Sample records for p450 gene encoding

  1. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    PubMed Central

    2010-01-01

    co-expressed with several genes encoding isoflavonoid-related metabolic enzymes. We then focused on nodulation-induced P450s and found that CYP728H1 was co-expressed with the genes involved in phenylpropanoid metabolism. Similarly, CYP736A34 was highly co-expressed with lipoxygenase, lectin and CYP83D1, all of which are involved in root and nodule development. Conclusions The genome scale analysis of P450s in soybean reveals many unique features of these important enzymes in this crop although the functions of most of them are largely unknown. Gene co-expression analysis proves to be a useful tool to infer the function of uncharacterized genes. Our work presented here could provide important leads toward functional genomics studies of soybean P450s and their regulatory network through the integration of reverse genetics, biochemistry, and metabolic profiling tools. The identification of nodule-specific P450s and their further exploitation may help us to better understand the intriguing process of soybean and rhizobium interaction. PMID:21062474

  2. Genomic organization of human fetal specific P-450IIIA7 (cytochrome P-450HFLa)-related gene(s) and interaction of transcriptional regulatory factor with its DNA element in the 5' flanking region.

    PubMed

    Itoh, S; Yanagimoto, T; Tagawa, S; Hashimoto, H; Kitamura, R; Nakajima, Y; Okochi, T; Fujimoto, S; Uchino, J; Kamataki, T

    1992-03-24

    P-450IIIA7 is a form of cytochrome P-450 which was isolated from human fetal livers and termed P-450HFLa. This form has been clarified to be expressed during fetal life specifically (Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. and Kamataki, T. (1990) Biochemistry 29, 4430-4433). In the present study, we isolated five independent clones which probably corresponded to the human P-450IIIA7 gene. These clones were completely sequenced, all exons, exon-intron junctions and the 5' flanking region from the cap site to-869. Although the sequences in the coding region were completely identical to P-450IIIA7, it is possible that genomic fragments sequenced in this study encode portions of other P-450IIIA7-related genes since we could not obtain a complete overlapping set of genomic clones. Within its 5' flanking sequence, the putative binding sites of several transcriptional regulatory factors existed. Among them, it was shown that a basic transcription element binding factor (BTEB) actually interacted with the 5' flanking region of this gene.

  3. Mining of the Uncharacterized Cytochrome P450 Genes Involved in Alkaloid Biosynthesis in California Poppy Using a Draft Genome Sequence

    PubMed Central

    Hori, Kentaro; Yamada, Yasuyuki; Purwanto, Ratmoyo; Minakuchi, Yohei; Toyoda, Atsushi; Hirakawa, Hideki

    2018-01-01

    Abstract Land plants produce specialized low molecular weight metabolites to adapt to various environmental stressors, such as UV radiation, pathogen infection, wounding and animal feeding damage. Due to the large variety of stresses, plants produce various chemicals, particularly plant species-specific alkaloids, through specialized biosynthetic pathways. In this study, using a draft genome sequence and querying known biosynthetic cytochrome P450 (P450) enzyme-encoding genes, we characterized the P450 genes involved in benzylisoquinoline alkaloid (BIA) biosynthesis in California poppy (Eschscholzia californica), as P450s are key enzymes involved in the diversification of specialized metabolism. Our in silico studies showed that all identified enzyme-encoding genes involved in BIA biosynthesis were found in the draft genome sequence of approximately 489 Mb, which covered approximately 97% of the whole genome (502 Mb). Further analyses showed that some P450 families involved in BIA biosynthesis, i.e. the CYP80, CYP82 and CYP719 families, were more enriched in the genome of E. californica than in the genome of Arabidopsis thaliana, a plant that does not produce BIAs. CYP82 family genes were highly abundant, so we measured the expression of CYP82 genes with respect to alkaloid accumulation in different plant tissues and two cell lines whose BIA production differs to estimate the functions of the genes. Further characterization revealed two highly homologous P450s (CYP82P2 and CYP82P3) that exhibited 10-hydroxylase activities with different substrate specificities. Here, we discuss the evolution of the P450 genes and the potential for further genome mining of the genes encoding the enzymes involved in BIA biosynthesis. PMID:29301019

  4. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  5. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  6. Structure and expression of the rat CYP3A1 gene: isolation of the gene (P450/6betaB) and characterization of the recombinant protein.

    PubMed

    Nagata, K; Ogino, M; Shimada, M; Miyata, M; Gonzalez, F J; Yamazoe, Y

    1999-02-15

    A P450 gene (P450/6betaB) of the CYP3A subfamily was isolated from a rat genomic library. Nucleotide sequencing of the exons revealed a high similarity with P450PCN1 cDNA (Gonzalez et al. (1985), J. Biol. Chem. 260, 7345-7441), but differed in 41 nucleotides, resulting in 11 changes and 2 deletions of amino acid residues. The P450/6betaB spanned about 30 kbp and consisted of 13 exons, and was in exon number and size identical with CYP3A2 gene except in the 6th exon, which was shorter than that of CYP3A2. 6beta-B mRNA, which may be transcribed from P450/6betaB, was detected on Northern blotting and by reverse transcription-polymerase chain reaction (RT-PCR). Profiles of the developmental change and induction by a treatment with several chemicals were very similar to those of P450PCN1 mRNA reported previously. P450PCN1 mRNA and gene, however, were not detected by PCR in rats. To determine whether P450/6betaB encodes an active protein, a cDNA was isolated and expressed. Expression of 6beta-B cDNA in COS-1 cells was carried out and revealed that the recombinant protein comigrated with purified P4506beta-4 previously identified as CYP3A1. The recombinant 6beta-B protein showed similar turnover rate and regioselectivity for testosterone with purified P4506beta-4 by the simultaneous addition of NADPH-cytochrome P450 reductase and cytochrome b5. These data suggest that P450/6betaB encodes an active P450 form corresponding to CYP3A1 and P450PCN1 reported previously does not exist in rats. Copyright 1999 Academic Press.

  7. Identification, Characterization, and Expression of a Novel P450 Gene Encoding CYP6AE25 from the Asian Corn Borer, Ostrinia furnacalis

    PubMed Central

    Zhang, Yu-liang; Kulye, Mahesh; Yang, Feng-shan; Xiao, Luo; Zhang, Yi-tong; Zeng, Hongmei; Wang, Jian-hua; Liu, Zhi-xin

    2011-01-01

    An allele of the cytochrome P450 gene, CYP6AE14, named CYP6AE25 (GenBank accession no. EU807990) was isolated from the Asian com borer, Ostrinia fumacalis (Guenée) (Lepidoptera: Pyralidae) by RT-PCR. The cDNA sequence of CYP6AE25 is 2315 bp in length and contains a 1569 nucleotides open reading frame encoding a putative protein with 523 amino acid residues and a predicted molecular weight of 59.95 kDa and a theoretical pI of 8.31. The putative protein contains the classic heme-binding sequence motif F××G×××C×G (residues 451–460) conserved among all P450 enzymes as well as other characteristic motifs of all cytochrome P450s. It shares 52% identity with the previously published sequence of CYP6AE14 (GenBank accession no. DQ986461) from Helicoverpa armigera. Phylogenetic analysis of amino acid sequences from members of various P450 families indicated that CYP6AE25 has a closer phylogenetic relationship with CYP6AE14 and CYP6B1 that are related to metabolism of plant allelochemicals, CYP6D1 which is related to pyrethroid resistance and has a more distant relationship to CYP302A1 and CYP307A1 which are related to synthesis of the insect molting hormones. The expression level of the gene in the adults and immature stages of O. furnacalis by quantitative real-time PCR revealed that CYP6AE25 was expressed in all life stages investigated. The mRNA expression level in 3rd instar larvae was 12.8- and 2.97-fold higher than those in pupae and adults, respectively. The tissue specific expression level of CYP6AE25 was in the order of midgut, malpighian tube and fatty body from high to low but was absent in ovary and brain. The analysis of the CYP6AB25 gene using bioinformatic software is discussed. PMID:21529257

  8. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    PubMed

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Human cytochromes P450 in health and disease

    PubMed Central

    Nebert, Daniel W.; Wikvall, Kjell; Miller, Walter L.

    2013-01-01

    There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases—confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development. PMID:23297354

  10. Novel phacB-encoded cytochrome P450 monooxygenase from Aspergillus nidulans with 3-hydroxyphenylacetate 6-hydroxylase and 3,4-dihydroxyphenylacetate 6-hydroxylase activities.

    PubMed

    Ferrer-Sevillano, Francisco; Fernández-Cañón, José M

    2007-03-01

    Aspergillus nidulans catabolizes phenylacetate (PhAc) and 3-hydroxy-, 4-hydroxy-, and 3,4-dihydroxyphenylacetate (3-OH-PhAc, 4-OH-PhAc, and 3,4-diOH-PhAc, respectively) through the 2,5-dihydroxyphenylacetate (homogentisic acid) catabolic pathway. Using cDNA subtraction techniques, we isolated a gene, denoted phacB, which is strongly induced by PhAc (and its hydroxyderivatives) and encodes a new cytochrome P450 (CYP450). A disrupted phacB strain (delta phacB) does not grow on 3-hydroxy-, 4-hydroxy-, or 3,4-dihydroxy-PhAc. High-performance liquid chromatography and gas chromatography-mass spectrum analyses of in vitro reactions using microsomes from wild-type and several A. nidulans mutant strains confirmed that the phacB-encoded CYP450 catalyzes 3-hydroxyphenylacetate and 3,4-dihydroxyphenylacetate 6-hydroxylations to generate 2,5-dihydroxyphenylacetate and 2,4,5-trihydroxyphenylacetate, respectively. Both of these compounds are used as substrates by homogentisate dioxygenase. This cytochrome P450 protein also uses PhAc as a substrate to generate 2-OH-PhAc with a very low efficiency. The phacB gene is the first member of a new CYP450 subfamily (CYP504B).

  11. Novel phacB-Encoded Cytochrome P450 Monooxygenase from Aspergillus nidulans with 3-Hydroxyphenylacetate 6-Hydroxylase and 3,4-Dihydroxyphenylacetate 6-Hydroxylase Activities▿

    PubMed Central

    Ferrer-Sevillano, Francisco; Fernández-Cañón, José M.

    2007-01-01

    Aspergillus nidulans catabolizes phenylacetate (PhAc) and 3-hydroxy-, 4-hydroxy-, and 3,4-dihydroxyphenylacetate (3-OH-PhAc, 4-OH-PhAc, and 3,4-diOH-PhAc, respectively) through the 2,5-dihydroxyphenylacetate (homogentisic acid) catabolic pathway. Using cDNA subtraction techniques, we isolated a gene, denoted phacB, which is strongly induced by PhAc (and its hydroxyderivatives) and encodes a new cytochrome P450 (CYP450). A disrupted phacB strain (ΔphacB) does not grow on 3-hydroxy-, 4-hydroxy-, or 3,4-dihydroxy-PhAc. High-performance liquid chromatography and gas chromatography-mass spectrum analyses of in vitro reactions using microsomes from wild-type and several A. nidulans mutant strains confirmed that the phacB-encoded CYP450 catalyzes 3-hydroxyphenylacetate and 3,4-dihydroxyphenylacetate 6-hydroxylations to generate 2,5-dihydroxyphenylacetate and 2,4,5-trihydroxyphenylacetate, respectively. Both of these compounds are used as substrates by homogentisate dioxygenase. This cytochrome P450 protein also uses PhAc as a substrate to generate 2-OH-PhAc with a very low efficiency. The phacB gene is the first member of a new CYP450 subfamily (CYP504B). PMID:17189487

  12. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  13. Detection and diversity of fungal nitric oxide reductase genes ( p450nor) in agricultural soils

    DOE PAGES

    Higgins, Steven A.; Welsh, Allana; Orellana, Luis H.; ...

    2016-03-11

    Members of the Fungi convert nitrate (NO 3 -) and nitrite (NO 2 -) to gaseous nitrous oxide (N 2O) (denitrification), but the fungal contributions to N-loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N 2O from added NO 3 - or NO 2 - in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups,more » of which 151 produced N 2O from NO 2 -. Novel PCR primers targeting the p450nor gene that encodes the nitric oxide (NO) reductase responsible for N 2O production in fungi yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54-98% amino acid identity to reference P450nor sequences within the phylum Ascomycota, and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N 2O from nitrite, whereas nirK (encoding the NO-forming nitrite reductase) was amplified in only 13-74% of the N 2O-forming isolates using two separate nirK primer sets. Altogether, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N 2O formation.« less

  14. Detection and diversity of fungal nitric oxide reductase genes ( p450nor) in agricultural soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Steven A.; Welsh, Allana; Orellana, Luis H.

    Members of the Fungi convert nitrate (NO 3 -) and nitrite (NO 2 -) to gaseous nitrous oxide (N 2O) (denitrification), but the fungal contributions to N-loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N 2O from added NO 3 - or NO 2 - in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups,more » of which 151 produced N 2O from NO 2 -. Novel PCR primers targeting the p450nor gene that encodes the nitric oxide (NO) reductase responsible for N 2O production in fungi yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54-98% amino acid identity to reference P450nor sequences within the phylum Ascomycota, and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N 2O from nitrite, whereas nirK (encoding the NO-forming nitrite reductase) was amplified in only 13-74% of the N 2O-forming isolates using two separate nirK primer sets. Altogether, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N 2O formation.« less

  15. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants.

    PubMed

    Rong Tan, Li; Chen Lu, Yi; Jing Zhang, Jing; Luo, Fang; Yang, Hong

    2015-09-01

    Plant cytochrome P450 monooxygenases constitute one of the largest families of protein genes involved in plant growth, development and acclimation to biotic and abiotic stresses. However, whether these genes respond to organic toxic compounds and their biological functions for detoxifying toxic compounds such as herbicides in rice are poorly understood. The present study identified 201 genes encoding cytochrome P450s from an atrazine-exposed rice transcriptome through high-throughput sequencing. Of these, 69 cytochrome P450 genes were validated by microarray and some of them were confirmed by real time PCR. Activities of NADPH-cytochrome P450 reductase (CPR) and p-nitroanisole O-demethylase (PNOD) related to toxicity were determined and significantly induced by atrazine exposure. To dissect the mechanism underlying atrazine modification and detoxification by P450, metabolites (or derivatives) of atrazine in plants were analyzed by ultra performance liquid chromatography mass spectrometry (UPLC/MS). Major metabolites comprised desmethylatrazine (DMA), desethylatrazine (DEA), desisopropylatrazine (DIA), hydroxyatrazine (HA), hydroxyethylatrazine (HEA) and hydroxyisopropylatrazine (HIA). All of them were chemically modified by P450s. Furthermore, two specific inhibitors of piperonyl butoxide (PBO) and malathion (MAL) were used to assess the correlation between the P450s activity and rice responses including accumulation of atrazine in tissues, shoot and root growth and detoxification. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Novel P450nor Gene Detection Assay Used To Characterize the Prevalence and Diversity of Soil Fungal Denitrifiers.

    PubMed

    Novinscak, Amy; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Chantigny, Martin H; Filion, Martin

    2016-08-01

    Denitrifying fungi produce nitrous oxide (N2O), a potent greenhouse gas, as they generally lack the ability to convert N2O to dinitrogen. Contrary to the case for bacterial denitrifiers, the prevalence and diversity of denitrifying fungi found in the environment are not well characterized. In this study, denitrifying fungi were isolated from various soil ecosystems, and novel PCR primers targeting the P450nor gene, encoding the enzyme responsible for the conversion of nitric oxide to N2O, were developed, validated, and used to study the diversity of cultivable fungal denitrifiers. This PCR assay was also used to detect P450nor genes directly from environmental soil samples. Fungal denitrification capabilities were further validated using an N2O gas detection assay and a PCR assay targeting the nirK gene. A collection of 492 facultative anaerobic fungi was isolated from 15 soil ecosystems and taxonomically identified by sequencing the internal transcribed spacer sequence. Twenty-seven fungal denitrifiers belonging to 10 genera had the P450nor and the nirK genes and produced N2O from nitrite. N2O production is reported in strains not commonly known as denitrifiers, such as Byssochlamys nivea, Volutella ciliata, Chloridium spp., and Trichocladium spp. The prevalence of fungal denitrifiers did not follow a soil ecosystem distribution; however, a higher diversity was observed in compost and agricultural soils. The phylogenetic trees constructed using partial P450nor and nirK gene sequences revealed that both genes clustered taxonomically closely related strains together. A PCR assay targeting the P450nor gene involved in fungal denitrification was developed and validated. The newly developed P450nor primers were used on fungal DNA extracted from a collection of fungi isolated from various soil environments and on DNA directly extracted from soil. The results indicated that approximatively 25% of all isolated fungi possessed this gene and were able to convert nitrite to

  17. Insect P450 inhibitors and insecticides: challenges and opportunities.

    PubMed

    Feyereisen, René

    2015-06-01

    P450 enzymes are encoded by a large number of genes in insects, often over a hundred. They play important roles in insecticide metabolism and resistance, and growing numbers of P450 enzymes are now known to catalyse important physiological reactions, such as hormone metabolism or cuticular hydrocarbon synthesis. Ways to inhibit P450 enzymes specifically or less specifically are well understood, as P450 inhibitors are found as drugs, as fungicides, as plant growth regulators and as insecticide synergists. Yet there are no P450 inhibitors as insecticides on the market. As new modes of action are constantly needed to support insecticide resistance management, P450 inhibitors should be considered because of their high potential for insect selectivity, their well-known mechanisms of action and the increasing ease of rational design and testing. © 2014 Society of Chemical Industry.

  18. Identification of three cytochrome P450 genes in the Chagas' disease vector Triatoma infestans: Expression analysis in deltamethrin susceptible and resistant populations.

    PubMed

    Grosso, Carla G; Blariza, María J; Mougabure-Cueto, Gastón; Picollo, María I; García, Beatriz A

    2016-10-01

    Cytochrome P450 monooxygenases play a predominant role in the metabolism of insecticides. Many insect P450 genes have frequently been associated with detoxification processes allowing the insect to become tolerant or resistant to insecticides. The increases of expression of P450 genes at transcriptional level are often consider responsible for increasing the metabolism of insecticides and seems to be a common phenomenon in the evolution of resistance development in insects. As pyrethroid resistance has been detected in Triatoma infestans, it was of interest to analyze genes associated with resistance to insecticides such as those encoding for cytochromes P450. With this purpose, the cDNA sequences of three cytochrome P450 genes (CYP4EM7, CYP3085B1, and CYP3092A6) were identified in this species. Primers and specific Taqman probes were designed from these sequences to determine their expression by quantitative PCR. The mRNA levels of the cytochrome P450 genes identified were determined from total RNA extracted from pools of fat body collected from individuals of different resistant and susceptible strains of T. infestans, and at different interval times after the topical application of the lethal doses 50% (LD50) of deltamethrin on the ventral abdomen of insects belonging to the different populations analyzed. It was detected overexpression of the CYP4EM7 gene in the most resistant strain of T. infestans and the expression of the three cytochrome P450 genes isolated was induced by deltamethrin in the susceptible and resistant populations included in this study. These results suggest that these genes would be involved in the detoxification of deltamethrin and support the hypothesis that considers to the cytochrome P450 genes of importance in the development of pyrethroid resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cytochrome P450 systems--biological variations of electron transport chains.

    PubMed

    Hannemann, Frank; Bichet, Andreas; Ewen, Kerstin M; Bernhardt, Rita

    2007-03-01

    Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.

  20. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus.

    PubMed

    Gong, Youhui; Li, Ting; Zhang, Lee; Gao, Xiwu; Liu, Nannan

    2013-01-01

    The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.

  1. Detection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils

    PubMed Central

    Welsh, Allana; Orellana, Luis H.; Konstantinidis, Konstantinos T.; Chee-Sanford, Joanne C.; Sanford, Robert A.; Schadt, Christopher W.

    2016-01-01

    ABSTRACT Members of the Fungi convert nitrate (NO3−) and nitrite (NO2−) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations, and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N2O from added NO3− or NO2− in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups, 151 of which produced N2O from NO2−. Novel PCR primers targeting the p450nor gene, which encodes the nitric oxide (NO) reductase responsible for N2O production in fungi, yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54 to 98% amino acid identity with reference P450nor sequences within the phylum Ascomycota and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N2O from NO2−, whereas nirK (encoding the NO-forming NO2− reductase) was amplified in only 13 to 74% of the N2O-forming isolates using two separate nirK primer sets. Collectively, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N2O formation. IMPORTANCE A comprehensive understanding of the microbiota controlling soil N loss and greenhouse gas (N2O) emissions is crucial for sustainable agricultural practices and addressing climate change concerns. We report the design and application of a novel PCR primer set targeting fungal p450nor, a biomarker for fungal N2O production, and demonstrate the utility of the new approach to assess fungal denitrification

  2. Molecular identity and gene expression of aldosterone synthase cytochrome P450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Mitsuhiro; Nonaka, Yasuki; Takemori, Hiroshi

    11{beta}-Hydroxylase (CYP11B1) of bovine adrenal cortex produced corticosterone as well as aldosterone from 11-deoxycorticosterone in the presence of the mitochondrial P450 electron transport system. CYP11B1s of pig, sheep, and bullfrog, when expressed in COS-7 cells, also performed corticosterone and aldosterone production. Since these CYP11B1s are present in the zonae fasciculata and reticularis as well as in the zona glomerulosa, the zonal differentiation of steroid production may occur by the action of still-unidentified factor(s) on the enzyme-catalyzed successive oxygenations at C11- and C18-positions of steroid. In contrast, two cDNAs, one encoding 11{beta}-hydroxylase and the other encoding aldosterone synthase (CYP11B2), were isolatedmore » from rat, mouse, hamster, guinea pig, and human adrenals. The expression of CYP11B1 gene was regulated by cyclic AMP (cAMP)-dependent signaling, whereas that of CYP11B2 gene by calcium ion-signaling as well as cAMP-signaling. Salt-inducible protein kinase, a cAMP-induced novel protein kinase, was one of the regulators of CYP11B2 gene expression.« less

  3. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis.

    PubMed

    Zhang, Jianhua; Zhang, Yixi; Wang, Yunchao; Yang, Yuanxue; Cang, Xinzhu; Liu, Zewen

    2016-09-01

    The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Induction of P450 genes in Nilaparvata lugens and Sogatella furcifera by two neonicotinoid insecticides.

    PubMed

    Yang, Yuan-Xue; Yu, Na; Zhang, Jian-Hua; Zhang, Yi-Xi; Liu, Ze-Wen

    2018-06-01

    Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD 85 ), and in N. lugens among three IMI doses (LD 15 , LD 50 and LD 85 ). When IMI and NMI at the LD 85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD 85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LD 50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  5. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  6. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.).

    PubMed

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-03-10

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification.

  7. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.)

    PubMed Central

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W.; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-01-01

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification. PMID:25752830

  8. Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc.

    PubMed

    Tee, Meng Kian; Abramsohn, Michal; Loewenthal, Neta; Harris, Mark; Siwach, Sudeep; Kaplinsky, Ana; Markus, Barak; Birk, Ohad; Sheffield, Val C; Parvari, Ruti; Pavari, Ruti; Hershkovitz, Eli; Miller, Walter L

    2013-02-01

    The cholesterol side-chain cleavage enzyme P450scc, encoded by CYP11A1, converts cholesterol to pregnenolone to initiate steroidogenesis. P450scc deficiency can disrupt adrenal and gonadal steroidogenesis, resembling congenital lipoid adrenal hyperplasia clinically and hormonally; only 12 such patients have been reported previously. We sought to expand clinical and genetic experience with P450scc deficiency. We sequenced candidate genes in 7 children with adrenal insufficiency who lacked disordered sexual development. P450scc missense mutations were recreated in the F2 vector, which expresses the fusion protein P450scc-Ferredoxin Reductase-Ferredoxin. COS-1 cells were transfected, production of pregnenolone was assayed, and apparent kinetic parameters were calculated. Previously described P450scc mutants were assayed in parallel. Four of five Bedouin children in one kindred were compound heterozygotes for mutations c.694C>T (Arg232Stop) and c.644T>C (Phe215Ser). Single-nucleotide polymorphism analysis confirmed segregation of these mutations. The fifth kindred member and another Bedouin patient presented in infancy and were homozygous for Arg232Stop. A patient from Fiji presenting in infancy was homozygous for c.358T>C (Arg120Stop). All mutations are novel. As assayed in the F2 fusion protein, P450scc Phe215Ser retained 2.5% of wild-type activity; previously described mutants Leu141Trp and Ala269Val had 2.6% and 12% of wild-type activity, respectively, and Val415Glu and c.835delA lacked detectable activity. Although P450scc is required to produce placental progesterone required to maintain pregnancy, severe mutations in P450scc are compatible with term gestation; milder P450scc mutations may present later without disordered sexual development. Enlarged adrenals usually distinguish steroidogenic acute regulatory protein deficiency from P450scc deficiency, but only DNA sequencing is definitive.

  9. Point mutation of Arg440 to his in cytochrome P450c17 causes severe 17{alpha}-hydroxylase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fardella, C.E.; Hum, D.W.; Miller, W.L.

    Genetic disorders in the gene encoding P450c17 cause 17{alpha}-hydroxylase deficiency. The consequent defects in the synthesis of cortisol and sex steroids cause sexual infantilism and a female phenotype in both genetic sexes as well as mineralorcorticoid excess and hypertension. A 15-yr-old patient from Germany was seen for absent pubertal development and mild hypertension with hypokalemia, high concentrations of 17-deoxysteroids, and hypergonadotropic hypogonadism. Analysis of her P450c17 gene by polymerase chain reaction amplification and direct sequencing showed mutation of codon 440 from CGC (Arg) to CAC (His). Expression of a vector encoding this mutated form of P450c17 in transfected nonsteroidogenic COS-1more » cells showed that the mutant P450c17 protein was produced, but it lacked both 17{alpha}-hydroxylase and 17,20-lyase activities. To date, 15 different P450c17 mutations have been described in 23 patients with 17{alpha}-hydroxylase deficiency, indicating that mutations in this gene are due to random events. 36 refs., 3 figs., 2 tabs.« less

  10. The cytochrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq datasets

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450s (CYPs) encode one of the most diverse enzyme superfamily in nature. They catalyze oxidative reactions of endogenous molecules and exogenous chemicals. Methods: We identifiedCYPs genes through in silico analysis using EST, RNA-Seq and genome databases of channel catfish.Phylogenetic ...

  11. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.).

    PubMed

    Babu, Peram Ravindra; Rao, Khareedu Venkateswara; Reddy, Vudem Dashavantha

    2013-01-15

    Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora.

    PubMed

    Syed, Khajamohiddin; Nelson, David R; Riley, Robert; Yadav, Jagjit S

    2013-01-01

    Genomewide annotation of cytochrome P450 monooxygenases (P450s) in three white-rot species of the fungal order Polyporales, namely Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora, revealed a large contingent of P450 genes (P450ome) in their genomes. A total of 199 P450 genes in B. adusta and 209 P450 genes each in Ganoderma sp. and P. brevispora were identified. These P450omes were classified into families and subfamilies as follows: B. adusta (39 families, 86 subfamilies), Ganoderma sp. (41 families, 105 subfamilies) and P. brevispora (42 families, 111 subfamilies). Of note, the B. adusta genome lacked the CYP505 family (P450foxy), a group of P450-CPR fusion proteins. The three polypore species revealed differential enrichment of individual P450 families in their genomes. The largest CYP families in the three genomes were CYP5144 (67 P450s), CYP5359 (46 P450s) and CYP5344 (43 P450s) in B. adusta, Ganoderma sp. and P. brevispora, respectively. Our analyses showed that tandem gene duplications led to expansions in certain P450 families. An estimated 33% (72 P450s), 28% (55 P450s) and 23% (49 P450s) of P450ome genes were duplicated in P. brevispora, B. adusta and Ganoderma sp., respectively. Family-wise comparative analysis revealed that 22 CYP families are common across the three Polypore species. Comparative P450ome analysis with Ganoderma lucidum revealed the presence of 143 orthologs and 56 paralogs in Ganoderma sp. Multiple P450s were found near the characteristic biosynthetic genes for secondary metabolites, namely polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), terpene cyclase and terpene synthase in the three genomes, suggesting a likely role of these P450s in secondary metabolism in these Polyporales. Overall, the three species had a richer P450 diversity both in terms of the P450 genes and P450 subfamilies as compared to the model white-rot and brown-rot polypore species Phanerochaete chrysosporium and Postia placenta.

  13. Amplification of a Cytochrome P450 Gene Is Associated with Resistance to Neonicotinoid Insecticides in the Aphid Myzus persicae

    PubMed Central

    Puinean, Alin M.; Foster, Stephen P.; Oliphant, Linda; Denholm, Ian; Field, Linda M.; Millar, Neil S.; Williamson, Martin S.; Bass, Chris

    2010-01-01

    The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2–16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae. PMID:20585623

  14. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae.

    PubMed

    Puinean, Alin M; Foster, Stephen P; Oliphant, Linda; Denholm, Ian; Field, Linda M; Millar, Neil S; Williamson, Martin S; Bass, Chris

    2010-06-24

    The aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class. In this study, the mechanisms underlying resistance to the neonicotinoid insecticides were investigated using biological, biochemical, and genomic approaches. Bioassays on a resistant M. persicae clone (5191A) suggested that P450-mediated detoxification plays a primary role in resistance, although additional mechanism(s) may also contribute. Microarray analysis, using an array populated with probes corresponding to all known detoxification genes in M. persicae, revealed constitutive over-expression (22-fold) of a single P450 gene (CYP6CY3); and quantitative PCR showed that the over-expression is due, at least in part, to gene amplification. This is the first report of a P450 gene amplification event associated with insecticide resistance in an agriculturally important insect pest. The microarray analysis also showed over-expression of several gene sequences that encode cuticular proteins (2-16-fold), and artificial feeding assays and in vivo penetration assays using radiolabeled insecticide provided direct evidence of a role for reduced cuticular penetration in neonicotinoid resistance. Conversely, receptor radioligand binding studies and nucleotide sequencing of nAChR subunit genes suggest that target-site changes are unlikely to contribute to resistance to neonicotinoid insecticides in M. persicae.

  15. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.

    PubMed

    Finta, C; Zaphiropoulos, P G

    2000-12-30

    Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.

  16. Cytochrome P450, CYP93A1, as a defense marker in soybean

    USDA-ARS?s Scientific Manuscript database

    CYP93A1 is a cytochrome P450 that is involved in the synthesis of the phytoalexin glyceollin in soybean (Glycine max L. Merr). The gene encoding CYP93A1 has been used as a defense marker in soybean cell cultures, however, little is known regarding how this gene is expressed in the intact plant. To f...

  17. Multiple Cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus.

    PubMed

    Liu, Nannan; Li, Ting; Reid, William R; Yang, Ting; Zhang, Lee

    2011-01-01

    Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCq(G0), the field parental population) to highly resistant (HAmCq(G8), the 8(th) generation of permethrin selected offspring of HAmCq(G0)). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCq(G8), suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCq(G8) adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes.

  18. A comparative study of P450 gene expression in field and laboratory Musca domestica L. strains.

    PubMed

    Højland, Dorte H; Vagn Jensen, Karl-Martin; Kristensen, Michael

    2014-08-01

    The housefly is a global pest that has developed resistance to most insecticides applied for its control. Resistance has been associated with cytochrome P450 monooxygenases (P450s). The authors compare the expression of six genes possibly associated with insecticide resistance in three unselected strains: a multiresistant strain (791a), a neonicotinoid-resistant strain (766b) and a new field strain (845b). CYP4G2 was highly expressed throughout the range of strains and proved to be the one of the most interesting expression profiles of all P450s analysed. CYP6G4 was expressed up to 11-fold higher in 766b than in WHO-SRS. Significant differences between expression of P450 genes between F1 flies from 845b and established laboratory strains were shown. In general, P450 gene expression in 845b was 2-14-fold higher than in the reference strain (P < 0.0101) and 2-23-fold higher than in the multiresistant strain (P < 0.0110). The newly collected field strain 845b had significantly higher constitutive gene expression than both WHO-SRS and 791a. High constitutive expression of CYP4G2 in houseflies indicates a possible role of this gene in metabolic resistance. There is a strong indication that CYP6G4 is a major insecticide resistance gene involved in neonicotinoid resistance. © 2013 Society of Chemical Industry.

  19. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    PubMed Central

    Chen, Song; Li, Xianchun

    2007-01-01

    Background Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements), SINEs (short interspersed nuclear elements), MITEs (miniature inverted-repeat transposable elements), one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1) implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1) involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes. PMID:17381843

  20. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga.

    PubMed

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-02-07

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.

  1. Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea).

    PubMed

    Xu, Xiao-Lu; Wu, Xiao-Qin; Ye, Jian-Ren; Huang, Lin

    2015-03-06

    Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi) was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  2. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica.

    PubMed

    Zhu, Fang; Li, Ting; Zhang, Lee; Liu, Nannan

    2008-09-25

    Insects may use various biochemical pathways to enable them to tolerate the lethal action of insecticides. For example, increased cytochrome P450 detoxification is known to play an important role in many insect species. Both constitutively increased expression (overexpression) and induction of P450s are thought to be responsible for increased levels of detoxification of insecticides. However, unlike constitutively overexpressed P450 genes, whose expression association with insecticide resistance has been extensively studied, the induction of P450s is less well characterized in insecticide resistance. The current study focuses on the characterization of individual P450 genes that are induced in response to permethrin treatment in permethrin resistant house flies. The expression of 3 P450 genes, CYP4D4v2, CYP4G2, and CYP6A38, was co-up-regulated by permethrin treatment in permethrin resistant ALHF house flies in a time and dose-dependent manner. Comparison of the deduced protein sequences of these three P450s from resistant ALHF and susceptible aabys and CS house flies revealed identical protein sequences. Genetic linkage analysis located CYP4D4v2 and CYP6A38 on autosome 5, corresponding to the linkage of P450-mediated resistance in ALHF, whereas CYP4G2 was located on autosome 3, where the major insecticide resistance factor(s) for ALHF had been mapped but no P450 genes reported prior to this study. Our study provides the first direct evidence that multiple P450 genes are co-up-regulated in permethrin resistant house flies through the induction mechanism, which increases overall expression levels of P450 genes in resistant house flies. Taken together with the significant induction of CYP4D4v2, CYP4G2, and CYP6A38 expression by permethrin only in permethrin resistant house flies and the correlation of the linkage of the genes with resistance and/or P450-mediated resistance in resistant ALHF house flies, this study sheds new light on the functional importance of P450

  3. The cytochrome p450 homepage.

    PubMed

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  4. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: possible involvement in resistance to beta-cypermethrin.

    PubMed

    Chen, Xi'en; Zhang, Yalin

    2015-03-10

    NADPH-cytochrome P450 reductase (CPR) and cytochrome b5 (b5) are essential for cytochrome P450 mediated biological reactions. CPR and b5 in several insects have been found to be associated with insecticide resistance. However, CPR and b5 in the diamondback moth (DBM), Plutella xylostella, are not characterized and their roles remain undefined. A full-length cDNA of CPR encoding 678 amino acids and a full-length cDNA of b5 encoding 127 amino acids were cloned from DBM. Their deduced amino acid sequences shared high identities with those of other insects and showed characteristics of classical CPRs and b5s, respectively. The mRNAs of both genes were detectable in all developmental stages with the highest expression levels occurring in the 4th instar larvae. Tissue-specific expression analysis showed that their transcripts were most abundant in gut. Transcripts of CPR and b5 in the beta-cypermethrin resistant DBM strain were 13.2- and 2.84-fold higher than those in the beta-cypermethrin susceptible strain, respectively. The expression levels of CPR and b5 were enhanced by beta-cypermethrin at the concentration of 12 mg L(-1) (~LC10). The results indicate that CPR and b5 may play essential roles in the P450 mediated resistance of DBM to beta-cypermethrin or even other insecticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The Cytochrome P450 Homepage

    PubMed Central

    2009-01-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described. PMID:19951895

  6. A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conte, F.A.; Grumbach, M.M.; Ito, Y.

    The authors report the features of a new syndrome of aromatase deficiency due to molecular defects in the CYP19 (P450arom) gene in a 46,XX female. At birth, the patient presented with a nonadrenal form of female pseudohermaphrodism. At 17 months of age, laparotomy revealed normal female internal genital structures; the histological appearance of the ovaries was normal. FSH concentrations were markedly elevated at 9.4 ng/mL LER 869, and estrone and estradiol levels were undetectable (<37 pmol/L). By 14 yr of age, she had failed to exhibit breast development. The clitoris has enlarged to 4 x 2 cm, and pubic hairmore » was Tanner stage IV. The plasma concentration of testosterone was elevated at 3294 pmol/L, as was androstenedione at 9951 pmol/L. Plasma estradiol levels were below 37 pmol/L. ACTH and dexamethasone tests indicated a nonadrenal source of testosterone and androstenedione. Plasma gonadotropin levels were in the castrate range. Pelvic sonography and magnetic resonance imaging showed multiple 4- to 6-cm ovarian cysts bilaterally. Despite increased circulating androgens and clitoral growth, the bone age was 10 yr at chronologic age 14 2/12 yr. Estrogen replacement therapy resulted in a growth spurt, breast development, menarche, suppression of gonadotropin levels, and resolution of the cysts. The clinical findings suggested the diagnosis of P450arom deficiency. Analyses of genomic DNA from ovarian fibroblasts demonstrated two single base changes in the coding region of the P450arom gene, one at 1303 basepairs (C-T), R435C, and the other at 1310 basepairs (G-A), C437Y, in exon 10. The molecular genetic studies indicate that the patient is a compound heterozygote for these mutations. Expression of these mutations showed that the R435C mutation had 1.1% the activity of the wild-type P450arom enzyme, whereas the C437Y mutation demonstrated no activity. 32 refs., 6 figs., 2 tabs.« less

  7. A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom).

    PubMed

    Conte, F A; Grumbach, M M; Ito, Y; Fisher, C R; Simpson, E R

    1994-06-01

    We report the features of a new syndrome of aromatase deficiency due to molecular defects in the CYP19 (P450arom) gene in a 46,XX female. At birth, the patient presented with a nonadrenal form of female pseudohermaphrodism. At 17 months of age, laparotomy revealed normal female internal genital structures; the histological appearance of the ovaries was normal. FSH concentrations were markedly elevated at 9.4 ng/mL LER 869, and estrone and estradiol levels were undetectable (< 37 pmol/L). By 14 yr of age, she had failed to exhibit breast development. The clitoris had enlarged to 4 x 2 cm, and pubic hair was Tanner stage IV. The plasma concentration of testosterone was elevated at 3294 pmol/L, as was androstenedione at 9951 pmol/L. Plasma estradiol levels were below 37 pmol/L. ACTH and dexamethasone tests indicated a nonadrenal source of testosterone and androstenedione. Plasma gonadotropin levels were in the castrate range. Pelvic sonography and magnetic resonance imaging showed multiple 4- to 6-cm ovarian cysts bilaterally. Despite increased circulating androgens and clitoral growth, the bone age was 10 yr at chronologic age 14 2/12 yr. Estrogen replacement therapy resulted in a growth spurt, breast development, menarche, suppression of gonadotropin levels, and resolution of the cysts. The clinical findings suggested the diagnosis of P450arom deficiency. Analyses of genomic DNA from ovarian fibroblasts demonstrated two single base changes in the coding region of the P450arom gene, one at 1303 basepairs (C-T), R435C, and the other at 1310 basepairs (G-A), C437Y, in exon 10. The molecular genetic studies indicate that the patient is a compound heterozygote for these mutations. Expression of these mutations showed that the R435C mutation had 1.1% the activity of the wild-type P450arom enzyme, whereas the C437Y mutation demonstrated no activity. The cardinal features of this syndrome are a consequence of P450arom deficiency: 1) the fetal masculinization in this

  8. Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper.

    PubMed

    Zimmer, Christoph T; Garrood, William T; Singh, Kumar Saurabh; Randall, Emma; Lueke, Bettina; Gutbrod, Oliver; Matthiesen, Svend; Kohler, Maxie; Nauen, Ralf; Davies, T G Emyr; Bass, Chris

    2018-01-22

    Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The P450 Monooxygenase BcABA1 Is Essential for Abscisic Acid Biosynthesis in Botrytis cinerea

    PubMed Central

    Siewers, Verena; Smedsgaard, Jørn; Tudzynski, Paul

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids but involves direct cyclization of farnesyl diphosphate and subsequent oxidation steps. We present here evidence that this “direct” pathway is indeed the only one used by an ABA-overproducing strain of B. cinerea. Targeted inactivation of the gene bccpr1 encoding a cytochrome P450 oxidoreductase reduced the ABA production significantly, proving the involvement of P450 monooxygenases in the pathway. Expression analysis of 28 different putative P450 monooxygenase genes revealed two that were induced under ABA biosynthesis conditions. Targeted inactivation showed that one of these, bcaba1, is essential for ABA biosynthesis: ΔBcaba1 mutants contained no residual ABA. Thus, bcaba1 represents the first identified fungal ABA biosynthetic gene. PMID:15240257

  10. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    PubMed

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  11. Developmental rearrangement of cyanobacterial nif genes: nucleotide sequence, open reading frames, and cytochrome P-450 homology of the Anabaena sp. strain PCC 7120 nifD element.

    PubMed Central

    Lammers, P J; McLaughlin, S; Papin, S; Trujillo-Provencio, C; Ryncarz, A J

    1990-01-01

    An 11-kbp DNA element of unknown function interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. In developing heterocysts the nifD element excises from the chromosome via site-specific recombination between short repeat sequences that flank the element. The nucleotide sequence of the nifH-proximal half of the element was determined to elucidate the genetic potential of the element. Four open reading frames with the same relative orientation as the nifD element-encoded xisA gene were identified in the sequenced region. Each of the open reading frames was preceded by a reasonable ribosome-binding site and had biased codon utilization preferences consistent with low levels of expression. Open reading frame 3 was highly homologous with three cytochrome P-450 omega-hydroxylase proteins and showed regional homology to functionally significant domains common to the cytochrome P-450 superfamily. The sequence encoding open reading frame 2 was the most highly conserved portion of the sequenced region based on heterologous hybridization experiments with three genera of heterocystous cyanobacteria. Images PMID:2123860

  12. Expansion of cytochrome P450 and cathepsin genes in the generalist herbivore brown marmorated stink bug.

    PubMed

    Bansal, Raman; Michel, Andy

    2018-01-18

    The brown marmorated stink bug (Halyomorpha halys) is an invasive pest in North America which causes severe economic losses on tree fruits, ornamentals, vegetables, and field crops. The H. halys is an extreme generalist and this feeding behaviour may have been a major contributor behind its establishment and successful adaptation in invasive habitats of North America. To develop an understanding into the mechanism of H. halys' generalist herbivory, here we specifically focused on genes putatively facilitating its adaptation on diverse host plants. We generated over 142 million reads via sequencing eight RNA-Seq libraries, each representing an individual H. halys adult. The de novo assembly contained 79,855 high quality transcripts, totalling 39,600,178 bases. Following a comprehensive transcriptome analysis, H. halys had an expanded suite of cytochrome P450 and cathepsin-L genes compared to other insects. Detailed characterization of P450 genes from the CYP6 family, known for herbivore adaptation on host plants, strongly hinted towards H. halys-specific expansions involving gene duplications. In subsequent RT-PCR experiments, both P450 and cathepsin genes exhibited tissue-specific or distinct expression patterns which supported their principal roles of detoxification and/or digestion in a particular tissue. Our analysis into P450 and cathepsin genes in H. halys offers new insights into potential mechanisms for understanding generalist herbivory and adaptation success in invasive habitats. Additionally, the large-scale transcriptomic resource developed here provides highly useful data for gene discovery; functional, population and comparative genomics as well as efforts to assemble and annotate the H. halys genome.

  13. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.

    PubMed

    Hrycay, E G; Bandiera, S M

    2009-12-01

    The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.

  14. n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogure, Takahisa; Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Niitsu, Niigata 956-8603; Takagi, Masamichi

    2005-04-01

    The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated thatmore » three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism.« less

  15. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway

    PubMed Central

    Helliwell, Chris A.; Chandler, Peter M.; Poole, Andrew; Dennis, Elizabeth S.; Peacock, W. James

    2001-01-01

    We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase. PMID:11172076

  16. Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism.

    PubMed

    Liu, Zhenhua; Tavares, Raquel; Forsythe, Evan S; André, François; Lugan, Raphaël; Jonasson, Gabriella; Boutet-Mercey, Stéphanie; Tohge, Takayuki; Beilstein, Mark A; Werck-Reichhart, Danièle; Renault, Hugues

    2016-10-07

    Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.

  17. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.

    PubMed

    Liu, Nannan; Li, Ming; Gong, Youhui; Liu, Feng; Li, Ting

    2015-05-01

    P450s are known to be critical for the detoxification and/or activation of xenobiotics such as drugs and pesticides and overexpression of P450 genes can significantly affect the disposition of xenobiotics in the tissues of organisms, altering their pharmacological/toxicological effects. In insects, P450s play an important role in detoxifying exogenous compounds such as insecticides and plant toxins and their overexpression can result in increased levels of P450 proteins and P450 activities. This has been associated with enhanced metabolic detoxification of insecticides and has been implicated in the development of insecticide resistance in insects. Multiple P450 genes have been found to be co-overexpressed in individual insect species via several constitutive overexpression and induction mechanisms, which in turn are co-responsible for high levels of insecticide resistance. Many studies have also demonstrated that the transcriptional overexpression of P450 genes in resistant insects is regulated by trans and/or cis regulatory genes/factors. Taken together, these earlier findings suggest not only that insecticide resistance is conferred via multi-resistance P450 genes, but also that it is mediated through the interaction of regulatory genes/factors and resistance genes. This chapter reviews our current understanding of how the molecular mechanisms of P450 interaction/gene regulation govern the development of insecticide resistance in insects and our progress along the road to a comprehensive characterization of P450 detoxification-mediated insecticide resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cytochrome P450 (CYP450) Tests

    MedlinePlus

    ... P450 (CYP450) tests Overview Your doctor may use cytochrome P450 (CYP450) tests to help determine how your body processes (metabolizes) a drug. The human body contains P450 enzymes to process medications. Because of inherited (genetic) traits ...

  19. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  20. The scent of royalty: a p450 gene signals reproductive status in a social insect.

    PubMed

    Hoffmann, Katharina; Gowin, Johannes; Hartfelder, Klaus; Korb, Judith

    2014-10-01

    Cooperation requires communication; this applies to animals and humans alike. The main communication means differ between taxa and social insects (ants, termites, and some bees and wasps) lack the cognitive abilities of most social vertebrates. Central to the regulation of the reproductive harmony in insect societies is the production of a royalty scent which signals the fertility status of the reproducing queen to the nonreproducing workers. Here, we revealed a central genetic component underlying this hallmark of insect societies in the termite Cryptotermes secundus. Communication between queens and workers relied upon the expression of a gene, Neofem4, which belongs to the cytochrome P450 genes. We inhibited Neofem4 in queens by RNA interference. This resulted in the loss of the royalty scent in queens and the workers behaved as though the queen were absent. The queen's behavior was not generally affected by silencing Neofem4. This suggests that the lack of the royalty scent lead to workers not recognizing her anymore as queen. P450 genes are known to be involved in the production of chemical signals in cockroaches and their expression has been linked to a major fertility regulator, juvenile hormone. This makes P450 genes, both a suitable and available evolutionary substrate in the face of natural selection for production of a queen substance. Our data suggest that in an organism without elaborate cognitive abilities communication has been achieved by the exploitation of a central gene that links the fertility network with the chemical communication pathway. As termites and social Hymenoptera seem to share the same class of compounds in signaling fertility, this role of P450 genes might be more widespread across social insects. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species

    PubMed Central

    Koch, Aline; Kumar, Neelendra; Weber, Lennart; Keller, Harald; Imani, Jafargholi; Kogel, Karl-Heinz

    2013-01-01

    Head blight, which is caused by mycotoxin-producing fungi of the genus Fusarium, is an economically important crop disease. We assessed the potential of host-induced gene silencing targeting the fungal cytochrome P450 lanosterol C-14α-demethylase (CYP51) genes, which are essential for ergosterol biosynthesis, to restrict fungal infection. In axenic cultures of Fusarium graminearum, in vitro feeding of CYP3RNA, a 791-nt double-stranded (ds)RNA complementary to CYP51A, CYP51B, and CYP51C, resulted in growth inhibition [half-maximum growth inhibition (IC50) = 1.2 nM] as well as altered fungal morphology, similar to that observed after treatment with the azole fungicide tebuconazole, for which the CYP51 enzyme is a target. Expression of the same dsRNA in Arabidopsis and barley rendered susceptible plants highly resistant to fungal infection. Microscopic analysis revealed that mycelium formation on CYP3RNA-expressing leaves was restricted to the inoculation sites, and that inoculated barley caryopses were virtually free of fungal hyphae. This inhibition of fungal growth correlated with in planta production of siRNAs corresponding to the targeted CYP51 sequences, as well as highly efficient silencing of the fungal CYP51 genes. The high efficiency of fungal inhibition suggests that host-induced gene-silencing targeting of the CYP51 genes is an alternative to chemical treatments for the control of devastating fungal diseases. PMID:24218613

  2. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes.

    PubMed

    Mahmood, Khalid; Højland, Dorte H; Asp, Torben; Kristensen, Michael

    2016-01-01

    Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s in xenobiotic detoxification.

  3. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes

    PubMed Central

    Asp, Torben; Kristensen, Michael

    2016-01-01

    Background Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. Results The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Conclusion Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s

  4. Gravity Persistent Signal 1 (GPS1) reveals novel cytochrome P450s involved in gravitropism.

    PubMed

    Withers, John C; Shipp, Matthew J; Rupasinghe, Sanjeewa G; Sukumar, Poornima; Schuler, Mary A; Muday, Gloria K; Wyatt, Sarah E

    2013-01-01

    Gravity is an important environmental factor that affects growth and development of plants. In response to changes in gravity, directional growth occurs along the major axes and lateral branches of both shoots and roots. The gravity persistent signal (gps) mutants of Arabidopsis thaliana were previously identified as having an altered response to gravity when reoriented relative to the gravity vector in the cold, with the gps1 mutant exhibiting a complete loss of tropic response under these conditions. Thermal asymmetric interlaced (TAIL) PCR was used to identify the gene defective in gps1. Gene expression data, molecular modeling and computational substrate dockings, quantitative RT-PCR analyses, reporter gene fusions, and physiological analyses of knockout mutants were used to characterize the genes identified. Cloning of the gene defective in gps1 and genetic complementation revealed that GPS1 encodes CYP705A22, a cytochrome P450 monooxygenase (P450). CYP705A5, a closely related family member, was identified as expressed specifically in roots in response to gravistimulation, and a mutation affecting its expression resulted in a delayed gravity response, increased flavonol levels, and decreased basipetal auxin transport. Molecular modeling coupled with in silico substrate docking and diphenylboric acid 2-aminoethyl ester (DBPA) staining indicated that these P450s are involved in biosynthesis of flavonoids potentially involved in auxin transport. The characterization of two novel P450s (CYP705A22 and CYP705A5) and their role in the gravity response has offered new insights into the regulation of the genetic and physiological controls of plant gravitropism.

  5. P450 oxidoreductase deficiency: a disorder of steroidogenesis with multiple clinical manifestations.

    PubMed

    Miller, Walter L

    2012-10-23

    Cytochrome P450 enzymes catalyze the biosynthesis of steroid hormones and metabolize drugs. There are seven human type I P450 enzymes in mitochondria and 50 type II enzymes in endoplasmic reticulum. Type II enzymes, including both drug-metabolizing and some steroidogenic enzymes, require electron donation from a two-flavin protein, P450 oxidoreductase (POR). Although knockout of the POR gene causes embryonic lethality in mice, we discovered human POR deficiency as a disorder of steroidogenesis associated with the Antley-Bixler skeletal malformation syndrome and found mild POR mutations in phenotypically normal adults with infertility. Assay results of mutant forms of POR using the traditional but nonphysiologic assay (reduction of cytochrome c) did not correlate with patient phenotypes; assays based on the 17,20 lyase activity of P450c17 (CYP17) correlated with clinical phenotypes. The POR sequence in 842 normal individuals revealed many polymorphisms; amino acid sequence variant A503V is encoded by ~28% of human alleles. POR A503V has about 60% of wild-type activity in assays with CYP17, CYP2D6, and CYP3A4, but nearly wild-type activity with P450c21, CYP1A2, and CYP2C19. Activity of a particular POR variant with one P450 enzyme will not predict its activity with another P450 enzyme: Each POR-P450 combination must be studied individually. Human POR transcription, initiated from an untranslated exon, is regulated by Smad3/4, thyroid receptors, and the transcription factor AP-2. A promoter polymorphism reduces transcription to 60% in liver cells and to 35% in adrenal cells. POR deficiency is a newly described disorder of steroidogenesis, and POR variants may account for some genetic variation in drug metabolism.

  6. Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide.

    PubMed Central

    O'Keefe, D. P.; Tepperman, J. M.; Dean, C.; Leto, K. J.; Erbes, D. L.; Odell, J. T.

    1994-01-01

    The Streptomyces griseolus gene encoding herbicide-metabolizing cytochrome P450SU1 (CYP105A1) was expressed in transgenic tobacco (Nicotiana tabacum). Because this P450 can be reduced by plant chloroplast ferredoxin in vitro, chloroplast-targeted and nontargeted expression were compared. Whereas P450SU1 antigen was found in the transgenic plants regardless of the targeting, only those with chloroplast-directed enzyme performed P450SU1-mediated N-dealkylation of the sulfonylurea 2-methylethyl-2,3-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1, 2-benzoisothiazole- 7-sulfonamide-1,1-dioxide (R7402). Chloroplast targeting appears to be essential for the bacterial P450 to function in the plant. Because the R7402 metabolite has greater phytotoxicity than R7402 itself, plants bearing active P450SU1 are susceptible to injury from R7402 treatment that is harmless to plants without P450SU1. Thus, P450SU1 expression and R7402 treatment can be used as a negative selection system in plants. Furthermore, expression of P450SU1 from a tissue-specific promoter can sequester production of the phytotoxic R7402 metabolite to a single plant tissue. In tobacco expressing P450SU1 from a tapetum-specific promoter, treatment of immature flower buds with R7402 caused dramatically lowered pollen viability. Such treatment could be the basis for a chemical hybridizing agent. PMID:12232216

  7. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice.

    PubMed

    Luo, Anding; Qian, Qian; Yin, Hengfu; Liu, Xiaoqiang; Yin, Changxi; Lan, Ying; Tang, Jiuyou; Tang, Zuoshun; Cao, Shouyun; Wang, Xiujie; Xia, Kai; Fu, Xiangdong; Luo, Da; Chu, Chengcai

    2006-02-01

    Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding. In the eui1-2 mutant, the cell lengths in the uppermost internodes are significantly longer than that of wild type and thus give rise to the elongated uppermost internode. It was found that the level of active gibberellin was elevated in the mutant, whereas its growth in response to gibberellin is similar to that of the wild type, suggesting that the higher level accumulation of gibberellin in the eui1 mutant causes the abnormal elongation of the uppermost internode. Consistently, the expression levels of several genes which encode gibberellin biosynthesis enzymes were altered. We cloned the EUI1 gene, which encodes a putative cytochrome P450 monooxygenase, by map-based cloning and found that EUI1 was weakly expressed in most tissues, but preferentially in young panicles. To confirm its function, transgenic experiments with different constructs of EUI1 were conducted. Overexpression of EUI1 gave rise to the gibberellin-deficient-like phenotypes, which could be partially reversed by supplementation with gibberellin. Furthermore, apart from the alteration of expression levels of the gibberellin biosynthesis genes, accumulation of SLR1 protein was found in the overexpressing transgenic plants, indicating that the expression level of EUI1 is implicated in both gibberellin-mediated SLR1 destruction and a feedback regulation in gibberellin biosynthesis. Therefore, we proposed that EUI1 plays a negative role in gibberellin-mediated regulation of cell elongation in the uppermost internode of rice.

  8. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33.

    PubMed

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-08-02

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F₁-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata.

  9. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33

    PubMed Central

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-01-01

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F1-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata. PMID:27490569

  10. Purification, Reconstitution, and Inhibition of Cytochrome P-450 Sterol Δ22-Desaturase from the Pathogenic Fungus Candida glabrata

    PubMed Central

    Lamb, David C.; Maspahy, Segula; Kelly, Diane E.; Manning, Nigel J.; Geber, Antonia; Bennett, John E.; Kelly, Steven L.

    1999-01-01

    Sterol Δ22-desaturase has been purified from a strain of Candida glabrata with a disruption in the gene encoding sterol 14α-demethylase (cytochrome P-45051; CYP51). The purified cytochrome P-450 exhibited sterol Δ22-desaturase activity in a reconstituted system with NADPH–cytochrome P-450 reductase in dilaurylphosphatidylcholine, with the enzyme kinetic studies revealing a Km for ergosta-5,7-dienol of 12.5 μM and a Vmax of 0.59 nmol of this substrate metabolized/min/nmol of P-450. This enzyme is encoded by CYP61 (ERG5) in Saccharomyces cerevisiae, and homologues have been shown in the Candida albicans and Schizosaccharomyces pombe genome projects. Ketoconazole, itraconazole, and fluconazole formed low-spin complexes with the ferric cytochrome and exhibited type II spectra, which are indicative of an interaction between the azole moiety and the cytochrome heme. The azole antifungal compounds inhibited reconstituted sterol Δ22-desaturase activity by binding to the cytochrome with a one-to-one stoichiometry, with total inhibition of enzyme activity occurring when equimolar amounts of azole and cytochrome P-450 were added. These results reveal the potential for sterol Δ22-desaturase to be an antifungal target and to contribute to the binding of drugs within the fungal cell. PMID:10390230

  11. Differential regulation by heat stress of novel cytochrome P450 genes from the dinoflagellate symbionts of reef-building corals.

    PubMed

    Rosic, Nedeljka N; Pernice, Mathieu; Dunn, Simon; Dove, Sophie; Hoegh-Guldberg, Ove

    2010-05-01

    Exposure to heat stress has been recognized as one of the major factors leading to the breakdown of the coral-alga symbiosis and coral bleaching. Here, we describe the presence of three new cytochrome P450 (CYP) genes from the reef-building coral endosymbiont Symbiodinium (type C3) and changes in their expression during exposure to severe and moderate heat stress conditions. Sequence analysis of the CYP C-terminal region and two conserved domains, the "PERF" and "heme-binding" domains, confirmed the separate identities of the CYP genes analyzed. In order to explore the effects of different heat stress scenarios, samples of the scleractinian coral Acropora millepora were exposed to elevated temperatures incrementally over an 18-h period (rapid thermal stress) and over a 120-h period (gradual thermal stress). After 18 h of gradual heating and incubation at 26 degrees C, the Symbiodinium CYP mRNA pool was approximately 30% larger, while a further 6 degrees C increase to a temperature above the average sea temperature (29 degrees C after 72 h) resulted in a 2- to 4-fold increase in CYP expression. Both rapid heat stress and gradual heat stress at 32 degrees C resulted in 50% to 90% decreases in CYP gene transcript abundance. Consequently, the initial upregulation of expression of CYP genes at moderately elevated temperatures (26 degrees C and 29 degrees C) was followed by a decrease in expression under the greater thermal stress conditions at 32 degrees C. These findings indicate that in the coral-alga symbiosis under heat stress conditions there is production of chemical stressors and/or transcriptional factors that regulate the expression of genes, such as the genes encoding cytochrome P450 monooxygenases, that are involved in the first line of an organism's chemical defense.

  12. A world of cytochrome P450s

    PubMed Central

    Nelson, David R.

    2013-01-01

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450. PMID:23297353

  13. Genome-wide and expression-profiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae).

    PubMed

    Yan, Zheng-Wen; He, Zheng-Bo; Yan, Zhen-Tian; Si, Feng-Ling; Zhou, Yong; Chen, Bin

    2018-02-02

    Anopheles sinensis is one of the major malaria vectors. However, pyrethroid resistance in An. sinensis is threatening malaria control. Cytochrome P450-mediated detoxification is an important pyrethroid resistance mechanism that has been unexplored in An. sinensis. In this study, we performed a comprehensive analysis of the An. sinensis P450 gene superfamily with special attention to their role in pyrethroid resistance using bioinformatics and molecular approaches. Our data revealed the presence of 112 individual P450 genes in An. sinensis, which were classified into four major clans (mitochondrial, CYP2, CYP3 and CYP4), 18 families and 50 subfamilies. Sixty-seven genes formed nine gene clusters, and genes within the same cluster and the same gene family had a similar gene structure. Phylogenetic analysis showed that most of An. sinensis P450s (82/112) had very close 1: 1 orthology with Anopheles gambiae P450s. Five genes (AsCYP6Z2, AsCYP6P3v1, AsCYP6P3v2, AsCYP9J5 and AsCYP306A1) were significantly upregulated in three pyrethroid-resistant populations in both RNA-seq and RT-qPCR analyses, suggesting that they could be the most important P450 genes involved in pyrethroid resistance in An. sinensis. Our study provides insight on the diversity of An. sinensis P450 superfamily and basis for further elucidating pyrethroid resistance mechanism in this mosquito species. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  14. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreamer, G.L.; Squibb, K.; Gioeli, D.

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached bymore » 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.« less

  15. Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria.

    PubMed

    Guo, Yanqiong; Zhang, Jianzhen; Yu, Rongrong; Zhu, Kun Yan; Guo, Yaping; Ma, Enbo

    2012-05-01

    Cytochrome P450 monooxygenases (cytochrome P450s), found in virtually all living organisms, play an important role in the metabolism of xenobiotics such as drugs, pesticides, and plant toxins. We have previously evaluated the responses of the oriental migratory locust (Locusta migratoria) to the pyrethroid insecticide deltamethrin and revealed that increased cytochrome P450 enzyme activity was due to increased transcription of multiple cytochrome P450 genes. In this study, we identified for the first time two new cytochrome P450 genes, which belong to two novel cytochrome P450 gene families. CYP409A1 belongs to CYP409 family whereas CYP408B1 belongs to CYP408 family. Our molecular analysis indicated that CYP409A1 was mainly expressed in fatbodies, midgut, gastric caecum, foregut and Malpighian tubules of the third- and fourth-instar nymphs, whereas CYP408B1 was mainly expressed in foregut, hindgut and muscle of the insects at all developmental stages examined. The expression of these two cytochrome P450 genes were differentially affected by three representative insecticides, including carbaryl (carbamate), malathion (organophosphate) and deltamethrin (pyrethroid). The exposure of the locust to carbaryl, malathion and deltamethrin resulted in reduced, moderately increased and significantly increased transcript levels, respectively, of the two cytochrome P450 genes. Our further analysis of their detoxification roles by using RNA interference followed by deltamethrin bioassay showed increased nymph mortalities by 21.1% and 16.7%, respectively, after CYP409A1 and CYP408B1 were silenced. These results strongly support our notion that these two new cytochrome P450 genes play an important role in deltamethrin detoxification in the locust. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A novel cytochrome P450 gene (CYP4G25) of the silkmoth Antheraea yamamai: cloning and expression pattern in pharate first instar larvae in relation to diapause.

    PubMed

    Yang, Ping; Tanaka, Hiromasa; Kuwano, Eiichi; Suzuki, Koichi

    2008-03-01

    A new cytochrome P450 gene, CYP4G25, was identified as a differentially expressed gene between the diapausing and post-diapausing pharate first instar larvae of the wild silkmoth Antheraea yamamai, using subtractive cDNA hybridization. The cDNA sequence of CYP4G25 has an open reading frame of 1674 nucleotides encoding 557 amino acid residues. Sequence analysis of the putative CYP4G25 protein disclosed the motif FXXGXRXCXG that is essential for heme binding in P450 cytochromes. Hybridization in situ demonstrated predominant expression of CYP4G25 in the integument of pharate first instar larvae. Northern blotting analysis showed an intensive signal after the initiation of diapause and no or weak expression throughout the periods of pre-diapause and post-diapause, including larval development. These results indicate that CYP4G25 is strongly associated with diapause in pharate first instar larvae.

  17. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.

    PubMed

    Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou

    2017-09-18

    The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450

  18. Juvenile hormone and colony conditions differentially influence cytochrome P450 gene expression in the termite Reticulitermes flavipes.

    PubMed

    Zhou, X; Song, C; Grzymala, T L; Oi, F M; Scharf, M E

    2006-12-01

    In lower termites, the worker caste is a totipotent immature stage that is capable of differentiating into other adult caste phenotypes. We investigated the diversity of family 4 cytochrome P450 (CYP4) genes in Reticulitermes flavipes workers, with the specific goal of identifying P450s potentially involved in regulating caste differentiation. Seven novel CYP4 genes were identified. Quantitative real-time PCR revealed the tissue distribution of expression for the seven CYP4s, as well as temporal expression changes in workers in association with a release from colony influences and during juvenile hormone (JH)-induced soldier caste differentiation. Several fat-body-related CYP4 genes were differentially expressed after JH treatment. Still other genes changed expression in association with removal from colony influences, suggesting that primer pheromones and/or other colony influences impact their expression. These findings add to a growing database of candidate termite caste-regulatory genes, and provide explicit evidence that colony factors influence termite gene expression.

  19. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress.

    PubMed

    Li, Yinsheng; Zhao, Chun; Lu, Xiaoxu; Ai, Xiaojie; Qiu, Jiangping

    2018-04-15

    Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. Earthworms have been used as a bioindicator of soil pollution in numerous studies, but no CYP450 gene has so far been cloned. RT-PCR and RACE-PCR were employed to construct and sequence the CYP450 gene DNA from the extracted mRNA in the earthworm Eisenia fetida. The cloned gene (EW1) has an open reading frame of 477bp. The 3'-terminal region contained both the consensus and the signature sequences characteristic of CYP450. It was closely related to the CYP450 gene from the flatworm genus Opisthorchis felineus with 87% homology. The predicted structure of the putative protein was 97% homologous to human CYP450 family 27. This gene has been deposited in GenBank (accession no. KM881474). Earthworms (E. fetida) were then exposed to 1, 10, 100, and 500mgkg -1 enrofloxacin in soils to explore the mRNA expression by real time qPCR. The effect of enrofloxacin on mRNA expression levels of EW1 exhibited a marked hormesis pattern across the enrofloxacin dose range tested. This is believed to be the first reported CYP450 gene in earthworms, with reference value for molecular studies on detoxification processes in earthworms. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Characterization of the Critical Amino Acids of an Aspergillus parasiticus Cytochrome P-450 Monooxygenase Encoded by ordA That Is Involved in the Biosynthesis of Aflatoxins B1, G1, B2, and G2

    PubMed Central

    Yu, Jiujiang; Chang, Perng-Kuang; Ehrlich, Kenneth C.; Cary, Jeffrey W.; Montalbano, Beverly; Dyer, John M.; Bhatnagar, Deepak; Cleveland, Thomas E.

    1998-01-01

    The conversion of O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin to aflatoxins B1, G1, B2, and G2 requires a cytochrome P-450 type of oxidoreductase activity. ordA, a gene adjacent to the omtA gene, was identified in the aflatoxin-biosynthetic pathway gene cluster by chromosomal walking in Aspergillus parasiticus. The ordA gene was a homolog of the Aspergillus flavus ord1 gene, which is involved in the conversion of OMST to aflatoxin B1. Complementation of A. parasiticus SRRC 2043, an OMST-accumulating strain, with the ordA gene restored the ability to produce aflatoxins B1, G1, B2, and G2. The ordA gene placed under the control of the GAL1 promoter converted exogenously supplied OMST to aflatoxin B1 in Saccharomyces cerevisiae. In contrast, the ordA gene homolog in A. parasiticus SRRC 2043, ordA1, was not able to carry out the same conversion in the yeast system. Sequence analysis revealed that the ordA1 gene had three point mutations which resulted in three amino acid changes (His-400→Leu-400, Ala-143→Ser-143, and Ile-528→Tyr-528). Site-directed mutagenesis studies showed that the change of His-400 to Leu-400 resulted in a loss of the monooxygenase activity and that Ala-143 played a significant role in the catalytic conversion. In contrast, Ile-528 was not associated with the enzymatic activity. The involvement of the ordA gene in the synthesis of aflatoxins G1, and G2 in A. parasiticus suggests that enzymes required for the formation of aflatoxins G1 and G2 are not present in A. flavus. The results showed that in addition to the conserved heme-binding and redox reaction domains encoded by ordA, other seemingly domain-unrelated amino acid residues are critical for cytochrome P-450 catalytic activity. The ordA gene has been assigned to a new cytochrome P-450 gene family named CYP64 by The Cytochrome P450 Nomenclature Committee. PMID:9835571

  1. Homozygous Mutation G539R in the Gene for P450 Oxidoreductase in a Family Previously Diagnosed as Having 17,20-Lyase Deficiency

    PubMed Central

    Hershkovitz, Eli; Parvari, Ruthi; Wudy, Stefan A.; Hartmann, Michaela F.; Gomes, Larissa G.; Loewental, Neta; Miller, Walter L.

    2008-01-01

    Context: Very few patients have been described with isolated 17,20-lyase deficiency who have had their mutations in P450c17 (17α-hydroxylase/17,20-lyase) proven by DNA sequencing and in vitro characterization of the mutations. Most patients with 17,20-lyase deficiency have mutations in the domain of P450c17 that interact with the electron-donating redox partner, P450 oxidoreductase (POR). Objective: Our objective was to clarify the genetic and functional basis of isolated 17,20-lyase deficiency in familial cases who were previously reported as having 17,20-lyase deficiency. Patients: Four undervirilized males of an extended Bedouin family were investigated. One of these has previously been reported to carry mutations in the CYP17A1 gene encoding P450c17 causing isolated 17,20-lyase deficiency. Methods: Serum hormones were evaluated before and after stimulation with ACTH. Urinary steroid metabolites were profiled by gas chromatography-mass spectrometry. Exons 1 and 8 of CYP17A1 previously reported to harbor mutations in one of these patients and all 15 coding exons of POR were sequenced. Results: Gas chromatography-mass spectrometry (GC-MS) urinary steroid profiling and serum steroid measurements showed combined deficiencies of 17,20-lyase and 21-hydroxylase. Sequencing of exons 1 and 8 of CYP17A1 in two different laboratories showed no mutations. Sequencing of POR showed that all four patients were homozygous for G539R, a previously studied mutation that retains 46% of normal capacity to support the 17α-hydroxylase activity but only 8% of the 17,20-lyase activity of P450c17. Conclusion: POR deficiency can masquerade clinically as isolated 17,20-lyase deficiency. PMID:18559916

  2. Homozygous mutation G539R in the gene for P450 oxidoreductase in a family previously diagnosed as having 17,20-lyase deficiency.

    PubMed

    Hershkovitz, Eli; Parvari, Ruthi; Wudy, Stefan A; Hartmann, Michaela F; Gomes, Larissa G; Loewental, Neta; Miller, Walter L

    2008-09-01

    Very few patients have been described with isolated 17,20-lyase deficiency who have had their mutations in P450c17 (17alpha-hydroxylase/17,20-lyase) proven by DNA sequencing and in vitro characterization of the mutations. Most patients with 17,20-lyase deficiency have mutations in the domain of P450c17 that interact with the electron-donating redox partner, P450 oxidoreductase (POR). Our objective was to clarify the genetic and functional basis of isolated 17,20-lyase deficiency in familial cases who were previously reported as having 17,20-lyase deficiency. Four undervirilized males of an extended Bedouin family were investigated. One of these has previously been reported to carry mutations in the CYP17A1 gene encoding P450c17 causing isolated 17,20-lyase deficiency. Serum hormones were evaluated before and after stimulation with ACTH. Urinary steroid metabolites were profiled by gas chromatography-mass spectrometry. Exons 1 and 8 of CYP17A1 previously reported to harbor mutations in one of these patients and all 15 coding exons of POR were sequenced. Gas chromatography-mass spectrometry (GC-MS) urinary steroid profiling and serum steroid measurements showed combined deficiencies of 17,20-lyase and 21-hydroxylase. Sequencing of exons 1 and 8 of CYP17A1 in two different laboratories showed no mutations. Sequencing of POR showed that all four patients were homozygous for G539R, a previously studied mutation that retains 46% of normal capacity to support the 17alpha-hydroxylase activity but only 8% of the 17,20-lyase activity of P450c17. POR deficiency can masquerade clinically as isolated 17,20-lyase deficiency.

  3. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodiummore » dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.« less

  4. ISOLATION OF THE CANDIDA TROPICALIS GENE FOR P450 LANOSTEROL DEMETHYLASE AND ITS EXPRESSION IN SACCAROMYCES CEREVISIAE

    EPA Science Inventory

    We have isolated the gene for cytochrome P450 lanosterol 14-demethylase (14DM) from the yeast Candida tropicalis. This was accomplished by screening genomic libraries of strain ATCC750 in E. coli using a DNA fragment containing the yeast Saccharomyces cerevisiae 14DM gene. Identi...

  5. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA 1535/pSK1002.

    PubMed

    Shimada, T; Iwasaki, M; Martin, M V; Guengerich, F P

    1989-06-15

    A total of 57 procarcinogens was examined for induction of umu gene response in the chimeric plasmid pSK1002, carried in Salmonella typhimurium TA 1535, after incubation with a series of human liver microsomal preparations which had been selected on the basis of characteristic levels of individual cytochrome P-450 (P-450) enzymes. The 18 most active compounds were selected and further analyzed using the umu gene response and correlative studies with a larger number of microsomal preparations, enzyme reconstitution studies involving purified enzymes, immunochemical inhibition, and patterns of stimulation and inhibition of catalytic activity by 7,8-benzoflavone. The results collectively indicate that 16 of these 18 most potent genotoxins examined are activated primarily either by P-450NF (the nifedipine oxidase) or P-450PA (the phenacetin O-deethylase). P-450NF appears to be the major enzyme involved in the bioactivation of aflatoxin B1, aflatoxin G1, sterigmatocystin, trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, 6-aminochrysene, and tris-(2,3-dibromopropyl)phosphate in human liver. P-450PA appears to be the major enzyme involved in the bioactivation of 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,5-dimethylimidazo[4, 5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-aminoanthracene, 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole, 2-aminofluorene, 2-acetylaminofluorene, 4-aminobiphenyl, 3-amino-1-methyl-5H-pyrido[4,3-b] indole, and 2-aminodipyrido[1,2-a:3',2'-d]imidazole. More than one enzyme appears to contribute significantly to the bioactivation of the other two compounds examined, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b] indole and 6-nitrochrysene. The literature suggests that the two human liver P-450s involved in activation of these 16 procarcinogens are highly inducible by barbiturates, macrolide antibodies, and certain steroids (P-450NF) and by smoking and ingestion of charcoal-containing food (P-450PA); noninvasive assays are available

  6. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  7. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1.

    PubMed Central

    Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F

    1988-01-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560

  8. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  9. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  10. Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems.

    PubMed

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H

    2011-02-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.

  11. Physical Studies of P450P450 Interactions: Predicting Quaternary Structures of P450 Complexes in Membranes from Their X-ray Crystal Structures

    PubMed Central

    Reed, James R.; Backes, Wayne L.

    2017-01-01

    Cytochrome P450 enzymes, which catalyze oxygenation reactions of both exogenous and endogenous chemicals, are membrane bound proteins that require interaction with their redox partners in order to function. Those responsible for drug and foreign compound metabolism are localized primarily in the endoplasmic reticulum of liver, lung, intestine, and other tissues. More recently, the potential for P450 enzymes to exist as supramolecular complexes has been shown by the demonstration of both homomeric and heteromeric complexes. The P450 units in these complexes are heterogeneous with respect to their distribution and function, and the interaction of different P450s can influence P450-specific metabolism. The goal of this review is to examine the evidence supporting the existence of physical complexes among P450 enzymes. Additionally, the review examines the crystal lattices of different P450 enzymes derived from X-ray diffraction data to make assumptions regarding possible quaternary structures in membranes and in turn, to predict how the quaternary structures could influence metabolism and explain the functional effects of specific P450P450 interactions. PMID:28194112

  12. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  13. Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome P450s: Evidence for involvement in host-plant allelochemical resistance

    PubMed Central

    Danielson, Phillip B.; MacIntyre, Ross J.; Fogleman, James C.

    1997-01-01

    Cytochrome P450s constitute a superfamily of genes encoding mostly microsomal hemoproteins that play a dominant role in the metabolism of a wide variety of both endogenous and foreign compounds. In insects, xenobiotic metabolism (i.e., metabolism of insecticides and toxic natural plant compounds) is known to involve members of the CYP6 family of cytochrome P450s. Use of a 3′ RACE (rapid amplification of cDNA ends) strategy with a degenerate primer based on the conserved cytochrome P450 heme-binding decapeptide loop resulted in the amplification of four cDNA sequences representing another family of cytochrome P450 genes (CYP28) from two species of isoquinoline alkaloid-resistant Drosophila and the cosmopolitan species Drosophila hydei. The CYP28 family forms a monophyletic clade with strong regional homologies to the vertebrate CYP3 family and the insect CYP6 family (both of which are involved in xenobiotic metabolism) and to the insect CYP9 family (of unknown function). Induction of mRNA levels for three of the CYP28 cytochrome P450s by toxic host-plant allelochemicals (up to 11.5-fold) and phenobarbital (up to 49-fold) corroborates previous in vitro metabolism studies and suggests a potentially important role for the CYP28 family in determining patterns of insect–host-plant relationships through xenobiotic detoxification. PMID:9380713

  14. Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development.

    PubMed

    Ivamoto, Suzana T; Sakuray, Leonardo M; Ferreira, Lucia P; Kitzberger, Cíntia S G; Scholz, Maria B S; Pot, David; Leroy, Thierry; Vieira, Luiz G E; Domingues, Douglas S; Pereira, Luiz F P

    2017-02-01

    Lipids are among the major chemical compounds present in coffee beans, and they affect the flavor and aroma of the coffee beverage. Coffee oil is rich in kaurene diterpene compounds, mainly cafestol (CAF) and kahweol (KAH), which are related to plant defense mechanisms and to nutraceutical and sensorial beverage characteristics. Despite their importance, the final steps of coffee diterpenes biosynthesis remain unknown. To understand the molecular basis of coffee diterpenes biosynthesis, we report the content dynamics of CAF and KAH in several Coffea arabica tissues and the transcriptional analysis of cytochrome P450 genes (P450). We measured CAF and KAH concentrations in leaves, roots, flower buds, flowers and fruit tissues at seven developmental stages (30-240 days after flowering - DAF) using HPLC. Higher CAF levels were detected in flower buds and flowers when compared to fruits. In contrast, KAH concentration increased along fruit development, peaking at 120 DAF. We did not detect CAF or KAH in leaves, and higher amounts of KAH than CAF were detected in roots. Using P450 candidate genes from a coffee EST database, we performed RT-qPCR transcriptional analysis of leaves, flowers and fruits at three developmental stages (90, 120 and 150 DAF). Three P450 genes (CaCYP76C4, CaCYP82C2 and CaCYP74A1) had transcriptional patterns similar to CAF concentration and two P450 genes (CaCYP71A25 and CaCYP701A3) have transcript accumulation similar to KAH concentration. These data warrant further investigation of these P450s as potential candidate genes involved in the final stages of the CAF and KAH biosynthetic pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Identification and Functional Analysis of a Novel Cytochrome P450 Gene CYP9A105 Associated with Pyrethroid Detoxification in Spodoptera exigua Hübner

    PubMed Central

    Wang, Rui-Long; Liu, Shi-Wei; Baerson, Scott R.; Qin, Zhong; Ma, Zhi-Hui; Su, Yi-Juan; Zhang, Jia-En

    2018-01-01

    In insects, cytochrome P450 monooxygenases (P450s or CYPs) are known to be involved in the detoxification and metabolism of insecticides, leading to increased resistance in insect populations. Spodoptera exigua is a serious polyphagous insect pest worldwide and has developed resistance to various insecticides. In this study, a novel CYP3 clan P450 gene CYP9A105 was identified and characterized from S. exigua. The cDNAs of CYP9A105 encoded 530 amino acid proteins, respectively. Quantitative real-time PCR analyses showed that CYP9A105 was expressed at all developmental stages, with maximal expression observed in fifth instar stage larvae, and in dissected fifth instar larvae the highest transcript levels were found in midguts and fat bodies. The expression of CYP9A105 in midguts was upregulated by treatments with the insecticides α-cypermethrin, deltamethrin and fenvalerate at both LC15 concentrations (0.10, 0.20 and 5.0 mg/L, respectively) and LC50 concentrations (0.25, 0.40 and 10.00 mg/L, respectively). RNA interference (RNAi) mediated silencing of CYP9A105 led to increased mortalities of insecticide-treated 4th instar S. exigua larvae. Our results suggest that CYP9A105 might play an important role in α-cypermethrin, deltamethrin and fenvalerate detoxification in S. exigua. PMID:29510578

  16. ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in RiceW⃞

    PubMed Central

    Zhu, Yongyou; Nomura, Takahito; Xu, Yonghan; Zhang, Yingying; Peng, Yu; Mao, Bizeng; Hanada, Atsushi; Zhou, Haicheng; Wang, Renxiao; Li, Peijin; Zhu, Xudong; Mander, Lewis N.; Kamiya, Yuji; Yamaguchi, Shinjiro; He, Zuhua

    2006-01-01

    The recessive tall rice (Oryza sativa) mutant elongated uppermost internode (eui) is morphologically normal until its final internode elongates drastically at the heading stage. The stage-specific developmental effect of the eui mutation has been used in the breeding of hybrid rice to improve the performance of heading in male sterile cultivars. We found that the eui mutant accumulated exceptionally large amounts of biologically active gibberellins (GAs) in the uppermost internode. Map-based cloning revealed that the Eui gene encodes a previously uncharacterized cytochrome P450 monooxygenase, CYP714D1. Using heterologous expression in yeast, we found that EUI catalyzed 16α,17-epoxidation of non-13-hydroxylated GAs. Consistent with the tall and dwarfed phenotypes of the eui mutant and Eui-overexpressing transgenic plants, respectively, 16α,17-epoxidation reduced the biological activity of GA4 in rice, demonstrating that EUI functions as a GA-deactivating enzyme. Expression of Eui appeared tightly regulated during plant development, in agreement with the stage-specific eui phenotypes. These results indicate the existence of an unrecognized pathway for GA deactivation by EUI during the growth of wild-type internodes. The identification of Eui as a GA catabolism gene provides additional evidence that the GA metabolism pathway is a useful target for increasing the agronomic value of crops. PMID:16399803

  17. Cytochrome P450-mediated metabolism of vitamin D

    PubMed Central

    Jones, Glenville; Prosser, David E.; Kaufmann, Martin

    2014-01-01

    The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field. PMID:23564710

  18. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides

    PubMed Central

    Wang, Rui-Long; Staehelin, Christian; Xia, Qing-Qing; Su, Yi-Juan; Zeng, Ren-Sen

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) of insects play crucial roles in the metabolism of endogenous and dietary compounds. Tobacco cutworm moth (Spodoptera litura), an important agricultural pest, causes severe yield losses in many crops. In this study, we identified CYP9A40, a novel P450 gene of S. litura, and investigated its expression profile and potential role in detoxification of plant allelochemicals and insecticides. The cDNA contains an open reading frame encoding 529 amino acid residues. CYP9A40 transcripts were found to be accumulated during various development stages of S. litura and were highest in fifth and sixth instar larvae. CYP9A40 was mainly expressed in the midgut and fat body. Larval consumption of xenobiotics, namely plant allelochemicals (quercetin and cinnamic acid) and insecticides (deltamethrin and methoxyfenozide) induced accumulation of CYP9A40 transcripts in the midgut and fat body. Injection of dsCYP9A40 (silencing of CYP9A40 by RNA interference) significantly increased the susceptibility of S. litura larvae to the tested plant allelochemicals and insecticides. These results indicate that CYP9A40 expression in S. litura is related to consumption of xenobiotics and suggest that CYP9A40 is involved in detoxification of these compounds. PMID:26393579

  19. Linking Low-Level Stable Isotope Fractionation to Expression of the Cytochrome P450 Monooxygenase-Encoding ethB Gene for Elucidation of Methyl tert-Butyl Ether Biodegradation in Aerated Treatment Pond Systems▿ †

    PubMed Central

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M.; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H.

    2011-01-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ɛC] of −0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ɛH]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ɛC of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ɛH of −5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem. PMID:21148686

  20. A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance.

    PubMed

    Terhzaz, Selim; Cabrero, Pablo; Brinzer, Robert A; Halberg, Kenneth A; Dow, Julian A T; Davies, Shireen-A

    2015-12-01

    The exposure of insects to xenobiotics, such as insecticides, triggers a complex defence response necessary for survival. This response includes the induction of genes that encode key Cytochrome P450 monooxygenase detoxification enzymes. Drosophila melanogaster Malpighian (renal) tubules are critical organs in the detoxification and elimination of these foreign compounds, so the tubule response induced by dietary exposure to the insecticide permethrin was examined. We found that expression of the gene encoding Cytochrome P450-4e3 (Cyp4e3) is significantly up-regulated by Drosophila fed on permethrin and that manipulation of Cyp4e3 levels, specifically in the principal cells of the Malpighian tubules, impacts significantly on the survival of permethrin-fed flies. Both dietary exposure to permethrin and Cyp4e3 knockdown cause a significant elevation of oxidative stress-associated markers in the tubules, including H2O2 and lipid peroxidation byproduct, HNE (4-hydroxynonenal). Thus, Cyp4e3 may play an important role in regulating H2O2 levels in the endoplasmic reticulum (ER) where it resides, and its absence triggers a JAK/STAT and NF-κB-mediated stress response, similar to that observed in cells under ER stress. This work increases our understanding of the molecular mechanisms of insecticide detoxification and provides further evidence of the oxidative stress responses induced by permethrin metabolism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Systematic Identification and Evolutionary Analysis of Catalytically Versatile Cytochrome P450 Monooxygenase Families Enriched in Model Basidiomycete Fungi

    PubMed Central

    Syed, Khajamohiddin; Shale, Karabo; Pagadala, Nataraj Sekhar; Tuszynski, Jack

    2014-01-01

    Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin’s theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our

  2. Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides.

    PubMed

    Csernetics, Árpád; Tóth, Eszter; Farkas, Anita; Nagy, Gábor; Bencsik, Ottó; Vágvölgyi, Csaba; Papp, Tamás

    2015-02-01

    Carotenoids are natural pigments that act as powerful antioxidants and have various beneficial effects on human and animal health. Mucor circinelloides (Mucoromycotina) is a carotenoid producing zygomycetes fungus, which accumulates β-carotene as the main carotenoid but also able to produce the hydroxylated derivatives of β-carotene (i.e. zeaxanthin and β-cryptoxanthin) in low amount. These xanthophylls, together with the ketolated derivatives of β-carotene (such as canthaxanthin, echinenone and astaxanthin) have better antioxidant activity than β-carotene. In this study our aim was to modify and enhance the xanthophyll production of the M. circinelloides by expression of heterologous genes responsible for the astaxanthin biosynthesis. The crtS and crtR genes, encoding the cytochrome-P450 hydroxylase and reductase, respectively, of wild-type and astaxanthin overproducing mutant Xanthophyllomyces dendrorhous strains were amplified from cDNA and the nucleotide and the deduced amino acid sequences were compared to each other. Introduction of the crtS on autonomously replicating plasmid in the wild-type M. circinelloides resulted enhanced zeaxanthin and β-cryptoxanthin accumulation and the presence of canthaxanthin, echinenone and astaxanthin in low amount; the β-carotene hydroxylase and ketolase activity of the X. dendrorhous cytochrome-P450 hydroxylase in M. circinelloides was verified. Increased canthaxanthin and echinenone production was observed by expression of the gene in a canthaxanthin producing mutant M. circinelloides. Co-expression of the crtR and crtS genes led to increase in the total carotenoid and slight change in xanthophyll accumulation in comparison with transformants harbouring the single crtS gene.

  3. Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes.

    PubMed

    Huarte-Bonnet, Carla; Kumar, Suresh; Saparrat, Mario C N; Girotti, Juan R; Santana, Marianela; Hallsworth, John E; Pedrini, Nicolás

    2018-03-01

    Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.

  4. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control.

    PubMed

    Hashimoto, H; Toide, K; Kitamura, R; Fujita, M; Tagawa, S; Itoh, S; Kamataki, T

    1993-12-01

    CYP3 A4 is the adult-specific form of cytochrome P450 in human livers [Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. & Kamataki, T. (1990) Biochemistry 29, 4430-4433]. The sequences of three genomic clones for CYP3A4 were analyzed for all exons, exon-intron junctions and the 5'-flanking region from the major transcription site to nucleotide position -1105, and compared with those of the CYP3A7 gene, a fetal-specific form of cytochrome P450 in humans. The results showed that the identity of 5'-flanking sequences between CYP3A4 and CYP3A7 genes was 91%, and that each 5'-flanking region had characteristic sequences termed as NFSE (P450NF-specific element) and HFLaSE (P450HFLa specific element), respectively. A basic transcription element (BTE) also lay in the 5'-flanking region of the CYP3A4 gene as seen in many CYP genes [Yanagida, A., Sogawa, K., Yasumoto, K. & Fujii-Kuriyama, Y. (1990) Mol. Cell. Biol. 10, 1470-1475]. The BTE binding factor (BTEB) was present in both adult and fetal human livers. To examine the transcriptional activity of the CYP3A4 gene, DNA fragments in the 5'-flanking region of the gene were inserted in front of the simian virus 40 promoter and the chloramphenicol acetyltransferase structural gene, and the constructs were transfected in HepG2 cells. The analysis of the chloramphenicol acetyltransferase activity indicated that (a) specific element(s) which could bind with a factor(s) in livers was present in the 5'-flanking region of the CYP3A4 gene to show the transcriptional activity.

  5. Quantitative Assessment of the Influence of Cytochrome P450 1A2 Gene Polymorphism and Colorectal Cancer Risk

    PubMed Central

    Rewuti, Abudouaini; Ma, Yu-Shui; Wang, Xiao-Feng; Xia, Qing; Fu, Da; Han, Yu-Song

    2013-01-01

    Cytochrome P450 1A2 (CYP1A2) encodes a member of the cytochrome P450 superfamily of enzymes, which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of colorectal cancer (CRC). The CYP1A2*C (rs2069514) and CYP1A2*F (rs762551) polymorphism are two of the most commonly studied polymorphisms of the gene for their association with risk of CRC, but the results are conflicting. To derive a more precise estimation of the relationship between CYP1A2 and genetic risk of CRC, we performed a comprehensive meta-analysis which included 7088 cases and 7568 controls from 12 published case-control studies. In a combined analysis, the summary per-allele odds ratio for CRC was 0.91 (95% CI: 0.83–1.00, P = 0.04), and 0.91 (95% CI: 0.68–1.22, P = 0.53), for CYP1A2 *F and *C allele, respectively. In the subgroup analysis by ethnicity, significant associations were found in Asians for CYP1A2*F and CYP1A2*C, while no significant associations were detected among Caucasian populations. Similar results were also observed using dominant genetic model. Potential sources of heterogeneity were explored by subgroup analysis and meta-regression. No significant heterogeneity was detected in most of comparisons. This meta-analysis suggests that the CYP1A2 *F and *C polymorphism is a protective factor against CRC among Asians. PMID:23951174

  6. Phylogenetic analysis of the cytochrome P450 3 (CYP3) gene family.

    PubMed

    McArthur, Andrew G; Hegelund, Tove; Cox, Rachel L; Stegeman, John J; Liljenberg, Mette; Olsson, Urban; Sundberg, Per; Celander, Malin C

    2003-08-01

    Cytochrome P450 genes (CYP) constitute a superfamily with members known from the Bacteria, Archaea, and Eukarya. The CYP3 gene family includes the CYP3A and CYP3B subfamilies. Members of the CYP3A subfamily represent the dominant CYP forms expressed in the digestive and respiratory tracts of vertebrates. The CYP3A enzymes metabolize a wide variety of chemically diverse lipophilic organic compounds. To understand vertebrate CYP3 diversity better, we determined the killifish (Fundulus heteroclitus) CYP3A30 and CYP3A56 and the ball python (Python regius) CYP3A42 sequences. We performed phylogenetic analyses of 45 vertebrate CYP3 amino acid sequences using a Bayesian approach. Our analyses indicate that teleost, diapsid, and mammalian CYP3A genes have undergone independent diversification and that the ancestral vertebrate genome contained a single CYP3A gene. Most CYP3A diversity is the product of recent gene duplication events. There is strong support for placement of the guinea pig CYP3A genes within the rodent CYP3A diversification. The rat, mouse, and hamster CYP3A genes are mixed among several rodent CYP3A subclades, indicative of a complex history involving speciation and gene duplication.

  7. Biosynthesis of Sandalwood Oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol.

    PubMed

    Diaz-Chavez, Maria L; Moniodis, Jessie; Madilao, Lufiani L; Jancsik, Sharon; Keeling, Christopher I; Barbour, Elizabeth L; Ghisalberti, Emilio L; Plummer, Julie A; Jones, Christopher G; Bohlmann, Jörg

    2013-01-01

    Sandalwood oil is one of the world's most highly prized essential oils, appearing in many high-end perfumes and fragrances. Extracted from the mature heartwood of several Santalum species, sandalwood oil is comprised mainly of sesquiterpene olefins and alcohols. Four sesquiterpenols, α-, β-, and epi-β-santalol and α-exo-bergamotol, make up approximately 90% of the oil of Santalum album. These compounds are the hydroxylated analogues of α-, β-, and epi-β-santalene and α-exo-bergamotene. By mining a transcriptome database of S. album for candidate cytochrome P450 genes, we cloned and characterized cDNAs encoding a small family of ten cytochrome P450-dependent monooxygenases annotated as SaCYP76F37v1, SaCYP76F37v2, SaCYP76F38v1, SaCYP76F38v2, SaCYP76F39v1, SaCYP76F39v2, SaCYP76F40, SaCYP76F41, SaCYP76F42, and SaCYP76F43. Nine of these genes were functionally characterized using in vitro assays and yeast in vivo assays to encode santalene/bergamotene oxidases and bergamotene oxidases. These results provide a foundation for production of sandalwood oil for the fragrance industry by means of metabolic engineering, as demonstrated with proof-of-concept formation of santalols and bergamotol in engineered yeast cells, simultaneously addressing conservation challenges by reducing pressure on supply of sandalwood from native forests.

  8. Long-term follow-up of a female with congenital adrenal hyperplasia due to P450-oxidoreductase deficiency.

    PubMed

    Bonamichi, Beatriz D S F; Santiago, Stella L M; Bertola, Débora R; Kim, Chong A; Alonso, Nivaldo; Mendonca, Berenice B; Bachega, Tania A S S; Gomes, Larissa G

    2016-10-01

    P450 oxidoreductase deficiency (PORD) is a variant of congenital adrenal hyperplasia that is caused by POR gene mutations. The POR gene encodes a flavor protein that transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 type II (including 21-hydroxylase, 17α-hydroxylase 17,20 lyase and aromatase), which is fundamental for their enzymatic activity. POR mutations cause variable impairments in steroidogenic enzyme activities that result in wide phenotypic variability ranging from 46,XX or 46,XY disorders of sexual differentiation, glucocorticoid deficiency, with or without skeletal malformations similar to Antley-Bixler syndrome to asymptomatic newborns diagnosed during neonatal screening test. Little is known about the PORD long-term evolution. We described a 46,XX patient with mild atypical genitalia associated with severe bone malformation, who was diagnosed after 13 years due to sexual infantilism. She developed large ovarian cysts and late onset adrenal insufficiency during follow-up, both of each regressed after hormone replacement therapies. We also described a late surgical approach for the correction of facial hypoplasia in a POR patient.

  9. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17).

    PubMed

    Martin, Lisandra L; Kubeil, Clemens; Simonov, Alexandr N; Kuznetsov, Vladimir L; Corbin, C Jo; Auchus, Richard J; Conley, Alan J; Bond, Alan M; Rodgers, Raymond J

    2017-02-05

    Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared

  11. Expanding P450 catalytic reaction space through evolution and engineering

    PubMed Central

    McIntosh, John A.; Farwell, Christopher C.; Arnold, Frances H.

    2014-01-01

    Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology’s reaction space. PMID:24658056

  12. Gravity persistent signal 1 reveals a novel cytochrome P450 involved in gravitropic signal transduction

    NASA Astrophysics Data System (ADS)

    Wyatt, Sarah

    Understanding gene expression that occurs during gravitopism is important for studying the processes that link the perception of gravity to the growth response. Arabidopsis plants with a mutation in the GRAVITY PERSISTENT SIGNAL (GPS)1 locus show a "no response" phenotype during gravistimulation experiments. Basepital auxin transport in gps1 mutant was unaffected by the mutation, but auxin was not laterally redistributed after gravistimulation. GPS1 encodes CYP705A22, a cytochrome P450 protein (P450) of unknown function. The wild type CYP705A22 gene was transformed into the gps1 mutant background and successfully rescued the mutant phenotype. Data mining of microarray data collected from gravistimulated root tips of Arabidopsis indicated that although CYP705A22 was not expressed in roots, a family member CYP705A5 was up-regulated within 3 minutes after gravistimulation. Expression profiling of CYP705A5, using real-time quantitative PCR, showed that CYP705A5 was up-regulated nearly five fold within minutes of gravity stimulation. And reporter gene fusions that link the CYP705A5 gene to the green fluorescent protein showed that CYP705A5 was expressed in the root zones of elongation and maturation. Computer modeling of the catalytic domain of CYP705A22 and CYP705A5 and in silico substrate docking simulations generated a list of 130 compounds that are potential substrates of the P450s. Many of the compounds are phenylpropanoid derivatives. Heterologous expression of CYP705A5 in baculovirus and Type 1 binding studies indicate the substrate of the P450 may be quercitin or myricetin. A mutation affecting CYP705A5 expression resulted in a delayed gravity response in roots. The mutant phenotype could be chemically complemented, and DPBA staining in the CYP705A5 mutant indicated a 1.5 fold accumulation of quercetin in mutant roots as compared to WT. These data, taken together, may indicate that we have identified a flavonoid pathway that regulates auxin distribution and thus

  13. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance.

    PubMed

    Hu, Z; Lin, Q; Chen, H; Li, Z; Yin, F; Feng, X

    2014-12-01

    Insect cytochrome P450 monooxygenases (P450s) play an important role in catalysis of many reactions leading to insecticides resistance. Our previous studies on transcriptome analysis of chlorantraniliprole-resistant development in the diamondback moth, Plutella xylostella revealed that up-regulation of cytochrome P450s are one of the main factors leading to the development of chlorantraniliprole resistance. Here, we report for the first time a novel cytochrome P450 gene CYP321E1, which belongs to the cytochrome P450 gene family CYP321. Real-time quantitative PCR (RT-qPCR) analyses indicated that CYP321E1 was expressed at all developmental stages of P. xylostella but was highest in the fourth-instar larvae; furthermore, the relatively high expression was observed in the midgut of the fourth-instar larvae, followed by fat bodies and epidermis. The expression of CYP321E1 in P. xylostella was differentially affected by three representative insecticides, including alphamethrin, abamectin and chlorantraniliprole. Among them, the exposure to chlorantraniliprole resulted in the largest transcript level of this cytochrome P450 gene. The findings suggested potential involvement of CYP321E1 in chlorantraniliprole resistance of P. xylostella. To assess the functional link of CYP321E1 to chlorantraniliprole resistance, RNA interference (RNAi)-mediated gene silencing by double stranded RNA (dsRNA) injecting was used. Results revealed that injection delivery of dsRNA can greatly reduce gene expression after 24 h. As a consequence of RNAi, a significant increment in mortality of larvae injected CYP321E1 dsRNA was observed after 24 h of exposure to chlorantraniliprole. These results strongly support our notion that this novel cytochrome P450 gene plays an important role in chlorantraniliprole detoxification in the diamondback moth and is partly responsible for its resistance.

  14. Two cytochrome P450 genes are involved in imidacloprid resistance in field populations of the whitefly, Bemisia tabaci, in China.

    PubMed

    Yang, Xin; Xie, Wen; Wang, Shao-li; Wu, Qing-jun; Pan, Hui-peng; Li, Ru-mei; Yang, Ni-na; Liu, Bai-ming; Xu, Bao-yun; Zhou, Xiaomao; Zhang, You-jun

    2013-11-01

    The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14-17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64). Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  15. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    PubMed

    Bass, C; Carvalho, R A; Oliphant, L; Puinean, A M; Field, L M; Nauen, R; Williamson, M S; Moores, G; Gorman, K

    2011-12-01

    The brown planthopper, Nilaparvata lugens, is an economically significant pest of rice throughout Asia and has evolved resistance to many insecticides including the neonicotinoid imidacloprid. The resistance of field populations of N. lugens to imidacloprid has been attributed to enhanced detoxification by cytochrome P450 monooxygenases (P450s), although, to date, the causative P450(s) has (have) not been identified. In the present study, biochemical assays using the model substrate 7-ethoxycoumarin showed enhanced P450 activity in several resistant N. lugens field strains when compared with a susceptible reference strain. Thirty three cDNA sequences encoding tentative unique P450s were identified from two recent sequencing projects and by degenerate PCR. The mRNA expression level of 32 of these was examined in susceptible, moderately resistant and highly resistant N. lugens strains using quantitative real-time PCR. A single P450 gene (CYP6ER1) was highly overexpressed in all resistant strains (up to 40-fold) and the level of expression observed in the different N. lugens strains was significantly correlated with the resistance phenotype. These results provide strong evidence for a role of CYP6ER1 in the resistance of N. lugens to imidacloprid. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  16. Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666

    PubMed Central

    Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.

    2013-01-01

    Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711

  17. Cloning, functional characterization, and expression profiles of NADPH-cytochrome P450 reductase gene from the Asiatic rice striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae).

    PubMed

    Liu, Su; Liang, Qing-Mei; Huang, Yuan-Jie; Yuan, Xin; Zhou, Wen-Wu; Qiao, Fei; Cheng, Jiaan; Gurr, Geoff M; Zhu, Zeng-Rong

    2013-01-01

    NADPH-cytochrome P450 reductase (CPR) is one of the most important components of the cytochrome P450 enzyme system. It catalyzes electron transfer from NADPH to all known P450s, thus plays central roles not only in the metabolism of exogenous xenobiotics but also in the regulation of endogenous hormones in insects. In this study, a full-length cDNA encoding of a CPR (named CsCPR) was isolated from the Asiatic rice striped stem borer, Chilo suppressalis, by using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. The cDNA contains a 2061 bp open reading frame, which encodes an enzyme of 686 amino acid residues, with a calculated molecular mass of 77.6 kDa. The deduced peptide has hallmarks of typical CPR, including an N-terminal membrane anchor and the FMN, FAD and NADPH binding domains. The N-terminal-truncated protein fused with a 6 × His·tag was heterologously expressed in Escherichia coli Rosetta (DE3) cells and purified, specific activity and the Km values of the recombinant enzyme were determined. Tissue- and developmental stage-dependent expression of CsCPR mRNA was investigated by real-time quantitative PCR. The CsCPR mRNA was noticeably expressed in the digestive, metabolic, and olfactory organs of the larvae and adults of C. suppressalis. Our initial results would provide valuable information for further study on the interactions between CPR and cytochrome P450 enzyme systems. © 2013.

  18. Cytochrome P450 CYP716A254 catalyzes the formation of oleanolic acid from β-amyrin during oleanane-type triterpenoid saponins biosynthesis in Anemone flaccida.

    PubMed

    Zhan, Chuansong; Ahmed, Shakeel; Hu, Sheng; Dong, Shuang; Cai, Qian; Yang, Tewu; Wang, Xuekui; Li, Xiaohua; Hu, Xuebo

    2018-01-01

    Anemone flaccida Fr. Shmidt (Ranunculaceae), known as 'Di Wu' in China, is a perennial herb which has long been used to treat arthritis. The rhizome of A. flaccida contains pharmacologically active components i.e. oleanane-type triterpenoid saponins. Oleanolic acid is natural triterpenoid in plants with diverse biological activities. The biosynthesis of oleanolic acid involves cyclization of 2,3-oxidosqualene to the oleanane-type triterpenoid skeleton, followed by a series of oxidation reactions catalyzed by cytochrome P450 monooxygenase (CYP450). Previously, we identified four possible cytochrome P450 genes belonging to CYP716A subfamily from the transcriptome of A. flaccida. In this study, we identified one of those genes "CYP716A254" encoding a cytochrome P450 monooxygenase from A. flaccida that catalyzes the conversion of the β-amyrin into oleanolic acid. The heterologous expression of CYP716A254 in yeast resulted in oxidation of β-amyrin at the C-18 position to oleanolic acid production. These results provide an important basis for further studies of oleanane-type triterpenoid saponins synthesis in A. flaccida. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium.

    PubMed

    Syed, Khajamohiddin; Yadav, Jagjit S

    2012-11-01

    Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system, mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosproium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed.

  20. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.

    PubMed

    Karyakin, Andrey; Motiejunas, Domantas; Wade, Rebecca C; Jung, Christiane

    2007-03-01

    Recently we have developed a new approach to study protein-protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam-Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP-FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in beta-sheets and alpha-helix content, a decrease in the population of random coil/3(10)-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam-Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx-P450cam complex.

  1. The Epipolythiodiketopiperazine Gene Cluster in Claviceps purpurea: Dysfunctional Cytochrome P450 Enzyme Prevents Formation of the Previously Unknown Clapurines.

    PubMed

    Dopstadt, Julian; Neubauer, Lisa; Tudzynski, Paul; Humpf, Hans-Ulrich

    2016-01-01

    Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster.

  2. The Epipolythiodiketopiperazine Gene Cluster in Claviceps purpurea: Dysfunctional Cytochrome P450 Enzyme Prevents Formation of the Previously Unknown Clapurines

    PubMed Central

    Tudzynski, Paul; Humpf, Hans-Ulrich

    2016-01-01

    Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster. PMID:27390873

  3. Biosynthesis of Sandalwood Oil: Santalum album CYP76F Cytochromes P450 Produce Santalols and Bergamotol

    PubMed Central

    Diaz-Chavez, Maria L.; Moniodis, Jessie; Madilao, Lufiani L.; Jancsik, Sharon; Keeling, Christopher I.; Barbour, Elizabeth L.; Ghisalberti, Emilio L.; Plummer, Julie A.; Jones, Christopher G.; Bohlmann, Jörg

    2013-01-01

    Abstract Sandalwood oil is one of the world’s most highly prized essential oils, appearing in many high-end perfumes and fragrances. Extracted from the mature heartwood of several Santalum species, sandalwood oil is comprised mainly of sesquiterpene olefins and alcohols. Four sesquiterpenols, α-, β-, and epi-β-santalol and α-exo-bergamotol, make up approximately 90% of the oil of Santalum album. These compounds are the hydroxylated analogues of α-, β-, and epi-β-santalene and α-exo-bergamotene. By mining a transcriptome database of S. album for candidate cytochrome P450 genes, we cloned and characterized cDNAs encoding a small family of ten cytochrome P450-dependent monooxygenases annotated as SaCYP76F37v1, SaCYP76F37v2, SaCYP76F38v1, SaCYP76F38v2, SaCYP76F39v1, SaCYP76F39v2, SaCYP76F40, SaCYP76F41, SaCYP76F42, and SaCYP76F43. Nine of these genes were functionally characterized using in vitro assays and yeast in vivo assays to encode santalene/bergamotene oxidases and bergamotene oxidases. These results provide a foundation for production of sandalwood oil for the fragrance industry by means of metabolic engineering, as demonstrated with proof-of-concept formation of santalols and bergamotol in engineered yeast cells, simultaneously addressing conservation challenges by reducing pressure on supply of sandalwood from native forests. PMID:24324844

  4. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase.

    PubMed

    Henderson, Colin J; Otto, Diana M E; Carrie, Dianne; Magnuson, Mark A; McLaren, Aileen W; Rosewell, Ian; Wolf, C Roland

    2003-04-11

    Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of a large number of endogenous compounds and the majority of ingested environmental chemicals, leading to their elimination and often to their metabolic activation to toxic products. This enzyme system therefore provides our primary defense against xenobiotics and is a major determinant in the therapeutic efficacy of pharmacological agents. To evaluate the importance of hepatic P450s in normal homeostasis, drug pharmacology, and chemical toxicity, we have conditionally deleted the essential electron transfer protein, NADH:ferrihemoprotein reductase (EC, cytochrome P450 reductase, CPR) in the liver, resulting in essentially complete ablation of hepatic microsomal P450 activity. Hepatic CPR-null mice could no longer break down cholesterol because of their inability to produce bile acids, and whereas hepatic lipid levels were significantly increased, circulating levels of cholesterol and triglycerides were severely reduced. Loss of hepatic P450 activity resulted in a 5-fold increase in P450 protein, indicating the existence of a negative feedback pathway regulating P450 expression. Profound changes in the in vivo metabolism of pentobarbital and acetaminophen indicated that extrahepatic metabolism does not play a major role in the disposition of these compounds. Hepatic CPR-null mice developed normally and were able to breed, indicating that hepatic microsomal P450-mediated steroid hormone metabolism is not essential for fertility, demonstrating that a major evolutionary role for hepatic P450s is to protect mammals from their environment.

  5. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Senyan; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201; Yao, Yunyi

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity withmore » the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.« less

  6. Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis.

    PubMed

    Harada, Hisashi; Shindo, Kazutoshi; Iki, Kanoko; Teraoka, Ayuko; Okamoto, Sho; Yu, Fengnian; Hattan, Jun-ichiro; Utsumi, Ryutaro; Misawa, Norihiko

    2011-04-01

    Tractable plasmids (pAC-Mv-based plasmids) for Escherichia coli were constructed, which carried a mevalonate-utilizing gene cluster, towards an efficient functional analysis of cytochromes P450 involved in sesquiterpene biosynthesis. They included genes coding for a series of redox partners that transfer the electrons from NAD(P)H to a P450 protein. The redox partners used were ferredoxin reductases (CamA and NsRED) and ferredoxins (CamB and NsFER), which are derived from Pseudomonas putida and cyanobacterium Nostoc sp. strain PCC 7120, respectively, as well as three higher-plant NADPH-P450 reductases, the Arabidopsis thaliana ATR2 and two corresponding enzymes derived from ginger (Zingiber officinale), named ZoRED1 and ZoRED2. We also constructed plasmids for functional analysis of two P450s, α-humulene-8-hydroxylase (CYP71BA1) from shampoo ginger (Zingiber zerumbet) and germacrene A hydroxylase (P450NS; CYP110C1) from Nostoc sp. PCC 7120, and co-transformed E. coli with each of the pAC-Mv-based plasmids. Production levels of 8-hydroxy-α-humulene with recombinant E. coli cells (for CYP71BA1) were 1.5- to 2.3-fold higher than that of a control strain without the mevalonate-pathway genes. Level of the P450NS product with the combination of NsRED and NsFER was 2.9-fold higher than that of the CamA and CamB. The predominant product of P450NS was identified as 1,2,3,5,6,7,8,8a-octahydro-6-isopropenyl-4,8a-dimethylnaphth-1-ol with NMR analyses. © Springer-Verlag 2011

  7. Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera

    PubMed Central

    Johnson, Reed M.; Mao, Wenfu; Pollock, Henry S.; Niu, Guodong; Schuler, Mary A.; Berenbaum, May R.

    2012-01-01

    Background Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. Methodology/Principal Findings We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. Conclusions/Significance These results suggest that regulation of

  8. Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium.

    PubMed

    Subramanian, Venkataramanan; Yadav, Jagjit S

    2009-09-01

    The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (approximately 75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant.

  9. Role of P450 Monooxygenases in the Degradation of the Endocrine-Disrupting Chemical Nonylphenol by the White Rot Fungus Phanerochaete chrysosporium▿

    PubMed Central

    Subramanian, Venkataramanan; Yadav, Jagjit S.

    2009-01-01

    The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (∼75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant. PMID:19542331

  10. Plant P450s as versatile drivers for evolution of species-specific chemical diversity

    PubMed Central

    Hamberger, Björn; Bak, Søren

    2013-01-01

    The irreversible nature of reactions catalysed by P450s makes these enzymes landmarks in the evolution of plant metabolic pathways. Founding members of P450 families are often associated with general (i.e. primary) metabolic pathways, restricted to single copy or very few representatives, indicative of purifying selection. Recruitment of those and subsequent blooms into multi-member gene families generates genetic raw material for functional diversification, which is an inherent characteristic of specialized (i.e. secondary) metabolism. However, a growing number of highly specialized P450s from not only the CYP71 clan indicate substantial contribution of convergent and divergent evolution to the observed general and specialized metabolite diversity. We will discuss examples of how the genetic and functional diversification of plant P450s drives chemical diversity in light of plant evolution. Even though it is difficult to predict the function or substrate of a P450 based on sequence similarity, grouping with a family or subfamily in phylogenetic trees can indicate association with metabolism of particular classes of compounds. Examples will be given that focus on multi-member gene families of P450s involved in the metabolic routes of four classes of specialized metabolites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and phenylpropanoids. PMID:23297350

  11. Novel Detection of Insecticide Resistance Related P450 Genes and Transcriptome Analysis of the Hemimetabolous Pest Erthesina fullo (Thunberg) (Hemiptera: Heteroptera).

    PubMed

    Liu, Yang; Wu, Haoyang; Xie, Qiang; Bu, Wenjun

    2015-01-01

    Erthesina fullo (Thunberg, 1783) is an economically important heteropteran species in China. Since only three nucleotide sequences of this species (COI, 16S rRNA, and 18S rRNA) appear in the GenBank database so far, no analysis of the molecular mechanisms underlying E. fullo's resistance to insecticide and environmental stress has been accomplished. We reported a de novo assembled and annotated transcriptome for adult E. fullo using the Illumina sequence system. A total of 53,359,458 clean reads of 4.8 billion nucleotides (nt) were assembled into 27,488 unigenes with an average length of 750 bp, of which 17,743 (64.55%) were annotated. In the present study, we identified 88 putative cytochrome P450 sequences and analyzed the evolution of cytochrome P450 superfamilies, genes of the CYP3 clan related to metabolizing xenobiotics and plant natural compounds, in E. fullo, increasing the candidate genes for the molecular mechanisms of insecticide resistance in P450. The sequenced transcriptome greatly expands the available genomic information and could allow a better understanding of the mechanisms of insecticide resistance at the systems biology level.

  12. Ectopic expression of an apple cytochrome P450 gene MdCYPM1 negatively regulates plant photomorphogenesis and stress response in Arabidopsis.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-01-29

    Cytochrome P450s play an important role in plant growth and are involved in multiple stresses response. However, little is known about the functions of cytochrome P450s in apple. Here, a Malus × domestica cytochrome P450 monooxygenase 1 gene, MdCYPM1, was identified and subsequently cloned from apple 'Gala' (Malus × domestica). To verify the functions of MdCYPM1, we generated transgenic Arabidopsis plants expressing the apple MdCYPM1 gene under the control of the Cauliflower mosaic virus 35S promoter. Four transgenic lines (#3, #5, #7 and #8) were selected for further study. The transgenic plants exhibited a series of skotomorphogenesis phenotypes relative to wild-type controls, such as reduction of the chlorophyll, anthocyanins content and hypocotyls elongation. In addition, overexpression of MdCYPM1 influenced auxin transport and flowering time in transgenic Arabidopsis. Furthermore, MdCYPM1 expression was induced by salt and mannitol treatments, and the transgenic plants were negatively regulated by salinity and osmotic stresses during germination. These results suggest that MdCYPM1 plays a vital role in plant growth and development. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The MrCYP52 Cytochrome P450 Monoxygenase Gene of Metarhizium robertsii Is Important for Utilizing Insect Epicuticular Hydrocarbons

    PubMed Central

    Lin, Liangcai; Fang, Weiguo; Liao, Xinggang; Wang, Fengqing; Wei, Dongzhi; St. Leger, Raymond J.

    2011-01-01

    Fungal pathogens of plants and insects infect their hosts by direct penetration of the cuticle. Plant and insect cuticles are covered by a hydrocarbon-rich waxy outer layer that represents the first barrier against infection. However, the fungal genes that underlie insect waxy layer degradation have received little attention. Here we characterize the single cytochrome P450 monoxygenase family 52 (MrCYP52) gene of the insect pathogen Metarhizium robertsii, and demonstrate that it encodes an enzyme required for efficient utilization of host hydrocarbons. Expressing a green florescent protein gene under control of the MrCYP52 promoter confirmed that MrCYP52 is up regulated on insect cuticle as well as by artificial media containing decane (C10), extracted cuticle hydrocarbons, and to a lesser extent long chain alkanes. Disrupting MrCYP52 resulted in reduced growth on epicuticular hydrocarbons and delayed developmental processes on insect cuticle, including germination and production of appressoria (infection structures). Extraction of alkanes from cuticle prevented induction of MrCYP52 and reduced growth. Insect bioassays against caterpillars (Galleria mellonella) confirmed that disruption of MrCYP52 significantly reduces virulence. However, MrCYP52 was dispensable for normal germination and appressorial formation in vitro when the fungus was supplied with nitrogenous nutrients. We conclude therefore that MrCYP52 mediates degradation of epicuticular hydrocarbons and these are an important nutrient source, but not a source of chemical signals that trigger infection processes. PMID:22194968

  14. The Drosophila pigmentation gene pink (p) encodes a homologue of human Hermansky-Pudlak syndrome 5 (HPS5).

    PubMed

    Falcón-Pérez, Juan M; Romero-Calderón, Rafael; Brooks, Elizabeth S; Krantz, David E; Dell'Angelica, Esteban C

    2007-02-01

    Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.

  15. Cytochrome P450s and molecular epidemiology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  16. Over-expression of multiple cytochrome P450 genes in fenvalerate-resistant field strains of Helicoverpa armigera from north of China.

    PubMed

    Xu, Li; Li, Dongzhi; Qin, Jianying; Zhao, Weisong; Qiu, Lihong

    2016-09-01

    Pyrethroid resistance was one of the main reasons for control failure of cotton bollworm Helicoverpa armigera (Hübner) in China. The promotion of Bt crops decreased the application of chemical insecticides in controlling H.armigera. However, the cotton bollworm still kept high levels of resistance to fenvalerate. In this study, the resistance levels of 8 field-collected strains of H. armigera from north of China to 4 insecticides, as well as the expression levels of related P450 genes were investigated. The results of bioassay indicated that the resistance levels to fenvalerate in the field strains varied from 5.4- to 114.7-fold, while the resistance levels to lambda-cyhalothrin, phoxim and methomyl were low, which were ranged from 1.5- to 5.2-, 0.2- to 1.6-, and 2.9- to 8.3- fold, respectively, compared to a susceptible strain. Synergistic experiment showed that PBO was the most effective synergist in increasing the sensitivity of H. armigera to fenvalerate, suggesting that P450 enzymes were involved in the pyrethroid resistance in the field strains. The results of quantitative RT-PCR indicated that eight P450 genes (CYP332A1, CYP4L11, CYP4L5, CYP4M6, CYP4M7, CYP6B7, CYP9A12, CYP9A14) were all significantly overexpressed in Hejian1 and Xiajin1 strains of H. armigera collected in 2013, and CYP4L5 was significantly overexpressed in all the 6 field strains collected in 2014. CYP332A1, CYP6B7 and CYP9A12 had very high overexpression levels in all the field strains, indicating their important roles in fenvalerate resistance. The results suggested that multiple P450 genes were involved in the high-level fenvalerate-resistance in different field strains of H. armigera collected from north of China. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides.

    PubMed

    Wang, Rui-Long; Zhu-Salzman, Keyan; Baerson, Scott R; Xin, Xiao-Wei; Li, Jun; Su, Yi-Juan; Zeng, Ren-Sen

    2017-04-01

    Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal development indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up-regulated by chlorpyrifos, β-cypermethrin and methomyl with both lethal concentration at 15% (LC 15 ) (50, 100 and 150 μg/mL, respectively) and 50%(LC 50 ) dosages (100, 200 and 300 μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity of chlorpyrifos, β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi-mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LC 50 dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  18. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus.

    PubMed

    Ishak, Intan H; Riveron, Jacob M; Ibrahim, Sulaiman S; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S

    2016-04-20

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus.

  19. Expression patterns of bark beetle cytochromes P450 during host colonization: Likely physiological functions and potential targets for pest management

    Treesearch

    Dezene P. W. Huber; Melissa Erickson; Christian Leutenegger; Joerg Bohlmann; Steven J. Seybold

    2007-01-01

    Cytochromes P450 family genes (P450s) are found in a diverse array of organisms ranging from bacteria to mammals to plants to arthropods. Although there are exceptions to this rule, organisms generally contain a fairly large number of P450 genes and pseudogenes in their genomes. For instance, among arthropods whose genomes are well characterized, the mosquito,

  20. Flower colour and cytochromes P450.

    PubMed

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  1. PRIMARY STRUCTURE OF THE P450 LANOSTEROL DEMETHYLASE GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have sequenced the structural gene and flanking regions for lanosterol 14 alpha-demethylase (14DM) from Saccharomyces cerevisiae. An open reading frame of 530 codons encodes a 60.7-kDa protein. When this gene is disrupted by integrative transformation, the resulting strain req...

  2. Phytomonitoring and phytoremediation of agrochemicals and related compounds based on recombinant cytochrome P450s and aryl hydrocarbon receptors (AhRs).

    PubMed

    Shimazu, Sayuri; Inui, Hideyuki; Ohkawa, Hideo

    2011-04-13

    Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.

  3. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer DrugS⃞

    PubMed Central

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Johnson, William W.

    2011-01-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b5 and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b5. The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a KI of 24 μM and a kinact of 0.04 min−1. This KI is significantly greater than the clinical OSI-930 Cmax of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation

  4. Molecular modeling of cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Szklarz, Grazyna D.; Halpert, James R.

    1997-05-01

    The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B' helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6β-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.

  5. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides.

    PubMed

    Giraudo, M; Hilliou, F; Fricaux, T; Audant, P; Feyereisen, R; Le Goff, G

    2015-02-01

    Spodoptera frugiperda is a polyphagous lepidopteran pest that encounters a wide range of toxic plant metabolites in its diet. The ability of this insect to adapt to its chemical environment might be explained by the action of major detoxification enzymes such as cytochrome P450s (or CYP). Forty-two sequences coding for P450s were identified and most of the transcripts were found to be expressed in the midgut, Malpighian tubules and fat body of S. frugiperda larvae. Relatively few P450s were expressed in the established cell line Sf9. In order to gain information on how these genes respond to different chemical compounds, larvae and Sf9 cells were exposed to plant secondary metabolites (indole, indole-3-carbinol, quercetin, 2-tridecanone and xanthotoxin), insecticides (deltamethrin, fipronil, methoprene, methoxyfenozide) or model inducers (clofibrate and phenobarbital). Several genes were induced by plant chemicals such as P450s from the 6B, 321A and 9A subfamilies. Only a few genes responded to insecticides, belonging principally to the CYP9A family. There was little overlap between the response in vivo measured in the midgut and the response in vitro in Sf9 cells. In addition, regulatory elements were detected in the promoter region of these genes. In conclusion, several P450s were identified that could potentially be involved in the adaptation of S. frugiperda to its chemical environment. © 2014 The Royal Entomological Society.

  6. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  7. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us?

    PubMed Central

    Kelly, Steven L.; Kelly, Diane E.

    2013-01-01

    The first eukaryote genome revealed three yeast cytochromes P450 (CYPs), hence the subsequent realization that some microbial fungal genomes encode these proteins in 1 per cent or more of all genes (greater than 100) has been surprising. They are unique biocatalysts undertaking a wide array of stereo- and regio-specific reactions and so hold promise in many applications. Based on ancestral activities that included 14α-demethylation during sterol biosynthesis, it is now seen that CYPs are part of the genes and metabolism of most eukaryotes. In contrast, Archaea and Eubacteria often do not contain CYPs, while those that do are frequently interesting as producers of natural products undertaking their oxidative tailoring. Apart from roles in primary and secondary metabolism, microbial CYPs are actual/potential targets of drugs/agrochemicals and CYP51 in sterol biosynthesis is exhibiting evolution to resistance in the clinic and the field. Other CYP applications include the first industrial biotransformation for corticosteroid production in the 1950s, the diversion into penicillin synthesis in early mutations in fungal strain improvement and bioremediation using bacteria and fungi. The vast untapped resource of orphan CYPs in numerous genomes is being probed and new methods for discovering function and for discovering desired activities are being investigated. PMID:23297358

  8. Differential Expression of P450 Genes and nAChR Subunits Associated With Imidacloprid Resistance in Laodelphax striatellus (Hemiptera: Delphacidae).

    PubMed

    Zhang, Yueliang; Liu, Baosheng; Zhang, Zhichun; Wang, Lihua; Guo, Huifang; Li, Zhong; He, Peng; Liu, Zewen; Fang, Jichao

    2018-05-28

    Imidacloprid is a key insecticide used for controlling sucking insect pests, including the small brown planthopper (Laodelphax striatellus, Fallén) (Hemiptera: Delphacidae), an important agricultural pest of rice. A strain of L. striatellus (YN-ILR) developed 21-fold resistance when selected with imidacloprid on a susceptible YN strain. An in vitro study on piperonyl butoxide synergism indicated that enhanced detoxification mediated by cytochrome P450s contributed to imidacloprid resistance to some extent, and multiple P450 genes showed altered expression in the imidacloprid-resistant YN-ILR strain compared with the susceptible YN strain (CYP425B1-CYP6BD10 had 1.51- to 11.45-fold higher expression, CYP4CE2-CYP4DD1V2 had 0.12- to 0.57-fold lower expression). While there were no mutations in target nicotinic acetylcholine receptor (nAChR) genes, subunits of Lsα1, Lsβ1, and Lsβ3 in the YN-ILR strain showed 3.86-, 4.39-, and 2.59-fold higher expression and Lsa8 displayed 0.38-fold lower expression than the YN strain. Moreover, 21-fold moderate imidacloprid resistance in individuals of L. striatellus did not produce a fitness cost. The findings suggest that L. striatellus has the capacity to develop resistance to imidacloprid through P450 detoxification and potential target nAChR expression changes, and moderate imidacloprid resistance was not associated with a fitness cost.

  9. Hepatotoxicity of Herbal Supplements Mediated by Modulation of Cytochrome P450

    PubMed Central

    Chen, Taosheng

    2017-01-01

    Herbal supplements are a significant source of drug-drug interactions (DDIs), herb-drug interactions, and hepatotoxicity. Cytochrome P450 (CYP450) enzymes metabolize a large number of FDA-approved pharmaceuticals and herbal supplements. This metabolism of pharmaceuticals and supplements can be augmented by concomitant use of either pharmaceuticals or supplements. The xenobiotic receptors constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) can respond to xenobiotics by increasing the expression of a large number of genes that are involved in the metabolism of xenobiotics, including CYP450s. Conversely, but not exclusively, many xenobiotics can inhibit the activity of CYP450s. Induction of the expression or inhibition of the activity of CYP450s can result in DDIs and toxicity. Currently, the United States (US) Food and Drug Administration does not require the investigation of the interactions of herbal supplements and CYP450s. This review provides a summary of herbal supplements that inhibit CYP450s, induce the expression of CYP450s, and/or whose toxicity is mediated by CYP450s. PMID:29117101

  10. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes.

    PubMed

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-07-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members' duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes.

  11. Molecular cloning and expression of CYP9A61: a chlorpyrifos-ethyl and lambda-cyhalothrin-inducible cytochrome P450 cDNA from Cydia pomonella.

    PubMed

    Yang, Xueqing; Li, Xianchun; Zhang, Yalin

    2013-12-13

    Cytochrome P450 monooxygenases (CYPs or P450s) play paramount roles in detoxification of insecticides in a number of insect pests. However, little is known about the roles of P450s and their responses to insecticide exposure in the codling moth Cydia pomonella (L.), an economically important fruit pest. Here we report the characterization and expression analysis of the first P450 gene, designated as CYP9A61, from this pest. The full-length cDNA sequence of CYP9A61 is 2071 bp long and its open reading frame (ORF) encodes 538 amino acids. Sequence analysis shows that CYP9A61 shares 51%-60% identity with other known CYP9s and contains the highly conserved substrate recognition site SRS1, SRS4 and SRS5. Quantitative real-time PCR showed that CYP9A61 were 67-fold higher in the fifth instar larvae than in the first instar, and more abundant in the silk gland and fat body than other tissues. Exposure of the 3rd instar larvae to 12.5 mg L(-1) of chlorpyrifos-ethyl for 60 h and 0.19 mg L(-1) of lambda-cyhalothrin for 36 h resulted in 2.20- and 3.47-fold induction of CYP9A61, respectively. Exposure of the 3rd instar larvae to these two insecticides also significantly enhanced the total P450 activity. The results suggested that CYP9A61 is an insecticide-detoxifying P450.

  12. Molecular Cloning and Expression of CYP9A61: A Chlorpyrifos-Ethyl and Lambda-Cyhalothrin-Inducible Cytochrome P450 cDNA from Cydia pomonella

    PubMed Central

    Yang, Xueqing; Li, Xianchun; Zhang, Yalin

    2013-01-01

    Cytochrome P450 monooxygenases (CYPs or P450s) play paramount roles in detoxification of insecticides in a number of insect pests. However, little is known about the roles of P450s and their responses to insecticide exposure in the codling moth Cydia pomonella (L.), an economically important fruit pest. Here we report the characterization and expression analysis of the first P450 gene, designated as CYP9A61, from this pest. The full-length cDNA sequence of CYP9A61 is 2071 bp long and its open reading frame (ORF) encodes 538 amino acids. Sequence analysis shows that CYP9A61 shares 51%–60% identity with other known CYP9s and contains the highly conserved substrate recognition site SRS1, SRS4 and SRS5. Quantitative real-time PCR showed that CYP9A61 were 67-fold higher in the fifth instar larvae than in the first instar, and more abundant in the silk gland and fat body than other tissues. Exposure of the 3rd instar larvae to 12.5 mg L−1 of chlorpyrifos-ethyl for 60 h and 0.19 mg L−1 of lambda-cyhalothrin for 36 h resulted in 2.20-and 3.47-fold induction of CYP9A61, respectively. Exposure of the 3rd instar larvae to these two insecticides also significantly enhanced the total P450 activity. The results suggested that CYP9A61 is an insecticide-detoxifying P450. PMID:24351812

  13. Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism.

    PubMed

    Ciancanelli, Michael J; Volchkova, Valentina A; Shaw, Megan L; Volchkov, Viktor E; Basler, Christopher F

    2009-08-01

    The Nipah virus (NiV) phosphoprotein (P) gene encodes the C, P, V, and W proteins. P, V, and W, have in common an amino-terminal domain sufficient to bind STAT1, inhibiting its interferon (IFN)-induced tyrosine phosphorylation. P is also essential for RNA-dependent RNA polymerase function. C is encoded by an alternate open reading frame (ORF) within the common amino-terminal domain. Mutations within residues 81 to 113 of P impaired its polymerase cofactor function, as assessed by a minireplicon assay, but these mutants retained STAT1 inhibitory function. Mutations within the residue 114 to 140 region were identified that abrogated interaction with and inhibition of STAT1 by P, V, and W without disrupting P polymerase cofactor function. Recombinant NiVs were then generated. A G121E mutation, which abrogated inhibition of STAT1, was introduced into a C protein knockout background (C(ko)) because the mutation would otherwise also alter the overlapping C ORF. In cell culture, relative to the wild-type virus, the C(ko) mutation proved attenuating but the G121E mutant virus replicated identically to the C(ko) virus. In cells infected with the wild-type and C(ko) viruses, STAT1 was nuclear despite the absence of tyrosine phosphorylation. This latter observation mirrors what has been seen in cells expressing NiV W. In the G121E mutant virus-infected cells, STAT1 was not phosphorylated and was cytoplasmic in the absence of IFN stimulation but became tyrosine phosphorylated and nuclear following IFN addition. These data demonstrate that the gene for NiV P encodes functions that sequester inactive STAT1 in the nucleus, preventing its activation and suggest that the W protein is the dominant inhibitor of STAT1 in NiV-infected cells.

  14. Cytochrome P450 humanised mice

    PubMed Central

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  15. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns.

    PubMed

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Nelson, David R; Lee, Jae-Seong

    2017-09-01

    Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Flower colour and cytochromes P450

    PubMed Central

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones. PMID:23297355

  17. Identification and characterization of the steroid 15α-hydroxylase gene from Penicillium raistrickii.

    PubMed

    Jia, Longgang; Dong, Jianzhang; Wang, Ruijie; Mao, Shuhong; Lu, Fuping; Singh, Suren; Wang, Zhengxiang; Liu, Xiaoguang

    2017-08-01

    Penicillium raistrickii ATCC 10490 is used for the commercial preparation of 15α-13-methy-estr-4-ene-3,17-dione, a key intermediate in the synthesis of gestodene, which is a major component of third-generation contraceptive pills. Although it was previously shown that a cytochrome P450 enzyme in P. raistrickii is involved in steroid 15α-hydroxylation, the gene encoding the steroid 15α-hydroxylase remained unknown. In this study, we report the cloning and characterization of the 15α-hydroxylase gene from P. raistrickii ATCC 10490 by combining transcriptomic profiling with functional heterologous expression in Saccharomyces cerevisiae. The full-length open reading frame (ORF) of the 15α-hydroxylase gene P450pra is 1563 bp and predicted to encode a cytochrome P450 protein of 520 amino acids. Targeted gene deletion revealed that P450pra is solely responsible for 15α-hydroxylation activity on 13-methy-estr-4-ene-3,17-dione in P. raistrickii ATCC 10490. The identification of the 15α-hydroxylase gene from P. raistrickii should help elucidate the molecular basis of regio- and stereo-specificity of steroid 15α-hydroxylation and aid in the engineering of more efficient industrial strains for useful steroid 15α-hydroxylation reactions.

  18. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au; Yu, Ting, E-mail: t.yu2@uq.edu.au; Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsivenessmore » in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region.

  19. Regulation of P450-mediated permethrin resistance in Culex quinquefasciatus by the GPCR/Gαs/AC/cAMP/PKA signaling cascade.

    PubMed

    Li, Ting; Liu, Nannan

    2017-12-01

    This study explores the role of G-protein-coupled receptor-intracellular signaling in the development of P450-mediated insecticide resistance in mosquitoes, Culex quinquefasciatus , focusing on the essential function of the GPCRs and their downstream effectors of Gs alpha subunit protein (Gαs) and adenylyl cyclase (ACs) in P450-mediated insecticide resistance of Culex mosquitoes. Our RNAi-mediated functional study showed that knockdown of Gαs caused the decreased expression of the downstream effectors of ACs and PKAs in the GPCR signaling pathway and resistance P450 genes, whereas knockdown of ACs decreased the expression of PKAs and resistance P450 genes. Knockdown of either Gαs or ACs resulted in an increased susceptibility of mosquitoes to permethrin. These results add significantly to our understanding of the molecular basis of resistance P450 gene regulation through GPCR/Gαs/AC/cAMP-PKA signaling pathways in the insecticide resistance of mosquitoes. The temporal and spatial dynamic analyses of GPCRs, Gαs, ACs, PKAs, and P450s in two insecticide resistant mosquito strains revealed that all the GPCR signaling pathway components tested, namely GPCRs, Gαs, ACs and PKAs, were most highly expressed in the brain for both resistant strains, suggesting the role played by these genes in signaling transduction and regulation. The resistance P450 genes were mainly expressed in the brain, midgut and malpighian tubules (MTs), suggesting their critical function in the central nervous system and importance for detoxification. The temporal dynamics analysis for the gene expression showed a diverse expression profile during mosquito development, indicating their initially functional importance in response to exposure to insecticides during their life stages.

  20. Identification of 28 cytochrome P450 genes from the transcriptome of the marine rotifer Brachionus plicatilis and analysis of their expression.

    PubMed

    Kim, Hui-Su; Han, Jeonghoon; Kim, Hee-Jin; Hagiwara, Atsushi; Lee, Jae-Seong

    2017-09-01

    Whole transcriptomes of the rotifer Brachionus plicatilis were analyzed using an Illumina sequencer. De novo assembly was performed with 49,122,780 raw reads using Trinity software. Among the assembled 42,820 contigs, 27,437 putative open reading frame contigs were identified (average length 1235bp; N50=1707bp). Functional gene annotation with Gene Ontology and InterProScan, in addition to Kyoto Encyclopedia of Genes and Genomes pathway analysis, highlighted the metabolism of xenobiotics by cytochrome P450 (CYP). In addition, 28 CYP genes were identified, and their transcriptional responses to benzo[α]pyrene (B[α]P) were investigated. Most of the CYPs were significantly upregulated or downregulated (P<0.05) in response to B[α]P, suggesting that Bp-CYP genes play a crucial role in detoxification mechanisms in response to xenobiotics. This study sheds light on the molecular defense mechanisms of the rotifer B. plicatilis in response to exposure to various chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Functional expression and characterization of recombinant NADPH-P450 reductase from Malassezia globosa.

    PubMed

    Lee, Hwayoun; Park, Hyoung-Goo; Lim, Young-Ran; Lee, Im-Soon; Kim, Beom Joon; Seong, Cheul-Hun; Chun, Young-Jin; Kim, Donghak

    2012-01-01

    Malassezia globosa is a common pathogenic fungus that causes skin diseases including dandruff and seborrheic dermatitis in humans. Analysis of its genome identified a gene (MGL_1677) coding for a putative NADPH-P450 reductase (NPR) to support the fungal cytochrome P450 enzymes. The heterologously expressed recombinant M. globosa NPR protein was purified, and its functional features were characterized. The purified protein generated a single band on SDS-PAGE at 80.74 kDa and had an absorption maximum at 452 nm, indicating its possible function as an oxidized flavin cofactor. It evidenced NADPH-dependent reducing activity for cytochrome c or nitroblue tetrazolium. Human P450 1A2 and 2A6 were able to successfully catalyze the O-deethylation of 7- ethoxyresorufin and the 7-hydroxylation of coumarin, respectively, with the support of the purified NPR. These results demonstrate that purified NPR is an orthologous reductase protein that supports cytochrome P450 enzymes in M. globosa.

  2. Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana (Musa acuminata cv. Williams).

    PubMed

    Pua, Eng-Chong; Lee, Yi-Chuan

    2003-02-13

    As part of a study to understand the molecular basis of fruit ripening, this study reports the isolation and characterization of a banana cytochrome P450 (P450) cDNA, designated as MAP450-1, which was associated with fruit ripening of banana. MAP450-1 encoded a single polypeptide of 507 amino acid residues that shared an overall identity of 27-45% with that of several plant P450s, among which MAP450-1 was most related phylogenetically to the avocado P450 CYP71A1. The polypeptide that possessed residue domains conserved in all P450s was classified as CYP71N1. Expression of CYP71N1 varied greatly between banana organs. Transcripts were detected only in peel and pulp of the ripening fruit and not in unripe fruit tissues at all developmental stages or other organs (root, leaf, ovary and flower). During ripening, transcripts were barely detectable in pre-climacteric and climacteric fruits but, as ripening progressed, they began to accumulate and reached a maximum in post-climacteric fruits. CYP71N1 expression in pre-climacteric fruit could be upregulated by exogenous application of ethylene (1-5 ppm) and treatment of overripe fruit with exogenous sucrose (50-300 mM) but not glucose downregulated the expression. These results indicate that P450s may not play a role in fruit development and its expression is associated with ripening, which may be regulated, in part, by ethylene and/or sucrose, at the transcript level.

  3. Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén).

    PubMed

    Zhang, Yueliang; Wang, Yaming; Wang, Lihua; Yao, Jing; Guo, Huifang; Fang, Jichao

    2016-02-01

    NADPH-cytochrome P450 reductase (CPR) plays an important role in cytochrome P450 function, and CPR knockdown in several insects leads to increased susceptibility to insecticides. However, a putative CPR gene has not yet been fully characterized in the small brown planthopper Laodelphax striatellus, a notorious agricultural pest in rice that causes serious damage by transmitting rice stripe and rice black-streaked dwarf viruses. The objective of this study was to clone the cDNA and to knock down the expression of the gene that encodes L. striatellus CPR (LsCPR) to further determine whether P450s are involved in the resistance of L. striatellus to buprofezin. First, the full-length cDNA of LsCPR was cloned and found to contain an open reading frame (ORF) encoding a polypeptide of 679 amino acids with a calculated molecular mass and isoelectric point of 76.92kDa and 5.37, respectively. The deduced amino acid sequence shares high identity with the CPRs of other insects (98%, 97%, 75% and 68% for Sogatella furcifera, Nilaparvata lugens, Cimex lectularius and Anopheles gambiae, respectively) and possesses the characteristic features of classical CPRs, such as an N-terminal membrane anchor and conserved domains for flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) binding. Phylogenetic analysis revealed that LsCPR is located in a branch along with the CPRs of other hemipteran insects. LsCPR mRNA was detectable in all examined body parts and developmental stages of L. striatellus, as determined by real-time quantitative PCR (qPCR), and transcripts were most abundant in the adult abdomen and in first-instar nymphs and adults. Ingestion of 200μg/mL of LsCPR double-stranded RNA (dsLsCPR) by the planthopper for 5days significantly reduced the transcription level of LsCPR. Moreover, silencing of LsCPR caused increased susceptibility to buprofezin in a buprofezin-resistant (YN-BPF) strain but not in a

  4. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes.

    PubMed

    Zhang, Yixi; Yang, Yuanxue; Sun, Huahua; Liu, Zewen

    2016-12-01

    Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bioinformatics analysis and detection of gelatinase encoded gene in Lysinibacillussphaericus

    NASA Astrophysics Data System (ADS)

    Repin, Rul Aisyah Mat; Mutalib, Sahilah Abdul; Shahimi, Safiyyah; Khalid, Rozida Mohd.; Ayob, Mohd. Khan; Bakar, Mohd. Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, we performed bioinformatics analysis toward genome sequence of Lysinibacillussphaericus (L. sphaericus) to determine gene encoded for gelatinase. L. sphaericus was isolated from soil and gelatinase species-specific bacterium to porcine and bovine gelatin. This bacterium offers the possibility of enzymes production which is specific to both species of meat, respectively. The main focus of this research is to identify the gelatinase encoded gene within the bacteria of L. Sphaericus using bioinformatics analysis of partially sequence genome. From the research study, three candidate gene were identified which was, gelatinase candidate gene 1 (P1), NODE_71_length_93919_cov_158.931839_21 which containing 1563 base pair (bp) in size with 520 amino acids sequence; Secondly, gelatinase candidate gene 2 (P2), NODE_23_length_52851_cov_190.061386_17 which containing 1776 bp in size with 591 amino acids sequence; and Thirdly, gelatinase candidate gene 3 (P3), NODE_106_length_32943_cov_169.147919_8 containing 1701 bp in size with 566 amino acids sequence. Three pairs of oligonucleotide primers were designed and namely as, F1, R1, F2, R2, F3 and R3 were targeted short sequences of cDNA by PCR. The amplicons were reliably results in 1563 bp in size for candidate gene P1 and 1701 bp in size for candidate gene P3. Therefore, the results of bioinformatics analysis of L. Sphaericus resulting in gene encoded gelatinase were identified.

  6. Frequency of CYP450 enzyme gene polymorphisms in the Greek population: review of the literature, original findings and clinical significance.

    PubMed

    Ragia, Georgia; Giannakopoulou, Efstathia; Karaglani, Makrina; Karantza, Ioanna-Maria; Tavridou, Anna; Manolopoulos, Vangelis G

    2014-01-01

    The cytochrome P450 (CYP450) enzyme family is involved in the oxidative metabolism of many therapeutic drugs and various endogenous substrates. These enzymes are highly polymorphic. Prevalence of CYP450 enzyme gene polymorphisms vary among different populations and substantial inter- and intra-ethnic variability in frequency of CYP450 enzyme gene polymorphisms has been reported. This paper provides an overview and investigation of CYP450 genotypic and phenotypic reports published in the Greek population.

  7. Cytochrome P450 monooxygenases: perspectives for synthetic application.

    PubMed

    Urlacher, Vlada B; Eiben, Sabine

    2006-07-01

    Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.

  8. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation.

    PubMed

    Zhang, Yingying; Zhang, Baichen; Yan, Dawei; Dong, Weixin; Yang, Weibing; Li, Qun; Zeng, Longjun; Wang, Jianjun; Wang, Linyou; Hicks, Leslie M; He, Zuhua

    2011-07-01

    The rice gene ELONGATED UPPERMOST INTERNODE1 (EUI1) encodes a P450 monooxygenase that epoxidizes gibberellins (GAs) in a deactivation reaction. The Arabidopsis genome contains a tandemly duplicated gene pair ELA1 (CYP714A1) and ELA2 (CYP714A2) that encode EUI homologs. In this work, we dissected the functions of the two proteins. ELA1 and ELA2 exhibited overlapping yet distinct gene expression patterns. We showed that while single mutants of ELA1 or ELA2 exhibited no obvious morphological phenotype, simultaneous elimination of ELA1 and ELA2 expression in ELA1-RNAi/ela2 resulted in increased biomass and enlarged organs. By contrast, transgenic plants constitutively expressing either ELA1 or ELA2 were dwarfed, similar to those overexpressing the rice EUI gene. We also discovered that overexpression of ELA1 resulted in a severe dwarf phenotype, while overexpression of ELA2 gave rise to a breeding-favored semi-dwarf phenotype in rice. Consistent with the phenotypes, we found that the ELA1-RNAi/ela2 plants increased amounts of biologically active GAs that were decreased in the internodes of transgenic rice with ELA1 and ELA2 overexpression. In contrast, the precursor GA(12) slightly accumulated in the transgenic rice, and GA(19) highly accumulated in the ELA2 overexpression rice. Taken together, our study strongly suggests that the two Arabidopsis EUI homologs subtly regulate plant growth most likely through catalyzing deactivation of bioactive GAs similar to rice EUI. The two P450s may also function in early stages of the GA biosynthetic pathway. Our results also suggest that ELA2 could be an excellent tool for molecular breeding for high yield potential in cereal crops. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  9. Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Kang, Hye-Min; Lee, Min-Chul; Jeong, Chang-Bum; Kim, Hui-Su; Hwang, Dae-Sik; Lee, Jae-Seong

    2017-11-30

    Recently, accidental spills of heavy oil have caused adverse effects in marine organisms. Oil pollution can induce damages on development and reproduction, linking with detrimental effects on diverse molecular levels of genes and proteins in plankton and fish. However, most information was mainly focused on marine vertebrates and consequently, limited information was available in marine invertebrates. Furthermore, there is still a lack of knowledge bridging in vivo endpoints with the functional regulation of cytochrome P450 (CYP) genes in response to oil spill pollution in marine invertebrates. In this paper, adverse effects of oil spill pollution in marine invertebrates are summarized with the importance of CYP genes as a potential biomarker, applying for environmental monitoring to detect oil spill using marine copepods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Anti-liver-kidney microsome antibody type 1 recognizes human cytochrome P450 db1.

    PubMed

    Gueguen, M; Yamamoto, A M; Bernard, O; Alvarez, F

    1989-03-15

    Anti-liver-kidney microsome antibody type 1 (LKM1), present in the sera of a group of children with autoimmune hepatitis, was recently shown to recognize a 50 kDa protein identified as rat liver cytochromes P450 db1 and db2. High homology between these two members of the rat P450 IID subfamily and human P450 db1 suggested that anti-LKM1 antibody is directed against this human protein. To test this hypothesis, a human liver cDNA expression library in phage lambda GT-11 was screened using rat P450 db1 cDNA as a probe. Two human cDNA clones were found to be identical to human P450 db1 by restriction mapping. Immunoblot analysis using as antigen, the purified fusion protein from one of the human cDNA clones showed that only anti-LKM1 with anti-50 kDa reactivity recognized the fusion protein. This fusion protein was further used to develop an ELISA test that was shown to be specific for sera of children with this disease. These results: 1) identify the human liver antigen recognized by anti-LKM1 auto-antibodies as cytochrome P450 db1, 2) allow to speculate that mutation on the human P450 db1 gene could alter its expression in the hepatocyte and make it auto-antigenic, 3) provide a simple and specific diagnostic test for this disease.

  11. Gene 2 of the sigma rhabdovirus genome encodes the P protein, and gene 3 encodes a protein related to the reverse transcriptase of retroelements.

    PubMed

    Landès-Devauchelle, C; Bras, F; Dezélée, S; Teninges, D

    1995-11-10

    The nucleotide sequence of the genes 2 and 3 of the Drosophila rhabdovirus sigma was determined from cDNAs to viral genome and poly(A)+ mRNAs. Gene 2 comprises 1032 nucleotides and contains a long ORF encoding a molecular weight 35,208 polypeptide present in infected cells and in virions which migrates in SDS-PAGE as a doublet of M(r) about 60 kDa. The distribution of acidic charges as well as the electrophoretic properties of the protein are characteristic of the rhabdovirus P proteins. Gene 3 comprises 923 nucleotides and contains a long ORF capable of coding a polypeptide of 298 amino acids of MW 33,790. The putative protein (PP3) is similar in size to a minor component of the virions. Computer analysis shows that the sequence of PP3 contains three motifs related to the conserved motifs of reverse transcriptases.

  12. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses

    PubMed Central

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  13. [The role of cytochrome P450 in nonalcoholic fatty liver induced by high-fat diet: a gene expression profile analysis].

    PubMed

    Liu, Y; Cheng, F; Luo, Y X; Hu, P; Ren, H; Peng, M L

    2017-04-20

    Objective: To clarify the role of cytochrome P450 in nonalcoholic fatty liver disease (NAFLD) by RNA-Seq and bioinformatics analysis. Methods: A total of 20 male C57BL/6 mice were used. Ten mice were fed with high-fat diet (D12492, 60% kcal fat) for 16 weeks to establish a mouse model of NAFLD, and the other 10 mice were fed with low-fat diet (D12450B, 10% kcal fat) as control group. At the end of the experiment, the body weight, liver weight, and hepatic triglyceride (TG) content were measured. Meanwhile, HE staining and RNA-Seq analysis were performed for the liver tissues. The differentially expressed genes were screened out and subjected to bioinformatics analysis, including KEGG and GO BP enrichment analyses and interaction network analysis. Comparison of means between the two groups was made using t-test. Results: Compared with the control group, the mice in the model group were obviously obese, with significantly increased body weight (41.41 ± 6.01 g vs 28.78 ± 1.79 g, t = 6.04, P < 0.01) and liver weight (1.38 ± 0.30 g vs 1.08 ± 0.10 g, t = 2.89, P < 0.01). The mice in the model group showed obvious steatosis, accompanied by a small amount of inflammatory cell infiltration, but with no obvious fibrosis, according to the results of HE staining. In addition, the hepatic TG content in the model group was significantly increased compared with that in the control group (0.64 ± 0.01 mg/mg vs 0.29 ± 0.06 mg/mg, t = 10.11, P = 0.04). Compared with the control group, a total of 367 differentially expressed genes, including 211 down-regulated and 156 up-regulated ones, were identified in the model group according to the RNA-seq results. Meanwhile, 19 CYP450 subtypes, accounting for 5% of the differentially expressed genes, were identified, and CYP2E1, CYP2C70, CYP3A11, CYP3A25, CYP2D26, CYP4A10, CYP17A1, CYP2B10, and CYP2C38 were involved in oxidative stress, steroid hormone metabolism, fatty acid metabolism, arachidonic acid metabolism, and the PPAR signaling

  14. Molecular cloning and characterization of a cytochrome P450 taxoid 9á-hydroxylase in Ginkgo biloba cells.

    PubMed

    Zhang, Nan; Han, Zhentai; Sun, Guiling; Hoffman, Angela; Wilson, Iain W; Yang, Yanfang; Gao, Qian; Wu, Jianqiang; Xie, Dan; Dai, Jungui; Qiu, Deyou

    2014-01-17

    Taxol is a well-known effective anticancer compound. Due to the inability to synthesize sufficient quantities of taxol to satisfy commercial demand, a biotechnological approach for a large-scale cell or cell-free system for its production is highly desirable. Several important genes in taxol biosynthesis are currently still unknown and have been shown to be difficult to isolate directly from Taxus, including the gene encoding taxoid 9α-hydroxylase. Ginkgo biloba suspension cells exhibit taxoid hydroxylation activity and provides an alternate means of identifying genes encoding enzymes with taxoid 9α-hydroxylation activity. Through analysis of high throughput RNA sequencing data from G. biloba, we identified two candidate genes with high similarity to Taxus CYP450s. Using in vitro cell-free protein synthesis assays and LC-MS analysis, we show that one candidate that belongs to the CYP716B, a subfamily whose biochemical functions have not been previously studied, possessed 9α-hydroxylation activity. This work will aid future identification of the taxoid 9α-hydroxylase gene from Taxus sp. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes

    PubMed Central

    Ishak, Intan H.; Kamgang, Basile; Ibrahim, Sulaiman S.; Riveron, Jacob M.; Irving, Helen

    2017-01-01

    Background Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Methodology/Principal Findings Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise

  16. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes.

    PubMed

    Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2017-01-01

    Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant

  17. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.

    PubMed

    Kim, K S; Farrand, S K

    1996-06-01

    Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes.

  18. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.

    PubMed Central

    Kim, K S; Farrand, S K

    1996-01-01

    Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes. PMID:8655509

  19. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis

    PubMed Central

    Yap, Hui-Yeng Y.; Chooi, Yit-Heng; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications. PMID:26606395

  20. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase

    PubMed Central

    Brockmann-Gretza, Olaf; Kalinowski, Jörn

    2006-01-01

    Background The stringent response is the initial reaction of microorganisms to nutritional stress. During stringent response the small nucleotides (p)ppGpp act as global regulators and reprogram bacterial transcription. In this work, the genetic network controlled by the stringent response was characterized in the amino acid-producing Corynebacterium glutamicum. Results The transcriptome of a C. glutamicum rel gene deletion mutant, unable to synthesize (p)ppGpp and to induce the stringent response, was compared with that of its rel-proficient parent strain by microarray analysis. A total of 357 genes were found to be transcribed differentially in the rel-deficient mutant strain. In a second experiment, the stringent response was induced by addition of DL-serine hydroxamate (SHX) in early exponential growth phase. The time point of the maximal effect on transcription was determined by real-time RT-PCR using the histidine and serine biosynthetic genes. Transcription of all of these genes reached a maximum at 10 minutes after SHX addition. Microarray experiments were performed comparing the transcriptomes of SHX-induced cultures of the rel-proficient strain and the rel mutant. The differentially expressed genes were grouped into three classes. Class A comprises genes which are differentially regulated only in the presence of an intact rel gene. This class includes the non-essential sigma factor gene sigB which was upregulated and a large number of genes involved in nitrogen metabolism which were downregulated. Class B comprises genes which were differentially regulated in response to SHX in both strains, independent of the rel gene. A large number of genes encoding ribosomal proteins fall into this class, all being downregulated. Class C comprises genes which were differentially regulated in response to SHX only in the rel mutant. This class includes genes encoding putative stress proteins and global transcriptional regulators that might be responsible for the complex

  1. Novel cytochrome P450 genes, CYP6EB1 and CYP6EC1, are over-expressed in acrinathrin-resistant Frankliniella occidentalis (Thysanoptera: Thripidae).

    PubMed

    Cifuentes, D; Chynoweth, R; Guillén, J; De la Rúa, P; Bielza, P

    2012-06-01

    Control of Frankliniella occidentalis (Pergande) is a serious problem for agriculture all over the world because of the limited range of insecticides that are available. Insecticide resistance in F. occidentalis has been reported for all major insecticide groups. Our previous studies showed that cytochrome P450-mediated detoxification is a major mechanism responsible for insecticide resistance in this pest. Degenerate polymerase chain reaction was used to identify P450 genes that might be involved in acrinathrin resistance, in a laboratory population of F. occidentalis. Associated sequences were classified as belonging to the CYP4 and CYP6 families. Real-time quantitative polymerase chain reaction analyses revealed that two genes, CYP6EB1 and CYP6EC1, were over-expressed in adults and L2 larvae of the resistant population, when compared with the susceptible population, suggesting their possible involvement in resistance to acrinathrin.

  2. RNA Interference of NADPH-Cytochrome P450 Reductase Results in Reduced Insecticide Resistance in the Bed Bug, Cimex lectularius

    PubMed Central

    Zhu, Fang; Sams, Sarah; Moural, Tim; Haynes, Kenneth F.; Potter, Michael F.; Palli, Subba R.

    2012-01-01

    Background NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether or not P450s are involved in resistance of bed bugs to insecticides. Methodology/Principal Findings The full length Cimex lectularius CPR (ClCPR) cDNA was isolated from a deltamethrin resistant bed bug population (CIN-1) using a combined PCR strategy. Bioinformatics and in silico modeling were employed to identify three conserved binding domains (FMN, FAD, NADP), a FAD binding motif, and the catalytic residues. The critical amino acids involved in FMN, FAD, NADP binding and their putative functions were also analyzed. No signal peptide but a membrane anchor domain with 21 amino acids which facilitates the localization of ClCPR on the endoplasmic reticulum was identified in ClCPR protein. Phylogenetic analysis showed that ClCPR is closer to the CPR from the body louse, Pediculus humanus corporis than to the CPRs from the other insect species studied. The ClCPR gene was ubiquitously expressed in all tissues tested but showed an increase in expression as immature stages develop into adults. We exploited the traumatic insemination mechanism of bed bugs to inject dsRNA and successfully knockdown the expression of the gene coding for ClCPR. Suppression of the ClCPR expression increased susceptibility to deltamethrin in resistant populations but not in the susceptible population of bed bugs. Conclusions/Significance These data suggest that P450-mediated metabolic detoxification may serve as one of the resistance mechanisms in bed bugs. PMID:22347424

  3. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius.

    PubMed

    Zhu, Fang; Sams, Sarah; Moural, Tim; Haynes, Kenneth F; Potter, Michael F; Palli, Subba R

    2012-01-01

    NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether or not P450s are involved in resistance of bed bugs to insecticides. The full length Cimex lectularius CPR (ClCPR) cDNA was isolated from a deltamethrin resistant bed bug population (CIN-1) using a combined PCR strategy. Bioinformatics and in silico modeling were employed to identify three conserved binding domains (FMN, FAD, NADP), a FAD binding motif, and the catalytic residues. The critical amino acids involved in FMN, FAD, NADP binding and their putative functions were also analyzed. No signal peptide but a membrane anchor domain with 21 amino acids which facilitates the localization of ClCPR on the endoplasmic reticulum was identified in ClCPR protein. Phylogenetic analysis showed that ClCPR is closer to the CPR from the body louse, Pediculus humanus corporis than to the CPRs from the other insect species studied. The ClCPR gene was ubiquitously expressed in all tissues tested but showed an increase in expression as immature stages develop into adults. We exploited the traumatic insemination mechanism of bed bugs to inject dsRNA and successfully knockdown the expression of the gene coding for ClCPR. Suppression of the ClCPR expression increased susceptibility to deltamethrin in resistant populations but not in the susceptible population of bed bugs. These data suggest that P450-mediated metabolic detoxification may serve as one of the resistance mechanisms in bed bugs.

  4. Cytochrome P450 2D6 polymorphism and character traits.

    PubMed

    Suzuki, Eiji; Kitao, Yoshie; Ono, Yutaka; Iijima, Yoshimi; Inada, Toshiya

    2003-06-01

    It has been suggested that cytochrome P450 2D6 (CYP2D6) is involved in dopamine metabolism within the brain. The dopamine system is suggested to play a role in determining normal character. The purpose of this study was to examine whether character traits are dependent on cytochrome P450 2D6 activity. We investigated the association between temperament and CYP2D6 gene polymorphism. The subjects were all Japanese and the polymorphism genotyped in the present study was CYP2D6*10. Character traits were assessed using the Temperament and Character Inventory. There was no overall or specific association between personality traits and the CYP2D6*10 allele and genotype frequencies. The present results do not support the hypothesis that CYP2D6 activity affects temperament and character.

  5. The Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS

    PubMed Central

    von Wettstein-Knowles, Penny

    2017-01-01

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue–grey color. Identification of the barley Cer-c, -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase—the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols. PMID:28698520

  6. The Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS.

    PubMed

    von Wettstein-Knowles, Penny

    2017-07-10

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c , -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols.

  7. A Comprehensive Analysis of Nuclear-Encoded Mitochondrial Genes in Schizophrenia.

    PubMed

    Gonçalves, Vanessa F; Cappi, Carolina; Hagen, Christian M; Sequeira, Adolfo; Vawter, Marquis P; Derkach, Andriy; Zai, Clement C; Hedley, Paula L; Bybjerg-Grauholm, Jonas; Pouget, Jennie G; Cuperfain, Ari B; Sullivan, Patrick F; Christiansen, Michael; Kennedy, James L; Sun, Lei

    2018-05-01

    The genetic risk factors of schizophrenia (SCZ), a severe psychiatric disorder, are not yet fully understood. Multiple lines of evidence suggest that mitochondrial dysfunction may play a role in SCZ, but comprehensive association studies are lacking. We hypothesized that variants in nuclear-encoded mitochondrial genes influence susceptibility to SCZ. We conducted gene-based and gene-set analyses using summary association results from the Psychiatric Genomics Consortium Schizophrenia Phase 2 (PGC-SCZ2) genome-wide association study comprising 35,476 cases and 46,839 control subjects. We applied the MAGMA method to three sets of nuclear-encoded mitochondrial genes: oxidative phosphorylation genes, other nuclear-encoded mitochondrial genes, and genes involved in nucleus-mitochondria crosstalk. Furthermore, we conducted a replication study using the iPSYCH SCZ sample of 2290 cases and 21,621 control subjects. In the PGC-SCZ2 sample, 1186 mitochondrial genes were analyzed, among which 159 had p values < .05 and 19 remained significant after multiple testing correction. A meta-analysis of 818 genes combining the PGC-SCZ2 and iPSYCH samples resulted in 104 nominally significant and nine significant genes, suggesting a polygenic model for the nuclear-encoded mitochondrial genes. Gene-set analysis, however, did not show significant results. In an in silico protein-protein interaction network analysis, 14 mitochondrial genes interacted directly with 158 SCZ risk genes identified in PGC-SCZ2 (permutation p = .02), and aldosterone signaling in epithelial cells and mitochondrial dysfunction pathways appeared to be overrepresented in this network of mitochondrial and SCZ risk genes. This study provides evidence that specific aspects of mitochondrial function may play a role in SCZ, but we did not observe its broad involvement even using a large sample. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. A cytochrome P450 regulates a domestication trait in cultivated tomato

    PubMed Central

    Chakrabarti, Manohar; Zhang, Na; Sauvage, Christopher; Muños, Stéphane; Blanca, Jose; Cañizares, Joaquin; Diez, Maria Jose; Schneider, Rhiannon; Mazourek, Michael; McClead, Jammi; Causse, Mathilde; van der Knaap, Esther

    2013-01-01

    Domestication of crop plants had effects on human lifestyle and agriculture. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit appearance as a consequence of selection by early farmers. We report the fine mapping and cloning of a tomato (Solanum lycopersicum) fruit mass gene encoding the ortholog of KLUH, SlKLUH, a P450 enzyme of the CYP78A subfamily. The increase in fruit mass is predominantly the result of enlarged pericarp and septum tissues caused by increased cell number in the large fruited lines. SlKLUH also modulates plant architecture by regulating number and length of the side shoots, and ripening time, and these effects are particularly strong in plants that transgenically down-regulate SlKLUH expression carrying fruits of a dramatically reduced mass. Association mapping followed by segregation analyses revealed that a single nucleotide polymorphism in the promoter of the gene is highly associated with fruit mass. This single polymorphism may potentially underlie a regulatory mutation resulting in increased SlKLUH expression concomitant with increased fruit mass. Our findings suggest that the allele giving rise to large fruit arose in the early domesticates of tomato and becoming progressively more abundant upon further selections. We also detected association of fruit weight with CaKLUH in chile pepper (Capsicum annuum) suggesting that selection of the orthologous gene may have occurred independently in a separate domestication event. Altogether, our findings shed light on the molecular basis of fruit mass, a key domestication trait in tomato and other fruit and vegetable crops. PMID:24082112

  9. CrpP Is a Novel Ciprofloxacin-Modifying Enzyme Encoded by the Pseudomonas aeruginosa pUM505 Plasmid.

    PubMed

    Chávez-Jacobo, Víctor M; Hernández-Ramírez, Karen C; Romo-Rodríguez, Pamela; Pérez-Gallardo, Rocío Viridiana; Campos-García, Jesús; Gutiérrez-Corona, J Félix; García-Merinos, Juan Pablo; Meza-Carmen, Víctor; Silva-Sánchez, Jesús; Ramírez-Díaz, Martha I

    2018-06-01

    The pUM505 plasmid, isolated from a clinical Pseudomonas aeruginosa isolate, confers resistance to ciprofloxacin (CIP) when transferred into the standard P. aeruginosa strain PAO1. CIP is an antibiotic of the quinolone family that is used to treat P. aeruginosa infections. In silico analysis, performed to identify CIP resistance genes, revealed that the 65-amino-acid product encoded by the orf131 gene in pUM505 displays 40% amino acid identity to the Mycobacterium smegmatis aminoglycoside phosphotransferase (an enzyme that phosphorylates and inactivates aminoglycoside antibiotics). We cloned orf131 (renamed crpP , for c iprofloxacin r esistance p rotein, p lasmid encoded) into the pUCP20 shuttle vector. The resulting recombinant plasmid, pUC- crpP , conferred resistance to CIP on Escherichia coli strain J53-3, suggesting that this gene encodes a protein involved in CIP resistance. Using coupled enzymatic analysis, we determined that the activity of CrpP on CIP is ATP dependent, while little activity against norfloxacin was detected, suggesting that CIP may undergo phosphorylation. Using a recombinant His-tagged CrpP protein and liquid chromatography-tandem mass spectrometry, we also showed that CIP was phosphorylated prior to its degradation. Thus, our findings demonstrate that CrpP, encoded on the pUM505 plasmid, represents a new mechanism of CIP resistance in P. aeruginosa , which involves phosphorylation of the antibiotic. Copyright © 2018 American Society for Microbiology.

  10. The planetary biology of cytochrome P450 aromatases.

    PubMed

    Gaucher, Eric A; Graddy, Logan G; Li, Tang; Simmen, Rosalia C M; Simmen, Frank A; Schreiber, David R; Liberles, David A; Janis, Christine M; Benner, Steven A

    2004-08-17

    Joining a model for the molecular evolution of a protein family to the paleontological and geological records (geobiology), and then to the chemical structures of substrates, products, and protein folds, is emerging as a broad strategy for generating hypotheses concerning function in a post-genomic world. This strategy expands systems biology to a planetary context, necessary for a notion of fitness to underlie (as it must) any discussion of function within a biomolecular system. Here, we report an example of such an expansion, where tools from planetary biology were used to analyze three genes from the pig Sus scrofa that encode cytochrome P450 aromatases-enzymes that convert androgens into estrogens. The evolutionary history of the vertebrate aromatase gene family was reconstructed. Transition redundant exchange silent substitution metrics were used to interpolate dates for the divergence of family members, the paleontological record was consulted to identify changes in physiology that correlated in time with the change in molecular behavior, and new aromatase sequences from peccary were obtained. Metrics that detect changing function in proteins were then applied, including KA/KS values and those that exploit structural biology. These identified specific amino acid replacements that were associated with changing substrate and product specificity during the time of presumed adaptive change. The combined analysis suggests that aromatase paralogs arose in pigs as a result of selection for Suoidea with larger litters than their ancestors, and permitted the Suoidea to survive the global climatic trauma that began in the Eocene. This combination of bioinformatics analysis, molecular evolution, paleontology, cladistics, global climatology, structural biology, and organic chemistry serves as a paradigm in planetary biology. As the geological, paleontological, and genomic records improve, this approach should become widely useful to make systems biology statements about

  11. The planetary biology of cytochrome P450 aromatases

    PubMed Central

    Gaucher, Eric A; Graddy, Logan G; Li, Tang; Simmen, Rosalia CM; Simmen, Frank A; Schreiber, David R; Liberles, David A; Janis, Christine M; Benner, Steven A

    2004-01-01

    Background Joining a model for the molecular evolution of a protein family to the paleontological and geological records (geobiology), and then to the chemical structures of substrates, products, and protein folds, is emerging as a broad strategy for generating hypotheses concerning function in a post-genomic world. This strategy expands systems biology to a planetary context, necessary for a notion of fitness to underlie (as it must) any discussion of function within a biomolecular system. Results Here, we report an example of such an expansion, where tools from planetary biology were used to analyze three genes from the pig Sus scrofa that encode cytochrome P450 aromatases–enzymes that convert androgens into estrogens. The evolutionary history of the vertebrate aromatase gene family was reconstructed. Transition redundant exchange silent substitution metrics were used to interpolate dates for the divergence of family members, the paleontological record was consulted to identify changes in physiology that correlated in time with the change in molecular behavior, and new aromatase sequences from peccary were obtained. Metrics that detect changing function in proteins were then applied, including KA/KS values and those that exploit structural biology. These identified specific amino acid replacements that were associated with changing substrate and product specificity during the time of presumed adaptive change. The combined analysis suggests that aromatase paralogs arose in pigs as a result of selection for Suoidea with larger litters than their ancestors, and permitted the Suoidea to survive the global climatic trauma that began in the Eocene. Conclusions This combination of bioinformatics analysis, molecular evolution, paleontology, cladistics, global climatology, structural biology, and organic chemistry serves as a paradigm in planetary biology. As the geological, paleontological, and genomic records improve, this approach should become widely useful to make

  12. Association of cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in breast cancer patients

    PubMed Central

    2012-01-01

    Background The enzymes of the cytochrome P450 family (CYPs) play an important role in the metabolism of a great variety of anticancer agents; therefore, polymorphisms in genes encoding for metabolizing enzymes and drugs transporters can affect drug efficacy and toxicity. Methods The genetic polymorphisms of cytochrome P450 were studied in 395 patients with breast cancer by RLFP analysis. Results Here, we studied the association of functionally significant variant alleles of CYP3A4, CYP3A5, CYP2B6, CYP2C8, CYP2C9 and CYP2C19 with the clinical response to neoadjuvant chemotherapy in breast cancer patients. A significant correlation was observed between the CYP2C9*2 polymorphism and chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91), as well as between CYP2C9*2 heterozygotes and chemotherapy resistance in women with nodal forms of breast cancer and a cancer hereditary load (OR = 15.50; CI 95% = 1.08 – 826.12) when the potential combined effects were examined. No significant association between chemotherapy resistance and the other examined genotypes and the potential combined clinical and tumour-related parameters were discovered. Conclusion In conclusion, CYP2C9*2 was associated with neoadjuvant chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91) in the population of interest. PMID:22702493

  13. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor.

    PubMed

    Siewers, Verena; Viaud, Muriel; Jimenez-Teja, Daniel; Collado, Isidro G; Gronover, Christian Schulze; Pradier, Jean-Marc; Tudzynski, Bettina; Tudzynski, Paul

    2005-06-01

    The micrographic phytopathogen Botrytis cinerea causes gray mold diseases in a large number of dicotyledonous crop plants and ornamentals. Colonization of host tissue is accompanied by rapid killing of plant cells ahead of the growing hyphen, probably caused by secretion of nonspecific phytotoxins, e.g., the sesquiterpene botrydial. Although all pathogenic strains tested so far had been shown to secrete botrydial and although the toxin causes comparable necrotic lesions as infection by the fungus, the role of botrydial in the infection process has not been elucidated so far. Here, we describe the functional characterization of bcbot1, encoding a P450 monooxygenase and provide evidence that it is involved in the botrydial pathway, i.e., it represents the first botrydial biosynthetic gene identified. We show that bcbot1 is expressed in planta and that expression in vitro and in planta is controlled by an alpha-subunit of a heterotrimeric GTP-binding protein, BCG1. Deletion of bcbot1 in three standard strains of B. cinerea shows that the effect on virulence (on several host plants) is strain-dependent; only deletion in one of the strains (T4) led to reduced virulence.

  14. Cytochromes P450 Catalyze the Reduction of α,β-Unsaturated Aldehydes

    PubMed Central

    Amunom, Immaculate; Dieter, Laura J.; Tamasi, Viola; Cai, Jan; Conklin, Daniel J.; Srivastava, Sanjay; Martin, Martha V.; Guengerich, F. Peter; Prough, Russell A.

    2011-01-01

    The metabolism of α,β-unsaturated aldehydes, e.g. 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O2, and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 & rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions, but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of reduction of α,β-unsaturated aldehydes in liver. PMID:21766881

  15. Molecular cloning of a defense-response-related cytochrome P450 gene from tobacco.

    PubMed

    Takemoto, D; Hayashi, M; Doke, N; Nishimura, M; Kawakita, K

    1999-12-01

    Plant defenses against pathogen attack involve a series of inducible responses that contribute to resistance. Tobacco leaves injected with HWC (hyphal wall components prepared from Phytophthora infestans) elicitor showed typical defense responses, including the induction of localized necrosis and the accumulation of pathogenesis-related proteins. In order to elucidate the molecular mechanisms by which plant defense systems are activated, we screened tobacco plants for genes differentially expressed in response to HWC. We performed differential screening by RT-PCR with random primers and obtained PCR products specific to HWC-treated leaf RNA. Northern hybridization using the PCR products as probes confirmed that one transcript was actually induced by HWC treatment. As the deduced amino acid sequence of this clone showed the highest degree of similarity to elicitor-induced soybean cytochrome P450 CYP82A4, it was designated CYP82E1. The expression of CYP82E1 was strongly induced in tobacco by the soybean pathogen Pseudomonas syringae pv. glycinea (nonpathogenic on tobacco), but it was activated only slightly and in a delayed fashion by the tobacco pathogen P. syringae pv. tabaci (pathogenic on tobacco), implying that the product of CYP82E1 may be involved in disease resistance in tobacco.

  16. Generation of a mouse model with a reversible hypomorphic cytochrome P450 reductase gene: utility for tissue-specific rescue of the reductase expression, and insights from a resultant mouse model with global suppression of P450 reductase expression in extrahepatic tissues.

    PubMed

    Wei, Yuan; Zhou, Xin; Fang, Cheng; Li, Lei; Kluetzman, Kerri; Yang, Weizhu; Zhang, Qing-Yu; Ding, Xinxin

    2010-07-01

    A mouse model termed Cpr-low (CL) was recently generated, in which the expression of the cytochrome P450 reductase (Cpr) gene was globally down-regulated. The decreased CPR expression was accompanied by phenotypical changes, including reduced embryonic survival, decreases in circulating cholesterol, increases in hepatic P450 expression, and female infertility (accompanied by elevated serum testosterone and progesterone levels). In the present study, a complementary mouse model [named reversible-CL (r-CL)] was generated, in which the reduced CPR expression can be reversed in an organ-specific fashion. The neo cassette, which was inserted into the last Cpr intron in r-CL mice, can be deleted by Cre recombinase, thus returning the structure of the Cpr gene (and hence CPR expression) to normal in Cre-expressing cells. All previously identified phenotypes of the CL mice were preserved in the r-CL mice. As a first application of the r-CL model, we have generated an extrahepatic-CL (xh-CL) mouse for testing of the functions of CPR-dependent enzymes in all extrahepatic tissues. The xh-CL mice, generated by mating of r-CL mice with albumin-Cre mice, had normal CPR expression in hepatocytes but down-regulated CPR expression elsewhere. They were indistinguishable from wild-type mice in body and liver weights, circulating cholesterol levels, and hepatic microsomal P450 expression and activities; however, they still showed elevated serum testosterone and progesterone levels and sterility in females. Embryonic lethality was prevented in males, but apparently not in females, indicating a critical role for fetal hepatic CPR-dependent enzymes in embryonic development, at least in males.

  17. Enterotoxin-encoding genes in Staphylococcus spp. from bulk goat milk.

    PubMed

    Lyra, Daniele G; Sousa, Francisca G C; Borges, Maria F; Givisiez, Patrícia E N; Queiroga, Rita C R E; Souza, Evandro L; Gebreyes, Wondwossen A; Oliveira, Celso J B

    2013-02-01

    Although Staphylococcus aureus has been implicated as the main Staphylococcus species causing human food poisoning, recent studies have shown that coagulase-negative Staphylococcus could also harbor enterotoxin-encoding genes. Such organisms are often present in goat milk and are the most important mastitis-causing agents. Therefore, this study aimed to investigate the occurrence of enterotoxin-encoding genes among coagulase-positive (CoPS) and coagulase-negative (CoNS) staphylococci isolated from raw goat milk produced in the semi-arid region of Paraiba, the most important region for goat milk production in Brazil. Enterotoxin-encoding genes were screened in 74 staphylococci isolates (30 CoPS and 44 CoNS) by polymerase chain reaction targeting the genes sea, seb, sec, sed, see, seg, seh, and sei. Enterotoxin-encoding genes were found in nine (12.2%) isolates, and four different genes (sea, sec, seg, and sei) were identified amongst the isolates. The most frequent genes were seg and sei, which were often found simultaneously in 44.5% of the isolates. The gene sec was the most frequent among the classical genes, and sea was found only in one isolate. All CoPS isolates (n=7) harboring enterotoxigenic genes were identified as S. aureus. The two coagulase-negative isolates were S. haemolyticus and S. hominis subsp. hominis and they harbored sei and sec genes, respectively. A higher frequency of enterotoxin-encoding genes was observed amongst CoPS (23.3%) than CoNS (4.5%) isolates (p<0.05), reinforcing the importance of S. aureus as a potential foodborne agent. However, the potential risk posed by CoNS in goat milk should not be ignored because it has a higher occurrence in goat milk and enterotoxin-encoding genes were detected in some isolates.

  18. NADPH-Cytochrome P450 Reductase: Molecular Cloning and Functional Characterization of Two Paralogs from Withania somnifera (L.) Dunal

    PubMed Central

    Rana, Satiander; Lattoo, Surrinder K.; Dhar, Niha; Razdan, Sumeer; Bhat, Wajid Waheed; Dhar, Rekha S.; Vishwakarma, Ram

    2013-01-01

    Withania somnifera (L.) Dunal, a highly reputed medicinal plant, synthesizes a large array of steroidal lactone triterpenoids called withanolides. Although its chemical profile and pharmacological activities have been studied extensively during the last two decades, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. Cytochrome P450 reductase is the most imperative redox partner of multiple P450s involved in primary and secondary metabolite biosynthesis. We describe here the cloning and characterization of two paralogs of cytochrome P450 reductase from W. somnifera. The full length paralogs of WsCPR1 and WsCPR2 have open reading frames of 2058 and 2142 bp encoding 685 and 713 amino acid residues, respectively. Phylogenetic analysis demonstrated that grouping of dual CPRs was in accordance with class I and class II of eudicotyledon CPRs. The corresponding coding sequences were expressed in Escherichia coli as glutathione-S-transferase fusion proteins, purified and characterized. Recombinant proteins of both the paralogs were purified with their intact membrane anchor regions and it is hitherto unreported for other CPRs which have been purified from microsomal fraction. Southern blot analysis suggested that two divergent isoforms of CPR exist independently in Withania genome. Quantitative real-time PCR analysis indicated that both genes were widely expressed in leaves, stalks, roots, flowers and berries with higher expression level of WsCPR2 in comparison to WsCPR1. Similar to CPRs of other plant species, WsCPR1 was un-inducible while WsCPR2 transcript level increased in a time-dependent manner after elicitor treatments. High performance liquid chromatography of withanolides extracted from elicitor-treated samples showed a significant increase in two of the key withanolides, withanolide A and withaferin A, possibly indicating the role of WsCPR2 in withanolide biosynthesis

  19. Three copies of a single protein II-encoding sequence in the genome of Neisseria gonorrhoeae JS3: evidence for gene conversion and gene duplication.

    PubMed

    van der Ley, P

    1988-11-01

    Gonococci express a family of related outer membrane proteins designated protein II (P.II). These surface proteins are subject to both phase variation and antigenic variation. The P.II gene repertoire of Neisseria gonorrhoeae strain JS3 was found to consist of at least ten genes, eight of which were cloned. Sequence analysis and DNA hybridization studies revealed that one particular P.II-encoding sequence is present in three distinct, but almost identical, copies in the JS3 genome. These genes encode the P.II protein that was previously identified as P.IIc. Comparison of their sequences shows that the multiple copies of this P.IIc-encoding gene might have been generated by both gene conversion and gene duplication.

  20. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target.

    PubMed

    Jawallapersand, Poojah; Mashele, Samson Sitheni; Kovačič, Lidija; Stojan, Jure; Komel, Radovan; Pakala, Suresh Babu; Kraševec, Nada; Syed, Khajamohiddin

    2014-01-01

    Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family's role as a common alternative drug target against animal (including human) and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103) were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome-wide comparative

  1. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    PubMed Central

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  2. Molecular Cloning and Functional Analysis of Gene Clusters for the Biosynthesis of Indole-Diterpenes in Penicillium crustosum and P. janthinellum

    PubMed Central

    Nicholson, Matthew J.; Eaton, Carla J.; Stärkel, Cornelia; Tapper, Brian A.; Cox, Murray P.; Scott, Barry

    2015-01-01

    The penitremane and janthitremane families of indole-diterpenes are abundant natural products synthesized by Penicillium crustosum and P. janthinellum. Using a combination of PCR, cosmid library screening, and Illumina sequencing we have identified gene clusters encoding enzymes for the synthesis of these compounds. Targeted deletion of penP in P. crustosum abolished the synthesis of penitrems A, B, D, E, and F, and led to accumulation of paspaline, a key intermediate for paxilline biosynthesis in P. paxilli. Similarly, deletion of janP and janD in P. janthinellum abolished the synthesis of prenyl-elaborated indole-diterpenes, and led to accumulation in the latter of 13-desoxypaxilline, a key intermediate for the synthesis of the structurally related aflatremanes synthesized by Aspergillus flavus. This study helps resolve the genetic basis for the complexity of indole-diterpene natural products found within the Penicillium and Aspergillus species. All indole-diterpene gene clusters identified to date have a core set of genes for the synthesis of paspaline and a suite of genes encoding multi-functional cytochrome P450 monooxygenases, FAD dependent monooxygenases, and prenyl transferases that catalyse various regio- and stereo- specific oxidations that give rise to the diversity of indole-diterpene products synthesized by this group of fungi. PMID:26213965

  3. Effects of Electro-Acupuncture on Ovarian P450arom, P450c17α and mRNA Expression Induced by Letrozole in PCOS Rats

    PubMed Central

    Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg−1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and

  4. Effects of electro-acupuncture on ovarian P450arom, P450c17α and mRNA expression induced by letrozole in PCOS rats.

    PubMed

    Sun, Jie; Jin, Chunlan; Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg(-1) of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and

  5. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomicmore » analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.« less

  6. The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit (Hylocereus polyrhizus).

    PubMed

    Cheng, Mei-Nv; Huang, Zi-Juan; Hua, Qing-Zhu; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Qin, Yong-Hua; Chen, Jian-Ye

    2017-01-01

    Red pitaya ( Hylocereus polyrhizus ) fruit is a high-value, functional food, containing a high level of betalains. Several genes potentially related to betalain biosynthesis, such as cytochrome P450-like ( CytP450-like ), have been identified in pitaya fruit, while their transcriptional regulation remains unclear. In this work, the potential involvement of a WRKY transcription factor, HpWRKY44, in regulating CytP450-like1 expression in pitaya fruit was examined. HpWRKY44, a member of the Group 1 WRKY family, contains two conserved WRKY motifs and is localized in the nucleus. HpWRKY44 also exhibits trans-activation ability. Gene expression analysis showed that the expression of HpCytP450-like1 and HpWRKY44 increased steadily during pitaya fruit coloration, which corresponded with the production of elevated betalain levels in the fruit. HpWRKY44 was also demonstrated to directly bind to and activate the HpCytP450-like1 promoter via the recognition of the W-box element present in the promoter. Collectively, our findings indicate that HpWRKY44 transcriptionally activates HpCytP450-like1 , which perhaps, at least in part, contributes to betalain biosynthesis in pitaya fruit. The information provided in the current study provides novel insights into the regulatory network associated with betalain biosynthesis during pitaya fruit coloration.

  7. Identification and molecular characterization of the Choristoneura fumiferana multicapsid nucleopolyhedrovirus genomic region encoding the regulatory genes pkip, p47, lef-12, and gta.

    PubMed

    Lapointe, R; Back, D W; Ding, Q; Carstens, E B

    2000-05-25

    Choristoneura fumiferana multicapsid nucleopolyhedrovirus (CfMNPV) is a baculovirus pathogenic to spruce budworm, the most damaging insect pest in Canadian forestry. CfMNPV is less virulent to its host insect and its replication cycle is slower than the baculovirus type species Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) but the basis of these characteristics is not known. We have now identified, localized, and determined the sequence of the region of CfMNPV carrying potentially important regulatory genes including p47, lef-12, gta, and pkip. DNA database searches revealed that this region of CfMNPV is most closely related to the homologous OpMNPV genes. Transcription analysis demonstrated that CfMNPV P47 is encoded by a 1.6-kb transcript, LEF-12 is encoded by a 2.6-kb transcript, and GTA is encoded by a 2.1-kb transcript. Transcripts for these genes were detectable at 6 h postinfection but all of them showed a burst in expression levels between 12 and 24 h postinfection corresponding to the time of initiation of CfMNPV DNA replication. A polyclonal antibody, raised against CfMNPV P47, detected a nuclear 43-kDa polypeptide from 12 to 72 h postinfection, demonstrating that the CfMNPV p47 gene product is first expressed at a time corresponding to the burst of transcriptional activity between the early and the late phases. Both AcMNPV and CfMNPV P47 translocate to the nucleus of infected cells. Copyright 2000 Academic Press.

  8. Effects of chronic exposure to tributyltin on tissue-specific cytochrome P450 1 regulation in juvenile common carp.

    PubMed

    Li, Zhi-Hua; Zhong, Li-Qiao; Mu, Wei-Na; Wu, Yan-Hua

    2016-01-01

    1. The purpose of this study was to compare tributyltin (TBT)-induced cytochrome P450 1 (CYP450 1) regulation in liver, gills and muscle of juvenile common carp (Cyprinus carpio). 2. Fish were exposed to sublethal concentrations of TBT (75, 0.75 and 7.5 μg/L) for 60 days. CYP450 1A was measured at the enzyme activity level as 7-ethoxyresorufin-O-deethylase (EROD) activity, as well as the mRNA expression of CYP450 1 family genes (CYP1A, CYP1B, CYP1C1 and CYP1C2) in fish tissues. 3. Based on the results, the liver displayed the highest absolute levels of EROD activity, both under nonexposed and exposed conditions. Additional, EROD activities and CYP1A gene levels showed a good correlation in all three organs. According to the mRNA expression of CYP450 1 family genes, it suggested that CYP1A was to accommodate most EROD activity in fish, but other CYP450 forms also involved in this proceeding. 4. Overall, the study revealed both similarities and differences in the concentration-dependent CYP450 1 responses of the three target organs, which could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.

  9. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    PubMed

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  10. Effect of p-amino-diphenyl ethers on hepatic microsomal cytochrome P450.

    PubMed

    Jiang, Huidi; Xuan, Guida

    2003-09-01

    The present paper aims to investigate whether p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450. Mice were given daily intraperitoneal (ip) injections of p-amino-2',4'-dichlorodiphenyl ether (0.25 mmol/kg) or p-amino-4'-methyldiphenyl ether (0.25 mmol/kg) for 4 days and tested at 24 h and 48 h after the last dose injection. The results showed the mice pentobarbital sleeping time was shorter and the P450 content of hepatic microsome increased significantly in the group pretreated with p-amino-4'-methyldiphenyl ether when compared with the control group, while in mice pretreated with p-amino-2',4'-dichlorodiphenyl ether the hepatic microsome P450 content increased but the pentobarbital sleeping time was extended in clear contrast to the control group. The sleeping time of the phenobarbital group (80 mg/kg daily ip injection for 4 days) was shortened at 24 h after the last injection with increased P450 content of hepatic microsome, but it showed no difference at 48 h. The zoxazolamine-paralysis times of mice treated with p-amino-2',4'-dichlorodiphenyl ether were longer than those of the control mice, while the same dose of zoxazolamine did not lead to paralysis in mice pretreated with BNF. p-Amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether inhibited the activity of 7-ethoxyresorufin O-deethylase from rat hepatic microsome induced by BNF in vitro by 70.0% and 50.1% respectively. These results suggest that p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450.

  11. Comparative Analysis of P450 Signature Motifs EXXR and CXG in the Large and Diverse Kingdom of Fungi: Identification of Evolutionarily Conserved Amino Acid Patterns Characteristic of P450 Family

    PubMed Central

    Syed, Khajamohiddin; Mashele, Samson Sitheni

    2014-01-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins distributed across the biological kingdoms. P450s are catalytically versatile and play key roles in organisms primary and secondary metabolism. Identification of P450s across the biological kingdoms depends largely on the identification of two P450 signature motifs, EXXR and CXG, in the protein sequence. Once a putative protein has been identified as P450, it will be assigned to a family and subfamily based on the criteria that P450s within a family share more than 40% homology and members of subfamilies share more than 55% homology. However, to date, no evidence has been presented that can distinguish members of a P450 family. Here, for the first time we report the identification of EXXR- and CXG-motifs-based amino acid patterns that are characteristic of the P450 family. Analysis of P450 signature motifs in the under-explored fungal P450s from four different phyla, ascomycota, basidiomycota, zygomycota and chytridiomycota, indicated that the EXXR motif is highly variable and the CXG motif is somewhat variable. The amino acids threonine and leucine are preferred as second and third amino acids in the EXXR motif and proline and glycine are preferred as second and third amino acids in the CXG motif in fungal P450s. Analysis of 67 P450 families from biological kingdoms such as plants, animals, bacteria and fungi showed conservation of a set of amino acid patterns characteristic of a particular P450 family in EXXR and CXG motifs. This suggests that during the divergence of P450 families from a common ancestor these amino acids patterns evolve and are retained in each P450 family as a signature of that family. The role of amino acid patterns characteristic of a P450 family in the structural and/or functional aspects of members of the P450 family is a topic for future research. PMID:24743800

  12. Cytochrome P450 genes from the aquatic midge Chironomus tentans: Atrazine-induced up-regulation of CtCYP6EX3 contributing to oxidative activation of chlorpyrifos

    USDA-ARS?s Scientific Manuscript database

    The open reading frames of 19 cytochrome P450 monooxygenase (CYP) genes were sequenced from Chironomus tentans, a commonly used freshwater invertebrate model. Functional analysis of CtCYP6EX3 confirmed its atrazine-induced oxidative activation for chlorpyrifos by using a nanoparticle-based RNA inter...

  13. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Heterologous Expression of the ema1 Cytochrome P450 Monooxygenase

    PubMed Central

    Molnár, István; Hill, D. Steven; Zirkle, Ross; Hammer, Philip E.; Gross, Frank; Buckel, Thomas G.; Jungmann, Volker; Pachlatko, Johannes Paul; Ligon, James M.

    2005-01-01

    The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1. PMID:16269733

  14. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum.

    PubMed

    Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf

    2017-12-01

    Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

  15. Isolation and Expression Analysis of CYP9A11 and Cytochrome P450 Reductase Gene in the Beet Armyworm (Lepidoptera: Noctuidae)

    PubMed Central

    Zhao, Chunqing; Feng, Xiaoyun; Tang, Tao; Qiu, Lihong

    2015-01-01

    Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HaCPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system. PMID:26320261

  16. Development of gold-immobilized P450 platform for exploring the effect of oligomer formation on P450-mediated metabolism for in vitro to in vivo drug metabolism predictions

    NASA Astrophysics Data System (ADS)

    Kabulski, Jarod L.

    The cytochrome P450 (P450) enzyme family is responsible for the biotransformation of a wide range of endogenous and xenobiotic compounds, as well as being the major metabolic enzyme in first pass drug metabolism. In vivo drug metabolism for P450 enzymes is predicted using in vitro data obtained from a reconstituted expressed P450 system, but these systems have not always been proven to accurately represent in vivo enzyme kinetics, due to interactions caused by oligomer formation. These in vitro systems use soluble P450 enzymes prone to oligomer formation and studies have shown that increased states of protein aggregation directly affect the P450 enzyme kinetics. We have developed an immobilized enzyme system that isolates the enzyme and can be used to elucidate the effect of P450 aggregation on metabolism kinetics. The long term goal of my research is to develop a tool that will help improve the assessment of pharmaceuticals by better predicting in vivo kinetics in an in vitro system. The central hypothesis of this research is that P450-mediated kinetics measured in vitro is dependent on oligomer formation and that the accurate prediction of in vivo P450-mediated kinetics requires elucidation of the effect of oligomer formation. The rationale is that the development of a P450 bound to a Au platform can be used to control the aggregation of enzymes and bonding to Au may also permit replacement of the natural redox partners with an electrode capable of supplying a constant flow of electrons. This dissertation explains the details of the enzyme attachment, monitoring substrate binding, and metabolism using physiological and electrochemical methods, determination of enzyme kinetics, and the development of an immobilized-P450 enzyme bioreactor. This work provides alternative approaches to studying P450-mediated kinetics, a platform for controlling enzyme aggregation, electrochemically-driven P450 metabolism, and for investigating the effect of protein

  17. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    PubMed

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  18. Cytochrome P450 diversity in the tree of life.

    PubMed

    Nelson, David R

    2018-01-01

    Sequencing in all areas of the tree of life has produced >300,000 cytochrome P450 (CYP) sequences that have been mined and collected. Nomenclature has been assigned to >41,000 CYP sequences and the majority of the remainder has been sorted by BLAST searches into clans, families and subfamilies in preparation for naming. The P450 sequence space is being systematically explored and filled in. Well-studied groups like vertebrates are covered in greater depth while new insights are being added into uncharted territories like horseshoe crab (Limulus polyphemus), tardigrades (Hypsibius dujardini), velvet worm (Euperipatoides_rowelli), and basal land plants like hornworts, liverworts and mosses. CYPs from the fungi, one of the most diverse groups, are being explored and organized as nearly 800 fungal species are now sequenced. The CYP clan structure in fungi is emerging with 805 CYP families sorting into 32 CYP clans. >3000 bacterial sequences are named, mostly from terrestrial or freshwater sources. Of 18,379 bacterial sequences downloaded from the CYPED database, all are >43% identical to named CYPs. Therefore, they fit in the 602 named P450 prokaryotic families. Diversity in this group is becoming saturated, however 25% of 3305 seawater bacterial P450s did not match known P450 families, indicating marine bacterial CYPs are not as well sampled as land/freshwater based bacterial CYPs. Future sequencing plans of the Genome 10K project, i5k and GIGA (Global Invertebrate Genomics Alliance) are expected to produce more than one million cytochrome P450 sequences by 2020. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification of human cytochrome P450s as autoantigens.

    PubMed

    Manns, M P; Johnson, E F

    1991-01-01

    Antimicrosomal antibodies in inflammatory liver diseases all seem to be directed against members of the cytochrome P450 family of proteins. These autoantigens seem to be genetically polymorphic, the autoantibodies are inhibitory, and the autoepitopes are generally conserved among species. Anti-P450 autoantibodies share these characteristics with other autoantibodies, for example, antinuclear antibodies in systemic lupus erythematosus. The identification of P450s as human autoantigens is clinically important. Diagnostic tests will be developed on the basis of cloned antigen, facilitating a better diagnosis of drug-induced and idiopathic autoimmune hepatitis. It is unknown what triggers autoantibody production against cytochrome P450 proteins. Furthermore, their pathogenetic role and thus their involvement in tissue destruction is unclear. In this context LKM1 autoantibodies may serve as a model. Although LKM1 antibodies are inhibitory, all LKM1 antibody-positive patients tested so far are extensive metabolizers for drug metabolism mediated by P450IID6 and express this protein in their livers. Thus, the inhibitory LKM1 autoantibody does not sufficiently penetrate through the intact liver cell membrane to inhibit enzyme function in vivo. Presumably, tissue destruction in autoimmune hepatitis is mediated by liver-infiltrating T lymphocytes. T lymphocytes have been cloned from liver tissue that specifically proliferate in the presence of recombinant cytochrome P450IID6. The construction of overlapping cDNA subclones is also valuable to identify immunodominant B cell as well as relevant T cell epitopes.

  20. Mobility of cytochrome P450 in the endoplasmic reticulum membrane.

    PubMed

    Szczesna-Skorupa, E; Chen, C D; Rogers, S; Kemper, B

    1998-12-08

    Cytochrome P450 2C2 is a resident endoplasmic reticulum (ER) membrane protein that is excluded from the recycling pathway and contains redundant retention functions in its N-terminal transmembrane signal/anchor sequence and its large, cytoplasmic domain. Unlike some ER resident proteins, cytochrome P450 2C2 does not contain any known retention/retrieval signals. One hypothesis to explain exclusion of resident ER proteins from the transport pathway is the formation of networks by interaction with other proteins that immobilize the proteins and are incompatible with packaging into the transport vesicles. To determine the mobility of cytochrome P450 in the ER membrane, chimeric proteins of either cytochrome P450 2C2, its catalytic domain, or the cytochrome P450 2C1 N-terminal signal/anchor sequence fused to green fluorescent protein (GFP) were expressed in transiently transfected COS1 cells. The laurate hydroxylase activities of cytochrome P450 2C2 or the catalytic domain with GFP fused to the C terminus were similar to the native enzyme. The mobilities of the proteins in the membrane were determined by recovery of fluorescence after photobleaching. Diffusion coefficients for all P450 chimeras were similar, ranging from 2.6 to 6.2 x 10(-10) cm2/s. A coefficient only slightly larger (7.1 x 10(-10) cm2/s) was determined for a GFP chimera that contained a C-terminal dilysine ER retention signal and entered the recycling pathway. These data indicate that exclusion of cytochrome P450 from the recycling pathway is not mediated by immobilization in large protein complexes.

  1. Thyroid hormone stimulation of NADPH P450 reductase expression in liver and extrahepatic tissues. Regulation by multiple mechanisms.

    PubMed

    Ram, P A; Waxman, D J

    1992-02-15

    The role of thyroid hormone in regulating the expression of the flavoprotein NADPH cytochrome P450 reductase was studied in adult rats. Depletion of circulating thyroid hormone by hypophysectomy, or more selectively, by treatment with the anti-thyroid drug methimazole led to a 75-85% depletion of hepatic microsomal P450 reductase activity and protein in both male and female rats. Thyroxine substantially restored P450 reductase activity at a dose that rendered the thyroid-depleted rats euthyroid. Microsomal P450 reductase activity in several extrahepatic tissues was also dependent on thyroid hormone, but to a lesser extent than in liver (30-50% decrease in kidney, adrenal, lung, and heart but not in testis from hypothyroid rats). Hepatic P450 reductase mRNA levels were also decreased in the hypothyroid state, indicating that the loss of P450 reductase activity is not a consequence of the associated decreased availability of the FMN and FAD cofactors of P450 reductase. Parallel analysis of S14 mRNA, which has been studied extensively as a model thyroid-regulated liver gene product, indicated that P450 reductase and S14 mRNA respond similarly to these changes in thyroid state. In contrast, while the expression of S14 and several other thyroid hormone-dependent hepatic mRNAs is stimulated by feeding a high carbohydrate, fat-free diet, hepatic P450 reductase expression was not increased by this lipogenic diet. Injection of hypothyroid rats with T3 at a supraphysiologic, receptor-saturating dose stimulated a major induction of hepatic P450 reductase mRNA that was detectable 4 h after the T3 injection, and peaked at approximately 650% of euthyroid levels by 12 h. However, this same treatment stimulated a biphasic increase in P450 reductase protein and activity that required 3 days to reach normal euthyroid levels. T3 treatment of euthyroid rats also stimulated a major induction of P450 reductase mRNA that was maximal (12-fold increase) by 12 h, but in this case no major

  2. Seventeen {alpha}-hydroxylase deficiency with one base pair deletion of the cytochrome P450c17 (CYP17) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshiro, Chikara; Takasu, Nobuyuki; Wakugami, Tamio

    1995-08-01

    Mutation of the cytochrome P450c17 (CYP17) gene causes 17{alpha}-hydroxylase deficiency (170HD). Recently, several researchers have elucidated the molecular basis of 170HD by gene analysis. We experienced a case of 170HD and intended to reveal the abnormality of the CYP17 gene in this Japanese female with 170HD. Leukocytes were obtained from the patient, her mother and sister, and normal control subjects. We amplified the CYP17 gene using polymerase chain reaction and performed the sequence analysis using the dideoxy terminator method and restriction enzyme analysis. We found that the patient had one base-pair deletion at the position of amino acid 438. Anmore » indentical result was obtained with restriction enzyme analysis. This G deletion altered the reading frame and resulted in a premature stop codon at position 443; the ligand of heme iron (Cys: cystine 442) was absent. This small mutation may account for the patient`s clinical manifestations of 170HD. This is the first case of 170HD with only one base pair deletion of the CYP17 gene. 18 refs., 3 figs.« less

  3. Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.

    PubMed

    Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F

    1993-06-01

    LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal

  4. Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes.

    PubMed Central

    Yamamoto, A M; Mura, C; De Lemos-Chiarandini, C; Krishnamoorthy, R; Alvarez, F

    1993-01-01

    LKM1 autoantibody, directed against P450IID6, is accepted as a marker of a particular type of autoimmune hepatitis, but its role in the pathogenesis of the disease is controversial. Localization of P450IID6 on the cell surface of rat hepatocytes was previously reported, suggesting that membrane-bound P450IID6 could be the target of LKM1 antibodies, thus allowing immune lysis of hepatocytes. The objective of the present study was to determine, using various methods, the cell localization of P450IID6 in human and rat hepatocytes. Incubation of rat and human hepatocytes with LKM1-positive serum showed slight, if any, cell membrane staining using immunofluorescence, immunoperoxidase and immunoelectron microscopic studies. No staining of the plasma membrane of human hepatocytes was observed when incubations were carried out with immunoaffinity-purified antibody directed against peptide 254-271, the main epitope of P450IID6 recognized by all LKM1 sera tested. Chinese hamster ovary cells, transfected with the complete P450IID6 cDNA and incubated with the supernatant from a B cell lymphoblastoid cell line prepared with the lymphocytes of a LKM1-positive patient, did not show any staining of the cell surface by immunofluorescence. Incubation of rat microsomal fraction vesicles with LKM1-positive serum, followed by protein A-gold immunoelectron microscopy, displayed a staining of almost all vesicles, confirming that P450IID6 is present on the cytoplasmic side of the microsomal membrane, which makes it unable to be expressed on the cell surface even if it were transported from the endoplasmic reticulum (ER). Sulpho NHS Biotin labelling of rat hepatocyte cell membranes did not show the presence of a 50-kD molecule that could have reacted with LKM1 antibody. DNA sequencing of exon 1 of the CYP2D6 gene of a patient positive for LKM1 antibody did not show any difference from that of the normal published sequence of the gene. This does not favour an alteration of the NH2 terminal

  5. Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants.

    PubMed

    Ohkawa, Hideo; Inui, Hideyuki

    2015-06-01

    A yeast gene expression system originally established for mammalian cytochrome P450 monooxygenase cDNAs was applied to functional analysis of a number of mammalian and plant P450 species, including 11 human P450 species (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4). The human P450 species CYP1A1, CYP1A2, CYP2B6, CYP2C18 and CYP2C19 were identified as P450 species metabolising various agrochemicals and environmental chemicals. CYP2C9 and CYP2E1 specifically metabolised sulfonylurea herbicides and halogenated hydrocarbons respectively. Plant P450 species metabolising phenylurea and sulfonylurea herbicides were also identified mainly as the CYP71 family, although CYP76B1, CYP81B1 and CYP81B2 metabolised phenylurea herbicides. The transgenic plants expressing these mammalian and plant P450 species were applied to herbicide tolerance as well as phytoremediation of agrochemical and environmental chemical residues. The combined use of CYP1A1, CYP2B6 and CYP2C19 belonging to two families and three subfamilies covered a wide variety of herbicide tolerance and phytoremediation of these residues. The use of 2,4-D-and bromoxynil-induced CYP71AH11 in tobacco seemed to enhance herbicide tolerance and selectivity. © 2014 Society of Chemical Industry.

  6. Genome-wide identification of 31 cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and analysis of their benzo[α]pyrene-induced expression patterns.

    PubMed

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Kim, Hee-Jin; Declerck, Steven A J; Hagiwara, Atsushi; Lee, Jae-Seong

    2018-03-01

    While marine invertebrate cytochrome P450 (CYP) genes and their roles in detoxification mechanisms have been studied, little information is available regarding freshwater rotifer CYPs and their functions. Here, we used genomic sequences and RNA-seq databases to identify 31 CYP genes in the freshwater rotifer Brachionus calyciflorus. The 31 Bc-CYP genes with a few tandem duplications were clustered into CYP 2, 3, 4, mitochondrial, and 46 clans with two marine rotifers Brachionus plicatilis and Brachionus koreanus. To understand the molecular responses of these 31 Bc-CYP genes, we also examined their expression patterns in response to benzo[α]pyrene (B[α]P). Three Bc-CYP genes (Bc-CYP3044B3, Bc-CYP3049B4, Bc-CYP3049B6) were significantly upregulated (P<0.05) in response to B[α]P, suggesting that these CYP genes can be involved in detoxification in response to B[α]P exposure. These genes might be useful as biomarkers of B[α]P exposure in B. calyciflorus. Overall, our findings expand the repertoire of known CYPs and shed light on their potential roles in xenobiotic detoxification in rotifers. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

    PubMed Central

    Chun, Young-Jin; Kim, Donghak

    2016-01-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  8. Structural and Kinetic Basis of Steroid 17α,20-Lyase Activity in Teleost Fish Cytochrome P450 17A1 and Its Absence in Cytochrome P450 17A2*

    PubMed Central

    Pallan, Pradeep S.; Nagy, Leslie D.; Lei, Li; Gonzalez, Eric; Kramlinger, Valerie M.; Azumaya, Caleigh M.; Wawrzak, Zdzislaw; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17α-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17α-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17α-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116–119) showed only a few differences near the active site, despite only ∼50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity. PMID:25533464

  9. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Hitoshi; MacDonald, Jacqueline; Syed, Khajamohiddin

    Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reportedmore » P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.« less

  10. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    PubMed Central

    2012-01-01

    Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species. PMID:22937793

  11. Albendazole sulfonation by rat liver cytochrome P-450c.

    PubMed

    Souhaili-El Amri, H; Mothe, O; Totis, M; Masson, C; Batt, A M; Delatour, P; Siest, G

    1988-08-01

    The metabolism of albendazole (ABZ) was studied in perfused livers from control and ABZ-treated rats (10.6 mg/kg, per os, each day for 10 days). In the perfusion fluid, the concentration of ABZ-sulfoxide (SO-ABZ) remained unchanged in treated, as compared to control animals, whereas ABZ-sulfone (SO2-ABZ) was increased in treated animals. In bile, only SO-ABZ was present. The transformation kinetics of SO-ABZ to SO2-ABZ in microsomes from rats treated with ABZ, 3-methylcholanthrene, Aroclor and isosafrole were biphasic. This suggests that enzyme activity was a consequence of two enzyme systems, one characterized by low affinity and high capacity, the other by high affinity and low capacity, the latter could be induced by 3-methylcholanthrene, ABZ, Aroclor and isosafrole. Cytochrome P-450c was induced potently in vivo by ABZ as proven by increased monooxygenase (7-ethoxyresorufin and 7-ethoxycoumarin-O-deethylase) activities and by Elisa test (a 5-fold increase in hemoprotein concentration was observed). Purified and reconstituted cytochrome P-450c from 3-methylcholanthrene or ABZ-treated rat liver were able to produce SO2-ABZ (2.01 and 1.70 nmol/mg/15 min, respectively, whereas cytochrome P-450b produced 10 times less SO2-ABZ). Immunological assays, as well as activity measurements showed a relationship between cytochrome P-450c-3-methylcholanthrene and cytochrome P-450c-ABZ. We conclude that induction of cytochrome P-450c by ABZ is the probable explanation for the enhanced formation of SO2-ABZ in vivo.

  12. CYP3C1, the first member of a new cytochrome P450 subfamily found in zebrafish (Danio rerio).

    PubMed

    Corley-Smith, Graham E; Su, Hsiao-Ting; Wang-Buhler, Jun-Lan; Tseng, Hua-Pin; Hu, Chin-Hwa; Hoang, Thuy; Chung, Woon-Gye; Buhler, Donald R

    2006-02-24

    We report a new cytochrome P450 (CYP) subfamily CYP3C and the cloning through PCR from zebrafish (Danio rerio) of the first member, CYP3C1. The CYP3C1 gene is on Chromosome 3 with 13 ORF exons encoding a 505 amino acid protein which has 44-54% identities with mammalian and teleost CYP3A and CYP3B forms. As evidenced by spectral analysis, the CYP3C1 protein heterologously expressed in yeast is functional. In silico analysis identified, on the same region of the chromosome, three more genes encoding CYP3C1-like proteins that formed a clade with CYP3C1 in a phylogenetic tree. Using RT-PCR, the CYP3C1 mRNA was detected in 1-6dpf embryo/larvae and in adult fish liver and seven extrahepatic tissues. Whole-mount in situ hybridization using a riboprobe demonstrated expression in the brain during 12-120 hpf. At the 120 hpf larval stage, CYP3C1 mRNA was also detected in the pharynx and gastrointestinal tract. TCDD, dexamethasone, and rifampicin, which up-regulated CYP3A65 mRNA in zebrafish larvae, did not alter the CYP3C1 transcript levels suggesting regulatory differences between CYP3A and CYP3C enzymes in this species.

  13. Polymorphisms of genes encoding P2X7R, IL-1B, OPG and RANK in orthodontic-induced apical root resorption.

    PubMed

    Pereira, S; Lavado, N; Nogueira, L; Lopez, M; Abreu, J; Silva, H

    2014-10-01

    Orthodontic-induced external apical root resorption (EARR) is a complex phenotype determined by poorly defined mechanical and patient intrinsic factors. The aim of this work was to construct a multifactorial integrative model, including clinical and genetic susceptibility factors, to analyze the risk of developing this common orthodontic complication. This retrospective study included 195 orthodontic patients. Using a multiple-linear regression model, where the dependent variable was the maximum% of root resorption (%EARRmax) for each patient, we assessed the contribution of nine clinical variables and four polymorphisms of genes involved in bone and tooth root remodeling (rs1718119 from P2RX7, rs1143634 from IL1B, rs3102735 from TNFRSF11B, encoding OPG, and rs1805034 from TNFRSF11A, encoding RANK). Clinical and genetic variables explained 30% of%EARRmax variability. The variables with the most significant unique contribution to the model were: gender (P < 0.05), treatment duration (P < 0.001), premolar extractions (P < 0.01), Hyrax appliance (P < 0.001) and GG genotype of rs1718119 from P2RX7 gene (P < 0.01). Age, overjet, tongue thrust, skeletal class II and the other polymorphisms made minor contributions. This study highlights the P2RX7 gene as a possible factor of susceptibility to EARR. A more extensive genetic profile may improve this model. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Nine co-localized cytochrome P450 genes of the CYP2N, CYP2AD, and CYP2P gene families in the mangrove killifish Kryptolebias marmoratus genome: Identification and expression in response to B[α]P, BPA, OP, and NP.

    PubMed

    Puthumana, Jayesh; Kim, Bo-Mi; Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Jung, Jee-Hyun; Kim, Il-Chan; Hwang, Un-Ki; Lee, Jae-Seong

    2017-06-01

    The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cytochrome P450 Organization and Function Are Modulated by Endoplasmic Reticulum Phospholipid Heterogeneity.

    PubMed

    Brignac-Huber, Lauren M; Park, Ji Won; Reed, James R; Backes, Wayne L

    2016-12-01

    Cytochrome P450s (P450s) comprise a superfamily of proteins that catalyze numerous monooxygenase reactions in animals, plants, and bacteria. In eukaryotic organisms, these proteins not only carry out reactions necessary for the metabolism of endogenous compounds, but they are also important in the oxidation of exogenous drugs and other foreign compounds. Eukaryotic P450 system proteins generally reside in membranes, primarily the endoplasmic reticulum or the mitochondrial membrane. These membranes provide a scaffold for the P450 system proteins that facilitate interactions with their redox partners as well as other P450s. This review focuses on the ability of specific lipid components to influence P450 activities, as well as the role of the membrane in P450 function. These studies have shown that P450s and NADPH-cytochrome P450 reductase appear to selectively associate with specific phospholipids and that these lipid-protein interactions influence P450 activities. Finally, because of the heterogeneous nature of the endoplasmic reticulum as well as other biologic membranes, the phospholipids are not arranged randomly but associate to generate lipid microdomains. Together, these characteristics can affect P450 function by 1) altering the conformation of the proteins, 2) influencing the P450 interactions with their redox partners, and 3) affecting the localization of the proteins into specific membrane microdomains. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Characterization of the Tupaia rhabdovirus genome reveals a long open reading frame overlapping with P and a novel gene encoding a small hydrophobic protein.

    PubMed

    Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto

    2005-06-01

    Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses.

  17. Mollusk genes encoding lysine tRNA (UUU) contain introns.

    PubMed

    Matsuo, M; Abe, Y; Saruta, Y; Okada, N

    1995-11-20

    New intron-containing genes encoding tRNAs were discovered when genomic DNA isolated from various animal species was amplified by the polymerase chain reaction (PCR) with primers based on sequences of rabbit tRNA(Lys). From sequencing analysis of the products of PCR, we found that introns are present in several genes encoding tRNA(Lys) in mollusks, such as Loligo bleekeri (squid) and Octopus vulgaris (octopus). These introns were specific to genes encoding tRNA(Lys)(CUU) and were not present in genes encoding tRNA(Lys)(CUU). In addition, the sequences of the introns were different from one another. To confirm the results of our initial experiments, we isolated and sequenced genes encoding tRNA(Lys)(CUU) and tRNA(Lys)(UUU). The gene for tRNA(Lys)(UUU) from squid contained an intron, whose sequence was the same as that identified by PCR, and the gene formed a cluster with a corresponding pseudogene. Several DNA regions of 2.1 kb containing this cluster appeared to be tandemly arrayed in the squid genome. By contrast, the gene encoding tRNA(Lys)(CUU) did not contain an intron, as shown also by PCR. The tRNA(Lys)(UUU) that corresponded to the analyzed gene was isolated and characterized. The present study provides the first example of an intron-containing gene encoding a tRNA in mollusks and suggests the universality of introns in such genes in higher eukaryotes.

  18. A novel cytochrome P450 CYP6AB14 gene in spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450 monooxygenases (P450) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th...

  19. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450 monooxygenases (P450) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th...

  20. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    PubMed

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-01-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.

  1. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum)

    PubMed Central

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-01

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification. PMID:25607733

  2. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications.

    PubMed

    Brixius-Anderko, Simone; Hannemann, Frank; Ringle, Michael; Khatri, Yogan; Bernhardt, Rita

    2017-05-01

    Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  3. Expansion of chemical space for natural products by uncommon P450 reactions.

    PubMed

    Zhang, Xingwang; Li, Shengying

    2017-08-30

    Covering: 2000 to 2017Cytochrome P450 enzymes (P450s) are the most versatile biocatalysts in nature. The catalytic competence of these extraordinary hemoproteins is broadly harnessed by numerous chemical defenders such as bacteria, fungi, and plants for the generation of diverse and complex natural products. Rather than the common tailoring reactions (e.g. hydroxylation and epoxidation) mediated by the majority of biosynthetic P450s, in this review, we will focus on the unusual P450 enzymes in relation to new chemistry, skeleton construction, and structure re-shaping via their own unique catalytic power or the intriguing protein-protein interactions between P450s and other proteins. These uncommon P450 reactions lead to a higher level of chemical space expansion for natural products, through which a broader spectrum of bioactivities can be gained by the host organisms.

  4. Evidence for complexation of P-450 IIC6 by an orphenadrine metabolite.

    PubMed

    Reidy, G F; Murray, M

    1990-01-30

    Removal of the orphenadrine metabolite from its complex with rat liver P-450 IIB1 is associated with a discrepancy in the reactivation of IIB1 activity. Two possible explanations are that either (1) NADPH-P-450-reductase is inaccessible to the restored IIB1, or (2) complexation of other P-450s may occur. Exogenous P-450 reductase increased all pathways of steroid hydroxylation (1.9 to 3.6-fold) but did not enhance reactivation of IIB1-dependent steroid 16 beta-hydroxylation. Instead, P-450 IIC6-dependent progesterone 21-hydroxylase activity was increased after dissociation to 122% of control. IIC6 activity was also inhibited in vitro in microsomes from phenobarbital-induced rats (ki = 151 microM). Thus, orphenadrine appears to complex P-450 IIC6 as well as IIB1 in rat liver.

  5. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2017-08-15

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  6. The crystal structure of P450-TT heme-domain provides the first structural insights into the versatile class VII P450s.

    PubMed

    Tavanti, Michele; Porter, Joanne L; Levy, Colin W; Gómez Castellanos, J Rubén; Flitsch, Sabine L; Turner, Nicholas J

    2018-07-02

    The first crystal structure of a class VII P450, CYP116B46 from Tepidiphilus thermophilus, has been solved at 1.9 Å resolution. The structure reveals overall conservation of the P450-fold and a water conduit around the I-helix. Active site residues have been identified and sequence comparisons have been made with other class VII enzymes. A structure similarity search demonstrated that the P450-TT structure is similar to enzymes capable of oxy-functionalization of fatty acids, terpenes, macrolides, steroids and statins. The insight gained from solving this structure will provide a guideline for future engineering and modelling studies on this catalytically promiscuous class of enzymes. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL

    EPA Science Inventory

    1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...

  8. Microsomal P-450 induction by some secondary products from thermal oxidation of dietary lipids: epidermal hyperplasia, mutagenicity and cytochrome P-450 activities.

    PubMed

    Crawford, L; Wheeler, E L

    1983-12-01

    Distillable secondary products from roasted fowl were found to be cytotoxic but not mutagenic when assayed with Salmonella typhimurium strains TA98, TA100 and TA1537. A crudely separated fraction of the volatiles produced focal hyperplasia and damage to the epidermis of the backs of mice. The volatiles also caused an apparent synthesis of non-constitutive forms of rat hepatic cytochromes P-450 which metabolize benzo[a]pyrene B [a]P differently from the constitutive P-450.

  9. Relationships among Ergot Alkaloids, Cytochrome P450 Activity, and Beef Steer Growth

    NASA Astrophysics Data System (ADS)

    Rosenkrans, Charles; Ezell, Nicholas

    2015-03-01

    Determining a grazing animal’s susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 μM of ergotamine (ET), dihydroergotamine (DHET), and ergonovine (EN)] on human CYP3A4 using the P450-Glo assay (Promega™ V9800). With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001) by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 µM concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 d of age; 203 ± 1.7 kg) after grazing tall fescue pastures for 105 d. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control). Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7) was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = -0.31; P < 0.05). Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03) inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins.

  10. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance.

    PubMed

    Liu, Simu; Bartnikas, Lisa M; Volko, Sigrid M; Ausubel, Frederick M; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  11. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance

    PubMed Central

    Liu, Simu; Bartnikas, Lisa M.; Volko, Sigrid M.; Ausubel, Frederick M.; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew. PMID:26973671

  12. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Dae-Sik; Shin, Kyung-Hoon; Lee, Yong Sung; Leung, Kenneth Mei-Yee; Lee, Su-Jae; Lee, Jae-Seong

    2014-07-01

    In this study, we investigated the effects of the water-accommodated fraction (WAF) of crude oil on the development and reproduction of the intertidal copepod Tigriopus japonicus through life-cycle experiments. Furthermore, we investigated the mechanisms underlying the toxic effects of WAF on this benthic organism by studying expression patterns of cytochrome P450 (CYP) genes. Development of T. japonicus was delayed and molting was interrupted in response to WAF exposure. Hatching rate was also significantly reduced in response to WAF exposure. Activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were increased by WAF exposure in a concentration-dependent manner. These results indicated that WAF exposure resulted in oxidative stress, which in turn was associated with dysfunctional development and reproduction. To evaluate the involvement of cytochrome P450 (CYP) genes, we cloned the entire repertoire of CYP genes in T. japonicus (n=52) and found that the CYP genes belonged to five different clans (i.e., Clans 2, 3, 4, mitochondrial, and 20). We then examined expression patterns of these 52 CYP genes in response to WAF exposure. Three TJ-CYP genes (CYP3024A2, CYP3024A3, and CYP3027C2) belonging to CYP clan 3 were significantly induced by WAF exposure in a time- and concentration-dependent manner. We identified aryl hydrocarbon responsive elements (AhRE), xenobiotic responsive elements (XREs), and metal response elements (MRE) in the promoter regions of these three CYP genes, suggesting that these genes are involved in detoxification of toxicants. Overall, our results indicate that WAF can trigger oxidative stress and thus induce dysfunctional development and reproduction in the copepod T. japonicus. Furthermore, we identified three TJ-CYP genes that represent potential biomarkers of oil pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Genetic variations in NADPH-CYP450 oxidoreductase in a Czech Slavic cohort

    PubMed Central

    Tomková, Mária; Panda, Satya Prakash; Šeda, Ondřej; Baxová, Alice; Hůlková, Martina; Masters, Bettie Sue Siler; Martásek, Pavel

    2015-01-01

    Background Gene polymorphisms encoding the enzyme NADPH–cytochrome P450 oxidoreductase (POR) contribute to inter-individual differences in drug response. Aim To estimate polymorphic allele frequencies of the POR gene in a Czech Slavic population. Materials & Methods The gene POR was analyzed in 322 Czech Slavic individuals from a control cohort by sequencing and HRM analysis. Results Twenty-five SNP genetic variations were identified. Of these variants, 7 were new, unreported SNPs, including two SNPs in the 5´flanking region (g.4965 C>T and g.4994 G>T), one intronic variant (c.1899 −20C>T), one synonymous SNP (p.20Ala=) and three nonsynonymous SNPs (p.Thr29Ser, p.Pro384Leu and p.Thr529Met). The p.Pro384Leu variant exhibited reduced enzymatic activities compared to wild type. Conclusion New POR variant identification indicates that the number of uncommon variants might be specific for each subpopulation being investigated, particularly germane to the singular role that POR plays in providing reducing equivalents to all CYPs in the endoplasmic reticulum. PMID:25712184

  14. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis

    PubMed Central

    Hoy, Marjorie A.

    2016-01-01

    Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and carboxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J’ and J” clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J’ and J” clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis. PMID:27467523

  15. Characterization of the Tupaia Rhabdovirus Genome Reveals a Long Open Reading Frame Overlapping with P and a Novel Gene Encoding a Small Hydrophobic Protein

    PubMed Central

    Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto

    2005-01-01

    Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses. PMID:15890917

  16. Electronic and structural aspects of p450-mediated drug metabolism.

    PubMed

    Lewis, David F V; Ito, Yuko; Lake, Brian G

    2009-04-01

    From a consideration of first principles for enzymes kinetics, we have employed theoretical methods which enable one to analyse the kinetics of cytochrome P450-mediated reactions which have been based on the known physicochemical principles underlying the majority of chemical or enzymatic reactions. A comparison is made between the correlation equations produced from the QSAR analysis of experimental P450 reaction rate data and those obtained from first principles, where there appears to be a generally satisfactory concordance between the two procedures. In this respect, we have developed expressions based on standard reaction kinetics theory which incorporate the Eyring and Marcus relationships. The analysis of P450-catalyzed reaction rates is elaborated to encompass a treatment of metabolic clearance, and satisfactory correlations are obtained with literature values for both intrinsic clearance and whole body clearance in terms of compound lipophilicity derived from log P data, where P is the octanol/water partition coefficient. The importance of ionization potential as a factor in the overall catalytic turnover of P450-mediated reactions is noted, especially in combination with the lipophilicity parameter, log P.

  17. Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450.

    PubMed

    Jung, Christiane; Schünemann, Volker; Lendzian, Friedhelm; Trautwein, Alfred X; Contzen, Jörg; Galander, Marcus; Böttger, Lars H; Richter, Matthias; Barra, Anne-Laure

    2005-10-01

    From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.

  18. Cycle affects imidacloprid efficiency by mediating cytochrome P450 expression in the brown planthopper Nilaparvata lugens.

    PubMed

    Kang, K; Yang, P; Pang, R; Yue, L; Zhang, W

    2017-10-01

    Circadian clocks influence most behaviours and physiological activities in animals, including daily fluctuations in metabolism. However, how the clock gene cycle influences insects' responses to pesticides has rarely been reported. Here, we provide evidence that cycle affects imidacloprid efficacy by mediating the expression of cytochrome P450 genes in the brown planthopper (BPH) Nilaparvata lugens, a serious insect pest of rice. Survival bioassays showed that the susceptibility of BPH adults to imidacloprid differed significantly between the two time points tested [Zeitgeber Time 8 (ZT8) and ZT4]. After cloning the cycle gene in the BPH (Nlcycle), we found that Nlcycle was expressed at higher levels in the fat body and midgut, and its expression was rhythmic with two peaks. Knockdown of Nlcycle affected the expression levels and rhythms of cytochrome P450 genes as well as susceptibility to imidacloprid. The survival rates of BPH adults after treatment with imidacloprid did not significantly differ between ZT4 and ZT8 after double-stranded Nlcycle treatment. These findings can be used to improve pesticide use and increase pesticide efficiency in the field. © 2017 The Royal Entomological Society.

  19. Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library.

    PubMed

    Kim, B S; Kim, S Y; Park, J; Park, W; Hwang, K Y; Yoon, Y J; Oh, W K; Kim, B Y; Ahn, J S

    2007-05-01

    Cytochrome P450 monooxygenases (CYPs) are useful catalysts for oxidation reactions. Self-sufficient CYPs harbour a reductive domain covalently connected to a P450 domain and are known for their robust catalytic activity with great potential as biocatalysts. In an effort to expand genetic sources of self-sufficient CYPs, we devised a sequence-based screening system to identify them in a soil metagenome. We constructed a soil metagenome library and performed sequence-based screening for self-sufficient CYP genes. A new CYP gene, syk181, was identified from the metagenome library. Phylogenetic analysis revealed that SYK181 formed a distinct phylogenic line with 46% amino-acid-sequence identity to CYP102A1 which has been extensively studied as a fatty acid hydroxylase. The heterologously expressed SYK181 showed significant hydroxylase activity towards naphthalene and phenanthrene as well as towards fatty acids. Sequence-based screening of metagenome libraries is expected to be a useful approach for searching self-sufficient CYP genes. The translated product of syk181 shows self-sufficient hydroxylase activity towards fatty acids and aromatic compounds. SYK181 is the first self-sufficient CYP obtained directly from a metagenome library. The genetic and biochemical information on SYK181 are expected to be helpful for engineering self-sufficient CYPs with broader catalytic activities towards various substrates, which would be useful for bioconversion of natural products and biodegradation of organic chemicals.

  20. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  1. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Kong, Y; Liu, X-P; Wan, P-J; Shi, X-Q; Guo, W-C; Li, G-Q

    2014-10-01

    Ecdysone 20-monooxygenase (E20MO), a cytochrome P450 monooxygenase (CYP314A1), catalyses the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). We report here the cloning and characterization of the Halloween gene Shade (Shd) encoding E20MO in the Colorado potato beetle, Leptinotarsa decemlineata. LdSHD has five conserved motifs typical of insect P450s, ie the Helix-C, Helix-I, Helix-K, PxxFxPE/DRF (PERF) and heme-binding motifs. LdShd was expressed in developing eggs, the first to fourth instars, wandering larvae, pupae and adults, with statistically significant fluctuations. Its mRNA was ubiquitously distributed in the head, thorax and abdomen. The recombinant LdSHD protein expressed in Spodoptera frugiperda 9 (Sf9) cells catalysed the conversion of E to 20E. Dietary introduction of double-stranded RNA (dsRNA) of LdShd into the second instar larvae successfully knocked down the LdShd expression level, decreased the mRNA level of the ecdysone receptor (LdEcR) gene, caused larval lethality, delayed development and affected pupation. Moreover, ingestion of LdShd-dsRNA by the fourth instars also down-regulated LdShd and LdEcR expression, reduced the 20E titre, and negatively influenced pupation. Introduction of 20E and a nonsteroidal ecdysteroid agonist halofenozide into the LdShd-dsRNA-ingested second instars, and of halofenozide into the LdShd-dsRNA-ingested fourth instars almost completely relieved the negative effects on larval performance. Thus, LdSHD functions to regulate metamorphotic processes by converting E to 20E in a coleopteran insect species Le. decemlineata. © 2014 The Royal Entomological Society.

  2. Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: Detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling.

    PubMed

    Arlt, Volker M; Poirier, Miriam C; Sykes, Sarah E; John, Kaarthik; Moserova, Michaela; Stiborova, Marie; Wolf, C Roland; Henderson, Colin J; Phillips, David H

    2012-09-03

    Benzo[a]pyrene (BaP) is a widespread environmental carcinogen activated by cytochrome P450 (P450) enzymes. In Hepatic P450 Reductase Null (HRN) and Reductase Conditional Null (RCN) mice, P450 oxidoreductase (Por) is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. Treatment of HRN mice with a single i.p. or oral dose of BaP (12.5 or 125mg/kg body weight) resulted in higher DNA adduct levels in liver (up to 10-fold) than in wild-type (WT) mice, indicating that hepatic P450s appear to be more important for BaP detoxification in vivo. Similar results were obtained in RCN mice. We tested whether differences between hepatocytes and non-hepatocytes in P450 activity may underlie the increased liver BaP-DNA binding in HRN mice. Cellular localisation by immunohistochemistry of BaP-DNA adducts showed that HRN mice have ample capacity for formation of BaP-DNA adducts in liver, indicating that the metabolic process does not result in the generation of a reactive species different from that formed in WT mice. However, increased protein expression of cytochrome b(5) in hepatic microsomes of HRN relative to WT mice suggests that cytochrome b(5) may modulate the P450-mediated bioactivation of BaP in HRN mice, partially substituting the function of Por. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Luminogenic cytochrome P450 assays.

    PubMed

    Cali, James J; Ma, Dongping; Sobol, Mary; Simpson, Daniel J; Frackman, Susan; Good, Troy D; Daily, William J; Liu, David

    2006-08-01

    Luminogenic cytochrome P450 (CYP) assays couple CYP enzyme activity to firefly luciferase luminescence in a technology called P450-Glo(TM) (Promega). Luminogenic substrates are used in assays of human CYP1A1, -1A2, -1B1, -2C8, -2C9, -2C19, -2D6, -2J2, -3A4, -3A7, -4A11, -4F3B, -4F12 and -19. The assays detect dose-dependent CYP inhibition by test compounds against recombinant CYP enzymes or liver microsomes. Induction or inhibition of CYP activities in cultured hepatocytes is measured in a nonlytic approach that leaves cells intact for additional analysis. Luminogenic CYP assays offer advantages of speed and safety over HPLC and radiochemical-based methods. Compared with fluorogenic methods the approach offers advantages of improved sensitivity and decreased interference between optical properties of test compound and CYP substrate. These homogenous assays are sensitive and robust tools for high-throughput CYP screening in early drug discovery.

  4. Antiepileptic drugs affect neuronal androgen signaling via a cytochrome P450-dependent pathway.

    PubMed

    Gehlhaus, Marcel; Schmitt, Nina; Volk, Benedikt; Meyer, Ralf P

    2007-08-01

    Recent data imply an important role for brain cytochrome P450 (P450) in endocrine signaling. In epileptic patients, treatment with P450 inducers led to reproductive disorders; in mouse hippocampus, phenytoin treatment caused concomitant up-regulation of CYP3A11 and androgen receptor (AR). In the present study, we established specific in vitro models to examine whether CYP3A isoforms cause enhanced AR expression and activation. Murine Hepa1c1c7 cells and neuronal-type rat PC-12 cells were used to investigate P450 regulation and its effects on AR after phenytoin and phenobarbital administration. In both cell lines, treatment with antiepileptic drugs (AEDs) led to concomitant up-regulation of CYP3A (CYP3A11 in Hepa1c1c7 and CYP3A2 in PC-12) and AR mRNA and protein. Inhibition of CYP3A expression and activity by the CYP3A inhibitor ketoconazole or by CYP3A11-specific short interfering RNA molecules reduced AR expression to basal levels. The initial up-regulation of AR signal transduction, measured by an androgen-responsive element chloramphenicol-acetyltransferase reporter gene assay, was completely reversed after specific inhibition of CYP3A11. Withdrawal of the CYP3A11 substrate testosterone prevented AR activation, whereas AR mRNA expression remained up-regulated. In addition, recombinant CYP3A11 was expressed heterologously in PC-12 cells, thereby eliminating any direct drug influence on the AR. Again, the initial up-regulation of AR mRNA and activity was reduced to basal levels after silencing of CYP3A11. In conclusion, we show here that CYP3A2 and CYP3A11 are crucial mediators of AR expression and signaling after AED application. These findings point to an important and novel function of P450 in regulation of steroid hormones and their receptors in endocrine tissues such as liver and brain.

  5. Mechanism of chloroform-induced renal toxicity: Non-involvement of hepatic cytochrome P450-dependent metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Cheng; Behr, Melissa; Xie Fang

    2008-02-15

    Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dosemore » of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.« less

  6. Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2.

    PubMed

    Smigocki, Ann C; Wilson, Dennis

    2004-12-01

    The functional role of the Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2 was investigated in transgenic plants. N. tabacum plants transformed with a sense or antisense CYP72A2 construct exhibited diminished heights, branched stems, smaller leaves and deformed flowers. Western blot analysis revealed reduced levels of a 58 kDa protein corresponding to CYP72A2, suggesting that the CYP72A2 homolog was suppressed in the sense and antisense plants. Transgenic plants had increased resistance to Manduca sexta larvae that consumed about 35 to 90 less of transgenic versus control leaves. A virulent strain of Pseudomonas syringae pv. tabaci induced a disease-limiting response followed by a delayed and decreased development of disease symptoms in the transgenics. CYP72A2 gene mediated resistance suggests that the plant-pest or -pathogen interactions may have been modified by changes in bioactive metabolite pools.

  7. Interactions between Cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) Lead to Alterations in Toluene Disposition and P450 Uncoupling

    PubMed Central

    Reed, James R.; Cawley, George F.; Backes, Wayne L.

    2013-01-01

    The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771

  8. P450 AND METABOLISM IN TOXICOLOGY

    EPA Science Inventory

    The cytochromes P450 catalyze the initial phase of detoxification of many environmental chemicals, xenobiotic, drugs and the secondary metabolic product of plants. Plant secondary chemicals can be highly toxic, and they evolved in a coevolving plant - animal warfare - the plants ...

  9. Prenatal exposure to drinking-water chlorination by-products, cytochrome P450 gene polymorphisms and small-for-gestational-age neonates.

    PubMed

    Bonou, Samuella G; Levallois, Patrick; Giguère, Yves; Rodriguez, Manuel; Bureau, Alexandre

    2017-10-01

    Genetic susceptibility may modulate chlorination by-products (CBPs) effects on fetal growth, especially genes coding for the cytochrome P450 involved in the metabolism of CBPs and steroidogenesis. In a case-control study of 1432 mother-child pairs, we assessed the association between maternal and child single nucleotide polymorphisms (SNPs) within CYP1A2, CYP2A6, CYP2D6 and CYP17A1 genes and small-for-gestational-age neonates (SGA<10th percentile) as well as interaction between these SNPs and maternal exposure to trihalomethanes or haloacetic acids (HAAs) during the third trimester of pregnancy. Interactions were found between mother and neonate carrying CYP17A1 rs4919687A and rs743572G alleles and maternal exposure to total trihalomethanes or five regulated HAAs species. However, these interactions became non statistically significant after correction for multiple testing. There is some evidence, albeit weak, of a potential effect modification of the association between CBPs and SGA by SNPs in CYP17A1 gene. Further studies are needed to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens

    PubMed Central

    Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  11. Aromatic Hydroxylation of Salicylic Acid and Aspirin by Human Cytochromes P450

    PubMed Central

    Bojić, Mirza; Sedgeman, Carl A.; Nagy, Leslie D.; Guengerich, F. Peter

    2015-01-01

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids—salicyluric acid and gentisuric acid—and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1. PMID:25840124

  12. High-Fat Diets Alter the Modulatory Effects of Xenobiotics on Cytochrome P450 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Webb-Robertson, Bobbie-Jo M.; Clauss, Therese R.

    Cytochrome P450 monooxygenases (P450) are key to the metabolism of myriad endogenous chemicals and xenobiotics, including the majority of therapeutic drugs. Dysregulated P450 activities can lead to altered drug metabolism and toxicity, oxidative stress, and inflammation; all physiological states frequently charged as the impetus for various chronic pathologies. We characterized the impact of common xenobiotic exposures, specifically high-fat diet and active or passive cigarette smoke, on the functional capacity of hepatic and pulmonary P450s. We employed an activity-based protein profiling approach to characterize the identity and activity level of measured individual P450 isoforms. Our results confirm expectations of significant alterationsmore » in pulmonary P450s due to cigarette smoke, but now reveal the repressive impact of high-fat diet-induced obesity on many hepatic P450s activities, and the dynamic alterations due to concomitant diet and smoke exposures on liver and lung P450 activities impacting drug metabolism and pathways of inflammation.« less

  13. Recombinational inactivation of the gene encoding nitrate reductase in Aspergillus parasiticus.

    PubMed Central

    Wu, T S; Linz, J E

    1993-01-01

    Functional disruption of the gene encoding nitrate reductase (niaD) in Aspergillus parasiticus was conducted by two strategies, one-step gene replacement and the integrative disruption. Plasmid pPN-1, in which an internal DNA fragment of the niaD gene was replaced by a functional gene encoding orotidine monophosphate decarboxylase (pyrG), was constructed. Plasmid pPN-1 was introduced in linear form into A. parasiticus CS10 (ver-1 wh-1 pyrG) by transformation. Approximately 25% of the uridine prototrophic transformants (pyrG+) were chlorate resistant (Chlr), demonstrating their inability to utilize nitrate as a sole nitrogen source. The genetic block in nitrate utilization was confirmed to occur in the niaD gene by the absence of growth of the A. parasiticus CS10 transformants on medium containing nitrate as the sole nitrogen source and the ability to grow on several alternative nitrogen sources. Southern hybridization analysis of Chlr transformants demonstrated that the resident niaD locus was replaced by the nonfunctional allele in pPN-1. To generate an integrative disruption vector (pSKPYRG), an internal fragment of the niaD gene was subcloned into a plasmid containing the pyrG gene as a selectable marker. Circular pSKPYRG was transformed into A. parasiticus CS10. Chlr pyrG+ transformants were screened for nitrate utilization and by Southern hybridization analysis. Integrative disruption of the genomic niaD gene occurred in less than 2% of the transformants. Three gene replacement disruption transformants and two integrative disruption transformants were tested for mitotic stability after growth under nonselective conditions. All five transformants were found to stably retain the Chlr phenotype after growth on nonselective medium.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8215371

  14. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.

    PubMed

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Yamakami, Suguru; Yahagi, Daiki; Chinen, Akito; Tokura, Mitsunori; Abe, Keietsu

    2017-09-01

    Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.

  15. Identification of SNPs involved in regulating a novel alternative transcript of P450 CYP6ER1 in the brown planthopper.

    PubMed

    Liang, Zhi-Kun; Pang, Rui; Dong, Yi; Sun, Zhong-Xiang; Ling, Yan; Zhang, Wen-Qing

    2017-04-29

    Cytochrome P450-mediated metabolic resistance is one of the major mechanisms involved in insecticide resistance. Although the up-regulation of cytochrome P450 plays a vital role in insecticide metabolism, the molecular basis for the transcriptional regulation of cytochrome P450 remains largely unknown. The P450 gene CYP6ER1, has been reported to confer imidacloprid resistance to the brown planthopper, Nilaparvata lugens. Here, we identified a novel alternative transcript of CYP6ER1 (transcript A2) that had different expression patterns between resistant and susceptible populations, and was more stable after insecticide induction. The promoter of this transcript was sequenced and multiple single nucleotide polymorphisms (SNPs) were detected in individuals from susceptible and resistant field-collected populations. Resistant alleles of four SNPs were found to significantly enhance the promoter activity of the CYP6ER1 transcript A2. Electrophoretic mobility shift assays (EMSAs) revealed that these SNPs might regulate the binding of transcription factors to the promoter. Our findings provide novel evidence regarding the transcriptional regulation of a metabolic resistance-related gene and may be useful to understand the resistance mechanism of N. lugens in the field. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  16. Conformational change of cytochrome P450 1A2 induced by phospholipids and detergents.

    PubMed

    Yun, C H; Song, M; Kim, H

    1997-08-08

    Recently, it was reported that the activity of rabbit P450 1A2 is markedly increased at elevated salt concentration (Yun, C-H., Song, M., Ahn, T., and Kim, H. (1996) J. Biol. Chem. 271, 31312-31316). The activity increase of P450 1A2 coincides with the raised alpha-helix content and decreased beta-sheet content. The presence of phospholipid magnified this effect. Here, possible structural change of rabbit P450 1A2 accompanying the phospholipid-induced increase in its enzyme activity was investigated by circular dichroism, fluorescence spectroscopy, and absorption spectroscopy. Studies with the reconstituted system supported by cumene hydroperoxide or NADPH showed that the P450 1A2 activities were found to be dependent on the head group and hydrocarbon chain length of phospholipid. Phosphatidylcholines having short hydrocarbon chains with a carbon number of 8-12 were very efficient for reconstitution of the P450-catalyzed reactions supported by both cumene hydroperoxide and NADPH. It was found that the phospholipid increased the alpha-helix content and lowered the beta-sheet content of P450. Intrinsic fluorescence intensity is also increased in the presence of phospholipid. The low spin iron configuration of P450 1A2 shifted toward the high spin configuration by most of the phospholipids in the endoplasmic reticulum. Some synthetic phospholipids having short hydrocarbon chains with a carbon number of 10-12 caused a shift in the spin equilibrium of P450 1A2 toward low spin. The effect of detergents on the activity and conformation of P450 1A2 was also studied. It was found that the addition of detergents to P450 1A2 solution increased the enzyme activity of P450 1A2. Detergents also increased the alpha-helix content and lowered the beta-sheet content of P450 1A2. Intrinsic fluorescence emissions also increased with the presence of detergents. Octyl glucoside and deoxycholate caused a shift toward high spin. On the other hand, cholate caused a shift toward low spin

  17. Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: Cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria

    PubMed Central

    Watanabe, Yoh-ichi; Gray, Michael W.

    2000-01-01

    A reverse transcription–polymerase chain reaction (RT–PCR) approach was used to clone a cDNA encoding the Euglena gracilis homolog of yeast Cbf5p, a protein component of the box H/ACA class of snoRNPs that mediate pseudouridine formation in eukaryotic rRNA. Cbf5p is a putative pseudouridine synthase, and the Euglena homolog is the first full-length Cbf5p sequence to be reported for an early diverging unicellular eukaryote (protist). Phylogenetic analysis of putative pseudouridine synthase sequences confirms that archaebacterial and eukaryotic (including Euglena) Cbf5p proteins are specifically related and are distinct from the TruB/Pus4p clade that is responsible for formation of pseudouridine at position 55 in eubacterial (TruB) and eukaryotic (Pus4p) tRNAs. Using a bioinformatics approach, we also identified archaebacterial genes encoding candidate homologs of yeast Gar1p and Nop10p, two additional proteins known to be associated with eukaryotic box H/ACA snoRNPs. These observations raise the possibility that pseudouridine formation in archaebacterial rRNA may be dependent on analogs of the eukaryotic box H/ACA snoRNPs, whose evolutionary origin may therefore predate the split between Archaea (archaebacteria) and Eucarya (eukaryotes). Database searches further revealed, in archaebacterial and some eukaryotic genomes, two previously unrecognized groups of genes (here designated ‘PsuX’ and ‘PsuY’) distantly related to the Cbf5p/TruB gene family. PMID:10871366

  18. Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species.

    PubMed

    Ogaki, Mayara Baptistucci; Rocha, Katia Real; Terra, MÁrcia Regina; Furlaneto, MÁrcia Cristina; Maia, Luciana Furlaneto

    2016-06-28

    In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene(+) strains") were screened for antimicrobial activity. A total of 82.5% of the Gene(+) strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.

  19. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies

    PubMed Central

    Daily, Elizabeth B; Aquilante, Christina L

    2009-01-01

    Cytochrome P450 (CYP) 2C8 is responsible for the oxidative metabolism of many clinically available drugs from a diverse number of drug classes (e.g., thiazolidinediones, meglitinides, NSAIDs, antimalarials and chemotherapeutic taxanes). The CYP2C8 enzyme is encoded by the CYP2C8 gene, and several common nonsynonymous polymorphisms (e.g., CYP2C8*2 and CYP2C8*3) exist in this gene. The CYP2C8*2 and *3 alleles have been associated in vitro with decreased metabolism of paclitaxel and arachidonic acid. Recently, the influence of CYP2C8 polymorphisms on substrate disposition in humans has been investigated in a number of clinical pharmacogenetic studies. Contrary to in vitro data, clinical data suggest that the CYP2C8*3 allele is associated with increased metabolism of the CYP2C8 substrates, rosiglitazone, pioglitazone and repaglinide. However, the CYP2C8*3 allele has not been associated with paclitaxel pharmacokinetics in most clinical studies. Furthermore, clinical data regarding the impact of the CYP2C8*3 allele on the disposition of NSAIDs are conflicting and no definitive conclusions can be made at this time. The purpose of this review is to highlight these clinical studies that have investigated the association between CYP2C8 polymorphisms and CYP2C8 substrate pharmacokinetics and/or pharmacodynamics in humans. In this review, CYP2C8 clinical pharmacogenetic data are provided by drug class, followed by a discussion of the future of CYP2C8 clinical pharmacogenetic research. PMID:19761371

  20. Isolation and extreme sex-specific expression of cytochrome P450 genes in the bark beetle, Ips paraconfusus, following feeding on the phloem of host ponderosa pine, Pinus ponderosa.

    PubMed

    Huber, D P W; Erickson, M L; Leutenegger, C M; Bohlmann, J; Seybold, S J

    2007-06-01

    We have identified cDNAs and characterized the expression of 13 novel cytochrome P450 genes of potential importance in host colonization and reproduction by the California fivespined ips, Ips paraconfusus. Twelve are of the Cyp4 family and one is of the Cyp9 family. Following feeding on host Pinus ponderosa phloem, bark beetle transcript levels of several of the Cyp4 genes increased or decreased in males only or in both sexes. In one instance (IparaCyp4A5) transcript accumulated significantly in females, but declined significantly in males. The Cyp9 gene (Cyp9T1) transcript levels in males were > 85 000 x higher at 8 h and > 25 000 x higher at 24 h after feeding compared with nonfed controls. Transcript levels in females were approximately 150 x higher at 24 h compared with nonfed controls. Cyp4G27 transcript was present constitutively regardless of sex or feeding and served as a better housekeeping gene than beta-actin or 18S rRNA for the real-time TaqMan polymerase chain reaction analysis. The expression patterns of Cyp4AY1, Cyp4BG1, and, especially, Cyp9T1 in males suggest roles for these genes in male-specific aggregation pheromone production. The differential transcript accumulation patterns of these bark beetle P450s provide insight into ecological interactions of I. paraconfusus with its host pines.

  1. An improved microphotometry system for measurement of cytochrome P-450 in hepatocyte cytoplasm.

    PubMed

    Watanabe, J; Kanamura, S

    1991-05-01

    To measure cytochrome P-450 (P-450) content in hepatocyte cytoplasm, we developed a dual monochromator-equipped microphotometry system (KWSP-1). Simultaneous measurements of absorbance at 450 and 490 nm with narrow band width (0.5 nm) and small spot size (2 microns) were accomplished by this system. Corresponding fields in serial sections could be easily and rapidly identified under the Nomarski imaging mode of KWSP-1. Photometric accuracy and repeatability of wavelength setting of KWSP-1 were also satisfactory for measurement of P-450. With this system, it is thus possible to measure the extinction of P-450 from many small measuring areas and to precisely determine P-450 content in the cytoplasm of rat hepatocytes. A microphotometric method was developed using cuvette slides and two serial 10-microns thick sections (mapping method). The intracellular distribution of P-450 in individual hepatocytes could be visualized by the mapping method with KWSP-1. However, this method was not applicable to tissue sections containing hemoglobin larger than 4 microM.

  2. Cyp15F1: A novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite R. flavipes

    USDA-ARS?s Scientific Manuscript database

    Termites are eusocial insects that perform social interactions that facilitate chemical signaling. Previous research identified two cytochrome P450s that have homology to other insect p450s responsible for the production of juvenile hormone. Juvenile hormone is an important morphogenic hormone tha...

  3. Constitutive overexpression of cytochrome P450 associated with imidacloprid resistance in Laodelphax striatellus (Fallén).

    PubMed

    Elzaki, Mohammed Esmail Abdalla; Zhang, Wanfang; Feng, Ai; Qiou, Xiaoyan; Zhao, Wanxue; Han, Zhaojun

    2016-05-01

    Imidacloprid is a principal insecticide for controlling rice planthoppers worldwide. Resistance to imidacloprid has been reported in a field population of Laodelphax striatellus. The present work was conducted to study the molecular mechanisms of imidacloprid resistance. An imidacloprid-resistant strain was produced by selecting a field population with imidacloprid for 24 generations. Piperonyl butoxide (PBO) showed a 1.70-fold synergistic effect. Enzyme activity assays were conducted, and cytochrome P450 monooxygenase showed 1.88-fold activity. The mRNA expression levels of 57 P450 genes were compared. Four CYP genes were found to be overexpressed and significantly different to the susceptible strain. Four strains were selected with imidacloprid for a short period, and the expression levels of ten identified detoxification genes were then compared. Only CYP353D1v2 overexpressed and was significantly different to the susceptible strain. Strong correlation was found between CYP353D1v2 expression levels and imidacloprid treatments. Additionally, gene-silencing RNAi via dsRNA feeding showed that depressing the expression of CYP353D1v2 could significantly enhance the sensitivity of L. striatellus to imidacloprid. Constitutive overexpression of four CYP genes was associated with imidacloprid resistance in long-term selection, and expression of CYP353D1v2 with imidacloprid resistance in short-term selection in L. striatellus. © 2015 Society of Chemical Industry.

  4. Cloning and Sequence Analysis of Vibrio halioticoli Genes Encoding Three Types of Polyguluronate Lyase.

    PubMed

    Sugimura; Sawabe; Ezura

    2000-01-01

    The alginate lyase-coding genes of Vibrio halioticoli IAM 14596(T), which was isolated from the gut of the abalone Haliotis discus hannai, were cloned using plasmid vector pUC 18, and expressed in Escherichia coli. Three alginate lyase-positive clones, pVHB, pVHC, and pVHE, were obtained, and all clones expressed the enzyme activity specific for polyguluronate. Three genes, alyVG1, alyVG2, and alyVG3, encoding polyguluronate lyase were sequenced: alyVG1 from pVHB was composed of a 1056-bp open reading frame (ORF) encoding 352 amino acid residues; alyVG2 gene from pVHC was composed of a 993-bp ORF encoding 331 amino acid residues; and alyVG3 gene from pVHE was composed of a 705-bp ORF encoding 235 amino acid residues. Comparison of nucleotide and deduced amino acid sequences among AlyVG1, AlyVG2, and AlyVG3 revealed low homologies. The identity value between AlyVG1 and AlyVG2 was 18.7%, and that between AlyVG2 and AlyVG3 was 17.0%. A higher identity value (26.0%) was observed between AlyVG1 and AlyVG3. Sequence comparison among known polyguluronate lyases including AlyVG1, AlyVG2, and AlyVG3 also did not reveal an identical region in these sequences. However, AlyVG1 showed the highest identity value (36.2%) and the highest similarity (73.3%) to AlyA from Klebsiella pneumoniae. A consensus region comprising nine amino acid (YFKAGXYXQ) in the carboxy-terminal region previously reported by Mallisard and colleagues was observed only in AlyVG1 and AlyVG2.

  5. Cytochrome P450-mediated metabolic engineering: current progress and future challenges.

    PubMed

    Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle

    2014-06-01

    Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus.

    PubMed

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-03-01

    To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P<0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48h LD10 and LD50 were 1.35 and 1.84kJ/m 2 , and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5kJ/m 2 ) induced developmental delays, and higher doses (6-18kJ/m 2 ) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12kJ/m 2 ) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti

    PubMed Central

    Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.

    2012-01-01

    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

  8. Effects of atrazine on cytochrome P450 enzymes of zebrafish (Danio rerio).

    PubMed

    Dong, Xiaoli; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui; Hou, Xinxin; Jia, Wentao

    2009-10-01

    In this study, the effects of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in males and females of adult zebrafish (Danio rerio) were studied. The liver microsomal cytochrome P450 content, NADPH-P450 reductase, aminopyrine N-demethylase (APND), and erythromycin N-demethylase (ERND) activity were measured. Zebrafish were exposed to control and 3 treatments (0.01, 0.1, and 1 mg L(-1)) of atrazine for 5, 10, 15, 20, and 25 days. The results indicated that, within the range of test atrazine concentrations, either P450 content or P450 isozyme activities could be induced by atrazine. Compared to controls, P450 content was significantly increased at all atrazine concentrations at days 10, 15, and 20; thereafter, at day 25, all concentrations decreased to approximately the control levels, both in males and females. In addition, the strongest induction of P450 content was observed on day 15 in males and day 10 in females at treatment concentrations of 1 mg L(-1). NADPH-P450 reductase activities showed mild increase in males; however, the females exhibited significant induction on days 15, 20, and 25; especially, at concentrations of 0.01 mg L(-1), the induction level was consistently increased during the experiment. The inducements of APND and ERND in males were mainly observed on the days 5, 10, and 15, which showed less distinct induction, while significant induction was observed in cases of treatments during all days in females. In conclusion, atrazine induces P450 enzymes in zebrafish, and the effects may function as significant toxicity mechanisms in zebrafish. Additionally, it also confirms the importance of using a combined multi-time and multi-index diagnostic method to enhance the sensitivity and effectiveness of the indices adopted.

  9. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    PubMed

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  10. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  11. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem.

    PubMed

    Ernst, Antonia M; Jekat, Stephan B; Zielonka, Sascia; Müller, Boje; Neumann, Ulla; Rüping, Boris; Twyman, Richard M; Krzyzanek, Vladislav; Prüfer, Dirk; Noll, Gundula A

    2012-07-10

    The sieve element occlusion (SEO) gene family originally was delimited to genes encoding structural components of forisomes, which are specialized crystalloid phloem proteins found solely in the Fabaceae. More recently, SEO genes discovered in various non-Fabaceae plants were proposed to encode the common phloem proteins (P-proteins) that plug sieve plates after wounding. We carried out a comprehensive characterization of two tobacco (Nicotiana tabacum) SEO genes (NtSEO). Reporter genes controlled by the NtSEO promoters were expressed specifically in immature sieve elements, and GFP-SEO fusion proteins formed parietal agglomerates in intact sieve elements as well as sieve plate plugs after wounding. NtSEO proteins with and without fluorescent protein tags formed agglomerates similar in structure to native P-protein bodies when transiently coexpressed in Nicotiana benthamiana, and the analysis of these protein complexes by electron microscopy revealed ultrastructural features resembling those of native P-proteins. NtSEO-RNA interference lines were essentially devoid of P-protein structures and lost photoassimilates more rapidly after injury than control plants, thus confirming the role of P-proteins in sieve tube sealing. We therefore provide direct evidence that SEO genes in tobacco encode P-protein subunits that affect translocation. We also found that peptides recently identified in fascicular phloem P-protein plugs from squash (Cucurbita maxima) represent cucurbit members of the SEO family. Our results therefore suggest a common evolutionary origin for P-proteins found in the sieve elements of all dicotyledonous plants and demonstrate the exceptional status of extrafascicular P-proteins in cucurbits.

  12. Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ning, Daliang; Wang, Hui

    2012-01-01

    The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research. PMID:23029295

  13. The maize lilliputian1 (lil1) gene, encoding a brassinosteroid cytochrome P450 C-6 oxidase, is involved in plant growth and drought response.

    PubMed

    Castorina, Giulia; Persico, Martina; Zilio, Massimo; Sangiorgio, Stefano; Carabelli, Laura; Consonni, Gabriella

    2018-05-16

    Brassinosteroids (BRs) are plant hormones involved in many developmental processes as well as in plant-environment interactions. Their role was investigated in this study through the analysis of lilliputian1-1 (lil1-1), a dwarf mutant impaired in BR biosynthesis in maize (Zea mays). We isolated lil1-1 through transposon tagging in maize. The action of lil1 was investigated through morphological and genetic analysis. Moreover, by comparing lil1-1 mutant and wild-type individuals grown under drought stress, the effect of BR reduction on the response to drought stress was examined. lil1-1 is a novel allele of the brassinosteroid-deficient dwarf1 (brd1) gene, encoding a brassinosteroid C-6 oxidase. We show in this study that lil1 is epistatic to nana plant1 (na1), a BR gene involved in earlier steps of the pathway. The lill-1 mutation causes alteration in the root gravitropic response, leaf epidermal cell density, epicuticular wax deposition and seedling adaptation to water scarcity conditions. Lack of active BR molecules in maize causes a pleiotropic effect on plant development and improves seedling tolerance of drought. BR-deficient maize mutants can thus be instrumental in unravelling novel mechanisms on which plant adaptations to abiotic stress are based.

  14. Cloning of gene-encoded stem bromelain on system coming from Pichia pastoris as therapeutic protein candidate

    NASA Astrophysics Data System (ADS)

    Yusuf, Y.; Hidayati, W.

    2018-01-01

    The process of identifying bacterial recombination using PCR, and restriction, and then sequencing process was done after identifying the bacteria. This research aimed to get a yeast cell of Pichia pastoris which has an encoder gene of stem bromelain enzyme. The production of recombinant stem bromelain enzymes using yeast cells of P. pastoris can produce pure bromelain rod enzymes and have the same conformation with the enzyme’s conformation in pineapple plants. This recombinant stem bromelain enzyme can be used as a therapeutic protein in inflammatory, cancer and degenerative diseases. This study was an early stage of a step series to obtain bromelain rod protein derived from pineapple made with genetic engineering techniques. This research was started by isolating the RNA of pineapple stem which was continued with constructing cDNA using reserve transcriptase-PCR technique (RT-PCR), doing the amplification of bromelain enzyme encoder gene with PCR technique using a specific premiere couple which was designed. The process was continued by cloning into bacterium cells of Escherichia coli. A vector which brought the encoder gene of stem bromelain enzyme was inserted into the yeast cell of P. pastoris and was continued by identifying the yeast cell of P. pastoris which brought the encoder gene of stem bromelain enzyme. The research has not found enzyme gene of stem bromelain in yeast cell of P. pastoris yet. The next step is repeating the process by buying new reagent; RNase inhibitor, and buying liquid nitrogen.

  15. CYTOCHROME P450-DEPENDENT METABOLISM OF TRICHLOROETHYLENE IN THE RAT KIDNEY

    EPA Science Inventory

    The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite con...

  16. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    PubMed Central

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  17. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function

    PubMed Central

    Scott, Emily E.; Wolf, C. Roland; Otyepka, Michal; Humphreys, Sara C.; Reed, James R.; Henderson, Colin J.; McLaughlin, Lesley A.; Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Anzenbacher, Pavel; Dahal, Upendra P.; Barnaba, Carlo; Brozik, James A.; Jones, Jeffrey P.; Estrada, D. Fernando; Laurence, Jennifer S.; Park, Ji Won

    2016-01-01

    This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to “helicopter” above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function. PMID:26851242

  18. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. Themore » reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.« less

  19. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.

    PubMed

    Ding, Zhiping; Wen, Yucong; Yang, Baojun; Zhang, Yixi; Liu, Shuhua; Liu, Zewen; Han, Zhaojun

    2013-11-01

    Imidacloprid is a key insecticide extensively used for control of Nilaparvata lugens, and its resistance had been reported both in the laboratory selected strains and field populations. A target site mutation Y151S in two nicotinic acetylcholine receptor subunits and enhanced oxidative detoxification have been identified in the laboratory resistant strain, contributing importantly to imidacloprid resistance in N. lugens. To date, however, imidacloprid resistance in field population is primarily attributable to enhanced oxidative detoxification by over-expressed P450 monooxygenases. A resistant strain (Res), originally collected from a field population and continuously selected in laboratory with imidacloprid for more than 40 generations, had 180.8-fold resistance to imidacloprid, compared to a susceptible strain (Sus). Expression of different putative P450 genes at mRNA levels was detected and compared between Res and Sus strains, and six genes were found expressed significantly higher in Res strain than in Sus strain. CYP6AY1 was found to be the most different expressed P450 gene and its mRNA level in Res strain was 17.9 times of that in Sus strain. By expressing in E. coli cells, CYP6AY1 was found to metabolize imidacloprid efficiently with initial velocity calculated of 0.851 ± 0.073 pmol/min/pmol P450. When CYP6AY1 mRNA levels in Res strain was reduced by RNA interference, imidacloprid susceptibility was recovered. In four field populations with different resistance levels, high levels of CYP6AY1 transcript were also found. In vitro and in vivo studies provided evidences that the over-expression of CYP6AY1 was one of the key factors contributing to imidacloprid resistance in the laboratory selected strain Res, which might also be the important mechanism for imidacloprid resistance in field populations, when the target site mutation was not prevalent at present. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego.

    PubMed

    Fairhead, Michael; Giannini, Silva; Gillam, Elizabeth M J; Gilardi, Gianfranco

    2005-12-01

    The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (KM=1.84+/-0.09 mM and kcat of 2.98+/-0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (KM=0.65+/-0.08 mM and kcat of 0.95+/-0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

  1. Structural Characterization and Ligand/Inhibitor Identification Provide Functional Insights into the Mycobacterium tuberculosis Cytochrome P450 CYP126A1*

    PubMed Central

    Chenge, Jude T.; Duyet, Le Van; Swami, Shalini; McLean, Kirsty J.; Kavanagh, Madeline E.; Coyne, Anthony G.; Rigby, Stephen E. J.; Cheesman, Myles R.; Girvan, Hazel M.; Levy, Colin W.; Rupp, Bernd; von Kries, Jens P.; Abell, Chris; Leys, David; Munro, Andrew W.

    2017-01-01

    The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands “moonlight” as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity. PMID:27932461

  2. Differential expression of steroidogenic factors 1 and 2, cytochrome p450scc, and steroidogenic acute regulatory protein in human pancreas.

    PubMed

    Morales, Angélica; Vilchis, Felipe; Chávez, Bertha; Morimoto, Sumiko; Chan, Carlos; Robles-Díaz, Guillermo; Díaz-Sánchez, Vicente

    2008-08-01

    The aim of this study was to investigate the expression of the 4 gene transcripts, steroidogenic factors 1 (SF-1) and 2 (SF-2), steroidogenic acute regulatory (StAR), and cytochrome P450 11A1, involved in the synthesis of steroid hormones in normal human pancreas. Total RNA was extracted from normal male (n = 5) and female (n = 5) samples, obtained from the organ donor program. The expression levels of SF-1, SF-2, StAR protein, and P450scc were assessed by reverse transcription-polymerase chain reaction and complemented with immunohistochemistry analysis. Polymerase chain reaction products amplification for all genes was present in both male and female samples, although differential expression was observed. The signals detected were much more evident in male than in female messenger RNA isolates for SF-1, SF-2, and StAR protein. The expression for P450scc was more intense in female samples. A similar pattern was observed in the immunohistochemical studies. Normal human pancreas expresses 4 gene transcripts involved in steroid synthesis similarly to steroidogenic organs. A distinctive characteristic is the sexually dimorphic expression of these factors. These data provide further evidence to support that the pancreas is a truly steroidogenic tissue, highlighting the presence of sex- and location-related differences in the expression of steroidogenic factors.

  3. Identification of a melanosomal membrane protein encoded by the pink-eyed dilution (type II oculocutaneous albinism) gene.

    PubMed Central

    Rosemblat, S; Durham-Pierre, D; Gardner, J M; Nakatsu, Y; Brilliant, M H; Orlow, S J

    1994-01-01

    The pink-eyed dilution (p) locus in the mouse is critical to melanogenesis; mutations in the homologous locus in humans, P, are a cause of type II oculocutaneous albinism. Although a cDNA encoded by the p gene has recently been identified, nothing is known about the protein product of this gene. To characterize the protein encoded by the p gene, we performed immunoblot analysis of extracts of melanocytes cultured from wild-type mice with an antiserum from rabbits immunized with a peptide corresponding to amino acids 285-298 of the predicted protein product of the murine p gene. This antiserum recognized a 110-kDa protein. The protein was absent from extracts of melanocytes cultured from mice with two mutations (pcp and p) in which transcripts of the p gene are absent or greatly reduced. Introduction of the cDNA for the p gene into pcp melanocytes by electroporation resulted in expression of the 3.3-kb mRNA and the 110-kDa protein. Upon subcellular fractionation of cultured melanocytes, the 110-kDa protein was found to be present in melanosomes but absent from the vesicular fraction; phase separation performed with the nonionic detergent Triton X-114 confirmed the predicted hydrophobic nature of the protein. These results demonstrate that the p gene encodes a 110-kDa integral melanosomal membrane protein and establish a framework by which mutations at this locus, which diminish pigmentation, can be analyzed at the cellular and biochemical levels. Images PMID:7991586

  4. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål) to Analyze Its Adaptation to BPH-Resistant Rice.

    PubMed

    Peng, Lei; Zhao, Yan; Wang, Huiying; Song, Chengpan; Shangguan, Xinxin; Ma, Yinhua; Zhu, Lili; He, Guangcun

    2017-01-01

    Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH) to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1 , and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice.

  5. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.

    PubMed

    Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as alpha-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  6. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    PubMed

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.

    PubMed Central

    Wilbrink, Maarten H.; Casabon, Israël; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.

    2012-01-01

    Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism. PMID:23024343

  8. Recollection of the early years of the research on cytochrome P450

    PubMed Central

    OMURA, Tsuneo

    2011-01-01

    Since the publication of the first paper on “cytochrome P450” in 1962, the biochemical research on this novel hemoprotein expanded rapidly in the 1960s and the 1970s as its principal roles in various important metabolic processes including steroid hormone biosynthesis in the steroidogenic organs and drug metabolism in the liver were elucidated. Establishment of the purification procedures of microsomal and mitochondrial P450s in the middle of the 1970s together with the introduction of molecular biological techniques accelerated the remarkable expansion of the research on P450 in the following years. This review paper summarizes the important developments in the research on P450 in the early years, for about two decades from the beginning, together with my personal recollections. PMID:22156409

  9. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    PubMed Central

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2013-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation. PMID:25298920

  10. Pathophysiological implications of neurovascular P450 in brain disorders

    PubMed Central

    Ghosh, Chaitali; Hossain, Mohammed; Solanki, Jesal; Dadas, Aaron; Marchi, Nicola; Janigro, Damir

    2016-01-01

    Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders. PMID:27312874

  11. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    PubMed

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes

    PubMed Central

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-01

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 (CYP) enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e. styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. Dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes, relative to that in the wild-type mouse lung microsomes. However, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knock–out and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed similar susceptibility to lung toxicity of styrene as the wild-type animals. However, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene. PMID:24320693

  13. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    PubMed

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  14. Human Hepatic Cytochrome P450-Specific Metabolism of the Organophosphorus Pesticides Methyl Parathion and Diazinon

    PubMed Central

    Tian, Yuan; Knaak, James B.; Kostyniak, Paul J.; Olson, James R.

    2012-01-01

    Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (Km and Vmax) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (Km = 1.25 μM; Vmax = 9.78 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 1.03 μM; Vmax = 4.67 nmol · min−1 · nmol P450−1), and CYP1A2 (Km = 1.96 μM; Vmax = 5.14 nmol · min−1 · nmol P450−1), and the bioactivation of diazinon was mediated primarily by CYP1A1 (Km = 3.05 μM; Vmax = 2.35 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 7.74 μM; Vmax = 4.14 nmol · min−1 · nmol P450−1), and CYP2B6 (Km = 14.83 μM; Vmax = 5.44 nmol · min−1 · nmol P450−1). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (Km = 16.8 μM; Vmax = 1.38 nmol · min−1 · nmol P450−1) and 3A4 (Km = 104 μM; Vmax = 5.15 nmol · min−1 · nmol P450−1), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (Km = 5.04 μM; Vmax = 5.58 nmol · min−1 · nmol P450−1). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure. PMID:21969518

  15. The biodiversity of microbial cytochromes P450.

    PubMed

    Kelly, Steven L; Lamb, David C; Jackson, Colin J; Warrilow, Andrew G; Kelly, Diane E

    2003-01-01

    The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.

  16. Enhanced hepatic and kidney cytochrome p-450 activities in nandrolone decanoate treated albino mice.

    PubMed

    Acharjee, B K; Mahanta, R

    2009-04-01

    Anabolic androgenic steroids are the xenobiotic substrates that are metabolized in the body by the protective enzyme systems. Mixed function oxygenase enzymes include a group of enzymes which play an essential role in the metabolism of a broad range of xenobiotics including endogenous and exogenous substrates. Cytochrome P-450, a member of mixed function oxygenase enzymes, plays an important role in oxidative metabolism of drugs and xenobiotics entering human body. Various anabolic steroids are found either to increase or decrease the activity of cytochrome P-450. However, effect of nandrolone decanoate, most commonly abused anabolic steroid, on cytochrome P-450 activity is still fragmentary. In the present study, albino mice were administered intramuscular 2.5 mg of nandrolone decanoate injection at 15 days interval. Cytochrome P-450 activity is determined by following the method of Omura and Sato (1964) in liver and kidney tissues of both normal and experimental groups upto 90 days. Investigation shows a significant (p <0.01) increase of cytochrome P-450 (nmol/mg) activity in liver tissue as compared to that of kidney tissues. A tissue specific and dose specific increase of cytochrome P-450 activity is observed. Mean cytochrome P-450 is found highest in liver tissue on 45(th) day whereas the activity in kidney tissue is noticed on 90(th) day of treatment. From the above observation, nandrolone decanoate can be suggested as a potent inducer of cytochrome P-450 activity like other anabolic steroids.

  17. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    PubMed Central

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-01-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative. Images PMID:3186722

  18. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    PubMed

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-11-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative.

  19. In vitro efficacy of a gene-activated nerve guidance conduit incorporating non-viral PEI-pDNA nanoparticles carrying genes encoding for NGF, GDNF and c-Jun.

    PubMed

    Lackington, William A; Raftery, Rosanne M; O'Brien, Fergal J

    2018-06-07

    Despite the success of tissue engineered nerve guidance conduits (NGCs) for the treatment of small peripheral nerve injuries, autografts remain the clinical gold standard for larger injuries. The delivery of neurotrophic factors from conduits might enhance repair for more effective treatment of larger injuries but the efficacy of such systems is dependent on a safe, effective platform for controlled and localised therapeutic delivery. Gene therapy might offer an innovative approach to control the timing, release and level of neurotrophic factor production by directing cells to transiently sustain therapeutic protein production in situ. In this study, a gene-activated NGC was developed by incorporating non-viral polyethyleneimine-plasmid DNA (PEI-pDNA) nanoparticles (N/P 7 ratio, 2μg dose) with the pDNA encoding for nerve growth factor (NGF), glial derived neurotrophic factor (GDNF) or the transcription factor c-Jun. The physicochemical properties of PEI-pDNA nanoparticles, morphology, size and charge, were shown to be suitable for gene delivery and demonstrated high Schwann cell transfection efficiency (60±13%) in vitro. While all three genes showed therapeutic potential in terms of enhancing neurotrophic cytokine production while promoting neurite outgrowth, delivery of the gene encoding for c-Jun showed the greatest capacity to enhance regenerative cellular processes in vitro. Ultimately, this gene-activated NGC construct was shown to be capable of transfecting both Schwann cells (S42 cells) and neuronal cells (PC12 and dorsal root ganglia) in vitro, demonstrating potential for future therapeutic applications in vivo. The basic requirements of biomaterial-based nerve guidance conduits have now been well established and include being able to bridge a nerve injury to support macroscopic guidance between nerve stumps, while being strong enough to withstand longitudinal tension and circumferential compression, in addition to being mechanically sound to facilitate

  20. RNA interference of cytochrome P450 CYP6F subfamily genes affects susceptibility to different insecticides in Locusta migratoria.

    PubMed

    Guo, Yanqiong; Wu, Haihua; Zhang, Xueyao; Ma, Enbo; Guo, Yaping; Zhu, Kun Yan; Zhang, Jianzhen

    2016-11-01

    Many insect cytochrome P450s (CYPs) play critical roles in detoxification of insecticides. The CYP6 family is unique to the class Insecta, and its biochemical function has essentially been associated with the metabolism of xenobiotics. In this study, we sequenced and characterised the full-length cDNAs of five CYP genes from Locusta migratoria, a highly destructive agricultural pest worldwide. The five genes were predominantly expressed in brain, guts, fat bodies or Malpighian tubules. CYP6FE1, CYP6FF1 and CYP6FG1 were expressed at higher levels in fourth-instar nymphs than in other developmental stages. CYPFD2 is specifically expressed in adults, whereas CYP6FD1, CYP6FD2 and CYP6FE1 showed significantly lower expression in eggs than in other developmental stages. Deltamethrin suppressed CYP6FD1 expression in third-instar nymphs and upregulated the expression level of CYP6FD2, CYP6FF1 and CYP6FG1 at the dose of LD 10 . Efficient RNA interference-mediated gene silencing was established for four of the five CYP genes. Silencing of CYP6FF1 increased the nymphal mortality from 23 to 50% in response to deltamethrin. Silencing of CYP6FD2 and CYP6FE1 increased the nymphal mortality from 32 to 72 and 66%, respectively, to carbaryl. Three of the four CYP6F subfamily genes in L. migratoria were associated with the detoxification of deltamethrin or carbaryl. The role of CYPs in insecticide detoxification appears to be both gene and insecticide specific. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Valence tautomerism in synthetic models of cytochrome P450

    PubMed Central

    Das, Pradip Kumar; Samanta, Subhra; McQuarters, Ashley B.; Lehnert, Nicolai

    2016-01-01

    CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs. PMID:27302948

  2. Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong

    2008-02-01

    The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  3. Impact of Fusarium mycotoxins on hepatic and intestinal mRNA expression of cytochrome P450 enzymes and drug transporters, and on the pharmacokinetics of oral enrofloxacin in broiler chickens.

    PubMed

    Antonissen, Gunther; Devreese, Mathias; De Baere, Siegrid; Martel, An; Van Immerseel, Filip; Croubels, Siska

    2017-03-01

    Cytochrome P450 (CYP450) drug biotransformation enzymes and multidrug resistance (MDR) proteins may influence drug disposition processes. The first part of the study aimed to evaluate the effect of mycotoxins deoxynivalenol (DON) and/or fumonisins (FBs), at contamination levels approaching European Union guidance levels, on intestinal and hepatic CYP450 enzymes and MDR proteins gene expression in broiler chickens. mRNA expression of genes encoding CYP450 enzymes (CYP3A37, CYP1A4 and CYP1A5) and drug transporters (MDR1/ABCB1 and MRP2/ABCC2) was determined using qRT-PCR. A significant up-regulation of CYP1A4 (P = 0.037) and MDR1 (P = 0.036) was observed in the jejunum of chickens fed a diet contaminated with FBs. The second part of this study aimed to investigate the impact of feeding a FBs contaminated diet on the oral absorption of enrofloxacin (10 mg/kg BW), a MDR1 substrate. A significant (P = 0.045), however small, decreased area under the plasma concentration-time curve (AUC 0-48  h, mean ± SD) was observed for enrofloxacin in chickens fed the FBs contaminated diet compared to the control group, 16.28 ± 1.82 h μg/mL versus 18.27 ± 1.79 h μg/mL. These findings suggest that concurrent administration of drugs with FBs contaminated feed might alter the pharmacokinetic characteristics of CYP1A4 substrate drugs and MDR1 substrates, such as enrofloxacin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  5. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes.

  6. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  7. An RNAi construct of the P450 gene CYP82D109 leads to increased resistance to Fusarium oxysporum f. sp. vasinfectum (Fov11) and increased feeding by Helicoverpa Zea larvae

    USDA-ARS?s Scientific Manuscript database

    The P450 CYP82D109 gene codes for an early step enzyme in the gossypol pathway in Gossypium. The terminal leaves of RNAi plants had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels compared to wild-type (WT) plants. Previous studies comparing glanded...

  8. Molecular LEGO by domain-imprinting of cytochrome P450 BM3.

    PubMed

    Jetzschmann, K J; Yarman, A; Rustam, L; Kielb, P; Urlacher, V B; Fischer, A; Weidinger, I M; Wollenberger, U; Scheller, F W

    2018-04-01

    Electrosynthesis of the MIP nano-film after binding of the separated domains or holo-cytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the his 6 -tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The his 6 -tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode. Copyright © 2018. Published by Elsevier B.V.

  9. Cytochrome p450 architecture and cysteine nucleophile placement impact raloxifene-mediated mechanism-based inactivation.

    PubMed

    VandenBrink, Brooke M; Davis, John A; Pearson, Josh T; Foti, Robert S; Wienkers, Larry C; Rock, Dan A

    2012-11-01

    The propensity for cytochrome P450 (P450) enzymes to bioactivate xenobiotics is governed by the inherent chemistry of the xenobiotic itself and the active site architecture of the P450 enzyme(s). Accessible nucleophiles in the active site or egress channels of the P450 enzyme have the potential of sequestering reactive metabolites through covalent modification, thereby limiting their exposure to other proteins. Raloxifene, a drug known to undergo CYP3A-mediated reactive metabolite formation and time-dependent inhibition in vitro, was used to explore the potential for bioactivation and enzyme inactivation of additional P450 enzymes (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A5). Every P450 tested except CYP2E1 was capable of raloxifene bioactivation, based on glutathione adduct formation. However, raloxifene-mediated time-dependent inhibition only occurred in CYP2C8 and CYP3A4. Comparable inactivation kinetics were achieved with K(I) and k(inact) values of 0.26 μM and 0.10 min(-1) and 0.81 μM and 0.20 min(-1) for CYP2C8 and CYP3A4, respectively. Proteolytic digests of CYP2C8 and CYP3A4 Supersomes revealed adducts to Cys225 and Cys239 for CYP2C8 and CYP3A4, respectively. For each P450 enzyme, proposed substrate/metabolite access channels were mapped and active site cysteines were identified, which revealed that only CYP2C8 and CYP3A4 possess accessible cysteine residues near the active site cavities, a result consistent with the observed kinetics. The combined data suggest that the extent of bioactivation across P450 enzymes does not correlate with P450 inactivation. In addition, multiple factors contribute to the ability of reactive metabolites to form apo-adducts with P450 enzymes.

  10. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE PAGES

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    2016-10-23

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  11. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  12. Alteration of cytochrome P450 1 regulation and HSP 70 level in brain of juvenile common carp (Cyprinus carpio) after chronic exposure to tributyltin.

    PubMed

    Li, Zhi-Hua; Zhong, Li-Qiao; Wu, Yan-Hua; Mu, Wei-Na

    2016-02-01

    Tributyltin (TBT), a toxic contaminant in aquatic environments, has bio-accumulated in aquatic food webs throughout the world and can be found at toxic levels in some biota. However, the molecular mechanisms and effects of TBT are not fully understood. The aim of the present study was to investigate the effect of long-term exposure of TBT on cytochrome P450 (CYP450) 1 regulation and heat-shock proteins (HSPs) profiling in brain of freshwater teleost. The effects of long-term exposure to TBT on mRNA expression of cytochrome P450 (CYP450) 1 family genes and ethoxyresorufin O-deethylase (EROD) activity in the brain of common carp were evaluated, as well as HSP 70 level. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on EROD activity, HSP 70 level and CYP450 1 family genes expression). The mRNA expression of CYP450 1 family genes (CYP1A, CYP1B, CYP1C1 and CYP1C2) suggested that CYP1A was to accommodate most EROD activity in fish, but other CYP450 forms also involved in this proceeding. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity and could be used as potential biomarkers for monitoring the TBT pollution in the field.

  13. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis

    PubMed Central

    Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita

    2015-01-01

    Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403

  14. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål) to Analyze Its Adaptation to BPH-Resistant Rice

    PubMed Central

    Peng, Lei; Zhao, Yan; Wang, Huiying; Song, Chengpan; Shangguan, Xinxin; Ma, Yinhua; Zhu, Lili; He, Guangcun

    2017-01-01

    Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH) to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1, and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice. PMID:29249980

  15. Association of polymorphisms and haplotypes in the cytochrome P450 1B1 gene with uterine leiomyoma: A case control study

    PubMed Central

    SALIMI, SAEEDEH; KHODAMIAN, MARYAM; NAROOIE-NEJAD, MEHRNAZ; HAJIZADEH, AZAM; FAZELI, KIMIA; NAMAZI, LIDA; YAGHMAEI, MINOO

    2015-01-01

    Uterine leiomyoma (UL) is an estrogen-dependent neoplasm of the uterus and estrogen metabolizing enzymes affect its promotion and progression. The aim of the present study was to evaluate the association between four single-nucleotide polymorphisms (SNPs) of the cytochrome P450 1B1 (CYP1B1) gene and UL risk. Four SNPs of the CYP1B1 gene in 105 UL patients and 112 unrelated healthy controls were genotyped using a direct sequencing method. Haplotype analyses were performed with UNPHASED software and linkage disequilibrium (LD) was assessed by Haploview software. There were no associations between Leu432Val (rs1056836), Asp449Asp (rs1056837) and Asn453Ser (rs1800440) polymorphisms of the CYP1B1 gene and UL. Although the genotypic frequencies of the Arg368His (rs79204362) polymorphism did not differ between the two groups, the frequency of A (His) allele was significantly higher in UL females (P=0.02). In addition, the frequency of GTAA haplotype was significantly higher in the controls and played a protective role in UL susceptibility. A strong LD between the three common SNPs (rs1056836, rs1056837 and rs1800440) in the CYP1B1 gene was observed in the population. In conclusion, a higher frequency of the CYP1B1 368His (A) allele was observed in UL females. The frequency of the GTAA haplotype was significantly higher in healthy females and this haplotype played a protective role in UL susceptibility. PMID:26075073

  16. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth.

    PubMed

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-02-19

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments.

  17. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth

    PubMed Central

    David, Jean-Philippe; Ismail, Hanafy Mahmoud; Chandor-Proust, Alexia; Paine, Mark John Ingraham

    2013-01-01

    The fight against diseases spread by mosquitoes and other insects has enormous environmental, economic and social consequences. Chemical insecticides remain the first line of defence but the control of diseases, especially malaria and dengue fever, is being increasingly undermined by insecticide resistance. Mosquitoes have a large repertoire of P450s (over 100 genes). By pinpointing the key enzymes associated with insecticide resistance we can begin to develop new tools to aid the implementation of control interventions and reduce their environmental impact on Earth. Recent technological advances are helping us to build a functional profile of the P450 determinants of insecticide metabolic resistance in mosquitoes. Alongside, the cross-responses of mosquito P450s to insecticides and pollutants are also being investigated. Such research will provide the means to produce diagnostic tools for early detection of P450s linked to resistance. It will also enable the design of new insecticides with optimized efficacy in different environments. PMID:23297352

  18. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  19. Preparation and characterization of monoclonal antibodies recognizing unique epitopes on sexually differentiated rat liver cytochrome P-450 isozymes.

    PubMed

    Morgan, E T; Rönnholm, M; Gustafsson, J A

    1987-07-14

    Cytochrome P-450 isozymes P-450(16 alpha), P-450(15 beta), and P-450DEa are immunochemically related, as indicated by mutual cross-reactivity with polyclonal antibody preparations. We have isolated five monoclonal antibodies to P-450(15 beta) and one antibody to P-450(16 alpha) that show selectivity for the respective antigens. High frequencies of cross-reactivity were observed, indicating a high degree of homology among P-450(16 alpha), P-450(15 beta), and P-450DEa. All of the P-450(15 beta-specific antibodies bound to the same epitope, or closely grouped epitopes, supporting this conclusion. The specificity of each monoclonal antibody was characterized by enzyme-linked immunosorbent assay. Western immunoblotting, and antibody-Sepharose immunoadsorption of solubilized rat liver microsomes. Antibodies F22 and F23, which were apparently identical, were specific for P-450(15 beta) by these criteria. However, the apparent specificities of antibodies F3 and F20 for P-450(15 beta), and of M16 for P-450(16 alpha), were highly dependent on the analytical technique used. The five anti-P-450(15 beta) antibodies all inhibited the catalytic activity of microsomal P-450(15 beta), by a maximum of 70%. However, they also produced a similar inhibition of microsomal P-450(16 alpha-specific antibody M16 and F23 have a low-affinity interaction with an epitope on P-450(16 alpha). The P-450(16 alpha)-specific antibody M16 was not inhibitory. The results indicate that the apparent specificity of a monoclonal antibody for an antigen determined by, e.g., Western blotting does not allow the conclusive identification of a protein in another system, e.g., immunoprecipitation of in vitro translation reaction products.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Overexpression of the Steroidogenic Enzyme Cytochrome P450 Side Chain Cleavage in the Ventral Tegmental Area Increases 3α,5α-THP and Reduces Long-Term Operant Ethanol Self-Administration

    PubMed Central

    Cook, Jason B.; Werner, David F.; Maldonado-Devincci, Antoniette M.; Leonard, Maggie N.; Fisher, Kristen R.; O'Buckley, Todd K.; Porcu, Patrizia; McCown, Thomas J.; Besheer, Joyce; Hodge, Clyde W.

    2014-01-01

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology. PMID:24760842

  1. Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration.

    PubMed

    Cook, Jason B; Werner, David F; Maldonado-Devincci, Antoniette M; Leonard, Maggie N; Fisher, Kristen R; O'Buckley, Todd K; Porcu, Patrizia; McCown, Thomas J; Besheer, Joyce; Hodge, Clyde W; Morrow, A Leslie

    2014-04-23

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.

  2. Insecticide resistance and cytochrome-P450 activation in unfed and blood-fed laboratory and field populations of Culex pipiens pallens.

    PubMed

    Chang, Kyu-Sik; Kim, Heung-Chul; Klein, Terry A; Ju, Young Ran

    2017-01-01

    Understanding the mechanisms of insecticide resistance to vector mosquitoes is critical for the implementation of effective control measures. A nulliparous susceptible Culex pipiens pallens (KSCP) laboratory colony and two field strains from Paju (PAJ) and Jeonju (JEO) Korea were evaluated for susceptibility to five pesticides by microapplication techniques. Unfed PAJ and JEO females demonstrated increased resistance compared to unfed KSCP females, respectively. While blood-fed KSCP females demonstrated <10-fold decreased susceptibility to pesticides compared to unfed KSCP females, blood-fed PAJ and JEO females demonstrated 25.0-50.0- and 16.0-38.6-fold increased resistance compared to unfed PAJ and JEO females, respectively. Unfed and blood-fed groups were assayed for α- and β-esterase, glutathione S -transferases, and cytochrome P-450 (P450) enzyme activity assays. P450 activity was 58.8- and 72.8-fold higher for unfed PAJ and JEO females, respectively, than unfed KSCP females. P450 enzyme activity of KSCP females assayed 1 and 7 days after a blood meal increased by 14.5- and 11.8-fold, respectively, compared to unfed KSCP females, while PAJ and JEO females demonstrated 164.9- and 148.5- and 170.7- and 160.4-fold increased activity, respectively, compared to unfed females of each population. However, other three resistance-related metabolic enzymes showed low activation at <10-fold after a blood meal. The data demonstrate that P450 acts on elevated insecticide resistance after blood meals in resistant field populations. Our findings might reveal that suppressing of the P450 protein by artificial gene mutation increases insecticidal susceptibility of Cx . pipiens and will promise effective vector mosquito control.

  3. A possible role of NADPH-dependent cytochrome P450nor isozyme in glycolysis under denitrifying conditions.

    PubMed

    Watsuji, Tomo-o; Takaya, Naoki; Nakamura, Akira; Shoun, Hirofumi

    2003-05-01

    The denitrifying fungus Cylindrocarpon tonkinense contains two isozymes of cytochrome P450nor. One isozyme, P450nor1, uses NADH specifically as its electron donor whereas the other isozyme P450nor2 prefers NADPH to NADH. Here we show that P450nor1 is localized in both cytosol and mitochondria, like P450nor of Fusarium oxysporum, while P450nor2 is exclusively in cytosol. We also found that the addition of glucose as a carbon source to the culture media leads to the production of much more P450nor2 in the fungal cells than a non-fermentable substrate (glycerol or acetate) does. These results suggest that the NADP-dependent pentose phosphate cycle acts predominantly in C. tonkinense as the glycolysis pathway under the denitrifying conditions, which was confirmed by the observation that glucose induced enzyme activities involved in the cycle. These results showed that P450nor2 should act as the electron sink under anaerobic, denitrifying conditions to regenerate NADP+ for the pentose phosphate cycle.

  4. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A deep auto-encoder model for gene expression prediction.

    PubMed

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  6. Evolution of the scientific literature of cytochrome P450 from 1977 to 2008.

    PubMed

    Robert, Claude; Wilson, Concepción S; Guengerich, F Peter; Arreto, Charles-Daniel

    2010-02-01

    This study traces the evolution of the scientific literature on cytochrome P450 (P450) published during the last 30+ years (1977-2008). Using the Web of Science, P450 articles from the Science Citation Index Expanded published from 1977 to 2008 were retrieved and analyzed. The number of P450 papers has increased from 342 articles in 1977-1978 to 2,357 in 2007-2008, and the number of contributing countries has grown from 23 countries for 1977-1978 to 76 for 2007-2008. While the USA and Japan were the most productive countries, along with several industrialized countries (e.g. UK, Germany and Canada), two Asian countries have recently joined the group of leading countries (in 2007-2008 China ranked 4th and South Korea, 7th). During 1977-2008, the number of journals publishing papers in P450 research increased more than seven-fold (7.7): 94 journals in 1977-1978 and 724 in 2007-2008; however, citation by readers (as measured by the journal impact factor) of the top-ten leading journals increased only slightly from 3.25 for 1977-1978 to 3.81 for 2007-2008. While Biochemistry & Molecular Biology and Pharmacology and Pharmacy are the two main targeted subject areas for P450 research during the period considered, there has been a gradual shift from the biophysical and biochemical fields of interest to aspects of genomics and clinical approaches. The rapid evolution of P450 research in the last 30+ years was accompanied by important changes in the landscape of the contributing countries, in the subject domains, and consequently in the scientific journals targeted by researchers.

  7. Transgenic Production of Epoxy Fatty Acids by Expression of a Cytochrome P450 Enzyme from Euphorbia lagascae Seed

    PubMed Central

    Cahoon, Edgar B.; Ripp, Kevin G.; Hall, Sarah E.; McGonigle, Brian

    2002-01-01

    Seed oils of a number of Asteraceae and Euphorbiaceae species are enriched in 12-epoxyoctadeca-cis-9-enoic acid (vernolic acid), an unusual 18-carbon Δ12-epoxy fatty acid with potential industrial value. It has been previously demonstrated that the epoxy group of vernolic acid is synthesized by the activity of a Δ12-oleic acid desaturase-like enzyme in seeds of the Asteraceae Crepis palaestina and Vernonia galamensis. In contrast, results from metabolic studies have suggested the involvement of a cytochrome P450 enzyme in vernolic acid synthesis in seeds of the Euphorbiaceae species Euphorbia lagascae. To clarify the biosynthetic origin of vernolic acid in E. lagascae seed, an expressed sequence tag analysis was conducted. Among 1,006 randomly sequenced cDNAs from developing E. lagascae seeds, two identical expressed sequence tags were identified that encode a cytochrome P450 enzyme classified as CYP726A1. Consistent with the seed-specific occurrence of vernolic acid in E. lagascae, mRNA corresponding to the CYP726A1 gene was abundant in developing seeds, but was not detected in leaves. In addition, expression of the E. lagascae CYP726A1 cDNA in Saccharomyces cerevisiae was accompanied by production of vernolic acid in cultures supplied with linoleic acid and an epoxy fatty acid tentatively identified as 12-epoxyoctadeca-9,15-dienoic acid (12-epoxy-18:2Δ9,15) in cultures supplied with α-linolenic acid. Consistent with this, expression of CYP726A1 in transgenic tobacco (Nicotiana tabacum) callus or somatic soybean (Glycine max) embryos resulted in the accumulation of vernolic acid and 12-epoxy-18:2Δ9,15. Overall, these results conclusively demonstrate that Asteraceae species and the Euphorbiaceae E. lagascae have evolved structurally unrelated enzymes to generate the Δ12-epoxy group of vernolic acid. PMID:11842164

  8. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450.

    PubMed

    Zong, Cai; Garner, C Edwin; Huang, Chinyen; Zhang, Xiao; Zhang, Lingyi; Chang, Jie; Toyokuni, Shinya; Ito, Hidenori; Kato, Masashi; Sakurai, Toshihiro; Ichihara, Sahoko; Ichihara, Gaku

    2016-09-06

    Neurotoxicity of 1-bromopropane (1-BP) has been reported in both human cases and animal studies. To date, neurotoxicity of 1-BP has been induced in rats but not in mice due to the lethal hepatotoxicity of 1-BP. Oxidization by cytochromes P450 and conjugation with glutathione (GSH) are two critical metabolism pathways of 1-BP and play important roles in toxicity of 1-BP. The aim of the present study was to establish a murine model of 1-BP neurotoxicity, by reducing the hepatotoxicity of 1-BP with 1-aminobenzotriazole (1-ABT); a commonly used nonspecific P450s inhibitor. The results showed that subcutaneous or intraperitoneal injection of 1-ABT at 50mg/kg body weight BID (100mg/kg BW/day) for 3days, inhibited about 92-96% of hepatic microsomal CYP2E1 activity, but only inhibited about 62-64% of CYP2E1 activity in brain microsomes. Mice treated with 1-ABT survived even after exposure to 1200ppm 1-BP for 4 weeks and histopathological studies showed that treatment with 1-ABT protected mice from 1-BP-induced hepatic necrosis, hepatocyte degeneration, and hemorrhage. After 4-week exposure to 1-BP, the brain weight of 1-ABT(+)/1200ppm 1-BP group was decreased significantly. In 1-ABT-treated groups, expression of hippocampal Ran protein and cerebral cortical GRP78 was dose-dependently increased by exposure to 1-BP. We conclude that the control of hepatic P450 activity allows the observation of effects of 1-BP on the murine brain at a higher concentration by reduction of hepatotoxicity. The study suggests that further experiments with liver-specific control of P450 activity using gene technology might provide better murine models for 1-bromopropane-induced neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein.

    PubMed Central

    Reed, C J; Lock, E A; De Matteis, F

    1988-01-01

    1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone

  10. Cytochrome P450 peroxidase/peroxygenase mediated xenobiotic metabolic activation and cytotoxicity in isolated hepatocytes.

    PubMed

    Anari, M R; Khan, S; Liu, Z C; O'Brien, P J

    1995-12-01

    Cytochrome P450 (P450) can utilize organic hydroperoxides and peracids to support hydroxylation and dealkylation of various P450 substrates. However, the biological significance of this P450 peroxygenase/peroxidase activity in the bioactivation of xenobiotics in intact cells has not been demonstrated. We have shown that tert-butyl hydroperoxide (tBHP) markedly enhances 3-20-fold the cytotoxicity of various aromatic hydrocarbons and their phenolic metabolites. The tBHP-enhanced hepatocyte cytotoxicity of 4-nitroanisole (4-NA) and 4-hydroxyanisole (4-HA) was also accompanied by an increase in the hepatocyte O-demethylation of 4-NA and 4-HA up to 7.5- and 21-fold, respectively. Hepatocyte GSH conjugation by 4-HA was also markedly increased by tBHP. An LC/MS analysis of the GSH conjugates identified hydroquinone-GSH and 4-methoxy-catechol:GSH conjugates as the predominant adducts. Pretreatment of hepatocytes with P450 inhibitors, e.g., phenylimidazole, prevented tBHP-enhanced 4-HA metabolism, GSH depletion, and cytotoxicity. In conclusion, hydroperoxides can therefore be used by intact cells to support the bioactivation of xenobiotics through the P450 peroxidase/peroxygenase system.

  11. Human Cytochrome P450 21A2, the Major Steroid 21-Hydroxylase

    PubMed Central

    Pallan, Pradeep S.; Wang, Chunxue; Lei, Li; Yoshimoto, Francis K.; Auchus, Richard J.; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 21A2 is the major steroid 21-hydroxylase, and deficiency of this enzyme is involved in ∼95% of cases of human congenital adrenal hyperplasia, a disorder of adrenal steroidogenesis. A structure of the bovine enzyme that we published previously (Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy, L. D., Guengerich, F. P., and Waterman, M. R. (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J. Biol. Chem. 287, 10613–10622), containing two molecules of the substrate 17α-hydroxyprogesterone, has been used as a template for understanding genetic deficiencies. We have now obtained a crystal structure of human P450 21A2 in complex with progesterone, a substrate in adrenal 21-hydroxylation. Substrate binding and release were fast for human P450 21A2 with both substrates, and pre-steady-state kinetics showed a partial burst but only with progesterone as substrate and not 17α-hydroxyprogesterone. High intermolecular non-competitive kinetic deuterium isotope effects on both kcat and kcat/Km, from 5 to 11, were observed with both substrates, indicative of rate-limiting C–H bond cleavage and suggesting that the juxtaposition of the C21 carbon in the active site is critical for efficient oxidation. The estimated rate of binding of the substrate progesterone (kon 2.4 × 107 m−1 s−1) is only ∼2-fold greater than the catalytic efficiency (kcat/Km = 1.3 × 107 m−1 s−1) with this substrate, suggesting that the rate of substrate binding may also be partially rate-limiting. The structure of the human P450 21A2-substrate complex provides direct insight into mechanistic effects of genetic variants. PMID:25855791

  12. An Isotopic Labelling Strategy to Study Cytochrome P450 Oxidations of Terpenes.

    PubMed

    Rinkel, Jan; Litzenburger, Martin; Bernhardt, Rita; Dickschat, Jeroen Sidney

    2018-04-26

    The cytochrome P450 monooxygenase CYP267B1 from Sorangium cellulosum was applied for enzymatic oxidation of the sesquiterpene alcohols T-muurolol and isodauc-8-en-11-ol. Various isotopically labelled geranyl and farnesyl diphosphates were used for product identification from micro-scale reactions, for determination of the absolute configurations of unknown compounds, to follow the stereochemical course of a cytochrome P450-catalysed hydroxylation step, and to investigate kinetic isotope effects. Overall, this study demonstrates that isotopically labelled terpene precursors are highly useful to follow cytochrome P450 dependent oxidations of terpenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Differential Expression of Cytochrome P450 Enzymes in Normal and Tumor Tissues from Childhood Rhabdomyosarcoma

    PubMed Central

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli

    2014-01-01

    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256

  14. Sex-dependent alteration of cardiac cytochrome P450 gene expression by doxorubicin in C57Bl/6 mice.

    PubMed

    Grant, Marianne K O; Seelig, Davis M; Sharkey, Leslie C; Zordoky, Beshay N

    2017-01-01

    There is inconclusive evidence about the role of sex as a risk factor for doxorubicin (DOX)-induced cardiotoxicity. Recent experimental studies have shown that adult female rats are protected against DOX-induced cardiotoxicity. However, the mechanisms of this sexual dimorphism are not fully elucidated. We have previously demonstrated that DOX alters the expression of several cytochrome P450 (CYP) enzymes in the hearts of male rats. Nevertheless, the sex-dependent effect of DOX on the expression of CYP enzymes is still not known. Therefore, in the present study, we determined the effect of acute DOX exposure on the expression of CYP genes in the hearts of both male and female C57Bl/6 mice. Acute DOX cardiotoxicity was induced by a single intraperitoneal injection of 20 mg/kg DOX in male and female adult C57Bl/6 mice. Cardiac function was assessed 5 days after DOX exposure by trans-thoracic echocardiography. Mice were euthanized 1 day or 6 days after DOX or saline injection. Thereafter, the hearts were harvested and weighed. Heart sections were evaluated for pathological lesions. Total RNA was extracted and expression of natriuretic peptides, inflammatory and apoptotic markers, and CYP genes was measured by real-time PCR. Adult female C57Bl/6 mice were protected from acute DOX-induced cardiotoxicity as they show milder pathological lesions, less inflammation, and faster recovery from DOX-induced apoptosis and DOX-mediated inhibition of beta-type natriuretic peptide. Acute DOX exposure altered the gene expression of multiple CYP genes in a sex-dependent manner. In 24 h, DOX exposure caused male-specific induction of Cyp1b1 and female-specific induction of Cyp2c29 and Cyp2e1. Acute DOX exposure causes sex-dependent alteration of cardiac CYP gene expression. Since cardiac CYP enzymes metabolize several endogenous compounds to biologically active metabolites, sex-dependent alteration of CYP genes may play a role in the sexual dimorphism of acute DOX

  15. Relationship between hydrocarbon structure and induction of P450: effects on protein levels and enzyme activities.

    PubMed

    Backes, W L; Sequeira, D J; Cawley, G F; Eyer, C S

    1993-12-01

    1. Treatment of male rat with the small aromatic hydrocarbons, benzene, toluene, ethylbenzene, n-propylbenzene, m-xylene, and p-xylene increased several P450-dependent activities, with ethylbenzene, m-xylene, and n-propylbenzene producing the greatest response. Hydrocarbon treatment differentially affected toluene metabolism, producing a response dependent on the metabolite monitored. In untreated rats, benzyl alcohol was the major hydroxylation product of toluene metabolism, comprising > 99% of the total metabolites formed. Hydrocarbon treatment increased the overall rate of toluene metabolism by dramatically increasing the amount of aromatic hydroxylation. Ethylbenzene, n-propylbenzene and m-xylene were the most effective inducers of aromatic hydroxylation of toluene. In contrast, production of the major toluene metabolite benzyl alcohol was increased only after treatment with m-xylene. 2. P450 2B1/2B2 levels were induced by each of the hydrocarbons examined, with the magnitude of induction increasing with increasing hydrocarbon size. P450 1A1 was also induced after hydrocarbon exposure; however, the degree of induction was smaller than that observed for P450 2B1/2B2. P450 2C11 levels were suppressed after treatment with benzene, ethylbenzene and n-propylbenzene. 3. Taken together these results display two induction patterns. The first generally corresponds to changes in the P450 2B subfamily, where activities (e.g. the aromatic hydroxylations of toluene) were most effectively induced by ethylbenzene, n-propylbenzene and m-xylene. In the second, induction was observed only after m-xylene treatment, a pattern that was found when the metabolism of the substrate was catalysed by both the P450 2B subfamily and P450 2C11. Hydrocarbons that both induced P450 2B1/2B2 and suppressed P450 2C11 (such as ethylbenzene and n-propylbenzene) showed little change in activities catalysed by both isozymes (e.g. aliphatic hydroxylation of toluene, and aniline hydroxylation

  16. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Hanafy M.; O'Neill, Paul M.; Hong, David

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the targetmore » tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.« less

  17. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    PubMed Central

    Rasmussen, Martin Krøyer; Zamaratskaia, Galia

    2014-01-01

    Cytochrome P450 (CYP450) is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole), one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint. PMID:25408844

  18. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sangsoo Daniel; Antenos, Monica; Squires, E. James

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment ofmore » primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined

  19. Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity.

    PubMed Central

    Peist, R; Koch, A; Bolek, P; Sewitz, S; Kolbus, T; Boos, W

    1997-01-01

    malQ mutants of Escherichia coli lacking amylomaltase cannot grow on maltose. They express the maltose system constitutively and are sensitive to maltose when grown on another carbon source. In an attempt to isolate a multicopy suppressor that would result in growth on maltose, we transformed a malQ mutant with a gene bank of E. coli DNA which had been digested with Sau3a and cloned in pBR322. We screened the transformants on MacConkey maltose plates. A colony was isolated that appeared to be resistant to maltose and was pink on these plates, but it was still unable to grow on minimal medium with maltose as the carbon source. The plasmid was isolated, and the gene causing this phenotype was characterized. The deduced amino acid sequence of the encoded protein shows homology to that of lipases and esterases. We termed the gene aes, for acetyl esterase. Extracts of cells harboring plasmid-encoded aes under its own promoter exhibit a fivefold higher capacity to hydrolyze p-nitrophenyl acetate than do extracts of cells of plasmid-free strains. Similarly, strains harboring plasmid-encoded aes are able to grow on triacetyl glycerol (triacetin) whereas the plasmid-free strains are not. The expression of plasmid-encoded aes resulted in strong repression of the maltose transport genes in malT+ strains (10-fold reduction), but not in a malT(Con) strain which is independent of the inducer. Also, overproduction of MalT counteracted the Aes-dependent repression, indicating a direct interaction between MalT and Aes. PMID:9401025

  20. Cytochrome P450 Monooxygenases for Fatty Acids and Xenobiotics in Marine Macroalgae1

    PubMed Central

    Pflugmacher, Stephan; Sandermann, Heinrich

    1998-01-01

    The metabolism of xenobiotics has mainly been investigated in higher plant species. We studied them in various marine macroalgae of the phyla Chlorophyta, Chromophyta, and Rhodophyta. Microsomes contained high oxidative activities for known cytochrome (Cyt) P450 substrates (fatty acids, cinnamic acid, 3- and 4-chlorobiphenyl, 2,3-dichlorobiphenyl, and isoproturon; up to 54 pkat/mg protein). The presence of Cyt P450 (approximately 50 pmol/mg protein) in microsomes of the three algal families was demonstrated by CO-difference absorption spectra. Intact algal tissue converted 3-chlorobiphenyl to the same monohydroxy-metabolite formed in vitro. This conversion was 5-fold stimulated upon addition of phenobarbital, and was abolished by the known P450 inhibitor, 1-aminobenzotriazole. It is concluded that marine macroalgae contain active species of Cyt P450 and could act as a metabolic sink for marine pollutants. PMID:9576781

  1. Some mutations of exon-7 in cytochrome P450 gene 3A4 and their effect on 6beta-hydroxylation of cortisol.

    PubMed

    Shchepotina, E G; Vavilin, V A; Goreva, O B; Lyakhovich, V V

    2006-06-01

    Analysis of variants of exon 7 sequences in cytochrome P450 gene 3A4 in a sample of Caucasoid persons was carried out. The effect of these variants on activity of CYP3A was assessed by the level of cortisol 6beta-hydroxylation. Alleles CYP3A4*5 and *17 were not detected: probably, these mutations are rare and consequently they have little effect on the character of polymorphic distribution of CYP3A4 activity in this population. The incidence of CYP3A4*2 was 5.26%. The 6betaOH-cortisol/cortisol ratio in an individual with CYP3A4*2/*2 genotype was 7.408, which corresponded to "slow metabolizer" phenotype in this sample.

  2. Toxicology: Bee P450s Take the Sting out of Cyanoamidine Neonicotinoids.

    PubMed

    Feyereisen, René

    2018-05-07

    The neonicotinoid insecticides have raised concerns regarding the health of bee pollinators. New research has identified a P450 enzyme that protects honey bees and bumble bees from the toxicity of two neonicotinoids, thiacloprid and acetamiprid. This P450 enzyme provides a margin of safety to bees. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Hepatic microsomal cytochromes P450 in mink fed Saginaw Bay carp (SBC)

    USGS Publications Warehouse

    Melancon, M.J.; LeCaptain, L.; Rattner, B.A.; Heaton, S.; Aulerich, R.; Tillitt, D.; Stegeman, John J.; Woodin, B.

    1992-01-01

    Livers from mink fed diets containing 0% (n = 12), 10% (n = 11), 20% (n = 12) and 40% (n = 10) SBC for 6 months contained 0.1, 2.2, 3.6, and 6.3 ug/g total PCBs, respectively. Hepatic microsomes were prepared and assayed for protein, arylhydrocarbon hydroxylase (AHH), benzyloxyresorufin-O-dealkylase (BROD), ethoxy-ROD (ER0D), pentoxy-ROD (PROD), and ethoxycoumarin-OD (ECOD). Mink fed SBC had increased AHH, EROD, and ECOD (group means 2.2-3.4 X control means), decreased BROD and unchanged PROD (the latter 2 assays indicators for phenobarbital-type induction in mammals). Three samples from each group were examined by western blot using a polyclonal anti-P450llB antibody and a monoclonal anti-P450lA antibody (MAb 1-12-3). Mink fed SBC showed induction of a protein recognized by anti-P450lA (8 X control), but had little protein recognized by anti-P450IlB. The monooxygenase activities and western blot data give a consistent picture of MC-type but not PB-type induction in mink fed SBC.

  4. Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants

    PubMed Central

    Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R.; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle

    2017-01-01

    Abstract Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. PMID:28505373

  5. Cytochrome P450 1C1 complementary DNA cloning, sequence analysis and constitutive expression induced by benzo-a-pyrene in Nile tilapia (Oreochromis niloticus).

    PubMed

    Hassanin, Abeer A I; Kaminishi, Yoshino; Funahashi, Aki; Itakura, Takao

    2012-03-01

    CYP1C is the newest member of the CYP1 family of P450s; however, its physiological significance, inducers, and metabolic functions are unknown. In this study, a new complementary DNA of the CYP1C subfamily encoding CYP1C1 was isolated from Nile tilapia (Oreochromis niloticus) liver after intracoelomic injection with benzo-a-pyrene (BaP). The full-length cDNA was 2223 base pair (bp) long and contained an open reading frame of 1581 bp encoding a protein of 526 amino acids and a stop codon. The sequence exhibited 3' non-coding region of 642 bp. The deduced amino acid sequence of O. niloticus CYP1C1 shows similarities of 86, 82.5, 79.7, 78.7, 77.8, 75.5, 69.6 and 61.3% with scup CYP1C1, killifish CYP1C1,1C2, Japanese eel CYP1C1, zebra fish CYP1C1, common carp CYP1C1, scup CYP1C2, common carp CYP1C2 and zebra fish CYP1C2, respectively. Phylogenetic tree based on the amino acids sequences clearly shows tilapia CYP1C1 and scup CYP1C1 to be more closely related to each other than to CYP1C genes from other species. Furthermore, for measuring BaP induction of CYP1C1 mRNA in different organs of tilapia (O. niloticus), β-actin gene as internal control was selected based on previous studies to assess their expression variability. Real time RCR results revealed that there was a large increase in CYP1C1 mRNA in liver (43.1), intestine (5.1) and muscle (2.4). Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Differential effects of Glycyrrhiza species on genotoxic estrogen metabolism: licochalcone A downregulates P450 1B1 whereas isoliquiritigenin stimulates

    PubMed Central

    Dunlap, Tareisha L.; Wang, Shuai; Simmler, Charlotte; Chen, Shao-Nong; Pauli, Guido F.; Dietz, Birgit M.; Bolton, Judy L.

    2015-01-01

    Estrogen chemical carcinogenesis involves 4-hydroxylation of estrone/estradiol (E1/E2) by P450 1B1, generating catechol and quinone genotoxic metabolites that cause DNA mutations and initiate/promote breast cancer. Inflammation enhances this effect by up-regulating P450 1B1. The present study tested the three authenticated medicinal species of licorice, [Glycyrrhiza glabra (GG), G. uralensis (GU), and G. inflata (GI)], used by women as dietary supplements, for their anti-inflammatory activities and their ability to modulate estrogen metabolism. The pure compounds, liquiritigenin (LigF), its chalcone isomer isoliquiritigenin (LigC), and the GI specific licochalcone A (LicA) were also tested. The licorice extracts and compounds were evaluated for anti-inflammatory activity by measuring inhibition of iNOS activity in macrophage cells: GI > GG > GU and LigC ≅ LicA > LigF. The Michael acceptor chalcone LicA, is likely responsible for the anti-inflammatory activity of GI. A sensitive LC-MS/MS assay was employed to quantify estrogen metabolism by measuring 2-MeOE1 as non-toxic and 4-MeOE1 as genotoxic biomarkers in the non-tumorigenic human mammary epithelial cell line, MCF-10A. GG, GU, and LigC increased 4-MeOE1, whereas GI and LicA inhibited 2- and 4-MeOE1 levels. GG, GU (5 μg/mL), and LigC (1 μM) also enhanced P450 1B1 expression and activities, which was further increased by inflammatory cytokines (TNF-α and IFN-γ). LicA (1 μM, 10 μM) decreased cytokine- and TCDD-induced, P450 1B1 gene expression and TCDD-induced xenobiotic response element luciferase reporter (IC50=12.3 μM), suggesting an antagonistic effect on the aryl hydrocarbon receptor, which regulates P450 1B1. Similarly, GI (5 μg/mL) reduced cytokine- and TCDD-induced P450 1B1 gene expression. Collectively, these data suggest that of the three licorice species that are used in botanical supplements, GI represents the most promising chemopreventive licorice extract for women’s health. Additionally

  7. The 987P fimbrial gene cluster of enterotoxigenic Escherichia coli is plasmid encoded.

    PubMed Central

    Schifferli, D M; Beachey, E H; Taylor, R K

    1990-01-01

    A clone containing the 987P fimbrial gene cluster was selected from a cosmid library of total DNA of the prototype Escherichia coli strain 987 by using 987P-specific antiserum. A subclone of 12 kilobases containing all of the genes required for fimbrial expression on a nonfimbriated K-12 strain of E. coli and a DNA fragment internal to the fimbrial subunit gene were used to probe the prototype strain and various isolates of 987P-fimbriated enterotoxigenic E. coli. All strains had several plasmids, as shown by agarose gel electrophoresis, and each of five strains which expressed 987P fimbriae showed a plasmid of 35 to 40 megadaltons (MDa) hybridizing to both 987P-specific probes. Hybridization to restricted DNA of strain 987 supported a plasmid origin for the cloned 987P gene cluster. Moreover, an isogenic strain which had lost its 35-MDa plasmid was no longer capable of synthesizing fimbrial subunits, but regained fimbrial expression after reintroduction of the TnphoA (Tn5 IS50L::phoA)-tagged 35-MDa plasmid. Absence of fimbrial subunit synthesis in K-12 strains transformed with the 35-MDa plasmid alone suggested the requirement of regulatory elements existing in strain 987 but missing in K-12 strains. A probe for the heat-stable enterotoxin STIa hybridized in each of the 987P-fimbriated strains to the plasmid containing the 987P genes and in most of these strains to an additional plasmid which contained the gene for the heat-stable enterotoxin STII. Occurrence of the 987P and STIa genes on the same replicon correlates with epidemiological observations, STIa being the most prevalent toxin produced by 987P-fimbriated E. coli. Images PMID:1967167

  8. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    PubMed

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  9. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    PubMed Central

    Kaipainen, Arja; Greene, Emily R.; Huang, Sui

    2010-01-01

    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed. PMID:20941528

  10. Deletion of P399{sub E}401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flueck, Christa E., E-mail: christa.flueck@dkf.unibe.ch; Mallet, Delphine; Hofer, Gaby

    2011-09-09

    Highlights: {yields} Mutations in human POR cause congenital adrenal hyperplasia. {yields} We are reporting a novel 3 amino acid deletion mutation in POR P399{sub E}401del. {yields} POR mutation P399{sub E}401del decreased P450 activities by 60-85%. {yields} Impairment of steroid metabolism may be caused by multiple hits. {yields} Severity of aromatase inhibition is related to degree of in utero virilization. -- Abstract: P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399{sub E}401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant PORmore » proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399{sub E}401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17{alpha}-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399{sub E}401 revealed reduced stability and flexibility of the mutant. In conclusion, P399{sub E}401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399{sub E}401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.« less

  11. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    PubMed

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  12. Distribution of genetic polymorphisms of genes encoding drug metabolizing enzymes & drug transporters - a review with Indian perspective.

    PubMed

    Umamaheswaran, Gurusamy; Kumar, Dhakchinamoorthi Krishna; Adithan, Chandrasekaran

    2014-01-01

    Phase I and II drug metabolizing enzymes (DME) and drug transporters are involved in the absorption, distribution, metabolism as well as elimination of many therapeutic agents, toxins and various pollutants. Presence of genetic polymorphisms in genes encoding these proteins has been associated with marked inter-individual variability in their activity that could result in variation in drug response, toxicity as well as in disease predisposition. The emergent field pharmacogenetics and pharmacogenomics (PGx) is a promising discipline, as it predicts disease risk, selection of proper medication with regard to response and toxicity, and appropriate drug dosage guidance based on an individual's genetic make-up. Consequently, genetic variations are essential to understand the ethnic differences in disease occurrence, development, prognosis, therapeutic response and toxicity. For that reason, it is necessary to establish the normative frequency of these genes in a particular population before unraveling the genotype-phenotype associations. Although a fair amount of allele frequency data are available in Indian populations, the existing pharmacogenetic data have not been compiled into a database. This review was intended to compile the normative frequency distribution of the variants of genes encoding DMEs (CYP450s, TPMT, GSTs, COMT, SULT1A1, NAT2 and UGTs) and transporter proteins (MDR1, OCT1 and SLCO1B1) with Indian perspective.

  13. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  14. RNA interference of NADPH-cytochrome P450 reductase of the rice brown planthopper, Nilaparvata lugens, increases susceptibility to insecticides.

    PubMed

    Liu, Su; Liang, Qing-Mei; Zhou, Wen-Wu; Jiang, Yan-Dong; Zhu, Qing-Zi; Yu, Hang; Zhang, Chuan-Xi; Gurr, Geoff M; Zhu, Zeng-Rong

    2015-01-01

    NADPH-cytochrome P450 reductase (CPR) is essential for numerous biological reactions catalysed by microsomal cytochrome P450 monooxygenases (P450s). Knockdown of CPR in several insects leads to developmental defects and increased susceptibility to insecticides. However, information about the role of CPR in the brown planthopper, Nilaparvata lugens, is still unavailable. A full-length cDNA encoding CPR was cloned from N. lugens (NlCPR). The deduced amino acid sequence showed marked features of classical CPRs, such as an N-terminus membrane anchor, conserved domains for flavin mononucleotide, flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate binding, as well as an FAD-binding motif and catalytic residues. Phylogenetic analysis revealed that NlCPR was located in a branch along with bed bug and pea aphid hemipteran insects. NlCPR mRNA was detectable in all tissues and developmental stages of N. lugens, as determined by real-time quantitative PCR. NlCPR transcripts were most abundant in the abdomen in adults, and in first-instar nymphs. Injection of N. lugens with double-strand RNA (dsRNA) against NlCPR significantly reduced the transcription level of the mRNA, and silencing of NlCPR resulted in increased susceptibility in N. lugens to beta-cypermethrin and imidacloprid. The results provide first evidence that NlCPR contributes to the susceptibility to beta-cypermethrin and imidacloprid in N. lugens. © 2014 Society of Chemical Industry.

  15. Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway

    PubMed Central

    Baumann, Sascha; Sander, Adrianne; Gurnon, James R.; Yanai-Balser, Giane; VanEtten, James L.; Piotrowski, Markus

    2007-01-01

    Two genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+- binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa. Together with the previously known virus genes encoding ornithine/arginine decarboxlyase (ODC/ADC) and homospermidine synthase, the chloroviruses have genes that encode a complete set of functional enzymes that synthesize the rare polyamine homospermidine from arginine via agmatine, N-carbamoylputrescine and putrescine. The PBCV-1 aih and cpa genes are expressed early during virus infection together with the odc/adc gene, suggesting that biosynthesis of putrescine is important in early stages of viral replication. The aih and cpa genes are widespread in the chlorella viruses. PMID:17101165

  16. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.).

    PubMed

    Li, Xiuxia; Li, Ran; Zhu, Bin; Gao, Xiwu; Liang, Pei

    2018-06-01

    The diamondback moth Plutella xylostella (L.) is the most widely distributed pest of cruciferous crops and has developed resistance to most commonly used insecticides, including chlorantraniliprole. Resistance to chlorantraniliprole is likely caused by mutations of the target, the ryanodine receptor, and/or mediated by an increase in detoxification enzyme activities. Although target-site resistance is documented in detail, resistance mediated by increased metabolism has rarely been reported. The activity of cytochrome P450 was significantly higher in two resistant P. xylostella populations than in a susceptible one. Among ten detected cytochrome P450 genes, CYP6BG1 was significantly overexpressed (over 80-fold) in a field-resistant population compared with expression in a susceptible one. Knockdown of CYP6BG1 by RNA interference dramatically reduced the 7-ethoxycoumarin-O-deethylase (7-ECOD) activity of P450 by 45.5% and increased the toxicity of chlorantraniliprole toward P. xylostella by 26.8% at 48 h postinjection of double-stranded RNA. By contrast, overexpression of CYP6BG1 in a transgenic Drosophila melanogaster line significantly decreased the toxicity of the insecticide to the transgenic flies. Overexpression of CYP6BG1 may contribute to chlorantraniliprole resistance in P. xylostella. Our findings will provide new insights into the mechanisms of resistance to diamide insecticides in other insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. N-Heterocyclic Carbene Capture by Cytochrome P450 3A4

    PubMed Central

    Jennings, Gareth K.; Ritchie, Caroline M.; Shock, Lisa S.; Lyons, Charles E.

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH <7.4, the spectra are definitively type I, whereas at pH ≥7.4 the spectra have split Soret bands, including a red-shifted component characteristic of a P450-carbene complex. Variable-pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development. PMID:27126611

  18. Water Oxidation by a Cytochrome P450: Mechanism and Function of the Reaction

    PubMed Central

    Prasad, Brinda; Mah, Derrick J.; Lewis, Andrew R.; Plettner, Erika

    2013-01-01

    P450cam (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450cam catalysis is controlled by oxygen levels: at high O2 concentration, P450cam catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using 17O and 2H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450cam, and we present a plausible mechanism that accounts for the 1∶1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450cam and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce. PMID:23634216

  19. WhichP450: a multi-class categorical model to predict the major metabolising CYP450 isoform for a compound

    NASA Astrophysics Data System (ADS)

    Hunt, Peter A.; Segall, Matthew D.; Tyzack, Jonathan D.

    2018-02-01

    In the development of novel pharmaceuticals, the knowledge of how many, and which, Cytochrome P450 isoforms are involved in the phase I metabolism of a compound is important. Potential problems can arise if a compound is metabolised predominantly by a single isoform in terms of drug-drug interactions or genetic polymorphisms that would lead to variations in exposure in the general population. Combined with models of regioselectivities of metabolism by each isoform, such a model would also aid in the prediction of the metabolites likely to be formed by P450-mediated metabolism. We describe the generation of a multi-class random forest model to predict which, out of a list of the seven leading Cytochrome P450 isoforms, would be the major metabolising isoforms for a novel compound. The model has a 76% success rate with a top-1 criterion and an 88% success rate for a top-2 criterion and shows significant enrichment over randomised models.

  20. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Juan P.; Chapman, Laura M.; Kretschmer, Xiomara C.

    2006-10-15

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ micemore » and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16{alpha}-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females.« less

  1. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice

    PubMed Central

    Hernandez, Juan P.; Chapman, Laura M.; Kretschmer, Xiomara C.; Baldwin, William S.

    2007-01-01

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ mice and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16α-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females. PMID:16828826

  2. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.

    PubMed

    Gray, Joshua P; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A

    2016-11-16

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H 2 O 2 . Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. NAD(P)H-dependent Quinone Oxidoreductase 1 (NQO1) and Cytochrome P450 Oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells

    PubMed Central

    Gray, Joshua P.; Karandrea, Shpetim; Burgos, Delaine Zayasbazan; Jaiswal, Anil A; Heart, Emma A.

    2017-01-01

    NQO1 (NAD(P)H-quinone oxidoreductase 1) reduces quinones and xenobiotics to less-reactive compounds via 2-electron reduction, one feature responsible for the role of NQO1 in antioxidant defense in several tissues. In contrast, NADPH cytochrome P450 oxidoreductase (CYP450OR), catalyzes the 1-electron reduction of quinones and xenobiotics, resulting in enhanced superoxide formation. However, to date, the roles of NQO1 and CYP450OR in pancreatic β-cell metabolism under basal conditions and oxidant challenge have not been characterized. Using NQO1 inhibition, over-expression and knock out, we have demonstrated that, in addition to protection of β-cells from toxic concentrations of the redox cycling quinone menadione, NQO1 also regulates the basal level of reduced-to-oxidized nucleotides, suggesting other role(s) beside that of an antioxidant enzyme. In contrast, over-expression of NADPH cytochrome P450 oxidoreductase (CYP450OR) resulted in enhanced redox cycling activity and decreased cellular viability, consistent with the enhanced generation of superoxide and H2O2. Basal expression of NQO1 and CYP450OR was comparable in isolated islets and liver. However, NQO1, but not CYP450OR, was strongly induced in β-cells exposed to menadione. NQO1 and CYP450OR exhibited a reciprocal preference for reducing equivalents in β-cells: while CYP450OR preferentially utilized NADPH, NQO1 primarily utilized NADH. Together, these results demonstrate that NQO1 and CYP450OR reciprocally regulate oxidant metabolism in pancreatic β-cells. PMID:27558805

  4. Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunxue; Pallan, Pradeep S.; Zhang, Wei

    Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12more » variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37–13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C–H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.« less

  5. Effects of TCDD on the Expression of Nuclear Encoded Mitochondrial Genes

    PubMed Central

    Forgacs, Agnes L.; Burgoon, Lyle D.; Lynn, Scott G.; LaPres, John J.; Zacharewski, Timothy

    2014-01-01

    Generation of mitochondrial reactive oxygen species (ROS) can be perturbed following exposure to environmental chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reports indicate that the aryl hydrocarbon receptor (AhR) mediates TCDD-induced sustained hepatic oxidative stress by decreasing hepatic ATP levels and through hyperpolarization of the inner mitochondrial membrane. To further elucidate the effects of TCDD on the mitochondria, high-throughput quantitative real-time PCR (HTP-QRTPCR) was used to evaluate the expression of 90 genes encoding mitochondrial proteins involved in electron transport, oxidative phosphorylation, uncoupling, and associated chaperones. HTP-QRTPCR analysis of time course (30 μg/kg TCDD at 2, 4, 8, 12, 18, 24, 72, and 168 hrs) liver samples obtained from orally gavaged immature, ovariectomized C57BL/6 mice identified 54 differentially expressed genes (|fold change|>1.5 and P-value <0.1). Of these, 8 exhibited a dose response (0.03 to 300 μg/kg TCDD) at 4, 24 or 72 hrs. Dose responsive genes encoded proteins associated with electron transport chain (ETC) complex I (NADH dehydrogenase), III (cytochrome c reductase), IV (cytochrome c oxidase), and V (ATP synthase) and could be generally categorized as having proton gradient, ATP synthesis, and chaperone activities. In contrast, transcript levels of ETC complex II, succinate dehydrogenase, remained unchanged. Putative dioxin response elements were computationally found in the promoter regions of the 8 dose-responsive genes. This high-throughput approach suggests that TCDD alters the expression of genes associated with mitochondrial function which may contribute to TCDD-elicited mitochondrial toxicity. PMID:20399798

  6. Reduction of aromatic and heterocyclic aromatic N-hydroxylamines by human cytochrome P450 2S1.

    PubMed

    Wang, Kai; Guengerich, F Peter

    2013-06-17

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals, and there is also strong evidence of some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anticancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions [Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740-1751]. In the study presented here, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs.

  7. Reduction of Aromatic and Heterocyclic Aromatic N-Hydroxylamines by Human Cytochrome P450 2S1

    PubMed Central

    Wang, Kai; Guengerich, F. Peter

    2013-01-01

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals and there is also strong evidence for some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anti-cancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions (Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740–1751). In the present study, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs. PMID:23682735

  8. Human cytochrome P450scc (CYP11A1) catalyzes epoxide formation with ergosterol.

    PubMed

    Tuckey, Robert C; Nguyen, Minh N; Chen, Jianjun; Slominski, Andrzej T; Baldisseri, Donna M; Tieu, Elaine W; Zjawiony, Jordan K; Li, Wei

    2012-03-01

    Cytochrome P450scc (P450scc) catalyzes the cleavage of the side chain of both cholesterol and the vitamin D(3) precursor, 7-dehydrocholesterol. The aim of this study was to test the ability of human P450scc to metabolize ergosterol, the vitamin D(2) precursor, and define the structure of the major products. P450scc incorporated into the bilayer of phospholipid vesicles converted ergosterol to two major and four minor products with a k(cat) of 53 mol · min(-1) · mol P450scc(-1) and a K(m) of 0.18 mol ergosterol/mol phospholipid, similar to the values observed for cholesterol metabolism. The reaction of ergosterol with P450scc was scaled up to make enough of the two major products for structural analysis. From mass spectrometry, NMR, and comparison of the NMR data to that for similar molecules, we determined the structures of the two major products as 20-hydroxy-22,23-epoxy-22,23-dihydroergosterol and 22-keto-23-hydroxy-22,23-dihydroergosterol. Molecular modeling and nuclear Overhauser effect (or enhancement) spectroscopy spectra analysis helped to establish the configurations at C20, C22, and C23 and determine the final structures of major products as 22R,23S-epoxyergosta-5,7-diene-3β,20α-diol and 3β,23S-dihydroxyergosta-5,7-dien-22-one. It is likely that the formation of the second product is through a 22,23-epoxy (oxirane) intermediate followed by C22 hydroxylation with the formation of strained 22-hydroxy-22,23-epoxide (oxiranol), which is immediately transformed to the more stable α-hydroxyketone. Molecular modeling of ergosterol into the P450scc crystal structure positioned the ergosterol side chain consistent with formation of the above products. Thus, we have shown that P450scc efficiently catalyzes epoxide formation with ergosterol giving rise to novel epoxy, hydroxy, and keto derivatives, without causing cleavage of the side chain.

  9. Genes encoding giant danio and golden shiner ependymin.

    PubMed

    Adams, D S; Kiyokawa, M; Getman, M E; Shashoua, V E

    1996-03-01

    Ependymin (EPN) is a brain glycoprotein that functions as a neurotrophic factor in optic nerve regeneration and long-term memory consolidation in goldfish. To date, true epn genes have been characterized in one order of teleost fish, Cypriniformes. In the study presented here, polymerase chain reactions were used to analyze the complete epn genes, gd (1480 bp), and sh (2071 bp), from Cypriniformes giant danio and shiner, respectively. Southern hybridizations demonstrated the existence of one copy of each gene per corresponding haploid genome. Each gene was found to contain six exons and five introns. Gene gd encodes a predicted 218-amino acid (aa) protein GD 93 percent conserved to goldfish EPN, while sh encodes a predicted 214-aa protein SH 91 percent homologous to goldfish. Evidence is presented classifying proteins previously termed "EPNs" into two major categories: true EPNs and non-EPN cerebrospinal fluid glycoproteins. Proteins GD and SH contain all the hallmark, features of true EPNs.

  10. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pechurskaya, Tatiana A.; Harnastai, Ivan N.; Grabovec, Irina P.

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major rolemore » in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.« less

  11. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals

    PubMed Central

    2015-01-01

    Analyzing the literature resources used in our previous reports, we calculated the fractions of the oxidoreductase enzymes FMO (microsomal flavin-containing monooxygenase), AKR (aldo-keto reductase), MAO (monoamine oxidase), and cytochrome P450 participating in metabolic reactions. The calculations show that the fractions of P450s involved in the metabolism of all chemicals (general chemicals, natural, and physiological compounds, and drugs) are rather consistent in the findings that >90% of enzymatic reactions are catalyzed by P450s. Regarding drug metabolism, three-fourths of the human P450 reactions can be accounted for by a set of five P450s: 1A2, 2C9, 2C19, 2D6, and 3A4, and the largest fraction of the P450 reactions is catalyzed by P450 3A enzymes. P450 3A4 participation in metabolic reactions of drugs varied from 13% for general chemicals to 27% for drugs. PMID:25485457

  12. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    PubMed

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.

    PubMed

    Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi

    2013-12-01

    Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.

  14. Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants.

    PubMed

    Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle

    2017-08-01

    Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Role of cytochrome P450 genes in breast cancer etiology and treatment: effects on estrogen biosynthesis, metabolism, and response to endocrine therapy.

    PubMed

    Blackburn, Heather L; Ellsworth, Darrell L; Shriver, Craig D; Ellsworth, Rachel E

    2015-03-01

    The cytochrome P450 (CYP) genes are oxygenases involved in estrogen biosynthesis and metabolism, generation of DNA damaging procarcinogens, and response to anti-estrogen therapies. Since lifetime estrogen exposure is an established risk factor for breast cancer, determining the role of CYP genes in breast cancer etiology may provide critical information for understanding tumorigenesis and response to treatment. This review summarizes literature available in PubMed published between 1993 and 2013 that focuses on studies evaluating the effects of DNA variants in CYP genes on estrogen synthesis, metabolism, and generation of procarcinogens in addition to response to anti-estrogen therapies. Evaluation of DNA variants in estrogen metabolism genes was largely inconclusive. Meta-analyses of data from CYP19A1 support an association between the number of (TTTA) n repeats in intron 4 and breast cancer risk, but the biological mechanism for this relationship is unknown. Associations between single nucleotide polymorphism in CYP1B1 and DNA damage caused by procarcinogenic estrogen metabolites were ambiguous. Variants in CYP2D6 are associated with altered metabolism tamoxifen; however, current data do not support widespread clinical testing. The effect of variants in CYP19A1 in response to aromatase inhibitors is also questionable. Evaluation of DNA variants in CYP genes involved with estrogen metabolism or treatment response has been inconclusive, reflecting small samples sizes, tumor heterogeneity, and differences between populations. Better-powered studies that account for genetic backgrounds and tumor phenotypes are thus necessary.

  16. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae.

    PubMed

    Edi, Constant V; Djogbénou, Luc; Jenkins, Adam M; Regna, Kimberly; Muskavitch, Marc A T; Poupardin, Rodolphe; Jones, Christopher M; Essandoh, John; Kétoh, Guillaume K; Paine, Mark J I; Koudou, Benjamin G; Donnelly, Martin J; Ranson, Hilary; Weetman, David

    2014-03-01

    Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with

  17. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus.

    PubMed

    Zimmer, Christoph T; Bass, Chris; Williamson, Martin S; Kaussmann, Martin; Wölfel, Katharina; Gutbrod, Oliver; Nauen, Ralf

    2014-02-01

    The pollen beetle (Meligethes aeneus F.) is widespread throughout much of Europe where it is a major coleopteran pest of oilseed rape (Brassica napus). The reliance on synthetic insecticides for control, particularly the pyrethroid class, has led to the development of populations with high levels of resistance. Resistance to pyrethroids is now widespread throughout Europe and is thought to be mediated by enhanced detoxification by cytochrome P450ś and/or mutation of the pyrethroid target-site, the voltage-gated sodium channel. However, in the case of cytochrome P450 mediated detoxification, the specific enzyme(s) involved has (have) not yet been identified. In this study a degenerate PCR approach was used to identify ten partial P450 gene sequences from pollen beetle. Quantitative PCR was then used to examine the level of expression of these genes in a range of pollen beetle populations that showed differing levels of resistance to pyrethroids in bioassays. The study revealed a single P450 gene, CYP6BQ23, which is significantly and highly overexpressed (up to ∼900-fold) in adults and larvae of pyrethroid resistant strains compared to susceptible strains. CYP6BQ23 overexpression is significantly correlated with both the level of resistance and with the rate of deltamethrin metabolism in microsomal preparations of these populations. Functional recombinant expression of full length CYP6BQ23 along with cytochrome P450 reductase in an insect (Sf9) cell line showed that it is able to efficiently metabolise deltamethrin to 4-hydroxy deltamethrin. Furthermore we demonstrated by detection of 4-hydroxy tau-fluvalinate using ESI-TOF MS/MS that functionally expressed CYP6BQ23 also metabolizes tau-fluvalinate. A protein model was generated and subsequent docking simulations revealed the predicted substrate-binding mode of both deltamethrin and tau-fluvalinate to CYP6BQ23. Taken together these results strongly suggest that the overexpression of CYP6BQ23 is the primary

  18. Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Chuanwu; Panda, Satya P.; Marohnic, Christopher C.

    2012-03-15

    NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure ofmore » human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.« less

  19. Transcriptome profiling of the whitefly Bemisia tabaci reveals stage-specific gene expression signatures for thiamethoxam resistance

    PubMed Central

    Yang, N; Xie, W; Jones, CM; Bass, C; Jiao, X; Yang, X; Liu, B; Li, R; Zhang, Y

    2013-01-01

    Bemisia tabaci has developed high levels of resistance to many insecticides including the neonicotinoids and there is strong evidence that for some compounds resistance is stage-specific. To investigate the molecular basis of B. tabaci resistance to the neonicotinoid thiamethoxam we used a custom whitefly microarray to compare gene expression in the egg, nymph and adult stages of a thiamethoxam-resistant strain (TH-R) with a susceptible strain (TH-S). Gene ontology and bioinformatic analyses revealed that in all life stages many of the differentially expressed transcripts encoded enzymes involved in metabolic processes and/or metabolism of xenobiotics. Several of these are candidate resistance genes and include the cytochrome P450 CYP6CM1, which has been shown to confer resistance to several neonicotinoids previously, a P450 belonging to the Cytochrome P450s 4 family and a glutathione S-transferase (GST) belonging to the sigma class. Finally several ATP-binding cassette transporters of the ABCG subfamily were highly over-expressed in the adult stage of the TH-R strain and may play a role in resistance by active efflux. Here, we evaluated both common and stage-specific gene expression signatures and identified several candidate resistance genes that may underlie B. tabaci resistance to thiamethoxam. PMID:23889345

  20. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins

    PubMed Central

    2011-01-01

    Abstract Background Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway. Results One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388). A de novo assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons), 12, 649 (52.6%) of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10). All unique sequences were compared with NCBI expressed sequence tags (ESTs) (237) and encoding sequences (44) from the Bupleurum genus, and with a Sanger-sequenced EST dataset (3, 111). The 23, 173 (96.4%) unique sequences obtained in the present study represent novel Bupleurum genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (P450s) and 102 glycosyltransferases (GTs) unique sequences were also found in the 454 dataset. Full length cDNAs of 7 P450s and 7 uridine diphosphate GTs (UGTs) were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two P450s and three UGTs were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with β-AS in methyl jasmonate-treated adventitious roots and on their similar expression patterns with β-AS in various B. chinense tissues. Conclusions A collection of high

  1. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  2. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    PubMed

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  3. Characterization of a TOL-like plasmid from Alcaligenes eutrophus that controls expression of a chromosomally encoded p-cresol pathway.

    PubMed Central

    Hughes, E J; Bayly, R C; Skurray, R A

    1984-01-01

    Alcaligenes eutrophus wild-type strain 345 metabolizes m- and p-toluate via a catechol meta-cleavage pathway. DNA analysis, curing studies, and transfer of this phenotype by conjugation and transformation showed that the degradative genes are encoded on a self-transmissible 85-kilobase plasmid, pRA1000. HindIII and XhoI restriction endonuclease analysis of pRA1000 showed it to be similar to the archetypal TOL plasmid, pWWO, differing in the case of HindIII only by the absence of fragments B and D present in pWWO. In strain 345, the presence of pRA1000 prevented the expression of chromosomally encoded enzymes required for the degradation of p-cresol, whereas these enzymes were expressed in strains cured of pRA1000. On the basis of studies with an R68.45-pRA1000 cointegrate plasmid, pRA1001, we conclude that the gene(s) responsible for the effect of p-cresol degradation resides within or near the m- and p-toluate degradative region on pRA1000. Images PMID:6325399

  4. Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines.

    PubMed

    Macé, K; Aguilar, F; Wang, J S; Vautravers, P; Gómez-Lechón, M; Gonzalez, F J; Groopman, J; Harris, C C; Pfeifer, A M

    1997-07-01

    Epidemiological evidence has been supporting a relationship between dietary aflatoxin B1 (AFB1) exposure, development of human primary hepatocellular carcinoma (HCC) and mutations in the p53 tumor suppressor gene. However, the correlation between the observed p53 mutations, the AFB1 DNA adducts and their activation pathways has not been elucidated. Development of relevant cellular in vitro models, taking into account species and tissue specificity, could significantly contribute to the knowledge of cytotoxicity and genotoxicity mechanisms of chemical procarcinogens, such as AFB1, in humans. For this purpose a non-tumorigenic SV40-immortalized human liver epithelial cell line (THLE cells) which retained most of the phase II enzymes, but had markedly reduced phase I activities was used for stable expression of the human CYP1A2, CYP2A6, CYP2B6 and CYP3A4 cDNA. The four genetically engineered cell lines (T5-1A2, T5-2A6, T5-2B6 and T5-3A4) produced high levels of the specific CYP450 proteins and showed comparable or higher catalytic activities related to the CYP450 expression when compared to human hepatocytes. The T5-1A2, T5-2A6, T5-2B6 and T5-3A4 cell lines exhibited a very high sensitivity to the cytotoxic effects of AFB1 and were approximately 125-, 2-, 2- and 15-fold, respectively, more sensitive than the control T5-neo cells, transfected with an expressing vector which does not contain CYP450 cDNA. In the CYP450-expressing cells, nanomolar doses of AFB1-induced DNA adduct formation including AFB1-N7-guanine, -pyrimidyl and -diol adducts. In addition, the T5-1A2 cells showed AFM1-DNA adducts. At similar levels of total DNA adducts, both the T5-1A2 and T5-3A4 cells showed, at codon 249 of the p53 gene, AGG to AGT transversions at a relative frequency of 15x10(-6). In contrast, only the T5-3A4 cells showed CCC to ACC transversion at codon 250 at a high frequency, whereas the second most frequent mutations found in the T5-1A2 cells were C to T transitions at the first

  5. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa

    PubMed Central

    2013-01-01

    Background Cytochrome P450 3A5 (CYP3A5) is an enzyme involved in the metabolism of many therapeutic drugs. CYP3A5 expression levels vary between individuals and populations, and this contributes to adverse clinical outcomes. Variable expression is largely attributed to four alleles, CYP3A5*1 (expresser allele); CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272) and CYP3A5*7 (rs41303343) (low/non-expresser alleles). Little is known about CYP3A5 variability in Africa, a region with considerable genetic diversity. Here we used a multi-disciplinary approach to characterize CYP3A5 variation in geographically and ethnically diverse populations from in and around Africa, and infer the evolutionary processes that have shaped patterns of diversity in this gene. We genotyped 2538 individuals from 36 diverse populations in and around Africa for common low/non-expresser CYP3A5 alleles, and re-sequenced the CYP3A5 gene in five Ethiopian ethnic groups. We estimated the ages of low/non-expresser CYP3A5 alleles using a linked microsatellite and assuming a step-wise mutation model of evolution. Finally, we examined a hypothesis that CYP3A5 is important in salt retention adaptation by performing correlations with ecological data relating to aridity for the present day, 10,000 and 50,000 years ago. Results We estimate that ~43% of individuals within our African dataset express CYP3A5, which is lower than previous independent estimates for the region. We found significant intra-African variability in CYP3A5 expression phenotypes. Within Africa the highest frequencies of high-activity alleles were observed in equatorial and Niger-Congo speaking populations. Ethiopian allele frequencies were intermediate between those of other sub-Saharan African and non-African groups. Re-sequencing of CYP3A5 identified few additional variants likely to affect CYP3A5 expression. We estimate the ages of CYP3A5*3 as ~76,400 years and CYP3A5*6 as ~218,400 years. Finally we report that global CYP3A5 expression

  6. Cytochrome P450 3A4 activity after surgical stress.

    PubMed

    Haas, Curtis E; Kaufman, David C; Jones, Carolyn E; Burstein, Aaron H; Reiss, William

    2003-05-01

    To evaluate the relationship between the acute inflammatory response after surgical trauma and changes in hepatic cytochrome P450 3A4 activity, compare changes in cytochrome P450 3A4 activity after procedures with varying degrees of surgical stress, and to explore the time course of any potential drug-cytokine interaction after surgery. Prospective, open-label study with each patient serving as his or her own control. University-affiliated, acute care, general hospital. A total of 16 patients scheduled for elective repair of an abdominal aortic aneurysm (n = 5), complete or partial colectomy (n = 6), or peripheral vascular surgery with graft (n = 5). Cytochrome P450 3A4 activity was estimated using the carbon-14 [14C]erythromycin breath test (ERMBT) before surgery and 24, 48, and 72 hrs after surgery. Abdominal aortic aneurysm and colectomy patients also had an ERMBT performed at discharge. Blood samples were obtained before surgery, immediately after surgery, and 6, 24, 32, 48, and 72 hrs after surgery for determination of plasma concentrations of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha. Clinical markers of surgical stress that were collected included duration of surgery, estimated blood loss, and volume of fluids administered in the operating room. ERMBT results significantly declined in all three surgical groups, with the lowest value at the time of the 72-hr study in all three groups. There was a trend toward differences in ERMBT results among groups that did not reach statistical significance (p =.06). The nadir ERMBT result was significantly and negatively correlated with both peak interleukin-6 concentration (r(s) = -.541, p =.03) and log interleukin-6 area under the curve from 0 to 72 hrs (r(s) = -.597, p =.014). Subjects with a peak interleukin-6 of >100 pg/mL had a significantly lower nadir ERMBT compared with subjects with a peak interleukin-6 of <100 pg/mL (35.5% +/- 5.2% vs. 74.7% +/- 5.1%, p <.001). Acute inflammation after

  7. NLX-P101, an adeno-associated virus gene therapy encoding glutamic acid decarboxylase, for the potential treatment of Parkinson's disease.

    PubMed

    Diaz-Nido, Javier

    2010-07-01

    Parkinson's disease (PD) is a neurodegenerative disease affecting nigrostriatal dopaminergic neurons. Dopamine depletion in the striatum leads to functional changes in several deep brain nuclei, including the subthalamic nucleus (STN), which becomes disinhibited and perturbs the control of body movement. Although there is no cure for PD, some pharmacological and surgical treatments can significantly improve the functional ability of patients, particularly in the early stages of the disease. Among neurodegenerative diseases, PD is a particularly suitable target for gene therapy because the neuropathology is largely confined to a relatively small region of the brain. Neurologix Inc is developing NLX-P101 (AAV2-GAD), an adeno-associated viral vector encoding glutamic acid decarboxylase (GAD), for the potential therapy of PD. As GAD potentiates inhibitory neurotransmission from the STN, sustained expression of GAD in the STN by direct delivery of NLX-P101 decreases STN overactivation. This procedure was demonstrated to be a safe and efficient method of reducing motor deficits in animal models of PD. A phase I clinical trial has demonstrated that NLX-P101 was safe and indicated the efficacy of this approach in patients with PD. Results from an ongoing phase II clinical trial of NLX-P101 are awaited to establish the clinical efficacy of this gene therapy.

  8. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  9. Structural features of cytochromes P450 and ligands that affect drug metabolism as revealed by X-ray crystallography and NMR.

    PubMed

    Gay, Sean C; Roberts, Arthur G; Halpert, James R

    2010-09-01

    Cytochromes P450 (P450s) play a major role in the clearance of drugs, toxins, and environmental pollutants. Additionally, metabolism by P450s can result in toxic or carcinogenic products. The metabolism of pharmaceuticals by P450s is a major concern during the design of new drug candidates. Determining the interactions between P450s and compounds of very diverse structures is complicated by the variability in P450-ligand interactions. Understanding the protein structural elements and the chemical attributes of ligands that dictate their orientation in the P450 active site will aid in the development of effective and safe therapeutic agents. The goal of this review is to describe P450-ligand interactions from two perspectives. The first is the various structural elements that microsomal P450s have at their disposal to assume the different conformations observed in X-ray crystal structures. The second is P450-ligand dynamics analyzed by NMR relaxation studies.

  10. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    PubMed

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-09-01

    Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

  11. Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of pseudomonas aeruginosa.

    PubMed

    Adewoye, L O; Worobec, E A

    2000-08-08

    The Pseudomonas aeruginosa oprB gene encodes the carbohydrate-selective OprB porin, which translocates substrate molecules across the outer membrane to the periplasmic glucose-binding protein. We identified and cloned two open reading frames (ORFs) flanking the oprB gene but are not in operonic arrangement with the oprB gene. The downstream ORF encodes a putative polypeptide homologous to members of a family of transcriptional repressors, whereas the oprB gene is preceded by an ORF encoding a putative product, which exhibits strong homology to several carbohydrate transport ATP-binding cassette (ABC) proteins. The genomic copy of the upstream ORF was mutagenized by homologous recombination. Analysis of the deletion mutant in comparison with the wild type revealed a significant reduction in [14C] glucose transport activity in the mutant strain, suggesting that this ORF likely encodes the inner membrane component of the glucose ABC transporter. It is thus designated gltK gene to reflect its homology to the Pseudomona fluorescens mtlK and its involvement in the high-affinity glucose transport system. Multiple alignment analysis revealed that the P. aeruginosa gltK gene product is a member of the MalK subfamily of ABC proteins.

  12. Ethylene and Wound-Induced Gene Expression in the Preclimacteric Phase of Ripening Avocado Fruit and Mesocarp Discs.

    PubMed Central

    Starrett, D. A.; Laties, G. G.

    1993-01-01

    Whereas intact postharvest avocado (Persea americana Mill.) fruit may take 1 or more weeks to ripen, ripening is hastened by pulsing fruit for 24 h with ethylene or propylene and is initiated promptly by cutting slices, or discs, of mesocarp tissue. Because the preclimacteric lag period constitutes the extended and variable component of the ripening syndrome, we postulated that selective gene expression during the lag period leads to the triggering of the climacteric. Accordingly, we sought to identify genes that are expressed gradually in the course of the lag period in intact fruit, are turned on sooner in response to a pulse, and are induced promptly in response to wounding (i.e. slicing). To this end, a mixed cDNA library was constructed from mRNA from untreated fruit, pulsed fruit, and aged slices, and the library was screened for genes induced by wounding or by pulsing and/or wounding. The time course of induction of genes encoding selected clones was established by probing northern blots of mRNA from tissues variously treated over a period of time. Four previously identified ripening-associated genes encoding cellulase, polygalacturonase (PG), cytochrome P-450 oxidase (P-450), and ethylene-forming enzyme (EFE, or 1-aminocyclopropane-1-carboxylic acid synthase), respectively, were studied in the same way. Whereas cellulase, PG, and EFE were ruled out as having a role in the initiation of the climacteric, the time course of P-450 induction, as well as the response of same to pulsing and wounding met the criteria[mdash]together with several clones from the mixed library[mdash]for a gene potentially involved in preclimacteric events leading to the onset of the climacteric. Further, it was established that the continuous presence of ethylene is required for persisting induction, and it is suggested that in selected cases wounding may exert a synergistic effect on ethylene action. PMID:12231929

  13. Identification of putative cytochrome P450 monooxygenase genes from the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), and their response to insecticides.

    PubMed

    Liu, Su; Zhang, Yu-Xing; Wang, Wen-Long; Cao, Ye; Li, Shuai; Zhang, Bang-Xian; Li, Shi-Guang

    2018-05-01

    The small white butterfly, Pieris rapae (Lepidoptera: Pieridae), is an important pest on Brassicaceae plants, causing heavy crop loss each year. Cytochrome P450 monooxygenase (CYP) is a superfamily of enzymes involved in the detoxification of various xenobiotic compounds, including insecticides. However, little is known about the role of CYP genes in P. rapae. In this study, we identified 63 CYP genes in P. rapae, and analyzed their phylogenetic relationships, exon-intron structures and genomic locations. Moreover, our insecticide-response transcription profiling showed that LD 5 doses of lambda-cyhalothrin, chlorantraniliprole, and abamectin significantly increased expression of five (CYP4M59, CYP6AE119, CYP6AE120, CYP6AE121, and CYP6BD18), three (CYP4AU1, CYP6AE120, and CYP6AW1), and five (CYP4L40, CYP4AU1, CYP6AE119, CYP6AW1, and CYP6BD19) CYP genes, respectively; and LD 20 doses of the three pesticides significantly upregulated six (CYP4M59, CYP6AE119, CYP6AE120, CYP6AE121, CYP4AU1, and CYP6BD18), six (CYP4G168, CYP4L40, CYP4AU1, CYP6AE120, CYP6AW1, and CYP6BD19), and five (CYP4L40, CYP4AU1, CYP6AB108, CYP6AE119, and CYP6BD19) genes, respectively. When we used LD 50 doses of the three insecticides, we reported significantly elevated expression levels of five (CYP4M59, CYP6AE119, CYP6AE120, CYP6BD17, and CYP6BD18), eight (CYP4G168, CYP4L40, CYP4AU1, CYP6AE120, CYP6AE121, CYP6AW1, CYP6BD18, and CYP6BD19), and six (CYP4L40, CYP4S34, CYP6AB108, CYP6AE119, CYP6AE120, and CYP6BD19) genes, respectively. Our expression analysis also revealed that five (CYP4G168, CYP4G169, CYP4S34, CYP6AW1, and CYP6CT3) and three (CYP4L40, CYP6AN33, and CYP6BD17) CYP genes were mainly expressed in the midgut and fat body, respectively, and one CYP gene (CYP6AE119) in the Malpighian tubules. This is the first large-scale report into the characterization of CYP genes in P. rapae. © 2018 Wiley Periodicals, Inc.

  14. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4.

    PubMed

    Spracklin, D K; Thummel, K E; Kharasch, E D

    1996-09-01

    The anesthetic halothane undergoes extensive oxidative and reductive biotransformation, resulting in metabolites that cause hepatotoxicity. Halothane is reduced anaerobically by cytochrome P450 (P450) to the volatile metabolites 2-chloro-1,1-difluoroethene (CDE) and 2-chloro-1,1,1-trifluoroethane (CTE). The purpose of this investigation was to identify the human P450 isoform(s) responsible for reductive halothane metabolism. CDE and CTE formation from halothane metabolism by human liver microsomes was determined by GC/MS analysis. Halothane metabolism to CDE and CTE under reductive conditions was completely inhibited by carbon monoxide, which implicates exclusively P450 in this reaction. Eadie-Hofstee plots of both CDE and CTE formation were nonlinear, suggesting multiple P450 isoform involvement. Microsomal CDE and CTE formation were each inhibited 40-50% by P450 2A6-selective inhibitors (coumarin and 8-methoxypsoralen) and 55-60% by P450 3A4-selective inhibitors (ketoconazole and troleandomycin). P450 1A-, 2B6-, 2C9/10-, and 2D6-selective inhibitors (7,8-benzoflavone, furafylline, orphenadrine, sulfaphenazole, and quinidine) had no significant effect on reductive halothane metabolism. Measurement of product formation catalyzed by a panel of cDNA-expressed P450 isoforms revealed that maximal rates of CDE formation occurred with P450 2A6, followed by P450 3A4. P450 3A4 was the most effective catalyst of CTE formation. Among a panel of 11 different human livers, there were significant linear correlations between the rate of CDE formation and both 2A6 activity (r = 0.64, p < 0.04) and 3A4 activity (r = 0.64, p < 0.03). Similarly, there were significant linear correlations between CTE formation and both 2A6 activity (r = 0.55, p < 0.08) and 3A4 activity (r = 0.77, p < 0.005). The P450 2E1 inhibitors 4-methylpyrazole and diethyldithiocarbamate inhibited CDE and CTE formation by 20-45% and 40-50%, respectively; however, cDNA-expressed P450 2E1 did not catalyze

  15. Significantly shorter Fe–S bond in cytochrome P450-I is consistent with greater reactivity relative to chloroperoxidase

    DOE PAGES

    Krest, Courtney M.; Silakov, Alexey; Rittle, Jonathan; ...

    2015-08-03

    Cytochrome P450 (P450) and chloroperoxidase (CPO) are thiolate-ligated haem proteins that catalyse the activation of carbon hydrogen bonds. The principal intermediate in these reactions is a ferryl radical species called compound I. P450 compound I (P450-I) is significantly more reactive than CPO-I, which only cleaves activated C–H bonds. In this paper, to provide insight into the differing reactivities of these intermediates, we examined CPO-I and P450-I using variable-temperature Mössbauer and X-ray absorption spectroscopies. These measurements indicate that the Fe–S bond is significantly shorter in P450-I than in CPO-I. This difference in Fe–S bond lengths can be understood in terms ofmore » variations in the hydrogen-bonding patterns within the ‘cys-pocket’ (a portion of the proximal helix that encircles the thiolate ligand). Weaker hydrogen bonding in P450-I results in a shorter Fe–S bond, which enables greater electron donation from the axial thiolate ligand. Finally, this observation may in part explain P450's greater propensity for C–H bond activation.« less

  16. Effects of aging and rifampicin pretreatment on the pharmacokinetics of human cytochrome P450 probes caffeine, warfarin, omeprazole, metoprolol and midazolam in common marmosets genotyped for cytochrome P450 2C19.

    PubMed

    Toda, Akiko; Uehara, Shotaro; Inoue, Takashi; Utoh, Masahiro; Kusama, Takashi; Shimizu, Makiko; Uno, Yasuhiro; Mogi, Masayuki; Sasaki, Erika; Yamazaki, Hiroshi

    2018-07-01

    1. The pharmacokinetics were investigated for human cytochrome P450 probes after single intravenous and oral administrations of 0.20 and 1.0 mg/kg, respectively, of caffeine, warfarin, omeprazole, metoprolol and midazolam to aged (10-14 years old, n = 4) or rifampicin-treated/young (3 years old, n = 3) male common marmosets all genotyped as heterozygous for a cytochrome P450 2C19 variant. 2. Slopes of the plasma concentration-time curves after intravenous administration of warfarin and midazolam were slightly, but significantly (two-way analysis of variance), decreased in aged marmosets compared with young marmosets. The mean hepatic clearances determined by in silico fitting for individual pharmacokinetic models of warfarin and midazolam in the aged group were, respectively, 23% and 56% smaller than those for the young group. 3. Significantly enhanced plasma clearances of caffeine, warfarin, omeprazole and midazolam were evident in young marmosets pretreated with rifampicin (25 mg/kg daily for 4 days). Two- to three-fold increases in hepatic intrinsic clearance values were observed in the individual pharmacokinetic models. 4. The in vivo dispositions of multiple simultaneously administered drugs in old, young and P450-enzyme-induced marmosets were elucidated. The results suggest that common marmosets could be experimental models for aged, induced or polymorphic P450 enzymes in P450-dependent drug metabolism studies.

  17. Transcriptional analysis of four family 4 P450s in a Puerto Rico strain of Aedes aegypti (Diptera: Culicidae) compared with an Orlando strain and their possible functional roles in permethrin resistance.

    PubMed

    Reid, William R; Thornton, Anne; Pridgeon, Julia W; Becnel, James J; Tang, Fang; Estep, Alden; Clark, Gary G; Allan, Sandra; Liu, Nannan

    2014-05-01

    A field strain of Aedes aegypti (L.) was collected from Puerto Rico in October 2008. Based on LD50 values by topical application, the Puerto Rico strain was 73-fold resistant to permethrin compared with a susceptible Orlando strain. In the presence of piperonyl butoxide, the resistance of Puerto Rico strain of Ae. aegypti was reduced to 15-fold, suggesting that cytochrome P450-mediated detoxification is involved in the resistance of the Puerto Rico strain to permethrin. To determine the cytochrome P450s that might play a role in the resistance to permethrin, the transcriptional levels of 164 cytochrome P450 genes in the Puerto Rico strain were compared with that in the Orlando strain. Of the 164 cytochrome P450s, 33 were significantly (P < 0.05) up-regulated, including cytochrome P450s in families four, six, and nine. Multiple studies have investigated the functionality of family six and nine cytochrome P450s, therefore, we focused on the up-regulated family 4 cytochrome P450s. To determine whether up-regulation of the four cytochrome P450s had any functional role in permethrin resistance, transgenic Drosophila melanogaster Meigen lines overexpressing the four family 4 P450 genes were generated, and their ability to survive exposure to permethrin was evaluated. When exposed to 5 microg per vial permethrin, transgenic D. melanogaster expressing CYP4D24, CYP4H29, CYP4J15v1, and CYP4H33 had a survival rate of 60.0 +/- 6.7, 29.0 +/- 4.4, 64.4 +/- 9.7, and 11.0 +/- 4.4%, respectively. However, none of the control flies survived the permethrin exposure at the same concentration. Similarly, none of the transgenic D. melanogaster expressing CYP4J15v1 or CYP4H33 ?5 survived when they were exposed to permethrin at 10 microg per vial. However, transgenic D. melanogaster expressing CYP4D24 and CYP4H29 had a survival rate of 37.8 +/- 4.4 and 2.2 +/- 2.2%, respectively. Taken together, our results suggest that CYP4D24 might play an important role in cytochrome P450-mediated

  18. The Influence of Cytochrome P450 Pharmacogenetics on Disposition of Common Antidepressant and Antipsychotic Medications

    PubMed Central

    van der Weide, Jan; Hinrichs, John WJ

    2006-01-01

    Since the identification of all the major drug-metabolising cytochrome P450 (CYP) enzymes and their major gene variants, pharmacogenetics has had a major impact on psychotherapeutic drug therapy. CYP enzymes are responsible for the metabolism of most clinically used drugs. Individual variability in CYP activity is an important reason for drug therapy failure. Variability in CYP activity may be caused by various factors, including endogenous factors such as age, gender and morbidity as well as exogenous factors such as co-medication, food components and smoking habit. However, polymorphisms, present in most CYP genes, are responsible for a substantial part of this variability. Although CYP genotyping has been shown to predict the majority of aberrant phenotypes, it is currently rarely performed in clinical practice. PMID:16886044

  19. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    PubMed

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  20. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae.

    PubMed

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J; Tittiger, Claus; Juárez, M Patricia; Mijailovsky, Sergio J; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J; Vontas, John

    2016-08-16

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of (14)C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An gambiae.

  1. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae

    PubMed Central

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J.; Tittiger, Claus; Juárez, M. Patricia; Mijailovsky, Sergio J.; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J.; Vontas, John

    2016-01-01

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of 14C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An. gambiae. PMID:27439866

  2. Polymorphisms of genes involved in polycyclic aromatic hydrocarbons’ biotransformation and atherosclerosis

    PubMed Central

    Marinković, Natalija; Pašalić, Daria; Potočki, Slavica

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are among the most prevalent environmental pollutants and result from the incomplete combustion of hydrocarbons (coal and gasoline, fossil fuel combustion, byproducts of industrial processing, natural emission, cigarette smoking, etc.). The first phase of xenobiotic biotransformation in the PAH metabolism includes activities of cytochrome P450 from the CYP1 family and microsomal epoxide hydrolase. The products of this biotransformation are reactive oxygen species that are transformed in the second phase through the formation of conjugates with glutathione, glucuronate or sulphates. PAH exposure may lead to PAH-DNA adduct formation or induce an inflammatory atherosclerotic plaque phenotype. Several genetic polymorphisms of genes encoded for enzymes involved in PAH biotransformation have been proven to lead to the development of diseases. Enzyme CYP P450 1A1, which is encoded by the CYP1A1 gene, is vital in the monooxygenation of lipofilic substrates, while GSTM1 and GSTT1 are the most abundant isophorms that conjugate and neutralize oxygen products. Some single nucleotide polymorphisms of the CYP1A1 gene as well as the deletion polymorphisms of GSTT1 and GSTM1 may alter the final specific cellular inflammatory respond. Occupational exposure or conditions from the living environment can contribute to the production of PAH metabolites with adverse effects on human health. The aim of this study was to obtain data on biotransformation and atherosclerosis, as well as data on the gene polymorphisms involved in biotransformation, in order to better study gene expression and further elucidate the interaction between genes and the environment. PMID:24266295

  3. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis

    PubMed Central

    Zhang, Xiaoyan; Li, Sha; Zhou, Yunfeng; Su, Wen; Ruan, Xiongzhong; Wang, Bing; Zheng, Feng; Warner, Margaret; Gustafsson, Jan-Åke; Guan, Youfei

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by simple hepatic steatosis (SS), nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis. Dysregulated fatty acid metabolism in the liver plays a critical role in the pathogenesis of NAFLD. Cytochrome P450 omega-hydroxylase 4A14 (CYP4A14) is a homolog of human CYP4A hydroxylase that catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid in mice. The goal of this study was to determine the role of CYP4A14 in the development and the progression of NAFLD. Here, we showed that hepatic CYP4A expression was up-regulated in the livers of patients and three murine models of NAFLD. Adenovirus-mediated overexpression of CYP4A14 in the livers of C57BL/6 mice resulted in a fatty liver phenotype with a significant increase in hepatic fatty acid translocase (FAT/CD36) expression. In contrast, CYP4A14 gene-deficient mice fed a high-fat diet or a methionine and choline-deficient (MCD) diet exhibited attenuated liver lipid accumulation and reduced hepatic FAT/CD36 expression. In addition, hepatic inflammation and fibrosis was markedly ameliorated in MCD diet-fed CYP4A14-deficient mice. Collectively, CYP4A14 plays an important role in the pathogenesis of both SS and NASH and may represent a potential therapeutic target for the treatment of NAFLD. PMID:28270609

  4. Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a large-scale exome dataset.

    PubMed

    Gordon, Adam S; Tabor, Holly K; Johnson, Andrew D; Snively, Beverly M; Assimes, Themistocles L; Auer, Paul L; Ioannidis, John P A; Peters, Ulrike; Robinson, Jennifer G; Sucheston, Lara E; Wang, Danxin; Sotoodehnia, Nona; Rotter, Jerome I; Psaty, Bruce M; Jackson, Rebecca D; Herrington, David M; O'Donnell, Christopher J; Reiner, Alexander P; Rich, Stephen S; Rieder, Mark J; Bamshad, Michael J; Nickerson, Deborah A

    2014-04-15

    The study of genetic influences on drug response and efficacy ('pharmacogenetics') has existed for over 50 years. Yet, we still lack a complete picture of how genetic variation, both common and rare, affects each individual's responses to medications. Exome sequencing is a promising alternative method for pharmacogenetic discovery as it provides information on both common and rare variation in large numbers of individuals. Using exome data from 2203 AA and 4300 Caucasian individuals through the NHLBI Exome Sequencing Project, we conducted a survey of coding variation within 12 Cytochrome P450 (CYP) genes that are collectively responsible for catalyzing nearly 75% of all known Phase I drug oxidation reactions. In addition to identifying many polymorphisms with known pharmacogenetic effects, we discovered over 730 novel nonsynonymous alleles across the 12 CYP genes of interest. These alleles include many with diverse functional effects such as premature stop codons, aberrant splicesites and mutations at conserved active site residues. Our analysis considering both novel, predicted functional alleles as well as known, actionable CYP alleles reveals that rare, deleterious variation contributes markedly to the overall burden of pharmacogenetic alleles within the populations considered, and that the contribution of rare variation to this burden is over three times greater in AA individuals as compared with Caucasians. While most of these impactful alleles are individually rare, 7.6-11.7% of individuals interrogated in the study carry at least one newly described potentially deleterious alleles in a major drug-metabolizing CYP.

  5. Bacillus subtilis 168 Contains Two Differentially Regulated Genes Encoding l-Asparaginase

    PubMed Central

    Fisher, Susan H.; Wray, Lewis V.

    2002-01-01

    Expression of the two Bacillus subtilis genes encoding l-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional l-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second l-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression. PMID:11914346

  6. Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase.

    PubMed

    Fisher, Susan H; Wray, Lewis V

    2002-04-01

    Expression of the two Bacillus subtilis genes encoding L-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional L-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second L-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression.

  7. Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley

    PubMed Central

    Koopmann, Edda; Hahlbrock, Klaus

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H. PMID:9405720

  8. [Immunomodulators with an 8-azasteroid structure as inducers of liver cytochrome P-450].

    PubMed

    Kuz'mitskiĭ, B B; Dad'kov, I G; Mashkovich, A E; Stoma, O V; Slepneva, L M

    1990-01-01

    Two structural analogues of D-homo-8-azasteroids, both an immunostimulant and an immunodepressant, are inductors of the liver cytochrome P-450 in animals. This capability was shown by means of both a decrease of the hexenal sleep duration in the pharmacological test and an increase of the quantity of cytochrome P-450 and the rate of N-demethylation of aminopyrine in the biochemical assays.

  9. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration.

    PubMed

    Yamaguchi, T; Fukada-Tanaka, S; Inagaki, Y; Saito, N; Yonekura-Sakakibara, K; Tanaka, Y; Kusumi, T; Iida, S

    2001-05-01

    Vacuolar pH plays an important role in flower coloration: an increase in the vacuolar pH causes blueing of flower color. In the Japanese morning glory (Ipomoea nil or Pharbitis nil), a shift from reddish-purple buds to blue open flowers correlates with an increase in the vacuolar pH. We describe details of the characterization of a mutant that carries a recessive mutation in the Purple (Pr) gene encoding a vacuolar Na+/H+ exchanger termed InNHX1. The genome of I. nil carries one copy of the Pr (or InNHX1) gene and its pseudogene, and it showed functional complementation to the yeast nhx1 mutation. The mutant of I. nil, called purple (pr), showed a partial increase in the vacuolar pH during flower-opening and its reddish-purple buds change into purple open flowers. The vacuolar pH in the purple open flowers of the mutant was significantly lower than that in the blue open flowers. The InNHX1 gene is most abundantly expressed in the petals at around 12 h before flower-opening, accompanying the increase in the vacuolar pH for the blue flower coloration. No such massive expression was observed in the petunia flowers. Since the NHX1 genes that promote the transport of Na+ into the vacuoles have been regarded to be involved in salt tolerance by accumulating Na+ in the vacuoles, we can add a new biological role for blue flower coloration in the Japanese morning glory by the vacuolar alkalization.

  10. Overexpression of gene encoding the key enzyme involved in proline-biosynthesis (PuP5CS) to improve salt tolerance in switchgrass (Panicum virgatum L.).

    PubMed

    Guan, Cong; Huang, Yan-Hua; Cui, Xin; Liu, Si-Jia; Zhou, Yun-Zhuan; Zhang, Yun-Wei

    2018-05-25

    Genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant salt stress tolerance. Switchgrass (Panicum virgatum L.) has developed into a dedicated bioenergy crop. To improve the biomass production of switchgrass grown on different types of soil, abiotic stress tolerance traits are considered for its genetic improvement. Proline accumulation is a widespread response when plants are subjected to abiotic stresses such as drought, cold and salinity. In plants, P5CS gene encodes the key regulatory enzyme that plays a crucial role in proline biosynthesis. Here, we introduced the PuP5CS gene (from Puccinellia chinampoensis) into switchgrass by Agrobacterium-mediated transformation. Transgenic lines overexpressing the PuP5CS gene showed phenotypic advantages, in leaf width, internode diameter, internode length, tiller numbers and precocious flowering under normal conditions, and the transgenic lines displayed better regenerative capacity in forming more tillers after harvest. Moreover, the PuP5CS gene enhanced the salt tolerance of transgenic switchgrass by altering a wide range of physiological responses. In accordance with the physiological results, histological analysis of cross sections through the leaf blade showed that the areas of bulliform cells and bundle sheath cells were significantly increased in PuP5CS-overexpressing leaves. The expression levels of ROS scavenging-associated genes in transgenic plants were higher than in control plants under salt stress. The results show that genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant stress tolerance.

  11. Cytochrome P450-Dependent Metabolism of Oxylipins in Tomato. Cloning and Expression of Allene Oxide Synthase and Fatty Acid Hydroperoxide Lyase1

    PubMed Central

    Howe, Gregg A.; Lee, Gyu In; Itoh, Aya; Li, Lei; DeRocher, Amy E.

    2000-01-01

    Allene oxide synthase (AOS) and fatty acid hydroperoxide lyase (HPL) are plant-specific cytochrome P450s that commit fatty acid hydroperoxides to different branches of oxylipin metabolism. Here we report the cloning and characterization of AOS (LeAOS) and HPL (LeHPL) cDNAs from tomato (Lycopersicon esculentum). Functional expression of the cDNAs in Escherichia coli showed that LeAOS and LeHPL encode enzymes that metabolize 13- but not 9-hydroperoxide derivatives of C18 fatty acids. LeAOS was active against both 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13-HPOT) and 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, whereas LeHPL showed a strong preference for 13-HPOT. These results suggest a role for LeAOS and LeHPL in the metabolism of 13-HPOT to jasmonic acid and hexenal/traumatin, respectively. LeAOS expression was detected in all organs of the plant. In contrast, LeHPL expression was predominant in leaves and flowers. Damage inflicted to leaves by chewing insect larvae led to an increase in the local and systemic expression of both genes, with LeAOS showing the strongest induction. Wound-induced expression of LeAOS also occurred in the def-1 mutant that is deficient in octadecanoid-based signaling of defensive proteinase inhibitor genes. These results demonstrate that tomato uses genetically distinct signaling pathways for the regulation of different classes of wound responsive genes. PMID:10859201

  12. RNAi construct of a P450 gene blocks an early step in Hemigossypolone and Gossypol synthesis in transgenic cotton plants

    USDA-ARS?s Scientific Manuscript database

    Naturally occurring terpenoid aldehydes from cotton such as gossypol, hemigossypolone, and heliocides, are important components of disease and herbivory resistance in cotton. These terpenoids are predominately found in the glands. Differential screening identified a P450 cDNA clone (GHC28) that on...

  13. Degradation of Morpholine by an Environmental Mycobacterium Strain Involves a Cytochrome P-450

    PubMed Central

    Poupin, P.; Truffaut, N.; Combourieu, B.; Besse, P.; Sancelme, M.; Veschambre, H.; Delort, A. M.

    1998-01-01

    A Mycobacterium strain (RP1) was isolated from a contaminated activated sludge collected in a wastewater treatment unit of a chemical plant. It was capable of utilizing morpholine and other heterocyclic compounds, such as pyrrolidine and piperidine, as the sole source of carbon, nitrogen, and energy. The use of in situ 1H nuclear magnetic resonance (1H NMR) spectroscopy allowed the determination of two intermediates in the biodegradative pathway, 2-(2-aminoethoxy)acetate and glycolate. The inhibitory effects of metyrapone on the degradative abilities of strain RP1 indicated the involvement of a cytochrome P-450 in the biodegradation of morpholine. This observation was confirmed by spectrophotometric analysis and 1H NMR. Reduced cell extracts from morpholine-grown cultures, but not succinate-grown cultures, gave rise to a carbon monoxide difference spectrum with a peak near 450 nm, which indicated the presence of a soluble cytochrome P-450. 1H NMR allowed the direct analysis of the incubation medium containing metyrapone, a specific inhibitor of cytochrome P-450. The inhibition of morpholine degradation was dependent on the morpholine/metyrapone ratio. The heme-containing monooxygenase was also detected in pyrrolidine- and piperidine-grown cultures. The abilities of different compounds to support strain growth or the induction of a soluble cytochrome P-450 were assayed. The results suggest that this enzyme catalyzes the cleavage of the C—N bond of the morpholine ring. PMID:9435074

  14. Molecular dynamics of detoxification and toxin-tolerance genes in brown planthopper (Nilaparvata lugens Stål., Homoptera: Delphacidae) feeding on resistant rice plants.

    PubMed

    Yang, Zhifan; Zhang, Futie; He, Qing; He, Guangcun

    2005-06-01

    To investigate the molecular response of brown planthopper, Nilaparvata lugens (BPH) to BPH-resistant rice plants, we isolated cDNA fragments of the genes encoding for carboxylesterase (CAR), trypsin (TRY), cytochrome P450 monooxygenase (P450), NADH-quinone oxidoreductase (NQO), acetylcholinesterase (ACE), and Glutathione S-transferase (GST). Expression profiles of the genes were monitored on fourth instar nymphs feeding on rice varieties with different resistance levels. Northern blot hybridization showed that, compared with BPH reared on susceptible rice TN1, expression of the genes for P450 and CAR was apparently up-regulated and TRY mRNA decreased in BPH feeding on a highly resistant rice line B5 and a moderately resistant rice variety MH63, respectively. Two transcripts of GST increased in BPH feeding on B5; but in BPH feeding on MH63, this gene was inducible and its expression reached a maximum level at 24 h, and then decreased slightly. The expression of NQO gene was enhanced in BPH on B5 plants but showed a constant expression in BPH on MH63 plants. No difference in ACE gene expression among BPH on different rice plants was detected by the RT-PCR method. The results suggest these genes may play important roles in the defense response of BPH to resistant rice.

  15. Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag.

    PubMed

    Park, Hyoung-Goo; Lim, Young-Ran; Han, Songhee; Jeong, Dabin; Kim, Donghak

    2017-05-28

    NADPH-P450 reductase (NPR) transfers electrons from NADPH to cytochrome P450 and heme oxygenase enzymes to support their catalytic activities. This protein is localized within the endoplasmic reticulum membrane and utilizes FMN, FAD, and NADPH as cofactors. Although NPR is essential toward enabling the biochemical and pharmacological analyses of P450 enzymes, its production as a recombinant purified protein requires a series of tedious efforts and a high cost due to the use of NADP + in the affinity chromatography process. In the present study, the rat NPR clone containing a 6× Histidine-tag (NPR-His) was constructed and heterologously expressed. The NPR-His protein was purified using Ni 2+ -affinity chromatography, and its functional features were characterized. A single band at 78 kDa was observed from SDS-PAGE and the purified protein displayed a maximum absorbance at 455 nm, indicating the presence of an oxidized flavin cofactor. Cytochrome c and nitroblue tetrazolium were reduced by purified NPR-His in an NADPH-dependent manner. The purified NPR-His successfully supported the catalytic activities of human P450 1A2 and 2A6 and fungal CYP52A21, yielding results similar to those obtained using conventional purified rat reductase. This study will facilitate the use of recombinant NPR-His protein in the various fields of P450 research.

  16. Association of TLR2 S450S and ICAM1 K469E polymorphisms with polycystic ovary syndrome (PCOS) and obesity.

    PubMed

    Ojeda-Ojeda, Miriam; Martínez-García, M Ángeles; Alpañés, Macarena; Luque-Ramírez, Manuel; Escobar-Morreale, Héctor F

    2016-02-01

    Toll-like receptors (TLRs) are activated by inflammatory stimuli and influence endothelial functions, contributing to the pathogenesis of atherosclerosis. We investigate the influence of polymorphisms in the genes encoding toll-like receptor 2 (TLR2) and 4 (TLR4) and endothelial adhesion molecules on polycystic ovary syndrome (PCOS) and its interaction with obesity. Ten single nucleotide polymorphisms were genotyped in 305 women with PCOS and 166 non-hyperandrogenic control women. In obese women, TLR2 S450S and ICAM1 K469E polymorphisms differently influenced metabolic variables and PCOS, respectively. Irrespective of PCOS, variant alleles of TLR2 S450S increased triglycerides, fasting insulin levels, and insulin resistance in obese women. TLR2 S450S interacted with obesity and PCOS on androstenedione levels, mutant alleles were associated with increased androstenedione concentrations in all women, with the exception of obese patients with PCOS (P=0.034). Regarding ICAM1 K469E, homozygosis for K469 alleles was more frequent in PCOS, but only in obese women (P=0.014). K469 alleles were also related to increased body mass index (P=0.017) and diastolic blood pressure (P=0.034). Moreover, ICAM1 K469E interacted with obesity and PCOS on serum triglyceride levels (P=0.019) and with PCOS on serum sex hormone-binding globulin concentrations (P=0.006). In conclusion, TLR2 S450S and ICAM1 K469E polymorphisms may be associated with PCOS and metabolic comorbidities in obese women. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. [Effects of electroacupuncture of "Guanyuan" (CV 4)-"Zhongji" (CV 3) on ovarian P450 arom and P450c 17alpha expression and relevant sex hormone levels in rats with polycystic ovary syndrome].

    PubMed

    Sun, Jie; Zhao, Ji-meng; Ji, Rong; Liu, Hui-rong; Shi, Yin; Jin, Chun-lan

    2013-12-01

    To observe the effect of electroacupuncture (EA) on ovarian P 450 arom and P 450 c 17 alpha (aromatases) expression and related sex hormone levels in polycystic ovary syndrome (PCOS) rats. Thirty SD rats were randomly divided into normal control group, model group and EA group (10 rats/group). PCOS model was made by intragastric administration of letrozole at 1 mg/kg per day for consecutive 21 days. "Guanyuan" (CV 4) and "Zhongji" (CV 3) acupoints were stimulated 20 min by EA (2 mA, 2 Hz), once daily for consecutive 14 days. The damp ovarian weight was weighed and the pathological changes of the ovarian tissue were observed after H. E. staining. Ultrastructural changes of the ovarian tissue were observed by transmission electron microscope. Immunohistochemical staining was adopted to detect ovarian follicle granulosa cell P 450 arom and follicle membrane cell P 450 c 17 alpha expression. The contents of estradiol (E 2), estrone (E 1), androstenedione (ASD), testosterone (T), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the ovarian tissue were measured by ELISA. Compared with the normal group, there was a significant increase in the damp weight of both left and right ovarian tissues in the model group (P < 0.01). After EA, the ovarian weight was remarkably reduced (P < 0.01). Pathological changes of the ovarian tissue such as thickening of the superficial albugineous coat of the ovary, thinning of the granular cell layer, and disappearance of the intraovular oocytes and coronaradiata under light microscope, and mitochondrion swelling, fracture or disappearance of mitochondrial cristae, and enlargement of the endoplasmic reticulum, etc. after modeling were obviously improved in the EA group. In comparison to the control group, the expression of the follicle granulosa cell P450 arom was significantly down-regulated and that of follicle membrane cell P 450 c 17 alpha was significantly upregulated in the model group (P < 0.01). After EA

  18. DNA methylation of miRNA-encoding genes in non-small cell lung cancer patients.

    PubMed

    Heller, Gerwin; Altenberger, Corinna; Steiner, Irene; Topakian, Thais; Ziegler, Barbara; Tomasich, Erwin; Lang, György; End-Pfützenreuter, Adelheid; Zehetmayer, Sonja; Döme, Balazs; Arns, Britt-Madeleine; Klepetko, Walter; Zielinski, Christoph C; Zöchbauer-Müller, Sabine

    2018-03-23

    De-regulated DNA methylation leading to transcriptional inactivation of certain genes occurs frequently in non-small cell lung cancers (NSCLC). Besides protein-encoding genes also microRNA (miRNA)-encoding genes may be targets for methylation in NSCLCs, however, the number of known methylated miRNA genes is still small. Thus, we investigated methylation of miRNA genes in primary tumours (TU) and corresponding non-malignant lung tissue samples (NL) of 50 NSCLC patients using methylated DNA immunoprecipitation followed by custom designed tiling microarray analyses (MeDIP-chip) and 252 differentially methylated probes between TU and NL samples were identified. These probes were annotated which resulted in the identification of 34 miRNA-encoding genes with increased methylation in TU specimens. While some of these miRNA-encoding genes were already known to be methylated in NSCLCs (e.g. miR-9-3, miR-124), methylation of the vast majority of them was unknown so far. We selected six miRNA genes (miR-10b, miR-1179, miR-137, miR-572, miR-3150b and miR-129-2) for gene-specific methylation analyses in TU and corresponding NL samples of 104 NSCLC patients and observed a statistically significant increase of methylation of these miRNA genes in TU samples (p<0.0001, respectively). In silico target prediction of the six miRNAs identified several oncogenic/cell proliferation promoting factors (e.g. CCNE1 as miR-1179 target). To investigate if miR-1179 indeed targets CCNE1, we transfected miR-1179 mimics into CCNE1 expressing NSCLC cells and observed down-regulated CCNE1 mRNA expression in these cells compared to control cells. Similar effects on Cyclin E1 expression were seen in Western blot analyses. In addition, we found a statistically significant growth reduction of NSCLC cells transfected with miR-1179 mimics compared to control cells. In conclusion, we identified many methylated miRNA genes in NSCLC patients and found that miR-1179 is a potential tumour cell growth

  19. Engineering of a functional human NADH-dependent cytochrome P450 system

    PubMed Central

    Döhr, Olaf; Paine, Mark J. I.; Friedberg, Thomas; Roberts, Gordon C. K.; Wolf, C. Roland

    2001-01-01

    A functional human NADH-dependent cytochrome P450 system has been developed by altering the cofactor preference of human NADPH cytochrome P450 reductase (CPR), the redox partner for P450s. This has been achieved by a single amino acid change of the conserved aromatic amino acid Trp-676, which covers the re-side of the FAD isoalloxazine ring in the nicotinamide-binding site. Of the mutations made, the substitution of Trp-676 with alanine (W676A) resulted in a functional NADH-dependent enzyme, which catalyzed the reduction of cytochrome c and ferricyanide as well as facilitated the metabolism of 7-ethoxyresorufin by CYP1A2. Kinetic analysis measuring cytochrome c activity revealed that the NADH-dependent kcat of W676A is equivalent (90%) to the NADPH-dependent kcat of the wild-type enzyme, with W676A having an approximately 1,000-fold higher specificity for NADH. The apparent KMNADPH and KMNADH values of W676A are 80- and 150-fold decreased, respectively. In accordance with structural data, which show a bipartite binding mode of NADPH, substitution of Trp-676 does not affect 2′-AMP binding as seen by the inhibition of both wild-type CPR and the W676A mutant. Furthermore, NADPH was a potent inhibitor of the W676A NADH-dependent cytochrome c reduction and CYP1A2 activity. Overall, the results show that Trp-676 of human CPR plays a major role in cofactor discrimination, and substitution of this conserved aromatic residue with alanine results in an efficient NADH-dependent cytochrome P450 system. PMID:11136248

  20. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than fivefold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O- dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black- crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross- reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p,p'-DDE were detected in embryos from Cat Island. Cytochrome P450- associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  1. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu-g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than five-fold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O-dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p, p'-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  2. Development of a gene synthesis platform for the efficient large scale production of small genes encoding animal toxins.

    PubMed

    Sequeira, Ana Filipa; Brás, Joana L A; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A

    2016-12-01

    Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. In addition, when coupled with efficient gene design algorithms that optimize codon usage, it leads to high levels of recombinant protein expression. Here, we describe the development of an optimized gene synthesis platform that was applied to the large scale production of small genes encoding venom peptides. This improved gene synthesis method uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides and was developed to synthesise multiples genes simultaneously. This technology incorporates an accurate, automated and cost effective ligation independent cloning step to directly integrate the synthetic genes into an effective Escherichia coli expression vector. The robustness of this technology to generate large libraries of dozens to thousands of synthetic nucleic acids was demonstrated through the parallel and simultaneous synthesis of 96 genes encoding animal toxins. An automated platform was developed for the large-scale synthesis of small genes encoding eukaryotic toxins. Large scale recombinant expression of synthetic genes encoding eukaryotic toxins will allow exploring the extraordinary potency and pharmacological diversity of animal venoms, an increasingly valuable but unexplored source of lead molecules for drug discovery.

  3. Genes encoding p-coumarate 3-hydroxylase (C3H) and methods of use

    DOEpatents

    Chapple, Clinton C. S.; Franke, Rochus; Ruegger, Max O.

    2006-07-04

    The present invention is directed to a method for altering secondary metabolism in plants, specifically phenylpropanoid metabolism. The present invention is further directed to a mutant p-coumarate 3-hydroxylase gene, referred to herein as the ref8 gene, its protein product which can be used to prepare gene constructs and transgenic plants. The gene constructs and transgenic plants are further aspects of the present invention.

  4. Metadata Analysis of Phanerochaete chrysosporium Gene Expression Data Identified Common CAZymes Encoding Gene Expression Profiles Involved in Cellulose and Hemicellulose Degradation.

    PubMed

    Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng

    2017-01-01

    In literature, extensive studies have been conducted on popular wood degrading white rot fungus, Phanerochaete chrysosporium about its lignin degrading mechanisms compared to the cellulose and hemicellulose degrading abilities. This study delineates cellulose and hemicellulose degrading mechanisms through large scale metadata analysis of P. chrysosporium gene expression data (retrieved from NCBI GEO) to understand the common expression patterns of differentially expressed genes when cultured on different growth substrates. Genes encoding glycoside hydrolase classes commonly expressed during breakdown of cellulose such as GH-5,6,7,9,44,45,48 and hemicellulose are GH-2,8,10,11,26,30,43,47 were found to be highly expressed among varied growth conditions including simple customized and complex natural plant biomass growth mediums. Genes encoding carbohydrate esterase class enzymes CE (1,4,8,9,15,16) polysaccharide lyase class enzymes PL-8 and PL-14, and glycosyl transferases classes GT (1,2,4,8,15,20,35,39,48) were differentially expressed in natural plant biomass growth mediums. Based on these results, P. chrysosporium, on natural plant biomass substrates was found to express lignin and hemicellulose degrading enzymes more than cellulolytic enzymes except GH-61 (LPMO) class enzymes, in early stages. It was observed that the fate of P. chrysosporium transcriptome is significantly affected by the wood substrate provided. We believe, the gene expression findings in this study plays crucial role in developing genetically efficient microbe with effective cellulose and hemicellulose degradation abilities.

  5. Pharmacokinetics and Differential Regulation of Cytochrome P450 Enzymes in Type 1 Allergic Mice.

    PubMed

    Tanino, Tadatoshi; Komada, Akira; Ueda, Koji; Bando, Toru; Nojiri, Yukie; Ueda, Yukari; Sakurai, Eiichi

    2016-12-01

    Type 1 allergic diseases are characterized by elevated production of specific immunoglobulin E (IgE) for each antigen and have become a significant health problem worldwide. This study investigated the effect of IgE-mediated allergy on drug pharmacokinetics. To further understand differential suppression of hepatic cytochrome P450 (P450) activity, we examined the inhibitory effect of nitric oxide (NO), a marker of allergic conditions. Seven days after primary sensitization (PS7) or secondary sensitization (SS7), hepatic CYP1A2, CYP2C, CYP2E1, and CYP3A activities were decreased to 45%-75% of the corresponding control; however, CYP2D activity was not downregulated. PS7 and SS7 did not change the expression levels of five P450 proteins. Disappearance of CYP1A2 and CYP2D substrates from the plasma was not significantly different between allergic mice and control mice. In contrast, the area under the curve of a CYP1A2-mediated metabolite in PS7 and SS7 mice was reduced by 50% of control values. Total clearances of a CYP2E1 substrate in PS7 and SS7 mice were significantly decreased to 70% and 50% respectively, of the control without altering plasma protein binding. Hepatic amounts of CYP1A2 and CYP2E1 substrates were enhanced by allergic induction, being responsible for each downregulated activity. NO scavenger treatment completely improved the downregulated P450 activities. Therefore, our data suggest that the onset of IgE-mediated allergy alters the pharmacokinetics of major P450-metabolic capacity-limited drugs except for CYP2D drugs. NO is highly expected to participate in regulatory mechanisms of the four P450 isoforms. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.).

    PubMed

    Tamiru, Muluneh; Undan, Jerwin R; Takagi, Hiroki; Abe, Akira; Yoshida, Kakoto; Undan, Jesusa Q; Natsume, Satoshi; Uemura, Aiko; Saitoh, Hiromasa; Matsumura, Hideo; Urasaki, Naoya; Yokota, Takao; Terauchi, Ryohei

    2015-05-01

    Cytochrome P450s are among the largest protein coding gene families in plant genomes. However, majority of the genes remain uncharacterized. Here, we report the characterization of dss1, a rice mutant showing dwarfism and reduced grain size. The dss1 phenotype is caused by a non-synonymous point mutation we identified in DSS1, which is member of a P450 gene cluster located on rice chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. Phenotypes of several dwarf mutants characterized in rice are associated with defects in the biosynthesis or perception of the phytohormones gibberellins (GAs) and brassinosteroids (BRs). However, both GA and BR failed to rescue the dss1 phenotype. Hormone profiling revealed the accumulation of abscisic acid (ABA) and ABA metabolites, as well as significant reductions in GA19 and GA53 levels, precursors of the bioactive GA1, in the mutant. The dss1 contents of cytokinin and auxins were not significantly different from wild-type plants. Consistent with the accumulation of ABA and metabolites, germination and early growth was delayed in dss1, which also exhibited an enhanced tolerance to drought. Additionally, expressions of members of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. RNA-seq-based transcriptome profiling revealed, among others, that cell wall-related genes and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively. Taken together, these findings suggest that DSS1 mediates growth and stress responses in rice by fine-tuning GA-to-ABA balance, and might as well play a role in lipid metabolism.

  7. Cytochrome P450 Genetic Variation Associated with Tamoxifen Biotransformation in American Indian and Alaska Native People

    PubMed Central

    Khan, Burhan A.; Robinson, Renee; Fohner, Alison E.; Muzquiz, LeeAnna I.; Schilling, Brian D.; Beans, Julie A.; Olnes, Matthew J.; Trawicki, Laura; Frydenlund, Holly; Laukes, Cindi; Beatty, Patrick; Phillips, Brian; Nickerson, Deborah; Howlett, Kevin; Dillard, Denise A.; Thornton, Timothy A.; Thummel, Kenneth E.

    2018-01-01

    Abstract Despite evidence that pharmacogenetics can improve tamoxifen pharmacotherapy, there are few studies with American Indian and Alaska Native (AIAN) people. We examined variation in cytochrome P450 (CYP) genes (CYP2D6, CYP3A4, CYP3A5, and CYP2C9) and tamoxifen biotransformation in AIAN patients with breast cancer (n = 42) from the Southcentral Foundation in Alaska and the Confederated Salish and Kootenai Tribes in Montana. We tested for associations between CYP diplotypes and plasma concentrations of tamoxifen and metabolites. Only the CYP2D6 variation was significantly associated with concentrations of endoxifen (P = 0.0008) and 4‐hydroxytamoxifen (P = 0.0074), tamoxifen's principal active metabolites, as well as key metabolic ratios. The CYP2D6 was also the most significant predictor of active metabolites and metabolic ratios in a multivariate regression model, including all four genes as predictors, with minor roles for other CYP genes. In AIAN populations, CYP2D6 is the largest contributor to tamoxifen bioactivation, illustrating the importance of validating pharmacogenetic testing for therapy optimization in an understudied population. PMID:29436156

  8. Sex- and tissue-specific expression of P450 aromatase (cyp19a1a) in the yellowtail clownfish, Amphiprion clarkii.

    PubMed

    Kobayashi, Yasuhisa; Horiguchi, Ryo; Miura, Saori; Nakamura, Masaru

    2010-02-01

    To investigate the role of estrogen in the gonad of yellowtail clownfish Amphiprion clarkii, we isolated cDNA encoding cytochrome P450 aromatase (Cyp19a1a) from the adult ovary. The full-length cDNA of clownfish cyp19a1a is 1928-bp long and encodes 520 amino acids. Real-time quantitative RT-PCR analysis showed that cyp19a1a was expressed mainly in the ovary of female-phase fish. In situ hybridization and immunohistochemical observations showed that positive signals were restricted to the ovarian follicle of the female-phase fish. In contrast, Cyp19a1a signal was not detected in the ambisexual gonad of the male-phase fish. These findings suggest that Cyp19a1a is involved in oogenesis in the female-phase fish, but not in the ambisexual gonad of male-phase fish. 2009 Elsevier Inc. All rights reserved.

  9. Transcription of a novel P450 gene varies with some factors (pollutant exposure, temperature, time, and body region) in a marine oligochaete (Thalassodrilides sp.).

    PubMed

    Ito, Mana; Ito, Katsutoshi; Ohta, Kohei; Hano, Takeshi; Onduka, Toshimitsu; Mochida, Kazuhiko

    2016-08-15

    Cytochrome P450 (CYP) enzymes play important roles in the metabolism of exogenous compounds such as polycyclic aromatic hydrocarbons (PAHs). A novel, full-length CYP gene (CYP4V30) was identified in the oligochaete Thalassodrilides sp. CYP4V30 mRNA expression was studied in worms exposed to PAH-polluted (Σ16PAHs; 37441ng/g dry weight) or unpolluted (Σ16PAHs; 19ng/g dry weight) sediment. CYP4V30 expression was much higher in worms exposed to contaminated sediments than in those exposed to unpolluted sediments at some temperatures (20 and 25°C) and exposure durations (11-fold increase at 20°C, 10-day exposure), but not at 15°C or other exposure durations (P<0.05). CYP4V30 mRNA expression was higher in the middle of the body than in the posterior (P<0.05). The variation in transcriptional response with exposure time, temperature, and body region indicates that these factors should be considered when monitoring marine sediment pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach.

    PubMed

    Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H

    2004-03-01

    Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.

  11. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    PubMed

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  12. Effects of fluoride and aluminum on expressions of StAR and P450scc of related steroidogenesis in guinea pigs' testis.

    PubMed

    Dong, Chunguang; Cao, Jinling; Cao, Chunfang; Han, Yichao; Wu, Shouyan; Wang, Shaolin; Wang, Jundong

    2016-03-01

    A lot of studies have shown that fluoride and aluminum have toxic effect on male reproductive system, but the mechanism of which and the interaction between fluoride and aluminum is still unknown. This study investigated the effects of fluoride (NaF) or/and aluminum (AlCl3) on serum testosterone level, gene and protein expression levels of Steroidogenic Acute Regulatory Protein (StAR) and Cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) in the testes of guinea pigs. Fifty-two guinea pigs were divided randomly into four groups (Control, HiF, HiAl and HiF + HiAl). Fluoride (150 mg NaF/L) or/and aluminum (300 mg AlCl3/L) were orally administrated to male guinea pigs for 13 weeks. The results showed that F and Al reduced number and elevated abnormal ratio of sperm. Meanwhile, the concentrations of serum testosterone in all experimental groups were decreased. P450scc protein expression was significantly reduced in all treatment groups, and StAR expression was decreased remarkably in HiF group and HiF + HiAl group. The levels of StAR mRNA in three groups were reduced by 53.9%, 21.4% and 33.4%, respectively, while the expressions of P450scc mRNA were reduced by 67.8%, 17.0% and 47.8%. Therefore, we concluded that F induced the reduction in testosterone and sperm amount, and thus in lower fertility, which might occur as a consequence of depressed StAR and P450scc mRNA expression. There were no synergistic effects between F and Al, instead, Al weakened the toxicity of F to some extents. The results indicated that Al had antagonism effects on F. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.

    PubMed

    Zhang, Wei; Liu, Yi; Yan, Jinyong; Cao, Shaona; Bai, Fali; Yang, Ying; Huang, Shaohua; Yao, Lishan; Anzai, Yojiro; Kato, Fumio; Podust, Larissa M; Sherman, David H; Li, Shengying

    2014-03-05

    Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.

  14. Marmoset Cytochrome P450 3A4 Ortholog Expressed in Liver and Small-Intestine Tissues Efficiently Metabolizes Midazolam, Alprazolam, Nifedipine, and Testosterone.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Nakanishi, Kazuyuki; Ishii, Sakura; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-05-01

    Common marmosets ( Callithrix jacchus ), small New World primates, are increasingly attracting attention as potentially useful animal models for drug development. However, characterization of cytochrome P450 (P450) 3A enzymes involved in the metabolism of a wide variety of drugs has not investigated in marmosets. In this study, sequence homology, tissue distribution, and enzymatic properties of marmoset P450 3A4 ortholog, 3A5 ortholog, and 3A90 were investigated. Marmoset P450 3A forms exhibited high amino acid sequence identities (88-90%) to the human and cynomolgus monkey P450 3A orthologs and evolutionary closeness to human and cynomolgus monkey P450 3A orthologs compared with other P450 3A enzymes. Among the five marmoset tissues examined, P450 3A4 ortholog mRNA was abundant in livers and small intestines where P450 3A4 ortholog proteins were immunologically detected. Three marmoset P450 3A proteins heterologously expressed in Escherichia coli membranes catalyzed midazolam 1'- and 4-hydroxylation, alprazolam 4-hydroxylation, nifedipine oxidation, and testosterone 6 β -hydroxylation, similar to cynomolgus monkey and human P450 3A enzymes. Among the marmoset P450 3A enzymes, P450 3A4 ortholog effectively catalyzed midazolam 1'-hydroxylation, comparable to microsomes from marmoset livers and small intestines. Correlation analyses with 23 individual marmoset liver microsomes suggested contributions of P450 3A enzymes to 1'-hydroxylation of both midazolam (human P450 3A probe) and bufuralol (human P450 2D6 probe), similar to cynomolgus monkey P450 3A enzymes. These results indicated that marmoset P450 3A forms had functional characteristics roughly similar to cynomolgus monkeys and humans in terms of tissue expression patterns and catalytic activities, suggesting marmosets as suitable animal models for P450 3A-dependent drug metabolism. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    PubMed

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  16. Cloning and sequencing the genes encoding goldfish and carp ependymin.

    PubMed

    Adams, D S; Shashoua, V E

    1994-04-20

    Ependymins (EPNs) are brain glycoproteins thought to function in optic nerve regeneration and long-term memory consolidation. To date, epn genes have been characterized in two orders of teleost fish. In this study, polymerase chain reactions (PCR) were used to amplify the complete 1.6-kb epn genes, gf-I and cc-I, from genomic DNA of Cypriniformes, goldfish and carp, respectively. Amplified bands were cloned and sequenced. Each gene consists of six exons and five introns. The exon portion of gf-I encodes a predicted 215-amino-acid (aa) protein previously characterized as GF-I, while cc-I encodes a predicted 215-aa protein 95% homologous to GF-I.

  17. A human cytochrome P-450 is recognized by anti-liver/kidney microsome antibodies in autoimmune chronic hepatitis.

    PubMed

    Kiffel, L; Loeper, J; Homberg, J C; Leroux, J P

    1989-02-28

    1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.

  18. Oxidation of Methyl and Ethyl Nitrosamines by Cytochromes P450 2E1 and 2B1

    PubMed Central

    Chowdhury, Goutam; Calcutt, M. Wade; Nagy, Leslie D.; Guengerich, F. Peter

    2012-01-01

    Cytochrome P450 (P450) 2E1 is the major enzyme that oxidizes N-nitrosodimethylamine (N,N-dimethylnitrosamine, DMN), a carcinogen and also a representative of some nitrosamines formed endogenously. Oxidation of DMN by rat or human P450 2E1 to HCHO showed a high apparent intrinsic kinetic deuterium isotope effect (KIE), ≥ 8. The KIE was not attenuated in non-competitive intermolecular experiments with rat liver microsomes (DV 12.5, D(V/K) 10.9, nomenclature of Northrop, D.B. (1982) Methods Enzymol. 87, 607–625) but was with purified human P450 2E1 (DV 3.3, D(V/K) 3.7), indicating that C-H bond breaking is partially rate-limiting with human P450 2E1. With N-nitrosodiethylamine (N,N-diethylnitrosamine, DEN), the intrinsic KIE was slightly lower and was not expressed (e.g., D(V/K) 1.2) in non-competitive intermolecular experiments. The same general pattern of KIEs was also seen in the D(V/K) results with DMN and DEN for the minor products resulting from the denitrosation reactions (CH3NH2, CH3CH2NH2, and NO2−). Experiments with deuterated N-nitroso-N-methyl,N-ethylamine demonstrated that the lower KIEs associated for ethyl compared to methyl oxidation could be distinguished within a single molecule. P450 2E1 oxidized DMN and DEN to aldehydes and then to the carboxylic acids. No kinetic lags were observed in acid formation; pulse-chase experiments with carrier aldehydes showed only limited equilibration with P450 2E1-bound aldehydes, indicative of processive reactions, as reported for P450 2A6 (Chowdhury, G. et al. (2010) J. Biol. Chem. 285, 8031–8044). These same features (no lag phase for HCO2H formation, lack of equilibration in pulse-chase assays) were also seen with (rat) P450 2B1, which has lower catalytic efficiency for DMN oxidation and a larger active site. Thus, the processivity of dialkylnitrosamine oxidation appears to be shared by a number of P450s. PMID:23186213

  19. Genotype distribution of estrogen receptor-alpha, catechol-O-methyltransferase, and cytochrome P450 17 gene polymorphisms in Caucasian women with uterine leiomyomas.

    PubMed

    Denschlag, Dominik; Bentz, Eva-Katrin; Hefler, Lukas; Pietrowski, Detlef; Zeillinger, Robert; Tempfer, Clemens; Tong, Dan

    2006-02-01

    To evaluate the association between the presence of uterine leiomyomas and three functional single nucleotide polymorphisms (SNPs) of the estrogen receptor alpha (ESR1), catechol-O-methyltransferase (COMT), and cytochrom P450 17 (CYP17A) genes, which have been described to modify the estrogen metabolism. Prospective case control study. Academic research institution. One hundred thirty women with clinically and surgically diagnosed uterine leiomyomas and 139 population controls. Peripheral venous puncture. Polymerase chain reaction and pyrosequencing were performed to genotype women with respect to the ESR1 IVS1-397 T/C (PvuII), COMT G158A, and the CYP17A 34T-->C SNPs. Comparing women with uterine leiomyomas and controls, no statistically significant differences with respect to allele frequency and genotype distribution were ascertained for ESR1 IVS 1-397 T/C (PvuII) (P=0.9 and P=0.6, respectively), COMT G158A (P=0.3 and P=0.6, respectively), and CYP17A 34T-->C (P=0.1 and P=0.5, respectively). When all two-way interactions of investigated SNPs were ascertained, no significant interactions were observed. In a multivariate model, no SNP was significantly associated with leiomyomas. Carriage of the ESR1 IVS1-397 T/C (PvuII), COMT G158A, and the CYP17A 34T-->C SNPs is not associated with the susceptibility to uterine leiomyoma in a Caucasian population.

  20. Cytochrome P460 Genes from the Methanotroph Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; Hooper, Alan B.; DiSpirito, Alan A.

    1998-01-01

    P460 cytochromes catalyze the oxidation of hydroxylamine to nitrite. They have been isolated from the ammonia-oxidizing bacterium Nitrosomonas europaea (R. H. Erickson and A. B. Hooper, Biochim. Biophys. Acta 275:231–244, 1972) and the methane-oxidizing bacterium Methylococcus capsulatus Bath (J. A. Zahn et al., J. Bacteriol. 176:5879–5887, 1994). A degenerate oligonucleotide probe was synthesized based on the N-terminal amino acid sequence of cytochrome P460 and used to identify a DNA fragment from M. capsulatus Bath that contains cyp, the gene encoding cytochrome P460. cyp is part of a gene cluster that contains three open reading frames (ORFs), the first predicted to encode a 59,000-Da membrane-bound polypeptide, the second predicted to encode a 12,000-Da periplasmic protein, and the third (cyp) encoding cytochrome P460. The products of the first two ORFs have no apparent similarity to any proteins in the GenBank database. The overall sequence similarity of the P460 cytochromes from M. capsulatus Bath and N. europaea was low (24.3% of residues identical), although short regions of conserved residues are present in the two proteins. Both cytochromes have a C-terminal, c-heme binding motif (CXXCH) and a conserved lysine residue (K61) that may provide an additional covalent cross-link to the heme (D. M. Arciero and A. B. Hooper, FEBS Lett. 410:457–460, 1997). Gene probing using cyp indicated that a cytochrome P460 similar to that from M. capsulatus Bath may be present in the type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP but not in the type I methanotrophs Methylobacter marinus A45, Methylomicrobium albus BG8, and Methylomonas sp. strains MN and MM2. Immunoblot analysis with antibodies against cytochrome P460 from M. capsulatus Bath indicated that the expression level of cytochrome P460 was not affected either by expression of the two different methane monooxygenases or by addition of ammonia to the culture medium. PMID

  1. Control of bacteriophage P2 gene expression: analysis of transcription of the ogr gene.

    PubMed Central

    Birkeland, N K; Lindqvist, B H; Christie, G E

    1991-01-01

    The bacteriophage P2 ogr gene encodes an 8.3-kDa protein that is a positive effector of P2 late gene transcription. The ogr gene is preceded by a promoter sequence (Pogr) resembling a normal Escherichia coli promoter and is located just downstream of a late transcription unit. We analyzed the kinetics and regulation of ogr gene transcription by using an ogr-specific antisense RNA probe in an S1 mapping assay. During a normal P2 infection, ogr gene transcription starts from Pogr at an intermediate time between the onset of early and late transcription. At late times after infection the ogr gene is cotranscribed with the late FETUD operon; the ogr gene product thus positively regulates its own synthesis from the P2 late promoter PF. Expression of the P2 late genes also requires P2 DNA replication. Complementation experiments and transcriptional analysis show that a nonreplicating P2 phage expresses the ogr gene from Pogr but is unable to transcribe the late genes. A P2 ogr-defective phage makes an increased level of ogr mRNA, consistent with autogenous control from Pogr. Transcription of the ogr gene in the prophage of a P2 heteroimmune lysogen is stimulated after infection with P2, suggesting that Pogr is under indirect immunity control and is activated by a yet-unidentified P2 early gene product during infection. Images FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:1938896

  2. Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: deformylation with olefin formation.

    PubMed Central

    Roberts, E S; Vaz, A D; Coon, M J

    1991-01-01

    As we have briefly described elsewhere, cytochrome P-450 catalyzes the oxidative deformylation of cyclohexane carboxaldehyde to yield cyclohexene and formic acid in a reaction believed to involve a peroxyhemiacetal-like adduct formed between the substrate and molecular oxygen-derived hydrogen peroxide. This reaction is a useful model for the demethylation reactions catalyzed by the steroidogenic P-450s, aromatase, and lanosterol demethylase. In the present study, the cytochrome P-450-catalyzed formation of olefinic products from a series of xenobiotic aldehydes has been demonstrated. Isobutyraldehyde and trimethylacetaldehyde, but not propionaldehyde, are converted to the predicted olefinic products, suggesting a requirement for branching at the alpha carbon. In addition, the four C5 aldehydes of similar hydrophobicity were compared for their ability to undergo the reaction. The straight-chain valeraldehyde gave no olefinic products with five different rabbit liver microsomal P-450 isozymes. However, increasing activity was seen with the other isomers in the order of isovaleraldehyde, 2-methylbutyraldehyde, and trimethylacetaldehyde, with all of the P-450 cytochromes. The catalytic rate with trimethylacetaldehyde is highest with antibiotic-inducible P-450 form 3A6, followed by phenobarbital-inducible form 2B4 and ethanol-inducible form 2E1. Citronellal, a beta-branched aldehyde that is found in many essential oils and is widely used as an odorant and a flavorant, was found to undergo the oxidative deformylation reaction to yield 2,6-dimethyl-1,5-heptadiene, but only with P-450 2B4. The oxidative cleavage reaction with olefin formation appears to be widespread, as judged by the variety of aldehydes that serve as substrates and of P-450 cytochromes that serve as catalysts. PMID:1924356

  3. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis.

    PubMed

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-11-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  4. Dual Function of the Cytochrome P450 CYP76 Family from Arabidopsis thaliana in the Metabolism of Monoterpenols and Phenylurea Herbicides1[W][OPEN

    PubMed Central

    Höfer, René; Boachon, Benoît; Renault, Hugues; Gavira, Carole; Miesch, Laurence; Iglesias, Juliana; Ginglinger, Jean-François; Allouche, Lionel; Miesch, Michel; Grec, Sebastien; Larbat, Romain; Werck-Reichhart, Danièle

    2014-01-01

    Comparative genomics analysis unravels lineage-specific bursts of gene duplications related to the emergence of specialized pathways. The CYP76C subfamily of cytochrome P450 enzymes is specific to Brassicaceae. Two of its members were recently associated with monoterpenol metabolism. This prompted us to investigate the CYP76C subfamily genetic and functional diversification. Our study revealed high rates of CYP76C gene duplication and loss in Brassicaceae, suggesting the association of the CYP76C subfamily with species-specific adaptive functions. Gene differential expression and enzyme functional specialization in Arabidopsis thaliana, including metabolism of different monoterpenols and formation of different products, support this hypothesis. In addition to linalool metabolism, CYP76C1, CYP76C2, and CYP76C4 metabolized herbicides belonging to the class of phenylurea. Their ectopic expression in the whole plant conferred herbicide tolerance. CYP76Cs from A. thaliana. thus provide a first example of promiscuous cytochrome P450 enzymes endowing effective metabolism of both natural and xenobiotic compounds. Our data also suggest that the CYP76C gene family provides a suitable genetic background for a quick evolution of herbicide resistance. PMID:25082892

  5. [Gene polymorphism of CYP450 2C9 and VKORC1 in Chinese population and their relationships to the maintaining dosage of warfarin].

    PubMed

    Zhang, Ya-nan; Cui, Wei; Han, Mei; Zheng, Bin; Liu, Fan; Xie, Rui-qin; Yang, Xiao-hong; Gu, Guo-qiang; Zheng, Hong-mei; Wen, Jin-kun

    2010-02-01

    To investigate the distribution of gene polymorphism of CYP450 2C9 and VKORC1-1639A/G in the Chinese population as well as the difference of genetic polymorphism between Chinese Han population and other ethnic populations. Contribution of CYP2C9 and VKORC1 genotype to the maintenance doses on warfarin was also studied. The genotype and allele frequencies were calculated and compared with those in other populations. One hundred and one patients with stable anticoagulation with warfarin under a target international normalized ratio (INR) of 2.0 to 3.0 were enrolled for studying the relationship between the CYP2C9 and VKORC1 gene polymorphism and the warfarin maintaining dosage. CYP450 2C9*3 + 1075C/A allele frequencies were:AA in 449 cases (92.2%), AC in 36 cases (7.4%) and CC in 2 cases (0.4%), respectively. VKORC1 -1639A/G allele frequencies were AA in 415 cases (85.2%), GA in 72 cases (14.8%), but GG in no case (0.0%), respectively. When linear stepwise regression analysis was used to identify factors contributing to warfarin stable dose, the final equation was: ln (D) = 0.346 + 0.017 (weight) - 0.376 (CYP450 2C9*3 + 1075C/A) + 0.148 (VKORC1-1639A/G) - 0.002 (age) (r = 0.827, P = 0.02). There existed significant gene polymorphism CYP450 2C9*3 + 1075C/A and VKORC1-1639A/G in the Chinese Han population. Both Gene polymorphisms of CYP450 2C9*3 + 1075C/A and VKORC1-1639A/G were significantly affecting the maintaining dose of warfarin in the Chinese population.

  6. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Yi-Hua; Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu; Baker, Angela A.

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling,more » a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.« less

  7. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Characterization of Biocatalytically Active Bacterial Strains and of Cytochrome P450 Monooxygenase Enzymes and Their Genes

    PubMed Central

    Jungmann, Volker; Molnár, István; Hammer, Philip E.; Hill, D. Steven; Zirkle, Ross; Buckel, Thomas G.; Buckel, Dagmar; Ligon, James M.; Pachlatko, J. Paul

    2005-01-01

    4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined. PMID:16269732

  8. The EWS–Oct-4 fusion gene encodes a transforming gene

    PubMed Central

    Lee, Jungwoon; Kim, Ja Young; Kang, In Young; Kim, Hye Kyoung; Han, Yong-Mahn; Kim, Jungho

    2007-01-01

    The t(6;22)(p21;q12) translocation associated with human bone and soft-tissue tumours results in a chimaeric molecule fusing the NTD (N-terminal domain) of the EWS (Ewing's sarcoma) gene to the CTD (C-terminal domain) of the Oct-4 (octamer-4) embryonic gene. Since the N-terminal domains of EWS and Oct-4 are structurally different, in the present study we have assessed the functional consequences of the EWS–Oct-4 fusion. We find that this chimaeric gene encodes a nuclear protein which binds DNA with the same sequence specificity as the parental Oct-4 protein. Comparison of the transactivation properties of EWS–Oct-4 and Oct-4 indicates that the former has higher transactivation activity for a known target reporter gene containing Oct-4 binding. Deletion analysis of the functional domains of EWS–Oct-4 indicates that the EWS (NTD), the POU domain and the CTD of EWS–Oct-4 are necessary for full transactivation potential. EWS–Oct-4 induced the expression of fgf-4 (fibroblast growth factor 4) and nanog, which are potent mitogens as well as Oct-4 downstream target genes whose promoters contain potential Oct-4-binding sites. Finally, ectopic expression of EWS–Oct-4 in Oct-4-null ZHBTc4 ES (embryonic stem) cells resulted in increased tumorigenic growth potential in nude mice. These results suggest that the oncogenic effect of the t(6;22) translocation is due to the EWS–Oct-4 chimaeric protein and that fusion of the EWS NTD to the Oct-4 DNA-binding domain produces a transforming chimaeric product. PMID:17564582

  9. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  10. Cloning and sequencing of a gene encoding a glutamate and aspartate carrier of Escherichia coli K-12.

    PubMed Central

    Wallace, B; Yang, Y J; Hong, J S; Lum, D

    1990-01-01

    A gene encoding a carrier protein for glutamate and aspartate was cloned into Escherichia coli K-12 strain BK9MDG by using the high-copy-number plasmid pBR322. The gene (designated gltP) is probably identical to a gene recently cloned from E. coli B (Y. Deguchi, I. Yamato, and Y. Anraku, J. Bacteriol. 171:1314-1319). A 1.6-kilobase DNA fragment containing gltP was subcloned into the expression plasmids pT7-5 and pT7-6, and its product was identified by a phage T7 RNA polymerase-T7 promoter coupled system (S. Tabor and C. C. Richardson, Proc. Natl. Acad. Sci. USA 82:1074-1078) as a polypeptide with an apparent mass of 38 kilodaltons. A portion of the gltP polypeptide was associated with the cytoplasmic membrane. The nucleotide sequence of the 1.6-kilobase fragment was determined. It contained an open reading frame capable of encoding a highly hydrophobic polypeptide of 395 amino acids, containing four possible transmembrane segments. Uptake of glutamate and aspartate was increased 5.5- and 4.5-fold, respectively, in strains containing gltP plasmids. Glutamate uptake was insensitive to the concentration of Na+ and was inhibited by L-cysteate and beta-hydroxyaspartate. These results suggest that gltP is a structural gene for a carrier protein of the Na(+)-independent, binding-protein-independent glutamate-aspartate transport system. Images PMID:1971622

  11. Characterization of human cytochrome P450s involved in the bioactivation of tri-ortho-cresyl phosphate (ToCP).

    PubMed

    Reinen, Jelle; Nematollahi, Leyla; Fidder, Alex; Vermeulen, Nico P E; Noort, Daan; Commandeur, Jan N M

    2015-04-20

    Tri-ortho-cresyl phosphate (ToCP) is a multipurpose organophosphorus compound that is neurotoxic and suspected to be involved in aerotoxic syndrome in humans. It has been reported that not ToCP itself but a metabolite of ToCP, namely, 2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one (CBDP), may be responsible for this effect as it can irreversibly bind to human butyrylcholinesterase (BuChE) and human acetylcholinesterase (AChE). The bioactivation of ToCP into CBDP involves Cytochrome P450s (P450s). However, the individual human P450s responsible for this bioactivation have not been identified yet. In the present study, we aimed to investigate the metabolism of ToCP by different P450s and to determine the inhibitory effect of the in vitro generated ToCP-metabolites on human BuChE and AChE. Human liver microsomes, rat liver microsomes, and recombinant human P450s were used for that purpose. The recombinant P450s 2B6, 2C18, 2D6, 3A4 and 3A5 showed highest activity of ToCP-bioactivation to BuChE-inhibitory metabolites. Inhibition experiments using pooled human liver microsomes indicated that P450 3A4 and 3A5 were mainly involved in human hepatic bioactivation of ToCP. In addition, these experiments indicated a minor role for P450 1A2. Formation of CBDP by in-house expressed recombinant human P450s 1A2 and 3A4 was proven by both LC-MS and GC-MS analysis. When ToCP was incubated with P450 1A2 and 3A4 in the presence of human BuChE, CBDP-BuChE-adducts were detected by LC-MS/MS which were not present in the corresponding control incubations. These results confirmed the role of human P450s 1A2 and 3A4 in ToCP metabolism and demonstrated that CBDP is the metabolite responsible for the BuChE inactivation. Interindividual differences at the level of P450 1A2 and 3A4 might play an important role in the susceptibility of humans in developing neurotoxic effects, such as aerotoxic syndrome, after exposure to ToCP.

  12. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  13. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    PubMed Central

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the

  14. The Yersinia pestis gcvB gene encodes two small regulatory RNA molecules

    PubMed Central

    McArthur, Sarah D; Pulvermacher, Sarah C; Stauffer, George V

    2006-01-01

    Background In recent years it has become clear that small non-coding RNAs function as regulatory elements in bacterial virulence and bacterial stress responses. We tested for the presence of the small non-coding GcvB RNAs in Y. pestis as possible regulators of gene expression in this organism. Results In this study, we report that the Yersinia pestis KIM6 gcvB gene encodes two small RNAs. Transcription of gcvB is activated by the GcvA protein and repressed by the GcvR protein. The gcvB-encoded RNAs are required for repression of the Y. pestis dppA gene, encoding the periplasmic-binding protein component of the dipeptide transport system, showing that the GcvB RNAs have regulatory activity. A deletion of the gcvB gene from the Y. pestis KIM6 chromosome results in a decrease in the generation time of the organism as well as a change in colony morphology. Conclusion The results of this study indicate that the Y. pestis gcvB gene encodes two small non-coding regulatory RNAs that repress dppA expression. A gcvB deletion is pleiotropic, suggesting that the sRNAs are likely involved in controlling genes in addition to dppA. PMID:16768793

  15. Construction and engineering of a thermostable self-sufficient cytochrome P450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C.more » Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.« less

  16. Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme.

    PubMed

    Robin, Aélig; Roberts, Gareth A; Kisch, Johannes; Sabbadin, Federico; Grogan, Gideon; Bruce, Neil; Turner, Nicholas J; Flitsch, Sabine L

    2009-05-14

    A chimeric oxygenase, in which the P450cam domain was fused to the reductase host domains of a P450RhF from Rhodococcus sp. strain NCIMB 9784 was optimised to allow for a biotransformation at 30 mM substrate in 80% overall yield, with the linker region between P450 and FMN domain proving to be important for the effective biotransformation of (+)-camphor to 5-exo-hydroxycamphor.

  17. Functional characterization of two p-coumaroyl ester 3'-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis.

    PubMed

    Mahesh, Venkataramaiah; Million-Rousseau, Rachel; Ullmann, Pascaline; Chabrillange, Nathalie; Bustamante, José; Mondolot, Laurence; Morant, Marc; Noirot, Michel; Hamon, Serge; de Kochko, Alexandre; Werck-Reichhart, Danièle; Campa, Claudine

    2007-05-01

    Chlorogenic acid (5-CQA) is one of the major soluble phenolic compounds that is accumulated in coffee green beans. With other hydroxycinnamoyl quinic acids (HQAs), this compound is accumulated in particular in green beans of the cultivated species Coffea canephora. Recent work has indicated that the biosynthesis of 5-CQA can be catalyzed by a cytochrome P450 enzyme, CYP98A3 from Arabidopsis. Two full-length cDNA clones (CYP98A35 and CYP98A36) that encode putative p-coumaroylester 3'-hydroxylases (C3'H) were isolated from C. canephora cDNA libraries. Recombinant protein expression in yeast showed that both metabolized p-coumaroyl shikimate at similar rates, but that only one hydroxylates the chlorogenic acid precursor p-coumaroyl quinate. CYP98A35 appears to be the first C3'H capable of metabolising p-coumaroyl quinate and p-coumaroyl shikimate with the same efficiency. We studied the expression patterns of both genes on 4-month old C. canephora plants and found higher transcript levels in young and in highly vascularized organs for both genes. Gene expression and HQA content seemed to be correlated in these organs. Histolocalization and immunolocalization studies revealed similar tissue localization for caffeoyl quinic acids and p-coumaroylester 3'-hydroxylases. The results indicated that HQA biosynthesis and accumulation occurred mainly in the shoot tip and in the phloem of the vascular bundles. The lack of correlation between gene expression and HQA content observed in some organs is discussed in terms of transport and accumulation mechanisms.

  18. Inhibition of cytochrome P450 2B4 by environmentally persistent free radical-containing particulate matter

    PubMed Central

    Reed, James R.; dela Cruz, Albert Leo N.; Lomnicki, Slawo M.; Backes, Wayne L.

    2015-01-01

    Combustion processes generate particulate matter (PM) that can affect human health. The presence of redox-active metals and aromatic hydrocarbons in the post-combustion regions results in the formation of air-stable, environmentally persistent free radicals (EPFRs) on entrained particles. Exposure to EPFRs has been shown to negatively influence pulmonary and cardiovascular functions. Cytochromes P450 (P450/CYP) are endoplasmic reticulum resident proteins that are responsible for the metabolism of foreign compounds. Previously, it was shown that model EPFRs, generated by exposure of silica containing 5% copper oxide (CuO-Si) to either dicholorobenzene (DCB230) or 2-monochlorophenol (MCP230) at ≥ 230°C, inhibited six forms of P450 in rat liver microsomes (Toxicol. Appl. Pharmacol. (2014) 277:200-209). In this study, the inhibition of P450 by MCP230 was examined in more detail by measuring its effect on the rate of metabolism of 7-ethoxy-4-trifluoromethylcoumarin (7EFC) and 7-benzyloxyresorufin (7BRF) by the purified, reconstituted CYP2B4 system. MCP230 inhibited the CYP2B4-mediated metabolism of 7EFC at least 10-fold more potently than non-EPFR controls (CuO-Si, silica, and silica generated from heating silica and MCP at 50°C, so that EPFRs were not formed (MCP50)). The inhibition by EPFRs was specific for the P450 and did not affect the ability of the redox partner, P450 reductase (CPR) from reducing cytochrome c. All of the PM inhibited CYP2B4-mediated metabolism noncompetitively with respect to substrate. When CYP2B4-mediated metabolism of 7EFC was measured as a function of the CPR concentration, the mechanism of inhibition was competitive. EPFRs likely inhibit CYP2B4-mediated substrate metabolism by physically disrupting the CPR•P450 complex. PMID:25817938

  19. Cytochrome P450 3A expression and activity in the rabbit lacrimal gland: glucocorticoid modulation and the impact on androgen metabolism.

    PubMed

    Attar, Mayssa; Ling, Kah-Hiing John; Tang-Liu, Diane D-S; Neamati, Nouri; Lee, Vincent H L

    2005-12-01

    Cytochrome P450 3A (CYP3A) is an enzyme of paramount importance to drug metabolism. The expression and activity of CYP3A, an enzyme responsible for active androgen clearance, was investigated in the rabbit lacrimal gland. Analysis of CYP3A expression and activity was performed on lacrimal gland tissues obtained from naïve untreated and treated New Zealand White rabbits. For 5 days, treated rabbits received daily administration of vehicle or 0.1% or 1.0% dexamethasone, in the lower cul-de-sac of each eye. Changes in mRNA expression were monitored by real-time RT-PCR. Protein expression was confirmed by Western blot. Functional activity was measured by monitoring the metabolism of CYP3A probe substrates-namely, 7-benzyloxyquinoline (BQ) and [3H]testosterone. Cytochrome P450 heme protein was detected at a concentration of 44.6 picomoles/mg protein, along with its redox partner NADPH reductase and specifically CYP3A6 in the naïve rabbit lacrimal gland. Genes encoding CYP3A6, in addition to the pregnane-X-receptor (PXR) and P-glycoprotein (P-gp) were expressed in the untreated tissue. BQ dealkylation was measured in the naïve rabbit lacrimal gland at a rate of 14 +/- 7 picomoles/mg protein per minute. Changes in CYP3A6, P-gp, and androgen receptor mRNA expression levels were detected after dexamethasone treatment. In addition, dexamethasone treatment resulted in significant increases in BQ dealkylation and CYP3A6-mediated [3H]testosterone metabolism. Concomitant increases in CYP3A6-mediated hydroxylated testosterone metabolites were observed in the treated rabbits. Furthermore, ketoconazole, all-trans retinoic acid, and cyclosporine inhibited CYP3A6 mediated [3H]testosterone 6beta hydroxylation in a concentration-dependent manner, with IC50 ranging from 3.73 to 435 microM. The results demonstrate, for the first time, the expression and activity of CYP3A6 in the rabbit lacrimal gland. In addition, this pathway was shown to be subject to modulation by a commonly

  20. Regulation of cytochrome P-450 4A activity by peroxisome proliferator-activated receptors in the rat kidney.

    PubMed

    Ishizuka, Tsuneo; Ito, Osamu; Tan, Liping; Ogawa, Susumu; Kohzuki, Masahiro; Omata, Ken; Takeuchi, Kazuhisa; Ito, Sadayoshi

    2003-11-01

    The localization of cytochrome P-450 4A, peroxisome proliferator-activated receptor (PPAR) alpha, and PPARgamma proteins, and the inducibility of P-450 4A expression and activity by PPAR agonists were determined in the rat kidney. The expressions of these proteins in isolated nephron segments were evaluated by immunoblot analysis, and the production of 20-hydroxyeicosatetraenoic acid (20-HETE) was measured as P-450 4A activity. P-450 4A proteins were expressed predominantly in the proximal tubule (PT), with lower expression in the preglomerular arteriole (Art), glomerulus (Glm), and medullary thick ascending limb (mTAL), but their expression was not detected in the inner medullary collecting duct (IMCD). PPARalpha protein was expressed in the PT and mTAL, and PPARgamma protein was expressed in the IMCD and mTAL. Treatment with clofibrate, the PPARalpha agonist, increased P-450 4A protein levels and the production of 20-HETE in microsomes prepared from the renal cortex, whereas treatment with pioglitazone, the PPARgamma agonist, affected neither of them. These results indicate that PPARalpha and PPARgamma proteins are localized in different nephron segments and the inducibility of P-450 4A expression and activity by the PPAR agonists correlates with the nephron-specific localization of the respective PPAR isoforms.

  1. Immunohistochemical study of temporal variations in cytochrome P-450 isozymes in rat testis and their modifications by the inductive effects of cadinenes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhito; Motohashi, Yutaka; Miyazaki, Yoshifumi; Yatagai, Mitsuyoshi; Takano, Takehito

    1991-12-01

    Temporal variations in cytochrome P-450 isozymes of rat testis, PB-P-450 (forms of cytochrome P-450 strongly induced by phenobarbital) and MC-P-448 (forms of cytochrome P-450 strongly induced by 3-methylcholanthrene), were investigated immunohistochemically by the avidin-biotin-complex method using specific antibodies against PB-P-450 and MC-P-448 isozymes. Immunoreactivity to both PB-P-450 and MC-P-448 isozymes was observed in Leydig cells. The number of PB-P-450 positive Leydig cells was found to undergo significant time-of-day variation with a peak time of 0000 hours (light phase from 0800 to 2000 hours). Injection of cadinenes (300 mg/kg per day intraperitoneally at 48 and 96 h before sacrifice) induced PB-P-450 isozyme but did not induce MC-P-448 isozyme. The induction of PB-P-450 isozyme by cadinenes was time dependent, and the early dark phase (2000 and 0000 hours) was most sensitive. These results suggest that temporal variation of cytochrome P-450 isozymes is one of the important physiological variations in detoxification and activation of various xenobiotics and chemicals in the testis.

  2. Time course for the modulation of hepatic cytochrome P450 after administration of ethylbenzene and its correlation with toluene metabolism.

    PubMed

    Yuan, W; Sequeira, D J; Cawley, G F; Eyer, C S; Backes, W L

    1997-03-01

    The goal of the present study was to examine the time course for changes in P450 expression and hydrocarbon metabolism after acute treatment with the simple aromatic hydrocarbon ethylbenzene (EB) and to correlate these alterations with the changes observed in alkylbenzene metabolism. Male Holtzman rats were treated with a single intraperitoneal injection of EB, and the effects on specific P450-dependent activities, immunoreactive P450 isozyme levels, and RNA levels were measured at various times after injection. Toluene was used as the test alkylbenzene for examination of the EB-mediated changes on in vitro hydrocarbon metabolism. In untreated rats, toluene was metabolized almost entirely by aliphatic hydroxylation (to benzyl alcohol); however, in EB-treated rats, significant quantities of benzyl alcohol, o-cresol, and p-cresol were produced. Interestingly, 5-10 h after EB treatment, there was a 40% decrease in benzyl alcohol production. By 24 h, rates of benzyl alcohol formation returned to control levels, whereas there was a 7-fold increase in o-cresol and a greater that 50-fold increase in p-cresol production. The changes in the disposition of toluene were then correlated with changes in particular P450 isozymes. Several P450 isozymes were induced after EB administration. P450 2B1/2-dependent testosterone 16 beta-hydroxylation and P450 2B1/2-immunoreactive protein were elevated 30-fold after EB administration, reaching maxima by 24 h and remaining elevated 48 h after exposure. Changes in P450 2B1 and 2B2 RNA preceded those of the proteins. Similar results were observed with P450 1A1. P450 2E1 RNA levels were elevated after a single EB injection. However, the elevation in P450 2E1-dependent activities and immunoreactive protein levels preceded the changes in RNA, suggesting that multiple steps are affected by EB exposure. In contrast to the increases in some isozymes, P450 2C11 protein was rapidly suppressed (within the first 2-10 h) after hydrocarbon exposure

  3. Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Pedrini, Nicolás; Zhang, Shizhu; Juárez, M Patricia; Keyhani, Nemat O

    2010-08-01

    The insect epicuticle or waxy layer comprises a heterogeneous mixture of lipids that include abundant levels of long-chain alkanes, alkenes, wax esters and fatty acids. This structure represents the first barrier against microbial attack and for broad-host-range insect pathogens, such as Beauveria bassiana, it is the initial interface mediating the host-pathogen interaction, since these organisms do not require any specialized mode of entry and infect target hosts via the cuticle. B. bassiana is able to grow on straight chain alkanes up to n-C(33) as a sole source of carbon and energy. The cDNA and genomic sequences, including putative regulatory elements, for eight cytochrome P450 enzymes, postulated to be involved in alkane and insect epicuticle degradation, were isolated and characterized. Expression studies using a range of alkanes as well as an insect-derived epicuticular extract from the blood-sucking bug Triatomas infestans revealed a differential expression pattern for the P450 genes examined, and suggest that B. bassiana contains a series of hydrocarbon-assimilating enzymes with overlapping specificity in order to target the surface lipids of insect hosts. Phylogenetic analysis of the translated ORFs of the sequences revealed that the enzyme which displayed the highest levels of induction on both alkanes and the insect epicuticular extract represents the founding member of a new cytochrome P450 family, with three of the other sequences assigned as the first members of new P450 subfamilies. The remaining four proteins clustered with known P450 families whose members include alkane monooxygenases.

  4. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B sub 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoyama, Toshifumi; Yamano, Shigeru; Gelboin, H.V.

    Twelve forms of human hepatic cytochrome P450 were expressed in hepatoma cells by means of recombinant vaccinia viruses. The expressed P450s were analyzed for their abilities to activate the potent hepatocarcinogen aflatoxin B{sub 1} to metabolites having mutagenic or DNA-binding properties. Five forms, P450s IA2, IIA3, IIB7, IIIA3, and IIIA4, activated aflatoxin B{sub 1} to mutagenic metabolites as assessed by the production of His revertants of Salmonella typhimurium in the Ames test. The same P450s catalyzed conversion of aflatoxin B{sub 1} to DNA-bound derivatives as judged by an in situ assay in which the radiolabeled carcinogen was incubated with cellsmore » expressing the individual P450 forms. Seven other human P450s, IIC8, IIC9, IID6, IIE1, IIF1, and IIIA5, and IVB1, did not significantly activate aflatoxin B{sub 1} as measured by both the Ames test and the DNA-binding assay. Moreover, polyclonal anti-rat liver P450 antibodies that crossreact with individual human P450s IA2, IIA3, IIIA3, and IIIA4 each inhibited aflatoxin B{sub 1} activation catalyzed by human liver S-9 extracts. Inhibition ranged from as low as 10% with antibody against IIA3 to as high as 65% with antibody against IIIA3 and IIIA4. These results establish that metabolic activation of aflatoxin B{sub 1} in human liver involves the contribution of multiple forms of P450.« less

  5. Bioavailable flavonoids: cytochrome P450-mediated metabolism of methoxyflavones.

    PubMed

    Walle, U Kristina; Walle, Thomas

    2007-11-01

    Methoxylated flavones were recently shown to be promising cancer chemopreventive agents. Their high metabolic stability compared with the hydroxylated analogs was shown in our laboratory using the human hepatic S9 fraction with cofactors for glucuronidation, sulfation, and oxidation. In the present study, the resistance of methoxylated flavones toward oxidative metabolism was investigated with human liver microsomes and recombinant cytochrome P450 (P450) isoforms. Among 15 methoxylated flavones investigated, the two partially methylated compounds, tectochrysin and kaempferide, were among the most susceptible to microsomal oxidation (Cl(int) 283 and 82 ml/min/kg). Of the fully methylated compounds, 5,7-dimethoxyflavone and 5-methoxyflavone were the most stable (Cl(int) 13 and 18 ml/min/kg, respectively), whereas 4'-methoxyflavone, 3'-methoxyflavone, 5,4'-dimethoxyflavone, and 7,3'-dimethoxyflavone were the least stable (Cl(int) 161, 140, 119, and 92 ml/min/kg, respectively), emphasizing the importance of the positions of the methoxy substituents in the flavone ring system. Among the five P450 isoforms tested, CYP1A1 showed the highest rate of metabolism of fully methylated compounds, followed by CYP1A2 and CYP3A4. CYP2C9 and CYP2D6 gave minimal disappearance of the parent compound. Finally, in incubations with hepatic S9 fraction with cofactors for oxidation and both conjugation reactions, partially methylated flavones, as expected, were much less metabolically stable than fully methylated flavones, confirming that oxidative demethylation is the rate-limiting metabolic reaction for fully methylated flavones only. In summary, the rate of oxidative metabolism of methoxylated flavones, mainly involving CYP1A1 and CYP1A2, varied widely, even between compounds with very similar structures.

  6. [Effects of vitamins deficiency on the cytochrome P450 inducibility in rats].

    PubMed

    Trusov, N V; Guseva, G V; Beketova, N A; Aksenov, I V; Avrent'eva, L I; Kravchenko, L V

    2014-01-01

    The purpose of the study was to determine multi-vitamin deficiency effects on the inducibility of main isoforms of cytochrome P450 in the rat liver. The study was carried out on 4 groups of Wistar rats. Rats of the 1st and 3rd group received semi-synthetic diets containing adequate (100% of recommended vitamin level) level of vitamins, the 2nd and 4th--the semi-synthetic diet containing vitamins in the amount of 20% from adequate level. The duration of the experiment was 4 weeks. During the last week indole-3-carbinol (I-3-C) in dose of 20 mg/kg body weight was added to the diet of the 3rd and 4th group of rats. Vitamin E content in liver and blood serum declined by 59 and 34%, respectively in rats which were fed vitamin-deficient diet (2nd group); vitamin A level decreased by 5 times in the liver, but was not changed in blood serum. Multi-vitamin deficiency in the diet led to the increase in the liver ethoxyresorufin O-dealkylase (EROD) activity of CYP1A1, methoxyresorufin O-dealkylase (MROD) activity of CYP1A2 and testosteron 6beta-hydroxylase (6beta-TG) activity of CYP3A by 11, 80 and 53%, respectively, and gene expression of CYP1A1, CYP1A2, CYP3A and AhR by 8,5; 1,6; 2,4 and 3,6 fold. In rats fed diet with adequate levels of vitamins (3rd group) I-3-C increased activity of EROD and MROD by 4,4 and 5,5 fold, and the expression of CYP1A1, CYP1A2 and AhR genes by 148; 3 and 3,5 fold compared to the parameters of the 1st group (without I-3-C). Multi-vitamin deficiency increased I-3-C-related induction of EROD activity and expression of CYP1A1 and CYP1A2 genes, but decreased I-3-C-related induction of the MROD activity. Thus, 5-fold reducing of vitamin content in rat diet lead to significant changes in activity and inducibility of cytochrome P450 of CYP1A and 3A family, which play a key role in the detoxification and metabolism of drugs.

  7. A highly divergent gene cluster in honey bees encodes a novel silk family.

    PubMed

    Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S

    2006-11-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.

  8. Identification and heterologous expression of the cytochrome P450 oxidoreductase from the white-rot basidiomycete Coriolus versicolor.

    PubMed

    Ichinose, H; Wariishi, H; Tanaka, H

    2002-09-01

    A cDNA encoding cytochrome P450 oxidoreductase (CPR) from the lignin-degrading basidiomycete Coriolus versicolor was identified using RT-PCR. The full-length cDNA consisted of 2,484 nucleotides with a poly(A) tail, and contained an open reading frame. The G+C content of the cDNA isolated was 60%. A deduced protein contained 730 amino acid residues with a calculated molecular weight of 80.7 kDa. The conserved amino acid residues involved in functional domains such as FAD-, FMN-, and NADPH-binding domains, were all found in the deduced protein. A phylogenetic analysis demonstrated that C. versicolor CPR is significantly similar to CPR of the basidiomycete Phanerochaete chrysosporium and that they share the same major branch in the fungal cluster. A recombinant CPR protein was expressed using a pET/ Escherichia coli system. The recombinant CPR protein migrated at 81 kDa on SDS polyacrylamide gel electrophoresis. It exhibited an NADPH-dependent cytochrome c reducing activity.

  9. Alteration of high and low spin equilibrium by a single mutation of amino acid 209 in mouse cytochromes P450.

    PubMed

    Iwasaki, M; Juvonen, R; Lindberg, R; Negishi, M

    1991-02-25

    The identities of the amino acid at position 209 are most critical in determining specific coumarin 7- and steroid 15 alpha-hydroxylase activity in P450coh and P450(15)alpha, respectively. This system, therefore, provides us with an excellent model to study the structural basis for P450 specificity as a monooxygenase. We expressed in Saccharomyces cerevisiae a series of the mutated P450s in which residue 209 was substituted with the various amino acids and characterized the spectral property and hydroxylase activity of these mutated P450s. The positioning of a hydrophobic residue including Phe, Leu, and Val at position 209 resulted in shifting the P450 to the high-spin state, while a charged amino acid such as Lys or Asp produced the low-spin form. Moreover, a P450 with Asn or Gly in this position exhibited spectra indicating a mixture of the high- and low-spin forms. This spin alteration, depending upon the hydrophobicity and size of residue at position 209, indicates that this position is likely to reside close to the sixth axial ligand on the distal surface of the heme in these P450s. This proximity of residue 209 to the ligand may explain the critical role of this residue in determining the hydroxylase specificity and activity of these P450s.

  10. Importance of multi-P450 inhibition in drug-drug interactions: evaluation of incidence, inhibition magnitude and prediction from in vitro data

    PubMed Central

    Isoherranen, Nina; Lutz, Justin D; Chung, Sophie P; Hachad, Houda; Levy, Rene H; Ragueneau-Majlessi, Isabelle

    2012-01-01

    Drugs that are mainly cleared by a single enzyme are considered more sensitive to drug-drug interactions (DDIs) than drugs cleared by multiple pathways. However, whether this is true when a drug cleared by multiple pathways is co-administered with an inhibitor of multiple P450 enzymes (multi-P450 inhibition) is not known. Mathematically, simultaneous equipotent inhibition of two elimination pathways that each contributes half of the drug clearance is equal to equipotent inhibition of a single pathway that clears the drug. However, simultaneous strong or moderate inhibition of two pathways by a single inhibitor is perceived as an unlikely scenario. The aim of this study was (i) to identify P450 inhibitors currently in clinical use that can inhibit more than one clearance pathway of an object drug in vivo, and (ii) to evaluate the magnitude and predictability of DDIs caused by these multi-P450 inhibitors. Multi-P450 inhibitors were identified using the Metabolism and Transport Drug Interaction Database™. A total of 38 multi-P450 inhibitors, defined as inhibitors that increased the AUC or decreased the clearance of probes of two or more P450’s, were identified. Seventeen (45 %) multi-P450 inhibitors were strong inhibitors of at least one P450 and an additional 12 (32 %) were moderate inhibitors of one or more P450s. Only one inhibitor (fluvoxamine) was a strong inhibitor of more than one enzyme. Fifteen of the multi-P450 inhibitors also inhibit drug transporters in vivo, but such data are lacking on many of the inhibitors. Inhibition of multiple P450 enzymes by a single inhibitor resulted in significant (>2-fold) clinical DDIs with drugs that are cleared by multiple pathways such as imipramine and diazepam while strong P450 inhibitors resulted in only weak DDIs with these object drugs. The magnitude of the DDIs between multi-P450 inhibitors and diazepam, imipramine and omeprazole could be predicted using in vitro data with similar accuracy as probe substrate

  11. The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus)

    NASA Astrophysics Data System (ADS)

    Yue, Jia-Xing; Holland, Nicholas D.; Holland, Linda Z.; Deheyn, Dimitri D.

    2016-06-01

    Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.

  12. Formation of cytochrome P-450 containing haem or cobalt-protoporphyrin in liver homogenates of rats treated with phenobarbital and allylisopropylacetamide.

    PubMed Central

    Bonkovsky, H L; Sinclair, J F; Healey, J F; Sinclair, P R; Smith, E L

    1984-01-01

    The potent porphyrogen allylisopropylacetamide and related compounds decrease hepatic concentrations of cytochrome P-450. This decrease occurs particularly in phenobarbital-induced cytochrome P-450 and is caused by suicidal breakdown of the haem of cytochrome P-450. Quantitative rocket immunoelectrophoresis showed that the protein moiety of the major phenobarbital-inducible form of hepatic cytochrome P-450 was not diminished up to 1 h, but was markedly decreased (to 43% of that of the phenobarbital-treated control) at 20 h after allylisopropylacetamide treatment. In contrast, the concentration of total cytochrome P-450, measured spectrophotometrically, decreased to 30-40% of the control at both 1 and 20 h after allylisopropylacetamide. Cytochrome P-450-dependent demethylations of ethylmorphine and benzphetamine decreased to a similar extent. When liver homogenates from rats treated with allylisopropylacetamide 1 h before being killed were incubated with haem, functional holocytochrome P-450 could be reconstituted from the apoprotein. Incubation with haem increased spectrophotometrically measurable cytochrome P-450 to 69%, ethylmorphine demethylase to 64% and benzphetamine demethylase to 93% of the activities in rats treated with phenobarbital alone. At 20 h after allylisopropylacetamide treatment, however, little or no reconstitution of cytochrome P-450 occurred after incubation with haem. When liver homogenates were incubated with cobalt and protoporphyrin, and microsomal proteins were then subjected to polyacrylamide-gel electrophoresis, cobalt-protoporphyrin was found specifically associated with proteins of Mr 50 000-53 000. When homogenates from rats given allylisopropylacetamide for 1 h or 20 h were compared, it was found that the extent of this association was higher in livers from the rats containing more apocytochrome P-450, suggesting that cobalt-protoporphyrin had associated with the apocytochrome. The data provide insight into the association of haem

  13. Increased mitochondrial-encoded gene transcription in immortal DF-1 cells.

    PubMed

    Kim, H; You, S; Kim, I J; Farris, J; Foster, L K; Foster, D N

    2001-05-01

    We have established, in continuous cell culture, a spontaneously immortalized chicken embryo fibroblast (CEF) cell line (DF-1) as well as several other immortal CEF cell lines. The immortal DF-1 cells divided more rapidly than primary and other immortal CEF cells. To identify the genes involved in rapidly dividing DF-1 cells, we have used differential display RT-PCR. Of the numerous genes analyzed, three mitochondrial-encoded genes (ATPase 8/6, 16S rRNA, and cytochrome b) were shown to express at higher levels in DF-1 cells compared to primary and other immortal CEF cells. The inhibition of mitochondrial translation by treatment with chloramphenicol markedly decreased ATP production and cell proliferation in DF-1 cells, while not affecting growth in either primary or other immortal CEF cells. This result suggests a correlation between rapid cell proliferation and the increased mitochondrial respiratory functions. We also determined that the increased transcription of mitochondrial-encoded genes in DF-1 cells is due to increased de novo transcript synthesis as shown by mitochondrial run-on assays, and not the result of either increased mitochondrial biogenesis or mitochondrial transcript half-lives. Together, the present studies suggest that the transcriptional activation of mitochondrial-encoded genes and the elevated respiratory function should be one of the characteristics of rapidly dividing immortal cells. Copyright 2001 Academic Press.

  14. Genetic analysis of the agrocinopine catabolic region of Agrobacterium tumefaciens Ti plasmid pTiC58, which encodes genes required for opine and agrocin 84 transport.

    PubMed Central

    Hayman, G T; Beck von Bodman, S; Kim, H; Jiang, P; Farrand, S K

    1993-01-01

    The acc region, subcloned from pTiC58 of classical nopaline and agrocinopine A and B Agrobacterium tumefaciens C58, allowed agrobacteria to grow using agrocinopine B as the sole source of carbon and energy. acc is approximately 6 kb in size. It consists of at least five genes, accA through accE, as defined by complementation analysis using subcloned fragments and transposon insertion mutations of acc carried on different plasmids within the same cell. All five regions are required for agrocin 84 sensitivity, and at least four are required for agrocinopine and agrocin 84 uptake. The complementation results are consistent with the hypothesis that each of the five regions is separately transcribed. Maxicell experiments showed that the first of these genes, accA, encodes a 60-kDa protein. Analysis of osmotic shock fractions showed this protein to be located in the periplasm. The DNA sequence of the accA region revealed an open reading frame encoding a predicted polypeptide of 59,147 Da. The amino acid sequence encoded by this open reading frame is similar to the periplasmic binding proteins OppA and DppA of Escherichia coli and Salmonella typhimurium and OppA of Bacillus subtilis. Images PMID:8366042

  15. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks

    NASA Astrophysics Data System (ADS)

    Bayburt, Timothy H.; Sligar, Stephen G.

    2002-05-01

    The architecture of membrane proteins in their native environment of the phospholipid bilayer is critical for understanding physiological function, but has been difficult to realize experimentally. In this communication we describe the incorporation of a membrane-anchored protein into a supported phospholipid bilayer. Cytochrome P450 2B4 solubilized and purified from the hepatic endoplasmic reticulum was incorporated into phospholipid bilayer nanostructures and oriented on a surface for visualization by atomic force microscopy. Individual P450 molecules were observed protruding from the bilayer surface. Problems associated with deformation of the protein by the atomic force microscopy probe were avoided by analyzing force-dependent height measurements to quantitate the height of the protein above the bilayer surface. Measurements of the atomic force microscopy cantilever deflection as a function of probe-sample separation reveal that the top of the P450 opposite the N-terminal membrane anchor region sits 3.5 nanometers above the phospholipid-water boundary. Models of the orientation of the enzyme are presented and discussed in relation to membrane interactions and interaction with cytochrome P450 reductase.

  16. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm moth (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura (Lepidoptera, Noctuidae) has been shown to be resistant to a wide range of insecticides. In this stu...

  17. Cytochrome P450 2C9 gene polymorphism and warfarin maintenance dosage in pediatric patients: A systematic review and meta-analysis.

    PubMed

    Zhang, Jinhua; Tian, Lihong; Huang, Jinlong; Huang, Sihan; Chai, Tingting; Shen, Jianzhen

    2017-02-01

    To assess the effect of Cytochrome P450 2C9 (CYP2C9) gene polymorphism on pediatric warfarin maintenance dosage requirement. A previously developed search strategy was conducted in PubMed, EMBASE, and the Cochrane Library. Eligible studies published prior to January 27, 2016, were identified and compared against strict inclusion/exclusion criteria. Required data were extracted, and researchers were consulted for additional data if needed. Review Manager version 5.2.3 software was used to analyze the relationship between CYP2C9 polymorphisms and warfarin maintenance doses in pediatric patients. Eight articles with a combined total of 507 pediatric patients were included in the meta-analysis. Maintenance warfarin doses in patients with CYP2C9 *1/*2 genotype, CYP2C9 *1/*3 genotype, and CYP2C9 variant carriers which contain at least one variant allele (*2 or *3) were from 15% to 41% lower than doses in patients with the wild-type allele (CYP2C9 *1/*1): All differences were significant with P-values <.05. The Fontan procedure as a medical indication for anticoagulation was also associated with a lower warfarin maintenance dose; however, target INR range was not. We found that CYP2C9 gene polymorphism (referring to the presence of *1/*2, *1/*3, and variant genotypes in the population in addition to the wild type) was significantly associated with decreased warfarin maintenance dose requirements. Additionally, a specific indication for warfarin, the Fontan procedure, was associated with a lower daily warfarin dose. However, the results of our study require confirmation from more research with larger numbers of pediatric patients. © 2016 John Wiley & Sons Ltd.

  18. Emerging roles in plant defense for cis-jasmone-induced cytochrome P450 CYP81D11.

    PubMed

    Matthes, Michaela; Bruce, Toby; Chamberlain, Keith; Pickett, John; Napier, Johnathan

    2011-04-01

    cis-Jasmone is a volatile organic compound emitted constitutively by flowers or leaves of several plant species where it acts as an attractant for pollinators and as a chemical cue for host localisation (or avoidance) for insects. ( 1-3) It is also released by some plant species after feeding damage inflicted by herbivorous insects and in this case might serve as a chemical cue for parasitoids to guide them to their prey (so called "indirect defense"). ( 4,5) Moreover, we have recently shown that plants can perceive cis-jasmone and that it acts as a signaling molecule in A. thaliana, inducing a discrete and distinctive suite of genes, of which a large subset is putatively involved in metabolism and defense responses. ( 6) Cytochrome P450s feature prominently in these functional subsets and of these the highest fold change upon cis-jasmone treatment occurred with the cytochrome CYP81D11 (At3g28740). ( 6) Hence this gene was chosen for a more thorough analysis of the potential biological relevance of the cis-jasmone induced defense response. Although the precise function of CYP81D11 remains to be determined, we could previously demonstrate its involvement in the indirect defense response in Arabidopsis, as plants exposed to cis-jasmone ceased to be attractive to the aphid parasitoid Aphidius ervi when this P450 was inactivated by T-DNA insertion mutagenesis. ( 6) Here we report additional experiments which give further support to a role of CYP81D11 in the direct or indirect defense response of A. thaliana.

  19. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis

    PubMed Central

    Ibrahim, Sulaiman S.; Riveron, Jacob M.; Stott, Robert; Irving, Helen; Wondji, Charles S.

    2016-01-01

    Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools. PMID:26548743

  20. A Ti plasmid-encoded enzyme required for degradation of mannopine is functionally homologous to the T-region-encoded enzyme required for synthesis of this opine in crown gall tumors.

    PubMed Central

    Kim, K S; Chilton, W S; Farrand, S K

    1996-01-01

    The mocC gene encoded by the octopine/mannityl opine-type Ti plasmid pTi15955 is related at the nucleotide sequence level to mas1' encoded by the T region of this plasmid. While Mas1 is required for the synthesis of mannopine (MOP) by crown gall tumor cells, MocC is essential for the utilization of MOP by Agrobacterium spp. A cosmid clone of pTi15955, pYDH208, encodes mocC and confers the utilization of MOP on strain NT1 and on strain UIA5, a derivative of NT1 lacking the 450-kb cryptic plasmid pAtC58. NT1 or UIA5 harboring pYDH208 with an insertion mutation in mocC failed to utilize MOP as the sole carbon source. Plasmid pSa-C, which encodes only mocC, complemented this mutation in both strains. This plasmid also was sufficient to confer utilization of MOP on NT1 but not on UIA5. Computer analysis showed that MocC is related at the amino acid sequence level to members of the short-chain alcohol dehydrogenase family of oxidoreductases. Lysates prepared from Escherichia coli cells expressing mocC contained an enzymatic activity that oxidizes MOP to deoxyfructosyl glutamine (santhopine [SOP]) in the presence of NAD+. The reaction catalyzed by the MOP oxidoreductase is reversible; in the presence of NADH, the enzyme reduced SOP to MOP. The apparent Km values of the enzyme for MOP and SOP were 6.3 and 1.2 mM, respectively. Among analogs of MOP tested, only N-1-(1-deoxy-D-lyxityl)-L-glutamine and N-1-(1-deoxy-D-mannityl)-L-asparagine served as substrates for MOP oxidoreductase. These results indicate that mocC encodes an oxidoreductase that, as an oxidase, is essential for the catabolism of MOP. The reductase activity of this enzyme is precisely the reaction ascribed to its T-region-encoded homolog, Mas1, which is responsible for biosynthesis of mannopine in crown gall tumors. PMID:8655510