Science.gov

Sample records for p-process supernova dynamics

  1. Uncertainties in the νp-process: Supernova Dynamics Versus Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Wanajo, Shinya; Janka, Hans-Thomas; Kubono, Shigeru

    2011-03-01

    We examine how the uncertainties involved in supernova dynamics, as well as in nuclear data inputs, affect the νp-process in the neutrino-driven winds. For the supernova dynamics, we find that the wind termination by the preceding dense ejecta shell, as well as the electron fraction (Y e,3; at 3 × 109 K), plays a crucial role. A wind termination within the temperature range of (1.5-3) × 109 K greatly enhances the efficiency of the νp-process. This implies that the early wind phase, when the innermost layer of the preceding supernova ejecta is still ~200-1000 km from the center, is most relevant to the νp-process. The outflows with Y e,3 = 0.52-0.60 result in the production of the p-nuclei up to A = 108 with interesting amounts. Furthermore, the p-nuclei up to A = 152 can be produced if Y e,3 = 0.65 is achieved. For the nuclear data inputs, we test the sensitivity to the rates relevant to the breakout from the p-p chain region (A < 12), to the (n, p) rates on heavy nuclei, and to the nuclear masses along the νp-process pathway. We find that a small variation of the rates of triple-α and of the (n, p) reaction on 56Ni leads to a substantial change in the p-nuclei production. We also find that 96Pd (N = 50) on the νp-process path plays a role as a second seed nucleus for the production of heavier p-nuclei. The uncertainty in the nuclear mass of 82Zr can lead to a factor of two reduction in the abundance of the p-isotope 84Sr.

  2. The p-PROCESS in Core Collapse Supernovae:. Influence of Different Explosion Energies and Metallicities

    NASA Astrophysics Data System (ADS)

    Iwamoto, N.; Umeda, H.; Nomoto, K.

    2005-12-01

    We present results of p-process nucleosynthesis in core collapse supernovae (SNe). We focus on the influence of different explosion energies and metallicities on p-process yields. We find that overproduction factors have a strong sensitivity on peak temperatures and that the distribution of normalized mean overproduction factors is robust to changing the explosion energy and metallicity. Our results indicate that (1) the contribution to the galactic evolution of p-nuclei from stars with Z ≲ Z⊙/20 reduces significantly, and (2) more massive (M ≳ 25M⊙) and energetic SNe may be a dominant production site of the p-nuclei.

  3. Nuclear quests for supernova dynamics and nucleosynthesis

    SciTech Connect

    Langanke, K.; Martinez-Pinedo, G.

    2011-10-28

    Nuclear physics plays a crucial role in various aspects of core collapse supernovae. The collapse dynamics is strongly influenced by electron captures. Using modern many-body theory improved capture rates have been derived recently with the important result that the process is dominated by capture on nuclei until neutrino trapping is achieved. Following the core bounce the ejected matter is the site of interesting nucleosynthesis. The early ejecta are proton-rich and give rise to the recently discovered {nu}p-process. Later ejecta might be neutron-rich and can be one site of the r-process. The manuscript discusses recent progress in describing nuclear input relevant for the supernova dynamics and nucleosynthesis.

  4. Composition of the Innermost Core Collapse Supernova Ejecta and the νp-Process

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Liebendörfer, M.; Martínez-Pinedo, G.; Thielemann, F.-K.; Bravo, E.; Zinner, N. T.; Hix, W. R.; Langanke, K.; Mezzacappa, A.; Nomoto, K.

    2006-07-01

    With presently known input physics and computer simulations in 1D, a self-consistent treatment of core collapse supernovae does not lead to explosions, while 2D models show some promise. Thus, there are strong indications that the delayed neutrino mechanism works combined with a multi-D convection treatment for unstable layers. On the other hand there is a need to provide correct nucleosynthesis abundances for the progressing field of galactic evolution and observations of low metallicity stars. The innermost ejecta is directly affected by the explosion mechanism, i.e. most strongly the yields of Fe-group nuclei for which an induced piston or thermal bomb treatment will not provide the correct yields because the effect of neutrino interactions is not included. We apply parameterized variations to the neutrino scattering cross sections and alternatively, parameterized variations to the neutrino absorption cross sections on nucleons in the ``gain region''. We find that both measures lead to similar results, causing explosions and a Ye larger than 0.5 in the innermost ejected layers, due to the combined effect of a short weak interaction time scale and a negligible electron degeneracy, unveiling the proton-neutron mass difference. The proton-rich environment results in enhanced abundances of 45Sc, 49Ti, and 64Zn as requested by chemical evolution studies and observations of low metallicity stars. Moreover, antineutrino capture on the free protons allows for an appreciable production of nuclei in the mass range up to A = 80 by the νp-process.

  5. Dynamics of Kepler's supernova remnant

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Blondin, John M.; Sarazin, Craig L.

    1992-01-01

    Observations of Kepler's SNR have revealed a strong interaction with the ambient medium, far in excess of that expected at a distance of about 600 pc away from the Galactic plane where Kepler's SNR is located. This has been interpreted as a result of the interaction of supernova ejecta with the dense circumstellar medium (CSM). Based on the bow-shock model of Bandiera (1985), we study the dynamics of this interaction. The CSM distribution consists of an undisturbed stellar wind of a moving supernova progenitor and a dense shell formed in its interaction with a tenuous interstellar medium. Supernova ejecta drive a blast wave through the stellar wind which splits into the transmitted and reflected shocks upon hitting this bow-shock shell. We identify the transmitted shock with the nonradiative, Balmer-dominated shocks found recently in Kepler's SNR. The transmitted shock most probably penetrated the shell in the vicinity of the stagnation point.

  6. p-process nucleosynthesis via proton-capture reactions in thermonuclear supernovae explosions

    NASA Astrophysics Data System (ADS)

    Endres, Anne; Arda, C.; Erbacher, P.; Glorius, J.; Göbel, K.; Hinrichs, O.; Mevius, E.; Reich, M.; Sonnabend, K.; Thomas, B.; Thomas, T.

    2015-05-01

    Model calculations within the framework of the so-called γ process show an underproduction of the p nucleus with the highest isotopic abundace 92Mo. This discrepancy can be narrowed by taking into account the alternative production site of a type Ia supernova explosion. Here, the nucleus 92Mo can be produced by a sequence of proton-capture reactions. The amount of 92Mo nuclei produced via this reaction chain is most sensitive to the reactions 90Zr(p,γ) and 91Nb(p,γ). Both rates have to be investigated experimentally to study the impact of this nucleosynthesis aspect on the long-standing 92Mo-problem. We have already measured the proton-capture reaction on 90Zr using high-resolution in-beam γ-ray spectroscopy. In this contribution, we will present our preliminary results of the total cross sections as well as the partial cross sections. Furthermore, we plan to measure the 91Nb(p,γ) reaction soon. Due to the radioactive target material, the 91Nb nuclei have to be produced prior to the experiment. The current status of this production will be presented in this contribution.

  7. PRODUCTION OF THE p-PROCESS NUCLEI IN THE CARBON-DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE

    SciTech Connect

    Kusakabe, Motohiko; Iwamoto, Nobuyuki; Nomoto, Ken'ichi E-mail: iwamoto.nobuyuki@jaea.go.jp

    2011-01-01

    We calculate the nucleosynthesis of proton-rich isotopes in the carbon-deflagration model for Type Ia supernovae (SNe Ia). The seed abundances are obtained by calculating the s-process nucleosynthesis that is expected to occur in the repeating helium shell flashes on the carbon-oxygen (CO) white dwarf (WD) during mass accretion from a binary companion. When the deflagration wave passes through the outer layer of the CO WD, p-nuclei are produced by photodisintegration reactions on s-nuclei in a region where the peak temperature ranges from 1.9 to 3.6 x 10{sup 9} K. We confirm the sensitivity of the p-process on the initial distribution of s-nuclei. We show that the initial C/O ratio in the WD does not affect much the yield of p-nuclei. On the other hand, the abundance of {sup 22}Ne left after s-processing has a large influence on the p-process via the {sup 22}Ne({alpha},n) reaction. We find that about 50% of p-nuclides are co-produced when normalized to their solar abundances in all adopted cases of seed distribution. Mo and Ru, which are largely underproduced in Type II supernovae (SNe II), are produced more than in SNe II although they are underproduced with respect to the yield levels of other p-nuclides. The ratios between p-nuclei and iron in the ejecta are larger than the solar ratios by a factor of 1.2. We also compare the yields of oxygen, iron, and p-nuclides in SNe Ia and SNe II and suggest that SNe Ia could make a larger contribution than SNe II to the solar system content of p-nuclei.

  8. TYPE Ia SUPERNOVAE AS SITES OF THE p-PROCESS: TWO-DIMENSIONAL MODELS COUPLED TO NUCLEOSYNTHESIS

    SciTech Connect

    Travaglio, C.; Gallino, R.; Roepke, F. K.; Hillebrandt, W. E-mail: claudia.travaglio@b2fh.org

    2011-10-01

    Beyond Fe, there is a class of 35 proton-rich nuclides, between {sup 74}Se and {sup 196}Hg, called p-nuclei. They are bypassed by the s and r neutron capture processes and are typically 10-1000 times less abundant than the s- and/or r-isotopes in the solar system. The bulk of p-isotopes is created in the 'gamma processes' by sequences of photodisintegrations and beta decays in explosive conditions in both core collapse supernovae (SNe II) and in Type Ia supernovae (SNe Ia). SNe II contribute to the production of p-nuclei through explosive neon and oxygen burning. However, the major problem in SN II ejecta is a general underproduction of the light p-nuclei for A < 120. We explore SNe Ia as p-process sites in the framework of a two-dimensional SN Ia delayed detonation model as well as pure deflagration models. The white dwarf precursor is assumed to have reached the Chandrasekhar mass in a binary system by mass accretion from a giant/main-sequence companion. We use enhanced s-seed distributions, with seeds directly obtained from a sequence of thermal pulse instabilities both in the asymptotic giant branch phase and in the accreted material. We apply the tracer-particle method to reconstruct the nucleosynthesis by the thermal histories of Lagrangian particles, passively advected in the hydrodynamic calculations. For each particle, we follow the explosive nucleosynthesis with a detailed nuclear reaction network for all isotopes up to {sup 209}Bi. We select tracers within the typical temperature range for p-process production, (1.5-3.7) x 10{sup 9} K, and analyze in detail their behavior, exploring the influence of different s-process distributions on the p-process nucleosynthesis. In addition, we discuss the sensitivity of p-process production to parameters of the explosion mechanism, taking into account the consequences on Fe and alpha elements. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A = 120 and the heavy-p nuclei, at

  9. Type Ia Supernovae as Sites of the p-process: Two-dimensional Models Coupled to Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Travaglio, C.; Röpke, F. K.; Gallino, R.; Hillebrandt, W.

    2011-10-01

    Beyond Fe, there is a class of 35 proton-rich nuclides, between 74Se and 196Hg, called p-nuclei. They are bypassed by the s and r neutron capture processes and are typically 10-1000 times less abundant than the s- and/or r-isotopes in the solar system. The bulk of p-isotopes is created in the "gamma processes" by sequences of photodisintegrations and beta decays in explosive conditions in both core collapse supernovae (SNe II) and in Type Ia supernovae (SNe Ia). SNe II contribute to the production of p-nuclei through explosive neon and oxygen burning. However, the major problem in SN II ejecta is a general underproduction of the light p-nuclei for A < 120. We explore SNe Ia as p-process sites in the framework of a two-dimensional SN Ia delayed detonation model as well as pure deflagration models. The white dwarf precursor is assumed to have reached the Chandrasekhar mass in a binary system by mass accretion from a giant/main-sequence companion. We use enhanced s-seed distributions, with seeds directly obtained from a sequence of thermal pulse instabilities both in the asymptotic giant branch phase and in the accreted material. We apply the tracer-particle method to reconstruct the nucleosynthesis by the thermal histories of Lagrangian particles, passively advected in the hydrodynamic calculations. For each particle, we follow the explosive nucleosynthesis with a detailed nuclear reaction network for all isotopes up to 209Bi. We select tracers within the typical temperature range for p-process production, (1.5-3.7) × 109 K, and analyze in detail their behavior, exploring the influence of different s-process distributions on the p-process nucleosynthesis. In addition, we discuss the sensitivity of p-process production to parameters of the explosion mechanism, taking into account the consequences on Fe and alpha elements. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A = 120 and the heavy-p nuclei, at quite flat average

  10. Dynamics of supernova driven superbubbles

    NASA Astrophysics Data System (ADS)

    Yadav, Naveen; Mukherjee, Dipanjan; Sharma, Prateek; Nath, Biman

    2015-08-01

    Energy injection by supernovae is believed to be one of the primary sources which powers the expansion of supershells. There is a qualitative difference between isolated supernovae (SNe) and overlapping SNe. For typical interstellar medium (ISM) conditions an isolated supernova loses most of the injected mechanical energy by 1 Myr. In contrast, for SNe going off in bubbles the radiative losses are much smaller. While the outer shock going off in the dense ISM (~1 cm-3) becomes radiative well before 1 Myr, there is a strong non-radiative termination shock that keeps the bubble over-pressured till the lifetime of the OB association (10s of Myr; Sharma et al. 2014). This has relevance for supernova feedback in galaxy formation simulations. In our previous 1-D treatment all the SNe were assumed to occur at the same location in space. It was found that a steady wind inside the bubble (Chevalier & Clegg 1985) can occur only if the number of SNe is large (>~104) and a supernova going off inside the bubble can thermalize within the termination shock. In the present work we study the effect of SNe separated in both space and time using 3-D hydrodynamic simulations with radiative cooling. If the separation between SNe is larger than the remnant’s radius at the time it becomes radiative, SNe are in the isolated regime. The explosion energy is deposited as thermal energy in a uniform, static interstellar medium (ISM) with temperature 104 K, corresponding to the warm neutral medium. The key parameters of our idealized setup are the ISM density (ngas), the number of SNe (N★) and the spatial separation between SNe (Rcl). The shock radius when it becomes radiative depends on the ISM density and number of SNe. We obtain the critical values of the key parameters (ngas, N★, Rcl) which lead to the formation of a superbubble. e.g., at least 103 SNe are required to maintain an over-pressured bubble at 20 Myr in an ISM with 1 cm-3 similarly 102 SNe going off within a region of 100

  11. Fluid dynamics nature of supernova remnant (Crab Nebula)

    NASA Astrophysics Data System (ADS)

    Estakhr, Ahmad Reza

    2015-04-01

    Supernova remnant (at early phase) is a high temperature fluid of gas and dust. after the explosion of a star in a supernova, the viscousity of supernova remnant changes with temperature. as supernova expand by time its temperature decreases and the viscousity increases, (or alternatively, the fluidity of supernova remnant tends to decreases) and leb to resistance phase of supernova remnant fluid to flow. Uμ = γ (c , u (r-> , t)) denotes four-velocity vector field of supernova. Jμ = ρUμ denotes four-current density of supernova fluid of gas and dust. Estakhr's Material-Geodesic equation is developed analogy of Navier Stokes equation and Einstein Geodesic equation to describe Fluid dynamics nature of supernova remnant (Crab Nebula): DJμ/Dτ =dJμ/Dτ + ΓαβμJαUβ =JνΩμν +∂νTμν + ΓαβμJαUβ Covariant formulation of Fluid dynamics nature of supernova remnant, describe the motion of fluid substances of supernova.

  12. Dynamics of a supernova envelope in a cloudy interstellar medium

    NASA Astrophysics Data System (ADS)

    Korolev, V. V.; Vasiliev, E. O.; Kovalenko, I. G.; Shchekinov, Yu. A.

    2015-07-01

    The evolution of a supernova remnant in a cloudy medium as a function of the volume filling factor of the clouds is studied in a three-dimensional axially symmetrical model. The model includes the mixing of heavy elements (metals) ejected by the supernova and their contribution to radiative losses. The interaction of the supernova envelope with the cloudy phase of the interstellar medium leads to nonsimultaneous, and on average earlier, onsets of the radiative phase in different parts of the supernova envelope. Growth in the volume filling factor f leads to a decrease in the time for the transition of the envelope to the radiative phase and a decrease in the envelope's mean radius, due to the increased energy losses by the envelope in the cloudy medium. When the development of hydrodynamical instabilities in the supernova envelope is efficient, the thermal energy falls as E t ~ t -2.3, for the propagation of the supernova remnant through either a homogeneous or a cloudy medium. When the volume filling factor is f ≳ 0.1, a layer with excess kinetic energy andmomentumforms far behind the global shock front from the supernova, which traps the hot gas of the cavity in the central part of the supernova remnant. Metals ejected by the supernova are also enclosed in the central region of the remnant, where the initial (high) metallicity is essentially preserved. Thus, the interaction of the supernova envelope with the cloudy interstellar medium appreciably changes the dynamics and structure of the distribution of the gas in the remnant. This affects the observational characteristics of the remnant, in particularly, leading to substantial fluctuations of the emissionmeasure of the gas with T > 105 K and the velocity dispersion of the ionized gas.

  13. The role of neutrino-nucleus reactions in supernova dynamics and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Karlheinz, Langanke; Gabriel, Martínez-Pinedo

    2016-04-01

    Neutrino reactions on nuclei play important roles for the dynamics of supernovae and their associated nucleosynthesis. This manuscript summarizes the current status in deriving the relevant cross sections for supernova neutrinos and briefly discusses a few recent advances where

  14. The dynamical and radiative evolution of clumpy supernova ejecta

    NASA Technical Reports Server (NTRS)

    Anderson, M. C.; Jones, T. W.; Rudnick, L.; Tregillis, I. L.; Kang, Hyesung

    1994-01-01

    Numerical simulations describing the dynamical and radiative evolution of clumpy supernova ejecta are compared with observations of optical and radio emission knots in supernova remnant (SNR) Cassiopeia A. Three major phases are identified in the evolution of clumpy ejecta: a bow-shock phase, an instability phase, and a dispersal phase. The phenomenological and radiative signatures of each phase are discussed and compared with multi-epoch measurements of small-scale features in Cas A. Good correspondence is found between theory and observations. Both support the premise that compact radio emission features are controlled more by magnetic field amplification triggered in the instability phase than by in situ acceleration of new relativistic particles.

  15. Supernovae

    NASA Astrophysics Data System (ADS)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  16. Supernova Feedback in Molecular Clouds: Global Evolution and Dynamics

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Seifried, Daniel; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-04-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetised and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small-sized (˜10 pc) regions on timescales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer timescales, supernova feedback increases the amount of gas with moderate temperatures (T ≈ 300 - 3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the star formation efficiency by a factor of 2 and of the star formation rate by roughly factors of 2-4.

  17. Supernova feedback in molecular clouds: global evolution and dynamics

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Seifried, Daniel; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-07-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetized and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small-sized (˜10 pc) regions on time-scales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer time-scales, supernova feedback increases the amount of gas with moderate temperatures (T ≈ 300-3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the star formation efficiency by a factor of 2 and of the star formation rate by roughly factors of 2-4.

  18. Dynamical Evolution of Supernova Remnants Breaking Through Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Cho, Wankee; Kim, Jongsoo; Koo, Bon-Chul

    2015-04-01

    We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code tep{har83}. We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our one-dimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

  19. The p-process in explosive nucleosynthesis.

    NASA Technical Reports Server (NTRS)

    Truran, J. W.; Cameron, A. G. W.

    1972-01-01

    The limiting conditions consistent with p-process synthesis in supernova envelopes are inferred from calculations of the appropriate rates of proton capture and neutron photodisintegration. Temperatures in excess of 2 x 10 to the 9th power K are required, for proton mass densities of the order of 100 g cm to the minus 3rd power, if significant production of p-process nuclei is to take place on a hydrodynamic time scale. It is concluded that these processes must be appropriate to very different stellar or supernova environments.

  20. Dynamics of bubbles in supernovae and turbulent vortices

    NASA Astrophysics Data System (ADS)

    Bychkov, V.; Popov, M. V.; Oparin, A. M.; Stenflo, L.; Chechetkin, V. M.

    2006-04-01

    We consider the motion of a bubble in a central acceleration field created by gravity or a centrifugal force. In the former case, the bubble moves outwards from and, in the latter, towards the center. We have calculated the characteristic time needed for a bubble to leave or reach the center. The solution obtained provides insight into the processes of thermonuclear supernovae and combustion; in other words, into the interaction between a flame and a turbulent vortex. In the case of combustion, a light bubble of burnt material propagates towards the axis of a strong turbulent vortex faster than it drifts in the direction of rotation of the vortex. It is expected that the development of bubbles should prevent the formation of “pockets” at the flame front, similar to those predicted by a simplified model of turbulent combustion in a constant density flux. In the case of a thermonuclear supernova in a deflagration burning regime, it is shown that light products of burning rise from the center of the white dwarf substantially more rapidly than the thermonuclear flame front propagates. As a result, a flame cannot completely burn the central part of the star, and instead is pushed to the outer layers of the white dwarf. The effect of bubble motion (large-scale convection) makes spherically symmetric models for thermonuclear supernovae unrealistic, which is of prime importance for the supernova spectrum and energy. The motion of bubbles is even faster in the case of a rotating white dwarf; under certain conditions, the centrifugal force may dominate over the gravitational force. To test this theory, we have carried out numerical simulations of supernovae explosions for various sizes of the burned region in the core of the presupernova. We have derived a relation between the rate of large-scale convection and the size of the burned region, which is specified by the rate of the deflagration in the thermonuclear burning.

  1. Approximate supernova remnant dynamics with cosmic ray production

    NASA Technical Reports Server (NTRS)

    Voelk, H. J.; Dorfi, E. A.; Drury, L. O.

    1985-01-01

    Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probably sources of Cosmic Rays. Recent shock acceleration models treating the Cosmic Rays (CR's) as test particles nb a prescribed Supernova Remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the Interstellar Medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation.

  2. X-Ray Measured Dynamics of Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Hughes, John; Hwang, Una; Yamaguchi, Hiroya; Hayato, Asami; Mori, Koji; Tsunemi, Hiroshi

    2010-01-01

    We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tycho's supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.''20 yr-1 (expansion index m = 0.33, where R = tm ) to 0.''40 yr-1 (m = 0.65) with azimuthal angle in 2000-2007 measurements, and 0.''14 yr-1 (m = 0.26) to 0.''40 yr-1 (m = 0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of [approx]0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.''21-0.''31 yr-1 and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of [less, similar]0.2 cm-3.

  3. Supernova enrichment and dynamical histories of solar-type stars in clusters

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.; Church, Ross P.; Davies, Melvyn B.; Meyer, Michael R.

    2014-01-01

    We use N-body simulations of star cluster evolution to explore the hypothesis that short-lived radioactive isotopes found in meteorites, such as 26Al, were delivered to the Sun's protoplanetary disc from a supernova at the epoch of Solar system formation. We cover a range of star cluster formation parameter space and model both clusters with primordial substructure and those with smooth profiles. We also adopt different initial virial ratios - from cool, collapsing clusters to warm, expanding associations. In each cluster, we place the same stellar population; the clusters each have 2100 stars and contain one massive 25 M⊙ star which is expected to explode as a supernova at about 6.6 Myr. We determine the number of solar (G)-type stars that are within 0.1-0.3 pc of the 25 M⊙ star at the time of the supernova, which is the distance required to enrich the protoplanetary disc with the 26Al abundances found in meteorites. We then determine how many of these G-dwarfs are unperturbed `singletons'; stars which are never in close binaries, nor suffer sub-100 au encounters, and which also do not suffer strong dynamical perturbations. The evolution of a suite of 20 initially identical clusters is highly stochastic, with the supernova enriching over 10 G-dwarfs in some clusters, and none at all in others. Typically, only ˜25 per cent of clusters contain enriched, unperturbed singletons, and usually only one to two per cluster (from a total of 96 G-dwarfs in each cluster). The initial conditions for star formation do not strongly affect the results, although a higher fraction of supervirial (expanding) clusters would contain enriched G-dwarfs if the supernova occurred earlier than 6.6 Myr. If we sum together simulations with identical initial conditions, then ˜1 per cent of all G-dwarfs in our simulations are enriched, unperturbed singletons.

  4. A SEMI-DYNAMICAL APPROACH TO THE SHOCK REVIVAL IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Nagakura, Hiroki; Yamamoto, Yu; Yamada, Shoichi

    2013-03-10

    We develop a new semi-dynamical method to study shock revival by neutrino heating in core-collapse supernovae. Our new approach is an extension of the previous studies that employ spherically symmetric, steady, shocked accretion flows together with the light-bulb approximation. The latter has been widely used in the supernova community for the phenomenological investigation of the criteria for successful supernova explosions. In the present approach, we get rid of the steady-state condition and take into account shock wave motions instead. We have in mind a scenario in which it is not the critical luminosity but the critical fluctuation generated by hydrodynamical instabilities such as standing accretion shock instability and neutrino-driven convection in the post-shock region that determines the onset of shock revival. After confirming that the new approach indeed captures the dynamics of revived shock wave qualitatively, we then apply the method to various initial conditions and find that there is a critical fluctuation for shock revival, which can be well fit by the following formula: f{sub crit} {approx} 0.8 Multiplication-Sign (M{sub in}/1.4 M{sub Sun }) Multiplication-Sign {l_brace}1 - (r{sub sh}/10{sup 8} cm){r_brace}, where f{sub crit} denotes the critical pressure fluctuation normalized by the unperturbed post-shock value. M{sub in} and r{sub sh} stand for the mass of the central compact object and the shock radius, respectively. The critical fluctuation decreases with the shock radius, whereas it increases with the mass of the central object. We discuss the possible implications of our results for three-dimensional effects on shock revival, which is currently controversial in the supernova community.

  5. THE MORPHOLOGY AND DYNAMICS OF JET-DRIVEN SUPERNOVA REMNANTS: THE CASE OF W49B

    SciTech Connect

    González-Casanova, Diego F.; De Colle, Fabio; Ramirez-Ruiz, Enrico; Lopez, Laura A.

    2014-02-01

    The circumstellar medium (CSM) of a massive star is modified by its winds before a supernova (SN) explosion occurs, and thus the evolution of the resulting supernova remnant (SNR) is influenced by both the geometry of the explosion as well as the complex structure of the CSM. Motivated by recent work suggesting the SNR W49B was a jet-driven SN expanding in a complex CSM, we explore how the dynamics and the metal distributions in a jet-driven explosion are modified by the interaction with the surrounding environment. In particular, we perform hydrodynamical calculations to study the dynamics and explosive nucleosynthesis of a jet-driven SN triggered by the collapse of a 25 M {sub ☉} Wolf-Rayet star and its subsequent interaction with the CSM up to several hundred years following the explosion. We find that although the CSM has small-scale effects on the structure of the SNR, the overall morphology and abundance patterns are reflective of the initial asymmetry of the SN explosion. Thus, we predict that jet-driven SNRs, such as W49B, should be identifiable based on morphology and abundance patterns at ages up to several hundred years, even if they expand into a complex CSM environment.

  6. Reaction rate uncertainties and the ν p-process

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Rauscher, T.

    2012-11-01

    Current hydrodynamical simulations of core collapse supernovae find proton-rich early ejecta. At the same time, the models fail to eject neutron-rich matter, thus leaving the origin of the main r-process elements unsolved. However, the proton-rich neutrino-driven winds from supernovae have been identified as a possible production site for light n-capture elements beyond iron (such as Ge, Sr, Y, Zr) through the νp-process. The detailed nucleosynthesis patterns of the νp-process depend on the hydrodynamic conditions and the nuclear reaction rates of key reactions. We investigate the impact of reaction rate uncertainties on the νp-process nucleosynthesis.

  7. Reaction rate uncertainties and the {nu}p-process

    SciTech Connect

    Froehlich, C.; Rauscher, T.

    2012-11-12

    Current hydrodynamical simulations of core collapse supernovae find proton-rich early ejecta. At the same time, the models fail to eject neutron-rich matter, thus leaving the origin of the main r-process elements unsolved. However, the proton-rich neutrino-driven winds from supernovae have been identified as a possible production site for light n-capture elements beyond iron (such as Ge, Sr, Y, Zr) through the {nu}p-process. The detailed nucleosynthesis patterns of the {nu}p-process depend on the hydrodynamic conditions and the nuclear reaction rates of key reactions. We investigate the impact of reaction rate uncertainties on the {nu}p-process nucleosynthesis.

  8. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    SciTech Connect

    Van den Heuvel, E. P. J.; Portegies Zwart, S. F.

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  9. Are Superluminous Supernovae and Long GRBs the Products of Dynamical Processes in Young Dense Star Clusters?

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.

    2013-12-01

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed "metal aversion" of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  10. A dynamical model of supernova feedback: gas outflows from the interstellar medium

    NASA Astrophysics Data System (ADS)

    Lagos, Claudia del P.; Lacey, Cedric G.; Baugh, Carlton M.

    2013-12-01

    We present a dynamical model of supernova feedback which follows the evolution of pressurized bubbles driven by supernovae in a multiphase interstellar medium (ISM). The bubbles are followed until the point of break-out into the halo, starting from an initial adiabatic phase to a radiative phase. We show that a key property which sets the fate of bubbles in the ISM is the gas surface density, through the work done by the expansion of bubbles and its role in setting the gas scaleheight. The multiphase description of the ISM is essential, and neglecting it leads to order-of-magnitude differences in the predicted outflow rates. We compare our predicted mass loading and outflow velocities to observations of local and high-redshift galaxies and find good agreement over a wide range of stellar masses and velocities. With the aim of analysing the dependence of the mass loading of the outflow, β (i.e. the ratio between the outflow and star formation rates), on galaxy properties, we embed our model in the galaxy formation simulation, GALFORM, set in the Λ cold dark matter framework. We find that a dependence of β solely on the circular velocity, as is widely assumed in the literature, is actually a poor description of the outflow rate, as large variations with redshift and galaxy properties are obtained. Moreover, we find that below a circular velocity of ≈80 km s-1, the mass loading saturates. A more fundamental relation is that between β and the gas scaleheight of the disc, hg, and the gas fraction, fgas, as β ∝ h^{1.1}_g f^{0.4}_gas, or the gas surface density, Σg, and the gas fraction, as β ∝ Σ ^{-0.6}_g f^{0.8}_gas. We find that using the new mass loading model leads to a shallower faint-end slope in the predicted optical and near-IR galaxy luminosity functions.

  11. Oblique Shock Breakout in Supernovae and Gamma-Ray Bursts. I. Dynamics and Observational Implications

    NASA Astrophysics Data System (ADS)

    Matzner, Christopher D.; Levin, Yuri; Ro, Stephen

    2013-12-01

    In a non-spherical stellar explosion, non-radial motions become important near the stellar surface. For realistic deviations from spherical symmetry, non-radial flow dramatically alters the dynamics and emission of shock emergence on a significant fraction of the surface. The breakout flash is stifled, ejecta speeds are limited, and matter is cast sideways. Non-radial ejection allows for collisions outside the star, which may engender a new type of transient. Strongly oblique breakouts are most easily produced in compact stellar progenitors, such as white dwarfs and stripped-envelope core-collapse supernovae. We study the shock structure and post-shock acceleration using conservation laws, a similarity analysis, and an approximate theory for oblique shocks. The shock is likely to extend vertically from the stellar surface, then kink before joining a deep asymptotic solution. Outflow from the region crossed by an oblique shock is probably unsteady and may affect the surface ahead of the main shock. We comment on the implications for several notable explosions in which the non-spherical dynamics described in this paper are likely to play an important role. We also briefly consider relativistic and superluminal pattern speeds.

  12. Dynamics of an Alfvén Surface in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Guilet, Jérôme; Foglizzo, Thierry; Fromang, Sébastien

    2011-03-01

    We investigate the dynamics of an Alfvén surface (where the Alfvén speed equals the advection velocity) in the context of core collapse supernovae during the phase of accretion on the proto-neutron star. Such a surface should exist even for weak magnetic fields because the advection velocity decreases to zero at the center of the collapsing core. In this decelerated flow, Alfvén waves created by the standing accretion shock instability or convection accumulate and amplify while approaching the Alfvén surface. We study this amplification using one-dimensional MHD simulations with explicit physical dissipation (resistivity and viscosity). In the linear regime, the amplification continues until the Alfvén wavelength becomes as small as the dissipative scale. A pressure feedback that increases the pressure in the upstream flow is created via a nonlinear coupling. We derive analytic formulae for the maximum amplification and the nonlinear coupling and check them with numerical simulations to very good accuracy. Interestingly, these quantities diverge if the dissipation is decreased to zero, scaling as the square root of the Reynolds number, suggesting large effects in weakly dissipative flows. We also characterize the nonlinear saturation of this amplification when compression effects become important, leading to either a change of the velocity gradient, or a steepening of the Alfvén wave. Applying these results to core collapse supernovae shows that the amplification can be fast enough to affect the dynamics if the magnetic field is strong enough for the Alfvén surface to lie in the region of strong velocity gradient just above the neutrinosphere. This requires the presence of a strong magnetic field in the progenitor star, which would correspond to the formation of a magnetar under the assumption of magnetic flux conservation. An extrapolation of our analytic formula (taking into account the nonlinear saturation) suggests that the Alfvén wave could reach an

  13. Historical Supernovae

    NASA Astrophysics Data System (ADS)

    Green, D. A.; Stephenson, F. R.

    The available historical records of supernovae occurring in our own Galaxy over the past two thousand years are reviewed. These accounts include the well-recorded supernovae of AD1604 (Kepler's SN), AD1572 (Tycho's SN), AD1181 AD1054 (which produced the Crab Nebula) and AD1006, together with less certain events dating back to AD185. In the case of the supernovae of AD1604 and AD1572 it is European records that provide the most accurate information available, whereas for earlier supernovae records are principally from East Asian sources. Also discussed briefly are several spurious supernova candidates, and the future prospects for studies of historical supernovae.

  14. Death by Dynamics: Can a planet trigger a Type Ia supernova?

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne; Fisher, Robert; Guillochon, James; Steiner, James

    2015-01-01

    As a white dwarf (WD) travels through a galaxy it interacts with a variety of masses: comets, asteroids, planets, and stars. Using a set of simple assumptions we have computed the rates of WD interactions. We find that the calculated rates of the disruption of asteroids by WDs are compatible with the rates inferred from observations, implying that not all of the disrupted asteroids need to have formed in the WD's stellar system. In addition, for every 100 tidal disruptions, a collision is expected. We are exploring the amount of energy potentially released by WD collisions with comets, asteroids, and planets and find that these energetic events should be detected by future wide-field surveys. The most energetic event generated by a WD is a Type Ia supernova. Should our mechanism produce Type Ia explosions, it could contribute significantly to the total rate and become a solution to the Type Ia supernova puzzle. Regardless of whether direct collisions with planetoids provoke supernovae, the full set of interactions we consider includes wider interactions (0.1 AU to 100 AU) between a WD (and possible companions) and other stellar systems. Although only a small fraction of these interactions produce significant effects, the overall impact may have consequences for the evolution of binary-star and triple-star Type Ia progenitor models, as well as for a variety of other WD binaries.

  15. Dynamics of a Type Ia Supernova Remnant: X-ray and Radio Proper Motions in Tycho's SNR

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Blondin, John M.; Borkowski, Kazimierz J.; Chomiuk, Laura; Ghavamian, Parviz; Hewitt, John W.; Petre, Robert; Reynolds, Stephen P.

    2016-01-01

    We present results from new Chandra X-ray and JVLA radio observations of Tycho's supernova remnant, the remains of the supernova of 1572 A.D. The high spatial resolution of these instruments allows for accurate measurements of the proper motion of the forward shock in Tycho, with baselines now at 15 years for the X-ray data and 30 years for the radio. Type Ia SNe are of fundamental importance in astrophysics, yet the nature of their environments and progenitor systems is poorly understood. In a recent work, we have shown that theISM surrounding Tycho varies systematically in density by a factor of 5, with larger excursions in some locations. A substantial density variation is consistent with limited previous proper motion studies that have been done in radio and X-rays. Our expanded baseline measurements allow us to further explore the variations in the dynamics of the shock wave, which can also be used to localize the explosion site. Previous proper motion measurements, made over much shorter time baselines, have shown some discrepancies in the shockvelocity as measured in radio and X-rays. With our new, much improved data, we can compare proper motions in these two energy bands with much greater accuracy.

  16. Supernova VLBI

    NASA Astrophysics Data System (ADS)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  17. The Cusp/Core problem: supernovae feedback versus the baryonic clumps and dynamical friction model

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Pace, F.

    2016-05-01

    In the present paper, we compare the predictions of two well known mechanisms considered able to solve the cusp/core problem (a. supernova feedback; b. baryonic clumps-DM interaction) by comparing their theoretical predictions to recent observations of the inner slopes of galaxies with masses ranging from dSphs to normal spirals. We compare the α-V_{rot} and the α-M_{ast} relationships, predicted by the two models with high resolution data coming from Adams et al. (Astrophys. J. 789, 63, 2014), Simon et al. (Astrophys. J. 621, 757, 2005), LITTLE THINGS (Oh et al. in Astron. J. 149, 180, 2015), THINGS dwarves (Oh et al. in Astron. J. 141, 193, 2011a; Oh et al. in Astron. J. 142, 224, 2011b), THINGS spirals (Oh et al. in Astron. J. 149, 180, 2015), Sculptor, Fornax and the Milky Way. The comparison of the theoretical predictions with the complete set of data shows that the two models perform similarly, while when we restrict the analysis to a smaller subsample of higher quality, we show that the method presented in this paper (baryonic clumps-DM interaction) performs better than the one based on supernova feedback. We also show that, contrarily to the first model prediction, dSphs of small mass could have cored profiles. This means that observations of cored inner profiles in dSphs having a stellar mass <106 M_{⊙} not necessarily imply problems for the ΛCDM model.

  18. Aspherical supernovae

    SciTech Connect

    Kasen, Daniel Nathan

    2004-05-21

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  19. Aspherical supernovae

    NASA Astrophysics Data System (ADS)

    Kasen, Daniel Nathan

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must be undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new breakthroughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi- dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  20. Stellar dynamics. The fastest unbound star in our Galaxy ejected by a thermonuclear supernova.

    PubMed

    Geier, S; Fürst, F; Ziegerer, E; Kupfer, T; Heber, U; Irrgang, A; Wang, B; Liu, Z; Han, Z; Sesar, B; Levitan, D; Kotak, R; Magnier, E; Smith, K; Burgett, W S; Chambers, K; Flewelling, H; Kaiser, N; Wainscoat, R; Waters, C

    2015-03-01

    Hypervelocity stars (HVSs) travel with velocities so high that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US 708. Traveling with a velocity of ~1200 kilometers per second, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVSs. Furthermore, we detected that US 708 is a fast rotator. According to our binary evolution model, it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova. PMID:25745168

  1. Capture cross sections for the astrophysical p process

    NASA Astrophysics Data System (ADS)

    Quinn, Stephen J.

    This dissertation includes the design and development of the Summing NaI (SuN) 4pi gamma-ray detector at the National Superconducting Cyclotron Laboratory to measure proton and alpha radiative capture reactions relevant in the astrophysical p process. Discussions of p-process nucleosynthesis, the relevant nuclear reaction theory, experimental details, and analysis procedures are included. All reaction measurements were performed at the Nuclear Science Laboratory of the University of Notre Dame. The commissioning experiments in both regular and inverse kinematics were done using known resonances in the 27Al(p,gamma)28Si and 58Ni(p,gamma) 59Cu reactions, and the results agree well with previous literature values. The success of these proof-of-principle measurements marks the first time that the gamma-summing technique has been implemented in inverse kinematics. Furthermore, in an effort to investigate the synthesis of the light p-process nuclei, the 74Ge(p,gamma)75As, 74Ge(alpha,gamma) 78Se, and 90,92Zr(alpha,gamma)94,96Mo reactions were measured and compared to theoretical calculations using the nuclear statistical model. It was found that the new 74Ge(p,gamma) 75As measurements cause an enhancement in the overproduction of 74Se in p-process models, and that the updated 90Zr(alpha,gamma) 94Mo reaction rate seems to confirms the p-process branching point at 94Mo. Finally, the 58Ni(alpha,gamma) 62Zn reaction was measured for its role in nucleosynthesis in type Ia supernovae. The measurements here lower the reaction rate used in astrophysical models, which leads to a 5% reduction in the calculated abundances of several isotopes. All of the measurements in this dissertation greatly reduce the uncertainty in the reaction cross section.

  2. Supernova Flashback

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version

    The Cassiopeia A supernova's first flash of radiation makes six clumps of dust (circled in annotated version) unusually hot. The supernova remnant is the large white ball in the center. This infrared picture was taken by NASA's Spitzer Space Telescope.

  3. Supernova models

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the /sup 56/Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed.

  4. Nucleosynthesis in neutrino-driven supernovae

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Hix, W. R.; Martínez-Pinedo, G.; Liebendörfer, M.; Thielemann, F.-K.; Bravo, E.; Langanke, K.; Zinner, N. T.

    2006-10-01

    Core collapse supernovae are the leading actor in the story of the cosmic origin of the chemical elements. Existing models, which generally assume spherical symmetry and parameterize the explosion, have been able to broadly replicate the observed elemental pattern. However, inclusion of neutrino interactions produces noticeable improvements in the iron peak composition of the ejecta when compared to observations. Neutrino interactions may also provide a supernova source for light p-process nuclei.

  5. Dynamical Evolution and High-Energy Radiation of Mixed-Morphology Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Shimizu, Takafumi

    2014-03-01

    Evolution of a supernova remnant (SNR) without an active neutron star is basically described by probation of shock waves. The shock waves accelerate charged particles. The particles accelerated to GeV radiate synchrotron radio emission, which appears to be shelllike morphology. The shock waves heat matter up to keV, and heated-electrons ionize ions. Compared with a time-scale of shock-heating of electrons by the shock, a time-scale of ionization of ions by electron collisions in the shock down stream region is longer. Hence an ionization state of SNR plasma is thought to be under-ionized state in which the ionization temperature is lower than the electron temperature, or collisional ionization equilibrium state at late time. In fact, X-ray spectra of many SNRs are explained by such plasma state model. SNRs that exhibit shell-like morphology in thermal X-ray as well as radio are categorized into shell-like SNRs. In contrast to shell-like SNRs, some SNRs exhibit shell-like radio but center-filled thermal X-ray morphology. Such SNRs are categorized into mixed-morphology SNRs (MM SNRs). Many MM SNRs interact with molecular clouds, suggested by OH maser and near infrared observations, and hence are thought to be remnants of core-collapse supernova of massive stars. Interestingly, recombination radiation X-rays, which are evidence that X-ray emitting plasmas are over-ionized states in which the ionization temperature is higher than the electron temperature, are detected from six MM SNRs. The center-filled X-rays with recombination radiation can not be explained by a picture of shock-wave propagation that explains the X-rays of shell-like SNRs. As well as X-rays, MM SNRs are characteristic in γ-ray emission. Several MM SNRs and shell-like SNRs are detected in the GeV γ-ray band by Fermi. The 1 - 100 GeV γ-ray luminosities of MM SNRs are ˜ 1034-1036 erg s-1, which are systematically higher than those of shell-like SNRs of ˜ 1033-1035 erg s-1. Such high luminosities

  6. Supernova remnants

    NASA Astrophysics Data System (ADS)

    Decourchelle, A.

    2016-06-01

    Supernova remnants result from the explosion of a star and keep trace, in their young ejecta-dominated phase, both of the explosion mechanism and to a lesser extent of the nature of the progenitor. They inject a large amount of energy into their surroundings, which impacts significantly the interstellar medium and to a larger extent the working of the galaxy by distributing heavy elements, heating to tens of million degrees large fractions of gas, accelerating high-energy particles, generating turbulence and amplification of the magnetic field. I will review the observational results on supernova remnants and their related scientific issues before suggesting directions for future ambitious XMM-Newton observations.

  7. Nonlinear growth of dynamical overstabilities in blast waves. [effects on supernova remnants

    NASA Technical Reports Server (NTRS)

    Mac Low, Mordecai-Mark; Norman, Michael L.

    1993-01-01

    The numerical gasdynamics code ZEUS-2D is used to directly model the dynamical overstabilities in blast waves. The linear analysis is confirmed by perturbing a blast wave with a low-amplitude eigenfunction of the overstability. The amplitude of the perturbations is increased in order to determine the nonlinear behavior of the overstabilities. The overstability is found to saturate due to weak transverse shocks in the shell. Transverse velocities in the dense shell reach the postshock sound speed, and high-density regions with sizes of the order of the shell thickness form. Transverse oscillations continue even after saturation. This confirms and explains the damping of the overstability experimentally discovered by Grun et al. (1991).

  8. Astronomical Resources: Supernovae.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1987-01-01

    Contains a partially annotated, nontechnical bibliography of recent materials about supernovae, including some about the discovery of a supernova in the Large Magellanic Cloud. Includes citations of general books and articles about supernovae, articles about Supernova 1987A, and a few science fiction stories using supernovae. (TW)

  9. EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF PROGENITOR {sup 22}Ne CONTENT ON DYNAMICS

    SciTech Connect

    Townsley, Dean M.; Chamulak, David A.; Brown, Edward F.; Timmes, F. X.

    2009-08-20

    We present a theoretical framework for formal study of systematic effects in supernovae Type Ia (SNe Ia) that utilizes two-dimensional simulations to implement a form of the deflagration-detonation transition (DDT) explosion scenario. The framework is developed from a randomized initial condition that leads to a sample of simulated SNe Ia whose {sup 56}Ni masses have a similar average and range to those observed, and have many other modestly realistic features such as the velocity extent of intermediate-mass elements. The intended purpose is to enable statistically well defined studies of both physical and theoretical parameters of the SNe Ia explosion simulation. We present here a thorough description of the outcome of the SNe Ia explosions produced by our current simulations. A first application of this framework is utilized to study the dependence of the SNe Ia on the {sup 22}Ne content, which is known to be directly influenced by the progenitor stellar population's metallicity. Our study is very specifically tailored to measure how the {sup 22}Ne content influences the competition between the rise of plumes of burned material and the expansion of the star before these plumes reach DDT conditions. This influence arises from the dependence of the energy release, progenitor structure, and laminar flame speed on {sup 22}Ne content. For this study, we explore these three effects for a fixed carbon content and DDT density. By setting the density at which nucleosynthesis takes place during the detonation phase of the explosion, the competition between plume rise and stellar expansion controls the amount of material in nuclear statistical equilibrium (NSE) and therefore {sup 56}Ni produced. Of particular interest is how this influence of {sup 22}Ne content compares to the direct modification of the {sup 56}Ni mass via the inherent neutron excess as discussed by Timmes et al. Although the outcome following from any particular ignition condition can change dramatically

  10. Supernova Forensics

    NASA Astrophysics Data System (ADS)

    Soderberg, Alicia M.

    2014-01-01

    For decades, the study of stellar explosions -- supernovae -- have focused almost exclusively on the strong optical emission that dominates the bolometric luminosity in the days following the ultimate demise of the star. Yet many of the leading breakthroughs in our understanding of stellar death have been enabled by obtaining data at other wavelengths. For example, I have shown that 1% of all supernovae give rise to powerful relativistic jets, representing the biggest bangs in the Universe since the Big Bang. My recent serendipitous X-ray discovery of a supernova in the act of exploding (“in flagrante delicto”) revealed a novel technique to discover new events and provide clues on the shock physics at the heart of the explosion. With the advent of sensitive new radio telescopes, my research group combines clues from across the electromagnetic spectrum (radio to gamma-ray), leading us to a holistic study of stellar death, the physics of the explosions, and their role in fertilizing the Universe with new elements, by providing the community with cosmic autopsy reports.

  11. Nuclear reaction rates and their influence on nucleosynthesis in the neutrino-p-process

    NASA Astrophysics Data System (ADS)

    Hatcher, Daniel; Frohlich, Carla; Perdikakis, Georgios

    2015-10-01

    The synthesis of elements heavier than iron in the early stages of galactic evolution is commonly attributed to Type II (core collapse) supernova explosions. However, the currently accepted mechanisms of heavy element synthesis through neutron capture processes (r-process and s-process) cannot explain the abundance patterns seen in very old galactic halo stars. A proposed solution to this problem is the neutrino-p-process, which takes place in the strong neutrino winds of core-collapse supernovae. In the neutrino-p-process, antineutrinos absorbed by protons yield neutrons that are quickly captured by the surrounding, proton-rich nuclei through (n,p) reactions. Such interactions allow for the nucleosynthesis of elements with atomic mass numbers greater than 64 (this includes Sr, Y, Zr and others possibly up to Sn). We study the sensitivity of the νp-process abundance pattern to (n,p), (p, γ), and (n, γ) rates for nuclei between Ni and Sn. We illustrate our findings for three different initial electron fractions and two representative trajectories. We discuss how these rates influence the abundance pattern and the nuclear flow. We observe the effects of predicted reaction rates on the abundance pattern and nuclear flow.

  12. Supernova dynamics in the laboratory: Radiative shocks produced by ultra-high pressure implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pak, Arthur

    2012-10-01

    Thermonuclear fuel experiments on the National Ignition Facility implode 2-mm diameter capsules with a cryogenic deuterium-tritium ice layer to 1000x liquid density and pressures exceeding 100 Gbar (10^11 atm). About 200 ps after peak compression, a spherical supernova-like radiative shock wave is observed that expands with shock velocities of uS = 300 km/s, temperatures of order 1 keV at densities of 1 g/cc resulting in a radiation strength parameter of Q ˜uS^5 = 10^4. Radiation-hydrodynamic simulations indicate that the shock launched at stagnation first goes down a strong density gradient while propagating outward from the highly compressed DT fuel (˜ 1000g/cc) to the ablation front (˜ 1 g/cc). Similar to what happens inside a star, the shock pressure drops as it accelerates and heats. The radiative shock emission is first observed when it breaks out of the dense compressed fuel shell into the low-density inflowing plasma at the ablation front mimicking the supernova situation where the shock breaks out through the star surface into surrounding in-falling matter [1,2]; the shock is subsequently approaching the supercritical state with a strong pre-cursor followed by rapid cooling. These observations are consistent with the rapid vanishing of the radiation ring 400 ps after peak compression due to strong radiation losses and spherical expansion. The evolution and brightness of the radiative shock provides insight into the performance of these implosions that have the goal to produce burning fusion plasmas in the laboratory. By modifying the capsule ablator composition and thickness, the stagnation pressure, density gradients, shock velocity and radiative properties could be tailored to study various regimes related to supernovae radiative remnants.[4pt] [1] W. David Arnett, Supernovae as phenomena of high-energy astrophysics, Ann NY Aca. Science 302, 90 (1977).[0pt] [2] L. Ensman and A. Burrows, Shock breakout in SN1987A, ApJ 393, 742.

  13. Featured Image: Modeling Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    This image shows a computer simulation of the hydrodynamics within a supernova remnant. The mixing between the outer layers (where color represents the log of density) is caused by turbulence from the Rayleigh-Taylor instability, an effect that arises when the expanding core gas of the supernova is accelerated into denser shell gas. The past standard for supernova-evolution simulations was to perform them in one dimension and then, in post-processing, manually smooth out regions that undergo Rayleigh-Taylor turbulence (an intrinsically multidimensional effect). But in a recent study, Paul Duffell (University of California, Berkeley) has explored how a 1D model could be used to reproduce the multidimensional dynamics that occur in turbulence from this instability. For more information, check out the paper below!CitationPaul C. Duffell 2016 ApJ 821 76. doi:10.3847/0004-637X/821/2/76

  14. Magnetic Dipole and Gamow-Teller Modes in Neutrino-Nucleus Reactions: Impact on Supernova Dynamics and Nucleosynthesis

    SciTech Connect

    Neumann-Cosel, P. von; Byelikov, A.; Richter, A.; Shevchenko, A.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Fujita, H.; Heger, A.; Kolbe, E.; Langanke, K.; Martinez-Pinedo, G.

    2006-03-13

    Some aspects of the importance of neutrino-induced reactions on nuclei within supernova physics are discussed. It is argued that important constraints on the experimentally unknown cross sections can be obtained from experimental studies of the nuclear response in selected cases. Examples are neutral-current induced reactions on fp-shell nuclei extracted from high-resolution inelastic electron scattering data providing the M1 strength distributions and the production of the exotic heavy, odd-odd nuclei 138La and 180Ta through charged-current reactions dominated by Gamow-Teller transitions. The Gamow-Teller strength can deduced from the (3He,t) charge-exchange reaction at zero degree.

  15. Progenitor-dependent Explosion Dynamics in Self-consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas; Müller, Bernhard

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  16. Penning trap mass measurements of nuclides along the astrophysical rp- and νp- process paths

    NASA Astrophysics Data System (ADS)

    Clark, Jason

    2009-10-01

    X-ray bursters and supernovae are examples of explosive stellar phenomena in which nuclides are quickly produced in great quantities. Observed as x-ray bursts, thermonuclear runaways on the surface of neutron stars accreting material from its binary star companion create elements by a nucleosynthetic procoess which involves a series of rapid proton-capture reactions, termed the rp process. The timescale, nuclides produced, and energy released during the rp process are very sensitive to delays encountered at waiting-point nuclides, nuclides in which their slow β decay is more probable than net proton capture. A possible mechanism to bypass the waiting-point nuclides is through the νp process, in which (n,p) and (n,γ) reactions on the waiting-point nuclides, in addition to the proton-capture reactions, are possible. Supernovae are possible sites for the νp process as the proton-rich ejecta can absorb antineutrinos to produce the required free neutrons. It is this νp process which may resolve the long-standing discrepancy between the observed and predicted abundances of ^92Mo and ^94Mo. Proton-capture Q values of nuclides along the rp- and νp- process paths are required to accurately model the nucleosynthesis, especially at the waiting-point nuclides. In recent years, Penning traps have become the preferred tool to make precise mass measurements of stable and unstable nuclides. To make the best use of these devices in measuring the masses of radioactive nuclides, systems have been developed to quickly, cleanly, and efficiently transport the short-lived, weakly produced nuclides to the Penning traps. This talk will discuss the rp and νp nucleosynthetic processes and will highlight the precise Penning trap mass measurements of nuclides along these process paths.

  17. Nuclear astrophysics of supernovae

    SciTech Connect

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ < /rho//sub 0/, and then /rho/ > /rho//sub 0/ and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs.

  18. Supernova neutrino detection

    SciTech Connect

    Scholberg, K.

    2015-07-15

    In this presentation I summarize the main detection channels for neutrinos from core-collapse supernovae, and describe current status of and future prospects for supernova-neutrino-sensitive detectors worldwide.

  19. First supernova companion star found

    NASA Astrophysics Data System (ADS)

    2004-01-01

    , 2100 seconds and 330W, 1200 seconds) shown in purple and blue, a deep blue filter (435W, 1000 seconds) shown in green and a green filter (555W, 1120 seconds) shown in red. The quarter-circle around the supernova companion is a so-called light echo originating from sheets of dust in the galaxy reflecting light from the original supernova explosion. The timing of the appearance of these echoes can be used to map out the dust structure around the supernova. The light echo was detected in late 2002 and early 2003 by two competing groups of scientists. Messier 81 spiral arm (WFPC2 image) hi-res Size hi-res: 1502 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Messier 81 spiral arm (WFPC2 image) This NASA/ESA Hubble Space Telescope image shows a small portion of one of Messier 81’s spiral arms. It extends about 0.03 x 0.03 degrees. The supernova companion is the bluish star in the upper right hand corner. Dust lanes in the spiral arms of the galaxy are seen, as well as many other stars and a few star forming nebulae. The image is composed of four separate exposures from the ESO/ST-ECF Archive through a blue filter, a green filter, a red filter and a near-infrared filter. The image was taken with Hubble’s Wide Field and Planetary Camera 2. Acknowledgement: Bob Kirshner (Harvard University, USA) Grand Spiral Messier 81 (ground-based) hi-res Size hi-res: 1502 kb Credits: ESA/INT/DSS2 Grand Spiral Messier 81 (ground-based) This ground-based image shows the spiral galaxy Messier 81 in its entirety. The image is a combination of exposures from the Isaac Newton Telescope on La Palma (courtesy of Jonathan Irwin) and Digitized Sky Survey 2 images. The dynamic duo, Messier 81 and 82 (ground-based) hi-res Size hi-res: 1502 kb Credits: Robert Gendler (http://www.robgendlerastropics.com) The dynamic duo, Messier 81 and 82 (ground-based) This wide-angle image taken by astrophotographer Robert Gendler shows the amazing duo of Messier 81 (right) and Messier 82 (left

  20. Weak-interaction processes in core-collapse supernovae

    SciTech Connect

    Langanke, K.

    2015-02-24

    Weak interaction processes play an important role for the dynamics of a core-collapse supernova. Due to progress of nuclear modeling and constrained by data it has been possible to improve the rates of these processes for supernova conditions decisively. This manuscript describes the recent advances and the current status in deriving electron capture rates on nuclei and of inelastic neutrino-nucleus scattering for applications in supernova simulations and briefly discusses their impact on such studies.

  1. The dynamics of neutrino-driven supernova explosions after shock revival in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Müller, B.

    2015-10-01

    We study the growth of the explosion energy after shock revival in neutrino-driven explosions in two and three dimensions (2D/3D) using multi-group neutrino hydrodynamics simulations of an 11.2 M⊙ star. The 3D model shows a faster and steadier growth of the explosion energy and already shows signs of subsiding accretion after one second. By contrast, the growth of the explosion energy in 2D is unsteady, and accretion lasts for several seconds as confirmed by additional long-time simulations of stars of similar masses. Appreciable explosion energies can still be reached, albeit at the expense of rather high neutron star masses. In 2D, the binding energy at the gain radius is larger because the strong excitation of downward-propagating g modes removes energy from the freshly accreted material in the downflows. Consequently, the mass outflow rate is considerably lower in 2D than in 3D. This is only partially compensated by additional heating by outward-propagating acoustic waves in 2D. Moreover, the mass outflow rate in 2D is reduced because much of the neutrino energy deposition occurs in downflows or bubbles confined by secondary shocks without driving outflows. Episodic constriction of outflows and vertical mixing of colder shocked material and hot, neutrino-heated ejecta due to Rayleigh-Taylor instability further hamper the growth of the explosion energy in 2D. Further simulations will be necessary to determine whether these effects are generic over a wider range of supernova progenitors.

  2. Nonrelativistic Perpendicular Shocks Modeling Young Supernova Remnants: Nonstationary Dynamics and Particle Acceleration at Forward and Reverse Shocks

    NASA Astrophysics Data System (ADS)

    Wieland, Volkmar; Pohl, Martin; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi

    2016-03-01

    For parameters that are applicable to the conditions at young supernova remnants, we present results of two-dimensional, three-vector (2D3V) particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at a 45^\\circ angle to the simulation plane to approximate three-dimensional (3D) physics. We developed an improved clean setup that uses the collision of two plasma slabs with different densities and velocities, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations due to shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales produced by the gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but is commensurate with {\\boldsymbol{E}}× {\\boldsymbol{B}} drift. We observe a stable supra-thermal tail in the ion spectra, but no electron acceleration because the amplitude of the Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other two-dimensional (2D) simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but the pre-acceleration efficacy might be reduced with respect to the 2D results once 3D effects are fully accounted for. Other microphysical factors may also play a part in limiting the amplitude of the Buneman waves or preventing the return of electrons to the foot region.

  3. Production of Light p-Process Isotopes in Neutrino-Irradiated Alpha-Rich Freezeouts

    NASA Astrophysics Data System (ADS)

    Swift, T. P.; Meyer, B. S.; The, L.-S.

    2000-12-01

    The origin of the light, neutron-capture bypassed (p-process) isotopes 92Mo, 94Mo, 96Ru, and 98Ru has long been a mystery. Sites that produce the majority of the p-process isotopes in correct solar proportions have long been known to underproduce the light species [1], thereby suggesting a different origin. The alpha-rich freezeout occurring near a nascent neutron star in Type II supernovae has been proposed [2,3,4]; however, only 92Mo is strongly produced, and it is never the most overproduced isotope, as is required for its site of origin. We explore models of alpha-rich freezeouts that include simultaneous irradiation of the nuclei by the copious neutrinos emitted during the explosion. We find that neutrino-nucleus interactions significantly enhance production of the light p-process species both by affecting the electron-nucleon ratio during the nucleosynthesis and by increasing the charge of nuclei once nuclear quasi-equilibrium clusters have broken. In many models studied, the light p-process isotopes are the most overproduced species, which supports the idea of this being a possible production site. The neutrino fluences required for light p-process isotope production are high--probably somewhat higher than current supernova models allow. Nevertheless, the results are encouraging and suggest further work is needed on this promising site. This work was supported by the NSF Research Experiences for Undergraduates (REU) Site Program through grant AST 96169939 to Florida Tech and the Southeastern Association for Research in Astronomy (SARA). It was also supported by NSF grant AST 9819877 and NASA grant NAG5-4703 at Clemson University. References: [1] Woosley, S. E., and Howard, W. M. 1978, ApJS, 36, 285 [2] Woosley, S. E., and Hoffman, R. D. 1992, ApJ, 395, 202 [3] Fuller, G. M., and Meyer, B. S. 1995, ApJ, 453, 792 [4] Hoffman, R. D., Woosley, S. E., Fuller, G. M., and Meyer, B. S. 1996, ApJ, 460, 478

  4. Experimental challenge to nucleosynthesis in core-collapse supernovae - Very early epoch of type II SNe -

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, T.; Kahl, D. M.; Yamaguchi, H.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Komatsubara, T.; Kato, S.; Chen, A.; Cherubini, S.; Choi, S. H.; Hahn, I. S.; He, J. J.; Khiem, Le H.; Lee, C. S.; Kwon, Y. K.; Wanajo, S.; Janka, H.-T.

    2013-05-01

    Nucleosynthesis is one of the keys in studying the mechanism of core-collapse supernovae, which is an interesting challenge for modern science. The νp-process, which is similar to an explosive hydrogen burning process, has been proposed as the most probable process in the very early epoch of type II supernovae. Here, we discuss our experimental efforts for the νp-process, the first extensive direct measurements of the (α,p) reactions on bottle-neck proto-rich nuclei in light mass regions. Other challenges for the νp-process study are also discussed.

  5. Experimental challenge to nuclear physics problems in the {nu}p-process

    SciTech Connect

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, T.; Kahl, D. M.; Yamaguchi, H.; Wakabayashi, Y.; Teranishi, T.; Iwasa, N.; Komatsubara, T.; Kato, S.; Chen, A.; Cherubini, S.; Choi, S. H.; Hahn, I. S.; He, J. J.; Khiem, Le H.; Lee, C. S.; Kwon, Y. K.; Wanajo, S.; and others

    2012-11-12

    Astrophysical stellar reactions at extremely high temperatures involve a variety of problems both in nuclear reactions and nuclear structures. Specifically, the problems in the {nu}pprocess were discussed in this talk based on our recent experimental results with low-energy RI beams and a simulation study. The {nu}p-process is one of the key processes for investigating the mechanism of type II supernovae, and the process could be possibly responsible for 'the excess production' of p-nuclei around mass 90-100. Alpha cluster resonances have been discovered experimentally to play a crucial role for the stellar ({alpha}, p) reactions just above the alpha threshold. Neutron induced reactions in the proton-rich nuclear regions in the {nu}p-process are also suggested to play an important role, which involve nuclear structures of high level density at high excitation energies, probably giant resonances. The discussion also covered the p-nuclei production through the {nu}p-process at around mass 100.

  6. Supernovae and mass extinctions

    NASA Technical Reports Server (NTRS)

    Vandenbergh, S.

    1994-01-01

    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  7. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  8. Atomic and molecular supernovae

    SciTech Connect

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  9. Dynamics of X-Ray-emitting Ejecta in the Oxygen-rich Supernova Remnant Puppis A Revealed by the XMM-Newton Reflection Grating Spectrometer

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Ohira, Yutaka; Mori, Koji; Tsunemi, Hiroshi; Uchida, Hiroyuki; Koyama, Katsuji; Tamagawa, Toru

    2013-05-01

    Using the unprecedented spectral resolution of the reflection grating spectrometer (RGS) on board XMM-Newton, we reveal dynamics of X-ray-emitting ejecta in the oxygen-rich supernova remnant Puppis A. The RGS spectrum shows prominent K-shell lines, including O VII Heα forbidden and resonance, O VIII Lyα, O VIII Lyβ, and Ne IX Heα resonance, from an ejecta knot positionally coincident with an optical oxygen-rich filament (the so-called Ω filament) in the northeast of the remnant. We find that the line centroids are blueshifted by 1480 ± 140 ± 60 km s-1 (the first and second term errors are measurement and calibration uncertainties, respectively), which is fully consistent with that of the optical Ω filament. Line broadening at 654 eV (corresponding to O VIII Lyα) is obtained to be σ <~ 0.9 eV, indicating an oxygen temperature of <~ 30 keV. Analysis of XMM-Newton MOS spectra shows an electron temperature of ~0.8 keV and an ionization timescale of ~2 × 1010 cm-3 s. We show that the oxygen and electron temperatures as well as the ionization timescale can be reconciled if the ejecta knot was heated by a collisionless shock whose velocity is ~600-1200 km s-1 and was subsequently equilibrated due to Coulomb interactions. The RGS spectrum also shows relatively weak K-shell lines of another ejecta feature located near the northeastern edge of the remnant, from which we measure redward Doppler velocities of 650 ± 70 ± 60 km s-1.

  10. DYNAMICS OF X-RAY-EMITTING EJECTA IN THE OXYGEN-RICH SUPERNOVA REMNANT PUPPIS A REVEALED BY THE XMM-NEWTON REFLECTION GRATING SPECTROMETER

    SciTech Connect

    Katsuda, Satoru; Tamagawa, Toru; Ohira, Yutaka; Mori, Koji; Tsunemi, Hiroshi; Koyama, Katsuji; Uchida, Hiroyuki

    2013-05-10

    Using the unprecedented spectral resolution of the reflection grating spectrometer (RGS) on board XMM-Newton, we reveal dynamics of X-ray-emitting ejecta in the oxygen-rich supernova remnant Puppis A. The RGS spectrum shows prominent K-shell lines, including O VII He{alpha} forbidden and resonance, O VIII Ly{alpha}, O VIII Ly{beta}, and Ne IX He{alpha} resonance, from an ejecta knot positionally coincident with an optical oxygen-rich filament (the so-called {Omega} filament) in the northeast of the remnant. We find that the line centroids are blueshifted by 1480 {+-} 140 {+-} 60 km s{sup -1} (the first and second term errors are measurement and calibration uncertainties, respectively), which is fully consistent with that of the optical {Omega} filament. Line broadening at 654 eV (corresponding to O VIII Ly{alpha}) is obtained to be {sigma} {approx}< 0.9 eV, indicating an oxygen temperature of {approx}< 30 keV. Analysis of XMM-Newton MOS spectra shows an electron temperature of {approx}0.8 keV and an ionization timescale of {approx}2 Multiplication-Sign 10{sup 10} cm{sup -3} s. We show that the oxygen and electron temperatures as well as the ionization timescale can be reconciled if the ejecta knot was heated by a collisionless shock whose velocity is {approx}600-1200 km s{sup -1} and was subsequently equilibrated due to Coulomb interactions. The RGS spectrum also shows relatively weak K-shell lines of another ejecta feature located near the northeastern edge of the remnant, from which we measure redward Doppler velocities of 650 {+-} 70 {+-} 60 km s{sup -1}.

  11. Supernovae and Their Diversity

    NASA Astrophysics Data System (ADS)

    Garnavich, Peter M.

    2013-06-01

    The number of supernovae discovered annually has exploded and this has led to a growing diversity in observed supernova luminosities and properties. Stripped core-collapse supernovae show a range of expansion velocities with the broad-line events associated to gamma-ray bursts. Several types of extremely luminous supernovae have been identified in the past five years. Some may result from a pair-production instability in very massive stars while others appear to come from less massive progenitors and have an uncertain power source. Thermonuclear (type Ia) events are often thought of as uniform in their properties and that is what makes them good distance indicators. But type Ia supernovae are diverse in subtle and not so subtle ways that may reveal the nature of their explosion mechanism and progenitors. Wider, deeper time-domain sky surveys such as DES and LSST are likely to find even more variety in stellar explosions.

  12. Nuclear reactions in shock wave front during supernova events

    NASA Technical Reports Server (NTRS)

    Lavrukhina, A. K.

    1985-01-01

    The new unique isotopic anomalous coponent of Xe(XeX) was found in the carbonaceous chondrites. It is enriched in light shielded isotopes (124Xe and 126Xe) and in heavy nonshielded isotopes (134Xe and 136Xe. All characteristics of Xe-X can be explained by a model of nucleosynthesis of the Xe isotopes in shock wave front passed through the He envelope during supernova events. The light isotopes are created by p process and the heavy isotopes are created by n process (slow r process). They were captured with high temperature carbon grains condensing by supernova shock waves.

  13. HUBBLE PINPOINTS DISTANT SUPERNOVAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Hubble Space Telescope images pinpoint three distant supernovae, which exploded and died billions of years ago. Scientists are using these faraway light sources to estimate if the universe was expanding at a faster rate long ago and is now slowing down. Images of SN 1997cj are in the left hand column; SN 1997ce, in the middle; and SN 1997ck, on the right. All images were taken by the Hubble telescope's Wide Field and Planetary Camera 2. The top row of images are wider views of the supernovae. The supernovae were discovered in April 1997 in a ground-based survey at the Canada-France-Hawaii Telescope on Mauna Kea, Hawaii. Once the supernovae were discovered, the Hubble telescope was used to distinguish the supernovae from the light of their host galaxies. A series of Hubble telescope images were taken in May and June 1997 as the supernovae faded. Six Hubble telescope observations spanning five weeks were taken for each supernova. This time series enabled scientists to measure the brightness and create a light curve. Scientists then used the light curve to make an accurate estimate of the distances to the supernovae. Scientists combined the estimated distance with the measured velocity of the supernova's host galaxy to determine the expansion rate of the universe in the past (5 to 7 billion years ago) and compare it with the current rate. These supernovae belong to a class called Type Ia, which are considered reliable distance indicators. Looking at great distances also means looking back in time because of the finite velocity of light. SN 1997ck exploded when the universe was half its present age. It is the most distant supernova ever discovered (at a redshift of 0.97), erupting 7.7 billion years ago. The two other supernovae exploded about 5 billion years ago. SN 1997ce has a redshift of 0.44; SN 1997cj, 0.50. SN 1997ck is in the constellation Hercules, SN 1997ce is in Lynx, just north of Gemini; and SN 1997cj is in Ursa Major, near the Hubble Deep Field

  14. Deflagrations and detonations in thermonuclear supernovae.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S

    2004-05-28

    We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast with the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae. PMID:15245271

  15. The SILCC (SImulating the LifeCycle of molecular Clouds) project - II. Dynamical evolution of the supernova-driven ISM and the launching of outflows

    NASA Astrophysics Data System (ADS)

    Girichidis, Philipp; Walch, Stefanie; Naab, Thorsten; Gatto, Andrea; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian

    2016-03-01

    The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We present three-dimensional (magneto)hydrodynamic simulations of the ISM in a vertically stratified box including self-gravity, an external potential due to the stellar component of the galactic disc, and stellar feedback in the form of an interstellar radiation field and supernovae (SNe). The cooling of the gas is based on a chemical network that follows the abundances of H+, H, H2, C+, and CO and takes shielding into account consistently. We vary the SN feedback by comparing different SN rates, clustering and different positioning, in particular SNe in density peaks and at random positions, which has a major impact on the dynamics. Only for random SN positions the energy is injected in sufficiently low-density environments to reduce energy losses and enhance the effective kinetic coupling of the SNe with the gas. This leads to more realistic velocity dispersions (σ _H I≈ 0.8σ _{300{-}8000 K}˜ 10-20 km s^{-1}, σ _H α ≈ 0.6σ _{8000-3× 10^5 K}˜ 20-30 km s^{-1}), and strong outflows with mass loading factors (ratio of outflow to star formation rate) of up to 10 even for solar neighbourhood conditions. Clustered SNe abet the onset of outflows compared to individual SNe but do not influence the net outflow rate. The outflows do not contain any molecular gas and are mainly composed of atomic hydrogen. The bulk of the outflowing mass is dense (ρ ˜ 10-25-10-24 g cm-3) and slow (v ˜ 20-40 km s-1) but there is a high-velocity tail of up to v ˜ 500 km s-1 with ρ ˜ 10-28-10-27 g cm-3.

  16. Supernova Remnants And GLAST

    SciTech Connect

    Slane, Patrick; /Harvard-Smithsonian Ctr. Astrophys.

    2011-11-29

    It has long been speculated that supernova remnants represent a major source of cosmic rays in the Galaxy. Observations over the past decade have ceremoniously unveiled direct evidence of particle acceleration in SNRs to energies approaching the knee of the cosmic ray spectrum. Nonthermal X-ray emission from shell-type SNRs reveals multi-TeV electrons, and the dynamical properties of several SNRs point to efficient acceleration of ions. Observations of TeV gamma-ray emission have confirmed the presence of energetic particles in several remnants as well, but there remains considerable debate as to whether this emission originates with high energy electrons or ions. Equally uncertain are the exact conditions that lead to efficient particle acceleration. Based on the catalog of EGRET sources, we know that there is a large population of Galactic gamma-ray sources whose distribution is similar to that of SNRs.With the increased resolution and sensitivity of GLAST, the gamma-ray SNRs from this population will be identified. Their detailed emission structure, along with their spectra, will provide the link between their environments and their spectra in other wavebands to constrain emission models and to potentially identify direct evidence of ion acceleration in SNRs. Here I summarize recent observational and theoretical work in the area of cosmic ray acceleration by SNRs, and discuss the contributions GLAST will bring to our understanding of this problem.

  17. Light Curves of Supernovae

    NASA Astrophysics Data System (ADS)

    Spencer, Michelle; Joner, Michael; Laney, David; Stoker, Emily

    2012-10-01

    Photometric Data were secured for the supernovae 2010hh, 2011dh, 2011fe and 2012aw before the dates which each individual maxima occur. The data for all supernovae were secured using the 0.9-meter telescope at the BYU West Mountain Observatory in Utah. 2010hh data were secured during the summer 2010 over the months of August to October. 2011dh and 2011fe data were secured during the summer of 2011. 2012aw data were secured during the summer of 2012. The data exposures from 2010 were secured using standard B,V and R filters. The frames for 2011 were secured using B,V, R and I filters. The 2012 supernova frames were secured in B,V and R filters. Using the data I will compare and contrast these four different supernovae and discuss their possible uses for distance determinations for the host galaxies.

  18. Berkeley automated supernova search

    SciTech Connect

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  19. The Historical Supernovae

    NASA Astrophysics Data System (ADS)

    Clark, D. H.; Stephenson, F. R.

    1982-11-01

    A survey was made of pretelescopic astronomical records from Europe, China, Korea, Japan, Babylon, and the Arab countries to search for historical evidence of supernovae. A Roman, Claudian, reported a new star in 393 AD, the same year that Chinese astronomers noted a new star, together with its location and duration. Most European records were made in monasteries after 1000 AD, and one supernova was sighted in 1006 AD. A similar sighting was made in the Arab world at the same time. A total of twenty candidate events were found in the nearly 2000 yr of Chinese records. An analysis of the recorded events characteristics indicates that in 185, 393, 1006, 1054, 1181, 1572, and 1604 AD supernovae were seen. The 1054 AD explosion was corroborated by Arab records, while all others (except for the 393 AD and 1006 AD supernovae) were confined to Oriental observations.

  20. Nucleosynthesis in Thermonuclear Supernovae

    SciTech Connect

    Claudia, Travaglio; Hix, William Raphael

    2013-01-01

    We review our understanding of the nucleosynthesis that occurs in thermonuclear supernovae and their contribution to Galactic Chemical evolution. We discuss the prospects to improve the modeling of the nucleosynthesis within simulations of these events.

  1. Automated search for supernovae

    SciTech Connect

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  2. Physics of supernovae

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1985-12-13

    Presupernova models of massive stars are presented and their explosion by ''delayed neutrino transport'' examined. A new form of long duration Type II supernova model is also explored based upon repeated encounter with the electron-positron pair instability in stars heavier than about 60 Msub solar. Carbon deflagration in white dwarfs is discussed as the probable explanation of Type I supernovae and special attention is paid to the physical processes whereby a nuclear flame propagates through degenerate carbon. 89 refs., 12 figs.

  3. Handbook of Supernovae

    NASA Astrophysics Data System (ADS)

    Athem Alsabti, Abdul

    2015-08-01

    Since the discovery of pulsars in 1967, few celestial phenomena have fascinated amateur and professional astronomers, and the public, more than supernovae - dying stars that explode spectacularly and, in so doing, may outshine a whole galaxy. Thousands of research papers, reviews, monographs and books have been published on this subject. These publications are often written either for a highly specific level of expertise or education, or with respect to a particular aspect of supernovae research. However, the study of supernovae is a very broad topic involving many integral yet connected aspects, including physics, mathematics, computation, history, theoretical studies and observation. More specifically, areas of study include historical supernovae, the different types and light curves, nucleosynthesis, explosion mechanisms, formation of black holes, neutron stars, cosmic rays, neutrinos and gravitational waves. Related questions include how supernovae remnants interact with interstellar matter nearby and how do these events affect the formation of new stars or planetary systems? Could they affect existing planetary systems? Closer to home, did any supernovae affect life on earth in the past or could they do so in the future? And on the larger scale, how did supernovae observations help measure the size and expansion of the universe? All these topics, and more, are to be covered in a new reference work, consisting of more than 100 articles and more than 1700 pages. It is intended to cover all the main facets of current supernovae research. It will be pitched at or above the level of a new postgraduate student, who will have successfully studied physics (or a similar scientific subject) to Bachelor degree level. It will be available in both print and electronic (updatable) formats, with the exception of the first section, which will consist of a review of all the topics of the handbook at a level that allows anyone with basic scientific knowledge to grasp the

  4. Positrons from supernovae

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Lingenfelter, Richard E.

    1993-01-01

    Positrons are produced in the ejecta of supernovae by the decay of nucleosynthetic Co-56, Ti-44, and Al-26. We calculate the probability that these positrons can survive without annihilating in the supernova ejecta, and we show that enough of these positrons should escape into the interstellar medium to account for the observed diffuse Galactic annihilation radiation. The surviving positrons are carried by the expanding ejecta into the interstellar medium where their annihilation lifetime of 10 exp 5 - 10 exp 6 yr is much longer than the average supernovae occurrence time of about 100 yr. Thus, annihilating positrons from thousands of supernovae throughout the Galaxy produce a steady diffuse flux of annihilation radiation. We further show that combining the calculated positron survival fractions and nucleosynthetic yields for current supernova models with the estimated supernova rates and the observed flux of diffuse Galactic annihilation radiation suggests that the present Galactic rate of Fe-56 nucleosynthesis is about 0.8 +/- 0.6 solar mass per 100 yr.

  5. Observing Supernovae and Supernova Remnants with JWST

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Temim, Tea; Williams, Brian J.; Blair, William P.

    2015-01-01

    The James Webb Space Telescope (JWST) will enable near- and mid-infrared studies of supernovae (SN) and supernova remnants (SNR) in the Milky Way and galaxies throughout the local universe and to high redshift. JWST's instrumentation provides imaging, coronography, and spectroscopy (R<3000) over the wavelength range 1-29 microns. The unprecedented sensitivity and angular resolution will enable spectroscopic study of new and recent supernovae, including molecule and dust formation, in galaxies at least out to 30 Mpc, and imaging to much greater distances. The Target of Opportunity response time can be as short as 48 hours, enabling quick follow-up observations of important SN events. JWST will be ideal for the study of Galactic and Magellanic Clouds supernova remnants, particularly young remnants with hot dust. Its high angular resolution (0.07" at 2 microns, 0.7" at 20 microns) will allow direct comparison between the IR, optical, and X-ray morphologies, identifying sites of dust emission in both the ejecta and the shocked ISM unresolved by previous IR telescopes. There is a rich spectrum of atomic lines (H, He I, [Si I], [Fe II], [Ni I-III], [Co II-III], [S III-IV], [Ar II-III], [Ne II, III, V], [O IV]) and molecules (CO, SiO, H2) of importance for SN and SNR studies. JWST is a large aperture (6.5m), cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018. The JWST observatory will be placed in an Earth-Sun L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with consumables for 10 years of science operations. The first call for proposals for JWST observations will be released in 2017.

  6. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  7. Rayleigh-Taylor mixing in supernova experiments

    NASA Astrophysics Data System (ADS)

    Swisher, N. C.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.; Abarzhi, S. I.

    2015-10-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.

  8. Rayleigh-Taylor mixing in supernova experiments

    NASA Astrophysics Data System (ADS)

    Swisher, Nora; Kuranz, Carolyn; Arnett, David; Hurricane, Omar; Remington, Bruce; Robey, Harry; Abarzhi, Snezhana

    2015-11-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor (RT) mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of RT flow in supernova experiments, and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By proper accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are identified to describe asymptotic dynamics of RT flow with time-dependent acceleration by applying theoretical analysis. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments, the RT flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; the mixing flow may keep order. Support of the National Science Foundation is warmly appreciated.

  9. Rayleigh-Taylor mixing in supernova experiments

    SciTech Connect

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-10-15

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.

  10. Supernova neutrinos: production, oscillations and detection

    NASA Astrophysics Data System (ADS)

    Mirizzi, A.; Tamborra, I.; Janka, H.-Th.; Saviano, N.; Scholberg, K.; Bollig, R.; Hüdepohl, L.; Chakraborty, S.

    Neutrinos play a crucial role in the collapse and explosion of massive stars, governing the infall dynamics of the stellar core, triggering and fueling the explosion and driving the cooling and deleptonization of the newly formed neutron star. Due to their role neutrinos carry information from the heart of the explosion and, due to their weakly interacting nature, offer the only direct probe of the dynamics and thermodynamics at the center of a supernova. In this paper, we review the present status of modelling the neutrino physics and signal formation in collapsing and exploding stars. We assess the capability of current and planned large underground neutrino detectors to yield faithful information of the time and flavor-dependent neutrino signal from a future Galactic supernova. We show how the observable neutrino burst would provide a benchmark for fundamental supernova physics with unprecedented richness of detail. Exploiting the treasure of the measured neutrino events requires a careful discrimination of source-generated properties from signal features that originate on the way to the detector. As for the latter, we discuss self-induced flavor conversions associated with neutrino-neutrino interactions that occur in the deepest stellar regions; matter effects that modify the pattern of flavor conversions in the dynamical stellar envelope; neutrino-oscillation signatures that result from structural features associated with the shock-wave propagation as well as turbulent mass motions in post-shock layers. Finally, we highlight our current understanding of the formation of the diffuse supernova neutrino background and we analyse the perspectives for a detection of this relic signal that integrates the contributions from all past core-collapse supernovae in the Universe.

  11. Dark matter triggers of supernovae

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Rajendran, Surjeet; Varela, Jaime

    2015-09-01

    The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to 1.25 M⊙ rules out primordial black holes with masses ˜1019- 1020 gm as a dominant constituent of the local dark matter density. Black holes with masses as large as 1024 gm will be excluded if recent observations by the NuStar Collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range 1020- 1022 gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism proposed in this paper can constrain a variety of other dark matter scenarios such as Q balls, annihilation/collision of large composite states of dark matter and models of dark matter where the accretion of dark matter leads to the formation of compact cores within the star. White dwarfs, with their astronomical lifetimes and sizes, can thus act as large spacetime volume detectors enabling a unique probe of the properties of dark matter, especially of dark matter candidates that have low number density. This mechanism also raises the intriguing possibility that a class of supernova may be triggered through rare events induced by dark matter rather than the conventional mechanism of accreting white dwarfs that explode upon reaching the Chandrasekhar mass.

  12. Symmetry energy impact in simulations of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias; Hempel, Matthias; Sagert, Irina; Suwa, Yudai; Schaffner-Bielich, Jürgen

    2014-02-01

    We present a review of a broad selection of nuclear matter equations of state (EOSs) applicable in core-collapse supernova studies. The large variety of nuclear matter properties, such as the symmetry energy, which are covered by these EOSs leads to distinct outcomes in supernova simulations. Many of the currently used EOS models can be ruled out by nuclear experiments, nuclear many-body calculations, and observations of neutron stars. In particular the two classical supernova EOS describe neutron matter poorly. Nevertheless, we explore their impact in supernova simulations since they are commonly used in astrophysics. They serve as extremely soft and stiff representative nuclear models. The corresponding supernova simulations represent two extreme cases, e.g., with respect to the protoneutron star (PNS) compactness and shock evolution. Moreover, in multi-dimensional supernova simulations EOS differences have a strong effect on the explosion dynamics. Because of the extreme behaviors of the classical supernova EOSs we also include DD2, a relativistic mean field EOS with density-dependent couplings, which is in satisfactory agreement with many current nuclear and observational constraints. This is the first time that DD2 is applied to supernova simulations and compared with the classical supernova EOS. We find that the overall behaviour of the latter EOS in supernova simulations lies in between the two extreme classical EOSs. As pointed out in previous studies, we confirm the impact of the symmetry energy on the electron fraction. Furthermore, we find that the symmetry energy becomes less important during the post-bounce evolution, where conversely the symmetric part of the EOS becomes increasingly dominating, which is related to the high temperatures obtained. Moreover, we study the possible impact of quark matter at high densities and light nuclear clusters at low and intermediate densities.

  13. The Most Luminous Supernovae

    NASA Astrophysics Data System (ADS)

    Sukhbold, Tuguldur; Woosley, S. E.

    2016-04-01

    Recent observations have revealed a stunning diversity of extremely luminous supernovae, seemingly increasing in radiant energy without bound. We consider simple approximate limits for what existing models can provide for the peak luminosity and total radiated energy for non-relativistic, isotropic stellar explosions. The brightest possible supernova is a Type I explosion powered by a sub-millisecond magnetar with field strength B ∼ few × {10}13 G. In extreme cases, such models might reach a peak luminosity of 2× {10}46 {erg} {{{s}}}-1 and radiate a total energy of up to 4× {10}52 {erg}. Other less luminous models are also explored, including prompt hyper-energetic explosions in red supergiants, pulsational-pair instability supernovae, pair-instability supernovae, and colliding shells. Approximate analytic expressions and limits are given for each case. Excluding magnetars, the peak luminosity is near 3× {10}44 {erg} {{{s}}}-1 for the brightest models and the corresponding limit on total radiated energy is 3× {10}51 {erg}. Barring new physics, supernovae with a light output over 3× {10}51 erg must be rotationally powered, either during the explosion itself or after, the most obvious candidate being a rapidly rotating magnetar. A magnetar-based model for the recent transient event, ASASSN-15lh is presented that strains, but does not exceed the limits of what the model can provide.

  14. Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Mccray, Richard; Li, Hong Wei

    1988-01-01

    Supernova 1987A (February 23, 1987) in the Large Magellanic Cloud is the brightest supernova to be observed since SN 1604 AD (Kepler). Detection of a burst of neutrinos indicates that a neutron star was formed. Radioactive decay of about 0.07 solar mass of Co-56 is responsible for the observed optical light as well as hard X-rays and gamma-ray lines. Ultraviolet, optical, and infrared 'light echoes' and soft X-rays provide information on the distribution of circumstellar matter and the evolution of the progenitor star.

  15. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  16. What Shapes Supernova Remnants?

    NASA Astrophysics Data System (ADS)

    Lopez, Laura A.

    2014-01-01

    Evidence has mounted that Type Ia and core-collapse (CC) supernovae (SNe) can have substantial deviations from spherical symmetry; one such piece of evidence is the complex morphologies of supernova remnants (SNRs). However, the relative role of the explosion geometry and the environment in shaping SNRs remains an outstanding question. Recently, we have developed techniques to quantify the morphologies of SNRs, and we have applied these methods to the extensive X-ray and infrared archival images available of Milky Way and Magellanic Cloud SNRs. In this proceeding, we highlight some results from these studies, with particular emphasis on SNR asymmetries and whether they arise from ``nature'' or ``nurture''.

  17. Supernova science with LCOGT

    NASA Astrophysics Data System (ADS)

    Howell, Dale A.; Valenti, S.; Sand, D. J.; Parrent, J. T.; Arcavi, I.; Graham, M. L.

    2014-01-01

    Las Cumbres Observatory Global Telescope Network (LCOGT.net) is a collection of nine robotic one meter telescopes with imagers spaced around the world in longitude, operated as a single network. There are also two robotic FLOYDS spectrographs on the two meter Faulkes telescopes in Siding Spring, Australia, and Haleakala, Hawaii. Here we describe recent supernova lightcurves and spectra with taken with LCOGT after being triggered from Pan-STARRS1, the La Silla-QUEST survey, the intermediate Palomar Transient Factory, and the IAU circulars. Since at least one telescope is always in the dark, and the facilities are robotic, LCOGT is uniquely suited to early-time supernova science.

  18. Neutrinos in supernovae

    SciTech Connect

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs.

  19. Neutrino Leakage and Supernova Explosion

    NASA Astrophysics Data System (ADS)

    Liao, Dao-Bing; Zhang, Miao-Jing; Li, Yan; Pan, Jiang-Hong; Chen, Xiu

    2015-04-01

    In the process of supernova explosion the leakage of neutrinos is very important. Adopting an one-dimensional spherically symmetrical model, and under the different neutrino leakage modes, the explosion processes of type II supernovae with masses of 12 M⊙, 14 M⊙, and 15 M⊙ are simulated numerically. The results indicate that all these different neutrino leakage modes have influences on the supernova collapse, shock propagation, and supernova explosion. The best values of the related parameters which are propitious for the type II supernova explosion are given. In addition, the impacts of the equation of state and the compression modulus on the simulated results are discussed.

  20. The Impact of Reaction Rate Uncertainties (and other nuclear physics inputs) on Nucleosynthesis in the Neutrino-p Process

    NASA Astrophysics Data System (ADS)

    Frohlich, Carla; Tang, X.; Truran, J. W.

    2009-10-01

    The neutrino-p (νp) process has been shown to be an important nucleosynthesis process, occurring in core collapse supernovae, that contributes to the synthesis of nuclei in the mass region 64<=A<=120. Such a nucleosynthesis process (in addition to the r- and s-processes) is needed to explain the observed abundance patterns in this mass region - particularly in very low metallicity stars. The νp-process consists of a sequence of (p,γ) and (n,p) or β^+ reactions, where the slowest reactions set the timescale. Nucleosynthesis studies of such events as the νp-process typically involve the use of reaction networks that include several thousand nuclei and associated reaction cross sections and lifetimes, most of which are only known theoretically. A majority of the nuclei involved are unstable and hence pose a challenge for experimental nuclear physicists. With improvements in existing facilities such as NSCL at MSU and ATLAS at ANL and with a future FRIB facility, experimental investigations of reaction rates and other nuclear quantities involving unstable nuclei will become feasible. In this talk, we will demonstrate how uncertainties in the reaction rates influence the resulting nucleosynthesis. In addition, we will identify important reactions and nuclei to be studied experimentally with upcoming techniques at the new facilities.

  1. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  2. Spectral ID of Supernova

    NASA Astrophysics Data System (ADS)

    Challis, P.; Kirshner, R.; Falco, E.; Irwin, J.; Prieto, J. L.; Stanek, K. Z.

    2015-02-01

    Spectra (range 350-760 nm) of supernovae ASASSN-15dc (ATel #7090), ASASSN-15dd and ASASSN-15de (ATel #7094), and ASASSN-15df (ATel #7097), were obtained on Feb 19, 2015 UT with the F. L. Whipple Observatory 1.5-m telescope (+ FAST).

  3. Supernova Photometric Lightcurve Classification

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  4. Core-collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Baird, Mark L; Chertkow, Merek A; Lee, Ching-Tsai; Blondin, J. M.; Bruenn, S. W.; Messer, Bronson; Mezzacappa, Anthony

    2013-01-01

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10$^{51}$ ergs of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  5. MSW Process in Supernovae

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Esposito, S.; Gualdi, C.; Santorelli, P.

    We show that with the muon neutrino mass which is necessary for explaining the solar neutrino problem through MSW mechanism, mν μ ˜ 2× 10-3\\ eV and mν τ ˜ (mt/m_c)2 mν μ , we expect different spectra for νe and /line{ν e} coming from supernovae.

  6. Supernova Confetti in Meteorites

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2010-11-01

    Chromium has four isotopes, with atomic weights of 50, 52, 53, and 54. In terrestrial rocks the isotopes behave in predictable ways, with their variations in relative abundance governed by geochemical processes. In contrast, some meteorites have deviant abundances of the heaviest (hence the one with the most neutrons) Cr isotope, chromium-54. These anomalies in isotopic composition are almost certainly caused by nuclear reactions in stars that existed before our Sun was formed. However, the mineralogical carrier of the special chromium-54 was not known until Nicolas Dauphas (University of Chicago) and eight colleagues there and at the California Institute of Technology, the Museum National d'Histoire Naturelle in Paris, the Jet Propulsion Laboratory, and the Universite de Lille (France) made detailed analyses of chemical and physical separates from the Orgueil and Murchison carbonaceous chondrites. They found that the carrier of the isotopically-anomalous Cr is spinel, Cr-bearing oxide grains generally smaller than 100 nanometers. Only supernovae can produce the chromium-54 anomalies, although which specific type of supernova is not clear. An intriguing possibility is that the chromium-54-rich nano-oxide particles were produced in the same supernova that made two other short-lived isotopes, iron-60 and aluminum-26, which also existed in the Solar System when it formed. This suggests that formation of the Solar System was triggered by a supernova explosion.

  7. The r-, s-, and p-Processes in Nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Meyer, Bradley S.

    1994-01-01

    A goal of this paper is to review the recent progress astrophysicists, astronomers, and physicists have made in the r-, s-, and p-processes in nucleosynthesis and to point out the problems that remain in our understanding of the formation of the heavy nuclei. Another, perhaps deeper, goal is to to seek some understanding of why there are three major processes available to nature for synthesis of heavy elements.

  8. A DYNAMICAL STUDY OF SUSPECTED RUNAWAY STARS AS TRACES OF PAST SUPERNOVA EXPLOSIONS IN THE REGION OF THE SCORPIUS-CENTAURUS OB ASSOCIATION

    SciTech Connect

    Jilinski, E.; Ortega, V. G.; Drake, N. A.; De la Reza, R.

    2010-09-20

    We address the question of identifying possible past supernovae events taking place in the region of the Scorpius-Centaurus (Sco-Cen) OB association based on stars proposed by Hoogerwerf et al. With this purpose, we obtained a time series of high-resolution spectra of six stars (HIP 42038, HIP 46950, HIP 48943, HIP 69491, HIP 76013, and HIP 82868) which, according to Hoogerwerf et al., may have been runaway stars with origins in the region of the Sco-Cen association. This also includes the nearby young open clusters IC 2391 and IC 2602. If confirmed, such supernovae events could, in principle, have played a role in triggering the formation of some small stellar groups thought to be associated with the Sco-Cen association. Our analysis shows that, except for HIP 48943, the remaining stars are spectroscopic binary systems. For HIP 46950 and HIP 69491, this was already noted by other authors. Our high-resolution spectra allowed us to obtain the radial velocities for all the stars which, combined with their proper motions and parallaxes from Hipparcos, provide a means to investigate, by retracing their orbits, if the Sco-Cen region was, in fact, the origin of these stars. We find that none of these systems originated in the Sco-Cen region. Exploring the possibility that the birthplace of the studied stars occurred in the clusters IC 2391 and IC 2602, we noticed that at the epoch of 2-3 Myr ago these clusters were at a distance comparable with their tidal radii.

  9. The r-, s-, and p-Processes in Nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Meyer, Bradley S.

    1994-01-01

    Burbidge et al (1957) and Cameron (1957) laid out the framework for our understanding of the formation of the heavy nuclei (those nuclei with mass number A approx. greater than 70). From systematics in the solar system abundance distribution, Burbidge et al determined that the heavy nuclei were formed in three distinct nucleosynthetic processes, which they termed the r-, s-, and p-processes. That we still use these terms today is a credit to the soundness of this work done 37 years ago. We may understand how Burbidge et al and Cameron arrived at their conclusions from Figure 1. One population of nuclei, the s-nuclei, shows an abundance distribution with peaks near mass numbers 87, 138, and 208. These nuclei are made in a slow neutron-capture process, the s-process. A rapid neutron-capture process, the r-process, is responsible for the r-nuclei, whose abundance distribution shows peaks at mass numbers 80, 130, and 195. The p-process is responsible for production of the rarer, more proton-rich heavy isotopes (the p-nuclei) that cannot be made by neutron capture. The first quantitative evaluations of the ideas of Burbidge et al and Cameron came to light in the early 1960s with work on the s-process (Clayton et al 1961, Seeger et al 1965) and the r-process (Seeger et al 1965). These calculations further elucidated the mechanisms for heavy-element formation and showed the plausibility of the framework developed in the 1950s. Subsequent work has focused on determining the astrophysical sites where the r-, s-, and p-processes occurred with the help of improved nuclear details, stellar models, and abundances. A goal of this paper is to review the recent progress astrophysicists, astronomers, and physicists have made in these directions and to point out the problems that remain in our understanding of the formation of the heavy nuclei. Another, perhaps deeper, goal is to to seek some understanding of why there are three major processes available to nature for synthesis of

  10. Supernova Science Center

    SciTech Connect

    S. E. Woosley

    2008-05-05

    The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

  11. Core bounce supernovae

    SciTech Connect

    Cooperstein, J.

    1987-01-01

    The gravitational collapse mechanism for Type II supernovae is considered, concentrating on the direct implosion - core bounce - hydrodynamic explosion picture. We examine the influence of the stiffness of the dense matter equation of state and discuss how the shock wave is formed. Its chances of success are determined by the equation of state, general relativistic effects, neutrino transport, and the size of presupernova iron core. 12 refs., 1 tab.

  12. Radio emission from supernovae.

    NASA Astrophysics Data System (ADS)

    Weiler, K. W.; Panagia, N.; Sramek, R. A.; Van Dyk, S. D.; Stockdale, C. J.; Williams, C. L.

    Study of radio supernovae over the past 30 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85 - 110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements. 2) At a time ˜3100 days after shock breakout, the decline rate of the radio emission steepens from (t+beta ) beta ˜ -0.7 to beta ˜ -2.7 without change in the spectral index (nu +alpha ; alpha ˜ -0.81). This decline is best described not as a power-law, but as an exponential decay with an e-folding time of ˜ 1100 days. 3) The best overall fit to all of the data is a model including both non-thermal synchrotron self-absorption (SSA) and a thermal free-free absorbing (FFA) components at early times, evolving to a constant spectral index, optically thin decline rate, until a break in that decline rate at day ˜3100, as mentioned above.

  13. Are There Hidden Supernovae?

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Harker, David; Dunham, E.; Rank, David; Temi, Pasquale

    1997-01-01

    Ames Research Center and UCSC have been working on the development of a Mid IR Camera for the KAO in order to search for extra galactic supernovae. The development of the camera and its associated data reduction software have been successfully completed. Spectral Imaging of the Orion Bar at 6.2 and 7.8 microns demonstrates the derotation and data reduction software which was developed.

  14. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  15. The Origin of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Patnaude, Daniel J.; Badenes, Carles; Park, Sangwook; Laming, J. Martin

    2012-09-01

    It is now well established that Kepler's supernova remnant (SNR) is the result of a Type Ia explosion. With an age of 407 yr and an angular diameter of ~4', Kepler is estimated to be between 3.0 and 7.0 kpc distant. Unlike other Galactic Type Ia SNRs such as Tycho and SN 1006, and SNR 0509-67.5 in the Large Magellanic Cloud, Kepler shows evidence for a strong circumstellar interaction. A bowshock structure in the north is thought to originate from the motion of a mass-losing system through the interstellar medium prior to the supernova. We present results of hydrodynamical and spectral modeling aimed at constraining the circumstellar environment of the system and the amount of 56Ni produced in the explosion. Using models that contain either 0.3 M ⊙ (subenergetic) or 1.0 M ⊙ (energetic) of 56Ni, we simulate the interaction between supernova Ia ejecta and various circumstellar density models. Based on dynamical considerations alone, we find that the subenergetic models favor a distance to the SNR of <6.4 kpc, while the model that produces 1 M ⊙ of 56Ni requires a distance to the SNR of >7 kpc. The X-ray spectrum is consistent with an explosion that produced ~1 M ⊙ of 56Ni, ruling out the subenergetic models, and suggesting that Kepler's SNR was an SN 1991T-like event. Additionally, the X-ray spectrum rules out a pure r -2 wind profile expected from isotropic mass loss up to the time of the supernova. Introducing a small cavity around the progenitor system results in modeled X-ray spectra that are consistent with the observed spectrum. If a wind-shaped circumstellar environment is necessary to explain the dynamics and X-ray emission from the shocked ejecta in Kepler's SNR, then we require that the distance to the remnant be greater than 7 kpc.

  16. Highlight on Supernova Early Warning at Daya Bay

    NASA Astrophysics Data System (ADS)

    Wei, Hanyu

    Providing an early warning of supernova burst neutrinos is of importance in studying both supernova dynamics and neutrino physics. The Daya Bay Reactor Neutrino Experiment, with a unique feature of multiple liquid scintillator detectors, is sensitive to the full energy spectrum of supernova burst electron-antineutrinos. By utilizing 8 Antineutrino Detectors (ADs) in the three different experimental halls which are about 1 km's apart from each other, we obtain a powerful and prompt rejection of muon spallation background than single-detector experiments with the same target volume. A dedicated trigger system embedded in the data acquisition system has been installed to allow the detection of a coincidence of neutrino signals of all ADs via an inverse beta-decay (IBD) within a 10-second window, thus providing a robust early warning of a supernova occurrence within the Milky Way. An 8-AD associated supernova trigger table has been established theoretically to tabulate the 8-AD event counts' coincidence vs. the trigger rate. As a result, a golden trigger threshold, i.e. with a false alarm rate < 1/3-months, can be set as low as 6 candidates among the 8 detectors, leading to a 100% detection probability for all 1987A type supernova bursts at the distance to the Milky Way center and a 96% detection probability to those at the edge of the Milky Way.

  17. Supernovae and neutrinos

    SciTech Connect

    John F. Beacom

    2002-09-19

    A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  18. Galaxy Outflows Without Supernovae

    NASA Astrophysics Data System (ADS)

    Sur, Sharanya; Scannapieco, Evan; Ostriker, Eve C.

    2016-02-01

    High surface density, rapidly star-forming galaxies are observed to have ≈50-100 km s-1 line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s-1, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M⊙ yr-1 kpc-2. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  19. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  20. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.

    2015-02-01

    Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  1. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    SciTech Connect

    Tartaglia, L.

    2015-02-24

    Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  2. Supernova Discoveries from the Nearby Supernova Factory (SNfactory)

    DOE Data Explorer

    SNfactory International Collaboration,

    The Nearby Supernova Factory is an experiment designed to collect data on more Type Ia supernovae than have ever been studied in a single project before, and in so doing, to answer some fundamental questions about the nature of the universe. Type Ia supernovae are extraordinarily bright, remarkably uniform objects which make excellent "standard candles" for measuring the expansion rate of the universe. However, such stellar explosions are very rare, occurring only a couple of times per millenium in a typical galaxy, and remaining bright enough to detect only for a few weeks. Previous studies of Type Ia supernovae led to the discovery of the mysterious "dark energy" that is causing the universe to expand at an accelerating rate. To reduce the statistical uncertainties in previous experimental data, extensive spectral and photometric monitoring of more Type Ia supernovae is required. The SNfactory collaboration has built an automated system consisting of specialized software and custom-built hardware that systematically searches the sky for new supernovae, screens potential candidates, then performs multiple spectral and photometric observations on each supernova. These observations are stored in a database to be made available to supernova researchers world-wide for further study and analysis [copied from http://snfactory.lbl.gov/snf/snf-about.html]. Users must register and agree to the open access honor system. Finding charts are in FITS format and may not be accessible through normal browser settings.

  3. Exploring the {alpha}p-process with Grand Raiden

    SciTech Connect

    O'Brien, S.; Berg, G. P. A.; Couder, M.; Goerres, J.; Patel, D.; Sault, K.; Wiescher, M.; Adachi, T.; Hatanaka, K.; Ishikawa, D.; Matsubara, H.; Okamura, H.; Ong, H. J.; Suzuki, T.; Tamii, A.; Zenihiro, J.; Dozono, M.; Wakasa, T.; Fujita, H.; Fujita, Y.

    2009-01-28

    {sup 22}Mg, {sup 30}S, {sup 34}Ar and {sup 38}Ca have been investigated using (p,t) reactions at RCNP with the intent of identifying energy levels in nuclei that determine the reaction rates along the pathway of the {alpha}p-process. These experiments exploit the high resolution and 0 deg. capabilities of the Grand Raiden spectrometer and the WS beamline, which can deliver a fully dispersion matched beam to target. The level information is vital to understanding the nucleosynthesis occurring during explosive hydrogen burning, which, for example, is thought to occur during type I X-ray bursts. In the case of {sup 22}Mg, new reaction rate calculations have been performed for the {sup 18}Ne({alpha},p){sup 21}Na reaction. The experimental technique will be discussed, and the experimental results will be presented.

  4. Nuclear physics experiments for the astrophysical p process

    NASA Astrophysics Data System (ADS)

    Sauerwein, A.; Elvers, M.; Endres, J.; Hasper, J.; Hennig, A.; Netterdon, L.; Zilges, A.

    2011-04-01

    We studied the two astrophysically interesting reactions 141PrPm and 92MoTc with the activation method and with the in-beam method, respectively. The 141PrPm experiment was performed at the cyclotron of the ‘Physikalisch Technische Bundesanstalt (PTB)’ in Braunschweig, Germany, and the reaction was studied within and just above the so-called Gamow window. In this proceedings, we present the experimental details of this measurement. The proton-capture reaction on the neutron-magic nucleus 92Mo was studied at energies relevant for the astrophysical p process. The reaction was investigated by the in-beam technique using the γ-ray detector array HORUS (High efficient Observatory for γ-Ray Unique Spectroscopy) at the TANDEM ion accelerator at the University of Cologne. The preliminary experimental results are compared to data stemming from other measurements.

  5. Gravitational Lensing of Supernova Neutrinos

    SciTech Connect

    Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  6. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  7. Cosmology with superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.

    2016-02-01

    We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.

  8. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  9. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  10. Radio Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2007-10-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect clumpiness of the circumstellar material. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85-110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements rather well. 2) At mid-cm wavelengths there is often deviation from the fitted radio light curves, particularly near the peak flux density, and considerable shorter term deviations in the declining portion when the emission has become optically thin. 3) At a time ~3100 days after shock breakout, the decline rate of the radio emission steepens from (t+β)β~-0.7 to β~-2.7 without change in the spectral index (ν+αα~-0.81). However, this decline is best described not as a power-law, but as an exponential decay starting at day ~3100 with an e-folding time of ~1100 days. 4) The best overall fit to all of the data is

  11. Neutrino Physics in Supernovae

    NASA Astrophysics Data System (ADS)

    Dineva, Tamara Simeonova

    1997-11-01

    The models of exploding stars-supernovae-do not explode. This dissertation investigates the transfer of energy from the interior to the outer layers in such stars to try to understand what is missing in these models that would solve the supernova problem. Hydrodynamic instabilities and aspects in the microphysics of the neutrino transport in postcollapsed stellar matter are considered. In Chapter II we derive criteria for the presence of doubly diffusive instabilities believed to be essential for producing a supernova explosion. Contrary to the widely accepted view, we find that the core, if unstable, is unstable to semiconvection, rather than to neutron fingers. A critical value for the lepton fraction, Yl, is found for a given density and entropy, below which the stellar core is completely stable to instabilities. A considerable fraction of the stellar core is found to lie below the critical Yl. As the core evolves this fraction quickly encompasses the entire core. Thus doubly diffusive instabilities of any kind are unlikely to play a role in the supernova explosion mechanism. A strong magnetic field may modify the neutrino-nucleon absorption rates which are critical for shock reheating. In Chapter III we derive the cross section of neutrino absorption on neutrons in the presence of a strong magnetic field. We calculate values for the neutrino inverse mean free path and numerically compare them to the values in the non magnetic case. We find that they exhibit an oscillatory behavior, with huge peaks present due to discontinuities in the density of state. We conclude that the presence of a strong magnetic field does not yield a dramatic reduction in the inverse mean free paths which would be necessary to substantially increase the neutrino luminosity and revive the shock. Neutrino-neutrino scattering in the vicinity of the neutrino sphere may modify the neutrino luminosities and therefore affect shock reheating. In the last Chapter we calculate the neutrino

  12. Radio Emission from Supernovae

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-05-03

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  13. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  14. Nearby Supernova Factory II classification of Five Supernovae

    NASA Astrophysics Data System (ADS)

    Benitez, S.; Hillebrandt, W.; Kromer, M.; Sasdelli, M.; Sternberg, A.; Taubenberger, S.; Baugh, D.; Chen, J.; Chotard, N.; Wu, C.; Tao, C.; Fouchez, D.; Tilquin, A.; Hadjiyska, E.; Rabinowitz, D.; Baltay, C.; Ellman, N.; McKinnon, R.; Walker, E.; Effron, A.; Cellier-Holzem, F.; Canto, A.; Antilogus, P.; Bongard, S.; Pain, R.; Copin, Y.; Gangler, E.; Pereira, R.; Rigault, M.; Smadja, G.; Aldering, G.; Birchall, D.; Fakhouri, H.; Kim, A.; Nordin, J.; Nugent, P.; Perlmutter, S.; Runge, K.; Saunders, C.; Suzuki, N.; Pecontal, R. C. Thomas E.; Feindt, U.; Kowalski, M.

    2013-04-01

    ports the following spectroscopic observations of supernovae based on spectra (range 320-1000 nm) obtained with the SuperNova Integral Field Spectrograph (Aldering et al 2002, SPIE, 4836, 61) on the University of Hawaii 2.2-meter telescope. Classifications were performed using Superfit (Howell et al 2002, BAAS, 34, 1256) or SNID (Blondin & Tonry, 2007, ApJ, 666, 1024). Heliocentric redshifts listed to two decimal places are measured from supernova features; all others are published values or measured by us from host galaxy features.

  15. The nearby supernova factory

    SciTech Connect

    Wood-Vasey, W.M.; Aldering, G.; Lee, B.C.; Loken, S.; Nugent, P.; Perlmutter, S.; Siegrist, J.; Wang, L.; Antilogus, P.; Astier, P.; Hardin, D.; Pain, R.; Copin, Y.; Smadja, G.; Gangler, E.; Castera, A.; Adam, G.; Bacon, R.; Lemonnier, J.-P.; Pecontal, A.; Pecontal, E.; Kessler, R.

    2004-01-23

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe Ia) at redshifts 0.03 < z < 0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to {approx}12 SNe/month in 2003.

  16. Automated Supernova Discovery (Abstract)

    NASA Astrophysics Data System (ADS)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  17. Supernova Explosion Physics

    NASA Astrophysics Data System (ADS)

    Kundt, Wolfgang

    Quite likely, all supernovae are core-collapse supernovae. When the progenitor star's burnt-out core contracts under its own gravity - on the time scale of seconds - angular-momentum conservation raises its spin energy as 1/r 2, towards some 1052.5erg, whilst neutron-degeneracy pressure halts the collapse at a neutron star's radius, some 106cm. Magnetic-flux winding will then tap the core's large spin energy - on the time scale of ≲ 30s - bringing the spin period P into the range of neutron-star birth periods - ms < P < 10 s - and transferring the excess angular momentum to the overlying mantle. Subsequent reconnection of the huge toroidal magnetic fields creates a magnetized relativistic cavity, both leptons and hadrons, with particle energies up to 1020eV, ready to launch the envelope (via adiabatic expansion, through some 107 in radius). Magnetic Rayleigh-Taylor instabilities tear and squeeze the ejected shell into a large number (> 104) of filamentary fragments, like a splinter bomb.

  18. HST Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Suzuki, Nao; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L.; Brodwin, M.; Connolly, N.; Dawson, K.; de Jong, R.; Dey, A.; Doi, M.; Donahue, M.; Eisenhardt, P.; Ellingson, E.; Faccioli, L.; Fadeyev, V.; Fakhouri, H.; Fruchter, A.; Gilbank, D.; Gladders, M.; Goldhaber, G.; Gonzalez, A.; Goobar, A.; Gude, A.; Hennawi, J.; Hoekstra, H.; Hsiao, E.; Huang, X.; Ihara, Y.; Jannuzi, B.; Jee, M. J.; Koester, B.; Kowalski, M.; Lidman, C.; Linder, E.; Lubin, L.; Morokuma, T.; Perlmutter, S.; Postman, M.; Rhodes, J.; Rosati, P.; Ripoche, P.; Rubin, D.; Schlegel, D.; Spadafora, A.; Stanford, A.; Stern, D.; Yasuda, N.; Yee, H.; Cosmology Project, Supernova

    2010-01-01

    We report results from the Hubble Space Telescope (HST) Cluster Supernova Survey with the Advanced Camera for Surveys (ACS) (PI: Perlmutter; see Dawson et al. AJ, 2009). We have introduced a novel approach to discover and follow Type Ia supernovae (SNeIa). With HST, we monitored 25 massive clusters (0.9 < z < 1.4) found by the RCS, XMM, IRAC, and RDCS surveys and conducted spectroscopic observations with the Keck, Subaru, and VLT telescopes. Sixteen SNe were discovered at 0.95 < z < 1.41, nine of which were in galaxy clusters (for a discussion of the rates, see K. Barbary, oral presentation at this meeting). The SNe in galaxy clusters are found primarily in early type galaxies in the cluster red-sequence that have been shown to be nearly dust-free and uniform populations (see poster presentation by Meyers et al.). The reduction and control of systematic error is an urgent task for the study of dark energy today (see Rubin et al. poster presentation), and we discuss how this unique SNe Ia data set reduces both statistical and more importantly systematic uncertainty at the highest redshifts. This work has been supported by the Office of Science, U.S. Department of Energy, through contract DE-AC02-05CH11231 and in part by NASA through grants associated with HST-GO-10496.

  19. Du Pont Classifications of 6 Supernovae

    NASA Astrophysics Data System (ADS)

    Morrell, N.; Shappee, Benjamin J.

    2016-06-01

    We report optical spectroscopy (range 370-910 nm) of six supernovae from the Backyard Observatory Supernova Search (BOSS) and the All-Sky Automated Survey for Supernovae (ASAS-SN) using the du Pont 2.5-m telescope (+ WFCCD) at Las Campanas Observatory on June 17 2016 UT. We performed a cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  20. Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M⊙ supernova model

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz

    2015-03-01

    In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.

  1. The LCOGT Supernova Key Project

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew; Arcavi, Iair; Hosseinzadeh, Griffin; McCully, Curtis; Valenti, Stefano; Lcogt Supernova Key Project

    2015-01-01

    I present first results from the Las Cumbres Observatory Global Telescope Network (LCOGT) Supernova Key Project. LCOGT is a network of 11 robotic one and two meter telescopes spaced around the globe with imaging and spectroscopic capabilities. The supernova key project is a 3 year program to obtain lightcurves and spectra of at least 450 supernovae. About half are expected to be core-collapse supernovae, and half thermonuclear. We will start light curves and spectroscopy within hours of discovery, and focus on those SNe caught soon after explosion. The goals are fivefold: (1) observe supernovae soon after explosion to search for signs of their progenitors, (2) obtain a large homogeneous sample of supernovae for next generation cosmological studies, (3) obtain a large sample of supernovae for statistical studies comparing groups that are split into different populations, (4) obtain some of the first large samples of the recently discovered classes of rare and exotic explosions, (5) obtain the optical light curves and spectroscopy in support of studies at other wavelengths and using other facilities including UV observations, IR imaging and spectroscopy, host galaxy studies, high resolution spectroscopy, and late-time spectroscopy with large telescopes.

  2. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Oertel, Micaela; Margueron, Jérôme; Faure, Julien; Martin, Noël; Blottiau, Patrick; Peres, Bruno; Durand, Gilles

    2015-03-01

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the centre of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernova remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as standing accretion shock instability and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. The potential of this complementary research tool for supernova theory is analysed. We also review its potential for public outreach in science museums.

  3. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    SciTech Connect

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Faure, Julien; Martin, Noël; Blottiau, Patrick; Peres, Bruno; Durand, Gilles

    2015-03-17

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernova remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.

  4. Supernovae in paired galaxies

    NASA Astrophysics Data System (ADS)

    Nazaryan, T. A.; Petrosian, A. R.; Hakobyan, A. A.; Adibekyan, V. Zh.; Kunth, D.; Mamon, G. A.; Turatto, M.; Aramyan, L. S.

    2014-07-01

    We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. The distributions and mean distances of SNe are consistent with previous results compiled with the larger sample. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies.

  5. Fritz Zwicky: Novae Become Supernovae

    NASA Astrophysics Data System (ADS)

    Koenig, T.

    2005-12-01

    The Swiss physicist Fritz Zwicky (1898-1974) dabbled in a plethora of disciplines, including astronomy and astrophysics. His dabblings were with vested interest and he has left quite an impact. His first great success was his nova research. In the early 1930s, while supermarkets and Superman were flying, he labelled the distinctly brighter nova Supernova. It had been believed that novae were the collision of two stars, but Zwicky came to recognize supernovae as a phenomenon quite distinct from novae. He and Walter Baade explained supernova by melding astronomy and physics and in this aim they created neutron stars, explained the origin of cosmic rays, initiated the first sky survey, and confirmed that a number of historical novae were indeed supernovae. This was truly an important work in the history of astrophysics.

  6. Spectroscopic classification of supernova candidates

    NASA Astrophysics Data System (ADS)

    Hodgkin, S. T.; Hall, A.; Fraser, M.; Campbell, H.; Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Pietro, N.

    2014-09-01

    We report the spectroscopic classification of four supernovae at the 2.5m Isaac Newton Telescope on La Palma, using the Intermediate Dispersion Spectrograph and the R300V grating (3500-8000 Ang; ~6 Ang resolution).

  7. Supernovae. Part I: the events

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia

    1982-10-01

    Since the heroic era of Baade and Zwicky, our understanding of supernovae has advanced in hops and skips rather than steadily. The most recent jump has been into fairly general agreement that observations of Type I's can be interpreted as the manifestation of the decay of about 1Msolar of Ni56 and observations of Type II's as the manifestation of >~1051 ergs deposited at the bottom of a supergiant envelope by core bounce as a central neutron star forms. This paper explores the history of these and other ideas of what is going on in supernovae, the presupernova evolution of the parent stars and binary systems, observed properties of the events, and models for them. A later paper (Part II: the aftermath) will address the results of supernovae-their remnants, production of cosmic rays and gamma rays, nucleosynthesis, and galactic evolution-and the future of supernova research.

  8. Supernova olivine from cometary dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (<0.8 times solar), indicative of formation from a type II supernova. The aggregate contains olivine (forsterite 83) grains <100 nanometers in size, with microstructures that are consistent with minimal thermal alteration. This unusually iron-rich olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  9. Simulation of Kepler Supernova Explosion

    NASA Video Gallery

    This video shows a simulation of the Kepler supernova as it interacts with material expelled by the giant star companion to the white dwarf before the latter exploded. It was assumed that the bulk ...

  10. Turbulent Flames in Supernovae

    NASA Astrophysics Data System (ADS)

    Khokhlov, A. M.

    1994-05-01

    First results of three-dimensional simulations of a thermonuclear flame in Type Ia supernovae are obtained using a new flame-capturing algorithm, and a PPM hydrodynamical code. In the absence of gravity, the flame is stabilized with respect to the Landau (1944) instability due to the difference in the behaviour of convex and concave portions of the perturbed flame front. The transition to turbulence in supernovae occurs on scales =~ 0.1 - 10 km in agreement with the non-linear estimate lambda =~ 2pi D(2_l/geff) based on the Zeldovich (1966) model for a perturbed flame when the gravity acceleration increases; D_l is the normal speed of the laminar flame, and geff is the effective acceleration. The turbulent flame is mainly spread by large scale motions driven by the Rayleigh-Taylor instability. Small scale turbulence facilitates rapid incineration of the fuel left behind the front. The turbulent flame speed D_t approaches D_t =~ U', where U' is the root mean square velocity of turbulent motions, when the turbulent flame forgets initial conditions and reaches a steady state. The results indicate that in a steady state the turbulent flame speed should be independent of the normal laminar flame speed D_l. The three-dimensional results are in sharp contrast with the results of previous two-dimensional simulations which underestimate flame speed due to the lack of turbulent cascade directed in three dimensions from big to small spatial scales. The work was supported by the NSF grants AST 92-18035 and AST 93-005P.

  11. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  12. How Bright Can Supernovae Get?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  13. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    SciTech Connect

    Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo InterAmerican Obs. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /UC, Berkeley, Astron. Dept. /NOAO, Tucson /Inst. Astron., Honolulu /Res. Sch. Astron. Astrophys., Weston Creek /Washington U., Seattle, Astron. Dept. /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /Ohio State U., Dept. Astron. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Stockholm U.

    2007-01-08

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

  14. Pulsar-supernova remnant associations

    NASA Astrophysics Data System (ADS)

    Manchester, R. N.

    1994-04-01

    Pulsars and supernova remnants (SNRs) are both believed to be formed in the supernova explosions of massive stars. Therefore one might expect to see associations between the two classes of object. In fact, up until a couple of years ago, there was only a handful of believable associations and even now there are only nine or ten. It is relatively easy to explain why such a small fraction of the 600 or so known pulsars are associated with supernova remnants. The average pulsar lifetime is of the order of 106 years, whereas the average supernova remnant is detectable for about 104 years. Therefore, one would expect only about one percent of pulsars to be still associated, as is observed. It is somewhat more difficult to explain why so few of the 150 known supernova remnants have associated pulsars. The main factor is that supernova remnants are seen throughout the Galaxy whereas most pulsars are detectable only relatively close to the Sun, within a few kiloparsec. Another factor is that pulsar emission is beamed, so even if a pulsar exists in a relatively nearby supernova remnant, it may be undetectable. The most believable of the suggested associations are listed. Associations which are possible but by no means certain are indicated by question mark. For the more certain associations, the pulsar position is within the SNR boundaries (an exception is 'The Duck', where the pulsar is at the tip of the 'beak'), the distance estimates for the pulsar and SNR are compatible, and the age estimates are likewise compatible. References to most of these associations may be found in the pulsar catalog of Taylor, Manchester and Lyne (1993, Astrophys. J. Suppl., 88, 529). Recent references not included in the catalog are for PSR B1706-44 (McAdam, Osborne and Parkinson, 1993, Nature, 361, 516) and PSR B2334+61 (Kulkarni et al., 1993, Nature, 362, 135).

  15. Supernova Explosions Stay In Shape

    NASA Astrophysics Data System (ADS)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular

  16. Light-echo spectroscopy of historic Supernovae

    NASA Astrophysics Data System (ADS)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  17. Nucleosynthesis in Early Supernova Winds II: The Role of Neutrinos

    SciTech Connect

    Pruet, J; Hoffman, R; Woosley, S; Janka, H; Buras, R

    2005-11-04

    One of the outstanding unsolved riddles of nuclear astrophysics is the origin of the so called ''p-process'' nuclei from A = 92 to 126. Both the lighter and heavier p-process nuclei are adequately produced in the neon and oxygen shells of ordinary Type II supernovae, but the origin of these intermediate isotopes, especially {sup 92,94}Mo and {sup 96,98}Ru, has long been mysterious. Here we explore the production of these nuclei in the neutrino-driven wind from a young neutron star. We consider such early times that the wind still contains a proton excess because the rates for {nu}{sub e} and positron captures on neutrons are faster than those for the inverse captures on protons. Following a suggestion by Froehlich et al. (2005), they also include the possibility that, in addition to the protons, {alpha}-particles, and heavy seed, a small flux of neutrons is maintained by the reaction p({bar {nu}}{sub e}, e{sup +})n. This flux of neutrons is critical in bridging the long waiting points along the path of the rp-process by (n,p) and (n,{gamma}) reactions. Using the unmodified ejecta histories from a recent two-dimensional supernova model by Janka, Buras, and Rampp (2003), they find synthesis of p-rich nuclei up to {sup 102}Pd. However, if the entropy of these ejecta is increased by a factor of two, the synthesis extends to {sup 120}Te. Still larger increases in entropy, that might reflect the role of magnetic fields or vibrational energy input neglected in the hydrodynamical model, result in the production of numerous r-, s-, and p-process nuclei up to A {approx} 170, even in winds that are proton-rich.

  18. A Supernova's Shockwaves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Supernovae are the explosive deaths of the universe's most massive stars. In death, these volatile creatures blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them.

    This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one such explosion. The remnant, called N132D, is the wispy pink shell of gas at the center of this image. The pinkish color reveals a clash between the explosion's high-energy shockwaves and surrounding dust grains.

    In the background, small organic molecules called polycyclic aromatic hydrocarbons are shown as tints of green. The blue spots represent stars in our galaxy along this line of sight.

    N132D is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud.

    In this image, infrared light at 4.5 microns is mapped to blue, 8.0 microns to green and 24 microns to red. Broadband X-ray light is mapped purple. The infrared data were taken by Spitzer's infrared array camera and multiband imaging photometer, while the X-ray data were captured by Chandra.

  19. Supernovae. Old supernova dust factory revealed at the Galactic center.

    PubMed

    Lau, R M; Herter, T L; Morris, M R; Li, Z; Adams, J D

    2015-04-24

    Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of ~0.02 solar masses of warm (~100 kelvin) dust seen near the center of the ~10,000-year-old Sagittarius A East SNR at the Galactic center. Our findings indicate the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium (electron density ~10(3) centimeters(-3)) and has survived the passage of the reverse shock. The results suggest that supernovae may be the dominant dust-production mechanism in the dense environment of galaxies of the early universe. PMID:25791082

  20. Spectral ID of supernova ASASSN-15kz

    NASA Astrophysics Data System (ADS)

    Challis, P.; Kirshner, R.; Falco, E.; Berlind, P.; Prieto, J. L.; Stanek, K. Z.

    2015-06-01

    Spectra (range 350-760 nm) of supernovae ASASSN-15kz (ATEL 7625) was obtained on June 13, 2015 UT with the F. L. Whipple Observatory 1.5-m telescope (+ FAST). Cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J. 666, 1024) indicates the spectrum of ASASSN-15kz is a IIP supernova at early phase.

  1. Supernova explosions in the Universe.

    PubMed

    Burrows, A

    2000-02-17

    During the lifetime of our Milky Way galaxy, there have been something like 100 million supernova explosions, which have enriched the Galaxy with the oxygen we breathe, the iron in our cars, the calcium in our bones and the silicon in the rocks beneath our feet. These exploding stars also influence the birth of new stars and are the source of the energetic cosmic rays that irradiate us on the Earth. The prodigious amount of energy (approximately 10(51), or approximately 2.5 x 10(28) megatonnes of TNT equivalent) and momentum associated with each supernova may even have helped to shape galaxies as they formed in the early Universe. Supernovae are now being used to measure the geometry of the Universe, and have recently been implicated in the decades-old mystery of the origin of the gamma-ray bursts. Together with major conceptual advances in our theoretical understanding of supernovae, these developments have made supernovae the centre of attention in astrophysics. PMID:10693794

  2. Supernova Nucleosynthesis and Galactic Evolution

    NASA Astrophysics Data System (ADS)

    Thielemann, F.-K.; Argast, D.; Brachwitz, F.; Hix, W. R.; Höflich, P.; Liebendörfer, M.; Martinez-Pinedo, G.; Mezzacappa, A.; Nomoto, K.; Panov, I.

    The understanding of the abundance evolution in the interstellar medium, and especially the enrichment of heavy elements, as a function of space and time reflects the history of star formation and the lifetimes of the diverse contributing stellar objects. Therefore, the understanding of the endpoints of stellar evolution is essential. These are mainly planetary nebulae and type II/Ib/Ic supernovae as evolutionary endpoints of single stars, but also events in binary systems can contribute, like e.g. supernovae of type Ia, novae and possibly X-ray bursts and neutron star or neutron star - black hole mergers. Despite many efforts, a full and self-consistent understanding of supernovae (the main contributors to nucleosynthesis in galaxies) is not existing, yet. However, observed spectra, light curves, radioactivities/decay gamma-rays and galactic evolution witness the composition of their ejecta and constrain model uncertainties. We focus on (i) neutrino-induced explosions for type II supernovae and the innermost ejected layers, (ii) electron captures in type Ia supernovae and neutron-rich Fe-group nuclei and finally (iii) galactic chemical evolution and possible r-process sites.

  3. Theory and phenomenology of supernova neutrinos

    SciTech Connect

    Lunardini, Cecilia

    2015-07-15

    The theory and phenomenology of supernova neutrinos is reviewed, with focus on the most recent advancements on the neutrino flux predicted by supernova numerical models, on neutrino oscillations inside the star and in the Earth, and on the physics of the diffuse supernova neutrino background. Future directions of research are briefly summarized.

  4. Standardization of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Coelho, Rodrigo C. V.; Calvão, Maurício O.; Reis, Ribamar R. R.; Siffert, Beatriz B.

    2015-01-01

    Type Ia supernovae (SNe Ia) have been intensively investigated due to their great homogeneity and high luminosity, which make it possible to use them as standardizable candles for the determination of cosmological parameters. In 2011, the physics Nobel prize was awarded ‘for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.’ This is a pedagogical article, aimed at those starting their study of that subject, in which we dwell on some topics related to the analysis of SNe Ia and their use in luminosity distance estimators. Here, we investigate their spectral properties and light curve standardization, paying careful attention to the fundamental quantities directly related to the SNe Ia observables. Finally, we describe our own step-by-step implementation of a classical light curve fitter, the stretch, applying it to real data from the Carnegie Supernova Project.

  5. Supernovae, young remnants, and nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kirshner, R. P.

    1982-01-01

    Chemical abundance data from extragalactic supernovae and from supernova remnants (SNR) less than 1000 yrs old are employed to show that nuclear burning beyond helium synthesis actually occurs. Supernova (SN) are classified into types I or II, having no hydrogen lines or featuring hydrogen lines, respectively. The SN I's have been observed as having a preponderance of Fe lines, and emitting from a source at around 12,000 K with a center continuum of approximately 10 AU. Decay chains which could account for detected luminosities and spectra are presented, noting a good fit of Fe II spectrum with observed SN spectra. SNR pass through younger and older stages, going from the outpouring of material to diffusion in the interstellar medium. Expanding flocculi from young SNR show oxygen abundances as well as lines from sulfur, calcium, and argon, with a corresponding necessity of an explosive source of 15 solar masses.

  6. Distant Supernovae Indicate Ever-Expanding Universe

    NASA Astrophysics Data System (ADS)

    1998-12-01

    parameters, the age of the Universe and the geometry of space can be derived. They have been the focus of a large number of astronomical programmes over the past decades. Many aspects of the currently preferred cosmological model, the Hot Big Bang , have been impressively confirmed by observations of the expansion of the Universe, the cosmic background radiation, and also the explanation of the synthesis of light elements. Still, our knowledge about the dynamical state of the Universe, as well as the early formation of structures, i.e., of galaxies and stars, is far from complete - this remains a field of active research. Possibly, the simplest way to test our present assumptions in this direction is to measure accurate distances and compare them with the expected cosmic scale. This is where the recent results contribute to our understanding of the Universe. The key role of supernovae The two research teams, both with participation from ESO [1], have concentrated on the study of rare stellar explosions, during which certain old stars undergo internal incineration. In this process, explosive nuclear fusion burns matter into the most stable atomic nucleus, iron, and releases a gigantic amount of energy. ESO PR Photo 50a/98 ESO PR Photo 50a/98 [Preview - JPEG: 800 x 648 pix - 768k] [High-Res - JPEG: 3000 x 2431 pix - 8.5Mb] ESO PR Photo 50b/98 ESO PR Photo 50b/98 [Preview - JPEG: 800 x 649 pix - 784k] [High-Res - JPEG: 3000 x 2432 pix - 8.4Mb] These photos illustrate the follow-up observations on which the new results described in this Press Release are based. Sky fields with clusters of galaxies are monitored with the 4-m telescope at Cerro Tololo Interamerican Observatory (CTIO) in Chile and spectra are obtained of suddenly appearing star-like objects that may be supernovae. Confirmed Type Ia supernovae are then monitored by ESO telescopes at La Silla and at other observatories. In PR Photo 50a/98 , a supernova at redshift z = 0.51 [2] (corresponding to a distance of about 10

  7. Topics in the theory of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Thompson, Todd Alan

    We study the physics of core-collapse supernovae and the neutron stars they create. We study the microphysics of neutrino interactions and demonstrate the importance of two processes previously ignored in full supernova simulations: inelastic neutrino-nucleon scattering and nucleon-nucleon bremsstrahlung. We show that these processes dominate neutrino-electron scattering and electron-positron annihilation as thermalization and production mechanisms, respectively, for mu- and tau- neutrinos in regimes vital to emergent spectrum formation. In addition, we solve the general-relativistic steady- state eigenvalue problem of neutrino-driven protoneutron star winds, which immediately follow core-collapse supernova explosions. We provide velocity, density, temperature, and composition profiles and explore the systematics and structures generic to such a wind for a variety of protoneutron star characteristics. Furthermore, we derive the entropy, dynamical timescale, and compositions essential in assessing this site as a candidate for r-process nucleosynthesis. Finally, we construct dynamical models of core-collapse supernovae. We employ a full solution to the transport equation for each neutrino species, a realistic high- density nuclear equation of state, and explicit hydrodynamics. We present results from a set of different supernova progenitors. We vary the microphysics and nuclear equation of state and compare our results to those of other groups. We examine the electron-neutrino breakout phenomenon and address the importance of nucleon-nucleon bremsstrahlung and inelastic neutrino- electron scattering in μ and τ neutrino spectrum formation. We convolve the emergent spectra obtained in these models with terrestrial neutrino detectors and find that the electron-neutrino breakout burst can likely be observed and identified uniquely.

  8. Supernova neutrinos and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Martínez-Pinedo, G.; Fischer, T.; Huther, L.

    2014-04-01

    Observations of metal-poor stars indicate that at least two different nucleosynthesis sites contribute to the production of r-process elements. One site is responsible for the production of light r-process elements Z ≲ 50, while the other produces the heavy r-process elements. We have analyzed recent observations of metal-poor stars selecting only stars that are enriched in light r-process elements and poor in heavy r-process elements. We find a strong correlation between the observed abundances of the N = 50 elements (Sr, Y and Zr) and Fe. It suggest that neutrino-driven winds from core-collapse supernova are the main site for the production of these elements. We explore this possibility by performing nucleosynthesis calculations based on long-term Boltzmann neutrino transport simulations. We use an equation of state that reproduces recent constrains on the nuclear symmetry energy. We predict that the early ejecta is neutron rich with Ye ˜ 0.48, it becomes proton rich around 4 s and reaches Ye = 0.586 at 9 s when our simulation stops. The nucleosynthesis in this model produces elements between Zn and Mo, including 92Mo. The elemental abundances are consistent with the observations of the metal-poor star HD 12263. For the elements between Ge and Mo, we produce mainly the neutron-deficient isotopes. This prediction can be confirmed by observations of isotopic abundances in metal-poor stars. No elements heavier than Mo (Z = 42) and no heavy r-process elements are produced in our calculations.

  9. Software Based Supernova Recognition

    NASA Astrophysics Data System (ADS)

    Walters, Stephen M.

    2014-05-01

    This paper describes software for detecting Supernova (SN) in images. The software can operate in real-time to discover SN while data is being collected so the instrumentation can immediately be re-tasked to perform spectroscopy or photometry of a discovery. Because the instrumentation captures two images per minute, the realtime budget is constrained to 30 seconds per target, a challenging goal. Using a set of two to four images, the program creates a "Reference" (REF) image and a "New" (NEW) image where all images are used in both NEW and REF but any SN survives the combination process only in the NEW image. This process produces good quality images having similar noise characteristics but without artifacts that might be interpreted as SN. The images are then adjusted for seeing and brightness differences using a variant of Tomaney and Crotts method of Point Spread Function (PSF) matching after which REF is subtracted from NEW to produce a Difference (DIF) image. A Classifier is then trained on a grid of artificial SN to estimate the statistical properties of four attributes and used in a process to mask false positives that can be clearly identified as such. Further training to avoid any remaining false positives sets the range, in standard deviations for each attribute, that the Classifier will accept as a valid SN. This training enables the Classifier to discriminate between SN and most subtraction residue. Lastly, the DIF image is scanned and measured by the Classifier to find locations where all four properties fall within their acceptance ranges. If multiple locations are found, the one best conforming to the training estimates is chosen. This location is then declared as a Candidate SN, the instrumentation re-tasked and the operator notified.

  10. Dust around Type Ia supernovae

    SciTech Connect

    Wang, Lifan

    2005-10-20

    An explanation is given of the low value of R lambda triple bond A lambda/E(B - V), the ratio of absolute to selective extinction deduced from Type Ia supernova observations. The idea involves scattering by dust clouds located in the circumstellar environment, or at the highest velocity shells of the supernova ejecta. The scattered light tends to reduce the effective R lambda in the optical, but has an opposite effect in the ultraviolet. The presence of circumstellar dust can be tested by ultraviolet to near infrared observations and by multi-epoch spectropolarimetry of SNe Ia.

  11. Nature of type 1 Supernovae

    NASA Technical Reports Server (NTRS)

    Shklovskiy, I. S.

    1980-01-01

    The nature of type 1 supernovae (SN 1) is discussed through a comparison of observational evidence and theoretical perspectives relating to both type 1 and 2 supernovae. In particular two hypotheses relating to SN 1 phenomenon are examined: the first proposing that SN 1 are components of binary systems in which, at a comparatively late stage of evolution, overflow of the mass occurs; the second considers pre-SN 1 to be recently evolved stars with a mass greater than 1.4 solar mass (white dwarfs). In addition, an explanation of the reduced frequency of flares of SN 1 in spiral galaxies as related to that in elliptical galaxies is presented.

  12. Proton vs. neutron captures in the neutrino winds of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Wanajo, S.; Janka, H.-T.; Müller, B.; Kubono, S.

    2011-09-01

    Recent one-dimensional (1D) hydrodynamical simulations of core-collapse supernovae (CCSNe) with a sophisticated treatment of neutrino transport indicate the neutrino-driven winds being proton-rich all the way until the end of their activity. This seems to exclude all possibilities of neutron-capture nucleosynthesis, but provide ideal conditions for the νp-process, in neutrino winds. New 2D explosion simulations of electron-capture supernovae (ECSNe; a subset of CCSNe) exhibit, however, convective neutron-rich lumps, which are absent in the 1D case. Our nucleosynthesis calculations indicate that these neutron-rich lumps allow for interesting production of elements between iron group and N = 50 nuclei (Zn, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, with little Ga). Our models do not confirm ECSNe as sources of the strong r-process (but possibly of a weak r-process up to Pd, Ag, and Cd in the neutron-rich lumps) nor of the νp-process in the subsequent proton-rich outflows. We further study the νp-process with semi-analytic models of neutrino winds assuming the physical conditions for CCSNe. We also explore the sensitivities of some key nuclear reaction rates to the nucleosynthetic abundances. Our result indicates that the ν/p-process in CCSNe (other than ECSNe) can be the origin of p-nuclei up to A = 108, and even up to A = 152 in limiting conditions.

  13. Pair instability supernovae of very massive population III stars

    SciTech Connect

    Chen, Ke-Jung; Woosley, Stan; Heger, Alexander; Almgren, Ann; Whalen, Daniel J.

    2014-09-01

    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M {sub ☉} die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ∼20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.

  14. A New Empirical Model for Type Ia Supernovae Using Spectrophotometry from the Nearby Supernova Factory

    NASA Astrophysics Data System (ADS)

    Saunders, Clare; Nearby Supernova Factory

    2016-01-01

    Type Ia supernovae are currently limited in their use for cosmology by dispersion in standardized magnitudes. A large part of this dispersion is due to the fact that the current lightcurve fitters do not describe the full range of Type Ia supernova diversity. I will present an empirical model of Type Ia supernovae that captures a wider range of supernova behavior and can improve magnitude standardization. This model is constructed using over 2000 spectrophotometric observations of Type Ia supernovae from the Nearby Supernova Factory. The true spectral time series for each supernova is modeled using Gaussian Processes. The supernova model predictions are used to calculate the principal components of the full set of supernova spectral time series. K-fold cross-validation is used to determine how many components correlate to absolute magnitude. Future work will test this method on independent photometric data sets.

  15. Are supernovae recorded in indigenous astronomical traditions?

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2014-07-01

    Novae and supernovae are rare astronomical events that would have had an influence on the skywatching peoples who witnessed them. Although several bright novae/supernovae have been visible during recorded human history, there are many proposed but no confirmed accounts of supernovae in indigenous oral traditions or material culture. Criteria are established for confirming novae/supernovae in oral traditions and material culture, and claims from around the world are discussed to determine if they meet these criteria. Aboriginal Australian traditions are explored for possible descriptions of novae/supernovae. Although representations of supernovae may exist in Aboriginal traditions, there are currently no confirmed accounts of supernovae in Indigenous Australian oral or material traditions.

  16. Neutrino-driven turbulent convection in stalled supernova cores

    NASA Astrophysics Data System (ADS)

    Radice, David; Ott, Christian; Abdikamalov, Ernazar; Couch, Sean; Haas, Roland; Schnetter, Erik

    2015-04-01

    The dynamics of neutrino-driven turbulent convection, in the quasi-steady phases of a core-collapse supernova explosion following the shock stall, is emerging as being of crucial importance in aiding, or hindering, a successful explosion. In this talk I will present some recent and ongoing numerical studies done with the goal of of a) characterizing neutrino-driven convection in a simplified setting and b) understanding finite numerical resolution effects in more realistic explosion models.

  17. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  18. The supernova: A stellar spectacle

    NASA Technical Reports Server (NTRS)

    Straka, W. C.

    1976-01-01

    The life of a star, the supernova, related objects and their importance in astronomy and science in general are discussed. Written primarily for science teachers of secondary school chemistry, physics, and earth sciences, the booklet contains a glossary, reference sources, suggested topics for discussion, and projects for individual or group assignment.

  19. Supernova neutrinos and explosive nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  20. TeraScale Supernova Initiative

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; TeraScale Supernova Initiative Collaboration

    2002-05-01

    The TeraScale Supernova Initiative is a national collaboration centered at the Oak Ridge National Laboratory and involves eight universities. TSI has as its central focus to ascertain the explosion mechanism(s) for core collapse supernovae and to understand and predict their associated phenomenology, including neutrino signatures, gravitational radiation emission, and nucleosynthesis. TSI is an interdisciplinary effort of astrophysicists, nuclear physicists, applied mathematicians, and computer scientists. Multidimensional hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics simulations that implement state of the art nuclear and weak interaction physics are planned in order to understand the roles of neutrino transport, stellar convection and rotation, and magnetic fields in the supernova mechanism. Scalable algorithms for the solution of the large sparse linear systems of equations that arise in radiation transport applications and a customized collaborative visualization environment will be developed also. TSI's latest results and future efforts will be discussed. The TeraScale Supernova Initiative is funded by grants from the DoE (1) High Energy and Nuclear Physics and (2) Mathematics, Information, and Computational Sciences SciDAC Programs.

  1. The Supernova - A Stellar Spectacle.

    ERIC Educational Resources Information Center

    Straka, W. C.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics concerning supernovae are included: the outburst as observed and according to theory, the stellar remnant, the nebular remnant, and a summary…

  2. Spectroscopic Classification of 4 Supernova

    NASA Astrophysics Data System (ADS)

    Challis, P.; Johnson, S.; Kirshner, R.; Falco, E.; Berlind, P.; Prieto, J. L.; Stanek, K. Z.

    2015-12-01

    pectra (range 350-760 nm) of supernova ASASSN15-tz (ATEL 8404), PSN J23244903+1516520, CBAT TOCP, ASASSN15-tx (ATEL 8400), and ASASSN15-ua (ATEL 8408) were obtained on December 14, 2015 UT with the F. L. Whipple Observatory 1.5-m telescope (+ FAST).

  3. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE PAGESBeta

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; Masset, Frédéric; González, Matthias; Krueger, Brendan K.; Novak, Jérôme; Oertel, Micaela; Margueron, Jérôme; Faure, Julien; et al

    2015-03-17

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  4. Modelling the interaction of thermonuclear supernova remnants with circumstellar structures: the case of Tycho's supernova remnant

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Kosenko, D.; Schure, K. M.; Vink, J.; Kaastra, J. S.

    2013-10-01

    The well-established Type Ia remnant of Tycho's supernova (SN 1572) reveals discrepant ambient medium-density estimates based on either the measured dynamics or the X-ray emission properties. This discrepancy can potentially be solved by assuming that the supernova remnant (SNR) shock initially moved through a stellar wind bubble, but is currently evolving in the uniform interstellar medium with a relatively low density. We investigate this scenario by combining hydrodynamical simulations of the wind-loss phase and the SNR evolution with a coupled X-ray emission model, which includes non-equilibrium ionization. For the explosion models we use the well-known W7 deflagration model and the delayed detonation model that was previously shown to provide good fits to the X-ray emission of Tycho's SNR. Our simulations confirm that a uniform ambient density cannot simultaneously reproduce the dynamical and X-ray emission properties of Tycho. In contrast, models that considered that the remnant was evolving in a dense, but small, wind bubble reproduce reasonably well both the measured X-ray emission spectrum and the expansion parameter of Tycho's SNR. Finally, we discuss possible mass-loss scenarios in the context of single- and double-degenerate models which possibly could form such a small dense wind bubble.

  5. The changing morphology and increasing deceleration of supernova 1993J in M81

    PubMed

    Bartel; Bietenholz; Rupen; Beasley; Graham; Altunin; Venturi; Umana; Cannon; Conway

    2000-01-01

    Twenty consecutive Very Long Baseline Interferometry images of supernova 1993J from the time of explosion to the present show the dynamic evolution of the expanding radio shell of an exploded star. High-precision astrometry reveals that the supernova expands isotropically from its explosion center. Systematic changes in the images may reflect a pattern of anisotropies and inhomogeneities in the material left over from the progenitor star. As the shock front sweeps up the material in the surrounding medium, it is increasingly decelerated and influenced by the material. After 5 years, the supernova has slowed to half of its original expansion velocity and may have entered the early stages of the adiabatic phase common in much older supernova remnants in the Milky Way Galaxy. PMID:10615042

  6. Origin of the p-process radionuclides 92Nb and 146Sm in the early solar system and inferences on the birth of the Sun

    NASA Astrophysics Data System (ADS)

    Lugaro, Maria; Pignatari, Marco; Ott, Ulrich; Zuber, Kai; Travaglio, Claudia; Gyürky, György; Fülöp, Zsolt

    2016-01-01

    The abundances of 92Nb and 146Sm in the early solar system are determined from meteoritic analysis, and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion of white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of 53Mn, another radionuclide present in the early solar system and produced in the same events. A consistent solution for 92Nb and 53Mn cannot be found within the current uncertainties and requires the 92Nb/92Mo ratio in the early solar system to be at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for 92Nb, which we find in the α-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ˜10 My must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings.

  7. Origin of the p-process radionuclides 92Nb and 146Sm in the early solar system and inferences on the birth of the Sun

    PubMed Central

    Lugaro, Maria; Pignatari, Marco; Ott, Ulrich; Zuber, Kai; Travaglio, Claudia; Gyürky, György; Fülöp, Zsolt

    2016-01-01

    The abundances of 92Nb and 146Sm in the early solar system are determined from meteoritic analysis, and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion of white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of 53Mn, another radionuclide present in the early solar system and produced in the same events. A consistent solution for 92Nb and 53Mn cannot be found within the current uncertainties and requires the 92Nb/92Mo ratio in the early solar system to be at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for 92Nb, which we find in the α-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ∼10 My must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings. PMID:26755600

  8. Origin of the p-process radionuclides 92Nb and 146Sm in the early solar system and inferences on the birth of the Sun.

    PubMed

    Lugaro, Maria; Pignatari, Marco; Ott, Ulrich; Zuber, Kai; Travaglio, Claudia; Gyürky, György; Fülöp, Zsolt

    2016-01-26

    The abundances of (92)Nb and (146)Sm in the early solar system are determined from meteoritic analysis, and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion of white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of (53)Mn, another radionuclide present in the early solar system and produced in the same events. A consistent solution for (92)Nb and (53)Mn cannot be found within the current uncertainties and requires the (92)Nb/(92)Mo ratio in the early solar system to be at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for (92)Nb, which we find in the α-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ∼ 10 My must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings. PMID:26755600

  9. Investigation of molten pool oscillation during GMAW-P process based on a 3D model

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Cui, H. C.; Tang, X. H.

    2014-11-01

    In order to better reveal the oscillation mechanism of the pulsed gas metal arc welding (GMAW-P) process due to an alternately varied welding current, arc plasma and molten pool oscillation were simulated through a self-consistent three-dimensional model. Based on an experimental analysis of the dynamic variation of the arc plasma and molten pool captured by a high-speed camera, the model was validated by comparison of the measured and predicted results. The calculated results showed that arc pressure was the key factor causing the molten pool to oscillate. The variation in arc size and temperature from peak time to base time resulted in a great difference in the heat input and arc pressure acting on the molten pool. The surface deformation of the molten pool due to the varying degrees of arc pressure induced alternate displacement and backflow in the molten metal. The periodic iteration of deeper and shallower surface deformation, drain and backflow of molten metal caused the molten pool to oscillate at a certain frequency. In this condition, the arc pressure at the peak time is more than six times higher than that at the base time, and the maximum surface depression is 1.4 mm and 0.6 mm, respectively, for peak time and base time.

  10. Supernova-driven interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Joung, M. K. Ryan

    To study how supernova feedback structures the turbulent interstellar medium, we construct 3D models of vertically stratified gas stirred by discrete supernova explosions, including vertical gravitational field and parametrized heating and cooling. The models reproduce many observed characteristics of the Galaxy such as global circulation of gas (i.e., galactic fountain) and the existence of cold dense clouds in the galactic disk. Global quantities of the model such as warm and hot gas filling factors in the midplane, mass fraction of thermally unstable gas, and the averaged vertical density profile are compared directly with existing observations, and shown to be broadly consistent. We find that energy injection occurs over a broad range of scales. There is no single effective driving scale, unlike the usual assumption for idealized models of incompressible turbulence. However, >90% of the total kinetic energy is contained in wavelengths shortward of 200 pc. The shape of the kinetic energy spectrum differs substantially from that of the velocity power spectrum, which implies that the velocity structure varies with the gas density. Velocity structure functions demonstrate that the phenomenological theory proposed by Boldyrev is applicable to the medium. We show that it can be misleading to predict physical properties such as the stellar initial mass junction based on numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans unstable regions in our simulation is assumed to collapse and form stars in local freefall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. Supernova-driven turbulence inhibits star formation globally rather than triggering it. Feedback from massive stars is perhaps the least understood aspect of the current scenario of large-scale structure formation. Many recent observations on both galactic and cosmological scales require

  11. Spectroscopic Classification of a La Silla-QUEST Supernova by the Carnegie Supernova Project

    NASA Astrophysics Data System (ADS)

    Walker, E. S.; Hadjiyska, E.; Rabinowitz, D.; Baltay, C.; Ellman, N.; McKinnon, R.; Feindt, U.; Nugent, P.; Phillips, Mark; Morrell, Nidia; Hsiao, Eric; Contreras, Carlos

    2014-05-01

    We report the spectroscopic classification of a La Silla-QUEST (LSQ) supernova (see Baltay et al. 2013, PASP, 125, 683) taken using WFCCD on the 2.5-m du Pont Telescope as part of the Carnegie Supernova Project. ...

  12. Carnegie Supernova Project: Spectroscopic Observations of Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Morrell, Nidia I.

    2012-09-01

    The Carnegie Supernova Project (CSP) has performed, during the period 2004-2009, the optical and NIR follow up of 253 supernovae (SNe) of all types. Among those, 124 were core collapse events, comprising 93 SNe of type II and 31 of types Ib/Ic/IIb. Our follow up consisted of photometric observations suitable to build detailed light curves and a considerable amount of optical spectroscopy. The bulk of our observations is carried out at Las Campanas Observatory, while access to other facilities is also provided thanks to our strong collaboration with the Millennium Center for Supernova Studies (MCSS). Our spectroscopic observations were primarily aimed at typing possible new SNe, and follow-up the evolution of CSP targets. One of the goals of the follow-up of type II SNe is the application of independent distance indicators such as the Standard Candle (SCM) and the Expanding Photosphere (EPM) methods. Moreover, through the study of the spectroscopic evolution of these objects, from as early as possible after explosion to the nebular phases, we hope to contribute to their further understanding. Specific analysis of particular objects is underway by members of the CSP and an extended collaboration.

  13. Finding Distances to Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region

  14. Gravitational lensing statistics of amplified supernovae

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.; Wagoner, Robert V.; Schneider, P.

    1988-01-01

    Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.

  15. Core-Collapse Supernovae -- the Outliers

    NASA Astrophysics Data System (ADS)

    Woosley, Stan

    2011-04-01

    After a brief review of current efforts to model the explosion mechanism for "ordinary," core collapse supernovae and the neutrino signal expected from them, some of the outliers predicted by current theory will be discussed. Chief among these are the pulsational-pair instability supernovae, which can occur for stars as light as 80 solar masses or as heavy as 140 solar masses, or more. These explosions, which would have been common in the early universe and persist today, can make supernovae that do or do not recur, and that can be either exceptionally faint or bright or both. They leave behind black holes with masses near 40 solar masses, and produce an abundance pattern that is rich in CNO, much like that seen in the ultra-iron poor stars. Other models for unusual supernovae, including magnetar-powered supernovae and 8 - 10 solar mass supernovae will be mentioned as time allows.

  16. A comparison of models for supernova remnants including cosmic rays

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Drury, L. O'C.

    1992-11-01

    A simplified model which can follow the dynamical evolution of a supernova remnant including the acceleration of cosmic rays without carrying out full numerical simulations has been proposed by Drury, Markiewicz, & Voelk in 1989. To explore the accuracy and the merits of using such a model, we have recalculated with the simplified code the evolution of the supernova remnants considered in Jones & Kang, in which more detailed and accurate numerical simulations were done using a full hydrodynamic code based on the two-fluid approximation. For the total energy transferred to cosmic rays the two codes are in good agreement, the acceleration efficiency being the same within a factor of 2 or so. The dependence of the results of the two codes on the closure parameters for the two-fluid approximation is also qualitatively similar. The agreement is somewhat degraded in those cases where the shock is smoothed out by the cosmic rays.

  17. White dwarf models for type 1 supernovae and quiet supernovae, and presupernova evolution

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1980-01-01

    Supernova mechanisms in accreting white dwarfs are considered with emphasis on deflagration as a plausible mechanism for producing Type I supernovae and electron captures to form quiet supernovae leaving neutron stars. These outcomes depend on accretion rate of helium, initial mass and composition of the white dwarf. The various types of hydrogen shell burning in the presupernova stage are also discussed.

  18. Effects of Ion Correlations in Supernovae and Neutron Star Crusts

    SciTech Connect

    Caballero, O. L.; Horowitz, C. J.

    2007-10-26

    Core-collapse supernovae are some of the most energetic explosions in the Universe. During the collapse 99 % of the energy is lost by neutrino emission. The dynamics of the explosion is highly sensitive to neutrino scattering from the stellar medium. We use molecular dynamics simulations to calculate ion structure factors, neutrino-nucleus scattering cross sections, and neutrino mean free paths. We find clear differences in the neutrino mean free path when the medium is composed of a mixture of ions compared with a medium composed of a single ion species.

  19. La supernova galattica è in ritardo?

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2005-06-01

    After 400 years we are still waiting to see a galactic supernova. A simple galactic model based upon interstellar absorption is shown in order to explain the rate of observed galactic supernovae. The history of variable stars observations in modern epoch is sketched and the hypothesis for Bethlehem Star made by Kepler in occasion of the last galactic supernova, exploded in Ophiuchus on 9 October 1604, is also presented.

  20. Convection in Type 2 supernovae

    SciTech Connect

    Miller, D.S.

    1993-10-15

    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of {approximately} 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for {gamma}-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of {approximately} 200. When convection is allowed, the bubble reaches {approximately} 60 then the bubble begins to move upward into the cooler, denser material above it.

  1. MHD simulations of supernova driven ISM turbulence

    NASA Astrophysics Data System (ADS)

    Gressel, Oliver; Ziegler, Udo

    The dynamic evolution of the (stratified) turbulent interstellar medium (ISM) is simulated utilizing a three-dimensional MHD model including various physical effects. The computational domain covers a box of 0.5x0.5x2.0 kpc at a resolution of typically 128x128x1024 grid cells. The model includes (constant kinematic) viscosity and magnetic diffusivity. The adiabatic equation of state is supplemented by a parameterized heating- and cooling-function allowing for thermal instability (TI). The update due to heating and cooling is implemented implicitly using a Patankar-type discretization. Turbulence is driven by supernova explosions which are modelled as local injections of thermal energy, smeared over three standard-deviations of a Gaussian support with FWHM of 20pc. Supernova rates are adopted for typical cited values. Within our model we make a distinction between Type I and Type II SNe. Latter are statistically clustered by the (artificial) constraint that the density at the explosion site be above average (with respect to a horizontal slab) - former are spatially uncorrelated. The dual-energy feature of the conservative NIRVANA-code is used to tackle the extreme ratio of kinetic to internal energy that arises from the violent energy input. We stress the importance of using a conservative scheme to properly transfer the injected energy to kinetic motion. The model also includes a differentially rotating background (with shearing boundary conditions in radial direction) as well as vertical stratification. The initial density and pressure profiles are in hydrostatic equilibrium with respect to the equation of state given by the radiative equilibrium. Including z-dependent heating rates this leads to a considerable deviation from usual isothermal initial models. The primary focus of this work is on the galactic dynamo and the generation of large-scale magnetic fields. As a secondary target we are also interested in general properties of the ISM that are of importance

  2. The first ten years of Swift supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.; Roming, Peter W. A.; Milne, Peter A.

    2015-09-01

    The Swift Gamma Ray Burst Explorer has proven to be an incredible platform for studying the multiwavelength properties of supernova explosions. In its first ten years, Swift has observed over three hundred supernovae. The ultraviolet observations reveal a complex diversity of behavior across supernova types and classes. Even amongst the standard candle type Ia supernovae, ultraviolet observations reveal distinct groups. When the UVOT data is combined with higher redshift optical data, the relative populations of these groups appear to change with redshift. Among core-collapse supernovae, Swift discovered the shock breakout of two supernovae and the Swift data show a diversity in the cooling phase of the shock breakout of supernovae discovered from the ground and promptly followed up with Swift. Swift observations have resulted in an incredible dataset of UV and X-ray data for comparison with high-redshift supernova observations and theoretical models. Swift's supernova program has the potential to dramatically improve our understanding of stellar life and death as well as the history of our universe.

  3. Explosive Nucleosynthesis in Supernovae and Hypernovae

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Moriya, Takashi; Tominaga, Nozomu

    2010-06-01

    We review the properties of supernovae (SNe) as a function of the progenitor's mass M. (1) 8-10 Msolar stars are super-AGB stars and resultant electron capture SNe may be Faint supernovae like Type IIn SN 2008S. (2) 10-13 Msolar stars undergo Fe-core collapse to form neutron stars (NSs) and Faint supernovae. (3) 13 Msolar-MBN stars undergo Fe-core collapse to form NSs and normal core-collapse supernovae. (4) MBN-90 Msolar stars undergo Fe-core collapse to form Black Holes. Resultant supernovae are bifurcate into Hypernovae and Faint supernovae. (5) 90-140 Msolar stars produce Luminous SNe, like SNe 2007 bi and 2006 gy (6) 140-300 Msolar stars become pair-instability supernovae which could be Luminous supernovae (SNe 2007 bi and 2006 gy). (7) Very massive stars with M>~300 Msolar undergo core-collapse to form intermediate mass black holes. Some SNe could be more Luminous supernovae (like SN 2006 gy).

  4. FUZZY SUPERNOVA TEMPLATES. I. CLASSIFICATION

    SciTech Connect

    Rodney, Steven A.; Tonry, John L. E-mail: jt@ifa.hawaii.ed

    2009-12-20

    Modern supernova (SN) surveys are now uncovering stellar explosions at rates that far surpass what the world's spectroscopic resources can handle. In order to make full use of these SN data sets, it is necessary to use analysis methods that depend only on the survey photometry. This paper presents two methods for utilizing a set of SN light-curve templates to classify SN objects. In the first case, we present an updated version of the Bayesian Adaptive Template Matching program (BATM). To address some shortcomings of that strictly Bayesian approach, we introduce a method for Supernova Ontology with Fuzzy Templates (SOFT), which utilizes fuzzy set theory for the definition and combination of SN light-curve models. For well-sampled light curves with a modest signal-to-noise ratio (S/N >10), the SOFT method can correctly separate thermonuclear (Type Ia) SNe from core collapse SNe with >=98% accuracy. In addition, the SOFT method has the potential to classify SNe into sub-types, providing photometric identification of very rare or peculiar explosions. The accuracy and precision of the SOFT method are verified using Monte Carlo simulations as well as real SN light curves from the Sloan Digital Sky Survey and the SuperNova Legacy Survey. In a subsequent paper, the SOFT method is extended to address the problem of parameter estimation, providing estimates of redshift, distance, and host galaxy extinction without any spectroscopy.

  5. Chandra Maps Vital Elements From Supernova

    NASA Astrophysics Data System (ADS)

    1999-12-01

    composition of the various knots and filaments of stellar material visible in Cas A. Not only could the astronomers determine the composition of many knots in the remnant from the Chandra data, they were also able to infer where in the exploding star the knots had originated. For example, the most compact and brightest knots were composed mostly of silicon and sulfur, with little or no iron. This pointed to an origin deep in the star's interior where the temperatures had reached three billion degrees during the collapse and resulting supernova. Elsewhere, they found fainter features that contained significant amounts of iron as well as some silicon and sulfur. This material was produced even deeper in the star, where the temperatures during the explosion had reached higher values of four to five billion degrees. When Hughes and his collaborators compared where the compact silicon-rich knots and fainter iron-rich features were located in Cas A, they discovered that the iron-rich features from deepest in the star were near the outer edge of the remnant. This meant that they had been flung the furthest by the explosion that created Cas A. Even now this material appears to be streaming away from the site of the explosion with greater speed than the rest of the remnant. By studying the Cas A Chandra data further, astronomers hope to identify which of the several processes proposed by theoretical studies is likely to be the correct mechanism for explaining supernova explosions, both in terms of the dynamics and elements they produce. "In addition to understanding how iron and the other elements are produced in stars, we also want to learn how it gets out of stars and into the interstellar medium. This is why the study of supernovas and supernova remnants is so important," said Hughes. "Once released from stars, newly-created elements can then participate in the formation of new stars and planets in a great cycle that has gone on numerous times already. It is remarkable to realize

  6. Cygnus Loop Supernova Blast Wave

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  7. Supernovae in dense and dusty environments

    NASA Astrophysics Data System (ADS)

    Kankare, Erkki

    2013-02-01

    In this doctoral thesis supernovae in dense and dusty environments are studied, with an emphasis on core-collapse supernovae. The articles included in the thesis aim to increase our understanding of supernovae interacting with the circumstellar material and their place in stellar evolution. The results obtained have also importance in deriving core-collapse supernova rates with reliable extinction corrections, which are directly related to star formation rates and galaxy evolution. In other words, supernovae are used as a tool in the research of both stellar and galaxy evolution, both of which can be considered as fundamental basics for our understanding of the whole Universe. A detailed follow-up study of the narrow-line supernova 2009kn is presented in paper I, and its similarity to another controversial transient, supernova 1994W, is shown. These objects are clearly strongly interacting with relatively dense circumstellar matter, however their physical origin is quite uncertain. In paper I different explosion models are discussed. Discoveries from a search programme for highly obscured supernovae in dusty luminous infrared galaxies are presented in papers II and III. The search was carried out using laser guide star adaptive optics monitoring at near-infrared wavelengths. By comparing multi-band photometric follow-up observations to template light curves, the likely types and the host galaxy extinctions for the four supernovae discovered were derived. The optical depth of normal spiral galaxy disks were studied statistically and reported in paper IV. This is complementary work to studies such as the one presented in paper V, where the missing fractions of core-collapse supernovae were derived for both normal spiral galaxies and luminous infrared galaxies, to be used for correcting supernova rates both locally and as a function of redshift.

  8. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  9. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    SciTech Connect

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Stritzinger, Maximilian; Contreras, Carlos; Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco; Folatelli, Gaston; Suntzeff, Nicholas B.

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  10. Constraining inverse curvature gravity with supernovae

    SciTech Connect

    Mena, Olga; Santiago, Jose; Weller, Jochen; /University Coll., London /Fermilab

    2005-10-01

    We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.

  11. Iron Isotopic Diagnostics of Presolar Supernova Grains

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Meyer, B. S; The, L.-S.

    2002-01-01

    We study the abundance and isotopic composition of iron in a massive-star supernova to identify those isotopic characteristics that can identify the location of the condensing matter that is contained in the presolar supernova grains from meteorites. Additional information is contained in the original extended abstract.

  12. NOT spectroscopic classification of two supernovae

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Stritzinger, M. D.

    2015-09-01

    We report the following supernova classifications. Targets were supplied by the All Sky Automated Survey for SuperNovae ASAS-SN (see Shappee et al. 2014, ApJ, 788, 48 and http://www.astronomy.ohio-state.edu/~assassin/index.shtml).

  13. Gamma line radiation from supernovae. [nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Arnett, W. D.

    1978-01-01

    Recent calculations of core collapse or massive stars result in explosive ejection of the mantle by a reflected shock. These hydrodynamic results are important for predictions of explosive nucleosynthesis and gamma-ray line emission from supernovae. Previous estimates, based on simple parameterized models or the nucleosynthesis in an average supernova, are compared with these latest results.

  14. Classification of Two LSQ Supernovae By CSP

    NASA Astrophysics Data System (ADS)

    Walker, E. S.; Hadjiyska, E.; Rabinowitz, D.; Baltay, C.; Ellman, N.; McKinnon, R.; Feindt, U.; Nugent, P.; Morrell, N.; Hsiao, E.; Phillips, M.

    2013-11-01

    We report the discovery by the La Silla-QUEST survey(LSQ; Baltay et al. PASP 125 683) and classification by Carnegie Supernova Project (CSP) of two supernovae, LSQ13cwo and LSQ13cwp. Classifications were made using SNID (Blondin and Tonry, 2007, ApJ, 666, 1024).

  15. A Complete Sample of Supernova Host Galaxies

    NASA Astrophysics Data System (ADS)

    Quimby, Robert

    2011-01-01

    Traditionally, supernova surveys have drawn their samples by monitoring pre-selected lists of host galaxies. More recently, some surveys have made efforts to ignore host properties when selecting candidates, but because of limited resources they must usually add additional selection criteria, such as the color or light curve shape of the transient, in order to select the best targets for a specific study. Since 2004, we have conducted a search for supernovae that is designed to select targets irrespective of their host environment, and we have spectroscopic classifications for all of the new transients detected. Here we report on the host galaxies of first 72 supernovae detected by ROTSE-IIIb as part of the Texas Supernova Search and the ROTSE Supernova Verification Project. The supernova sample includes everything from perfectly normal Type Ia and Type II, to spectroscopically peculiar events, to several of the most luminous supernovae ever found. We compare multi-band photometry and spectroscopy of the host galaxy sample to the larger galaxy population. We cannot securely identify host galaxies brighter than -10 mag absolute for four of our discoveries, which suggests that these may be hostless, "tramp supernovae."

  16. Rates and progenitors of type Ia supernovae

    SciTech Connect

    Wood-Vasey, William Michael

    2004-08-16

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  17. Rates and progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wood-Vasey, William Michael

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. >From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  18. Supernovae and cosmology with future European facilities.

    PubMed

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST. PMID:23630381

  19. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1988-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  20. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1989-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more than 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  1. Four Papers by the Supernova Cosmology Project

    SciTech Connect

    Perlmutter, S.; et al.

    1995-06-01

    Our search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a 'batch' search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35 - 0.5. These high-redshift supernovae can provide a distance indicator and 'standard clock' to study the cosmological parameters q{sub 0}, {Lambda}, {Omega}{sub 0}, and H{sub 0}. This presentation and the following presentations of Kim et al. (1996), Goldhaber et al. (1996), and Pain et al. (1996) will discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0}, of these first high-redshift supernovae from our ongoing search.

  2. The Effects of Collective Neutrino Oscillations on Supernova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Seadrow, Shaquann; Frohlich, C.; Duan, H.; Friedland, A.; McLaughlin, G.; Keohane, J. W.

    2014-01-01

    A core-collapse supernova originates from the implosion of the electron degenerate core inside a massive star. Runaway electron capture produces on the order of 1057 neutrinos containing about 1053 erg of energy in total. While the vast majority of neutrinos are eventually released, during the first few seconds these neutrinos drive both the dynamics, and likewise the nucleosynthesis, inside the supernova. Recently, our understanding of oscillations among the different flavors of neutrinos (electron, muon, and tau) has significantly improved, allowing us to ask if neutrino flavor change has a significant effect on nucleosynthesis in a core-collapse supernova. To investigate the effects of collective neutrino flavor oscillations, we use the hydrodynamic conditions from a spherically-symmetrical model of the implosion, bounce, and explosion of the 1.4 solar mass core that is inside an 8.8 solar mass star (Huedepohl et al. 2009). We select 20 mass tracers in the ejecta, varying in initial radii, and follow these trajectories for the first 9 seconds following bounce. We include these trajectories into a nuclear reaction network in order to calculate the detailed nucleosynthesis. We use three sets of neutrino reaction rates, all of which are calculated consistently with the conditions in the supernova model: (i) no collective flavor oscillations, (ii) collective oscillations for normal neutrino mass hierarchy, and (iii) collective oscillations for inverted neutrino mass hierarchy. We calculate the detailed nucleosynthesis for each trajectory for all three sets of neutrino rates. We find that the inclusion of collective oscillations (ii or iii) significantly increases the free neutron abundance; however, we obtain similar results regardless of which hierarchy is used. The increase in free neutrons also increases the subsequent rate of neutron capture, but has only a small effect on the predicted final abundances. This work was performed as part of North Carolina State

  3. Properties of unusually luminous supernovae

    NASA Astrophysics Data System (ADS)

    Pan, Tony Shih Arng

    This thesis is a theoretical study of the progenitors, event rates, and observational properties of unusually luminous supernova (SN), and aims to identify promising directions for future observations. In Chapter 2, we present model light curves and spectra of pair-instability supernovae (PISNe) over a range of progenitor masses and envelope structures for Pop III stars. We calculate the rates and detectability of PISNe, core-collapse supernovae (CCSNe), and Type Ia SNe at the Epoch of Reionization with the James Webb Space Telescope (JWST), which can be used to determine the contribution of Pop III versus Pop II stars toward ionizing the universe. Although CCSNe are the least intrinsically luminous supernovae, Chapter 5 shows that a JWST survey targeting known galaxy clusters with Einstein radii > 35" should discover gravitationally lensed CCSNe at redshifts exceeding z = 7--8. In Chapter 3, we explain the Pop II/I progenitors of observed PISNe in the local universe can be created via mergers in runaway collisions in young, dense star clusters, despite copious mass loss via line-driven winds. The PISN rate from this mechanism is consistent with the observed volumetric rate, and the Large Synoptic Survey Telescope could discover ~102 such PISNe per year. In Chapter 4, we identify 10 star clusters which may host PISN progenitors with masses up to 600 solar masses formed via runaway collisions. We estimate the probabilities of these very massive stars being in eclipsing binaries to be ≳ 30%, and find that their transits can be detected even under the contamination of the background cluster light, due to mean transit depths of ~10 6 solar luminosities. In Chapter 6, we show that there could be X-ray analogues of optically super-luminous SNe that are powered by the conversion of the kinetic energy of SN ejecta into radiation upon its collision with a dense but optically-thin circumstellar shell. We find shell configurations that can convert a large fraction of the SN

  4. Models for Type I supernovae

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.; Taam, R.E.

    1980-06-17

    Two rather disjoint scenarios for Type I supernovae are presented. One is based upon mass accretion by a white dwarf in a binary system. The second involves a star having some 8 to 10 times the mass of the sun which may or may not be a solitary star. Despite the apparent dissimilarities in the models it may be that each occurs to some extent in nature for they both share the possibility of producing substantial quantities of /sup 56/Ni and explosions in stars devoid of hydrogen envelopes. These are believed to be two properties that must be shared by any viable Type I model.

  5. Petascale Supernova Simulation with CHIMERA

    SciTech Connect

    Messer, Bronson; Bruenn, S. W.; Blondin, J. M.; Mezzacappa, Anthony; Hix, William Raphael; Dirk, Charlotte

    2007-01-01

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some ma jor algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  6. The LCOGT Supernova Key Project

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew; Arcavi, Iair; Hosseinzadeh, Griffin; McCully, Curtis; Valenti, Stefano; LCOGT Supernova Key Project

    2016-06-01

    We highlight results from the Las Cumbres Observatory Global Telescope (LCOGT) Supernova Key Project -- a 3 year program to obtain lightcurves and spectra of approximately 500 low-redshift SNe. LCOGT is a robotic network of elevent one and two meter telescopes spaced around the globe. We are involved in a variety of surveys, including the intermediate Palomar Transient Factory, LaSilla Quest, PESSTO, and KMTNet. Recent results include analysis of large samples of core-collaspe SNe, the largest sample of SNe Ibn, evidence of the progenitors of SNe Ia from companion shocking, and new findings about superluminious SNe.

  7. The Progenitors of Thermonuclear Supernovae

    SciTech Connect

    Piersanti, L.; Straniero, O.; Tornambe, A.; Dominguez, I.

    2009-05-03

    In the framework of the rotating Double Degenerate Scenario for type Ia Supernovae progenitors, we show that the dichotomy between explosive events in early and late type galaxies can be easily explained. Assuming that more massive progenitors produce slow-decline (high-luminosity) light curve, it comes out that, at the current age of the Universe, in late type galaxies the continuous star formation provides very massive exploding objects (prompt component) corresponding to slow-decline (bright) SNe; on the other hand, in early type galaxies, where star formation ended many billions years ago, only low mass ''normal luminosity'' objects (delayed component) are present.

  8. A doubly robotic telescope - The Berkeley Automated Supernova Search

    NASA Technical Reports Server (NTRS)

    Perlmutter, Saul; Muller, Richard A.; Newberg, Heidi J. M.; Pennypacker, Carlton R.; Sasseen, Timothy P.; Smith, Craig K.

    1992-01-01

    We have designed, built, and are successfully using a completely robotic supernova search, with an automated observatory and automated real-time analysis and scheduling. This system has detected 20 supernovae so far, resulting in early supernova observations, surprising supernova rates, and new evidence against a true 'inclination effect' in galaxies.

  9. Runaway Stars in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Pannicke, Anna; Neuhaeuser, Ralph; Dinçel, Baha

    2016-07-01

    Half of all stars and in particular 70 % of the massive stars are a part of a multiple system. A possible development for the system after the core collapse supernova (SN) of the more massive component is as follows: The binary is disrupted by the SN. The formed neutron star is ejected by the SN kick whereas the companion star either remains within the system and is gravitationally bounded to the neutron star, or is ejected with a spatial velocity comparable to its former orbital velocity (up to 500 km/s). Such stars with a large peculiar space velocity are called runaway stars. We present our observational results of the supernova remnants (SNRs) G184.6-5.8, G74.0-8.5 and G119.5+10.2. The focus of this project lies on the detection of low mass runaway stars. We analyze the spectra of a number of candidates and discuss their possibility of being the former companions of the SN progenitor stars. The spectra were obtained with INT in Tenerife, Calar Alto Astronomical Observatory and the University Observatory Jena. Also we investigate the field stars in the neighborhood of the SNRs G74.0-8.5 and G119.5+10.2 and calculate more precise distances for these SNRs.

  10. The Supernova Remnant CTA 1

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1996-01-01

    The supernova remnants G327.1-1.1 and G327.4+0.4 (Kes 27) are located 1.5 deg apart in the constellation Norma. In 1980, Einstein IPC observations discovered that both were irregular filled-center X-ray sources with possible point sources superposed. This paper describes new ROSAT position sensitive proportional counter (PSPC) observations which both map the diffuse structure and clearly show several unresolved sources in each field. Both remnants have bright emitting regions inside the limb which might indicate the presence of high energy electrons accelerated by a pulsar. The interior region is more prominent in G327.1-1.1 than in Kes 27. The spectra are relatively strongly absorbed, as expected from distant remnants close to the galactic plane. Comparison of the X-ray and radio maps of each remnant allows us to attribute some emission to a shell and some to the interior. With this information, a blast-wave model is used to derive approximate ages and energy release. Indications are that the Kes 27 supernova deposited approximately 10(exp 51) ergs in the surrounding medium. The G327.1-1.1 event probably deposited a factor of 3-10 less.

  11. Observations of Type Iax Supernovae

    NASA Astrophysics Data System (ADS)

    McCully, Curtis; Jha, S.; Foley, R. J.

    2014-01-01

    Type Iax supernovae (SNe Iax) are a class of peculiar cousins to normal Type Ia SNe, with SN 2002cx as the prototype. These explosions have photospheric velocities half those of normal SNe Ia, but are otherwise spectroscopically similar at early times. SNe Iax are typically more than ~1 magnitude fainter than normal SNe Ia with similar light curve shapes. These objects depart most dramatically from normal SNe Ia at late epochs, with a slow photometric decline and spectra that are unmatched by any other kind of supernova. I will present Hubble Space Telescope and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical SNe Iax, emphasizing results from late-time data. I will also show new UV observations of the type Iax SN 2013dh, and discuss constraints on the progenitor systems of these peculiar SNe. Recent models of a deflagration explosion in a carbon/oxygen white dwarf that does not completely disrupt the star can match some of the observed properties of SNe Iax, but no published model is consistent with all of the observations.

  12. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  13. Supernovae: lights in the darkness

    NASA Astrophysics Data System (ADS)

    Every year, at the end of the summer, the Section of Physics and Technique of the "Institut Menorquí d'Estudis" and the "Societat Catalana de Física" organize the "Trobades Científiques de la Mediterrània" with the support of several academic institutions. The 2007 edition has been devoted to stellar explosions, the true evolutionary engines of galaxies. Whenever a star explodes, it injects into the interstellar medium a kinetic energy of 1051 erg and between one and several solar masses of newly synthesized elements as a result of the thermonuclear reactions that have taken place within the stellar interior. Two mechanisms are able to provide these enormous amounts of energy: one of them thermonuclear and the other, gravitational. Thermonuclear supernovae are the result of the incineration of a carbon-oxygen white dwarf that is the compact star of a binary stellar system. If the two stars are sufficiently close to each other, the white dwarf accretes matter from its companion, approaches the mass of Chandrasekhar, and ends up exploding. The processes previous to the explosion, the explosion itself, as well as the exact nature of the double stellar system that explodes, are still a matter of discussion. This point is particularly important because these explosions, known as Type Ia Supernovae, are very homogenous and can be used to measure cosmological distances. The most spectacular result obtained, is the discovery of the accelerated expansion of the Universe, but it still feels uncomfortable that such a fundamental result is based on a "measuring system" whose origin and behaviour in time is unknown. At the end of their lives, massive stars generate an iron nucleus that gets unstable when approaching the Chandrasekhar mass. Its collapse gives rise to the formation of a neutron star or a black hole, and the external manifestation of the energy that is released, about a 1053 erg, consists of a Type II or Ib/c supernova, of a Gamma Ray Burst (GRB) or even of

  14. Thermonuclear Supernovae: Simulations of the Deflagration Stage and Their Implications

    NASA Astrophysics Data System (ADS)

    Gamezo, Vadim N.; Khokhlov, Alexei M.; Oran, Elaine S.; Chtchelkanova, Almadena Y.; Rosenberg, Robert O.

    2003-01-01

    Large-scale, three-dimensional numerical simulations of the deflagration stage of a thermonuclear supernova explosion show the formation and evolution of a highly convoluted turbulent flame in the gravitational field of an expanding carbon-oxygen white dwarf. The flame dynamics are dominated by the gravity-induced Rayleigh-Taylor instability that controls the burning rate. The thermonuclear deflagration releases enough energy to produce a healthy explosion. The turbulent flame, however, leaves large amounts of unburned and partially burned material near the star center, whereas observations that imply these materials are present only in outer layers. This disagreement could be resolved if the deflagration triggers a detonation.

  15. Thermonuclear supernovae: simulations of the deflagration stage and their implications.

    PubMed

    Gamezo, Vadim N; Khokhlov, Alexei M; Oran, Elaine S; Chtchelkanova, Almadena Y; Rosenberg, Robert O

    2003-01-01

    Large-scale, three-dimensional numerical simulations of the deflagration stage of a thermonuclear supernova explosion show the formation and evolution of a highly convoluted turbulent flame in the gravitational field of an expanding carbon-oxygen white dwarf. The flame dynamics are dominated by the gravity-induced Rayleigh-Taylor instability that controls the burning rate. The thermonuclear deflagration releases enough energy to produce a healthy explosion. The turbulent flame, however, leaves large amounts of unburned and partially burned material near the star center, whereas observations that imply these materials are present only in outer layers. This disagreement could be resolved if the deflagration triggers a detonation. PMID:12446871

  16. Expected impact from weak reactions with light nuclei in corecollapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Martínez-Pinedo, G.; Hempel, M.; Huther, L.; Röpke, G.; Typel, S.; Lohs, A.

    2016-02-01

    We study the role of light nuclear clusters in simulations of core-collapse supernovae. Expressions for the reaction rates are developed for a large selection of charged current absorption and scattering processes with light clusters. Medium modifications are taken into account at the mean-field level. We explore the possible impact on the supernova dynamics and the neutrino signal during the mass accretion phase prior to the possible explosion onset as well as during the subsequent protoneutron star deleptnoization after the explosion onset has been launched.

  17. ASCERTAINING THE CORE COLLAPSE SUPERNOVA MECHANISM: The State of the Art and the Road Ahead

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2005-12-01

    More than four decades have elapsed since modeling of the core collapse supernova mechanism began in earnest. To date, the mechanism remains elusive, at least in detail, although significant progress has been made in understanding these multiscale, multiphysics events. One-, two-, and three-dimensional simulations of or relevant to core collapse supernovae have shown that (a) neutrino transport, (b) fluid instabilities, (c) rotation, and (d) magnetic fields, together with proper treatments of (e) the sub- and super- nuclear density stellar core equation of state, (f) the neutrino interactions, and (g) gravity are all important. The importance of these ingredients applies to both the explosion mechanism and to phenomena directly associated with the mechanism, such as neutron star kicks, supernova neutrino and gravitational wave emission, and supernova spectropolarimetry.Not surprisingly, current two- and three-dimensional models have yet to include (a) (d) with sufficient realism. One-dimensional spherically symmetric models have achieved a significant level of sophistication but, by definition, cannot incorporate (b) (d), except phenomenologically. Fully general relativistic spherically symmetric simulations with Boltzmann neutrino transport do not yield explosions, demonstrating that some combination of (b), (c), and (d) is required to achieve this. Systematic layering of the dimensionality and the physics will be needed to achieve a complete understanding of the supernova mechanism and phenomenology. The past modeling efforts alluded to above have illuminated that core collapse supernovae may be neutrino driven, magnetohydrodynamically (MHD) driven, or both, but uncertainties in the current models prevent us from being able to answer even this most basic question. And it may be that more than one possibility is realized in nature. Nonetheless, if a supernova is neutrino driven, magnetic fields will likely have an impact on the dynamics of the explosion. Similarly

  18. Type Ia Supernova Models and Progenitor Scenarios

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Kamiya, Yasuomi; Nakasato, Naohito

    2013-01-01

    We review some recent developments in theoretical studies on the connection between the progenitor systems of Type Ia supernovae (SNe Ia) and the explosion mechanisms. (1) DD-subCh: In the merging of double C+O white dwarfs (DD scenario), if the carbon detonation is induced near the white dwarf (WD) surface in the early dynamical phase, it could result in the (effectively) sub-Chandrasekhar mass explosion. (2) DD-Ch: If no surface C-detonation is ignited, the WD could grow until the Chandrasekhar mass is reached, but the outcome depends on whether the quiescent carbon shell burning is ignited and burns C+O into O+Ne+Mg. (3) SD-subCh: In the single degenerate (SD) scenario, if the He shell-flashes grow strong to induce a He detonation, it leads to the sub-Chandra explosion. (4) SD-Ch: If the He-shell flashes are not strong enough, they still produce interesting amounts of Si and S near the surface of the C+O WD before the explosion. In the Chandra mass explosion, the central density is high enough to produce electron capture elements, e.g., stable 58Ni. Observations of the emission lines of Ni in the nebular spectra provides useful diagnostics of the sub-Chandra vs. Chandra issue. The recent observations of relatively low velocity carbon near the surface of SNe Ia provide also an interesting constraint on the explosion models.

  19. Object Classification at the Nearby Supernova Factory

    SciTech Connect

    Aragon, Cecilia R.; Bailey, Stephen; Aragon, Cecilia R.; Romano, Raquel; Thomas, Rollin C.; Weaver, B. A.; Wong, D.

    2007-12-21

    We present the results of applying new object classification techniques to the supernova search of the Nearby Supernova Factory. In comparison to simple threshold cuts, more sophisticated methods such as boosted decision trees, random forests, and support vector machines provide dramatically better object discrimination: we reduced the number of nonsupernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming large optical surveys.

  20. Supernovae and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  1. Supernovae as sources of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Allen, John E., Jr.

    1992-01-01

    Small hydrocarbon grains in the vicinity of a supernova could be annealed by the absorption of several far-ultraviolet photons to produce the tiny diamonds found in meteorites. These freshly-synthesized diamond grains would be bombarded by the heavy ions and neutrals in the supernovae outflow and would thereby acquire the distinctive noble-gas isotopic signature by which they were first isolated. Only diamonds formed relatively close to supernovae would acquire such a signature, since grains formed farther out would be subjected to a much diluted and less energetic plasma environment.

  2. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT

    SciTech Connect

    Folatelli, Gaston; Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellon, Sergio; Roth, Miguel; Hamuy, Mario; Anderson, Joseph P.; Krzeminski, Wojtek; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E.; Prieto, Jose L.; Suntzeff, Nicholas B.; Krisciunas, Kevin; and others

    2013-08-10

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of Almost-Equal-To 0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a Almost-Equal-To 2{sigma}-3{sigma} correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.

  3. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    SciTech Connect

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{sup 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average

  4. Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2013-01-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.

  5. SUPERNOVA EJECTA IN THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3

    SciTech Connect

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert

    2013-07-01

    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of {approx}1900, and most likely located near the Galactic center. Only the outermost ejecta layers with free-expansion velocities {approx}>18,000 km s{sup -1} have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs; Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K{alpha} emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including {sup 56}Ni) with velocities >18,000 km s{sup -1} were ejected by this SN. However, in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent three-dimensional delayed-detonation Type Ia models.

  6. Interactions Between CRs and MCs in the Vicinity of Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Hewitt, John W.

    2011-01-01

    Supernovae are incredibly energetic events which drive the dynamic state of the interstellar medium and accelerate cosmic rays up to energies of a few PeV. I present multi-wavelength observations constraining the shocks, chemistry, dust grain processing, and magnetic fields in a large sample of supernova remnants interacting with dense clouds. These are among the most luminous Galactic sources detected by the Fermi Gamma-Ray Space Telescope. Surprisingly, spectral breaks are seen between GeV and TeV energies. Radio spectral breaks have also been detected for a few remnants, providing clear evidence that supernovae are a significant source of hadronic cosmic rays in the Galaxy. Resolving the origin of these spectral breaks will allow the physics of cosmic ray acceleration and diffusion to be probed.

  7. Turbulence and magnetic field amplification from spiral SASI modes in core-collapse supernovae

    SciTech Connect

    Endeve, Eirik; Cardall, Christian Y; Budiardja, Reuben D; Blondin, John; Mezzacappa, Anthony

    2013-01-01

    The stationary accretion shock instability (SASI) plays a central role in modern simulations of the explosion phase of core-collapse supernovae (CCSNe). It may be key to realizing neutrino powered explosions, and possibly links birth properties of pulsars (e.g., kick, spin, and magnetic field) to supernova dynamics. Using high-resolution magnetohydrodynamic simulations, we study the development of turbulence, and subsequent amplification of magnetic fields in a simplified model of the post-bounce core-collapse supernova environment. Turbulence develops from secondary instabilities induced by the SASI. Our simulations suggest that the development of turbulence plays an important role for the subsequent evolution of the SASI. The turbulence also acts to amplify weak magnetic fields via a small-scale dynamo.

  8. X-ray studies of supernova remnants: A different view of supernova explosions

    PubMed Central

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206

  9. Experiments for the astrophysical p process with the in-beam method

    NASA Astrophysics Data System (ADS)

    Sauerwein, A.; Elvers, M.; Endres, J.; Hasper, J.; Hennig, A.; Netterdon, L.; Zilges, A.

    2011-10-01

    We performed a proton-capture reaction on 92Mo at energies relevant for the p process. The reaction was investigated by the in-beam technique using the γ-ray detector array HORUS (High efficient Observatory for γ-Ray Unique Sectroscopy) at the TANDEM ion accelerator of the University of Cologne.

  10. Experiments for the astrophysical p process with the in-beam method

    SciTech Connect

    Sauerwein, A.; Elvers, M.; Endres, J.; Hasper, J.; Hennig, A.; Netterdon, L.; Zilges, A.

    2011-10-28

    We performed a proton-capture reaction on {sup 92}Mo at energies relevant for the p process. The reaction was investigated by the in-beam technique using the {gamma}-ray detector array HORUS (High efficient Observatory for {gamma}-Ray Unique Sectroscopy) at the TANDEM ion accelerator of the University of Cologne.