:22238213

Tang, Seng Chuan; Lankheet, Nienke A G; Poller, Birk; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

2012-04-01

197

Functional induction and de-induction of P-glycoprotein by St. John's wort and its ingredients in a human colon adenocarcinoma cell line.  

PubMed

Continuous use of St. John's wort decreases the bioavailabilities of a variety of drugs. This interaction is attributed to the induction of cytochrome P450 3A4 and/or P-glycoprotein. In this study, we aimed to examine the chronic effects of St. John's wort and its constituents, hyperforin and hypericin, on the expression and function of P-glycoprotein in an intestinal cell line, LS 180. We also examined the acute inhibitory effect of St. John's wort on P-glycoprotein by using LLC-GA5-COL150 cells, which overexpress P-glycoprotein. St. John's wort and hyperforin but not hypericin increased the expression of P-glycoprotein in LS 180 cells. Removal of St. John's wort resulted in a restoration of P-glycoprotein level within 48 h. The content of hyperforin in St. John's wort extract was high enough to induce P-glycoprotein, suggesting that the induction of P-glycoprotein by St. John's wort can be almost attributable to hyperforin. The LS 180 cells chronically exposed to St. John's wort or hyperforin exhibited the increase in the function of P-glycoprotein assessed by the efflux of digoxin, and the activities correlated well with P-glycoprotein level. On the other hand, St. John's wort and its two constituents did not show any acute effect on P-glycoprotein-mediated transport of digoxin. St. John's wort induced P-glycoprotein in vitro that functions as a drug efflux pump. Hyperforin is considered to be a primary cause of the inductive effect of St. John's wort. Long-term administration of St. John's wort may cause clinically significant decrease in the plasma concentrations of P-glycoprotein substrates. PMID:15640377

Tian, Run; Koyabu, Noriko; Morimoto, Satoshi; Shoyama, Yukihiro; Ohtani, Hisakazu; Sawada, Yasufumi

2005-04-01

198

P-gp substrate-induced neurotoxicity in an Abcb1a knock-in/Abcb1b knock-out mouse model with a mutated canine ABCB1 targeted insertion.  

PubMed

Certain dog breeds, especially Collies, are observed to exhibit neurotoxicity to avermectin drugs, which are P-glycoprotein (P-gp) substrates. This neurotoxicity is due to an ABCB1 gene mutation (ABCB1-1?) that results in non-functional P-gp expression. A developed Abcb1a knock-in/Abcb1b knock-out mouse model expressing the ABCB1-1? canine gene was previously reported and mice exhibited sensitivity upon ivermectin administration. Here, model and wild-type mice were administered P-gp substrates doramectin, moxidectin, and digoxin. While knock-in/knock-out mice exhibited ataxia, lethargy and tremor, wild-type mice remained unaffected. In addition, no neurotoxic clinical signs were observed in either mouse type administered domperidone, a P-gp substrate with no reported neurotoxicity in ABCB1-1? Collies. Overall, neurotoxic signs displayed by model mice closely paralleled those observed in ivermectin-sensitive Collies. This model can be used to identify toxic P-gp substrates with altered safety in dog populations and may reduce dog use in safety studies that are part of the drug approval process. PMID:23186803

Swain, M D; Orzechowski, K L; Swaim, H L; Jones, Y L; Robl, M G; Tinaza, C A; Myers, M J; Jhingory, M V; Buckely, L E; Lancaster, V A; Yancy, H F

2013-06-01

199

Inhibition of anticancer drug efflux transporter P-glycoprotein by rosemary phytochemicals.  

PubMed

The effects of dietary antioxidative and chemopreventive rosemary phytochemicals on the function of the human drug efflux transporter P-glycoprotein (MDR1, ABCB1) and multidrug resistance protein 1 (MRP1, ABCC1) were investigated using P-glycoprotein-overexpressing human carcinoma KB-C2 cells and human MRP1 gene-transfected KB/MRP cells. The effects of natural phytochemicals found in rosemary such as carnosic acid, carnosol, rosmarinic acid, and ursolic acid were investigated. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-glycoprotein, in KB-C2 cells increased in the presence of carnosic acid, carnosol, and ursolic acid in a concentration-dependent manner. In contrast, carnosic acid, carnosol, rosmarinic acid, and ursolic acid had no effects on the accumulation of calcein, a fluorescent substrate of MRP1, in KB/MRP cells. The ATPase activities of P-glycoprotein were stimulated by carnosic acid, carnosol, and ursolic acid. KB-C2 cells were sensitized to vinblastine cytotoxicity by carnosic acid, showing that carnosic acid reverses multidrug resistance. These results suggest that rosemary phytochemicals, such as carnosic acid, have inhibitory effects on anticancer drug efflux transporter P-glycoprotein and may become useful to enhance the efficacy of cancer chemotherapy. PMID:19944162

Nabekura, Tomohiro; Yamaki, Takeshi; Hiroi, Takashi; Ueno, Kazuyuki; Kitagawa, Shuji

2010-03-01

200

Tamoxifen reduces P-gp-mediated multidrug resistance via inhibiting the PI3K/Akt signaling pathway in ER-negative human gastric cancer cells.  

PubMed

Multidrug resistance (MDR), mediated by overexpression of drug efflux transporters such as P-glycoprotein (P-gp), is a major problem limiting successful chemotherapy of gastric cancer. Tamoxifen (TAM), a triphenylethylene nonsteroidal antiestrogen agent, shows broad-spectrum antitumor properties. Emerging studies demonstrated that TAM could significantly reduce the MDR in a variety of human cancers. Here we investigated the effects and possible underlying mechanisms of action of TAM on the reversion of MDR in ER-negative human gastric cancer cells. Our results demonstrated that in MDR phenotype SGC7901/CDDP gastric cancer cells TAM dramatically lowered the IC50 of CDDP, 5-FU and ADM, increased the intracellular Rhodamine123 accumulation and induced G0/G1 phase arrest, while G2/M phase decreased accordingly. Furthermore, at the molecular level, TAM substantially decreased the expression of P-gp, p-Akt and the Akt-regulated downstream effectors such as p-GSK-3?, p-BAD, Bcl-XL and cyclinD1 proteins without affecting the expression of t-Akt, t-GSK-3?, t-BAD proteins in SGC7901/CDDP cells. Thus, our findings demonstrate that TAM reverses P-gp-mediated gastric cancer cell MDR via inhibiting the PI3K/Akt signaling pathway. PMID:24184201

Mao, Zonglei; Zhou, Jin; Luan, Junwei; Sheng, Weihua; Shen, Xiaochun; Dong, Xiaoqiang

2014-03-01

201

Identification of members of the P-glycoprotein multigene family  

Microsoft Academic Search

Overproduction of P-glycoprotein is intimately associated with multidrug resistance. This protein appears to be encoded by a multigene family. Thus, differential expression of different members of this family may contribute to the complexity of the multidrug resistance phenotype. Three lambda genomic clones isolated from a hamster genomic library represent different members of the hamster P-glycoprotein gene family. Using a highly

W. F. Ng; F. Sarangi; R. L. Zastawny; L. Veinot-Drebot; V. Ling

1989-01-01

202

Identification of a Sister Gene to P-Glycoprotein1  

Microsoft Academic Search

The P-glycoproteins (Pgps) are a small family of transport proteins associated with the multidrug resistance phenotype of cell lines selected for growth in cytotoxic drugs. Utilizing low stringency screening, we have identified a novel gene closely related to the Pgps expressed in the pig and other mammalian liver which we have called Sister of P-glycoprotein (spgp ). Sequence of this

Sarah Childs; Richard Lin Yeh; Elias Georges; Victor Ling

203

Expression of Multidrug Resistance Proteins P-Glycoprotein, Multidrug Resistance Protein 1, Breast Cancer Resistance Protein and Lung Resistance Related Protein in Locally Advanced Bladder Cancer Treated With Neoadjuvant Chemotherapy: Biological and Clinical Implications  

Microsoft Academic Search

PurposeResistance to chemotherapy is a major obstacle to overcome in the conservative treatment of patients with locally advanced bladder cancer (LABC). We investigated the predictive value of the response to neoadjuvant chemotherapy (NACT) and prognosis of the expression of multidrug resistance (MDR) related proteins, P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), breast cancer resistance protein (BCRP) and lung resistance related

JULIO E. DIESTRA; ENRIC CONDOM; XAVIER GARCÍA DEL MURO; GEORGE L. SCHEFFER; JAVIER PÉREZ; AMADO J. ZURITA; JOSÉ MUŃOZ-SEGUÍ; FRANCISCO VIGUÉS; RIK J. SCHEPER; GABRIEL CAPELLÁ; JOSÉ R. GERMŔ-LLUCH; MIGUEL A. IZQUIERDO

2003-01-01

204

Gauging the clinical significance of P-glycoprotein-mediated herb-drug interactions: Comparative effects of St. John's wort, echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics  

PubMed Central

Concomitant administration of botanical supplements with drugs that are P-glycoprotein (P-gp) substrates may produce clinically significant herb-drug interactions. This study evaluated the effects of St. John's wort and Echinacea on the pharmacokinetics of digoxin, a recognized P-gp substrate. Eighteen healthy volunteers were randomly assigned to receive a standardized St. John's wort (300 mg three times daily) or Echinacea (267 mg three times daily) supplement for 14 days, followed by a 30-day washout period. Subjects were also randomized to receive rifampin (300 mg twice daily, 7 days) and clarithromycin (500 mg twice daily, 7 days) as positive controls for P-gp induction and inhibition, respectively. Digoxin (Lanoxin® 0.25 mg) was administered orally before and after each supplementation and control period. Serial digoxin plasma concentrations were obtained over 24 hours and analyzed by chemiluminescent immunoassay. Comparisons of AUC(0-3), AUC(0-24), T1/2, and Cmax, were used to assess the effects of St. John's wort, Echinacea, rifampin, and clarithromycin on digoxin disposition. St. John's wort and rifampin both produced significant reductions (p<0.05) in AUC(0-3), AUC(0-24), and Cmax, while clarithromycin increased these parameters significantly (p<0.05). Echinacea supplementation did not affect digoxin pharmacokinetics. Clinically significant P-gp-mediated herb-drug interactions are more likely to occur with St. John's wort than with Echinacea. PMID:18214850

Gurley, Bill J.; Swain, Ashley; Williams, D. Keith; Barone, Gary; Battu, Sunil Kumar

2007-01-01

205

Identification of members of the P-glycoprotein multigene family  

SciTech Connect

Overproduction of P-glycoprotein is intimately associated with multidrug resistance. This protein appears to be encoded by a multigene family. Thus, differential expression of different members of this family may contribute to the complexity of the multidrug resistance phenotype. Three lambda genomic clones isolated from a hamster genomic library represent different members of the hamster P-glycoprotein gene family. Using a highly conserved exon probe, the authors found that the hamster P-glycoprotein gene family consists of three genes. They also found that the P-glycoprotein gene family consists of three genes in mice but has only two genes in humans and rhesus monkeys. The hamster P-glycoprotein genes have similar exon-intron organizations within the 3' region encoding the cytoplasmic domains. The propose that the hamster P-glycoprotein gene family arose from gene duplication. The hamster pgpl and pgp2 genes appear to be more closely related to each other than either gene is to the pgp3 gene. They speculate that the hamster pgpl and pgp2 genes arose from a recent gene duplication event and that primates did not undergo this duplication and therefore contain only two P-glycoprotein genes.

Ng, W.F.; Sarangi, F.; Zastawny, R.L.; Veinot-Drebot, L.; Ling, V. (The Ontario Cancer Institute and Dept. of Medical Biophysics, Univ. of Toronto, Toronto, Ontario (CA))

1989-03-01

206

Inhibition of P-glycoprotein transport function and reversion of MDR1 multidrug resistance by cnidiadin  

Microsoft Academic Search

Purpose: Overexpression of P-glycoprotein (Pgp) encoded by the MDR1 gene is one of the major obstacles to successful cancer chemotherapy. The goal of this study was to evaluate if, among other natural cou- marins, cnidiadin, a furanocoumarin present in tradi- tional Chinese medications and in a spice commonly used in Greek food, inhibits Pgp transport activity and has the potential

Chantal Barthomeuf; Jérôme Grassi; Michel Demeule; Chantal Fournier; Dominique Boivin; Richard Béliveau

2005-01-01

207

P-glycoprotein regulates trafficking of CD8(+) T cells to the brain parenchyma.  

PubMed

The trafficking of cytotoxic CD8(+) T lymphocytes across the lining of the cerebral vasculature is key to the onset of the chronic neuro-inflammatory disorder multiple sclerosis. However, the mechanisms controlling their final transmigration across the brain endothelium remain unknown. Here, we describe that CD8(+) T lymphocyte trafficking into the brain is dependent on the activity of the brain endothelial adenosine triphosphate-binding cassette transporter P-glycoprotein. Silencing P-glycoprotein activity selectively reduced the trafficking of CD8(+) T cells across the brain endothelium in vitro as well as in vivo. In response to formation of the T cell-endothelial synapse, P-glycoprotein was found to regulate secretion of endothelial (C-C motif) ligand 2 (CCL2), a chemokine that mediates CD8(+) T cell migration in vitro. Notably, CCL2 levels were significantly enhanced in microvessels isolated from human multiple sclerosis lesions in comparison with non-neurological controls. Endothelial cell-specific elimination of CCL2 in mice subjected to experimental autoimmune encephalomyelitis also significantly diminished the accumulation of CD8(+) T cells compared to wild-type animals. Collectively, these results highlight a novel (patho)physiological role for P-glycoprotein in CD8(+) T cell trafficking into the central nervous system during neuro-inflammation and illustrate CCL2 secretion as a potential link in this mechanism. PMID:24429546

Kooij, Gijs; Kroon, Jeffrey; Paul, Debayon; Reijerkerk, Arie; Geerts, Dirk; van der Pol, Susanne M A; van Het Hof, Bert; Drexhage, Joost A; van Vliet, Sandra J; Hekking, Liesbeth H P; van Buul, Jaap D; Pachter, Joel S; de Vries, Helga E

2014-05-01

208

A tamoxifen derivative, N,N-diethyl-2-[4-(phenylmethyl) phenoxy] ethanamine, selectively targets P-glycoprotein-positive multidrug resistant Chinese hamster cells.  

PubMed

DPPE, a tamoxifen derivative with antihistamine activity, was previously shown to potentiate the toxicity of chemotherapeutic drugs. Recently, a Phase III clinical study using doxorubicin with DPPE demonstrated significant increase in the overall survival of breast cancer patients. In this study we examined the effects of DPPE alone on the growth of drug sensitive and P-gp positive CHO cell line. Our results demonstrate DPPE is selectively toxic to P-gp positive cells and the sensitivity to DPPE alone correlated with the levels of P-gp expression. Moreover, in MDR cells, DPPE-induced apoptosis was significantly reduced with Bcl2 overexpression and in the presence of P-gp ATPase inhibitor, PSC833. Furthermore, knockdown of P-gp expression in MDR cells with P-gp-siRNA reversed DPPE sensitivity and increased their sensitivity to doxorubicin and taxol but not to cisplatin. The addition of DPPE to membrane fractions led to dose-dependent increase in P-gp ATPase that was inhibited with PSC833. Moreover, incubation of P-gp positive cells with DPPE led to a significant increase in superoxide levels and a drop in cellular ATP and GSH pools that were reversible with inhibitors of P-gp ATPase. The combined presence of DPPE and the mitochondria electron transport complex III inhibitor, antimycin A, synergized in their effects on the growth of MDR cells but had no effect on the growth of parental drug sensitive cells. Collectively, the results of this study provide a possible mechanism that may be relevant to the clinical results of DPPE in breast cancer trial and demonstrates DPPE as P-gp collateral sensitivity drug. PMID:24821111

Georges, Elias; Lian, Jing; Laberge, Remi

2014-07-15

209

Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein  

Microsoft Academic Search

Proton pump inhibitors are a class of drugs which are widely prescribed for acid-related diseases. They are primarily metabolized by CYP2C19 and CYP3A4. It is unknown so far whether proton pump inhibitors are also substrates of the ATP-dependent efflux transporter P-glycoprotein. Moreover, it is not established whether proton pump inhibitors are also inhibitors of P-glycoprotein function. The aim of our

Christiane Pauli-Magnus; Sabine Rekersbrink; Ulrich Klotz; Martin F. Fromm

2001-01-01

210

Dipyridamole enhances digoxin bioavailability via P-glycoprotein inhibition  

Microsoft Academic Search

Background: On the basis of in vitro studies indicating that dipyridamole is an inhibitor for the MDR1 efflux membrane transporter P-glycoprotein, we postulated that dipyridamole could increase the bioavailability of digoxin, a P-glycoprotein substrate.Objectives: The main objective was to determine whether dipyridamole alters the bioavailability of digoxin. The secondary objective was to determine whether the magnitude of the pharmacokinetic interaction

Céline Verstuyft; Soraya Strabach; Hakima El Morabet; Reinhold Kerb; Ulrich Brinkmann; Liliane Dubert; Patrice Jaillon; Christian Funck-Brentano; Germain Trugnan; Laurent Becquemont

2003-01-01

211

Identification of Key Structural Characteristics of Schisandra chinensis Lignans Involved in P-Glycoprotein Inhibition.  

PubMed

The aim of the present study was to determine the structural requirements for dibenzocyclooctadiene lignans essential for P-glycoprotein inhibition. Altogether 15 structurally related lignans isolated from Schisandra chinensis or prepared by modification of their backbone were investigated, including three pairs of enantiomers. P-Glycoprotein inhibition was quantified using a doxorubicin accumulation assay in human promyelotic leukemia HL60/MDR cells overexpressing P-glycoprotein. A preliminary quantitative structure-activity relationship analysis revealed three main structural features involved in P-glycoprotein inhibition: a 1,2,3-trimethoxy moiety, a 6-acyloxy group, and the absence of a 7-hydroxy group. The most effective inhibitors, (-)-gomisin N (1) and (+)-deoxyschizandrin [(+)-2], were selected for further evaluation of their effects. Both these lignans restored the cytotoxic effect of doxorubicin in HL60/MDR cells and when combined with a subtoxic concentration of this compound increased the proportion of G2/M cells significantly, which is a usual response to treatment with this anticancer drug. PMID:25302569

Slanina, Ji?í; Páchniková, Gabriela; Carnecká, Martina; Porubová Koubíková, Ludmila; Adámková, Lenka; Humpa, Otakar; Smejkal, Karel; Slaninová, Iva

2014-10-24

212

Quantitative assessment of p-glycoprotein expression and function using confocal image analysis.  

PubMed

P-glycoprotein is implicated in clinical drug resistance; thus, rapid quantitative analysis of its expression and activity is of paramout importance to the design and success of novel therapeutics. The scope for the application of quantitative imaging and image analysis tools in this field is reported here at "proof of concept" level. P-glycoprotein expression was utilized as a model for quantitative immunofluorescence and subsequent spatial intensity distribution analysis (SpIDA). Following expression studies, p-glycoprotein inhibition as a function of verapamil concentration was assessed in two cell lines using live cell imaging of intracellular Calcein retention and a routine monolayer fluorescence assay. Intercellular and sub-cellular distributions in the expression of the p-glycoprotein transporter between parent and MDR1-transfected Madin-Derby Canine Kidney cell lines were examined. We have demonstrated that quantitative imaging can provide dose-response parameters while permitting direct microscopic analysis of intracellular fluorophore distributions in live and fixed samples. Analysis with SpIDA offers the ability to detect heterogeniety in the distribution of labeled species, and in conjunction with live cell imaging and immunofluorescence staining may be applied to the determination of pharmacological parameters or analysis of biopsies providing a rapid prognostic tool. PMID:25158832

Hamrang, Zahra; Arthanari, Yamini; Clarke, David; Pluen, Alain

2014-10-01

213

[Evaluation of P-glycoprotein mediated in vitro loperamide biliary excretion with sandwich-cultured rat hepatocytes model].  

PubMed

An in vitro P-glycoprotein mediated drug biliary excretion model (B-Clear model) was developed and validated using sandwich-cultured rat hepatocytes (SCRH) and a model substrate rhodamine 123 (Rh123). SCRH formed functional bile canalicular networks after 5 days of culture. Rh123 (10 micromol x L(-1)) was then incubated with the SCRH in standard Ca+ Hanks buffer or Ca(2+)-free buffer. The cumulative cell uptake and canalicular efflux of Rh123 under Ca2+ and Ca(2+)-free conditions were measured with a LC-MS/MS method. The biliary excretion index (BEI) and instinct biliary clearance (CL(bile, int)) were calculated. To assess the effect of known P-gp inhibitors on the efflux of Rh123, cyclosporine A (CyA), tariquidar (TQD) or quinidine (QND) (10, 50 and 100 micromol x L(-1)) was pre-incubated separately with SCRH for 30 min, then co-incubated with Rh123. The BEI and CL(bile, int) of Rh123 obtained from the SCRH model were (17.8 +/- 1.3) % and (10.7 +/- 0.9) mL x min(-1) x kg(-1), respectively. All the three P-gp inhibitors showed a dose-dependent inhibition on the bile clearance of Rh123, indicating that the B-Clear model with SCRH was functional properly. The biliary excretion of loperamide (LPAD) and the role of P-gp were further investigated with this validated model. The BEI and CL(bile, int) for LPAD (20 micromol x L(-1)) were obtained after it was incubated with SCRH for 30 min, and found to be (12.9 +/- 1.2)% and (6.1 +/- 0.3) mL x min(-1) x kg(-1) respectively. The dose-dependent inhibition on LPAD biliary excretion by CyA, TQD or QND confirmed the major role of P-gp in LPAD canalicular efflux. The results suggested that the B-Clear model with SCRH would be a useful tool for evaluation of P-gp mediated efflux and drug-drug interaction. PMID:22799027

Shen, Guo-Lin; Zhuang, Xiao-Mei; Yuan, Mei; Sun, Han-Xiong; Li, Hua

2012-04-01

214

Comparison of 99mTc-Tetrofosmin and 99mTc-Sestamibi Uptake in Glioma Cell Lines: The Role of P-Glycoprotein Expression  

PubMed Central

99mTc-Tetrofosmin (99mTc-TF) and 99mTc-Sestamibi (99mTc-MIBI) are SPECT tracers that have been used for brain tumor imaging. Tumor's multidrug resistance phenotype, namely, P-glycoprotein (p-gp), and the multidrug resistance related proteins (MRPs) expression have been suggested to influence both tracers' uptake. In the present study we set out to compare 99mTc-TF and 99mTc-MIBI uptake in high-grade glioma cell lines and to investigate the influence of gliomas p-gp expression on both tracers' uptake. We used four glioma cell lines (U251MG, A172, U87MG, and T98G). The expression of p-gp protein was evaluated by flow cytometry. Twenty ?Ci (7.4·105?Bq) of 99mTc-TF and 99mTc-MIBI were used. The radioactivity in the cellular lysate was measured with a dose calibrator. P-gp was significantly expressed only in the U251MG cell line (P < 0.001). In all gliomas cell lines (U251MG, U87MG, A172, and T98G) the 99mTc-TF uptake was significantly higher than 99mTc-sestamibi. The U251MG cell line, in which significant p-gp expression was documented, exhibited the strongest uptake difference. 99mTc-TF uptake was higher than 99mTc-MIBI in all studied high-grade glioma cell lines. Thus, 99mTc-TF may be superior to 99mTc-MIBI for glioma imaging in vivo.

Alexiou, George A.; Xourgia, Xanthi; Vartholomatos, Evrysthenis; Kalef-Ezra, John A.; Fotopoulos, Andreas D.; Kyritsis, Athanasios P.

2014-01-01

215

Nonlinear accumulation in the brain of the new taxoid TXD258 following saturation of P-glycoprotein at the blood-brain barrier in mice and rats  

PubMed Central

TXD258, a new taxoid antitumor agent, is a poor substrate for the P-glycoprotein (P-gp) in Caco-2 cells. In this study, we investigated the amount of drug accumulating in the brains of rats and mice under a variety of conditions (dose and infusion time, species and plasma concentration) using conventional in vivo pharmacokinetic techniques and in situ brain perfusion. Mice were infused with radiolabeled TXD258 at 15, 30, 45 and 90 mg m?2 for 45 s or 1 h and rats were infused with 15 and 60 mg m?2 over 2.3 min. The radioactivity in the plasma and brains was measured. The brain concentrations of TXD258 in mice and rats were maximal from 2 min to 1 h postinfusion and radioactivity was still detectable at 168 h. While the plasma concentration of TXD258 increased linearly in mice with the infused dose, the brain content increased more than proportionally with the dose between 15 and 90 mg m?2. This nonlinear uptake of TXD258 also occurred in the plasma and brain of the rat. These findings suggest that the protein-mediated efflux across the blood–brain barrier (BBB) becomes saturated. In situ brain perfusion studies confirmed that TXD258 is a P-gp substrate at the BBB of mice and rats. The P-gp of both species was saturated at the half-inhibitory concentration (?13 ?M) produced by i.v. infusion. Thus, the observed nonlinear accumulation of TXD258 in the brain seems to occur by saturation of the P-gp at the rodent BBB. This saturation could have several advantages, such as overcoming a P-gp-mediated efflux, but the nonlinear pharmacokinetics could increase the risk of toxicity. PMID:12711638

Cisternino, Salvatore; Bourasset, Fanchon; Archimbaud, Yves; Semiond, Dorothee; Sanderink, Gerard; Scherrmann, Jean-Michel

2003-01-01

216

Sucrose esters increase drug penetration, but do not inhibit p-glycoprotein in caco-2 intestinal epithelial cells.  

PubMed

Sucrose fatty acid esters are increasingly used as excipients in pharmaceutical products, but few data are available on their toxicity profile, mode of action, and efficacy on intestinal epithelial models. Three water-soluble sucrose esters, palmitate (P-1695), myristate (M-1695), laurate (D-1216), and two reference absorption enhancers, Tween 80 and Cremophor RH40, were tested on Caco-2 cells. Caco-2 monolayers formed a good barrier as reflected by high transepithelial resistance and positive immunostaining for junctional proteins claudin-1, ZO-1, and ?-catenin. Sucrose esters in nontoxic concentrations significantly reduced resistance and impedance, and increased permeability for atenolol, fluorescein, vinblastine, and rhodamine 123 in Caco-2 monolayers. No visible opening of the tight junctions was induced by sucrose esters assessed by immunohistochemistry and electron microscopy, but some alterations were seen in the structure of filamentous actin microfilaments. Sucrose esters fluidized the plasma membrane and enhanced the accumulation of efflux transporter ligands rhodamine 123 and calcein AM in epithelial cells, but did not inhibit the P-glycoprotein (P-gp)-mediated calcein AM accumulation in MES-SA/Dx5 cell line. These data indicate that in addition to their dissolution-increasing properties sucrose esters can enhance drug permeability through both the transcellular and paracellular routes without inhibiting P-gp. PMID:25042090

Kiss, Lóránd; Hellinger, Éva; Pilbat, Ana-Maria; Kittel, Ágnes; Török, Zsolt; Füredi, András; Szakács, Gergely; Veszelka, Szilvia; Sipos, Péter; Ózsvári, Béla; Puskás, László G; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A

2014-10-01

217

Kinetic Validation of the Models for P-Glycoprotein ATP Hydrolysis and Vanadate-Induced Trapping. Proposal for Additional Steps  

PubMed Central

P-Glycoprotein, a member of the ATP-binding cassette (ABC) superfamily, is a multidrug transporter responsible for cellular efflux of hundreds of structurally unrelated compounds, including natural products, many clinically used drugs and anti-cancer agents. Expression of P-glycoprotein has been linked to multidrug resistance in human cancers. ABC transporters are driven by ATP hydrolysis at their two cytoplasmic nucleotide-binding domains, which interact to form a closed ATP-bound sandwich dimer. Intimate knowledge of the catalytic cycle of these proteins is clearly essential for understanding their mechanism of action. P-Glycoprotein has been proposed to hydrolyse ATP by an alternating mechanism, for which there is substantial experimental evidence, including inhibition of catalytic activity by trapping of ortho-vanadate at one nucleotide-binding domain, and the observation of an asymmetric occluded state. Despite many studies of P-glycoprotein ATPase activity over the past 20 years, no comprehensive kinetic analysis has yet been carried out, and some puzzling features of its behaviour remain unexplained. In this work, we have built several progressively more complex kinetic models, and then carried out simulations and detailed analysis, to test the validity of the proposed reaction pathway employed by P-glycoprotein for ATP hydrolysis. To establish kinetic parameters for the catalytic cycle, we made use of the large amount of published data on ATP hydrolysis by hamster P-glycoprotein, both purified and in membrane vesicles. The proposed kinetic scheme(s) include a high affinity priming reaction for binding of the first ATP molecule, and an independent pathway for ADP binding outside the main catalytic cycle. They can reproduce to varying degrees the observed behavior of the protein's ATPase activity and its inhibition by ortho-vanadate. The results provide new insights into the mode of action of P-glycoprotein, and some hypotheses about the nature of the occluded nucleotide-bound state. PMID:24897122

Lugo, Miguel Ramón; Sharom, Frances Jane

2014-01-01

218

The Inhibitory Effect of Pseudolaric Acid B on Gastric Cancer and Multidrug Resistance via Cox-2/PKC-?/P-gp Pathway  

PubMed Central

Aim To investigate the inhibitory effect of pseudolaric acid B on subcutaneous xenografts of human gastric adenocarcinoma and the underlying molecular mechanisms involved in its multidrug resistance. Methods Human gastric adenocarcinoma SGC7901 cells and drug-resistant SGC7901/ADR cells were injected into nude mice to establish a subcutaneous xenograft model. The effects of pseudolaric acid B with or without adriamycin treatment were compared by determining the tumor size and weight. Cyclo-oxygenase-2, protein kinaseC-? and P-glycoprotein expression levels were determined by immunohistochemistry and western blot. Results Pseudolaric acid B significantly suppressed the tumor growth induced by SGC7901 cells and SGC7901/ADR cells. The combination of pseudolaric acid B and the traditional chemotherapy drug adriamycin exhibited more potent inhibitory effects on the growth of gastric cancer in vivo than treatment with either pseudolaric acid B or adriamycin alone. Protein expression levels of cyclo-oxygenase-2, protein kinaseC-? and P-glycoprotein were inhibited by pseudolaric acid B alone or in combination with adriamycin in SGC7901/ADR cell xenografts. Conclusion Pseudolaric acid B has a significant inhibitory effect and an additive inhibitory effect in combination with adriamycin on the growth of gastric cancer in vivo, which reverses the multidrug resistance of gastric neoplasm to chemotherapy drugs by downregulating the Cox-2/PKC-?/P-gp/mdr1 signaling pathway. PMID:25250794

Sun, Qian; Li, Yan

2014-01-01

219

An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1.  

PubMed

Efflux transporters of the ATP-binding cassette superfamily including breast cancer resistance protein (Bcrp/Abcg2), P-glycoprotein (P-gp/Abcb1) and multidrug resistance-associated proteins (Mrp's/Abcc's) are expressed in the blood-brain barrier (BBB). The aim of this study was to investigate if a bovine endothelial/rat astrocyte in vitro BBB co-culture model displayed polarized transport of known efflux transporter substrates. The co-culture model displayed low mannitol permeabilities of 0.95?±?0.1?·?10(-6) cm·s(-1) and high transendothelial electrical resistances of 1,177?±?101 ?·cm(2). Bidirectional transport studies with (3)H-digoxin, (3)H-estrone-3-sulphate and (3)H-etoposide revealed polarized transport favouring the brain-to-blood direction for all substrates. Steady state efflux ratios of 2.5?±?0.2 for digoxin, 4.4?±?0.5 for estrone-3-sulphate and 2.4?±?0.1 for etoposide were observed. These were reduced to 1.1?±?0.08, 1.4?±?0.2 and 1.5?±?0.1, by addition of verapamil (digoxin), Ko143 (estrone-3-sulphate) or zosuquidar?+?reversan (etoposide), respectively. Brain-to-blood permeability of all substrates was investigated in the presence of the efflux transporter inhibitors verapamil, Ko143, zosuquidar, reversan and MK 571 alone or in combinations. Digoxin was mainly transported via P-gp, estrone-3-sulphate via Bcrp and Mrp's and etoposide via P-gp and Mrp's. The expression of P-gp, Bcrp and Mrp-1 was confirmed using immunocytochemistry. The findings indicate that P-gp, Bcrp and at least one isoform of Mrp are functionally expressed in our bovine/rat co-culture model and that the model is suitable for investigations of small molecule transport. PMID:24934296

Helms, Hans Christian; Hersom, Maria; Kuhlmann, Louise Borella; Badolo, Lasina; Nielsen, Carsten Uhd; Brodin, Birger

2014-09-01

220

Inhibition of placental P-glycoprotein: impact on indinavir transfer to the foetus  

PubMed Central

AIMS To investigate the effect of P-gp inhibition on the maternal to foetal transfer of indinavir. METHODS Term human placentae (n = 12) were from non-HIV infected women. Maternal to foetal transfer of indinavir was examined in the absence and presence of P-gp inhibitors PSC833 (n = 7) or ritonavir (n = 5), in the perfused human placenta. Antipyrine and [3H]-vinblastine were included as markers of passive diffusion and P-gp transport, respectively. These markers and indinavir were added to maternal perfusate at 0 min; PSC833 or ritonavir was added at 25 min. Steady-state maternal to foetal transfer clearance was calculated during control and inhibitor phases. Indinavir and vinblastine clearances were normalized to antipyrine clearance (clearance index). RESULTS Indinavir clearance index increased between the control (0.25 ± 0.03) and PSC833 phases (0.37 ± 0.14) (95% CI of the difference ?0.23, ?0.002). Vinblastine clearance index increased from (0.25 ± 0.08) to (0.34 ± 0.06) in the control and PSC833 phases, respectively (95% CI of difference ?0.14, ?0.05). Indinavir clearance index was unchanged between control (0.34 ± 0.14) and ritonavir phases (0.39 ± 0.13) (95% CI of the difference ?0.19, 0.08). Vinblastine clearance index increased from (0.24 ± 0.12) to (0.32 ± 0.12) in the control and ritonavir phases, respectively (95% CI of the difference ?0.15, ?0.009). CONCLUSIONS Maternal to foetal transfer clearance of indinavir and vinblastine increased following P-gp inhibition. The potential role for co-administration of P-gp inhibitors with PIs to reduce perinatal HIV transmission warrants further investigation. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT We have shown previously using the dually perfused isolated human placenta model that the maternal to foetal transfer of the antiviral protease inhibitor drug indinavir is substantially lower than the transfer in the opposite direction. This finding is not consistent with passive diffusion and indicates that a carrier-mediated mechanism is involved in retarding the movement in the maternal to foetal direction. The efflux transporter P-gp located in the apical membrane domain of the placental trophoblast cells has been implicated as the likely cause of the differential bi-directional transport. WHAT THIS STUDY ADDS The present study also utilizes the human perfused human isolated placenta to investigate the possible inhibitory effects of the P-gp inhibitor PSC833 and the P-gp substrate/inhibitor ritonavir on the maternal to foetal transfer clearance of indinavir. The studies, which were conducted such that each placenta served as its own control, demonstrated a statistically significant increase in the maternal to foetal transfer of indinavir in the presence of PSC833 but not in the presence of ritonavir, a protease inhibitor that is often used in combination with other protease inhibitors in dual therapy. The lack of effect of ritonavir is most likely related to the relatively low inhibitory activity at the clinically relevant concentration used in this study. PMID:18093255

Sudhakaran, Sreeja; Rayner, Craig R; Li, Jian; Kong, David C M; Gude, Neil M; Nation, Roger L

2008-01-01

221

Brain penetration of WEB 2086 (Apafant) and dantrolene in Mdr1a (P-glycoprotein) and Bcrp knockout rats.  

PubMed

Transporter gene knockout rat models are attracting increasing interest for mechanistic studies of new drugs as transporter substrates or inhibitors in vivo. However, limited data are available on the functional validity of such models at the blood-brain barrier. Therefore, the present study evaluated Mdr1a [P-glycoprotein (P-gp)], Bcrp, and combined Mdr1a/Bcrp knockout rat strains for the influence of P-gp and breast cancer resistance protein (BCRP) transport proteins on brain penetration of the selective test substrates [(14)C]WEB 2086 (3-[4-(2-chlorophenyl)-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo-[4,3-a][1,4]-diazepin-2-yl]-1-(4-morpholinyl)-1-propanon) for P-gp and dantrolene for BCRP. Brain-to-plasma concentration ratios (BPR) were measured after intravenous coinfusions of 5.5 µmol/kg per hour [(14)C]WEB 2086 and 2 µmol/kg per hour dantrolene for 2 hours in groups of knockout or wild-type rats. Compared with wild-type controls, mean BPR of [(14)C]WEB 2086 increased 8-fold in Mdr1a knockouts, 9.5-fold in double Mdr1a/Bcrp knockouts, and 7.3-fold in zosuquidar-treated wild-type rats, but was unchanged in Bcrp knockout rats. Mean BPR of dantrolene increased 3.3-fold in Bcrp knockouts and 3.9-fold in double Mdr1a/Bcrp knockouts compared with wild type, but was unchanged in the Mdr1a knockouts. The human intestinal CaCo-2 cell bidirectional transport system in vitro confirmed the in vivo finding that [(14)C]WEB 2086 is a substrate of P-gp but not of BCRP. Therefore, Mdr1a, Bcrp, and combined Mdr1a/Bcrp knockout rats provide functional absence of these efflux transporters at the blood-brain barrier and are a suitable model for mechanistic studies on the brain penetration of drug candidates. PMID:25053619

Fuchs, Holger; Kishimoto, Wataru; Gansser, Dietmar; Tanswell, Paul; Ishiguro, Naoki

2014-10-01

222

The B-cell lymphoma 2 (BCL2)-inhibitors, ABT-737 and ABT-263, are substrates for P-glycoprotein.  

PubMed

Inhibition of BCL2 proteins is one of the most promising new approaches to targeted cancer therapy resulting in the induction of apoptosis. Amongst the most specific BCL2-inhibitors identified are ABT-737 and ABT-263. However, targeted therapy is often only effective for a limited amount of time because of the occurrence of drug resistance. In this study, the interaction of BCL2-inhibitors with the drug efflux transporter P-glycoprotein was investigated. Using (3)H labelled ABT-263, we found that cells with high P-glycoprotein activity accumulated less drug. In addition, cells with increased P-glycoprotein expression were more resistant to apoptosis induced by either ABT-737 or ABT-263. Addition of tariquidar or verapamil sensitized the cells to BCL2-inhibitor treatment, resulting in higher apoptosis. Our data suggest that the BCL2-inhibitors ABT-737 and ABT-263 are substrates for P-glycoprotein. Over-expression of P-glycoprotein may be, at least partly, responsible for resistance to these BCL2-inhibitors. PMID:21514278

Vogler, Meike; Dickens, David; Dyer, Martin J S; Owen, Andrew; Pirmohamed, Munir; Cohen, Gerald M

2011-05-01

223

The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells.  

PubMed Central

P-glycoproteins can cause multidrug resistance in mammalian tumor cells by active extrusion of cytotoxic drugs. The natural function of these evolutionarily conserved, membrane-bound ATP binding transport proteins is unknown. In mammals, P-glycoproteins are abundantly present in organs associated with the digestive tract. We have studied the tissue-specific expression of Caenorhabditis elegans P-glycoprotein genes pgp-1 and pgp-3 by transformation of nematodes with pgp-lacZ gene fusion constructs in which the promoter area of the pgp genes was fused to the coding region of lacZ. Expression of pgp-1 and pgp-3, as inferred from pgp-lacZ transgenic nematodes, was confined to the intestinal cells. The expression patterns of both genes were virtually indistinguishable. Quantitative analysis of pgp mRNA levels during development showed that pgp-1, -2, and -3 were expressed throughout the life cycle of C.elegans, albeit with some variation indicating developmental regulation. The expression of P-glycoprotein genes in intestinal cells is an evolutionarily conserved feature of these genes, consistent with the hypothesis that P-glycoproteins provide a mechanism of protection against environmental toxins. Images PMID:8096815

Lincke, C R; Broeks, A; The, I; Plasterk, R H; Borst, P

1993-01-01

224

Evaluation of genipin on human cytochrome P450 isoenzymes and P-glycoprotein in vitro.  

PubMed

Genipin is obtained from the fruit of Gardenia jasminoides Ellis and acts as an herbal medicine or functional food in East Asia. In addition to produce natural colorant, it possesses widely antiinflammatory, antithrombotic, antidepressive and anticarcinogenic activities. However, little research focuses on the potential of genipin for drug-drug interactions. In this study, effects of genipin on mRNA and protein expression of cytochrome P450 (CYP) 2C19, CYP2D6 and CYP3A4 were detected by real-time reverse-transcription polymerase chain reaction (real-time RT-PCR) and Western blot, respectively, in human hepatoma HepG2 cells. Enzyme activities of which were detected by luminogenic CYP assay in vitro. Moreover, effect of genipin on P-glycoprotein expression was analyzed by Western blot. Results showed that genipin possessed a significant induction on CYP2D6 and a remarkable inhibition on CYP2C19 and CYP3A4 not only from the expression of mRNA and protein (P<0.05 or P<0.01), but the level of enzyme activity. Moreover, a concentration-dependent induction of genipin on P-glycoprotein expression was observed. In conclusion, caution should be exercised with respect to the induction or inhibition of genipin on CYP isoenzymes and the strong induction on P-glycoprotein. PMID:25073096

Gao, Li-Na; Zhang, Ye; Cui, Yuan-Lu; Yan, Kuo

2014-10-01

225

An atomic detail model for the human ATP binding cassette transporter P-glycoprotein derived from disulfide cross-linking and homology modeling.  

PubMed

The multidrug resistance P-glycoprotein mediates the extrusion of chemotherapeutic drugs from cancer cells. Characterization of the drug binding and ATPase activities of the protein have made it the paradigm ATP binding cassette (ABC) transporter. P-glycoprotein has been imaged at low resolution by electron cryo-microscopy and extensively analyzed by disulphide cross-linking, but a high resolution structure solved ab initio remains elusive. Homology models of P-glycoprotein were generated using the structure of a related prokaryotic ABC transporter, the lipid A transporter MsbA, as a template together with structural data describing the dimer interface of the nucleotide binding domains (NBDs). The first model, which maintained the NBD:transmembrane domain (TMD) interface of MsbA, did not satisfy previously published cross-linking data. This suggests that either P-glycoprotein has a very different structure from MsbA or that the published E. coli MsbA structure does not reflect a physiological state. To distinguish these alternatives, we mapped the interface between the two TMDs of P-glycoprotein experimentally by chemical cross-linking of introduced triple-cysteine residues. Based on these data, a plausible atomic model of P-glycoprotein could be generated using the MsbA template, if the TMDs of MsbA are reoriented with respect to the NBDs. This model will be important for understanding the mechanism of P-glycoprotein and other ABC transporters. PMID:14563687

Stenham, Daniella R; Campbell, Jeff D; Sansom, Mark S P; Higgins, Christopher F; Kerr, Ian D; Linton, Kenneth J

2003-12-01

226

Reversal of P-glycoprotein-mediated multidrug resistance by XR9051, a novel diketopiperazine derivative.  

PubMed Central

XR9051 (N-(4-(2-(6,7-Dimethoxy-1,2,3,4-tetrahydro-2-isoquinolyl)ethyl)phe nyl)-3-((3Z,6Z)-6-benzylidene-1-methyl-2,5-dioxo-3-pipera zinylidene) methylbenzamide) was identified as a potent modulator of P-glycoprotein-mediated multidrug resistance (MDR) following a synthetic chemistry programme based on a natural product lead compound. The activity of XR9051 was determined using a panel of human and murine drug-resistant cell lines (H69/LX4, 2780AD, EMT6/AR 1.0, MC26 and P388/DX Johnson). XR9051 was able to reverse resistance to a variety of cytotoxic drugs, including doxorubicin, etoposide and vincristine, which are associated with classical MDR. At a concentration of 0.3-0.5 microM, XR9051 was able to fully sensitize resistant cells to cytotoxics, whereas little or no effect was observed on the corresponding parental cell lines. No effect of XR9051 was observed on the response of cells to non-MDR cytotoxics such as methotrexate and 5-fluorouracil. XR9051 was consistently more potent than cyclosporin A (CsA) and verapamil (Vpm) in all assays used. XR9051 inhibited the efflux of [3H]daunorubicin from preloaded cells and, unlike CsA and Vpm, remained active for several hours after removal of resistance-modifying agent. In photoaffinity labelling experiments employing [3H]azidopine, XR9051 was able to displace binding to P-glycoprotein. In binding studies using [3H]vinblastine, XR9051 was shown to be a potent inhibitor of the binding of the cytotoxic to P-glycoprotein (EC50 = 1.4 +/- 0.5 nM). Taken together, the results indicate that XR9051 reverses the MDR phenotype through direct interaction with P-glycoprotein. Images Figure 5 PMID:9764579

Dale, I. L.; Tuffley, W.; Callaghan, R.; Holmes, J. A.; Martin, K.; Luscombe, M.; Mistry, P.; Ryder, H.; Stewart, A. J.; Charlton, P.; Twentyman, P. R.; Bevan, P.

1998-01-01

227

Transport inhibition of digoxin using several common P-gp expressing cell lines is not necessarily reporting only on inhibitor binding to P-gp.  

PubMed

We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918) to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute) confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health), Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown). These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1) bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin's cellular uptake; (2) partition into the basolateral membrane and directly reduce membrane permeability; (3) aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while highly permeable P-gp substrates such as amprenavir, quinidine, ketoconazole and verapamil do not, regardless of whether they actually use the basolateral transporter. PMID:23976943

Lumen, Annie Albin; Li, Libin; Li, Jiben; Ahmed, Zeba; Meng, Zhou; Owen, Albert; Ellens, Harma; Hidalgo, Ismael J; Bentz, Joe

2013-01-01

228

Transport Inhibition of Digoxin Using Several Common P-gp Expressing Cell Lines Is Not Necessarily Reporting Only on Inhibitor Binding to P-gp  

PubMed Central

We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918) to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute) confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health), Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown). These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1) bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin's cellular uptake; (2) partition into the basolateral membrane and directly reduce membrane permeability; (3) aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while highly permeable P-gp substrates such as amprenavir, quinidine, ketoconazole and verapamil do not, regardless of whether they actually use the basolateral transporter. PMID:23976943

Lumen, Annie Albin; Li, Libin; Li, Jiben; Ahmed, Zeba; Meng, Zhou; Owen, Albert; Ellens, Harma; Hidalgo, Ismael J.; Bentz, Joe

2013-01-01

229

"INVESTIGATION OF THE MICELLAR EFFECT OF PLURONIC P85 ON P-GLYCOPROTEIN INHIBITION: CELL ACCUMULATION AND EQUILIBRIUM DIALYSIS STUDIES"  

PubMed Central

The objective of this study was: (1) to characterize the P-gp inhibitory effect of different concentrations of Pluronic P85 on anti-HIV-1drug cellular accumulation, and (2) to investigate the relationship between cellular accumulation and free fraction of drug. Cellular accumulation studies in MDCKII-WT and MDCKII-MDR1 cell monolayers showed a biphasic dose response characterized by decline in accumulation at Pluronic concentrations greater than the CMC. This phenomenon was independent of the inhibition of P-gp efflux by Pluronic. Cell-free equilibrium dialysis was used to determine the effect of Pluronic P85 on drug free fraction and the affinity of Pluronic micelles for drug was modeled. Nelfinavir and saquinavir associated extensively with micelles and equilibrium free fractions were low at P85 concentrations above the CMC, with association constants being in the order nelfinavir > saquinavir >>> abacavir. Abacavir, a P-gp substrate, showed no association with micelles yet showed a biphasic response in cellular accumulation. These data suggest that, above the CMC, inhibition of P-gp is not affected but rather factors such as micellar trapping could contribute to decreased accumulation. Therefore, the in vitro evaluation of the effect of Pluronic formulations on active transport should take into account both the physicochemical properties of drug and the composition of Pluronic. PMID:19283769

SHAIK, NAVEED; GIRI, NAGDEEP; ELMQUIST, WILLIAM F.

2009-01-01

230

C-di-GMP Hydrolysis by Pseudomonas aeruginosa HD-GYP Phosphodiesterases: Analysis of the Reaction Mechanism and Novel Roles for pGpG  

PubMed Central

In biofilms, the bacterial community optimizes the strategies to sense the environment and to communicate from cell to cell. A key player in the development of a bacterial biofilm is the second messenger c-di-GMP, whose intracellular levels are modulated by the opposite activity of diguanylate cyclases and phosphodiesterases. Given the huge impact of bacterial biofilms on human health, understanding the molecular details of c-di-GMP metabolism represents a critical step in the development of novel therapeutic approaches against biofilms. In this study, we present a detailed biochemical characterization of two c-di-GMP phosphodiesterases of the HD-GYP subtype from the human pathogen Pseudomonas aeruginosa, namely PA4781 and PA4108. Upstream of the catalytic HD-GYP domain, PA4781 contains a REC domain typical of two-component systems, while PA4108 contains an uncharacterized domain of unknown function. Our findings shed light on the activity and catalytic mechanism of these phosphodiesterases. We show that both enzymes hydrolyse c-di-GMP in a two-step reaction via the linear intermediate pGpG and that they produce GMP in vitro at a surprisingly low rate. In addition, our data indicate that the non-phosphorylated REC domain of PA4781 prevents accessibility of c-di-GMP to the active site. Both PA4108 and phosphorylated PA4781 are also capable to use pGpG as an alternative substrate and to hydrolyse it into GMP; the affinity of PA4781 for pGpG is one order of magnitude higher than that for c-di-GMP. These results suggest that these enzymes may not work (primarily) as genuine phosphodiesterases. Moreover, the unexpected affinity of PA4781 for pGpG may indicate that pGpG could also act as a signal molecule in its own right, thus further widening the c-di-GMP-related signalling scenario. PMID:24066157

Stelitano, Valentina; Giardina, Giorgio; Paiardini, Alessandro; Castiglione, Nicoletta; Cutruzzola, Francesca; Rinaldo, Serena

2013-01-01

231

Induction of cytochrome P450 3A4 and P-glycoprotein by the isoxazolyl-penicillin antibiotic flucloxacillin.  

PubMed

Clinical findings indicate that co-administration of the isoxazolyl-penicillin flucloxacillin with cyclosporine may reduce the plasma concentrations of cyclosporine. We have explored in the present study if induction of cytochrome P450 3A4 or P-glycoprotein may offer a mechanistic explanation of the observed effects. Flucloxacillin is neither an inhibitor nor a substrate of drug metabolizing cytochrome P450 isoenzymes (CYP3A4, 1A2, 2C9, 2C19 and 2D6) or P-glycoprotein as shown by an in vitro assay for CYP inhibition, a fluorescent indicator assay for P-glycoprotein inhibition and a functional P-glycoprotein ATPase assay. However, incubation of human LS 180 colorectal adenocarcinoma cells with flucloxacillin led to a dose-dependent induction of MDR1 as well as of CYP3A4 mRNA, which was also confirmed in primary human hepatocytes. At high concentrations, flucloxacillin activated the human Pregnane-X-Receptor, PXR, a ligand-dependent transcription factor that is the target of many drugs that induce CYP3A4, with consequences for the metabolism of other drugs. Liver microsomes from control rats or rats, which received for 3 consecutive days 100 mg/kg of oral flucloxacillin, were used to study the metabolism and metabolite pattern of midazolam, a model substrate of CYP 3A4. There was a trend towards a higher intrinsic microsomal clearance of midazolam using microsomes from flucloxacillin treated rats. In addition, there was a significant increase in the formation of the principal midazolam metabolites 1-hydroxy midazolam, 4-hydroxy midazolam and 1,4-dihydroxy midazolam as compared to controls. These findings indicate that flucloxacillin has the potential to induce expression of both CYP3A4 as well as P-glycoprotein, most likely through activation of the nuclear hormone receptor PXR. This would offer an explanation for the observed clinical drug-drug interactions between the antibiotic and cyclosporine. PMID:16472102

Huwyler, Jörg; Wright, Matthew B; Gutmann, Heike; Drewe, Juergen

2006-02-01

232

Randomized use of cyclosporin A (CsA) to modulate P-glycoprotein in children with AML in remission: Pediatric Oncology Group Study 9421  

PubMed Central

Relapse is a major obstacle in the cure of acute myeloid leukemia (AML). The Pediatric Oncology Group AML Study 9421 tested 2 different strategies to improve event-free survival (EFS) and overall survival (OS). Patients were randomized to receive standard-dose DAT (daunorubicin, cytarabine, and thioguanine) or high-dose DAT during induction. To interfere with P-glycoprotein (P-gp)-dependent drug efflux, the second randomization tested the benefit of cyclosporine (CsA) added to consolidation chemotherapy. Of the 282 children randomly assigned to receive standard DAT induction, 248 (87.9%) achieved remission compared to 253 (91%) of the 278 receiving high-dose DAT (P = ns). Children with HLA-identical sibling donors who achieved a complete remission received an allogeneic bone marrow transplant as consolidation. For the 83 patients receiving a matched related donor bone marrow transplantation (BMT), the 3-year disease-free survival (DFS) is 67%. Of the 418 children who achieved remission and went on to consolidation with and without CsA, the DFS was 40.6% and 33.9%, respectively (P = .24). Overexpression of P-gp was infrequent (14%) in this pediatric population. In this study, intensifying induction with high-dose DAT and the addition of CsA to consolidation chemotherapy did not prolong the durations of remission or improve overall survival for children with AML. PMID:16254147

Becton, David; Dahl, Gary V.; Ravindranath, Yaddanapudi; Chang, Myron N.; Behm, Fred G.; Raimondi, Susana C.; Head, David R.; Stine, Kimo C.; Lacayo, Norman J.; Sikic, Branimir Ivan; Arceci, Robert J.; Weinstein, Howard

2006-01-01

233

The packing of the transmembrane segments of human multidrug resistance P-glycoprotein is revealed by disulfide cross-linking analysis.  

PubMed

Residues from several transmembrane (TM) segments of P-glycoprotein (P-gp) likely form the drug-binding site(s). To determine the organization of the TM segments, pairs of cysteine residues were introduced into the predicted TM segments of a Cys-less P-gp, and the mutant protein was subjected to oxidative cross-linking. In SDS gels, the cross-linked product migrated with a slower mobility than the native protein. The cross-linked products were not detected in the presence of dithiothreitol. Cross-linking was observed in 12 of 125 mutants. The pattern of cross-linking suggested that TM6 is close to TMs 10, 11, and 12, while TM12 is close to TMs 4, 5, and 6. In some mutants the presence of drug substrate colchicine, verapamil, cyclosporin A, or vinblastine either enhanced or inhibited cross-linking. Cross-linking was inhibited in the presence of ATP plus vanadate. These results suggest that the TM segments critical for drug binding must be close to each other and exhibit different conformational changes in response to binding of drug substrate or vanadate trapping of nucleotide. Based on these results, we propose a model for the arrangement of the TM segments. PMID:10681495

Loo, T W; Clarke, D M

2000-02-25

234

Identification of a multixenobiotic resistance mechanism in primary cultured epidermal cells from Oncorhynchus mykiss and the effects of environmental complex mixtures on its activity.  

PubMed

Multixenobiotic resistance (MXR) is a mechanism analogous to the mammalian multidrug resistance (MDR) phenotype, whereby, simultaneous resistance is conferred against the intracellular accumulation of structurally and functionally diverse, natural, endogenous and environmental toxicants. Expression of P-glycoproteins (P-gp), ATP-dependent transporters encoded for by the mdr1 gene that have been implicated in this xenobiotic efflux mechanism, have previously been detected in normal teleost tissues involved in a secretory, absorption or a barrier function. The presence of these proteins in the epidermis of fish species has not to our knowledge previously been investigated. In the present study, primary cultures of epidermis from the rainbow trout Oncorhynchus mykiss were employed to investigate whether an MXR mechanism is functional in the epidermis of fish. The efflux of the fluorescent mdr1 substrate rhodamine 123 from the cells was significantly inhibited by verapamil, a compound known to interfere with P-gp mediated transport. The cultured epidermal cells were also observed to accumulate this fluorescent dye in a verapamil sensitive manner, thus indicating the presence of an mdr1-like mechanism. Immunocytochemical analysis, using a monoclonal antibody (JSB1) directed against a conserved cytoplasmic P-gp epitope, also demonstrated the presence of P-gp-like proteins. Sediment elutriate extracts were employed as models of environmental complex mixtures to evaluate the potential of the epidermal cultures to discriminate between samples of varying contaminant burden using MXR activity as an endpoint. The induction of P-gp expression was found to be in accordance with the level of contamination detected in the sediments from which the elutriates were extracted. The findings of the functional study also demonstrated that environmental pollutants, which interfere with P-gp function, could be identified using this model. PMID:15899526

Shúilleabháin, Sharon Ní; Davoren, Maria; Mothersill, Carmel; Sheehan, David; Hartl, Mark G J; Kilemade, Michael; O'brien, Nora M; O'halloran, John; Van Pelt, Frank N A M; Lyng, Fiona M

2005-06-15

235

Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque.  

PubMed

Abstract Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters. PMID:24803409

Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Patton, Dorothy; Rohan, Lisa

2014-11-01

236

Enhanced oral bioavailability of felodipine by naringenin in Wistar rats and inhibition of P-glycoprotein in everted rat gut sacs in vitro.  

PubMed

The aim of this study was to investigate the effect of naringenin on the pharmacokinetics (PK) of felodipine in rats and membrane permeability across rat everted gut sacs in vitro. Rats were simultaneously co-administered with felodipine 10?mg/kg, p.o. and naringenin (25, 50 and 100?mg/kg, p.o.) for 15 consecutive days. Rats of the control groups received the corresponding volume of vehicle. Blood samples were withdrawn from retro-orbital plexus on first day in single dose PK study (SDS) and on 15th day in multiple dosing PK study (MDS). The PK parameters were calculated using Thermo kinetica. The co-administration of naringenin significantly elevated the Cmax and increased the AUCtotal of felodipine in dose-dependent manner. The Cmax of felodipine was increased from 173.25?±?14.65 to 275.61?±?44.62 and 223.26?±?26.35 to 561.32?±?62.53?ng/mL in SDS and MDS, respectively, at the dose of naringenin 100?mg/kg. The AUCtotal of felodipine was significantly (p?P-glycoprotein (P-gp) and Cytochrome P450 (CYP)3A4 inhibitor). Felodipine is a substrate of CYP3A4, and naringenin was reported to be a modulator of P-gp and CYP3A4. These results suggest that naringenin significantly increased the Cmax and AUC of felodipine is due to P-gp and CYP3A4 inhibition. PMID:23883365

Surya Sandeep, M; Sridhar, V; Puneeth, Y; Ravindra Babu, P; Naveen Babu, K

2014-10-01

237

Behavioral Effects and Central Nervous System Levels of the Broadly Available ?-Agonist Hallucinogen Salvinorin A Are Affected by P-Glycoprotein Modulation In Vivo  

PubMed Central

Active blood-brain barrier mechanisms, such as the major efflux transporter P-glycoprotein (mdr1), modulate the in vivo/central nervous system (CNS) effects of many pharmacological agents, whether they are used for nonmedical reasons or in pharmacotherapy. The powerful, widely available hallucinogen salvinorin A (from the plant Salvia divinorum) is a high-efficacy, selective ?-opioid agonist and displays fast-onset behavioral effects (e.g., within 1 min of administration) and relatively short duration of action. In vitro studies suggest that salvinorin A may be a P-glycoprotein substrate; thus, the functional status of P-glycoprotein may influence the behavioral effects of salvinorin A or its residence in CNS after parenteral administration. We therefore studied whether a competing P-glycoprotein substrate (the clinically available agent loperamide; 0.032–0.32 mg/kg) or a selective P-glycoprotein blocker, tariquidar (0.32–3.2 mg/kg) could enhance unconditioned behavioral effects (ptosis and facial relaxation, known to be caused by ?-agonists in nonhuman primates) of salvinorin A, as well as its entry and residence in the CNS, as measured by cerebrospinal fluid sampling. Pretreatment with either loperamide or tariquidar dose-dependently enhanced salvinorin A-induced ptosis, but not facial relaxation. In a control study, loperamide and tariquidar were inactive when given as a pretreatment to ((+)-(5?,7?,8?)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69,593), a ?-agonist known to be a very poor P-glycoprotein substrate. Furthermore, pretreatment with tariquidar (3.2 mg/kg) also enhanced peak levels of salvinorin A in cerebrospinal fluid after intravenous administration. These are the first studies in vivo showing the sensitivity of salvinorin A effects to modulation by the P-glycoprotein transporter, a major functional component of the blood-brain barrier. PMID:22434677

Caspers, Michael; Lovell, Kimberly M.; Kreek, Mary Jeanne; Prisinzano, Thomas E.

2012-01-01

238

Cellular Localization of the Multidrug-Resistance Gene Product P-glycoprotein in Normal Human Tissues  

Microsoft Academic Search

Monoclonal antibody MRK16 was used to determine the location of P-glycoprotein, the product of the multidrug-resistance gene (MDR1), in normal human tissues. The protein was found to be concentrated in a small number of specific sites. Most tissues examined revealed very little P-glycoprotein. However, certain cell types in liver, pancreas, kidney, colon, and jejunum showed specific localization of P-glycoprotein. In

Franz Thiebaut; Takashi Tsuruo; Hirofumi Hamada; Michael M. Gottesman; Ira Pastan; Mark C. Willingham

1987-01-01

239

Drug-selected coexpression of human glucocerebrosidase and P-glycoprotein using a bicistronic vector.  

PubMed Central

Bicistronic cassettes under control of a single promoter have recently been suggested as useful tools for coordinate expression of two different foreign proteins in mammalian cells. Using the long 5' untranslated region of encephalomyocarditis virus as translational enhancer of the second gene, a bicistronic unit composed of cDNA for human P-glycoprotein [the product of the multidrug resistance gene, MDR1 (also called PGY1)] as selectable marker and cDNA for human glucocerebrosidase (GC; EC 3.2.1.45) (a membrane-associated lysosomal hydrolase) was constructed. NIH 3T3 cells transfected with a Harvey murine sarcoma virus retroviral vector carrying this bicistronic cassette (pHaMCG) express active P-glycoprotein and GC and expression of both proteins augments coordinately with selection for increased colchicine resistance. Percoll gradient analysis of homogenates showed that GC was targeted to the lysosomal fraction. The ability to select for expression of GC with natural product drugs after introduction of the pHaMCG retroviral vector may be useful in gene therapy strategies for Gaucher disease. Images PMID:7909160

Aran, J M; Gottesman, M M; Pastan, I

1994-01-01

240

Lack of P-glycoprotein-mediated efflux and the potential involvement of an influx transport process contributing to the intestinal uptake of deltamethrin, cis-permethrin, and trans-permethrin.  

PubMed

The effectiveness and widespread use of pyrethroid insecticides has lead to concerns regarding their safety. Human ingestion of these potentially neurotoxic compounds is typically through hand-to-mouth contact or consumption of contaminated foods. A substantial proportion of ingested pyrethroids are eliminated in feces, suggesting that absorption is limited, possibly by the action of the efflux transporter P-glycoprotein (P-gp). We utilized caco-2 cells as a model system for intestinal enterocytes and qualitatively and quantitatively assessed the transport of deltamethrin (DLM), cis-permethrin (CPM), and trans-permethrin (TPM). Caco-2 cell uptake of the P-gp substrate R6G was increased by the P-gp inhibitors cyclosporine A (CSA) and ritonavir but not by DLM, CPM, and TPM. Unexpectedly, CSA and ritonavir significantly reduced the uptake of DLM, CPM, and TPM. Permeability coefficients (P app) and directional flux of DLM, CPM, or TPM were greater in the absorptive than the secretory (efflux) direction when measured across caco-2 monolayers grown on Transwell inserts. When CSA was applied to the monolayers' apical (AP) side, the AP to basolateral (BL) P app was significantly reduced, with no change in the BL to AP P app. Kinetic analysis demonstrated saturable transport kinetics for all 3 pyrethroids. These findings indicate that the cellular uptake of DLM, CPM, and TPM is not limited by P-gp efflux but undergo absorptive influx transport as a contributing mechanism for cellular uptake. However, the overall P app values for DLM, CPM, and TPM are consistent with the low permeability/low absorption compound mannitol, suggesting limited gastrointestinal absorption potential. PMID:24014652

Zastre, Jason; Dowd, Chris; Bruckner, James; Popovici, Andrew

2013-12-01

241

Nucleotide sequence analysis of small cryptic plasmid pGP2 from Acetobacter estunensis  

Microsoft Academic Search

Complete nucleotide sequence of plasmid pGP2 from Acetobacter estunensis GP2 was identified after initial cloning of EcoRI fragment followed by preparation of deletion derivatives. Its size was\\u000a defined to 2,797 bp and several sites for several restriction enzymes were revealed by DNA sequencing. Sequence analysis predicts\\u000a three putative open reading frames (ORFs). ORF1 shows significant identity with the bacterial excinuclease

Peter Grones; Jozef Grones

2011-01-01

242

Role of the highly structured 5?-end region of MDR1 mRNA in P-glycoprotein expression  

PubMed Central

Overexpression of P-glycoprotein, encoded by the MDR1 (multidrug resistance 1) gene, is often responsible for multidrug resistance in acute myeloid leukaemia. We have shown previously that MDR1 (P-glycoprotein) mRNA levels in K562 leukaemic cells exposed to cytotoxic drugs are up-regulated but P-glycoprotein expression is translationally blocked. In the present study we show that cytotoxic drugs down-regulate the Akt signalling pathway, leading to hypophosphorylation of the translational repressor 4E-BP [eIF (eukaryotic initiation factor) 4E-binding protein] and decreased eIF4E availability. The 5?-end of MDR1 mRNA adopts a highly-structured fold. Fusion of this structured 5?-region upstream of a reporter gene impeded its efficient translation, specifically under cytotoxic stress, by reducing its competitive ability for the translational machinery. The effect of cytotoxic stress could be mimicked in vivo by blocking the phosphorylation of 4E-BP by mTOR (mammalian target of rapamycin) using rapamycin or eIF4E siRNA (small interfering RNA), and relieved by overexpression of either eIF4E or constitutively-active Akt. Upon drug exposure MDR1 mRNA was up-regulated, apparently stochastically, in a small proportion of cells. Only in these cells could MDR1 mRNA compete successfully for the reduced amounts of eIF4E and translate P-glycoprotein. Consequent drug efflux and restoration of eIF4E availability results in a feed-forward relief from stress-induced translational repression and to the acquisition of drug resistance. PMID:17573715

Randle, Rebecca A.; Raguz, Selina; Higgins, Christopher F.; Yague, Ernesto

2007-01-01

243

Evidence of p-glycoprotein sequence diversity in cyathostomins.  

PubMed

P-glycoproteins (Pgps) are adenosine triphosphate-binding transporter proteins thought to be associated with multi-drug resistance in mammals and protozoans and have been suggested to be involved in the mechanism of ivermectin (IVM) resistance in Haemonchus contortus. Until now, resistance to IVM has not been reported in cyathostomins in horses in spite of its widespread and frequent use. Reasons for this might be differences in the molecular mechanism of the development of resistance. Based on this hypothesis, the present study was carried out to find homologues of Pgp in cyathostomins. A 416-bp polymerase chain reaction (PCR) product was generated using complementary DNA (cDNA) of Cylicocyclus elongatus and Cylicocyclus insigne and degenerate primers, located in the conserved Pgp nucleotide-binding domains. Resulting PCR products showed interspecific nucleotide and amino acid sequence identities of 73.3 and 76.8%, respectively. Specific primers were designed based on the Cc. elongatus sequence, and a PCR product of 268-bp was amplified from cDNA of single adults of Cylicocyclus radiatus, Cc. insigne, Cylicocyclus nassatus, Cc. elongatus, Cylicostephanus hybridus (2 individuals), Cylicostephanus goldi, Cyathostomum pateratum, Cyathostomum coronatum, and Cyathostomum catinatum. Two clusters of sequences were found representing 2 different internucleotide-binding domains (IBDs). A further distinct IBD is represented by the 416-bp PCR product of Cc. insigne. Therefore, a total of 3 clearly different sequences of the IBD were cloned and sequenced, suggesting that at least 2 Pgp genes exist in cyathostomins. PMID:15562598

Drogemuller, Michaela; Schnieder, T; von Samson-Himmelstjerna, G

2004-10-01

244

Overexpression of CD133 enhances chemoresistance to 5-fluorouracil by activating the PI3K/Akt/p70S6K pathway in gastric cancer cells.  

PubMed

CD133 has been reported to be associated with chemoresistance in various cancer cells. The efficacy of 5-fluorouracil (5-FU), an important chemotherapeutic agent for advanced gastric cancer (GC), is limited by 5-FU resistance. Hence, the present study investigated the function of CD133 in 5-FU resistance in human GC cells. We isolated CD133+ GC cells by immunomagnetic cell sorting and CD133 expression was modulated by transfection of CD133 gene or CD133 small interfering ribonucleic acid. To assess the 5-FU cytotoxicity, Cell Counting Kit-8 was used. Expression of CD133, P-glycoprotein (P-gp), B-cell lymphoma 2 (Bcl?2), Bcl-2-associated X protein (Bax), phospho-Akt (p-Akt) and phospho-p70S6 kinase (p-p70S6K) were analyzed by western blotting. CD133, P-gp, Bcl-2 and Bax messenger ribonucleic acids were evaluated using semi-quantitative reverse transcriptase-polymerase chain reaction. Cell apoptosis was assessed by Hoechst 33258 staining. CD133+ cells were more resistant to 5-FU than CD133- cells, and showed higher expression of P-gp and Bcl-2 with lower expression of Bax. Furthermore, CD133 silencing enhanced 5-FU cytotoxicity and apoptotic characteristics, whereas CD133 overexpression increased 5-FU resistance. CD133 silencing and activation directly decreased and increased the expression of P-gp, Bcl?2, p-Akt and p-p70S6K, respectively. Notably, Akt inhibition by LY294002 restored the 5-FU cytotoxicity suppressed by CD133 overexpression, while Akt activation by epidermal growth factor reversed the 5-FU cytotoxicity enhanced by CD133 silencing. Therefore, CD133 may inhibit 5-FU-induced apoptosis by regulating the expression of P-gp and Bcl-2 family mediated by phosphoinositide 3-kinase/Akt/p70S6K pathway in GC cells. PMID:25230779

Zhu, Youlong; Yu, Jiwei; Wang, Shoulian; Lu, Ruiqi; Wu, Jugang; Jiang, Bojian

2014-12-01

245

Ex vivo and in vivo investigations of the effects of extracts of Vernonia amygdalina, Carica papaya and Tapinanthus sessilifolius on digoxin transport and pharmacokinetics: assessing the significance on rat intestinal P-glycoprotein efflux.  

PubMed

Vernonia amygdalina (VA), Carica papaya (CP), and Tapinanthus sessilifolius (ML) are widely used in some countries as medicinal herbs to treat ailments including malaria, cancer, and diabetes. We previously reported the inhibitory effects of these herbs on permeability glycoprotein (P-gp) in Caco-2 cell monolayers. This study used ex vivo and in vivo models to investigate the likelihood of P-gp-mediated herb-drug interactions occurring. The study utilized excised rat intestinal tissues mounted in Ussing chambers to predict changes in drug absorption and an in vivo study in rats using digoxin as the P-gp substrate. Apparent permeability values and pharmacokinetic parameters of digoxin were compared to determine if co-administration of digoxin with ML, CP, or VA modulated the activity of P-gp. When VA was co-administered, the total area under the plasma concentration-time curve was significantly higher (2.1-fold) than when digoxin was administered alone. Co-administration of ML, VA, and CP significantly increased the mean digoxin apparent permeability in the mucosal-to-serosal direction by 7.8, 43.3, and 54.5%, respectively, in comparison to when digoxin was administered alone. These findings suggest that VA increases intestinal absorption of digoxin in vivo by inhibiting P-gp and may also modulate the pharmacokinetic disposition of other p-gp substrate drugs. PMID:23291634

Oga, Enoche Florence; Sekine, Shuichi; Horie, Toshiharu

2013-01-01

246

Cortisol is transported by the multidrug resistance gene product P-glycoprotein.  

PubMed Central

The physiology of the multidrug transporter P-glycoprotein (Pgp) is still poorly understood. We now show evidence that cell lines with a high expression of Pgp display a reduced accumulation of cortisol and an ATP-dependent outward transport of the hormone. Cortisol efflux from Pgp negative cells does not have such an active component. Further we show that the steroid hormones cortisol, testosterone, and progesterone cause an immediate, dose-dependent increase of daunorubicin accumulation in Pgp overexpressing cells. These effects are particularly apparent for the more lipophilic steroids. These results demonstrate that Pgp may function as a transporter for cortisol and suggest a physiological role of the protein in steroid handling by organs such as the adrenal. PMID:8094292

van Kalken, C. K.; Broxterman, H. J.; Pinedo, H. M.; Feller, N.; Dekker, H.; Lankelma, J.; Giaccone, G.

1993-01-01

247

The Remarkable Transport Mechanism of P-glycoprotein; a Multidrug Transporter  

PubMed Central

Human P-glycoprotein (ABCB1) is a primary multidrug transporter located in plasma membranes, that, utilizes the energy of ATP hydrolysis to pump toxic xenobiotics out of cells. P-glycoprotein employs a most unusual molecular mechanism to perform this drug transport function. Here we review our work to elucidate the molecular mechanism of drug transport by P-glycoprotein. High level heterologous expression of human P-glycoprotein, in the yeast Saccharomyces cerevisiae, has facilitated biophysical studies in purified proteoliposome preparations. Development of novel spin-labeled transport substrates has allowed for quantitative and rigorous measurements of drug transport in real time by EPR spectroscopy. We have developed a new drug transport model of P-glycoprotein from the results of mutagenic, quantitative thermodynamic and kinetic studies. This model satisfactorily accounts for most of the unusual kinetic, coupling and physiological features of P-glycoprotein. Additionally, an atomic detail structural model of P-glycoprotein has been devised to place our results within a proper structural context. PMID:16691488

Al-Shawi, Marwan K.; Omote, Hiroshi

2006-01-01

248

Cellular localization and functional expression of P-glycoprotein in rat astrocyte cultures.  

PubMed

We investigated the cellular/subcellular localization and functional expression of P-glycoprotein, an ATP-dependent membrane-associated efflux transporter, in astrocytes, a brain parenchyma compartment that is poorly characterized for the expression of membrane drug transporters. Analyses were carried out on primary cultures of astrocytes isolated from the cerebral cortex of neonatal Wistar rats and CTX TNA2, an immortalized rat astrocyte cell line. Both cell cultures display morphological features typical of type I astrocytes. RT-PCR analysis revealed mdr1a and mdr1b mRNA in primary cultures of astrocytes and in CTX TNA2 cells. Western blot analysis using the P-glycoprotein monoclonal C219 antibody detected a single band of appropriate size in both cell systems. Immunocytochemical analysis using the monoclonal antibodies C219 and MRK16 labeled P-glycoprotein along the plasma membrane, caveolae, coated vesicles and nuclear envelope. Immunoprecipitation studies using the caveolin-1 polyclonal H-97 antibody demonstrated that P-glycoprotein is physically associated with caveolin-1 in both cell culture systems. The accumulation of [(3)H]digoxin (an established P-glycoprotein substrate) by the astrocyte cultures was significantly enhanced in the presence of standard P-glycoprotein inhibitors and an ATP depleting agent. These results demonstrate the cellular/subcellular location and functional expression of P-glycoprotein in rat astrocytes and suggest that this glial compartment may play an important role in the regulation of drug transport in the CNS. PMID:15086534

Ronaldson, Patrick T; Bendayan, Moise; Gingras, Diane; Piquette-Miller, Micheline; Bendayan, Reina

2004-05-01

249

Effect of P-glycoprotein modulators on the pharmacokinetics of camptothecin using microdialysis  

PubMed Central

By performing microdialysis, this study investigated the pharmacokinetics of unbound camptothecin in rat blood, brain and bile in the presence of P-glycoprotein mediated transport modulators (cyclosporin A, berberine, quercetin, naringin and naringenin). Pharmacokinetic parameters of camptothecin were assessed using a non-compartmental model. Camptothecin rapidly crosses the blood-brain barrier (BBB) within 20?min after camptothecin administration. The disposition of camptothecin in rat bile appeared to have a slow elimination phase and a peak concentration after 20?min of camptothecin administration. The area under the concentration versus time curve (AUC) for camptothecin in bile significantly surpassed that in blood, suggesting active transport of hepatobiliary excretion. In the presence of cyclosporin A camptothecin AUC, in the brain, was significantly elevated but no significant change in the presence of berberine, quercetin, naringin and naringenin. With treatment by smaller doses of quercetin (0.1?mg?kg?1), naringin (10?mg?kg?1) and naringenin (10?mg?kg?1), they significantly diminished the camptothecin AUC in bile, but was not altered by the treatment of berberine (20?mg?kg?1), a higher dose of quercetin (10?mg?kg?1), and cyclosporin A treated (20?mg?kg?1) and pretreated groups. The distribution ratio (AUCbile/AUCblood) of camptothecin in bile was decreased in the cyclosporin A, quercetin, naringin and naringenin treated groups. However, the distribution ratio in the brain was increased in the cyclosporin A groups, but was decreased in the groups treated with quercetin, naringin and naringenin. These results revealed that P-glycoprotein might modulate hepatobiliary excretion and BBB penetration of camptothecin. PMID:11704644

Tsai, T H; Lee, C H; Yeh, P H

2001-01-01

250

Kinetics of P-glycoprotein-mediated efflux of paclitaxel.  

PubMed

Paclitaxel is a substrate of the mdr1 P-glycoprotein (Pgp). The objective of the present study was to determine the kinetics of the Pgp-mediated efflux and its contribution to the overall efflux of paclitaxel at the clinically achievable concentration range of 1 to 1500 nM. Human breast carcinoma BC19 cells that were derived from MCF7 cells by mdr1 transfection and show a >10-fold higher level of the Pgp protein were used to measure the uptake and efflux of [(3)H]paclitaxel. A computational model of intracellular paclitaxel pharmacokinetics was developed to analyze for the Pgp efflux parameters. The results show a saturable Pgp-mediated efflux in BC19 cells; the dissociation constant was 14 nM, and the maximal efflux rate was 2.8 x 10(-4) pmol/h/cell. The contribution of Pgp-mediated efflux to the total efflux decreased with increasing extracellular drug concentrations; the Pgp efflux accounted for 86 and 34% of total efflux at 1 and 1500 nM, respectively. The validity of the model was confirmed by the close agreement between the model-predicted data and the experimentally obtained data (approximately 6% deviation) describing the effect of cell density and intracellular-to-extracellular concentration gradient on the kinetics of drug accumulation and efflux. In conclusion, our results indicate that the Pgp-mediated efflux represents a major efflux mechanism of paclitaxel at the low end of the clinically observed drug concentration range, but accounts for only a minor part of the efflux at higher concentrations in BC19 cells. PMID:11504826

Jang, S H; Wientjes, M G; Au, J L

2001-09-01

251

Distinct interaction of nilotinib and imatinib with P-Glycoprotein in intracellular accumulation and cytotoxicity in CML Cell Line K562 cells.  

PubMed

Nilotinib, a second-generation tyrosine kinase inhibitor (TKI), has been approved for first-line chronic myeloid leukemia (CML) treatment. The improved clinical response of nilotinib over that of the first generation TKI, imatinib, has been thought to be a result of its high potency of inhibition of BCR-ABL kinase. This study aimed to characterize differences between nilotinib and imatinib in the intracellular accumulation and cytotoxic effect on the CML cell line K562. Accumulation of nilotinib in K562 cells was from 4.7- to 9.0-fold higher than that of imatinib. The cytotoxic effect of nilotinib on K562 cells was 14.2-fold higher than that of imatinib. Inhibition experiments in K562 cells, and examination of the cellular uptake using influx transporter-transfected human embryonic kidney (HEK) 293 cells, suggested that the influx transporters OCT1 and OATP1A2, which have been reported to mediate accumulation of imatinib in CML cells, contributed little to the uptake of nilotinib. Nilotinib was found to accumulate in imatinib-resistant K562 (K562/IM) cells overexpressing the efflux transporter P-glycoprotein (P-gp), although cytotoxic assays showed that K562/IM cells displayed 20000-fold greater resistance to nilotinib over the parent K562 cells. In conclusion, the present findings suggest that intracellular accumulation of nilotinib in CML cells contributes to its clinical response and efficacy in CML patients. Although nilotinib has been reported to be effective against imatinib-resistant ABL kinase mutants, the drug could not overcome imatinib resistance acquired by P-gp-overexpression. These results imply that classification of mechanisms of drug resistance is important for suitable strategies to treat imatinib-resistant CML patients. PMID:25087954

Yamakawa, Yuji; Hamada, Akinobu; Uchida, Takashi; Sato, Daisuke; Yuki, Misato; Hayashi, Masahiro; Kawaguchi, Tatsuya; Saito, Hideyuki

2014-01-01

252

Oral intake of curcumin markedly activated CYP 3A4: in vivo and ex-vivo studies.  

PubMed

Curcumin, a specific secondary metabolite of Curcuma species, has potentials for a variety of beneficial health effects. It is nowadays used as a dietary supplement. Everolimus (EVL) is an immunosuppressant indicated for allograft rejection and cancer therapy, but with narrow therapeutic window. EVL is a substrate of P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4). This study investigated the effect of coadministration of curcumin on the pharmacokinetics of EVL in rats and the underlying mechanisms. EVL (0.5?mg/kg) was orally administered without and with 50 and 100?mg/kg of curcumin, respectively, in rats. Blood samples were collected at specific time points and EVL concentrations in blood were determined by QMS® immunoassay. The underlying mechanisms were evaluated using cell model and recombinant CYP 3A4 isozyme. The results indicated that 50 and 100?mg/kg of curcumin significantly decreased the AUC0-540 of EVL by 70.6% and 71.5%, respectively, and both dosages reduced the Cmax of EVL by 76.7%. Mechanism studies revealed that CYP3A4 was markedly activated by curcumin metabolites, which apparently overrode the inhibition effects of curcumin on P-gp. In conclusion, oral intake of curcumin significantly decreased the bioavailability of EVL, a probe substrate of P-gp/CYP 3A4, mainly through marked activation on CYP 3A4. PMID:25300360

Hsieh, Yow-Wen; Huang, Ching-Ya; Yang, Shih-Ying; Peng, Yu-Hsuan; Yu, Chung-Ping; Chao, Pei-Dawn Lee; Hou, Yu-Chi

2014-01-01

253

Role of P-glycoprotein in tissue uptake of indinavir in rat  

Microsoft Academic Search

The effect of p-glycoprotein inhibition on tissue distribution of indinavir, an anti-HIV (human immunodeficiency virus) protease inhibitor drug, has been evaluated. Indinavir was co-administered intravenously in rats along with a p-glycoprotein inhibitor, PSC833, and the drug concentrations in plasma and various tissues were determined using a HPLC method. Additionally, initial uptake clearance of indinavir was evaluated in the brain and

Mehrdad Hamidi

2006-01-01

254

Sensitivity of P-glycoprotein tryptophan residues to benzodiazepines and ATP interaction.  

PubMed

Plasma membrane P-glycoprotein is a member of the ATP-binding cassette family of membrane transporters. In the present study tryptophan intrinsic fluorescence was used to understand the P-glycoprotein response to three benzodiazepines (bromazepam, chlordiazepoxide and flurazepam) in the presence and absence of ATP. Fluorescence emission spectra showed a red shift on the maximal emission wavelength upon interaction of P-glycoprotein with all benzodiazepines. Benzodiazepine association with nucleotide-bound P-glycoprotein also showed this trend and the quenching profile was attributed to a sphere-of-action model, for static fluorescence. Furthermore, quenching data of benzodiazepine-bound P-glycoprotein with ATP were concentration dependent and saturable, indicating that nucleotide binds to P-glycoprotein whether drug is present or not. These results seems in agreement with the proposal of the ATP-switch model by Higgins and Linton, where substrate binding to the transporters initiates the transport cycle by increasing the ATP binding affinity. PMID:16919386

Lima, Sofia A C; Cordeiro-da-Silva, Anabela; de Castro, Baltazar; Gameiro, Paula

2007-01-01

255

Discovery of a new series of jatrophane and lathyrane diterpenes as potent and specific P-glycoprotein modulators.  

PubMed

A new series of diterpenes, the jatrophanes euphoscopin M (1), euphoscopin N (2) and euphornin L (3), and the lathyrane euphohelioscopin C (7) were isolated from plants of Euphorbia helioscopia L., together with four other known analogues, euphoscopin C (4), euphornin (5), epieuphoscopin B (6) and euphohelioscopin A (8). The new compound stereostructures were elucidated by NMR analysis and computational data. The resulting isolated diterpenes were found to be potent inhibitors of P-glycoprotein (ABCB1), while showing an absence of significant activity against BCRP (ABCG2), despite the high substrate overlapping of these transporters, thus including them in the third-generation class of specific multidrug transporter modulators. PMID:18452010

Barile, Elisa; Borriello, Marianna; Di Pietro, Attilio; Doreau, Agnčs; Fattorusso, Caterina; Fattorusso, Ernesto; Lanzotti, Virginia

2008-05-21

256

The use of a novel taxane-based P-glycoprotein inhibitor to identify mutations that alter the interaction of the protein with paclitaxel.  

PubMed

Murine thymoma cell lines expressing mutated forms of the mdr1b P-glycoprotein were isolated using a novel taxane-based P-glycoprotein inhibitor tRA-96023 (SB-RA-31012). The selection strategy required resistance to a combination of tRA-96023 and colchicine. Five mutations were identified (N350I, I862F, L865F, L868W, and A933T) that reduce the capacity of tRA-96023 to inhibit P-glycoprotein-dependent drug resistance. These mutations also result in a loss of paclitaxel resistance ranging from 47 to 100%. Four mutations are located in the second half of the protein, within or near the proposed transmembrane segment (TMS) 10--11 regions. The fifth mutation (N350I) is within the first half of the protein, proximal (cytoplasmic) to TMS 6. The variant cell line expressing the L868W mutation was subjected to a second round of selection involving tRA-96023 and the toxic drug puromycin. This resulted in the isolation of a cell line expressing a P-glycoprotein with a double mutation. The additional mutation (N988D) is located within TMS 12 and conveys further decreases in resistance to paclitaxel and the capacity of tRA-96023 to inhibit drug resistance. Taken together, the results indicate a significant contribution by the TMS 10--12 portion of the protein to the recognition and transport of taxanes and give evidence that the cytoplasmic region proximal to TMS 6 also plays a role in taxane interactions with P-glycoproteins. Interestingly, mutations within TMS 6 and 12 were found to cause a partial loss of PSC-833 inhibitor activity, suggesting that these regions participate in the interactions with cyclosporin and its derivatives. PMID:11408605

Gruol, D J; Bernd, J; Phippard, A E; Ojima, I; Bernacki, R J

2001-07-01

257

Role of P-glycoprotein in tissue uptake of indinavir in rat.  

PubMed

The effect of p-glycoprotein inhibition on tissue distribution of indinavir, an anti-HIV (human immunodeficiency virus) protease inhibitor drug, has been evaluated. Indinavir was co-administered intravenously in rats along with a p-glycoprotein inhibitor, PSC833, and the drug concentrations in plasma and various tissues were determined using a HPLC method. Additionally, initial uptake clearance of indinavir was evaluated in the brain and testes. The highest increasing effect of p-glycoprotein inhibition on the tissue uptake ratios of indinavir was found in central nervous system (CNS). The estimated tissue extraction the drug was indicative of (i) limited drug entry to brain parenchyma, which was increased significantly by p-glycoprotein inhibition, (ii) non-restricted drug entry to testes, heart and spleen, which was increased significantly in the case of heart and decreased in the case of testes and spleen as a result of p-glycoprotein inhibition, and (iii) drug accumulation in liver and small intestine and, to a lesser extent, kidney, which was not affected by p-glycoprotein inhibition. The uptake clearances of indinavir by brain parenchyma in PSC833-treated and control rats were 68.80+/-8.65 and 21.63+/-4.28 micro/min/g and the corresponding values for the testes were 39.84+/-4.90 and 36.65+/-2.54 microl/min/g. The difference was significant only in the case of brain parenchyma (P<0.001). These data showed that p-glycoprotein inhibition increases the CNS uptake of indinavir markedly and has some transient minor effects on drug uptake by some other tissues. PMID:16793066

Hamidi, Mehrdad

2006-08-01

258

Zuo Jin Wan, a Traditional Chinese Herbal Formula, Reverses P-gp-Mediated MDR In Vitro and In Vivo  

PubMed Central

Zuo Jin Wan (ZJW), a typical traditional Chinese medicine (TCM) formula, has been identified to have anticancer activity in recent studies. In this study, we determined the underlying mechanism of ZJW in the reversal effect of multidrug resistance on colorectal cancer in vitro and in vivo. Our results showed that ZJW significantly enhanced the sensitivity of chemotherapeutic drugs in HCT116/L-OHP, SGC7901/DDP, and Bel/Fu MDR cells. Moreover, combination of chemotherapy with ZJW could reverse the drug resistance of HCT116/L-OHP cells, increase the sensitivity of HCT116/L-OHP cells to L-OHP, DDP, 5-Fu, and MMC in vitro, and inhibit the tumor growth in the colorectal MDR cancer xenograft model. ICP-MS results showed that ZJW could increase the concentration of chemotherapeutic drugs in HCT116/L-OHP cells in a dose-dependent manner. Furthermore, we showed that ZJW could reverse drug resistance of colorectal cancer cells by decreasing P-gp level in vitro and in vivo, which has been represented as one of the major mechanisms that contribute to the MDR phenotype. Our study has provided the first direct evidence that ZJW plays an important role in reversing multidrug resistance of human colorectal cancer and may be considered as a useful target for cancer therapy. PMID:23533531

Sui, Hua; Liu, Xuan; Jin, Bao-Hui; Pan, Shu-Fang; Zhou, Li-Hong; Yu, Nikitin Alexander; Cai, Jian-Feng; Fan, Zhong-Ze; Zhu, Hui-Rong; Li, Qi

2013-01-01

259

Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation  

SciTech Connect

Multidrug resistance (MDR) in mammalian cells and tumors is associated with overexpression of an {approximately}170 integral membrane efflux transporter, the MDR1 P-glycoprotein. Hexakis(2-methoxyisobutyl isonitrile) technetium(I) (Tc-SESTAMIBI), a {gamma}-emitting lipophilic cationic metallopharmaceutical, has recently been shown to be a P-glycoprotein transport substrate. Exploiting the negligible lipid membrane adsorption properties of this organometallic substrate, we studied the transport kinetics, pharmacology, drug binding, and modulation of P-glycoprotein in cell preparations derived from a variety of species and selection strategies, including SW-1573, V79, Alex, and CHO drug-sensitive cells and in 77A, LZ-8, and Alex/A.5 MDR cells. Rapid cell accumulation (T{sub 1/2} {approx} 6 min) of the agent to a steady state was observed which was inversely proportional to immunodetectable levels of P-glycoprotein. Many MDR cytotoxic agents inhibited P-glycoprotein-mediated Tc-SESTAMIBI efflux, thereby enhancing organometallic cation accumulation. 70 refs., 7 figs., 2 tabs.

Piwnica-Worms, D.; Vallabhaneni, V.R. [Washington Univ. Medical School, St. Louis, MO (United States); Kronauge, J.F. [Harvard Medical School, Boston, MA (United States)] [and others

1995-09-26

260

Acetylcholine receptor subunit and P-glycoprotein transcription patterns in levamisole-susceptible and -resistant Haemonchus contortus.  

PubMed

The mechanism of resistance to the anthelmintic levamisole in parasitic nematodes is poorly understood, although there is some evidence implicating changes in expression of nicotinic acetylcholine receptor (nAChR) subunit genes. Hence, in order to define levamisole resistance mechanisms in some Australian field-derived isolates of Haemonchus contortus we examined gene expression patterns and SNPs in nAChR subunit genes, as well as expression levels for P-glycoprotein (P-gp) and receptor ancillary protein genes, in various life stages of one levamisole-sensitive and three levamisole-resistant isolates of this species. Larvae of two isolates showed high-level resistance to levamisole (resistance ratios at the IC50 > 600) while the third isolate showed a degree of heterogeneity, with a resistance factor of only 1.1-fold at the IC50 alongside the presence of a resistant subpopulation. Transcription patterns for nAChR subunit genes showed a great degree of variability across the different life stages and isolates. The most consistent observation was the down-regulation of Hco-unc-63a in adults of all resistant isolates. Transcription of this gene was also reduced in the L3 stage of the two most resistant isolates, highlighting its potential as a resistance marker in the readily accessible free-living stages. There was down regulation of all four Hco-unc-29 paralogs in adults of one resistant isolate. There were no consistent changes in expression of P-gps or ancillary protein genes across the resistant isolates. The present study has demonstrated a complex pattern of nAChR subunit gene expression in H. contortus, and has highlighted several instances where reduced expression of subunit genes (Hco-unc-63a, Hco-unc-29) may be associated with the observed levamisole resistance. The data also suggests that it will be difficult to detect resistance using gene transcription-based methods on pooled larval samples from isolates containing only a resistant subpopulation due to the averaging of gene expression data across the whole population. PMID:24533293

Sarai, Ranbir S; Kopp, Steven R; Coleman, Glen T; Kotze, Andrew C

2013-12-01

261

Breast Cancer Resistance Protein and P-Glycoprotein Expression in Patients with Newly Diagnosed and Therapy-Refractory Ulcerative Colitis Compared with Healthy Controls  

Microsoft Academic Search

Aims: Efflux transporters such as breast cancer resistance protein (BCRP\\/ABCG2) and P-glycoprotein (Pgp; MDR1\\/ABCB1) are protecting the enterocytes from potentially toxic compounds. Both transporters have been reported to be downregulated in patients with active ulcerative colitis (UC). The aim of this study was to evaluate transporter expression in both unaffected and inflamed mucosa of patients with active UC, in drug-naďve

Heike Gutmann; Petr Hruz; Christian Zimmermann; Alexander Straumann; Luigi Terracciano; Felix Hammann; Frank Lehmann; Christoph Beglinger; Juergen Drewe

2008-01-01

262

Interactions among PIN-FORMED and P-Glycoprotein Auxin Transporters in Arabidopsis[W  

PubMed Central

Directional transport of the phytohormone auxin is established primarily at the point of cellular efflux and is required for the establishment and maintenance of plant polarity. Studies in whole plants and heterologous systems indicate that PIN-FORMED (PIN) and P-glycoprotein (PGP) transport proteins mediate the cellular efflux of natural and synthetic auxins. However, aromatic anion transport resulting from PGP and PIN expression in nonplant systems was also found to lack the high level of substrate specificity seen in planta. Furthermore, previous reports that PGP19 stabilizes PIN1 on the plasma membrane suggested that PIN–PGP interactions might regulate polar auxin efflux. Here, we show that PGP1 and PGP19 colocalized with PIN1 in the shoot apex in Arabidopsis thaliana and with PIN1 and PIN2 in root tissues. Specific PGP–PIN interactions were seen in yeast two-hybrid and coimmunoprecipitation assays. PIN–PGP interactions appeared to enhance transport activity and, to a greater extent, substrate/inhibitor specificities when coexpressed in heterologous systems. By contrast, no interactions between PGPs and the AUXIN1 influx carrier were observed. Phenotypes of pin and pgp mutants suggest discrete functional roles in auxin transport, but pin pgp mutants exhibited phenotypes that are both additive and synergistic. These results suggest that PINs and PGPs characterize coordinated, independent auxin transport mechanisms but also function interactively in a tissue-specific manner. PMID:17237354

Blakeslee, Joshua J.; Bandyopadhyay, Anindita; Lee, Ok Ran; Mravec, Jozef; Titapiwatanakun, Boosaree; Sauer, Michael; Makam, Srinivas N.; Cheng, Yan; Bouchard, Rodolphe; Adamec, Jiri; Geisler, Markus; Nagashima, Akitomo; Sakai, Tatsuya; Martinoia, Enrico; Friml, Jiri; Peer, Wendy Ann; Murphy, Angus S.

2007-01-01

263

In vivo P-glycoprotein function before and after epilepsy surgery  

PubMed Central

Objectives: To study the functional activity of the multidrug efflux transporter P-glycoprotein (Pgp) at the blood-brain barrier of patients with temporal lobe epilepsy using (R)-[11C]verapamil (VPM)-PET before and after temporal lobe surgery to assess whether postoperative changes in seizure frequency and antiepileptic drug load are associated with changes in Pgp function. Methods: Seven patients with drug-resistant temporal lobe epilepsy underwent VPM-PET scans pre- and postsurgery. Patients were followed up for a median of 6 years (range 4–7) after surgery. Pgp immunoreactivity in surgically resected hippocampal specimens was determined with immunohistochemistry. Results: Optimal surgical outcome, defined as seizure freedom and withdrawal of antiepileptic drugs, was associated with higher temporal lobe Pgp function before surgery, higher Pgp-positive staining in surgically resected hippocampal specimens, and reduction in global Pgp function postoperatively, compared with nonoptimal surgery outcome. Conclusions: The data from our pilot study suggest that Pgp overactivity in epilepsy is dynamic, and complete seizure control and elimination of antiepileptic medication is associated with reversal of overactivity, although these findings will require confirmation in a larger patient cohort. PMID:25186858

Bauer, Martin; Karch, Rudolf; Zeitlinger, Markus; Liu, Joan; Koepp, Matthias J.; Asselin, Marie-Claude; Sisodiya, Sanjay M.; Hainfellner, Johannes A.; Wadsak, Wolfgang; Mitterhauser, Markus; Muller, Markus; Pataraia, Ekaterina

2014-01-01

264

Comparison of steroid substrates and inhibitors of P-glycoprotein by 3D-QSAR analysis  

NASA Astrophysics Data System (ADS)

Steroid derivatives show a complex interaction with P-glycoprotein (Pgp). To determine the essential structural requirements of a series of structurally related and functionally diverse steroids for Pgp-mediated transport or inhibition, a three-dimensional quantitative structure activity relationship study was performed by comparative similarity index analysis modeling. Twelve models have been explored to well correlate the physiochemical features with their biological functions with Pgp on basis of substrate and inhibitor datasets, in which the best predictive model for substrate gave cross-validated q2=0.720, non-cross-validated r2=0.998, standard error of estimate SEE=0.012, F=257.955, and the best predictive model for inhibitor gave q2=0.536, r2=0.950, SEE=1.761 and F=45.800. The predictive ability of all models was validated by a set of compounds that were not included in the training set. The physiochemical similarities and differences of steroids as Pgp substrate and inhibitor, respectively, were analyzed to be helpful in developing new steroid-like compounds.

Li, Yan; Wang, Yong-Hua; Yang, Ling; Zhang, Shu-Wei; Liu, Chang-Hou; Yang, Sheng-Li

2005-01-01

265

Involvement of cytoplasmic factors regulating the membrane orientation of P-glycoprotein sequences.  

PubMed

Chinese hamster pgpl P-glycoprotein (Pgp) is a membrane transport protein that causes multidrug resistance (MDR) by actively extruding a wide variety of cytotoxic agents out of cells. It may also function as a peptide transporter and as a chloride channel. Previously, we have shown that hamster pgpl Pgp is expressed in more than one topological form and that the generation of these structures is modulated by charged amino acids flanking the predicted transmembrane (TM) segments 3 and 4. Different topological structures of Pgp may be involved in different functions. In this study, we examined the role of cytoplasmic components in cell-free translation systems in modulating the topologies of Pgp. By using rabbit reticulocyte lysate (RRL) and wheat germ extract (WGE) expression systems, we showed that WGE contains a soluble, heat-labile, high molecular weight fraction that regulates the membrane topology of truncated Pgp molecules. These results and our previous findings indicate that the membrane topology of a mammalian polytopic membrane protein may be regulated both by the amino acid sequence of the protein and by soluble cytoplasmic component(s). We speculate that Pgp expressed in various cell types may have different topological structures modulated by specific cytoplasmic factors. PMID:7619815

Zhang, J T; Ling, V

1995-07-18

266

Exploring the P-Glycoprotein Binding Cavity with Polyoxyethylene Alkyl Ethers  

PubMed Central

P-glycoprotein (ABCB1) moves allocrits from the cytosolic to the extracellular membrane leaflet, preventing their intrusion into the cytosol. It is generally accepted that allocrit binding from water to the cavity lined by the transmembrane domains occurs in two steps, a lipid-water partitioning step, and a cavity-binding step in the lipid membrane, whereby hydrogen-bond (i.e., weak electrostatic) interactions play a crucial role. The remaining key question was whether hydrophobic interactions also play a role for allocrit binding to the cavity. To answer this question, we chose polyoxyethylene alkyl ethers, CmEOn, varying in the number of methylene and ethoxyl residues as model allocrits. Using isothermal titration calorimetry, we showed that the lipid-water partitioning step was purely hydrophobic, increasing linearly with the number of methylene, and decreasing with the number of ethoxyl residues, respectively. Using, in addition, ATPase activity measurements, we demonstrated that allocrit binding to the cavity required minimally two ethoxyl residues and increased linearly with the number of ethoxyl residues. The analysis provides the first direct evidence, to our knowledge, that allocrit binding to the cavity is purely electrostatic, apparently without any hydrophobic contribution. While the polar part of allocrits forms weak electrostatic interactions with the cavity, the hydrophobic part seems to remain associated with the lipid membrane. The interplay between the two types of interactions is most likely essential for allocrit flipping. PMID:21112283

Li-Blatter, Xiaochun; Seelig, Anna

2010-01-01

267

Cytochrome P450 3A4 and P-glycoprotein Expression in Human Small Intestinal Enterocytes and Hepatocytes: A Comparative Analysis in Paired Tissue Specimens  

Microsoft Academic Search

Objectives: Our objectives were to determine the content of cytochrome P450 (CYP) 3A4, CYP3A5, and P-glycoprotein and to measure CYP3A4-dependent catalytic activity in paired human small intestinal and liver specimens.Methods: Samples of duodenum or proximal jejunum and liver wedge biopsy specimens were obtained from 15 patients undergoing a gastrointestinal operation. Enterocytes were isolated from the intestinal samples. The contents of

Oliver von Richter; Oliver Burk; Martin F. Fromm; Klaus P. Thon; Michel Eichelbaum; Kari T. Kivistö

2004-01-01

268

MYCN Enhances P-gp/MDR1 Gene Expression in the Human Metastatic Neuroblastoma IGR-N-91 Model  

PubMed Central

Despite intensive high-dose chemotherapy and autologous hematopoietic stem cell transplantation, disseminated neuroblastoma (NB) frequently proves to be chemosensitive but not chemocurable, and more often so in NB-presenting MYCN amplification. To assess the direct relationship between the MYCN oncogene and chemoresistance acquisition during NB metastatic dissemination, we have studied MYCN and MDR1 genes using the human IGR-N-91 ectopic xenograft metastatic model. This characterized experimental in vitro model includes human neuroblasts derived from a subcutaneous primary tumor xenograft, disseminated blood cells, myocardium, and bone marrow (BM) metastatic cells. All IGR-N-91-derived neuroblasts harbor a consistent MYCN genomic content but, unlike primary tumor xenograft, BM, and myocardium, human neuroblasts elicit a concomitant increase in MYCN and MDR1 transcripts levels, consistent with chemoresistance phenotype and active P-gp. In contrast, no variation of MRP1 transcript level was associated with the metastatic process in this model. Using an MDR1 promoter-CAT construct, we have shown that the MycN protein activates MDR1 transcription both in exogenous transient MYCN-transfected SK-N-SH cells and in endogenous BM metastatic neuroblasts with an increase in the MYCN transcript level. Band-shift experiments indicate that IGR-N-91 cells enriched with the MycN transcription factor do bind to two E-box motifs localized within the MDR1 promoter. Overall, our data indicate that MYCN overexpression increment contributes to the acquired drug resistance that occurs throughout the NB metastatic process. PMID:12819037

Blanc, Etienne; Goldschneider, David; Ferrandis, Eric; Barrois, Michel; Le Roux, Gwenaelle; Leonce, Stephane; Douc-Rasy, Setha; Benard, Jean; Raguenez, Gilda

2003-01-01

269

Blood Brain Barrier group Multi drug resistance and P-glycoprotein efflux transporter: physiological roles and  

E-print Network

1 Blood Brain Barrier group Multi drug resistance and P-glycoprotein efflux transporter-binding cassette) transporter family expressed in many tissue barriers (e.g. gut, lung, blood-brain barrier of many drugs to the brain and has been the subject of intensive research in the last 10 years

Applebaum, David

270

IMMUNOHISTOCHEMICAL DETECTION OF P-GLYCOPROTEIN IN TELEOST TISSUES USING MAMMALIAN POLYCLONAL AND MONOCLONAL ANTIBODIES  

EPA Science Inventory

Mammalian P-glycoprotein is a highly conserved 170 kD integral plasma membrane protein functioning as an energy dependent efflux pump of exogenous and endogenous lipophilic aromatic compounds entering the cell by diffusion. n this study, the tissue specificity of one polyclonal (...

271

Cysteines 431 and 1074 are responsible for inhibitory disulfide cross-linking between the two nucleotide-binding sites in human P-glycoprotein.  

PubMed

Human wild-type and Cys-less P-glycoproteins were expressed in Pichia pastoris and purified in high yield in detergent-soluble form. Both ran on SDS gels as a single 140-kDa band in the presence of reducing agent and showed strong verapamil-stimulated ATPase activity in the presence of added lipid. The wild type showed spontaneous formation of higher molecular mass species in the absence of reducing agent, and its ATPase was activated by dithiothreitol. Oxidation with Cu(2+) generated the same higher molecular mass species, primarily at 200 and approximately 300 kDa, in high yield. Cross-linking was reversed by dithiothreitol and prevented by pretreatment with N-ethylmaleimide. Using proteins containing different combinations of naturally occurring Cys residues, it was demonstrated that an inhibitory intramolecular disulfide bond forms between Cys-431 and Cys-1074 (located in the Walker A sequences of nucleotide-binding sites 1 and 2, respectively), giving rise to the 200-kDa species. In addition, dimeric P-glycoprotein species ( approximately 300 kDa) form by intermolecular disulfide bonding between Cys-431 and Cys-1074. The ready formation of the intramolecular disulfide between Cys-431 and Cys-1074 establishes that the two nucleotide-binding sites of P-glycoprotein are structurally very close and capable of intimate functional interaction, consistent with available information on the catalytic mechanism. Formation of such a disulfide in vivo could, in principle, underlie a regulatory mechanism and might provide a means of intervention to inhibit P-glycoprotein. PMID:11356825

Urbatsch, I L; Gimi, K; Wilke-Mounts, S; Lerner-Marmarosh, N; Rousseau, M E; Gros, P; Senior, A E

2001-07-20

272

P-glycoprotein expression and pharmacological modulation in larval stages of Echinococcus granulosus.  

PubMed

P-glycoprotein (Pgp) is an ATP-dependent transporter involved in the efflux of a wide variety of lipophilic substrates, such as toxins and xenobiotics, out of cells. Pgp expression level is associated with the ineffective therapeutic treatment of cancer cells and microbial pathogens which gives it high clinical importance. Research on these transporters in helminths is limited. This work describes for the first time the Echinococcus granulosus Pgp (Eg-Pgp) expression, in a model cestode parasite and an important human pathogen. Based on calcein efflux assays in the presence of common Pgp modulators, we demonstrated the occurrence of active Eg-Pgp in protoscoleces and metacestodes. Eg-Pgp, which showed a molecular mass of ~130 kDa in western blots, is localized in the suckers and the tegument of control protoscoleces as well as in the subtegument or all parenchymatous cells of protoscoleces treated with Pgp-interfering agents. We also identified five genes encoding Pgp which are constitutively expressed in protoscoleces and metacestodes. We showed that the Eg-pgp1 and Eg-pgp2 transcripts were up-regulated in response to in vitro drug treatment with amiodarone and loperamide, in agreement with the increased polypeptide levels. Finally, in vitro treatment of protoscoleces and metacestodes with trifluoperazine and loperamide was lethal to the parasites. This indicates that both drugs as well as cyclosporine A negatively modulate the E. granulosus Pgp efflux activity, favoring the retention of these drugs in the larval tissue. These events could be associated with the reduction in protoscolex and metacestode viability. PMID:24120508

Nicolao, María Celeste; Denegri, Guillermo M; Cárcamo, Juan Guillermo; Cumino, Andrea C

2014-02-01

273

Uptake of drugs and expression of P-glycoprotein in the rat 9L glioma.  

PubMed

Two weeks after the inoculation of 1.5 x 10(5) 9L glioma cells into the rat brain, the uptake of radiolabelled drugs into the brain and the experimental 9L glioma during the first cerebral circulation was measured with a liquid scintillation counter and analyzed by the method of Oldendorf (1970). The expression of P-glycoprotein, which is known to be associated with the efflux of drugs, was also studied, using anti-P-glycoprotein monoclonal antibody, C-219. Furthermore, the ultrastructure of brain capillaries, tumor vessels, and glioma cells was studied by conventional and immunoelectron microscopy. Sucrose (control), the transport of which through the blood-brain barrier is known to be negligible, accumulated to fivefold higher levels in the tumor than in normal brain. Ranimustine (MCNU), 5-fluorouracil (5-FU), and doxorubicin showed little accumulation in the normal brain, whereas nimustine (ACNU) showed an increased accumulation. MCNU and doxorubicin showed negligible accumulation in the glioma cells despite diffusion into the tumor interstitial space. In contrast, ACNU and 5-FU showed an increased accumulation in tumor cells. The accumulation of 5-FU in the cultured 9L glioma cells was decreased by ATP inhibitors or by low temperature. Although both brain capillary endothelial cells and glioma cell membrane were immunohistochemically positive for P-glycoprotein, the tumor vasculature showed low expression of P-glycoprotein. The endothelial cells of tumor vessels ultrastructurally showed increased fenestrations, swelling, and disrupted junctions. Accordingly, it is suggested that hydrophobic drugs such as doxorubicin, being pumped out by P-glycoprotein, do not accumulate in 9L glioma cells as do other lipophilic drugs such as ACNU, or drugs such as 5-FU, which accumulate by a carrier-mediated mechanism. PMID:8104817

Yamashima, T; Ohnishi, T; Nakajima, Y; Terasaki, T; Tanaka, M; Yamashita, J; Sasaki, T; Tsuji, A

1993-01-01

274

Pre-treatment of human osteosarcoma cells with N-methylformamide enhances P-glycoprotein expression and resistance to doxorubicin.  

PubMed

N-methylformamide (NMF), a powerful differentiating agent, has been extensively used in experimental and preclinical cancer chemotherapy studies, alone or in association with conventional anti-cancer drugs. To evaluate the use of this molecule in the treatment of osteosarcoma (OS), we have analyzed the effects of NMF and doxorubicin (DXR) on DXR-sensitive and -resistant human OS cell lines. Our study shows that NMF exerts remarkable effects on cell proliferation and, in Saos-2 and SARG cells, also induces differentiation, as shown by increasing alkaline phosphatase activity. Moreover, NMF increases the cytotoxic activity of DXR when administered after the drug, in both DXR-sensitive and -resistant cells. However, when this agent is given before DXR, it enhances P-glycoprotein expression in U-2 OS cell lines. This over-expression is associated with reduced DXR accumulation within cells and with significant enhancement of resistance to DXR. PMID:7912235

Scotlandi, K; Serra, M; Manara, M C; Lollini, P L; Maurici, D; Del Bufalo, D; Baldini, N

1994-07-01

275

A Gene Optimization Strategy that Enhances Production of Fully Functional P-Glycoprotein in Pichia pastoris  

PubMed Central

Background Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. Methodology/Principal Findings Codon-optimized “Opti-Pgp” and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (?130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ?15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from Tm ?40°C to 49°C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids. Conclusion The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins. PMID:21826197

Protasevich, Irina I.; Brouillette, Christie G.; Harrell, Patina M.; Hildebrandt, Ellen; Gasser, Brigitte; Mattanovich, Diethard; Ward, Andrew; Chang, Geoffrey; Urbatsch, Ina L.

2011-01-01

276

P-glycoprotein-dependent resistance of cancer cells toward the extrinsic TRAIL apoptosis signaling pathway  

PubMed Central

The TNF-related apoptosis-inducing ligand (TRAIL or Apo2L) preferentially cause apoptosis of malignant cells in vitro and in vivo without severe toxicity. Therefore, TRAIL or agonist antibodies to the TRAIL DR4 and DR5 receptors are used in cancer therapy. However, many malignant cells are intrinsically resistant or acquire resistance to TRAIL. It has been previously proposed that the multidrug transporter P-glycoprotein (Pgp) might play a role in resistance of cells to intrinsic apoptotic pathways by interfering with components of ceramide metabolism or by modulating the electrochemical gradient across the plasma membrane. In this study we investigated whether Pgp also confers resistance toward extrinsic death ligands of the TNF family. To this end we focused our study on HeLa cells carrying a tetracycline-repressible plasmid system which shuts down Pgp expression in the presence of tetracycline. Our findings demonstrate that expression of Pgp is a significant factor conferring resistance to TRAIL administration, but not to other death ligands such as TNF-? and Fas ligand. Moreover, blocking Pgp transport activity sensitizes the malignant cells toward TRAIL. Therefore, Pgp transport function is required to confer resistance to TRAIL. Although the resistance to TRAIL-induced apoptosis is Pgp specific, TRAIL itself is not a direct substrate of Pgp. Pgp expression has no effect on the level of the TRAIL receptors DR4 and DR5. These findings might have clinical implications since the combination of TRAIL therapy with administration of Pgp modulators might sensitize TRAIL resistant tumors. PMID:23774624

Galski, Hanan; Oved-Gelber, Tamar; Simanovsky, Masha; Lazarovici, Philip; Gottesman, Michael M.; Nagler, Arnon

2014-01-01

277

Nitric oxide and P-glycoprotein modulate the phagocytosis of colon cancer cells.  

PubMed

The anticancer drug doxorubicin induces the synthesis of nitric oxide, a small molecule that enhances the drug cytotoxicity and reduces the drug efflux through the membrane pump P-glycoprotein (Pgp). Doxorubicin also induces the translocation on the plasma membrane of the protein calreticulin (CRT), which allows tumour cells to be phagocytized by dendritic cells. We have shown that doxorubicin elicits nitric oxide synthesis and CRT exposure only in drug-sensitive cells, not in drug-resistant ones, which are indeed chemo-immunoresistant. In this work, we investigate the mechanisms by which nitric oxide induces the translocation of CRT and the molecular basis of this chemo-immunoresistance. In the drug-sensitive colon cancer HT29 cells doxorubicin increased nitric oxide synthesis, CRT exposure and cells phagocytosis. Nitric oxide promoted the translocation of CRT in a guanosine monophosphate (cGMP) and actin cytoskeleton-dependent way. CRT translocation did not occur in drug-resistant HT29-dx cells, where the doxorubicin-induced nitric oxide synthesis was absent. By increasing nitric oxide with stimuli other than doxorubicin, the CRT exposure was obtained also in HT29-dx cells. Although in sensitive cells the CRT translocation was followed by the phagocytosis, in drug-resistant cells the phagocytosis did not occur despite the CRT exposure. In HT29-dx cells CRT was bound to Pgp and only by silencing the latter the CRT-operated phagocytosis was restored, suggesting that Pgp impairs the functional activity of CRT and the tumour cells phagocytosis. Our work suggests that the levels of nitric oxide and Pgp critically modulate the recognition of the tumour cells by dendritic cells, and proposes a new potential therapeutic approach against chemo-immunoresistant tumours. PMID:20716130

Kopecka, Joanna; Campia, Ivana; Brusa, Davide; Doublier, Sophie; Matera, Lina; Ghigo, Dario; Bosia, Amalia; Riganti, Chiara

2011-07-01

278

Effects of dietary ingredients on function and expression of P-glycoprotein in human intestinal epithelial cells.  

PubMed

The present study was conducted to investigate the functional and transcriptional modulation of P-glycoprotein (MDR-1) by several dietary ingredients (piperine, capsaicin, daidzein, genistein, sesamin, curcumin, taurine) in vinblastine-resistant colon carcinoma LS-180 cells (LS-180V cells). The amount of rhodamine 123 accumulated in LS-180V cells was significantly increased by capsaicin, piperine and sesamin, whereas it was significantly reduced by daidzein and genistein which stimulated the efflux of rhodamine 123. These results suggest that the P-glycoprotein-mediated efflux is inhibited by piperine, capsaicin and sesamin and stimulated by daidzein and genistein. The concurrent addition of piperine and capsaicin seemed to inhibit synergistically the P-glycoprotein-mediated efflux. Pretreatment with sesamin for 48 h caused a significant increase in MDR1 mRNA expression without a significant effect on the expression of P-glycoprotein or accumulation of rhodamine 123. Similar pretreatment with other ingredients had little effect on the expression of MDR1 mRNA or P-glycoprotein, suggesting that they do not cause transcriptional modulation of P-glycoprotein. Piperine, genistein and curcumin have been suggested to stimulate P-glycoprotein-mediated efflux without increasing P-glycoprotein expression. In LS-180V cells, significant increases in mRNA levels of multi-drug resistance associated protein 1 (MRP1) or MRP3 were observed on pretreatment with capsaicin, daidzein, piperine and sesamin. In conclusion, our results suggest that P-glycoprotein-mediated efflux is significantly affected by dietary ingredients. Also, capsaicin, daidzein, piperine and sesamin increased significantly the mRNA expression of MRP1 or MRP3. Thus, the present study provides further evidence that repeated exposure to dietary ingredients can cause drug-food interactions by affecting the function and mRNA expression of intestinal transporters such as P-glycoprotein. PMID:20118549

Okura, Takashi; Ibe, Michiko; Umegaki, Keizo; Shinozuka, Kazumasa; Yamada, Shizuo

2010-01-01

279

(18)FDG a PET tumor diagnostic tracer is not a substrate of the ABC transporter P-glycoprotein.  

PubMed

2-[(18)F]fluoro-2-deoxy-d-glucose ((18)FDG) is a tumor diagnostic radiotracer of great importance in both diagnosing primary and metastatic tumors and in monitoring the efficacy of the treatment. P-glycoprotein (Pgp) is an active transporter that is often expressed in various malignancies either intrinsically or appears later upon disease progression or in response to chemotherapy. Several authors reported that the accumulation of (18)FDG in P-glycoprotein (Pgp) expressing cancer cells (Pgp(+)) and tumors is different from the accumulation of the tracer in Pgp nonexpressing (Pgp(-)) ones, therefore we investigated whether (18)FDG is a substrate or modulator of Pgp pump. Rhodamine 123 (R123) accumulation experiments and ATPase assay were used to detect whether (18)FDG is substrate for Pgp. The accumulation and efflux kinetics of (18)FDG were examined in two different human gynecologic (A2780/A2780AD and KB-3-1/KB-V1) and a mouse fibroblast (3T3 and 3T3MDR1) Pgp(+) and Pgp(-) cancer cell line pairs both in cell suspension and monolayer cultures. We found that (18)FDG and its derivatives did not affect either the R123 accumulation in Pgp(+) cells or the basal and the substrate stimulated ATPase activity of Pgp supporting that they are not substrates or modulators of the pump. Measuring the accumulation and efflux kinetics of (18)FDG in different Pgp(+) and Pgp(-) cell line pairs, we have found that the Pgp(+) cells exhibited significantly higher (p?0.01) (18)FDG accumulation and slightly faster (18)FDG efflux kinetics compared to their Pgp(-) counterparts. The above data support the idea that expression of Pgp may increase the energy demand of cells resulting in higher (18)FDG accumulation and faster efflux. We concluded that (18)FDG and its metabolites are not substrates of Pgp. PMID:25149126

Krasznai, Zoárd T; Trencsényi, György; Krasznai, Zoltán; Mikecz, Pál; Nizsalóczki, Enik?; Szalóki, Gábor; Szabó, Judit P; Balkay, László; Márián, Teréz; Goda, Katalin

2014-11-20

280

Functional Imaging of Multidrug-resistant P-Glycoprotein with an Organotechnetium Complex1  

Microsoft Academic Search

The multidrug-resistant P-glycoprotein (Pgp), a M, 170,000 plasma membrane protein encoded by the mammalian multidrug resistance gene (MI)Kl ), appears to function as an energy-dependent efflux pump. Many of the drugs that interact with Pgp are lipophilic and cationic at physio logical pH. We tested the hypothesis that the synthetic -\\/-emitting organ- otechnetium complex, hexakis(2-methoxyisobutylisonitrile)technetium(I) ((\\

David Piwnica-Worms; Mark Budding; James F. Kronauge; Robert A. Kramer; James M. Croop

1993-01-01

281

Methods to Detect P-Glycoprotein-associated Multidrug Resistance in Patients' Tumors: Consensus Recommendations1  

Microsoft Academic Search

Multidrug resistance iMDKi. especially that associated with overex- pression otMDKi and its product, P-glycoprotein (Pgp), is thought to play a role in the outcome of therapy for some human tumors; however, a consensus conclusion has been difficult to reach, owing to the variable results published by different laboratories. Many factors appear to influ ence the detection of Pgp in clinical

William T. Beck; Thomas M. Grogan; Cheryl L. Willman; Carlos Cordon-Cardo; David M. Parham; John F. Kuttesch; Michael Andreeff; Susan E. Bates; Costan W. Berard; James M. Boyett; Nathalie A. Brophy; Henk J. Broxterman; Helen S. L. Chan; William S. Dalton; Manfred Dietel; Antonio T. Fojo; Randy D. Gascoyne; David Head; Peter J. Houghton; Deo Kumar Srivastava; Manfred Lehnert; Catherine P. Leith; Elisabeth Paietta; Zlatko P. Pavelic; Lisa Rimsza; Igor B. Roninson; Branimir I. Sikic; Peter R. Twentyman; Roger Warnke; Ronald Weinstein

1996-01-01

282

A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole  

Microsoft Academic Search

Resistance to chloroquine in Plasmodium falciparum bears a striking similarity to the multi-drug resistance (MDR) phenotype of mammalian tumor cells which is mediated by overexpression of P-glyco- protein. We show here that the P. falciparum homo- logue of the P-glycoprotein (Pghl) is a 160,000-D protein that is expressed throughout the asexual erythrocytic life cycle of the parasite. Quantitative im- munoblotting

Alan E Cowman; Steve Karcz; Denise Galatis; Janetta G. Culvenor

1991-01-01

283

Overexpression of P-glycoprotein in L1210/VCR cells is associated with changes in several endoplasmic reticulum proteins that may be partially responsible for the lack of thapsigargin sensitivity.  

PubMed

L1210/VCR cells, which express an abundant amount of P-glycoprotein (P-gp), were found to be resistant to thapsigargin--an inhibitor of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA). In the current paper, we have studied the possible differences among L1210 and L1210/VCR cells in expression of endoplasmic reticulum proteins involved in the regulation of calcium homeostasis and calcium-dependent processes. Amounts of mRNA encoding both calcium release channels (ryanodine receptor channels--RyR and IP3-receptor channels--IP3R) were found to be at similar levels in sensitive and resistant cells. However, mRNAs encoding IP3R1 or 2 were decreased in resistant cells cultivated in the presence of VCR (1.08 micromol/l), while mRNA encoding RyR remained unchanged. The amount of mRNA for SERCA2 was decreased in resistant cells when compared with sensitive cells. This decrease was more pronounced when resistant cells were cultivated in the presence of vincristine (VCR). Calnexin was found to be less expressed at the protein level in resistant as in sensitive cells. The level of mRNA encoding calnexin was decreased only when resistant cells were cultivated in the presence of VCR. Calnexin was found to be associated with immature P-gp in resistant cells. Thus, differences exist between sensitive and resistant cells in the expression of endoplasmic reticulum proteins involved in the control of intracellular calcium homeostasis or calcium-dependent processes. These changes may be at least partially responsible for the lack of sensitivity of resistant cells to thapsigargin. PMID:18981537

Seres, M; Poláková, E; Krizanová, O; Hudecová, S; Klymenko, S V; Breier, A; Sulová, Z

2008-09-01

284

Serum Concentrations of Anthraquinones after Intake of Folium Sennae and Potential Modulation on P-glycoprotein.  

PubMed

Folium Sennae (leaves of Cassia angustifolia or senna) is a laxative and a component in diets for weight control. It contains a variety of anthranoids such as sennosides, aloe-emodin, and rhein. In order to measure the serum concentrations of senna anthranoids, Sprague-Dawley rats were orally administered with single dose and multiple doses of Folium Sennae. The concentrations of anthranoids in serum were determined by HPLC method before and after hydrolysis with sulfatase and ?-glucuronidase. The results showed that in the serum, aloe-emodin glucuronides and rhein glucuronides were the major metabolites. Traces of rhein free form were present transiently during the early phase, whereas the free form of aloe-emodin was not detected. We also evaluated the modulation effect of Folium Sennae on P-glycoprotein by using the LS 180 cell model which showed that it significantly inhibited P-glycoprotein by 16-46?%. In conclusion, senna anthranoids were rapidly and extensively metabolized to rhein glucuronides and aloe-emodin glucuronides in rats. Folium Sennae ingestion inhibited the efflux function of P-glycoprotein in the intestine. PMID:25177847

Peng, Yu-Hsuan; Lin, Shiuan-Pey; Yu, Chung-Ping; Tsai, Shang-Yuan; Chen, Min-Yu; Hou, Yu-Chi; Chao, Pei-Dawn Lee

2014-10-01

285

Inhibition of P-glycoprotein-mediated transport by a hydrophobic contaminant in commercial gluconate salts.  

PubMed

The substitution of gluconate for Cl- is commonly used to characterize Cl- transport or Cl--dependent transport mechanisms. We evaluated the effects of substituting gluconate for Cl- on the transport of the P-glycoprotein substrate rhodamine 123 (R123). The replacement of Ringer solution containing Cl- (Cl--Ringer) with gluconate-Ringer inhibited R123 efflux, whereas the replacement of Cl- by other anions (sulfate or cyclamate) had no effect. The inhibition of R123 efflux by gluconate-Ringer was absent after chloroform extraction of the sodium gluconate salt. The readdition of the sodium gluconate-chloroform extract to the extracted gluconate-Ringer or to cyclamate-Ringer inhibited R123 efflux, whereas its addition to Cl--Ringer had no effect. These observations indicate that the inhibition of P-glycoprotein-mediated R123 transport by gluconate is due to one or more chloroform-soluble contaminants and that the inhibition is absent in the presence of Cl-. The results are consistent with the fact that P-glycoprotein substrates are hydrophobic. Care should be taken when replacing ions to evaluate membrane transport mechanisms because highly pure commercial preparations may still contain potent contaminants that affect transport. PMID:10362608

Vanoye, C G; Altenberg, G A; Reuss, L

1999-06-01

286

Synthesis and preclinical evaluation of the radiolabeled P-glycoprotein inhibitor [11C]MC113  

PubMed Central

Objectives With the aim to develop a PET tracer to visualize P-glycoprotein (Pgp) expression levels in different organs, the Pgp inhibitor MC113 was labeled with 11C and evaluated using small-animal PET. Methods [11C]MC113 was synthesized by reaction of O-desmethyl MC113 with [11C]methyl triflate. Small-animal PET was performed with [11C]MC113 in FVB wild-type and Mdr1a/b(?/?) mice (n=3 per group) and in a mouse model of high (EMT6Ar1.0) and low (EMT6) Pgp expressing tumor grafts (n=5). In the tumor model, PET scans were performed before and after administration of the reference Pgp inhibitor tariquidar (15 mg/kg). Results Brain uptake of [11C]MC113, expressed as area under the time-activity curve from time 0 to 60 min (AUC0-60), was moderately but not significantly increased in Mdr1a/b(?/?) compared with wild-type mice (mean±SD AUC0-60, Mdr1a/b(?/?): 88±7 min, wild-type: 62±6 min, P=0.100, Mann Whitney test). In the tumor model, AUC0-60 values were not significantly different between EMT6Ar1.0 and EMT6 tumors. Neither in brain nor in tumors was activity concentration significantly changed in response to tariquidar administration. Half-maximum effect concentrations (IC50) for inhibition of Pgp-mediated rhodamine 123 efflux from CCRFvcr1000 cells were 375±60 nM for MC113 versus 8.5±2.5 nM for tariquidar. Conclusion [11C]MC113 showed higher brain uptake in mice than previously described Pgp PET tracers, suggesting that [11C]MC113 was only to a low extent effluxed by Pgp. However, [11C]MC113 was found unsuitable to visualize Pgp expression levels presumably due to insufficiently high Pgp binding affinity of MC113 in relation to Pgp densities in brain and tumors. PMID:22981987

Mairinger, Severin; Wanek, Thomas; Kuntner, Claudia; Doenmez, Yaprak; Strommer, Sabine; Stanek, Johann; Capparelli, Elena; Chiba, Peter; Müller, Markus; Colabufo, Nicola A.; Langer, Oliver

2013-01-01

287

Partial Circumvention of P-Glycoprotein-Mediated Multidrug Resistance by Doxorubicin14-O-Hemiadipate  

Microsoft Academic Search

Previously, we have reported partial circumvention ofP-glycoprotein (Pgp)-associated resistance to doxorubicin(Dox) in MCF7\\/R human breast carcinoma and P388\\/R murineleukemia cell lines by doxorubicin-14-O-hemiadipate (H-Dox)[Povarov L.S. et al. (1995) Russian J. Bioorganic Chemistry21: 797–803]. We felt that these changes were due toalterations in the cellular pharmacokinetics of the analog inmultidrug (MDR) resistant cells, as compared to that of Dox.To address this

Olga V. Leontieva; Maria N. Preobrazhenskaya; Ralph J. Bernacki

2002-01-01

288

Stimulatory effect of insecticides on partially purified P-glycoprotein ATPase from the resistant pest Helicoverpa armigera.  

PubMed

A P-glycoprotein-like protein (Ha-Pgp) was detected in a membrane preparation from the insecticide-resistant pest Helicoverpa armigera (Lepidoptera: Noctüidae) using C219 antibodies that are directed towards an epitope in the nucleotide-binding domains. This protein was partially purified and found to be a glycoprotein displaying ATPase activity. SDS-PAGE confirmed that a high molecular mass glycoprotein (150 kDa) was overexpressed in resistant pests, but was not detected in susceptible pests. The partially purified Ha-Pgp ATPase was reconstituted into proteoliposomes and it was found that some insecticides, namely, monocrotophos, endosulfan, cypermethrin, fenvalerate, and methylparathion, stimulated the ATPase activity. The effect of various inhibitors on partially purified Ha-Pgp showed that orthovanadate is a potent inhibitor of its ATPase activity, inhibiting it by 90% at a concentration of 2 mmol/L. Other inhibitors, such as EDTA, sodium azide, and molybdate resulted in only a 20% decrease in activity. Details of the structure and function of Ha-Pgp will be important in the development of strategies to overcome insecticide resistance in this pest. PMID:17215890

Aurade, Ravindra; Jayalakshmi, Senigala K; Sreeramulu, Kuruba

2006-12-01

289

Human P-glycoprotein Contains a Greasy Ball-and-Socket Joint at the Second Transmission Interface*  

PubMed Central

The P-glycoprotein drug pump protects us from toxins. Drug-binding sites in the transmembrane (TM) domains (TMDs) are connected to the nucleotide-binding domains (NBDs) by intracellular helices (IHs). TMD-NBD cross-talk is a key step in the transport mechanism because drug binding stimulates ATP hydrolysis followed by drug efflux. Here, we tested whether the IHs are critical for maturation and TMD-NBD coupling by characterizing the effects of mutations to the IH1 and IH2 interfaces. Although IH1 mutations had little effect, most mutations at the IH2-NBD2 interface inhibited maturation or activity. For example, the F1086A mutation at the IH2-NBD2 interface abolished drug-stimulated ATPase activity. The mutant F1086A, however, retained the ability to bind ATP and drug substrates. The mutant was defective in mediating ATP-dependent conformational changes in the TMDs because binding of ATP no longer promoted cross-linking between cysteines located at the extracellular ends of TM segments 6 and 12. Replacement of Phe-1086 (in NBD2) with hydrophobic but not charged residues yielded active mutants. The activity of the F1086A mutant could be restored when the nearby residue Ala-266 (in IH2) was replaced with aromatic residues. These results suggest that Ala-266/Phe-1086 lies in a hydrophobic IH2-NBD2 “ball-and-socket” joint. PMID:23733192

Loo, Tip W.; Bartlett, M. Claire; Clarke, David M.

2013-01-01

290

Inhibitory activity of a green tea extract and some of its constituents on multidrug resistance-associated protein 2 functionality.  

PubMed

Green tea extracts (GTE) might modulate ABC transporter gene expression or function. This may be relevant in the treatment of cancer or in influencing intestinal drug permeability. To gain more insight on the influence of a GTE on secretory transport proteins we investigated the influence of GTE and several green tea components on the mRNA expression level of P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (MRP2) in human gastrointestinal epithelial LS-180 cells. Furthermore, the functional activity of MRP2, using glutathione methylfluorescein (GS-MF) or [3H]methotrexate (MTX) as substrate, was investigated in canine kidney cells stably overexpressing human MRP2 (MDCK-MRP2). GTE, at a concentration of 0.01 mg/mL, did not increase mRNA expression of P-gp or MRP2 in LS-180 cells. Functional assays in MDCK-MRP2 cells using GS-MF did not show any effect of 0.01 mg/mL GTE on MRP2 activity. In the same cell line the cellular accumulation of MTX (a specific substrate of MRP2) was significantly increased with the MRP-specific inhibitor MK-571 or with 1 mg/mL GTE, but not with 0.1 mg/mL. The green tea components (-)-epigallocatechin gallate, (-)-epigallocatechin, theanine, or caffeine, each in corresponding concentrations to the respective concentration of GTE, did not show any effect on MRP2 function. These data demonstrate that the mRNA expression patterns of P-gp and MRP2 in LS-180 cells are not altered by 0.01 mg/mL of GTE. However, MRP2 function was inhibited by 1 mg/mL GTE, whereas none of the green tea components tested were responsible for this effect. PMID:15729621

Netsch, M I; Gutmann, H; Luescher, S; Brill, S; Schmidlin, C B; Kreuter, M H; Drewe, J

2005-02-01

291

Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites.  

PubMed Central

Endothelial cells of human capillary blood vessels at the blood-brain and other blood-tissue barrier sites express P-glycoprotein as detected by mouse monoclonal antibodies against the human multidrug-resistance gene product. This pattern of endothelial cell expression may indicate a physiological role for P-glycoprotein in regulating the entry of certain molecules into the central nervous system and other anatomic compartments, such as the testes. These tissues, which limit the access of systemic drugs, are known pharmacologic sanctuaries for metastatic cancer. P-glycoprotein expression in capillary endothelium of brain and testes and not other tissues (i.e., kidney and placenta) may in part explain this phenomenon and could have important implications in cancer chemotherapy. Images PMID:2563168

Cordon-Cardo, C; O'Brien, J P; Casals, D; Rittman-Grauer, L; Biedler, J L; Melamed, M R; Bertino, J R

1989-01-01

292

Human multidrug resistance 3-P-glycoprotein expression in transgenic mice induces lens membrane alterations leading to cataract  

PubMed Central

We have generated mice transgenic for a human multidrug resistance (MDR)3 mini-gene driven by a hamster vimentin promoter. The MDR3 gene encodes a P-Glycoprotein that resembles the mouse multidrug resistance 2 P-Glycoprotein shown to be involved in the translocation of the phospholipid phosphatidylcholine through the hepatocyte canalicular membrane (Smit et al., 1993. Cell. 75:451-462). The vimentin promoter drives expression of the MDR3 transgene in mesenchymal tissues and in the eye lens. We show here that the presence of human multidrug resistance 3 P-Glycoprotein in the lens results in a severe lenticular pathology. Lens structural abnormalities initiate at a late embryonic stage and increase during postnatal lens development. Differentiation of the primary fibers is affected, and the terminal differentiation of the lens epithelium into secondary fibers is also perturbed. The ultrastructural alterations, particularly of the lens plasma membranes, resemble those identified in congenital mouse osmotic cataract. PMID:8647899

1996-01-01

293

Effect of verapamil on pharmacokinetics and pharmacodynamics of risperidone: In vivo evidence of involvement of P-glycoprotein in risperidone disposition  

Microsoft Academic Search

Objective: A recent in vitro study has shown that risperidone is a substrate of P-glycoprotein. The aim of this study was to confirm the effects of verapamil, a P-glycoprotein inhibitor, on the pharmacokinetics of risperidone.Methods: Two 6-day courses of either 240 mg verapamil daily, an inhibitor of P-glycoprotein, or placebo were administered in a randomized crossover fashion with at least

Taku Nakagami; Norio Yasui-Furukori; Manabu Saito; Tomonori Tateishi; Sunao Kaneo

2005-01-01

294

Amino acid substitutions in the sixth transmembrane domain of P-glycoprotein alter multidrug resistance.  

PubMed Central

Eukaryotic cells can display resistance to a wide range of natural-product chemotheraputic agents by the expression of P-glycoprotein (pgp), a putative plasma membrane transporter that is thought to mediate the efflux of these agents from cells. We have identified, in cells selected for multidrug resistance with actinomycin D, a mutant form of pgp that contains two amino acid substitutions within the putative sixth transmembrane domain. In transfection experiments, this altered pgp confers a cross-resistance phenotype that is altered significantly from that conferred by the normal protein, displaying maximal resistance to actinomycin D. These results strongly implicate the sixth transmembrane domain in the mechanism of pgp drug recognition and efflux. Moreover, they indicate a close functional homology between pgp and the cystic fibrosis transmembrane regulator in which the sixth transmembrane domain has also been shown to influence substrate specificity. Images PMID:1350094

Devine, S E; Ling, V; Melera, P W

1992-01-01

295

Differential Sensitivities of the Human ATP-Binding Cassette Transporters ABCG2 and P-Glycoprotein to Cyclosporin A  

E-print Network

such as human immuno- deficiency virus protease inhibitors (Kim et al., 1998; Lee et al., 1998). Therefore-glycoprotein (P-gp) are two ABC transporters that, when overexpressed, are capable of extruding a variety A is neither a substrate nor an inhibitor of the human ABCG2 transporter, under the conditions

Hrycyna, Christine A.

296

Functional and histochemical analysis of MDR3 P-glycoprotein in a tetracycline-controlled gene expression system.  

PubMed

Aim of the present study was to establish a cell system to study the physiological function of human MDR3 P-glycoprotein in cellular phosphatidylcholine (PC) secretion. MDR3 cDNA was expressed in HeLa cells using the tet-off system together with a luciferase reporter gene. MDR3 Pgp expression was turned on upon removal of doxycycline as shown by Western blot analysis. Immunohistochemistry using a specific anti human MDR3 Pgp antibody revealed a prominent staining of MDR3 Pgp covering the cytoplasm and the area of the plasma membrane. In presence of doxycycline MDR3 Pgp expression was turned off. For analysis of PC secretory activity, MDR3 Pgp expressing and non-expressing cells as well as control HeLa cells with low endogenous MDR3 were preincubated with [(3)H]choline for synthesis of cellular [(3)H]PC. Cells were then incubated for 2 h in media with 0-4 mM taurocholate (TC) and release of cellular [(3)H]PC was recorded. [(3)H]PC secretion was observed in presence of TC without impairing cell viability. There was a significant increase in [(3)H]PC excretion in MDR3 Pgp expressing cells compared to non-expressing controls (e.g. 4.5 fold at 4 mM TC), revealing a high efficiency of transport activity (turnover). From the data it is concluded that the MDR3 Pgp expressing cell system under control of a doxycycline responsive promotor is functionally active and provides a tool to further study MDR3 Pgp mediated transport. PMID:11147995

Fitscher, B A; Ehehalt, R; Jochims, C; Pohl, J; Herrmann, T; Stremmel, W

2000-12-29

297

Overexpression of a p-glycoprotein in hepatocellular carcinomas from woodchuck hepatitis virus-infected woodchucks ( Marmota monax)  

Microsoft Academic Search

The leading cause of human hepatocellular carcinomas (HCCs) is hepatitis B virus (HBV) infection. Woodchucks infected with a closely related hepadnavirus, woodchuck hepatitis virus (WHV), serve as a model for HBV because woodchucks chronically infected with WHV also develop hepatocellular carcinomas. Increased expression of p-glycoprotein (pgp) in human HCCs is a common obstacle in successful cancer chemotherapy. Pgps are encoded

SE Dunn; CS Hughes; GA LeBlanc; JM Cullen

1996-01-01

298

Interindividual Variability in Hepatic Organic Anion-Transporting Polypeptides and P-Glycoprotein (ABCB1) Protein Expression: Quantification by Liquid Chromatography Tandem Mass Spectroscopy and Influence of Genotype, Age, and Sex  

PubMed Central

Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ?40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling. PMID:24122874

Prasad, Bhagwat; Evers, Raymond; Gupta, Anshul; Hop, Cornelis E. C. A.; Salphati, Laurent; Shukla, Suneet; Ambudkar, Suresh V.

2014-01-01

299

Re-evaluation of the role of P-glycoprotein in in vitro drug permeability studies with the bovine brain microvessel endothelial cells.  

PubMed

1.? Currently available in vitro blood-brain barrier models all have recognized restrictions. In addition to leakiness, inconsistent data about P-glycoprotein mediated efflux limit the attractiveness of the primary bovine brain microvessel endothelial cells (BBMECs). Therefore, we re-evaluated the role of P-glycoprotein mediated efflux with two culture conditions in BBMECs for prediction of drug permeability of potential P-glycoprotein substrates. 2.? BBMECs were monocultured on filters on petri dishes and on filter inserts, and expression and localization of P-glycoprotein were compared by using western blot and confocal microscopy, respectively. The functionality of P-glycoprotein was assessed by using cellular uptake, calcein-AM and bidirectional transport assays. 3.? P-glycoprotein expression was higher in BBMECs cultured on filter inserts decreasing the permeability of digoxin and paclitaxel, but not the permeability of vinblastine. However, the monocultured BBMECs were not able to demonstrate efflux in the bidirectional transport assays. Under certain culture conditions, occludin may not be correctly located, perhaps explaining in part the leakiness of BBMECs. 4.? In conclusion, BBMECs, despite possessing a functional P-glycoprotein, under certain culture conditions may not be a suitable in vitro model for the bidirectional transport assays and for predicting the permeability of drugs and xenobiotics that are potential P-glycoprotein substrates. PMID:23924297

Hakkarainen, Jenni J; Rilla, Kirsi; Suhonen, Marjukka; Ruponen, Marika; Forsberg, Markus M

2014-03-01

300

Monoclonal antibodies against MDR1 P-glycoprotein inhibit chloride conductance and label a 65-kDa protein in pancreatic zymogen granule membranes.  

PubMed

The regulation of Cl- and cation conductances by the nonhydrolyzable ATP analog adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP) was characterized in isolated zymogen granules (ZG) from pancreatic acinar cells. ZG were purified from rat pancreas homogenate by Percoll gradient centrifugation. Cl- conductance was assayed by suspending ZG in isotonic KCl buffer and measuring osmotic lysis induced by maximal permeabilization of ZG membranes (ZGM) for K+ with the K+ ionophore valinomycin (Val). This resulted in influx of K+ through the artificial pathway and of Cl- through endogenous channels. To measure cation conductances ZG (pHi approximately 6) were suspended in pH 7 buffered isotonic monovalent cation acetate salts. The pH gradient was converted into an outside-directed H+ diffusion potential by maximally increasing H+ conductance of ZGM with the protonophore carbonyl cyanide p-chlorophenylhydrazone. Osmotic lysis of ZG was induced by H+ diffusion potential driven influx of monovalent cations through endogenous channels and non-ionic diffusion of the counterion acetate. In the absence of Val, ZG were stable in KCl buffer up to 2 h. AMP-PCP enhanced osmotic lysis approximately 4-fold compared to control, due to activation of Cl- conductance by AMP-PCP and K+ influx through an AMP-PCP-insensitive nonselective cation pathway, which could be blocked by 0.1 mM Ba2+, 0.5 mM quinine, or 0.2 mM flufenamate. In addition, a K+ and Rb+ selective cation conductance was found which was completely blocked by 0.5 mM AMP-PCP or 0.5 mM quinine. AMP-PCP induced Cl- conductance was strongly inhibited by two monoclonal antibodies against MDR1 P-glycoprotein (JSB-1 and C219; 5-10 micrograms/ml), but not by a monoclonal antibody against the cystic fibrosis transmembrane conductance regulator (M3A7; 5 micrograms/ml) or by mouse IgG. The AMP-PCP insensitive nonselective cation conductance was not blocked by monoclonal antibodies against MDR1 P-glycoprotein (MDR1). Immunoblot studies of ZG membranes revealed the presence of a major immunoreactive protein band of approximately 65 kDa with both monoclonal antibodies against MDR1, but no protein of the approximate size of MDR1 (approximately 170 kDa) was detected. We propose that the Cl- channel or a regulator of the channel, that is activated by the non-hydrolyzable ATP analog AMP-PCP in ZG membranes, is a member of the ATP binding cassette superfamily of transporters and may have homology to MDR1 P-glycoprotein. PMID:7929102

Thévenod, F; Anderie, I; Schulz, I

1994-09-30

301

Mechanistic insight from in silico pharmacokinetic experiments: roles of P-glycoprotein, Cyp3A4 enzymes, and microenvironments.  

PubMed

Saquinavir exhibits paradoxical transport across modified Caco-2 cell monolayers (doi: 10.1124/jpet.103.056390) expressing P-glycoprotein and Cyp3A4. The data implicate complicated intracellular transport mechanisms. Drawing on recent discrete event modeling and simulation advances, we built an in silico analog of the confluent, asymmetric cell monolayer used in the cited work. We call it in silico experimental Caco-2 (cell monolayer) culture (ISECC). Concrete, working, hypothesized spatial mechanisms were implemented. Validation was achieved when in silico experimental results met similarity measure (SM) expectations that targeted 16 wet-lab experimental conditions. Initial mechanistic hypotheses turned out to be necessary parts of a more complicated explanation. We progressed through four stages of an iterative refinement and validation protocol that enabled and facilitated discovery of plausible, new mechanistic details. The process exercised abductive reasoning, a primary means of scientific knowledge creation and creative cognition. The ISECC that survived the most stringent SM challenge produced transport data that was statistically indistinguishable from referent wet-lab observations. It required a 7:1 ratio of apical transporters to metabolizing enzymes, a 97% reduction of efflux activity by an inhibitor, a biased distribution of metabolizing enzymes, heterogeneous intracellular spaces, and restrictions on intracellular drug movement. Experimenting on synthetic analogs such as ISECC provides a former unavailable means of discovering new mechanistic details and testing their plausibility. The approach thus provides a powerful new expansion of the scientific method: an independent, scientific means to challenge, explore, better understand, and improve any inductive mechanism and, importantly, the assumptions on which it rests. PMID:19864617

Lam, Tai Ning; Hunt, C Anthony

2010-02-01

302

Is P-glycoprotein (ABCB1) a phase 0 or a phase 3 colchicine transporter depending on colchicine exposure conditions?  

PubMed

This study investigates the P-glycoprotein (Pgp)-mediated transport of its substrates in accumulation or efflux modes under steady-state conditions. The kinetics of colchicine uptake and efflux, a substrate of both Pgp and intracellular tubulin, were studied in HL60 and HL60/DNR cells; HL60/DNR cells contain 25 times more Pgp than do HL60 cells. HL60/DNR cells in a medium containing 6.25 nM colchicine, which mimics therapeutic conditions, reached steady-state twice as rapidly as did HL60 cells, and accumulated 24-times less colchicine than did HL60 cells. The Pgp inhibitor GF120918, increased colchicine uptake by HL60 cells 1.2-fold and that of HL60/DNR cells 17-fold, while it had no effect on colchicine efflux from either cell line that had been incubated with colchicine for 24 h. Colchicine kinetics fitted well a two closed-compartment model, showing that the low intracellular accumulation of colchicine in HL60/DNR cells resulted from a 11-fold decrease in colchicine uptake and a 2.3-fold increase in colchicine efflux, that could be attributed to Pgp-mediated efflux activity in HL60/DNR cells. Intracellular colchicine was mainly and similarly distributed in the cytosol in both cell lines. These data demonstrate that the kinetics of the intracellular colchicine accumulation depend on the density of Pgp and that Pgp is more a phase 0 (preventing cellular uptake) than a phase 3 (effluxing intracellular substrate) transporter under steady-state conditions, although the situation is reversed after a short incubation time (30 min), when intracellular free colchicine concentration is probably high enough for it to be removed from the cell by Pgp. PMID:16978677

Declčves, Xavier; Niel, Elisabeth; Debray, Marcel; Scherrmann, Jean-Michel

2006-12-01

303

Drug-Regulated Expression of Plasmodium falciparum P-Glycoprotein Homologue 1: a Putative Role for Nuclear Receptors?  

PubMed Central

Acquired resistance to therapeutic agents is a major clinical concern in the prevention/treatment of malaria. The parasite has developed resistance to specific drugs through two mechanisms: mutations in target proteins such as dihydrofolate reductase and the bc1 complex for antifolates and nathoquinones, respectively, and alterations in predicted parasite transporter molecules such as P-glycoprotein homologue 1 (Pgh1) and Plasmodium falciparum CRT (PfCRT). Alterations in the expression of Pgh1 have been associated with modified susceptibility to a range of unrelated drugs. The molecular mechanism(s) that is responsible for this phenotype is unknown. We have shown previously (A. M. Ndifor, R. E. Howells, P. G. Bray, J. L. Ngu, and S. A. Ward, Antimicrob. Agents Chemother. 37:1318-1323, 2003) that the anticonvulsant phenobarbitone (PB) can induce reduced susceptibility to chloroquine (CQ) in P. falciparum, and in the current study, we provide the first evidence for a molecular mechanism underlying this phenomenon. We demonstrate that pretreatment with PB can elicit decreased susceptibility to CQ in both CQ-resistant and CQ-sensitive parasite lines and that this is associated with the increased expression of the drug transporter Pgh1 but not PfCRT. Furthermore, we have investigated the proximal promoter regions from both pfmdr1 and pfcrt and identified a number of putative binding sites for nuclear receptors with sequence similarities to regions known to be activated by PB in mammals. Whole-genome analysis has revealed a putative nuclear receptor gene, providing the first evidence that nuclear receptor-mediated responses to drug exposure may be a mechanism of gene regulation in P. falciparum. PMID:18195056

Johnson, David J.; Owen, Andrew; Plant, Nick; Bray, Patrick G.; Ward, Stephen A.

2008-01-01

304

Pregnane X Receptor and P-glycoprotein: a connexion for Alzheimer's disease management.  

PubMed

The translational failure between preclinical animal models and clinical outcome has alarmed us to search for a new strategy in the treatment of Alzheimer's disease (AD). Interlink between Pregnane X Receptor (PXR) and P-glycoprotein (Pgp) at the blood brain barrier (BBB) has raised hope toward a new disease modifying therapy in AD. Pgp is a major efflux transporter for beta amyloid (A[Formula: see text]) at human BBB. A literature survey reveals diminished expression of Pgp transporter at the BBB in AD patients. Pregnane X Receptor is a major transcriptional regulator of Pgp. Restoration of Pgp at the BBB enhances the elimination of the A[Formula: see text] from brain alongside and inhibits the apical to basolateral movement of A[Formula: see text] from the circulatory blood. This review concentrates on in vitro, in vivo, and in silico advancements on the study of the PXR in context to Pgp and discusses the substrate and inhibitor specificity between PXR and Pgp. PMID:25213397

Jain, Sumit; Rathod, Vijay; Prajapati, Rameshwar; Nandekar, Prajwal P; Sangamwar, Abhay T

2014-11-01

305

De Novo Prediction of P-Glycoprotein-Mediated Efflux Liability for Druglike Compounds  

PubMed Central

P-glycoprotein (Pgp) is capable of recognizing and transporting a wide range of chemically diverse compounds in vivo. Overcoming Pgp-mediated efflux can represent a significant challenge when penetration into the central nervous system is required or within the context of developing anticancer therapies. While numerous in silico models have been developed to predict Pgp-mediated efflux, these models rely on training sets and are best suited to make interpolations. Therefore, it is desirable to develop ab initio models that can be used to predict efflux liabilities. Herein, we present a de novo method that can be used to predict Pgp-mediated efflux potential for druglike compounds. A model, which correlates the computed solvation free energy differences obtained in water and chloroform with Pgp-mediated efflux (in logarithmic scale), was successful in predicting Pgp efflux ratios for a wide range of chemically diverse compounds with a R2 and root-mean-square error of 0.65 and 0.29, respectively. PMID:24900570

2012-01-01

306

P-glycoprotein induction by breast milk attenuates intestinal inflammation in experimental necrotizing enterocolitis  

PubMed Central

P-glycoprotein (Pgp), a product of the multi-drug resistance gene MDR1a, is a broad specificity efflux ATP cassette transmembrane transporter that is predominantly expressed in epithelial tissues. Because mdr1a?/? mice tend to develop spontaneous colitis in bacteria-dependent manner, Pgp is believed to have a role in protection of the intestinal epithelium from luminal bacteria. Here we demonstrate that levels of Pgp in the small intestine of newborn rodents dramatically increase during breastfeeding, but not during formula feeding (FF). In rats and mice, levels of intestinal Pgp peak on days 3–7 and 1–5 of breastfeeding, respectively. The mdr1a?/? neonatal mice subjected to FF, hypoxia, and hypothermia have significantly higher incidence and pathology, as well as significantly earlier onset of necrotizing enterocolitis (NEC) than congenic wild type mice. Breast-fed mdr1a?/? neonatal mice are also more susceptible to intestinal damage caused by the opportunistic pathogen Cronobacter sakazakii that has been associated with hospital outbreaks of NEC. Breast milk, but not formula, induces Pgp expression in enterocyte cell lines in a dose- and time-dependent manner. High levels of ectopically expressed Pgp protect epithelial cells in vitro from apoptosis induced by C. sakazakii. Taken together, these results show that breast milk-induced expression of Pgp may have a role in the protection of the neonatal intestinal epithelium from injury associated with nascent bacterial colonization. PMID:21788941

Guner, Yigit S.; Franklin, Ashanti L.; Chokshi, Nikunj K.; Castle, Shannon L.; Pontarelli, Elizabeth; Wang, Jin; Wang, Larry; Prasadarao, Nemani V.; Upperman, Jeffrey S.; Grishin, Anatoly V.; Ford, Henri R.

2014-01-01

307

P-glycoprotein and glutathione S-transferase pi in childhood acute lymphoblastic leukaemia.  

PubMed Central

Blast cells obtained from 104 children with untreated acute lymphoblastic leukaemia were analysed for the expression of P-glycoprotein (P-170) and glutathione S-transfer pi (GST-pi) using immunohistochemistry. Expression of P-170 was detected in 36 of 104 patients (35%) and increased GST-pi was seen in 52 patients (50%). Coexpression of both resistance proteins was observed in 22 leukaemias (21%), whereas no evidence of the resistance markers was found in 38 cases (37%). In patients with P-170-positive leukaemic cells, a significantly lower probability of remaining in first continuous complete remission (CCR) was observed when compared with patients with P-170-negative tumours (P < 0.05). However, only a trend for a more frequent expression of P-170 was found in the leukaemic cells of patients who experienced relapses (P = 0.099). Overexpression of GST-pi was correlated with a higher relapse rate (P = 0.001) and a lower probability of remaining in first CCR (P = 0.01). Expression of P-170 and GST-pi was independent of sex, FAB type, immunological subtype and initial blast cell count. The multivariate analysis indicated that only the expression of P-170 is an unfavourable prognostic factor for children with acute lymphoblastic leukaemia in addition to the prognostic clinical factors. Images Figure 1 PMID:7981066

Sauerbrey, A.; Zintl, F.; Volm, M.

1994-01-01

308

P-glycoprotein function involves conformational transitions detectable by differential immunoreactivity  

PubMed Central

The MDR1 P-glycoprotein (Pgp), a member of the ATP-binding cassette family of transporters, is a transmembrane ATPase efflux pump for various lipophilic compounds, including many anti-cancer drugs. mAb UIC2, reactive with the extracellular moiety of Pgp, inhibits Pgp-mediated efflux. UIC2 reactivity with Pgp was increased by the addition of several Pgp-transported compounds or ATP-depleting agents, and by mutational inactivation of both nucleotide-binding domains (NBDs) of Pgp. UIC2 binding to Pgp mutated in both NBDs was unaffected in the presence of Pgp transport substrates or in ATP-depleted cells, whereas the reactivities of the wild-type Pgp and Pgps mutated in a single NBD were increased by these treatments to the level of the double mutant. These results indicate the existence of different Pgp conformations associated with different stages of transport-associated ATP hydrolysis and suggest trapping in a transient conformation as a mechanism for antibody-mediated inhibition of?Pgp. PMID:9371774

Mechetner, Eugene B.; Schott, Brigitte; Morse, Brian S.; Stein, Wilfred D.; Druley, Todd; Davis, Kenneth A.; Tsuruo, Takashi; Roninson, Igor B.

1997-01-01

309

Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (?/?) Mice and Effects on Mammalian GABA(A) Channel Activity  

PubMed Central

The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(?/?) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(?/?) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(?/?) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat ?1?2?2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688

Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne

2012-01-01

310

Relative neurotoxicity of ivermectin and moxidectin in Mdr1ab (-/-) mice and effects on mammalian GABA(A) channel activity.  

PubMed

The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(-/-) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11-2.0 and 0.23-12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD(50)) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(-/-) mice, LD(50) was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD(50) were, in Mdr1ab(-/-) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740-1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat ?1?2?2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688

Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne

2012-01-01

311

Daunorubicin efflux against a concentration gradient in non-P-glycoprotein multidrug-resistant lung-cancer cells.  

PubMed

Multidrug-resistant, human non-small-cell lung carcinoma SW-1573/2R120 (2R120) cells, not containing the drug efflux pump P-glycoprotein (Pgp), have reduced initial daunorubicin (DN) accumulation rates and decreased cellular steady-state drug concentrations. Previously we found indications of the presence of a plasma membrane "vacuum cleaner", pumping DN directly from the membrane, and reported evidence of active DN pumping using digitonin. Further evidence of active DN pumping is now provided via a different methodology and the active drug pump flux is estimated. Cells were exposed to a flowing medium containing the cytotoxic agent DN. After reaching a steady state, in which net DN uptake equals net DN efflux, high concentration pulses of vincristine (VCR) were injected into the flowing medium. A rapid increase in cellular DN content was observed, while only a minimal effect was seen in SW-1573 wild-type cells. After passage of the VCR pulse, the extra accumulated DN was effluxed against a concentration gradient. Upon increasing the VCR concentration, a maximum pump inhibition was reached which was similar to the effect of cellular energy depletion. Similar effects were observed for Pgp-containing SW-1573/2R160 (2R160) cells as well as non-Pgp MDR human small-cell lung carcinoma GLC4/ADR cells. With increasing extracellular DN concentrations, saturation of the VCR-induced DN influx was observed (DN medium concentration 2.5 microM at 1/2 Vmax). At an extracellular DN concentration of 5 microM, higher concentrations of VCR were needed to reach the maximum effect in 2R120 cells than at 0.5 microM DN. This is an indication of competitive interaction between DN and VCR for the putative DN efflux system. In summary, we found indications of inhibition of active DN efflux by VCR and DN efflux against a concentration gradient in non-Pgp MDR 2R120 and GLC4/ADR cells. These features are consistent with the presence of a multidrug transporter, different from Pgp, in the plasma membrane of these cells. PMID:7927929

Mülder, H S; Lankelma, J; Dekker, H; Broxterman, H J; Pinedo, H M

1994-10-15

312

Effect of intestinal P-glycoprotein on daily tacrolimus trough level in a living-donor small bowel recipient  

Microsoft Academic Search

We have examined whether the expression levels of the intestinal absorptive barriers, MDR1 gene product P-glycoprotein and cytochrome P450 IIIA4 (CYP3A4), correlate with the trough levels of orally administered tacrolimus in a recipient of small bowel transplant for 4 months. By using a competitive polymerase chain reaction, the expression of MDR1 messenger RNA (mRNA) and CYP3A4 mRNA by intestinal cells

Satohiro Masuda; Shinji Uemoto; Tohru Hashida; Yukihiro Inomata; Koichi Tanaka; Ken-ichi Inui

2000-01-01

313

Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery  

Microsoft Academic Search

The objective of this section is to evaluate the contributions of hepatic metabolism, intestinal metabolism and intestinal p-glycoprotein to the pharmacokinetics of orally administered cyclosporine and tacrolimus. Cyclosporine and tacrolimus are metabolized primarily by cytochrome P450 3A4 (CYP3A4) in the liver and small intestine. There is also evidence that cyclosporine is metabolized to a lesser extent by cytochrome P450 3A5

M. F Hebert

1997-01-01

314

Stable Transfection of the P-Glycoprotein Promoter Reproduces the Endogenous Overexpression Phenotype: The Role of MED11  

Microsoft Academic Search

Cellular resistance tu multiple chemotherapeutic agents is most often due to the overexpression of P-glycoprotein (Pgp). The mechanism(s) underlying Pgp overexpression had not been determined, due, in part, to a failure to reproduce the overexpression in transient transfection assays. We now report that stähletransfection of a Pgp (pgpl) promoter\\/lucifer- ase construct in the drug-sensitive Chinese hamster cell line DC-3F and

Tan A. Ince; Kathleen W. Scotto

315

The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors  

Microsoft Academic Search

BACKGROUND: Anti-cancer drugs access solid tumors via blood vessels, and must penetrate tumor tissue to reach all cancer cells. Previous studies have demonstrated steep gradients of decreasing doxorubicin fluorescence with increasing distance from blood vessels, such that many tumor cells are not exposed to drug. Studies using multilayered cell cultures show that increased P-glycoprotein (PgP) is associated with better penetration

Krupa J Patel; Ian F Tannock

2009-01-01

316

Catalytic Transitions in the Human MDR1 P-Glycoprotein Drug Binding Sites  

PubMed Central

Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp. Crystal structures of homologues in four different conformations were used as intermediate targets in the dynamics simulations. Transitions from conformations that were wide open to the cytoplasm to transition state conformations that were wide open to the extracellular space were studied. Twenty-six nonredundant transitional protein structures were identified from these targeted molecular dynamics simulations using evolutionary structure analyses. Coupled movement of nucleotide binding domains (NBDs) and transmembrane domains (TMDs) that form the drug binding cavities were observed. Pronounced twisting of the NBDs as they approached each other as well as the quantification of a dramatic opening of the TMDs to the extracellular space as the ATP hydrolysis transition state was reached were observed. Docking interactions of 21 known transport ligands or inhibitors were analyzed with each of the 26 transitional structures. Many of the docking results obtained here were validated by previously published biochemical determinations. As the ATP hydrolysis transition state was approached, drug docking in the extracellular half of the transmembrane domains seemed to be destabilized as transport ligand exit gates opened to the extracellular space. PMID:22647192

2012-01-01

317

Benzodiazepine-mediated structural changes in the multidrug transporter P-glycoprotein: an intrinsic fluorescence quenching analysis.  

PubMed

P-glycoprotein expressed in Pichia pastoris was used to study the drug binding sites of different benzodiazepines. The effect of bromazepam, chlordiazepoxide, diazepam and flurazepam on P-glycoprotein structure was investigated by measuring the intrinsic fluorescence of the transporter tryptophan residues. Purified mouse mdr1a transporter in mixed micelles of 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid and 1,2-dimiristoyl-sn-glycerol-3-phosphocholine emitted fluorescence at 340 nm indicative of the fluorophores in a relatively apolar environment. Acrylamide and iodide ion were used as collisional quenchers toward distinct regions of the transporter, the protein and the interface protein-surface, respectively. Binding of ATP induced conformational changes at the protein surface level in accordance with the location of the nucleotide binding sites. Bromazepam interaction with the transporter was located at the protein-surface interface, diazepam at the membrane region and chlordiazepoxide at the protein surface. Only the flurazepam interaction site was not detected by the quenchers used. All benzodiazepines were able to elicit reorientation of the protein fluorophores on the P-glycoprotein-ATP complex. PMID:18791834

Lima, Sofia A C; Cordeiro-da-Silva, Anabela; de Castro, Baltazar; Gameiro, Paula

2008-06-01

318

Pore-exposed tyrosine residues of P-glycoprotein are important hydrogen-bonding partners for drugs.  

PubMed

The multispecific efflux transporter, P-glycoprotein, plays an important role in drug disposition. Substrate translocation occurs along the interface of its transmembrane domains. The rotational C2 symmetry of ATP-binding cassette transporters implies the existence of two symmetry-related sets of substrate-interacting amino acids. These sets are identical in homodimeric transporters, and remain evolutionary related in full transporters, such as P-glycoprotein, in which substrates bind preferentially, but nonexclusively, to one of two binding sites. We explored the role of pore-exposed tyrosines for hydrogen-bonding interactions with propafenone type ligands in their preferred binding site 2. Tyrosine 953 is shown to form hydrogen bonds not only with propafenone analogs, but also with the preferred site 1 substrate rhodamine123. Furthermore, an accessory role of tyrosine 950 for binding of selected propafenone analogs is demonstrated. The present study demonstrates the importance of domain interface tyrosine residues for interaction of small molecules with P-glycoprotein. PMID:24366667

Dönmez Cakil, Yaprak; Khunweeraphong, Narakorn; Parveen, Zahida; Schmid, Diethart; Artaker, Matthias; Ecker, Gerhard F; Sitte, Harald H; Pusch, Oliver; Stockner, Thomas; Chiba, Peter

2014-03-01

319

Cerebral uptake of mefloquine enantiomers with and without the P-gp inhibitor elacridar (GF1210918) in mice  

PubMed Central

Mefloquine is a chiral neurotoxic antimalarial agent showing stereoselective brain uptake in humans and rats. It is a substrate and an inhibitor of the efflux protein P-glycoprotein. We investigated the stereoselective uptake and efflux of mefloquine in mice, and the consequences of the combination with an efflux protein inhibitor, elacridar (GF120918) on its brain transport. Racemic mefloquine (25 mg kg?1) was administered intraperitoneally with or without elacridar (10 mg kg?1). Six to seven mice were killed at each of 11 time-points between 30 min and 168 h after administration. Blood and brain concentrations of mefloquine enantiomers were determined using liquid chromatography. A three-compartment model with zero-order absorption from the injection site was found to best represent the pharmacokinetics of both enantiomers in blood and brain. (?)Mefloquine had a lower blood and brain apparent volume of distribution and a lower efflux clearance from the brain, resulting in a larger brain/blood ratio compared to (+)mefloquine. Elacridar did not modify blood concentrations or the elimination rate from blood for either enantiomers. However, cerebral AUCinf of both enantiomers were increased, with a stronger effect on (+)mefloquine. The efflux clearance from the brain decreased for both enantiomers, with a larger decrease for (+)mefloquine. After administration of racemic mefloquine in mice, blood and brain pharmacokinetics are stereoselective, (+)mefloquine being excreted from brain more rapidly than its antipode, showing that mefloquine is a substrate of efflux proteins and that mefloquine enantiomers undergo efflux in a stereoselective manner. Moreover, pretreatment with elacridar reduced the brain efflux clearances with a more pronounced effect on (+)mefloquine. PMID:15023856

de Lagerie, Sylvie Barraud; Comets, Emmanuelle; Gautrand, Celine; Fernandez, Christine; Auchere, Daniel; Singlas, Eric; Mentre, France; Gimenez, Francois

2004-01-01

320

Molecular Structure of the Complex Formed Between the Anticancer Drug Cisplatin and d(pGpG): C2221 Crystal Form  

Microsoft Academic Search

The three dimensional molecular structure of the adduct formed between the anticancer drug cisplatin and a DNA dinucleotide d(pGpG) has been determined by x-ray diffraction analysis at 1.37 Ĺ resolution and refined to a final R-factor of 0.11. This structure, solved by using data from a previously reported crystal form in the space group C2221, resembles that found in the

Miquel Coll; Suzanne E. Sherman; Dan Gibson; Stephen J. Lippard; Andrew H.-J. Wang

1990-01-01

321

Synthesis, activity and pharmacophore development for isatin-?-thiosemicarbazones with selective activity towards multidrug resistant cellsa  

PubMed Central

We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-?-thiosemicarbazones from our initial study have been validated, and a range of analogs synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1-selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone, and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicty of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity, and aid in directing the search for the mechanism of action of 1. PMID:19397322

Hall, Matthew D.; Salam, Noeris K.; Hellawell, Jennifer L.; Fales, Henry M.; Kensler, Caroline B.; Ludwig, Joseph A.; Szakacs, Gergely; Hibbs, David E.; Gottesman, Michael M.

2009-01-01

322

P-glycoprotein expression is increased in human secretory and gestational endometrium.  

PubMed

To determine the expression, distribution, and intracellular localization of the multi-drug resistance gene product P-glycoprotein (Pgp) in the human menstrual cycle and in early gestational endometrium, we retrospectively studied 36 endometrial samples utilizing 3 murine monoclonal antibodies (MAbs), MAb C219, MAb C494, and MAb JSB-1, which recognize spatially distinct cytoplasmic epitopes of Pgp. Formalin-fixed, paraffin-embedded endometrial samples obtained from 36 women of reproductive age with normal menstrual cycles were assigned morphologic menstrual dates: proliferative (N = 10), secretory (N = 19), menstrual (N = 1), and gestational endometrium (N = 6). The cellular localization, staining intensity, and percentage of Pgp immunoreactive cells varied with the phase of the menstrual cycle. Early proliferative endometria revealed no Pgp immunoreactivity for all three MAbs. Mid-proliferative endometria showed weak immunostaining in less than 15% of the glandular epithelia. Late proliferative endometria showed a strong apical paranuclear/Golgi staining pattern. Early secretory endometria showed strong luminal membranous, subnuclear vacuolar membranous, and supranuclear vacuolar membranous immunostaining to all 3 MAbs in greater than 80% of the glandular epithelia. Apical paranuclear/Golgi and membranous staining were present in nonvacuolated mid-secretory glands. Immunoreactivity diminished in the late secretory phase with mild to moderate staining in less than 35% of the endometrial glands. Menstrual endometria showed weak, focal staining. All gestational endometria showed marked cytoplasmic, membranous, and apical/Golgi immunostaining both in the hypersecretory (Arias-Stella) endometrial glands as well as in the decidua. In general, the intensity of MAb C494 immunostaining was weaker than that of MAb C219 or JSB-1. These results suggest the following: Pgp expression parallels that of nuclear progesterone receptor expression in the normal human endometrial cycle and early gestational endometrium; Pgp expression corresponds to rising plasma and tissue levels of progesterone as well as to morphologic changes in the endometrial glandular epithelium associated with the marked development of the secretory apparatus; Pgp expression is hormonally regulated and may be involved in uteroplacental transport of substrates important in the implantation process and in early embryo-endometrial interactions; and Pgp may be involved in the transport of progesterone across the uterine epithelium during pregnancy. PMID:1721668

Axiotis, C A; Guarch, R; Merino, M J; Laporte, N; Neumann, R D

1991-11-01

323

St. John's Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer's disease mouse model-role of P-glycoprotein.  

PubMed

The adenosine triphosphate-binding cassette transport protein P-glycoprotein (ABCB1) is involved in the export of beta-amyloid from the brain into the blood, and there is evidence that age-associated deficits in cerebral P-glycoprotein content may be involved in Alzheimer's disease pathogenesis. P-glycoprotein function and expression can be pharmacologically induced by a variety of compounds including extracts of Hypericum perforatum (St. John's Wort). To clarify the effect of St. John's Wort on the accumulation of beta-amyloid and P-glycoprotein expression in the brain, St. John's Wort extract (final hyperforin concentration 5%) was fed to 30-day-old male C57BL/6J-APP/PS1(+/-) mice over a period of 60 or 120 days, respectively. Age-matched male C57BL/6J-APP/PS1(+/-) mice receiving a St. John's Wort-free diet served as controls. Mice receiving St. John's Wort extract showed (i) significant reductions of parenchymal beta-amyloid 1-40 and 1-42 accumulation; and (ii) moderate, but statistically significant increases in cerebrovascular P-glycoprotein expression. Thus, the induction of cerebrovascular P-glycoprotein may be a novel therapeutic strategy to protect the brain from beta-amyloid accumulation, and thereby impede the progression of Alzheimer's disease. PMID:23701205

Brenn, Anja; Grube, Markus; Jedlitschky, Gabriele; Fischer, Andrea; Strohmeier, Barbara; Eiden, Martin; Keller, Markus; Groschup, Martin H; Vogelgesang, Silke

2014-01-01

324

Impact of the Herbal Medicine Sophora flavescens on the Oral Pharmacokinetics of Indinavir in Rats: The Involvement of CYP3A and P-Glycoprotein  

PubMed Central

Sophora flavescens is a Chinese medicinal herb used for the treatment of gastrointestinal hemorrhage, skin diseases, pyretic stranguria and viral hepatitis. In this study the herb-drug interactions between S. flavescens and indinavir, a protease inhibitor for HIV treatment, were evaluated in rats. Concomitant oral administration of Sophora extract (0.158 g/kg or 0.63 g/kg, p.o.) and indinavir (40 mg/kg, p.o.) in rats twice a day for 7 days resulted in a dose-dependent decrease of plasma indinavir concentrations, with 55%–83% decrease in AUC0-? and 38%–78% reduction in Cmax. The CL (Clearance)/F (fraction of dose available in the systemic circulation) increased up to 7.4-fold in Sophora-treated rats. Oxymatrine treatment (45 mg/kg, p.o.) also decreased indinavir concentrations, while the ethyl acetate fraction of Sophora extract had no effect. Urinary indinavir (24-h) was reduced, while the fraction of indinavir in faeces was increased after Sophora treatment. Compared to the controls, multiple dosing of Sophora extract elevated both mRNA and protein levels of P-gp in the small intestine and liver. In addition, Sophora treatment increased intestinal and hepatic mRNA expression of CYP3A1, but had less effect on CYP3A2 expression. Although protein levels of CYP3A1 and CYP3A2 were not altered by Sophora treatment, hepatic CYP3A activity increased in the Sophora-treated rats. All available data demonstrated that Sophora flavescens reduced plasma indinavir concentration after multiple concomitant doses, possibly through hepatic CYP3A activity and induction of intestinal and hepatic P-gp. The animal study would be useful for predicting potential interactions between natural products and oral pharmaceutics and understanding the mechanisms prior to human studies. Results in the current study suggest that patients using indinavir might be cautioned in the use of S. flavescens extract or Sophora-derived products. PMID:22359586

Yang, Jia-Ming; Ip, Siu-Po; Xian, Yanfang; Zhao, Ming; Lin, Zhi-Xiu; Yeung, John Hok Keung; Chan, Raphael Chiu Yeung; Lee, Shui-Shan; Che, Chun-Tao

2012-01-01

325

Modulation of P-glycoprotein-mediated efflux by prodrug derivatization: an approach involving peptide transporter-mediated influx across rabbit cornea.  

PubMed

The aim of this study was to investigate the modulation of efflux mechanisms using transporter- targeted prodrug derivatization of a model P-gp substrate, quinidine. The L-valine, L-valine-valine esters of quinidine, val-quinidine (VQ), and val-val-quinidine (VVQ) were synthesized in our laboratory, respectively. [(14)C] erythromycin was chosen to delineate the affinity of quinidine (Q) toward P-gp. [(3)H] glycylsarcosine (GS, or glysar) was chosen as a model peptide transporter (PEPT) substrate. Uptake studies were performed on rPCEC (rabbit primary corneal epithelial culture) using 12-well plates. Transport studies were conducted with isolated rabbit corneas at 34 degrees C. Efflux of [(14)C] erythromycin was significantly increased in the presence of quinidine, whereas it was unaltered in the presence of VQ and VVQ. VVQ was more stable, both in buffers and tissue homogenate. Transport of VQ and VVQ was inhibited with GS, and their permeability values were 1.5 and 3 times higher than the permeability of quinidine, respectively. Results from this study clearly indicate that prodrug derivatization of quinidine can modulate P-gp-mediated efflux. These prodrugs have a reduced or diminished affinity toward P-gp and were further recognized by the peptide transporter- mediated process. Enhanced permeabilities of the prodrugs indicate that drug derivatization can be a viable strategy for overcoming P-gp-mediated efflux. PMID:16722797

Katragadda, Suresh; Talluri, Ravi S; Mitra, Ashim K

2006-04-01

326

Quantitative fluorescence microscopy provides high resolution imaging of passive diffusion and P-gp mediated efflux at the in vivo blood-brain barrier.  

PubMed

Quantitative fluorescent microscopy is an emerging technology that has provided significant insight into cellular dye accumulation, organelle function, and tissue physiology. However, historically dyes have only been used to qualitatively or semi-quantitatively (fold change) determine changes in blood-brain barrier (BBB) integrity. Herein, we present a novel method to calculate the blood to brain transfer rates of the dyes rhodamine 123 and Texas red across the in situ BBB. We observed that rhodamine 123 is subject to p-glycoprotein mediated efflux at the rat BBB and can be increased nearly 20-fold with p-glycoprotein inhibition. However, Texas Red appears to not be subject to MRP2 mediated efflux at the rat BBB, agreeing with literature reports suggesting MRP2 may lack functionality at the normal rat BBB. Lastly, we present data demonstrating that once dyes have crossed the BBB, diffusion of the dye molecule is not as instantaneous as has been previously suggested. We propose that future work can now be completed to (1) match BBB transfer coefficients to interstitial diffusion constants and (2) use dyes with specific affinities to cellular organelles or that have specific properties (e.g., subject to efflux transporters) to more fully understand BBB physiology. PMID:23916719

Mittapalli, Rajendar K; Manda, Vamshi K; Bohn, Kaci A; Adkins, Chris E; Lockman, Paul R

2013-09-30

327

Epithelial secretion of vinblastine by human intestinal adenocarcinoma cell (HCT-8 and T84) layers expressing P-glycoprotein.  

PubMed Central

P-glycoprotein expression was demonstrated in two human intestinal adenocarcinoma cell-lines (HCT-8, ileocaecal and T84, colonic) by immunoprecipitation of a 170-180 kDa protein with monoclonal antibody JSB-1. Both HCT-8 and T84 formed functional epithelial cell layers of high transepithelial electrical resistance (greater than 700 omega.cm2) when grown on permeable matrices. These epithelial layers demonstrated vectorial secretion (net vinblastine fluxes in the basal-to-apical direction of 0.135 and 0.452 pmol h-1 cm-2 in HCT-8 and T84 cell layers, respectively, from bathing solutions containing 10 nM vinblastine). These vectorial vinblastine secretions were sensitive to inhibition by verapamil. Passive transepithelial vinblastine permeation was limited by the presence of intercellular (tight) junctions, as demonstrated by the high transepithelial electrical resistance, and verapamil increased this passive vinblastine permeation concomitant with a reduction in the electrical resistance. Cellular vinblastine loading was significantly greater from the basal side, and this was also susceptible to inhibition by basal verapamil. The demonstration of vectorial transport of vinblastine in human intestinal colonic adenocarcinoma cell layers is direct evidence in favour of the hypothesis that the function of mdr1 in epithelial from the gastrointestinal tract is to promote detoxification by a process of epithelial secretion. This study also highlights that cellular vinblastine accumulation depends not only upon P-glycoprotein function, but also upon differential apparent membrane permeabilities and the presence of intercellular (tight) junctions that may restrict drug permeation and cellular accumulation to apical or basal membrane domains. Images Figure 5 PMID:1680366

Hunter, J.; Hirst, B. H.; Simmons, N. L.

1991-01-01

328

Inhibition of P-glycoprotein-mediated transport by S-adenosylmethionine and cynarin in multidrug-resistant human uterine sarcoma MES-SA/Dx5 cells.  

PubMed

Multidrug resistance (MDR) to anticancer chemotherapy is often mediated by the overexpression of the plasma membrane drug transporter P-glycoprotein (Pgp) encoded by multidrug resistance gene (MDR1). Various chemosensitizing agents are able to inhibit Pgp activity but their clinical application is limited by their toxicity. Furthermore, hepatotoxicity related to chemotherapy causes delays of treatment in cancer patients and often requires supplementation of anti-tumour therapy with hepatoprotective agents. In this in vitro study, we investigated the effectiveness of an endogenous hepatoprotective agent, S-adenosylmethionine (SAMe), and a natural hepatoprotective compound, Cynarin (Cyn), to inhibit Pgp activity in order to evaluate their potential use as chemosensitizing agents. Human doxorubicin (doxo) resistant uterine sarcoma cells (MES-SA/Dx5) expressing high levels of Pgp were treated with two hepatoprotectors at various concentrations (1, 5 and 10 microM) that are clinically achievable, in the presence or absence of three different concentrations of doxo (2, 4 and 8 microM). In order to evaluate the effects of both hepatoprotectors, we measured the intracellular accumulation and cytotoxicity of doxo, the cellular GSH level, ROS production and catalase (CAT) activity. We found that treatment with 2, 4 and 8 microM doxo in the presence of SAMe or Cyn significantly increased the doxo accumulation and cytotoxicity on MES-SA/Dx5 cells, when compared to control cells receiving doxo alone. Moreover, treatment with SAMe or Cyn significantly increased GSH content, greater than 80 percent and 60 percent, respectively) and CAT activity greater than 60 and 150 percent, respectively) in resistant cancer cells, while ROS production was below the values of corresponding untreated control cells. Our in vitro findings provide a rationale for the potential clinical use of these hepatoprotectors both as chemosensitizing agents, to reverse Pgp-mediated MDR, and as antioxidants to protect normal cells from chemotherapy-induced cytotoxixity. PMID:23034269

Angelini, A; Di Pietro, R; Centurione, L; Castellani, M L; Conti, P; Porreca, E; Cuccurullo, F

2012-01-01

329

Effect of P-Glycoprotein Expression on the Accumulation and Cytotoxicity of Topotecan (SK&F 104864), a New Camptothecin Analogue1  

Microsoft Academic Search

Topotecan (TFT, 9-dimethylaminomethyI-lO-hydroxycamptothecin) is the first topoisomerase I-directed cytotoxic agent to enter clinical trials in the United States in two decades. The effect of P-glycoprotein (Pgp) overexpression on TPT cytotoxicity was examined in CH\\

Carolyn B. Hendricks; Eric K. Rowinsky; Louise B. Grochow; Ross C. Donehower; Scott H. Kaufmann

330

P-Glycoprotein-Mediated Transport of Moxifloxacin in a Calu-3 Lung Epithelial Cell Model  

Microsoft Academic Search

Moxifloxacin (MXF) is a fluoroquinolone antibiotic that is effective against respiratory infections. However, the mechanisms of MXF lung diffusion are unknown. Active transport in other tissues has been suggested for several members of the fluoroquinolone family. In this study, transport of MXF was systematically investigated across a Calu-3 lung epithelial cell model. MXF showed polarized transport, with the secretory permeability

Julien Brillault; Whocely Victor De Castro; Thomas Harnois; Alain Kitzis; Jean-Christophe Olivier; William Couet

2009-01-01

331

Sequence requirements for membrane assembly of polytopic membrane proteins: molecular dissection of the membrane insertion process and topogenesis of the human MDR3 P-glycoprotein.  

PubMed Central

The biogenesis of membrane proteins with a single transmembrane (TM) segment is well understood. However, understanding the biogenesis and membrane assembly of membrane proteins with multiple TM segments is still incomplete because of the complexity and diversity of polytopic membrane proteins. In an attempt to investigate further the biogenesis of polytopic membrane proteins, I used the human MDR3 P-glycoprotein (Pgp) as a model polytopic membrane protein and expressed it in a coupled cell-free translation/translocation system. I showed that the topogenesis of the C-terminal half MDR3 Pgp molecule is different from that of the N-terminal half. This observation is similar to that of the human MDR1 Pgp. The membrane insertion properties of the TM1 and TM2 in the N-terminal half molecule are different. The proper membrane anchorage of both TM1 and TM2 of the MDR3 Pgp is affected by their C-terminal amino acid sequences, whereas only the membrane insertion of the TM1 is dependent on the N-terminal amino acid sequences. The efficient membrane insertion of TM3 and TM5 of MDR3 Pgp, on the other hand, requires the presence of the putative TM4 and TM6, respectively. The TM8 in the C-terminal half does not contain an efficient stop-transfer activity. These observations suggest that the membrane insertion of putative TM segments in the human MDR3 Pgp does not simply follow the prevailing sequential event of the membrane insertion by signal-anchor and stop-transfer sequences. These results, together with my previous findings, suggest that different isoforms of Pgp can be used in comparison as a model system to understand the molecular mechanism of topogenesis of polytopic membrane proteins. Images PMID:8930894

Zhang, J T

1996-01-01

332

Effect of the P-glycoprotein inhibitor, R(+)-verapamil on the drug susceptibility of a triclabendazole-resistant isolate of Fasciola hepatica.  

PubMed

A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by the inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Sligo TCBZ-resistant and Cullompton TCBZ-susceptible fluke isolates were used for these experiments and the Pgp inhibitor selected was R(+)-verapamil [R-VPL]. In the first experiment, flukes were initially incubated for 2 h in R-VPL (100 ?M), then incubated for a further 22 h in R-VPL+triclabendazole sulphoxide (TCBZ.SO) (50 ?g/ml, or 0.1327 ?M). For controls, flukes were incubated for 24 h in R-VPL and TCBZ.SO on their own. In a second experiment, flukes were removed from the incubation media following cessation of movement. In the third experiment, Sligo flukes were incubated in lower concentrations of R-VPL (10 ?M) and TCBZ.SO (15 ?g/ml, or 0.0398 ?M). Morphological changes resulting from drug treatment and following Pgp inhibition were assessed by means of scanning electron microscopy. Incubation in R-VPL alone had minimal effect on either isolate. After treatment with TCBZ.SO alone, there was greater surface disruption to the Cullompton than Sligo isolate. However, combined treatment of R-VPL+TCBZ.SO led to more severe surface changes to the Sligo isolate than with TCBZ.SO on its own; this potentiation of drug activity was not seen with the Cullompton isolate. The phenomenon was evident at both concentrations of TCBZ.SO. Inclusion of R-VPL in the incubation medium also reduced the time taken for the flukes to become inactive; again, this effect was more distinct with the Sligo isolate. The results of this study support the concept of altered drug efflux in TCBZ-resistant flukes and indicate that drug transporters may play a role in the development of drug resistance. PMID:23597772

Savage, J; Meaney, M; Brennan, G P; Hoey, E; Trudgett, A; Fairweather, I

2013-07-01

333

PGP4, an ATP Binding Cassette P-Glycoprotein, Catalyzes Auxin Transport in Arabidopsis thaliana RootsW?  

PubMed Central

Members of the ABC (for ATP binding cassette) superfamily of integral membrane transporters function in cellular detoxification, cell-to-cell signaling, and channel regulation. More recently, members of the multidrug resistance P-glycoprotein (MDR/PGP) subfamily of ABC transporters have been shown to function in the transport of the phytohormone auxin in both monocots and dicots. Here, we report that the Arabidopsis thaliana MDR/PGP PGP4 functions in the basipetal redirection of auxin from the root tip. Reporter gene studies showed that PGP4 was strongly expressed in root cap and epidermal cells. PGP4 exhibits apolar plasma membrane localization in the root cap and polar localization in tissues above. Root gravitropic bending and elongation as well as lateral root formation were reduced in pgp4 mutants compared with the wild type. pgp4 exhibited reduced basipetal auxin transport in roots and a small decrease in shoot-to-root transport consistent with a partial loss of the redirective auxin sink in the root. Seedlings overexpressing PGP4 exhibited increased shoot-to-root auxin transport. Heterologous expression of PGP4 in mammalian cells resulted in 1-N-naphthylthalamic acid–reversible net uptake of [3H]indole-3-acetic acid. These results indicate that PGP4 functions primarily in the uptake of redirected or newly synthesized auxin in epidermal root cells. PMID:16243904

Terasaka, Kazuyoshi; Blakeslee, Joshua J.; Titapiwatanakun, Boosaree; Peer, Wendy A.; Bandyopadhyay, Anindita; Makam, Srinivas N.; Lee, Ok Ran; Richards, Elizabeth L.; Murphy, Angus S.; Sato, Fumihiko; Yazaki, Kazufumi

2005-01-01

334

Modulation of the multidrug resistance P-glycoprotein: Detection with technetium-99m-sestamibi in vivo  

SciTech Connect

Overexpression of the multidrug resistance (MDR1) P-glycoprotein (Pgp) has been documented in nearly all forms of human cancers and increased levels of Pgp in some tumors correlate with poor response to treatment. Technetium-99m-sestamibi has recently been validated as a Pgp transport substrate. Pgp is also normally expressed along the biliary canalicular surface of hepatocytes and the luminal side of proximal tubule cells in the kidney, while not expressed in heart. Focused on these organs with known Pgp status, we present the findings on {sup 99m}Tc-sestamibi showed normal, prompt clearance of the radiotracer from the liver and kidneys relative to the heart. After administration of the Pgp modulator, {sup 99m}Tc-sestamibi was selectively retained in the liver and kidneys. Hepatobiliary and renal clearance of {sup 99m}Tc-sestamibi are Pgp-mediated, and inhibition of Pgp transport in these organs can be successfully imaged using {sup 99m}Tc-sestamibi in patients. Similar results might be expected with this and related radiopharmaceuticals for functional imaging of Pgp transport and modulation in tumors. 34 refs., 2 figs.

Luker, G.D.; Fracasso, P.M.; Dobkin, J.; Piwnica-Worms, D. [Washington Univ. School of Medicine, St. Louis, MO (United States)

1997-03-01

335

Mitochondrial P-glycoprotein ATPase contributes to insecticide resistance in the cotton bollworm, Helicoverpa armigera (Noctuidae: Lepidoptera).  

PubMed

Cotton bollworm, Helicoverpa armigera, is one of the most damaging polyphagous pests worldwide, which has developed high levels of resistance to commonly applied insecticides. Mitochondrial P-glycoprotein (Pgp) was detected in the insecticide-resistant strain of H. armigera using C219 antibodies, and its possible role was demonstrated in the efflux of xenobiotic compounds using spectrofluorometer. The TMR accumulated in mitochondria in the absence of ATP, and effluxed out in presence of ATP; the process of efflux was inhibited in the presence of ortho-vandate, an inhibitor of Pgp, in insecticide-resistant larvae of H. armigera. The mitochondria isolated from insecticide-resistant larvae were resistant to insecticide-induced inhibition of oxygen consumption and cytochrome c release. Membrane potential decreased in a dose-dependent manner in the presence of higher concentration of insecticides (>50 µM) in mitochondria of insecticide-resistant larvae. In conclusion, mitochondrial Pgp ATPase detected in the insecticide-resistant larvae influenced the efflux of xenobiotic compounds. Pgp might be involved in protecting the mitochondrial DNA and the components of the electron transport chain from damage due to insecticides, and contributing to the resistance to the deleterious effects of insecticides on the growth of insecticide-resistant H. armigera larvae. PMID:24756730

Akbar, S Md; Aurade, Ravindra M; Sharma, H C; Sreeramulu, K

2014-09-01

336

Molecular cloning and characterization of a P-glycoprotein from the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae).  

PubMed

Macrocyclic lactones such as abamectin and ivermectin constitute an important class of broad-spectrum insecticides. Widespread resistance to synthetic insecticides, including abamectin and ivermectin, poses a serious threat to the management of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major pest of cruciferous plants worldwide. P-glycoprotein (Pgp), a member of the ABC transporter superfamily, plays a crucial role in the removal of amphiphilic xenobiotics, suggesting a mechanism for drug resistance in target organisms. In this study, PxPgp1, a putative Pgp gene from P. xylostella, was cloned and characterized. The open reading frame (ORF) of PxPgp1 consists of 3774 nucleotides, which encodes a 1257-amino acid peptide. The deduced PxPgp1 protein possesses structural characteristics of a typical Pgp, and clusters within the insect ABCB1. PxPgp1 was expressed throughout all developmental stages, and showed the highest expression level in adult males. PxPgp1 was highly expressed in midgut, malpighian tubules and testes. Elevated expression of PxPgp1 was observed in P. xylostella strains after they were exposed to the abamectin treatment. In addition, the constitutive expressions of PxPgp1 were significantly higher in laboratory-selected and field-collected resistant strains in comparison to their susceptible counterpart. PMID:24264038

Tian, Lixia; Yang, Jiaqiang; Hou, Wenjie; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Zhou, Xuguo; Wu, Qingjun

2013-01-01

337

BBA, a Synthetic Derivative of 23-hydroxybutulinic Acid, Reverses Multidrug Resistance by Inhibiting the Efflux Activity of MRP7 (ABCC10)  

PubMed Central

Natural products are frequently used for adjuvant chemotherapy in cancer treatment. 23-O-(1,4'-bipiperidine-1-carbonyl) betulinic acid (BBA) is a synthetic derivative of 23-hydroxybutulinic acid (23-HBA), which is a natural pentacyclic triterpene and the major active constituent of the root of Pulsatillachinensis. We previously reported that BBA could reverse P-glycoprotein (P-gp/ABCB1)-mediated multidrug resistance (MDR). In the present study, we investigated whether BBA has the potential to reverse multidrug resistance protein 7 (MRP7/ABCC10)-mediated MDR. We found that BBA concentration-dependently enhanced the sensitivity of MRP7-transfected HEK293 cells to paclitaxel, docetaxel and vinblastine. Accumulation and efflux experiments demonstrated that BBA increased the intracellular accumulation of [3H]-paclitaxel by inhibiting the efflux of [3H]-paclitaxel from HEK293/MRP7 cells. In addition, immunoblotting and immunofluorescence analyses indicated no significant alteration of MRP7 protein expression and localization in plasma membranes after treatment with BBA. These results demonstrate that BBA reverses MRP7-mediated MDR through blocking the drug efflux function of MRP7 without affecting the intracellular ATP levels. Our findings suggest that BBA has the potential to be used in combination with conventional chemotherapeutic agents to augment the response to chemotherapy. PMID:24069321

Chen, Jun-Jiang; Patel, Atish; Sodani, Kamlesh; Xiao, Zhi-Jie; Tiwari, Amit K.; Zhang, Dong-Mei; Li, Ying-Jie; Yang, Dong-Hua; Ye, Wen-Cai; Chen, Si-Dong; Chen, Zhe-Sheng

2013-01-01

338

Reduced ABCB1 Expression and Activity in the Presence of Acrylic Copolymers  

PubMed Central

Purpose: P-glycoprotein (P-gp; ABCB1), an integral membrane protein in the apical surface of human intestinal epithelial cells, plays a crucial role in the intestinal transport and efflux leading to changes in the bioavailability of oral pharmaceutical compounds. This study was set to examine the potential effects of three Eudragits RL100, S100 and L100 on the intestinal epithelial membrane transport of rhodammine-123 (Rho-123), a substrate of P-gp using a monolayer of human colon cancer cell line (Caco-2). Methods: The least non-cytotoxic concentrations of the excipients were assessed in Caco-2 cells by the MTT assay. Then the transepithelial transport of Rho-123 across Caco-2 monolayers was determined with a fluorescence spectrophotometer. Besides, the expression of the P-gp in cells exposed to the polymers was demonstrated using Western-blotting analysis. Results: Treatment of cells with Eudragit RL100 and L100 led to a very slight change while Eudragit S100 showed 61% increase in Rho-123 accumulation (P<0.001) and also reduced transporter expression. Conclusion: Our studies suggest that using proper concentrations of the Eudragit S100 in drug formulation would improve intestinal permeability and absorption of p-gp substrate drugs. PMID:24754004

Mohammadzadeh, Ramin; Baradaran, Behzad; Valizadeh, Hadi; Yousefi, Bahman; Zakeri-Milani, Parvin

2014-01-01

339

Distinct N-glycan glycosylation of P-glycoprotein isolated from the human uterine sarcoma cell line MES-SA\\/Dx5  

Microsoft Academic Search

The uterine sarcoma human cell line MES-SA\\/Dx5 overexpresses the MDR1 gene product, P-glycoprotein (Pgp). Pgp is a heavily glycosylated, ATP-dependent drug efflux pump expressed in many human cancers. There are more than 150 known isoforms of Pgp, which complicates the characterization of Pgp glycans because each isoform could present a different glycome. The contribution of these oligosaccharides to the structure

D. A. Greer; S. Ivey

2007-01-01

340

Increase in mRNA of multiple Eh pgp genes encoding P-glycoprotein homologues in emetine-resistant Entamoeba histolytica parasites  

Microsoft Academic Search

With the goal of understanding possible mechanisms of drug resistance by the protozoan parasite Entamoeba histolytica (Eh), two novel Eh P-glycoprotein (Pgp) genes (Eh pgp5 and Eh pgp6) were sequenced, and the expression of four Eh pgp genes determined in wild-type (wt) clone A and emetine-resistant (EmR) clone C2 amebae. The Eh pgp5 gene encodes a 1301-amino acid (aa) protein

Steven Descoteaux; Patricia Ayala; John Samuelson; Esther Orozco

1995-01-01

341

Differential utilization of multiple transcription start points accompanies the overexpression of the P-glycoprotein-encoding gene in Chinese hamster lung cells  

Microsoft Academic Search

The overproduction of P-glycoprotein (Pgp) has been associated with the development and maintenance of the multidrug resistant (MDR) phenotype, although the regulatory events responsible have not yet been elucidated. We have analyzed the overexpression of the TATA-less hamster class-I Pgp-encoding gene (Pgpl) in several MDR Chinese hamster cell lines. The MDR lung cell line DC-3F\\/VCRd5L, as well as the MDR

Tan A. Ince; Kathleen W. Scotto

1995-01-01

342

Genetic Variants and Increased Expression of Parascaris equorum P-glycoprotein-11 in Populations with Decreased Ivermectin Susceptibility  

PubMed Central

Macrocyclic lactones (MLs) represent the major drug class for control of parasitic infections in humans and animals. However, recently reports of treatment failures became more frequent. In addition to human and ruminant parasitic nematodes this also is the case for the horse-nematode Parascaris equorum. Nevertheless, to date the molecular basis of ML resistance is still not understood. Unspecific resistance mechanisms involving transporters such as P-glycoproteins (Pgps) are expected to contribute to ML resistance in nematodes. Here, complete sequences of two P. equorum Pgps were cloned and identified as orthologs of Caenorhabditis elegans Ppg-11 and an unnamed Caenorhabditis briggsae Pgp designated as Pgp-16 using phylogenetic analysis. Quantitative real-time PCR was used to compare expression between tissues. Significantly higher PeqPgp-11 expression was found in the gut for both genders, whereas for PeqPgp-16 the body wall was identified as predominant expression site. Furthermore, Pgps were analyzed regarding their participation in resistance development. Using SeqDoC analyses, Pgp-sequences of P. equorum populations with different ML susceptibility were compared. This approach revealed three single nucleotide polymorphisms (SNPs) causing missense mutations in the PeqPgp-11 sequence which correlated with decreased ML susceptibility. However, no resistance associated differences in mRNA expression levels were detected between embryonated eggs of these populations. In contrast, comparison of two pre-adult groups with different ivermectin (IVM) susceptibility revealed the presence of the three SNPs and in addition statistically significant PeqPgp-11 overexpression in the group of worms with reduced susceptibility. These results indicate that Pgp-11 might be involved in IVM resistance in P. equorum as it shows increased expression in an IVM exposed life-cycle stage of an IVM resistant population as well as occurrence of putatively resistance associated SNPs in populations with reduced IVM susceptibility. These SNPs are promising diagnostic candidates for detection of ML resistance with potential also for other parasitic nematode species. PMID:23637871

Janssen, I. Jana I.; Krucken, Jurgen; Demeler, Janina; Basiaga, Marta; Kornas, Slawomir; von Samson-Himmelstjerna, Georg

2013-01-01

343

Interaction of 11C-Tariquidar and 11C-Elacridar with P-glycoprotein and Breast Cancer Resistance Protein at the Human Blood-Brain Barrier  

PubMed Central

The adenosine triphosphate-binding cassette transporters P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) are 2 major gatekeepers at the blood-brain barrier (BBB) which restrict brain distribution of several clinically used drugs. In this study we investigated the suitability of the radiolabeled Pgp/BCRP inhibitors 11C-tariquidar and 11C-elacridar to assess Pgp density in human brain with PET. Methods Healthy subjects underwent a first PET scan of 120 min duration with either 11C-tariquidar (n = 6) or 11C-elacridar (n = 5) followed by a second PET scan of 60 min duration with (R)-11C-verapamil. During scan 1 (at 60 min after radiotracer injection) unlabeled tariquidar (3 mg/kg) was intravenously administered. Data was analyzed using 1-tissue 2-rate-constant (1T2K) and 2-tissue 4-rate-constant (2T4K) compartment models using either metabolite-corrected or uncorrected arterial input functions. Results Following injection of 11C-tariquidar or 11C-elacridar, brain PET signal corrected for radioactivity in vasculature was very low (~0.1 standardized uptake value) with slow washout. In response to tariquidar injection, a moderate, but statistically significant rise in brain PET signal was observed for 11C-tariquidar (+27 ± 15%, P = 0.014, paired t-test) and 11C-elacridar (+21 ± 15%, P = 0.014) without changes in plasma activity concentrations. Low levels of radiolabeled metabolites (<25%) were detected in plasma at time points up to 60 min after injection of 11C-tariquidar or 11C-elacridar. The 2T4K model provided better data fits than the 1T2K model. Model outcome parameters were similar when metabolite-corrected or uncorrected input functions were used. There was no significant correlation between distribution volumes (VT) of 11C-tariquidar or 11C-elacridar and VTs of (R)-11C-verapamil in different brain regions. Conclusion The in vivo behavior of 11C-tariquidar and 11C-elacridar was consistent with that of dual Pgp/BCRP substrates. Both tracers were unable to visualize cerebral Pgp density, which was most likely related to insufficiently high binding affinities in relation to the very low density of Pgp in human brain (~1.3 nM). Despite their inability to visualize Pgp density, 11C-tariquidar and 11C-elacridar may find use as a new class of radiotracers to study the interplay of Pgp and BCRP at the human BBB in limiting brain uptake of dual substrates. PMID:23833270

Bauer, Martin; Karch, Rudolf; Zeitlinger, Markus; Stanek, Johann; Philippe, Cecile; Wadsak, Wolfgang; Mitterhauser, Markus; Jager, Walter; Haslacher, Helmuth; Muller, Markus; Langer, Oliver

2013-01-01

344

(R)-[11C]verapamil is selectively transported by murine and human P-glycoprotein at the blood-brain barrier, and not by MRP1 and BCRP  

PubMed Central

Introduction Positron emission tomography (PET) with [11C]verapamil, either in racemic form or in form of the (R)-enantiomer, has been used to measure the functional activity of the adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) at the blood–brain barrier (BBB). There is some evidence in literature that verapamil inhibits two other ABC transporters expressed at the BBB, i.e. multidrug resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP). However, previous data were obtained with micromolar concentrations of verapamil and do not necessarily reflect the transporter selectivity of verapamil at nanomolar concentrations, which are relevant for PET experiments. The aim of this study was to assess the selectivity of verapamil, in nanomolar concentrations, for Pgp over MRP1 and BCRP. Methods Concentration equilibrium transport assays were performed with [3H]verapamil (5 nM) in cell lines expressing murine or human Pgp, human MRP1, and murine Bcrp1 or human BCRP. Paired PET scans were performed with (R)-[11C]verapamil in female FVB/N (wild-type), Mrp1(?/?), Mdr1a/b(?/?), Bcrp1(?/?) and Mdr1a/b(?/?)Bcrp1(?/?) mice, before and after Pgp inhibition with 15 mg/kg tariquidar. Results In vitro transport experiments exclusively showed directed transport of [3H]verapamil in Mdr1a- and MDR1-overexpressing cells which could be inhibited by tariquidar (0.5 ?M). In PET scans acquired before tariquidar administration, brain-to-blood ratio (Kb,brain) of (R)-[11C]verapamil was low in wild-type (1.3 ± 0.1), Mrp1(?/?) (1.4 ± 0.1) and Bcrp1(?/?) mice (1.8 ± 0.1) and high in Mdr1a/b(?/?) (6.9 ± 0.8) and Mdr1a/b(?/?)Bcrp1(?/?) mice (7.9 ± 0.5). In PET scans after tariquidar administration, Kb,brain was significantly increased in Pgp-expressing mice (wild-type: 5.0 ± 0.3-fold, Mrp1(?/?): 3.2 ± 0.6-fold, Bcrp1(?/?): 4.3 ± 0.1-fold) but not in Pgp knockout mice (Mdr1a/b(?/?) and Mdr1a/b(?/?)Bcrp1(?/?)). Conclusion Our combined in vitro and in vivo data demonstrate that verapamil, in nanomolar concentrations, is selectively transported by Pgp and not by MRP1 and BCRP at the BBB, which supports the use of (R)-[11C]verapamil or racemic [11C]verapamil as PET tracers of cerebral Pgp function. PMID:23845421

Romermann, Kerstin; Wanek, Thomas; Bankstahl, Marion; Bankstahl, Jens P.; Fedrowitz, Maren; Muller, Markus; Loscher, Wolfgang; Kuntner, Claudia; Langer, Oliver

2013-01-01

345

Identification of two distinct intracellular sites that contribute to the modulation of multidrug resistance in P388/ADR cells expressing P-glycoprotein.  

PubMed

Although the ability of chemosensitizers to modulate P-glycoprotein (PGP)-based multidrug resistance (MDR) has been extensively studied, relatively little is known about the cellular pharmacology of the PGP inhibitors themselves in MDR cells. The studies described here have correlated the in vitro accumulation and retention properties of verapamil (VRP) in murine P388 (sensitive) and P388/ADR (MDR) cells with doxorubicin (DOX) uptake and cytotoxicity modulation characteristics in order to better understand VRP-tumor cell interactions that give rise to MDR modulation. VRP is rapidly taken up by DOX-sensitive and -resistant P388 cells where greater than 50% maximal VRP uptake occurs within 10 min of initial exposure at 37 degrees C. Whereas chemosensitization and DOX uptake in P388/ADR cells increase with increasing VRP concentration until a plateau is achieved at approximately 5 microM VRP, cellular modulator levels increase proportionally with increasing VPR concentrations beyond 20 microM. Subsequent to removal of noncell-associated modulator, VRP levels in both sensitive and resistant cells rapidly fall below 10% of those obtained at uptake equilibrium. However, a residual amount of VRP remains associated with the cells for extended time periods after the cells are washed. Pulse exposures of P388/ADR cells to high concentrations of VRP (50-100 microM) are capable of providing extended cell-associated VRP levels comparable to those obtained with continuous exposure at biologically active VRP concentrations (1-3 microM) and this leads to chemosensitization. These results are consistent with the existence of high- and low-affinity intracellular VRP pools in P388 MDR cells, both of which can contribute to the reversal of drug resistance. It is suggested that these properties should be taken into consideration during the design and evaluation of preclinical in vivo MDR models where pulsed exposure to high concentrations of resistance modulators often occurs. Special attention must be given to whether such high concentration pulses are desirable and/or achievable in relevant clinical settings. PMID:12415627

Mayer, Lawrence D; Lim, Kye-Taek; Hartley, Daria

2002-01-01

346

Interaction of HM30181 with P-glycoprotein at the murine blood-brain barrier assessed with positron emission tomography  

PubMed Central

HM30181, a potent and selective inhibitor of the adenosine triphosphate-binding cassette transporter P-glycoprotein (Pgp), was shown to enhance oral bioavailability and improve antitumour efficacy of paclitaxel in mouse tumour models. In search for a positron emission tomography (PET) radiotracer to visualise Pgp expression levels at the blood-brain barrier (BBB), we examined the ability of HM30181 to inhibit Pgp at the murine BBB. HM30181 was shown to be approximately equipotent with the reference Pgp inhibitor tariquidar in inhibiting rhodamine 123 efflux from CCRF-CEM T cells (IC50, tariquidar: 8.2±2.0 nM, HM30181: 13.1±2.3 nM). PET scans with the Pgp substrate (R)-[11C]verapamil in FVB wild-type mice pretreated i.v. with HM30181 (10 or 21 mg/kg) failed to show significant increases in (R)-[11C]verapamil brain uptake compared with vehicle treated animals. PET scans with [11C]HM30181 showed low and not significantly different brain uptake of [11C]HM30181 in wild-type, Mdr1a/b(?/?) and Bcrp1(?/?) mice and significantly, i.e. 4.7-fold (P<0.01), higher brain uptake, relative to wild-type animals, in Mdr1a/b(?/?)Bcrp1(?/?) mice. This was consistent with HM30181 being at microdoses a dual substrate of Pgp and breast cancer resistance protein (Bcrp). In vitro autoradiography on low (EMT6) and high (EMT6Ar1.0) Pgp expressing murine breast tumour sections showed 1.9 times higher binding of [11C]HM30181 in EMT6Ar1.0 tumours (P<0.001) which was displaceable with unlabelled tariquidar, elacridar or HM30181 (1 ?M). Our data suggest that HM30181 is not able to inhibit Pgp at the murine BBB at clinically feasible doses and that [11C]HM30181 is not suitable as a PET tracer to visualise cerebral Pgp expression levels. PMID:23022332

Bauer, Florian; Wanek, Thomas; Mairinger, Severin; Stanek, Johann; Sauberer, Michael; Kuntner, Claudia; Parveen, Zahida; Chiba, Peter; Muller, Markus; Langer, Oliver; Erker, Thomas

2013-01-01

347

Induction of proteins involved in multidrug resistance (P-glycoprotein, MRP1, MRP2, LRP) and of CYP 3A4 by rifampicin in LLC-PK 1 cells  

Microsoft Academic Search

P-glycoprotein, multidrug resistance-related proteins (MRPs) and lung resistance-related protein (LRP) are involved in multidrug resistance in tumor cells but are also expressed in normal tissues. In the LLC-PK1 tubular renal cell line, a 15-day treatment with 25 ?M rifampicin significantly increased the mRNA levels of P-glycoprotein, MRP1, MRP2, LRP and cytochrome P450 3A4 (CYP 3A4). Western blot analysis confirmed a

Monica Magnarin; Manuela Morelli; Anna Rosati; Fiora Bartoli; Luigi Candussio; Tullio Giraldi; Giuliana Decorti

2004-01-01

348

Interplay between CYP3A and drug transporters  

Microsoft Academic Search

Cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp\\/MDR1) are two important detoxifying systems that protect us against many potentially harmful xenobiotics but their activity also strongly limits the absorption of a wide variety of drugs. Both CYP3A and P-gp have a very broad substrate spectrum and it is noteworthy that there is a large overlap between their substrates. In view of

R. A. B. van Waterschoot

2009-01-01

349

Phosphorylation by protein kinase C and cyclic AMP-dependent protein kinase of synthetic peptides derived from the linker region of human P-glycoprotein.  

PubMed Central

Specific sites in the linker region of human P-glycoprotein phosphorylated by protein kinase C (PKC) were identified by means of a synthetic peptide substrate, PG-2, corresponding to residues 656-689 from this region of the molecule. As PG-2 has several sequences of the type recognized by the cyclic AMP-dependent protein kinase (PKA), PG-2 was also tested as a substrate for PKA. PG-2 was phosphorylated by purified PKC in a Ca2+/phospholipid-dependent manner, with a Km of 1.3 microM, and to a maximum stoichiometry of 2.9 +/- 0.1 mol of phosphate/mol of peptide. Sequence analysis of tryptic fragments of PG-2 phosphorylated by PKC identified Ser-661, Ser-667 and Ser-671 as the three sites of phosphorylation. PG-2 was also found to be phosphorylated by purified PKA in a cyclic AMP-dependent manner, with a Km of 21 microM, and to a maximum stoichiometry of 2.6 +/- 0.2 mol of phosphate/mol of peptide. Ser-667, Ser-671 and Ser-683 were phosphorylated by PKA. Truncated peptides of PG-2 were utilized to confirm that Ser-661 was PKC-specific and Ser-683 was PKA-specific. Further studies showed that PG-2 acted as a competitive substrate for the P-glycoprotein kinase present in membranes from multidrug-resistant human KB cells. The membrane kinase phosphorylated PG-2 mainly on Ser-661, Ser-667 and Ser-671. These results show that human P-glycoprotein can be phosphorylated by at least two protein kinases, stimulated by different second-messenger systems, which exhibit both overlapping and unique specificities for phosphorylation of multiple sites in the linker region of the molecule. Images Figure 3 Figure 5 PMID:7909431

Chambers, T C; Pohl, J; Glass, D B; Kuo, J F

1994-01-01

350

The multidrug-resistance P-glycoprotein (Pgp, MDR1 ) is an early marker of blood-brain barrier development in the microvessels of the developing human brain  

Microsoft Academic Search

The multidrug-resistance P-glycoprotein (Pgp) was initially identified as an energy-dependent proton pump, which transports\\u000a a variety of non-related compounds out of chemotherapy-resistant cancer cells. Molecular biological investigations using knockout\\u000a mice for the mouse homologue of the human Pgp showed that these mice partially lack a functioning blood-brain barrier, indicating\\u000a that Pgp has an important role in the blood-brain barrier as

U. Schumacher; Kjeld Mollgĺrd

1997-01-01

351

The use of liposomal anticancer agents to determine the roles of drug pharmacodistribution and P-glycoprotein (PGP) blockade in overcoming multidrug resistance (MDR).  

PubMed

Many attempts to circumvent P-glycoprotein (PGP)-based multidrug resistance (MDR) in cancer chemotherapy have utilized PGP blocking agents (also referred to as MDR modulators), which are co-administered with the anticancer drug. This approach is based on the premise that inhibiting PGP function will result in increased accumulation of many anticancer drugs in the tumor cells and restore full antitumor activity. However, co-administration of MDR modulators with anticancer drugs has often resulted in exacerbated toxicity of the anticancer drugs and limited chemosensitization of MDR tumors. These problems appear to be related to MDR modulator blockade of PGP excretory functions in healthy tissues, such as liver and kidney, which markedly reduces anticancer drug clearance properties. Two consequences of these pharmacokinetic interactions are: 1. Increased toxicity due to modulator-induced changes in biodistribution properties of the anticancer drug. 2. Problems interpreting preclinical and clinical data with respect to: a) Are therapeutic improvements due to altered pharmacokinetics or PGP modulation within the tumor cells? And, b) Does decreasing the anticancer drug dose to that which is equitoxic in the absence of the modulator potentially compromise tumor therapy due to decreased anticancer drug levels in the tumor tissue? Although many of the difficulties associated with co-administration of MDR modulators and anticancer drugs are manifested by toxicity effects, it is ultimately the ability to obtain effective antitumor activity against resistant tumors that will determine the utility of chemosensitization approaches. Liposomes appear to be well suited to solve many of the problems noted above that are associated with conventional anticancer drugs and MDR modulators. In view of these considerations, we have hypothesized that inadequate tumor delivery of anticancer agents and selectivity of PGP modulation are primarily responsible for the attenuated therapy of extravascular MDR solid tumors overexpressing PGP. Liposomal carriers have been utilized to provide tumor selective delivery of anticancer agents as well as to circumvent many toxicities associated with these agents by altering the pharmacodistribution properties of encapsulated drugs (1-4). Given the pharmacokinetic changes induced by the MDR modulators on non-encapsulated doxorubicin (DOX), we proposed that liposomes may limit these effects by virtue of their ability to reduce the exposure of encapsulated DOX to the kidneys and alter clearance of DOX in the liver (5,6). These tissues appear to be key factors involved in modulator-induced DOX pharmacokinetic changes (7). In conjunction with these toxicity buffering effects, the effect of PGP blockade on the cellular uptake of DOX in the tumor may be able to be selectively increased using liposomal carriers. This is based on the ability of small liposomes to passively extravasate in tumors (1,2,8,9) as well as their inability to accumulate in healthy susceptible tissues. By studying the toxicity and efficacy properties of liposome encapsulated DOX in combination with the MDR modulator PSC 833 we have been able to demonstrate that two factors play a major role in determining the effectiveness of chemosensitization approaches to overcome MDR; 1) optimizing selective localization of anticancer drug localization in tumor tissue and 2) effective blockade of PGP in tumor cells under conditions that do not compromise anticancer drug accumulation into the tumor. Failure to achieve both of these conditions simultaneously may be expected to result in substantially reduced therapy of MDR tumors. PMID:10652569

Krishna, R; Mayer, L D

1999-01-01

352

P-glycoprotein regulates blood-testis barrier dynamics via its effects on the occludin/zonula occludens 1 (ZO-1) protein complex mediated by focal adhesion kinase (FAK)  

PubMed Central

The blood–testis barrier (BTB), one of the tightest blood–tissue barriers in the mammalian body, creates an immune-privileged site for postmeiotic spermatid development to avoid the production of antibodies against spermatid-specific antigens, many of which express transiently during spermiogenesis and spermiation. However, the BTB undergoes extensive restructuring at stage VIII of the epithelial cycle to facilitate the transit of preleptotene spermatocytes and to prepare for meiosis. This action thus prompted us to investigate whether this stage can be a physiological window for the delivery of therapeutic and/or contraceptive drugs across the BTB to exert their effects at the immune-privileged site. Herein, we report findings that P-glycoprotein, an ATP-dependent efflux drug transporter and an integrated component of the occludin/zonula occludens 1 (ZO-1) adhesion complex at the BTB, structurally interacted with focal adhesion kinase (FAK), creating the occludin/ZO-1/FAK/P-glycoprotein regulatory complex. Interestingly, a knockdown of P-glycoprotein by RNAi was found to impede Sertoli cell BTB function, making the tight junction (TJ) barrier “leaky.” This effect was mediated by changes in the protein phosphorylation status of occludin via the action of FAK, thereby affecting the endocytic vesicle-mediated protein trafficking events that destabilized the TJ barrier. However, the silencing of P-glycoprotein, although capable of impeding drug transport across the BTB and TJ permeability barrier function, was not able to induce the BTB to be “freely” permeable to adjudin. These findings indicate that P-glycoprotein is involved in BTB restructuring during spermatogenesis but that P-glycoprotein–mediated restructuring does not “open up” the BTB to make it freely permeable to drugs. PMID:22106313

Su, Linlin; Mruk, Dolores D.; Lui, Wing-Yee; Lee, Will M.; Cheng, C. Yan

2011-01-01