Science.gov

Sample records for p53 cooperative integrators

  1. The regulation of p53 by phosphorylation: a model for how distinct signals integrate into the p53 pathway.

    PubMed

    Maclaine, Nicola J; Hupp, Ted R

    2009-05-01

    The tumour suppressor p53 is a transcription factor that has evolved the ability to integrate distinct environmental signals including DNA damage, virus infection, and cytokine signaling into a common biological outcome that maintains normal cellular control. Mutations in p53 switch the cellular transcription program resulting in deregulation of the stress responses that normally maintain cell and tissue integrity. Transgenic studies in mice have indicated that changes in the specific activity of p53 can have profound effects not only on cancer development, but also on organism aging. As the specific activity of p53 is regulated at a post-translational level by sets of enzymes that mediate phosphorylation, acetylation, methylation, and ubiquitin-like modifications, it is likely that physiological modifiers of the aging function of p53 would be enzymes that catalyze such covalent modifications. We demonstrate that distinct stress-activated kinases, including ataxia telangiectasia mutated (ATM), casein kinase 1 (CK1) and AMP-activated protein kinase (AMPK), mediate phosphorylation of a key phospho-acceptor site in the p53 transactivation domain in response to diverse stresses including ionizing radiation, DNA virus infection, and elevation in the intracellular AMP/ATP ratio. As diseases linked to aging can involve activation of p53-dependent changes in cellular protective pathways, the development of specific physiological models might further shed light on the role of p53 kinases in modifying age-related diseases. PMID:20157532

  2. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    SciTech Connect

    Pauklin, Siim . E-mail: spauklin@ut.ee; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-08-26

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, {beta}-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53.

  3. Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death.

    PubMed

    Li, Qinxi; Wang, Xuan; Wu, Xiaoling; Rui, Yanning; Liu, Wei; Wang, Jifeng; Wang, Xinghao; Liou, Yih-Cherng; Ye, Zhiyun; Lin, Sheng-Cai

    2007-01-01

    Daxx, a death domain-associated protein, has been implicated in proapoptosis, antiapoptosis, and transcriptional regulation. Many factors known to play critically important roles in controlling apoptosis and gene transcription have been shown to associate with Daxx, including the Ser/Thr protein kinase HIPK2, promyelocytic leukemia protein, histone deacetylases, and the chromatin remodeling protein ATRX. Although it is clear that Daxx may exert multiple functions, the underlying mechanisms remain far from clear. Here, we show that Axin, originally identified for its scaffolding role to control beta-catenin levels in Wnt signaling, strongly associates with Daxx at endogenous levels. The Daxx/Axin complex formation is enhanced by UV irradiation. Axin tethers Daxx to the tumor suppressor p53, and cooperates with Daxx, but not DaxxDeltaAxin, which is unable to interact with Axin, to stimulate HIPK2-mediated Ser(46) phosphorylation and transcriptional activity of p53. Interestingly, Axin and Daxx seem to selectively activate p53 target genes, with strong activation of PUMA, but not p21 or Bax. Daxx-stimulated p53 transcriptional activity was significantly diminished by small interfering RNA against Axin; Daxx fails to inhibit colony formation in Axin(-/-) cells. Moreover, UV-induced cell death was attenuated by the knockdown of Axin and Daxx. All these results show that Daxx cooperates with Axin to stimulate p53, and implicate a direct role for Axin, HIPK2, and p53 in the proapoptotic function of Daxx. We have hence unraveled a novel aspect of p53 activation and shed new light on the ultimate understanding of the Daxx protein, perhaps most pertinently, in relation to stress-induced cell death. PMID:17210684

  4. Dicer Cooperates with p53 to Suppress DNA Damage and Skin Carcinogenesis in Mice

    PubMed Central

    Lyle, Stephen; Hoover, Kathleen; Colpan, Cansu; Zhu, Zhiqing; Matijasevic, Zdenka; Jones, Stephen N.

    2014-01-01

    Dicer is required for the maturation of microRNA, and loss of Dicer and miRNA processing has been found to alter numerous biological events during embryogenesis, including the development of mammalian skin and hair. We have previously examined the role of miRNA biogenesis in mouse embryonic fibroblasts and found that deletion of Dicer induces cell senescence regulated, in part, by the p53 tumor suppressor. Although Dicer and miRNA molecules are thought to have either oncogenic or tumor suppressing roles in various types of cancer, a role for Dicer and miRNAs in skin carcinogenesis has not been established. Here we show that perinatal ablation of Dicer in the skin of mice leads to loss of fur in adult mice, increased epidermal cell proliferation and apoptosis, and the accumulation of widespread DNA damage in epidermal cells. Co-ablation of Dicer and p53 did not alter the timing or extent of fur loss, but greatly reduced survival of Dicer-skin ablated mice, as these mice developed multiple and highly aggressive skin carcinomas. Our results describe a new mouse model for spontaneous basal and squamous cell tumorigenesis. Furthermore, our findings reveal that loss of Dicer in the epidermis induces extensive DNA damage, activation of the DNA damage response and p53-dependent apoptosis, and that Dicer and p53 cooperate to suppress mammalian skin carcinogenesis. PMID:24979267

  5. Cooperation between p53 Mutation and High Telomerase Transgenic Expression in Spontaneous Cancer Development

    PubMed Central

    González-Suárez, Eva; Flores, Juana M.; Blasco, María A.

    2002-01-01

    Telomerase reintroduction in adult somatic tissues is envisioned as a way to extend their proliferative capacity. It is still a question, however, whether constitutive telomerase expression in adult tissues impacts the normal aging and spontaneous cancer incidence of an organism. Here, we studied the aging and spontaneous cancer incidence of mice with transgenic telomerase expression in a wide range of adult tissues, K5-Tert mice. For this, we maintained large colonies of K5-Tert mice for more than 2 years. K5-Tert mice showed a decreased life span compared to wild-type cohorts associated with a higher incidence of preneoplastic and neoplastic lesions in various tissue types. Neoplasias in K5-Tert mice were coincident with transgene expression in the affected tissues. These observations suggest that high telomerase activity may cooperate with genetic alterations that occur with age to promote tumorigenesis. Indeed, we demonstrate here that increased cancer incidence and the reduced viability of K5-Tert mice are aggravated in a p53+/− genetic background, indicating that telomerase cooperates with loss of p53 function in inducing tumorigenesis. Altogether, these results demonstrate that constitutive high levels of telomerase activity result in a decreased life span associated with an increased incidence of neoplasias as the organism ages. PMID:12242304

  6. Cooperative Role of the RNA-Binding Proteins Hzf and HuR in p53 Activation ▿

    PubMed Central

    Nakamura, Hideaki; Kawagishi, Hiroyuki; Watanabe, Atsushi; Sugimoto, Kazushi; Maruyama, Mitsuo; Sugimoto, Masataka

    2011-01-01

    The RNA-binding protein Hzf (hematopoietic zinc finger) plays important roles in mRNA translation in cerebellar Purkinje cells and adipocytes. We along with others have reported that the expression of the Hzf gene is transcriptionally regulated by the p53 tumor suppressor protein. We show here that Hzf regulates p53 expression in cooperation with HuR. Hzf and HuR independently interact with the 3′ untranslated region (UTR) of p53 mRNA, which facilitates the cytoplasmic localization of p53 mRNA in the presence of the ARF tumor suppressor protein. In the absence of Hzf and HuR, p53 induction by p19ARF is significantly attenuated, and the cells consequently acquire resistance to p19ARF. Thus, these findings demonstrate that in addition to Mdm2 inhibition, p19ARF increases the concentration of p53 through posttranscriptional control of p53 mRNA and suggest critical roles for the RNA-binding proteins Hzf and HuR in p53 induction. PMID:21402775

  7. Endoplasmic Reticulum Stress Accelerates p53 Degradation by the Cooperative Actions of Hdm2 and Glycogen Synthase Kinase 3β

    PubMed Central

    Pluquet, Olivier; Qu, Li-Ke; Baltzis, Dionissios; Koromilas, Antonis E.

    2005-01-01

    Inactivation of the tumor suppressor p53 by degradation is a mechanism utilized by cells to adapt to endoplasmic reticulum (ER) stress. However, the mechanisms of p53 destabilization by ER stress are not known. We demonstrate here that the E3 ubiquitin-ligase Hdm2 is essential for the nucleocytoplasmic transport and proteasome-dependent degradation of p53 in ER-stressed cells. We also demonstrate that p53 phosphorylation at S315 and S376 is required for its nuclear export and degradation by Hdm2 without interfering with the ubiquitylation process. Furthermore, we show that p53 destabilization in unstressed cells utilizes the cooperative action of Hdm2 and glycogen synthase kinase 3β, a process that is enhanced in cells exposed to ER stress. In contrast to other stress pathways that stabilize p53, our findings further substantiate a negative role of ER stress in p53 activation with important implications for the function of the tumor suppressor in cells with a dysfunctional ER. PMID:16227590

  8. Integrated high-throughput analysis identifies Sp1 as a crucial determinant of p53-mediated apoptosis

    PubMed Central

    Li, H; Zhang, Y; Ströse, A; Tedesco, D; Gurova, K; Selivanova, G

    2014-01-01

    The restoration of p53 tumor suppressor function is a promising therapeutic strategy to combat cancer. However, the biological outcomes of p53 activation, ranging from the promotion of growth arrest to the induction of cell death, are hard to predict, which limits the clinical application of p53-based therapies. In the present study, we performed an integrated analysis of genome-wide short hairpin RNA screen and gene expression data and uncovered a previously unrecognized role of Sp1 as a central modulator of the transcriptional response induced by p53 that leads to robust induction of apoptosis. Sp1 is indispensable for the pro-apoptotic transcriptional repression by p53, but not for the induction of pro-apoptotic genes. Furthermore, the p53-dependent pro-apoptotic transcriptional repression required the co-binding of Sp1 to p53 target genes. Our results also highlight that Sp1 shares with p53 a common regulator, MDM2, which targets Sp1 for proteasomal degradation. This uncovers a new mechanism of the tight control of apoptosis in cells. Our study advances the understanding of the molecular basis of p53-mediated apoptosis and implicates Sp1 as one of its key modulators. We found that small molecules reactivating p53 can differentially modulate Sp1, thus providing insights into how to manipulate p53 response in a controlled way. PMID:24971482

  9. Fbw7 and p53 Cooperatively Suppress Advanced and Chromosomally Unstable Intestinal Cancer

    PubMed Central

    Grim, Jonathan E.; Knoblaugh, Sue E.; Guthrie, Katherine A.; Hagar, Amanda; Swanger, Jherek; Hespelt, Jessica; Delrow, Jeffrey J.; Small, Tom; Grady, William M.; Nakayama, Keiichi I.

    2012-01-01

    Colorectal cancer (CRC) remains a major cause of cancer mortality worldwide. Murine models have yielded critical insights into CRC pathogenesis, but they often fail to recapitulate advanced-disease phenotypes, notably metastasis and chromosomal instability (CIN). New models are thus needed to understand disease progression and to develop therapies. We sought to model advanced CRC by inactivating two tumor suppressors that are mutated in human CRCs, the Fbw7 ubiquitin ligase and p53. Here we report that Fbw7 deletion alters differentiation and proliferation in the gut epithelium and stabilizes oncogenic Fbw7 substrates, such as cyclin E and Myc. However, Fbw7 deletion does not cause tumorigenesis in the gut. In contrast, codeletion of both Fbw7 and p53 causes highly penetrant, aggressive, and metastatic adenocarcinomas, and allografts derived from these tumors form highly malignant adenocarcinomas. In vitro evidence indicates that Fbw7 ablation promotes genetic instability that is suppressed by p53, and we show that most Fbw7−/−; p53−/− carcinomas exhibit a CIN+ phenotype. We conclude that Fbw7 and p53 synergistically suppress adenocarcinomas that mimic advanced human CRC with respect to histopathology, metastasis, and CIN. This model thus represents a novel tool for studies of advanced CRC as well as carcinogenesis associated with ubiquitin pathway mutations. PMID:22473991

  10. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells.

    PubMed

    Bailey, J M; Hendley, A M; Lafaro, K J; Pruski, M A; Jones, N C; Alsina, J; Younes, M; Maitra, A; McAllister, F; Iacobuzio-Donahue, C A; Leach, S D

    2016-08-11

    Pancreatic cancer is one of the most lethal malignancies, with virtually all patients eventually succumbing to their disease. Mutations in p53 have been documented in >50% of pancreatic cancers. Owing to the high incidence of p53 mutations in PanIN 3 lesions and pancreatic tumors, we interrogated the comparative ability of adult pancreatic acinar and ductal cells to respond to oncogenic Kras and mutant Tp53(R172H) using Hnf1b:CreER(T2) and Mist1:CreER(T2) mice. These studies involved co-activation of a membrane-tethered GFP lineage label, allowing for direct visualization and isolation of cells undergoing Kras and mutant p53 activation. Kras activation in Mist1(+) adult acinar cells resulted in brisk PanIN formation, whereas no evidence of pancreatic neoplasia was observed for up to 6 months following Kras activation in Hnf1beta(+) adult ductal cells. In contrast to the lack of response to oncogenic Kras alone, simultaneous activation of Kras and mutant p53 in adult ductal epithelium generated invasive PDAC in 75% of mice as early as 2.5 months after tamoxifen administration. These data demonstrate that pancreatic ductal cells, whereas exhibiting relative resistance to oncogenic Kras alone, can serve as an effective cell of origin for pancreatic ductal adenocarcinoma in the setting of gain-of-function mutations in p53. PMID:26592447

  11. Cooperative interactions between p53 and NFκB enhance cell plasticity

    PubMed Central

    Bisio, Alessandra; Zámborszky, Judit; Zaccara, Sara; Lion, Mattia; Tebaldi, Toma; Sharma, Vasundhara; Raimondi, Ivan; Alessandrini, Federica; Ciribilli, Yari; Inga, Alberto

    2014-01-01

    The p53 and NFκB sequence-specific transcription factors play crucial roles in cell proliferation and survival with critical, even if typically opposite, effects on cancer progression. To investigate a possible crosstalk between p53 and NFκB driven by chemotherapy-induced responses in the context of an inflammatory microenvironment, we performed a proof of concept study using MCF7 cells. Transcriptome analyses upon single or combined treatments with doxorubicin (Doxo, 1.5μM) and the NFκB inducer TNF-alpha (TNF⍺, 5ng/ml) revealed 432 up-regulated (log2 FC> 2), and 390 repressed genes (log2 FC< -2) for the Doxo+TNF⍺ treatment. 239 up-regulated and 161 repressed genes were synergistically regulated by the double treatment. Annotation and pathway analyses of Doxo+TNF⍺ selectively up-regulated genes indicated strong enrichment for cell migration terms. A panel of genes was examined by qPCR coupled to p53 activation by Doxo, 5-Fluoruracil and Nutlin-3a, or to p53 or NFκB inhibition. Transcriptome data were confirmed for 12 of 15 selected genes and seven (PLK3, LAMP3, ETV7, UNC5B, NTN1, DUSP5, SNAI1) were synergistically up-regulated after Doxo+TNF⍺ and dependent both on p53 and NFκB. Migration assays consistently showed an increase in motility for MCF7 cells upon Doxo+TNF⍺. A signature of 29 Doxo+TNF⍺ highly synergistic genes exhibited prognostic value for luminal breast cancer patients, with adverse outcome correlating with higher relative expression. We propose that the crosstalk between p53 and NFκB can lead to the activation of specific gene expression programs that may impact on cancer phenotypes and potentially modify the efficacy of cancer therapy. PMID:25401416

  12. Cooperative interactions between p53 and NFκB enhance cell plasticity.

    PubMed

    Bisio, Alessandra; Zámborszky, Judit; Zaccara, Sara; Lion, Mattia; Tebaldi, Toma; Sharma, Vasundhara; Raimondi, Ivan; Alessandrini, Federica; Ciribilli, Yari; Inga, Alberto

    2014-12-15

    The p53 and NFκB sequence-specific transcription factors play crucial roles in cell proliferation and survival with critical, even if typically opposite, effects on cancer progression. To investigate a possible crosstalk between p53 and NFκB driven by chemotherapy-induced responses in the context of an inflammatory microenvironment, we performed a proof of concept study using MCF7 cells. Transcriptome analyses upon single or combined treatments with doxorubicin (Doxo, 1.5μM) and the NFκB inducer TNF-alpha (TNFα, 5ng/ml) revealed 432 up-regulated (log2 FC> 2), and 390 repressed genes (log2 FC< -2) for the Doxo+TNFα treatment. 239 up-regulated and 161 repressed genes were synergistically regulated by the double treatment. Annotation and pathway analyses of Doxo+TNFα selectively up-regulated genes indicated strong enrichment for cell migration terms. A panel of genes was examined by qPCR coupled to p53 activation by Doxo, 5-Fluoruracil and Nutlin-3a, or to p53 or NFκB inhibition. Transcriptome data were confirmed for 12 of 15 selected genes and seven (PLK3, LAMP3, ETV7, UNC5B, NTN1, DUSP5, SNAI1) were synergistically up-regulated after Doxo+TNFα and dependent both on p53 and NFκB. Migration assays consistently showed an increase in motility for MCF7 cells upon Doxo+TNFα. A signature of 29 Doxo+TNFα highly synergistic genes exhibited prognostic value for luminal breast cancer patients, with adverse outcome correlating with higher relative expression. We propose that the crosstalk between p53 and NFκB can lead to the activation of specific gene expression programs that may impact on cancer phenotypes and potentially modify the efficacy of cancer therapy. PMID:25401416

  13. Zbtb1 Safeguards Genome Integrity and Prevents p53-Mediated Apoptosis in Proliferating Lymphoid Progenitors.

    PubMed

    Cao, Xin; Lu, Ying; Zhang, Xianyu; Kovalovsky, Damian

    2016-08-15

    Expression of the transcription factor Zbtb1 is required for normal lymphoid development. We report in the present study that Zbtb1 maintains genome integrity in immune progenitors, without which cells undergo increased DNA damage and p53-mediated apoptosis during replication and differentiation. Increased DNA damage in Zbtb1-mutant (ScanT) progenitors was due to increased sensitivity to replication stress, which was a consequence of inefficient activation of the S-phase checkpoint response. Increased p53-mediated apoptosis affected not only lymphoid but also myeloid development in competitive bone marrow chimeras, and prevention of apoptosis by transgenic Bcl2 expression and p53 deficiency rescued lymphoid as well as myeloid development from Zbtb1-mutant progenitors. Interestingly, however, protection from apoptosis rescued only the early stages of T cell development, and thymocytes remained arrested at the double-negative 3 developmental stage, indicating a strict requirement of Zbtb1 at later T cell developmental stages. Collectively, these results indicate that Zbtb1 prevents DNA damage in replicating immune progenitors, allowing the generation of B cells, T cells, and myeloid cells. PMID:27402700

  14. Mutant p53 cooperates with ETS2 to promote etoposide resistance.

    PubMed

    Do, Phi M; Varanasi, Lakshman; Fan, Songqing; Li, Chunyang; Kubacka, Iwona; Newman, Virginia; Chauhan, Krishna; Daniels, Silvano Rakeem; Boccetta, Maurizio; Garrett, Michael R; Li, Runzhao; Martinez, Luis A

    2012-04-15

    Mutant p53 (mtp53) promotes chemotherapy resistance through multiple mechanisms, including disabling proapoptotic proteins and regulating gene expression. Comparison of genome wide analysis of mtp53 binding revealed that the ETS-binding site motif (EBS) is prevalent within predicted mtp53-binding sites. We demonstrate that mtp53 regulates gene expression through EBS in promoters and that ETS2 mediates the interaction with this motif. Importantly, we identified TDP2, a 5'-tyrosyl DNA phosphodiesterase involved in the repair of DNA damage caused by etoposide, as a transcriptional target of mtp53. We demonstrate that suppression of TDP2 sensitizes mtp53-expressing cells to etoposide and that mtp53 and TDP2 are frequently overexpressed in human lung cancer; thus, our analysis identifies a potentially "druggable" component of mtp53's gain-of-function activity. PMID:22508727

  15. Mutant p53 cooperates with ETS2 to promote etoposide resistance

    PubMed Central

    Do, Phi M.; Varanasi, Lakshman; Fan, Songqing; Li, Chunyang; Kubacka, Iwona; Newman, Virginia; Chauhan, Krishna; Daniels, Silvano Rakeem; Boccetta, Maurizio; Garrett, Michael R.; Li, Runzhao; Martinez, Luis A.

    2012-01-01

    Mutant p53 (mtp53) promotes chemotherapy resistance through multiple mechanisms, including disabling proapoptotic proteins and regulating gene expression. Comparison of genome wide analysis of mtp53 binding revealed that the ETS-binding site motif (EBS) is prevalent within predicted mtp53-binding sites. We demonstrate that mtp53 regulates gene expression through EBS in promoters and that ETS2 mediates the interaction with this motif. Importantly, we identified TDP2, a 5′-tyrosyl DNA phosphodiesterase involved in the repair of DNA damage caused by etoposide, as a transcriptional target of mtp53. We demonstrate that suppression of TDP2 sensitizes mtp53-expressing cells to etoposide and that mtp53 and TDP2 are frequently overexpressed in human lung cancer; thus, our analysis identifies a potentially “druggable” component of mtp53's gain-of-function activity. PMID:22508727

  16. Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cells

    PubMed Central

    Pfister, Neil T.; Fomin, Vitalay; Regunath, Kausik; Zhou, Jeffrey Y.; Zhou, Wen; Silwal-Pandit, Laxmi; Freed-Pastor, William A.; Laptenko, Oleg; Neo, Suat Peng; Bargonetti, Jill; Hoque, Mainul; Tian, Bin; Gunaratne, Jayantha; Engebraaten, Olav; Manley, James L.; Børresen-Dale, Anne-Lise; Neilsen, Paul M.; Prives, Carol

    2015-01-01

    Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential. PMID:26080815

  17. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1.

    PubMed

    Sampath, J; Sun, D; Kidd, V J; Grenet, J; Gandhi, A; Shapiro, L H; Wang, Q; Zambetti, G P; Schuetz, J D

    2001-10-19

    The most frequently expressed drug resistance genes, MDR1 and MRP1, occur in human tumors with mutant p53. However, it was unknown if mutant p53 transcriptionally regulated both MDR1 and MRP1. We demonstrated that mutant p53 did not activate either the MRP1 promoter or the endogenous gene. In contrast, mutant p53 strongly up-regulated the MDR1 promoter and expression of the endogenous MDR1 gene. Notably, cells that expressed either a transcriptionally inactive mutant p53 or the empty vector showed no endogenous MDR1 up-regulation. Transcriptional activation of the MDR1 promoter by mutant p53 required an Ets binding site, and mutant p53 and Ets-1 synergistically activated MDR1 transcription. Biochemical analysis revealed that Ets-1 interacted exclusively with mutant p53s in vivo but not with wild-type p53. These findings are the first to demonstrate the induction of endogenous MDR1 by mutant p53 and provide insight into the mechanism. PMID:11483599

  18. Affinities of organophosphate flame retardants to tumor suppressor gene p53: an integrated in vitro and in silico study.

    PubMed

    Li, Fei; Cao, Lulu; Li, Xuehua; Li, Na; Wang, Zijian; Wu, Huifeng

    2015-01-22

    Health concerns have been raised in regards to the environmental impact of the more frequently used organophosphate flame retardants (OPFRs). In this study, the effects of two typical OPFRs (TCPP and TPhP) on p53 gene expression in human embryo liver L02 cells were determined by quantitative real-time PCR. To better understand the relationship between molecular structural features of OPFRs and binding affinities for the tumor suppressor genes p53, an integrated experimental and in silico approach was used. The interaction of 9 OPFRs with p53 DNA fragment under simulated physiological conditions (phosphate buffer solution of pH 7.40), was explored by UV absorption spectroscopy, fluorescence spectroscopy and molecular modeling method. The binding constants of 9 OPFRs with p53 DNA fragment were determined respectively, using ethidium bromide (EB) as fluorescence probe of DNA. From docking analysis, hydrogen bonding and hydrophobic interactions were found to be the dominant interactions. Based on the observed interactions, appropriate molecular structural parameters were adopted to develop a quantitative structure-activity relationship (QSAR) model. The binding affinities of OPFRs to p53 DNA fragment were related with molecular electrostatic potential. The developed QSAR model had good robustness, predictive ability and mechanism interpretability. PMID:25510514

  19. Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor Nf1 gene loss to promote malignant peripheral nerve sheath tumor formation

    PubMed Central

    Hirbe, Angela C.; Dahiya, Sonika; Friedmann-Morvinski, Dinorah; Verma, Inder M.; Clapp, D. Wade; Gutmann, David H.

    2016-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that arise sporadically or in association with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. In individuals with NF1, MPNSTs are hypothesized to arise from Nf1-deficient Schwann cell precursor cells following the somatic acquisition of secondary cooperating genetic mutations (e.g., p53 loss). To model this sequential genetic cooperativity, we coupled somatic lentivirus-mediated p53 knockdown in the adult right sciatic nerve with embryonic Schwann cell precursor Nf1 gene inactivation in two different Nf1 conditional knockout mouse strains. Using this approach, ∼60% of mice with Periostin-Cre-mediated Nf1 gene inactivation (Periostin-Cre; Nf1flox/flox mice) developed tumors classified as low-grade MPNSTs following p53 knockdown (mean, 6 months). Similarly, ∼70% of Nf1+/− mice with GFAP-Cre-mediated Nf1 gene inactivation (GFAP-Cre; Nf1flox/null mice) developed low-grade MPNSTs following p53 knockdown (mean, 3 months). In addition, wild-type and Nf1+/− mice with GFAP-Cre-mediated Nf1 loss develop MPNSTs following somatic p53 knockout with different latencies, suggesting potential influences of Nf1+/− stromal cells in MPNST pathogenesis. Collectively, this new MPNST model system permits the analysis of somatically-acquired events as well as tumor microenvironment signals that potentially cooperate with Nf1 loss in the development and progression of this deadly malignancy. PMID:26859681

  20. The cooperative effect of p53 and Rb in local nanotherapy in a rabbit VX2 model of hepatocellular carcinoma

    PubMed Central

    Dong, Shengli; Tang, Qibin; Long, Miaoyun; Guan, Jian; Ye, Lu; Li, Gaopeng

    2013-01-01

    Background/aim A local nanotherapy (LNT) combining the therapeutic efficacy of trans-arterial embolization, nanoparticles, and p53 gene therapy has been previously presented. The study presented here aimed to further improve the incomplete tumor eradication and limited survival enhancement and to elucidate the molecular mechanism of the LNT. Methods In a tumor-targeting manner, recombinant expressing plasmids harboring wild-type p53 and Rb were either co-transferred or transferred separately to rabbit hepatic VX2 tumors in a poly-L-lysine-modified hydroxyapatite nanoparticle nanoplex and Lipiodol® (Guerbet, Villepinte, France) emulsion via the hepatic artery. Subsequent co-expression of p53 and Rb proteins within the treated tumors was investigated by Western blotting and in situ analysis by laser-scanning confocal microscopy. The therapeutic effect was evaluated by the tumor growth velocity, apoptosis and necrosis rates, their sensitivity to Adriamycin® (ADM), mitomycin C, and fluorouracil, the microvessel density of tumor tissue, and the survival time of animals. Eventually, real-time polymerase chain reaction and enhanced chemiluminescence Western blotting were used to investigate the expressive changes of important genes related to the therapy. Results The administration procedure proved safe for the rabbits’ liver function, the p53 plus Rb LNT showed significantly better antitumoral effect and lower expression of malignant genes than the p53 or Rb LNT, although no significant difference was observed in animal survival when the p53 plus Rb LNT was compared with the p53 LNT. Conclusion Rb works synergistically with p53 in combined therapy mediated by a poly-L-lysine-modified hydroxyapatite nanoparticle nanoplex to augment the antitumoral effect through the downregulated expression of important genes related to apoptosis, necrosis, growth, differentiation and multidrug resistance of tumor cells. LNT with p53 and Rb is potentially an effective antitumor

  1. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O.; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E.; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C.; Orlowski, Robert; Sarbassov, Dos D.; Lorenzi, Philip L.; Huang, Xuelin; Neelapu, Sattva S.; McDonnell, Timothy; Miranda, Roberto N.; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R. Eric.; Andreeff, Michael

    2016-01-01

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. PMID:26884599

  2. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies.

    PubMed

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C; Orlowski, Robert; Sarbassov, Dos D; Lorenzi, Philip L; Huang, Xuelin; Neelapu, Sattva S; McDonnell, Timothy; Miranda, Roberto N; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R Eric; Andreeff, Michael

    2016-02-16

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. PMID:26884599

  3. The p53 circuit board

    PubMed Central

    Sullivan, Kelly D.; Gallant-Behm, Corrie L.; Henry, Ryan E.; Fraikin, Jean-Luc; Espinosa, Joaquín M.

    2012-01-01

    The p53 tumor suppressor is embedded in a large gene network controlling diverse cellular and organismal phenotypes. Multiple signaling pathways converge onto p53 activation, mostly by relieving the inhibitory effects of its repressors, MDM2 and MDM4. In turn, signals originating from increased p53 activity diverge into distinct effector pathways to deliver a specific cellular response to the activating stimuli. Much attention has been devoted to dissecting how the various input pathways trigger p53 activation and how the activity of the p53 protein itself can be modulated by a plethora of co-factors and post-translational modifications. In this review we will focus instead on the multiple configurations of the effector pathways. We will discuss how p53-generated signals are transmitted, amplified, resisted and eventually integrated by downstream gene circuits operating at the transcriptional, post-transcriptional and post-translational level. We will also discuss how context-dependent variations in these gene circuits define the cellular response to p53 activation and how they may impact the clinical efficacy of p53-based targeted therapies. PMID:22333261

  4. Integrative Analysis Reveals an Outcome-associated and Targetable Pattern of p53 and Cell Cycle Deregulation in Diffuse Large B-cell Lymphoma

    PubMed Central

    Monti, Stefano; Chapuy, Bjoern; Takeyama, Kunihiko; Rodig, Scott J; Hao, Yangsheng; Yeda, Kelly T.; Inguilizian, Haig; Mermel, Craig; Curie, Treeve; Dogan, Ahmed; Kutok, Jeffery L; Beroukim, Rameen; Neuberg, Donna; Habermann, Thomas; Getz, Gad; Kung, Andrew L; Golub, Todd R; Shipp, Margaret A

    2013-01-01

    Summary Diffuse large B-cell lymphoma (DLBCL) is a clinically and biologically heterogeneous disease with a high proliferation rate. By integrating copy number data with transcriptional profiles and performing pathway analysis in primary DLBCLs, we identified a comprehensive set of copy number alterations (CNAs) that decreased p53 activity and perturbed cell cycle regulation. Primary tumors either had multiple complementary alterations of p53 and cell cycle components or largely lacked these lesions. DLBCLs with p53 and cell cycle pathway CNAs had decreased abundance of p53 target transcripts and increased expression of E2F target genes and the Ki67 proliferation marker. CNAs of the CDKN2A-TP53-RB-E2F axis provide a structural basis for increased proliferation in DLBCL, predict outcome with current therapy and suggest targeted treatment approaches. PMID:22975378

  5. Δ113p53/Δ133p53 converts P53 from a repressor to a promoter of DNA double-stand break repair

    PubMed Central

    Gong, Lu; Chen, Jun

    2016-01-01

    ABSTRACT In response to DNA damage, p53 (TP53, best known as p53) is quickly activated leading to cell cycle arrest or apoptosis to ensure genomic integrity; however, this represses DNA double-strand break (DSB) repair. Our recent work revealed that Δ113p53/Δ133p53 protein is accumulated at a later stage upon DNA DSB stress to switch p53 signaling from repression to promotion of DNA DSB repair. PMID:27308550

  6. Cooperative interactions between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques.

    PubMed

    Bennett, M R; Macdonald, K; Chan, S W; Boyle, J J; Weissberg, P L

    1998-04-01

    Compared with vascular smooth muscle cells (VSMCs) from normal vessels, VSMCs from human atherosclerotic plaques proliferate more slowly, undergo earlier senescence, and demonstrate higher levels of apoptosis in culture. The tumor suppressor genes p105RB (retinoblastoma, acting through the E2F transcription factor family) and p53 regulate cell proliferation, cell senescence, and apoptosis in many cell types. We have therefore determined whether these stable growth properties of plaque VSMCs reflect altered activity of RB and/or p53. VSMCs were derived from coronary atherectomies or from normal coronary arteries from transplant recipients. Compared with normal VSMCs, plaque VSMCs showed a higher ratio of the active (hypophosphorylated) to the inactive (phosphorylated) form of RB and a lower level of E2F transcriptional activity. Cells were stably transfected with retrovirus constructs that inhibited RB or p53 alone or in combination. Suppression of RB alone increased rates of cell proliferation and apoptosis and inhibited cell senescence in normal VSMCs. Suppression of p53 and RB together had similar effects but, additionally, resulted in immortalization of normal VSMC cultures. In contrast, inhibition of RB binding to E2F or ectopic expression of E2F-1 in plaque VSMCs induced massive apoptosis, which required suppression of p53 to rescue cells. Suppression of RB and p53 together increased cell proliferation and delayed senescence but failed to immortalize plaque VSMCs. Inhibition of p53 alone had minimal effects on plaque VSMCs but increased the lifespan of normal VSMCs. We conclude that human plaque VSMCs have slower rates of cell proliferation and earlier senescence than do cells from normal vessels because of a defect in phosphorylation of RB. Furthermore, both disruption of RB/E2F and inhibition of p53 are required for plaque VSMCs to proliferate without apoptosis. This observation may explain the relatively low level of cell proliferation and high level of

  7. Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21- Mediated Early Senescence Signalling

    PubMed Central

    Nelson, Glyn; Hall, Philip; Miwa, Satomi; Kirkwood, Thomas B. L.; Shanley, Daryl P.

    2015-01-01

    Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level. PMID:26020242

  8. Targeting the p53 pathway.

    PubMed

    Golubovskaya, Vita M; Cance, William G

    2013-10-01

    This article summarizes data on translational studies to target the p53 pathway in cancer. It describes the functions of the p53 and Mdm-2 signaling pathways, and discusses current therapeutic approaches to target p53 pathways, including reactivation of p53. In addition, direct interaction and colocalization of the p53 and focal adhesion kinase proteins in cancer cells have been demonstrated, and different approaches to target this interaction are reviewed. This is a broad review of p53 function as it relates to the diagnosis and treatment of a wide range of cancers. PMID:24012397

  9. p53 and Mitochondrial Function in Neurons

    PubMed Central

    Wang, David B.; Kinoshita, Chizuru; Kinoshita, Yoshito; Morrison, Richard S.

    2014-01-01

    The p53 tumor suppressor plays a central role in dictating cell survival and death as a cellular sensor for a myriad of stresses including DNA damage, oxidative and nutritional stress, ischemia and disruption of nucleolar function. Activation of p53-dependent apoptosis leads to mitochondrial apoptotic changes via the intrinsic and extrinsic pathways triggering cell death execution most notably by release of cytochrome c and activation of the caspase cascade. Although it was previously believed that p53 induces apoptotic mitochondrial changes exclusively through transcription-dependent mechanisms, recent studies suggest that p53 also regulates apoptosis via a transcription-independent action at the mitochondria. Recent evidence further suggests that p53 can regulate necrotic cell death and autophagic activity including mitophagy. An increasing number of cytosolic and mitochondrial proteins involved in mitochondrial metabolism and respiration are regulated by p53, which influences mitochondrial ROS production as well. Cellular redox homeostasis is also directly regulated by p53 through modified expression of pro- and anti-oxidant proteins. Proper regulation of mitochondrial size and shape through fission and fusion assures optimal mitochondrial bioenergetic function while enabling adequate mitochondrial transport to accommodate local energy demands unique to neuronal architecture. Abnormal regulation of mitochondrial dynamics has been increasingly implicated in neurodegeneration, where elevated levels of p53 may have a direct contribution as the expression of some fission/fusion proteins are directly regulated by p53. Thus, p53 may have a much wider influence on mitochondrial integrity and function than one would expect from its well-established ability to transcriptionally induce mitochondrial apoptosis. However, much of the evidence demonstrating that p53 can influence mitochondria through nuclear, cytosolic or intra-mitochondrial sites of action has yet to be

  10. The mitochondrial p53 pathway

    PubMed Central

    Vaseva, Angelina V.; Moll, Ute M.

    2010-01-01

    p53 is one of the most mutated tumor suppressors in human cancers and as such has been intensively studied for a long time. p53 is a major orchestrator of the cellular response to a broad array of stress types by regulating apoptosis, cell cycle arrest, senescence, DNA repair and genetic stability. For a long time it was thought that these functions of p53 solely rely on its function as a transcription factor, and numerous p53 target genes have been identified [1]. In the last 8 years however, a novel transcription-independent proapoptotic function mediated by the cytoplasmic pool of p53 has been revealed. p53 participates directly in the intrinsic apoptosis pathway by interacting with the multidomain members of the Bcl-2 family to induce mitochondrial outer membrane permeabilization. Our review will discuss these studies, focusing on recent advances in the field. PMID:19007744

  11. p53-Regulated Networks of Protein, mRNA, miRNA, and lncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses.

    PubMed

    Hünten, Sabine; Kaller, Markus; Drepper, Friedel; Oeljeklaus, Silke; Bonfert, Thomas; Erhard, Florian; Dueck, Anne; Eichner, Norbert; Friedel, Caroline C; Meister, Gunter; Zimmer, Ralf; Warscheid, Bettina; Hermeking, Heiko

    2015-10-01

    We determined the effect of p53 activation on de novo protein synthesis using quantitative proteomics (pulsed stable isotope labeling with amino acids in cell culture/pSILAC) in the colorectal cancer cell line SW480. This was combined with mRNA and noncoding RNA expression analyses by next generation sequencing (RNA-, miR-Seq). Furthermore, genome-wide DNA binding of p53 was analyzed by chromatin-immunoprecipitation (ChIP-Seq). Thereby, we identified differentially regulated proteins (542 up, 569 down), mRNAs (1258 up, 415 down), miRNAs (111 up, 95 down) and lncRNAs (270 up, 123 down). Changes in protein and mRNA expression levels showed a positive correlation (r = 0.50, p < 0.0001). In total, we detected 133 direct p53 target genes that were differentially expressed and displayed p53 occupancy in the vicinity of their promoter. More transcriptionally induced genes displayed occupied p53 binding sites (4.3% mRNAs, 7.2% miRNAs, 6.3% lncRNAs, 5.9% proteins) than repressed genes (2.4% mRNAs, 3.2% miRNAs, 0.8% lncRNAs, 1.9% proteins), suggesting indirect mechanisms of repression. Around 50% of the down-regulated proteins displayed seed-matching sequences of p53-induced miRNAs in the corresponding 3'-UTRs. Moreover, proteins repressed by p53 significantly overlapped with those previously shown to be repressed by miR-34a. We confirmed up-regulation of the novel direct p53 target genes LINC01021, MDFI, ST14 and miR-486 and showed that ectopic LINC01021 expression inhibits proliferation in SW480 cells. Furthermore, KLF12, HMGB1 and CIT mRNAs were confirmed as direct targets of the p53-induced miR-34a, miR-205 and miR-486-5p, respectively. In line with the loss of p53 function during tumor progression, elevated expression of KLF12, HMGB1 and CIT was detected in advanced stages of cancer. In conclusion, the integration of multiple omics methods allowed the comprehensive identification of direct and indirect effectors of p53 that provide new insights and leads into the

  12. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53

    PubMed Central

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1–393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using “hot-spot” p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  13. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53.

    PubMed

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1-393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using "hot-spot" p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  14. Cellular adaptation to hypoxia and p53 transcription regulation.

    PubMed

    Zhao, Yang; Chen, Xue-qun; Du, Ji-zeng

    2009-05-01

    Tumor suppressor p53 is the most frequently mutated gene in human tumors. Meanwhile, under stress conditions, p53 also acts as a transcription factor, regulating the expression of a series of target genes to maintain the integrity of genome. The target genes of p53 can be classified into genes regulating cell cycle arrest, genes involved in apoptosis, and genes inhibiting angiogenesis. p53 protein contains a transactivation domain, a sequence-specific DNA binding domain, a tetramerization domain, a non-specific DNA binding domain that recognizes damaged DNA, and a later identified proline-rich domain. Under stress, p53 proteins accumulate and are activated through two mechanisms. One, involving ataxia telangiectasia-mutated protein (ATM), is that the interaction between p53 and its down-regulation factor murine double minute 2 (MDM2) decreases, leading to p53 phosphorylation on Ser15, as determined by the post-translational mechanism; the other holds that p53 increases and is activated through the binding of ribosomal protein L26 (RPL26) or nucleolin to p53 mRNA 5( untranslated region (UTR), regulating p53 translation. Under hypoxia, p53 decreases transactivation and increases transrepression. The mutations outside the DNA binding domain of p53 also contribute to tumor progress, so further studies on p53 should also be focused on this direction. The subterranean blind mole rat Spalax in Israel is a good model for hypoxia-adaptation. The p53 of Spalax mutated in residue 172 and residue 207 from arginine to lysine, conferring it the ability to survive hypoxic conditions. This model indicates that p53 acts as a master gene of diversity formation during evolution. PMID:19434769

  15. Regulation of p53 during senescence in normal human keratinocytes

    PubMed Central

    Kim, Reuben H; Kang, Mo K; Kim, Terresa; Yang, Paul; Bae, Susan; Williams, Drake W; Phung, Samantha; Shin, Ki-Hyuk; Hong, Christine; Park, No-Hee

    2015-01-01

    p53, the guardian of the genome, is a tumor suppressor protein and critical for the genomic integrity of the cells. Many studies have shown that intracellular level of p53 is enhanced during replicative senescence in normal fibroblasts, and the enhanced level of p53 is viewed as the cause of senescence. Here, we report that, unlike in normal fibroblasts, the level of intracellular p53 reduces during replicative senescence and oncogene-induced senescence (OIS) in normal human keratinocytes (NHKs). We found that the intracellular p53 level was also decreased in age-dependent manner in normal human epithelial tissues. Senescent NHKs exhibited an enhanced level of p16INK4A, induced G2 cell cycle arrest, and lowered the p53 expression and transactivation activity. We found that low level of p53 in senescent NHKs was due to reduced transcription of p53. The methylation status at the p53 promoter was not altered during senescence, but senescent NHKs exhibited notably lower level of acetylated histone 3 (H3) at the p53 promoter in comparison with rapidly proliferating cells. Moreover, p53 knockdown in rapidly proliferating NHKs resulted in the disruption of fidelity in repaired DNA. Taken together, our study demonstrates that p53 level is diminished during replicative senescence and OIS and that such diminution is associated with H3 deacetylation at the p53 promoter. The reduced intracellular p53 level in keratinocytes of the elderly could be a contributing factor for more frequent development of epithelial cancer in the elderly because of the loss of genomic integrity of cells. PMID:26138448

  16. p53: Guardian of Ploidy

    PubMed Central

    Aylon, Yael; Oren, Moshe

    2011-01-01

    Aneuploidy, often preceded by tetraploidy, is one of the hallmarks of solid tumors. Indeed, both aneuploidy and tetraploidy are oncogenic occurrences that are sufficient to drive neoplastic transformation and cancer progression. True to form, the tumor suppressor p53 obstructs propagation of these dangerous chromosomal events by either instigating irreversible cell cycle arrest or apoptosis. The tumor suppressor Lats2, along with other tumor inhibitory proteins such as BRCA1/2 and BubR1, are central to p53-dependent elimination of tetraploid cells. Not surprisingly, these proteins are frequently inactivated or downregulated in tumors, synergizing with p53 inactivation to establish an atmosphere of “tolerance” for a nondiploid state. PMID:21852209

  17. p53 regulation upon genotoxic stress: intricacies and complexities

    PubMed Central

    Kumari, Rajni; Kohli, Saishruti; Das, Sanjeev

    2014-01-01

    p53, the revered savior of genomic integrity, receives signals from diverse stress sensors and strategizes to maintain cellular homeostasis. However, the predominance of p53 overshadows the fact that this herculean task is no one-man show; rather, there is a huge army of regulators that reign over p53 at various levels to avoid an unnecessary surge in its levels and sculpt it dynamically to favor one cellular outcome over another. This governance starts right at the time of p53 translation, which is gated by proteins that bind to p53 mRNA and keep a stringent check on p53 protein levels. The same effect is also achieved by ubiquitylases and deubiquitylases that fine-tune p53 turnover and miRNAs that modulate p53 levels, adding precision to this entire scheme. In addition, extensive covalent modifications and differential protein interactions allow p53 to trigger a tailor-made response for a given circumstance. To magnify the marvel, these various tiers of regulation operate simultaneously and in various combinations. In this review, we have tried to provide a glimpse into this bewildering labyrinth. We believe that further studies will result in a better understanding of p53 regulation and that new insights will help unravel many aspects of cancer biology. PMID:27308356

  18. C-Abl as a modulator of p53

    SciTech Connect

    Levav-Cohen, Yaara; Goldberg, Zehavit; Zuckerman, Valentina; Grossman, Tamar; Haupt, Sue; Haupt, Ygal . E-mail: haupt@md.huji.ac.il

    2005-06-10

    P53 is renowned as a cellular tumor suppressor poised to instigate remedial responses to various stress insults that threaten DNA integrity. P53 levels and activities are kept under tight regulation involving a complex network of activators and inhibitors, which determine the type and extent of p53 growth inhibitory signaling. Within this complexity, the p53-Mdm2 negative auto-regulatory loop serves as a major route through which intra- and extra-cellular stress signals are channeled to appropriate p53 responses. Mdm2 inhibits p53 transcriptional activities and through its E3 ligase activity promotes p53 proteasomal degradation either within the nucleus or following nuclear export. Upon exposure to stress signals these actions of Mdm2 have to be moderated, or even interrupted, in order to allow sufficient p53 to accumulate in an active form. Multiple mechanisms involving a variety of factors have been demonstrated to mediate this interruption. C-Abl is a critical factor that under physiological conditions is required for the maximal and efficient accumulation of active p53 in response to DNA damage. C-Abl protects p53 by antagonizing the inhibitory effect of Mdm2, an action that requires a direct interplay between c-Abl and Mdm2. In addition, c-Abl protects p53 from other inhibitors of p53, such as the HPV-E6/E6AP complex, that inhibits and degrades p53 in HPV-infected cells. Surprisingly, the oncogenic form of c-Abl, the Bcr-Abl fusion protein in CML cells, also promotes the accumulation of wt p53. However, in contrast to the activation of p53 by c-Abl, its oncogenic form, Bcr-Abl, counteracts the growth inhibitory activities of p53 by modulating the p53-Mdm2 loop. Thus, it appears that by modulating the p53-Mdm2 loop, c-Abl and its oncogenic forms critically determine the type and extent of the cellular response to DNA damage.

  19. INGN 201: Ad-p53, Ad5CMV-p53, Adenoviral p53, INGN 101, p53 gene therapy--Introgen, RPR/INGN 201.

    PubMed

    2003-01-01

    undergoing phase I trials for the potential treatment of lung, breast, ovarian, bladder, liver and brain cancers. Introgen and Aventis Pharma had signed a Cooperative Research and Development Agreement (CRADA) with the National Cancer Institute (NCI). NCI will sponsor clinical trials to evaluate and develop RPR/INGN 201 as a potential anticancer agent for these cancer indications. The trials conducted under a NCI-sponsored IND will evaluate RPR/INGN 201 alone and in combination with other anticancer agents. This agreement was originally signed by Rhône-Poulenc Rorer's Gencell. Introgen has completed three phase I clinical trials with INGN 201 in patients with bronchioalveolar cell lung carcinoma, ovarian cancer and recurrent glioblastomas, respectively. Intratumoural injection of RPR/INGN 201 in patients with recurrent glioblastomas was well tolerated and resulted in expression of the p53 protein. Direct administration of RPR/INGN 201 to the lower airways of patients with bronchioalveolar cell lung carcinoma resulted in symptomatic improvement and improved lung function in some patients. In February 2003, Introgen announced that the US Patent and Trademark Office has issued to The Board of Regents of The University of Texas System, patent No. 6,511,847 entitled "Recombinant p53 Adenovirus Methods and Compositions". Introgen Therapeutics is the exclusive licensee of this patent. The patent covers any adenoviral DNA molecules that encode the p53 gene positioned under the control of a promoter. Such a DNA molecule forms the genetic core of Introgen's ADVEXIN cancer therapy. Introgen's ADVEXIN therapy is now covered by up to ten separate US patents relevant to the product including compositions, therapeutic methods of administering the product in virtually any form, alone and in conjunction with the most widely used chemotherapeutic and radiation treatments, as well as its production. Introgen has a number of US patents that relate to the clinical use of ADVEXIN in cancer as

  20. Crystal structure of a p53 core tetramer bound to DNA

    SciTech Connect

    Malecka, K.A.; Ho, W.C.; Marmorstein, R.

    2009-09-02

    The tumor suppressor p53 regulates downstream genes in response to many cellular stresses and is frequently mutated in human cancers. Here, we report the use of a crosslinking strategy to trap a tetrameric p53 DNA-binding domain (p53DBD) bound to DNA and the X-ray crystal structure of the protein/DNA complex. The structure reveals that two p53DBD dimers bind to B form DNA with no relative twist and that a p53 tetramer can bind to DNA without introducing significant DNA bending. The numerous dimer-dimer interactions involve several strictly conserved residues, thus suggesting a molecular basis for p53DBD-DNA binding cooperativity. Surface residue conservation of the p53DBD tetramer bound to DNA highlights possible regions of other p53 domain or p53 cofactor interactions.

  1. Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53

    PubMed Central

    Cairns, Jonathan M.; Menon, Suraj; Pérez-Mancera, Pedro A.; Tomimatsu, Kosuke; Bermejo-Rodriguez, Camino; Ito, Yoko; Chandra, Tamir; Narita, Masako; Lyons, Scott K.; Lynch, Andy G.; Kimura, Hiroshi; Ohbayashi, Tetsuya; Tavaré, Simon; Narita, Masashi

    2015-01-01

    The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical ‘acute’ p53 binding profile, ‘chronic’ p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory ‘p53 hubs’ where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the ‘lipogenic phenotype’, a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms. PMID:25790137

  2. Pancreatic adenocarcinomas frequently show p53 gene mutations.

    PubMed Central

    Scarpa, A.; Capelli, P.; Mukai, K.; Zamboni, G.; Oda, T.; Iacono, C.; Hirohashi, S.

    1993-01-01

    Thirty-four pancreatic adenocarcinomas were studied for the presence of p53 gene mutations by the single-strand conformation polymorphism method and by direct sequencing of PCR-amplified fragments. p53 protein expression was immunohistochemically evaluated using monoclonal PAb1801 and polyclonal CM1 antibodies. Mutations were detected in 14 cases. The transitions were six G to A and two A to G; the transversions were one C to G and two A to C; the remaining three were frameshift mutations. Immunostaining results were identical with both antibodies. Nuclear immunohistochemical p53-positive cells were found in nine p53 mutated cases and in 12 cases in which no mutation was detected. In most of these latter cases only a minority of cancer cells showed immunohistochemical positivity. Twenty-nine cases, including all p53 mutated cancers, were known to contain codon 12 Ki-ras gene mutations. Also in the light of the demonstrated cooperation of ras and p53 gene alterations in the transformation of cultured cells, our data suggest that p53 mutation is one of the genetic defects that may have a role in the pathogenesis of a proportion of pancreatic cancers. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8494051

  3. Pathologies Associated with the p53 Response

    PubMed Central

    Gudkov, Andrei V.; Komarova, Elena A.

    2010-01-01

    Although p53 is a major cancer preventive factor, under certain extreme stress conditions it may induce severe pathologies. Analyses of animal models indicate that p53 is largely responsible for the toxicity of ionizing radiation or DNA damaging drugs contributing to hematopoietic component of acute radiation syndrome and largely determining severe adverse effects of cancer treatment. p53-mediated damage is strictly tissue specific and occurs in tissues prone to p53-dependent apoptosis (e.g., hematopoietic system and hair follicles); on the contrary, p53 can serve as a survival factor in tissues that respond to p53 activation by cell cycle arrest (e.g., endothelium of small intestine). There are multiple experimental indications that p53 contributes to pathogenicity of acute ischemic diseases. Temporary reversible suppression of p53 by small molecules can be an effective and safe approach to reduce severity of p53-associated pathologies. PMID:20595398

  4. Regulation of Mutant p53 Protein Expression

    PubMed Central

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be explained in mutant p53-expressing cells by the lack of an auto-regulatory loop with Mdm2 and other negative regulators, which are pivotal for wt p53 regulation. Further, additional protective mechanisms are acquired by mutant p53, largely mediated by the co-chaperones and their paralogs, the stress-induced heat shock proteins. Consequently, mutant p53 is accumulated in cancer cells in response to chronic stress and this accumulation is critical for its oncogenic gain of functions (GOF). Building on the extensive knowledge regarding wt p53, the regulation of mutant p53 is unraveling. In this review, we describe the current understanding on the major levels at which mutant p53 is regulated. These include the regulation of p53 protein levels by microRNA and by enzymes controlling p53 proteasomal degradation. PMID:26734569

  5. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction

    PubMed Central

    Thayer, Kelly M.; Beyer, George A.

    2016-01-01

    The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field. PMID:26992014

  6. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction.

    PubMed

    Thayer, Kelly M; Beyer, George A

    2016-01-01

    The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field. PMID:26992014

  7. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture

    PubMed Central

    Bethuyne, Jonas; De Gieter, Steven; Zwaenepoel, Olivier; Garcia-Pino, Abel; Durinck, Kaat; Verhelle, Adriaan; Hassanzadeh-Ghassabeh, Gholamreza; Speleman, Frank; Loris, Remy; Gettemans, Jan

    2014-01-01

    The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds ‘structural’ mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations. PMID:25324313

  8. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture.

    PubMed

    Bethuyne, Jonas; De Gieter, Steven; Zwaenepoel, Olivier; Garcia-Pino, Abel; Durinck, Kaat; Verhelle, Adriaan; Hassanzadeh-Ghassabeh, Gholamreza; Speleman, Frank; Loris, Remy; Gettemans, Jan

    2014-11-10

    The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds 'structural' mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations. PMID:25324313

  9. Prospective therapeutic applications of p53 inhibitors

    SciTech Connect

    Gudkov, Andrei V. . E-mail: gudkov@ccf.org; Komarova, Elena A.

    2005-06-10

    p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-{alpha} that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.

  10. Allele Specific p53 Mutant Reactivation

    PubMed Central

    Yu, Xin; Vazquez, Alexei; Levine, Arnold J.; Carpizo, Darren R.

    2012-01-01

    Summary Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Using the NCI anticancer drug screen data, we identified two compounds from the thiosemicarbazone family that manifest increased growth inhibitory activity in mutant p53 cells, particularly for the p53R175 mutant. Mechanistic studies reveal that NSC319726 restores WT structure and function to the p53R175 mutant. This compound kills p53R172H knock-in mice with extensive apoptosis and inhibits xenograft tumor growth in a 175-allele specific mutant p53 dependent manner. This activity depends upon the zinc ion chelating properties of the compound as well as redox changes. These data identify NSC319726 as a p53R175 mutant reactivator and as a lead compound for p53 targeted drug development. PMID:22624712

  11. mTORC1 and p53

    PubMed Central

    Hasty, Paul; Sharp, Zelton Dave; Curiel, Tyler J.; Campisi, Judith

    2013-01-01

    A balance must be struck between cell growth and stress responses to ensure that cells proliferate without accumulating damaged DNA. This balance means that optimal cell proliferation requires the integration of pro-growth and stress-response pathways. mTOR (mechanistic target of rapamycin) is a pleiotropic kinase found in complex 1 (mTORC1). The mTORC1 pathway governs a response to mitogenic signals with high energy levels to promote protein synthesis and cell growth. In contrast, the p53 DNA damage response pathway is the arbiter of cell proliferation, restraining mTORC1 under conditions of genotoxic stress. Recent studies suggest a complicated integration of these pathways to ensure successful cell growth and proliferation without compromising genome maintenance. Deciphering this integration could be key to understanding the potential clinical usefulness of mTORC1 inhibitors like rapamycin. Here we discuss how these p53-mTORC1 interactions might play a role in the suppression of cancer and perhaps the development of cellular senescence and organismal aging. PMID:23255104

  12. Role of cysteine residues in regulation of p53 function.

    PubMed

    Rainwater, R; Parks, D; Anderson, M E; Tegtmeyer, P; Mann, K

    1995-07-01

    Previous studies of p53 have implicated cysteine residues in site-specific DNA binding via zinc coordination and redox regulation (P. Hainaut and J. Milner, Cancer Res. 53:4469-4473, 1993; T. R. Hupp, D. W. Meek, C. A. Midgley, and D. P. Lane, Nucleic Acids Res. 21:3167-3174, 1993). We show here that zinc binding and redox regulation are, at least in part, distinct determinants of the binding of p53 to DNA. Moreover, by substituting serine for each cysteine in murine p53, we have investigated the roles of individual cysteines in the regulation of p53 function. Substitution of serine for cysteine at position 40, 179, 274, 293, or 308 had little or no effect on p53 function. In contrast, replacement of cysteine at position 173, 235, or 239 markedly reduced in vitro DNA binding, completely blocked transcriptional activation, and led to a striking enhancement rather than a suppression of transformation by p53. These three cysteines have been implicated in zinc binding by X-ray diffraction studies (Y. Cho, S. Gorina, P.D. Jeffrey, and N.P. Pavletich, Science 265:346-355, 1994); our studies demonstrate the functional consequences of the inability of the central DNA-binding domain of p53 to studies demonstrate the functional consequences of the inability of the central DNA-binding domain of p53 to bind zinc. Lastly, substitutions for cysteines at position 121, 132, 138, or 272 partially blocked both transactivation and the suppression of transformation by p53. These four cysteines are located in the loop-sheet-helix region of the site-specific DNA-binding domain of p53. Like the cysteines in the zinc-binding region, therefore, these cysteines may cooperate to modulate the structure of the DNA-binding domain. Our findings argue that p53 is subject to more than one level of conformational modulation through oxidation-reduction of cysteines at or near the p53-DNA interface. PMID:7791795

  13. The critical role of catalase in prooxidant and antioxidant function of p53

    PubMed Central

    Kang, M Y; Kim, H-B; Piao, C; Lee, K H; Hyun, J W; Chang, I-Y; You, H J

    2013-01-01

    The tumor suppressor p53 is an important regulator of intracellular reactive oxygen species (ROS) levels, although downstream mediators of p53 remain to be elucidated. Here, we show that p53 and its downstream targets, p53-inducible ribonucleotide reductase (p53R2) and p53-inducible gene 3 (PIG3), physically and functionally interact with catalase for efficient regulation of intracellular ROS, depending on stress intensity. Under physiological conditions, the antioxidant functions of p53 are mediated by p53R2, which maintains increased catalase activity and thereby protects against endogenous ROS. After genotoxic stress, high levels of p53 and PIG3 cooperate to inhibit catalase activity, leading to a shift in the oxidant/antioxidant balance toward an oxidative status, which could augment apoptotic cell death. These results highlight the essential role of catalase in p53-mediated ROS regulation and suggest that the p53/p53R2–catalase and p53/PIG3–catalase pathways are critically involved in intracellular ROS regulation under physiological conditions and during the response to DNA damage, respectively. PMID:22918438

  14. Posttranscriptional Regulation of p53 and Its Targets by RNA-Binding Proteins

    PubMed Central

    Zhang, Jin; Chen, Xinbin

    2009-01-01

    p53 tumor suppressor plays a pivotal role in maintaining genomic integrity and preventing cancer development. The importance of p53 in tumor suppression is illustrated by the observation that about 50% human tumor cells have a dysfunctional p53 pathway. Although it has been well accepted that the activity of p53 is mainly controlled through post-translational modifications, recent studies have revealed that posttranscriptional regulations of p53 by various RNA-binding proteins also play a crucial role in modulating p53 activity and its downstream targets. PMID:19075680

  15. Sodium orthovanadate inhibits p53-mediated apoptosis.

    PubMed

    Morita, Akinori; Yamamoto, Shinichi; Wang, Bing; Tanaka, Kaoru; Suzuki, Norio; Aoki, Shin; Ito, Azusa; Nanao, Tomohisa; Ohya, Soichiro; Yoshino, Minako; Zhu, Jin; Enomoto, Atsushi; Matsumoto, Yoshihisa; Funatsu, Osamu; Hosoi, Yoshio; Ikekita, Masahiko

    2010-01-01

    Sodium orthovanadate (vanadate) inhibits the DNA-binding activity of p53, but its precise effects on p53 function have not been examined. Here, we show that vanadate exerts a potent antiapoptotic activity through both transcription-dependent and transcription-independent mechanisms relative to other p53 inhibitors, including pifithrin (PFT) alpha. We compared the effects of vanadate to PFTalpha and PFTmicro, an inhibitor of transcription-independent apoptosis by p53. Vanadate suppressed p53-associated apoptotic events at the mitochondria, including the loss of mitochondrial membrane potential, the conformational change of Bax and Bak, the mitochondrial translocation of p53, and the interaction of p53 with Bcl-2. Similarly, vanadate suppressed the apoptosis-inducing activity of a mitochondrially targeted temperature-sensitive p53 in stable transfectants of SaOS-2 cells. In radioprotection assays, which rely on p53, vanadate completely protected mice from a sublethal dose of 8 Gy and partially from a lethal dose of 12 Gy. Together, our findings indicated that vanadate effectively suppresses p53-mediated apoptosis by both transcription-dependent and transcription-independent pathways, and suggested that both pathways must be inhibited to completely block p53-mediated apoptosis. PMID:20048077

  16. Restoring p53 function in cancer: novel therapeutic approaches for applying the brakes to tumorigenesis.

    PubMed

    Di Cintio, Alessandra; Di Gennaro, Elena; Budillon, Alfredo

    2010-01-01

    p53 tumor suppressor gene encodes for a critical cellular protein that regulate the integrity of the cell and can induce cell cycle arrest and/or apoptosis upon cellular stresses of several origins, including chemotherapeutics. Loss of p53 function occurs in an estimated 50% of all cancers by mutations and deletions while in the presence of wild-type p53 alleles other mechanisms may affect the expression and activity of p53. Alternate mechanisms include methylation of the promoter of p53, deletion or epigenetic inactivation of the p53-positive regulator p14/ARF, elevated expression of the p53 regulators murine double minute 2 (MDM2) and MDMX, or alteration of upstream regulators of p53 such as the kinase ATM. MDM2 is a p53 E3 ubiquitin ligase that mediates the ubiquitin-dependent degradation of p53 while p14/ARF is a small MDM2-binding protein that controls the activity of MDM2 by displacing p53 and preventing its degradation. MDMX antagonize p53-dependent transcriptional control by interfering with p53 transactivation function. The understanding of the key role of p53 inactivation in cancer development generated considerable interest in developing compounds that are capable of restoring the p53 functions. Several patents have been issued on such compounds. Adenovirus-based p53 gene therapy as well as small molecules such as PRIMA that can restore the transcriptional transactivation function to mutant p53, or NUTLIN and RITA that interfere with MDM2-directed p53 degradation, have tested in a preclinical setting and some of these approaches are currently in clinical development. PMID:19663772

  17. Transcriptional repressor NIR interacts with the p53-inhibiting ubiquitin ligase MDM2

    PubMed Central

    Heyne, Kristina; Förster, Juliane; Schüle, Roland; Roemer, Klaus

    2014-01-01

    NIR (novel INHAT repressor) can bind to p53 at promoters and inhibit p53-mediated gene transactivation by blocking histone acetylation carried out by p300/CBP. Like NIR, the E3 ubiquitin ligase MDM2 can also bind and inhibit p53 at promoters. Here, we present data indicating that NIR, which shuttles between the nucleolus and nucleoplasm, not only binds to p53 but also directly to MDM2, in part via the central acidic and zinc finger domain of MDM2 that is also contacted by several other nucleolus-based MDM2/p53-regulating proteins. Like some of these, NIR was able to inhibit the ubiquitination of MDM2 and stabilize MDM2; however, unlike these nucleolus-based MDM2 regulators, NIR did not inhibit MDM2 to activate p53. Rather, NIR cooperated with MDM2 to repress p53-induced transactivation. This cooperative repression may at least in part involve p300/CBP. We show that NIR can block the acetylation of p53 and MDM2. Non-acetylated p53 has been documented previously to more readily associate with inhibitory MDM2. NIR may thus help to sustain the inhibitory p53:MDM2 complex, and we present evidence suggesting that all three proteins can indeed form a ternary complex. In sum, our findings suggest that NIR can support MDM2 to suppress p53 as a transcriptional activator. PMID:24413661

  18. DNA-mediated oxidation of p53.

    PubMed

    Schaefer, Kathryn N; Barton, Jacqueline K

    2014-06-01

    Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs over long distances through the π-stacked bases and leads to the oxidative dissociation of p53. The extent of protein dissociation depends upon the redox potential of the DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using oligonucleotides containing both synthetic and human p53 consensus sequences with an appended photooxidant, anthraquinone. Greater p53 dissociation is observed from sequences containing low-redox potential purine regions, particularly guanine triplets. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites corresponding to sites of preferred electron hole localization were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets. Oxidative DNA damage is inhibited in the presence of p53, but only at sites in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress as well as possible biological implications have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell. PMID:24853816

  19. p53 mutation heterogeneity in cancer

    SciTech Connect

    Soussi, T. . E-mail: thierry.soussi@free.fr; Lozano, G.

    2005-06-10

    The p53 gene is inactivated in about 50% of human cancers and the p53 protein is an essential component of the cell response induced by genotoxic stresses such as those generated by radiotherapy or chemotherapy. It is therefore highly likely that these alterations are an important component in tumor resistance to therapy. The particular characteristics of these alterations, 80% of which are missense mutations leading to functionally heterogeneous proteins, make p53 a unique gene in the class of tumor suppressor genes. A considerable number of mutant p53 proteins probably have an oncogenic activity per se and therefore actively participate in cell transformation. The fact that the apoptotic and antiproliferative functions of p53 can be dissociated in certain mutants also suggests another level of complexity in the relationships between p53 inactivation and neoplasia.

  20. Mutant p53: one name, many proteins

    PubMed Central

    Freed-Pastor, William A.; Prives, Carol

    2012-01-01

    There is now strong evidence that mutation not only abrogates p53 tumor-suppressive functions, but in some instances can also endow mutant proteins with novel activities. Such neomorphic p53 proteins are capable of dramatically altering tumor cell behavior, primarily through their interactions with other cellular proteins and regulation of cancer cell transcriptional programs. Different missense mutations in p53 may confer unique activities and thereby offer insight into the mutagenic events that drive tumor progression. Here we review mechanisms by which mutant p53 exerts its cellular effects, with a particular focus on the burgeoning mutant p53 transcriptome, and discuss the biological and clinical consequences of mutant p53 gain of function. PMID:22713868

  1. A p53 growth arrest protects fibroblasts from anticancer agents.

    PubMed

    McCormack, E S; Bruskin, A M; Borzillo, G V

    1997-01-01

    Reversible inhibitors of the cell cycle such as the TGF-betas have been exploited to protect dividing cells from exposure to anticancer drugs and radiation. Here, rat embryo fibroblast (REF) lines expressing different p53 mutations were used to test whether the p53 growth arrest could also chemoprotect cells from high doses of anticancer drugs. Whereas the doubling times of the different REF lines at 37 degrees C were similar, cells bearing temperature-sensitive mutations (mouse 135V or human 143A) were growth arrested at 31 degrees C. Temperature-dependent p53 activity was associated with increased levels of MDM2 and p21/WAF1, and the induction of an integrated p53-responsive luciferase gene. The REF lines exhibited similar sensitivities to common anticancer drugs when grown at 37 degrees C. However, when exposed to the same agents following transient incubation at 31 degrees C, the p53-arrested cells exhibited a marked survival advantage as shown by colony-forming assays. Chemoprotection was not universal, in that colony formation was not enhanced significantly after treatment with cisplatin or 5-fluorouracil, two drugs which can cause cellular damage throughout the cell cycle. Like other negative growth regulators, an activated p53 checkpoint may mediate the survival of cells exposed to drugs that target DNA synthesis or mitosis. PMID:9351895

  2. FAK and p53 protein interactions.

    PubMed

    Golubovskaya, Vita M; Cance, William G

    2011-09-01

    Focal Adhesion Kinase plays a major role in cell adhesion, motility, survival, proliferation, metastasis, angiogenesis and lymphangiogenesis. In 2004, we have cloned the promoter sequence of FAK and found that p53 inhibits its activity (BBA, v. 1678, 2004). In 2005, we were the first group to show that FAK and p53 proteins directly interact in the cells (JBC, v. 280, 2005). We have shown that FAK and p53 proteins interact in the cytoplasm and in the nucleus by immunoprecipitation, pull-down and confocal microscopy assays. We have shown that FAK inhibited activity of p53 with the transcriptional targets: p21, Bax and Mdm-2 through protein-protein interactions. We identified the 7 amino-acid site in p53 that is involved in interaction with FAK protein. The present review will discuss the interaction of FAK and p53 proteins and discuss the mechanism of FAK-p53 loop regulation: inhibition of FAK promoter activity by p53 protein and also inhibition of p53 transcriptional activity by FAK protein. PMID:21355845

  3. The E7 protein of the cottontail rabbit papillomavirus immortalizes normal rabbit keratinocytes and reduces pRb levels, while E6 cooperates in immortalization but neither degrades p53 nor binds E6AP

    SciTech Connect

    Ganzenmueller, Tina; Matthaei, Markus; Muench, Peter; Scheible, Michael; Iftner, Angelika; Hiller, Thomas; Leiprecht, Natalie; Probst, Sonja; Stubenrauch, Frank; Iftner, Thomas

    2008-03-15

    Human papillomaviruses (HPVs) cause cervical cancer and are associated with the development of non-melanoma skin cancer. A suitable animal model for papillomavirus-associated skin carcinogenesis is the infection of domestic rabbits with the cottontail rabbit papillomavirus (CRPV). As the immortalizing activity of CRPV genes in the natural target cells remains unknown, we investigated the properties of CRPV E6 and E7 in rabbit keratinocytes (RK) and their influence on the cell cycle. Interestingly, CRPV E7 immortalized RK after a cellular crisis but showed no such activity in human keratinocytes. Co-expressed CRPV E6 prevented cellular crisis. The HPV16 or CRPV E7 protein reduced rabbit pRb levels thereby causing rabbit p19{sup ARF} induction and accumulation of p53 without affecting cellular proliferation. Both CRPV E6 proteins failed to degrade rabbit p53 in vitro or to bind E6AP; however, p53 was still inducible by mitomycin C. In summary, CRPV E7 immortalizes rabbit keratinocytes in a species-specific manner and E6 contributes to immortalization without directly affecting p53.

  4. Mitochondrial death functions of p53

    PubMed Central

    Marchenko, N D; Moll, U M

    2014-01-01

    The p53 tumor suppressor network plays a fundamental surveillance role in both homeostatic and adaptive cell biology. p53 is one of the most important barriers against malignant derailment of normal cells, orchestrating growth arrest, senescence, or cell death by linking many different pathways in response to genotoxic and non-genotoxic insults. p53 is the key broadband sensor for numerous cellular stresses such as DNA damage, hypoxia, oxidative stress, oncogenic signaling, and nucleolar stress. The crucial tumor suppressive and tissue homeostasis activity of p53 is its ability to activate cell death via multiple different pathways. A well-characterized biochemical function of p53 in the regulation of apoptosis is its role as a potent transcriptional regulator. p53 activates a panel of proapoptotic genes from the mitochondrial apoptotic and death receptor programs while repressing antiapoptotic Bcl2 family genes. In addition, over the last 10 y a growing body of evidence has also defined direct extranuclear non-transcriptional p53 activities within mitochondria-mediated cell death pathways that are based on p53 protein accumulation in cytosolic and mitochondrial compartments and protein-protein interactions. To date, transcription-independent p53-mediated cell death regulation has been described for apoptosis, necrosis, and autophagy. Because mitochondrial dysregulation is central to the development of a number of pathologic processes such as cancer and neurodegenerative and age-related diseases, understanding the direct roles of p53 protein in mitochondria has high translational impact and could facilitate the development of novel drug targets to combat these diseases. In this review we will mainly focus on mechanisms of p53-mediated transcription-independent cell death pathways at mitochondria. PMID:27308326

  5. The p53-dependent radioadaptive response

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo

    We already reported that conditioning exposures at low doses, or at low dose-rates, lowered radiation-induced p53-dependent apoptosis in cultured cells in vitro and in the spleens of mice in vivo. In this study, the aim was to characterize the p53-dependent radioadaptive response at the molecular level. We used wild-type (wt) p53 and mutated (m) p53 containing cells derived from the human lung cancer H1299 cell line, which is p53-null. Cellular radiation sensitivities were determined with a colony-forming assay. The accumulation of p53, Hdm2, and iNOS was analyzed with Western blotting. The quantification of chromosomal aberrations was estimated by scoring dicentrics per cell. In wtp53 cells, it was demonstrated that the lack of p53 accumulation was coupled with the activation of Hdm2 after low dose irradiation (0.02 Gy). Although NO radicals were only minimally induced in wtp53 cells irradiated with a challenging irradiation (6 Gy) alone, NO radicals were seen to increase about 2-4 fold after challenging irradiation following a priming irradiation (0.02 Gy). Under similar irradiation conditions with a priming and challenging irradiation in wtp53 cells, induction of radioresistance and a depression of chromosomal aberrations were observed only in the absence of Pifithrin-α (a p53 inhibitor), RITA or Nutlin-3 (p53-Hdm2 interaction inhibitors), aminoguanidine (an iNOS inhibitor) and c-PTIO (an NO radical scavenger). On the other hand, in p53 dysfunctional cells, a radioadaptive response was not observed in the presence or absence of those inhibitors. Moreover, radioresistance developed when wtp53 cells were treated with ISDN (an NO generating agent) alone. These findings suggest that NO radicals are an initiator of the radioadaptive response acting through the activation of Hdm2 and the depression of p53 accumulations.

  6. The transcription factor CREBZF is a novel positive regulator of p53

    PubMed Central

    López-Mateo, Irene; Villaronga, M. Ángeles; Llanos, Susana; Belandia, Borja

    2012-01-01

    CREBZF is a member of the mammalian ATF/CREB family of transcription factors. Here, we describe a novel functional interaction between CREBZF and the tumor suppressor p53. CREBZF was identified in a yeast two-hybrid screen using HEY1, recently characterized as an indirect p53 activator, as bait. CREBZF interacts in vitro with both HEY1 and p53, and CREBZF expression stabilizes and activates p53. Moreover, CREBZF cooperates synergistically with HEY1 to enhance p53 transcriptional activity. On the other hand, partial depletion of endogenous CREBZF diminishes p53 protein levels and inhibits HEY1-mediated activation of p53. CREBZF-positive effects on p53 signaling may reflect, at least in part, an observed induction of posttranslational modifications in p53 known to prevent its degradation. CREBZF expression protects HCT116 cells from UV radiation-induced cell death. In addition, CREBZF expression confers sensitivity to 5-fluorouracil, a p53-activating chemotherapeutic drug. Our study suggests that CREBZF may participate in the modulation of p53 tumor suppressor function. PMID:22983008

  7. The transcription factor CREBZF is a novel positive regulator of p53.

    PubMed

    López-Mateo, Irene; Villaronga, M Ángeles; Llanos, Susana; Belandia, Borja

    2012-10-15

    CREBZF is a member of the mammalian ATF/CREB family of transcription factors. Here, we describe a novel functional interaction between CREBZF and the tumor suppressor p53. CREBZF was identified in a yeast two-hybrid screen using HEY1, recently characterized as an indirect p53 activator, as bait. CREBZF interacts in vitro with both HEY1 and p53, and CREBZF expression stabilizes and activates p53. Moreover, CREBZF cooperates synergistically with HEY1 to enhance p53 transcriptional activity. On the other hand, partial depletion of endogenous CREBZF diminishes p53 protein levels and inhibits HEY1-mediated activation of p53. CREBZF-positive effects on p53 signaling may reflect, at least in part, an observed induction of posttranslational modifications in p53 known to prevent its degradation. CREBZF expression protects HCT116 cells from UV radiation-induced cell death. In addition, CREBZF expression confers sensitivity to 5-fluorouracil, a p53-activating chemotherapeutic drug. Our study suggests that CREBZF may participate in the modulation of p53 tumor suppressor function. PMID:22983008

  8. Lysosomal destabilization in p53-induced apoptosis

    PubMed Central

    Yuan, Xi-Ming; Li, Wei; Dalen, Helge; Lotem, Joseph; Kama, Rachel; Sachs, Leo; Brunk, Ulf T.

    2002-01-01

    The tumor suppressor wild-type p53 can induce apoptosis. M1-t-p53 myeloid leukemic cells have a temperature-sensitive p53 protein that changes its conformation to wild-type p53 after transfer from 37°C to 32°C. We have now found that these cells showed an early lysosomal rupture after transfer to 32°C. Mitochondrial damage, including decreased membrane potential and release of cytochrome c, and the appearance of apoptotic cells occurred later. Lysosomal rupture, mitochondrial damage, and apoptosis were all inhibited by the cytokine IL-6. Some other compounds can also inhibit apoptosis induced by p53. The protease inhibitor N-tosyl-l-phenylalanine chloromethyl ketone inhibited the decrease in mitochondrial membrane potential and cytochrome c release, the Ca2+-ATPase inhibitor thapsigargin inhibited only cytochrome c release, and the antioxidant butylated hydroxyanisole inhibited only the decrease in mitochondrial membrane potential. In contrast to IL-6, these other compounds that inhibited some of the later occurring mitochondrial damage did not inhibit the earlier p53-induced lysosomal damage. The results indicate that apoptosis is induced by p53 through a lysosomal-mitochondrial pathway that is initiated by lysosomal destabilization, and that this pathway can be dissected by using different apoptosis inhibitors. These findings on the induction of p53-induced lysosomal destabilization can also help to formulate new therapies for diseases with apoptotic disorders. PMID:11959917

  9. Regulation of P53 stability in p53 mutated human and mouse hepatoma cells.

    PubMed

    Hailfinger, Stephan; Jaworski, Maike; Marx-Stoelting, Philip; Wanke, Ines; Schwarz, Michael

    2007-04-01

    The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV-irradiation. Similarly, UV-exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV-irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV-irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1-2 hr after exposure of cells. There were no signs of apoptosis of H2O2-exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein. PMID:17205518

  10. Microbial Regulation of p53 Tumor Suppressor.

    PubMed

    Zaika, Alexander I; Wei, Jinxiong; Noto, Jennifer M; Peek, Richard M

    2015-09-01

    p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40). Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host-bacteria interactions and tumorigenesis associated with bacterial infections. PMID:26379246

  11. Microbial Regulation of p53 Tumor Suppressor

    PubMed Central

    Zaika, Alexander I.; Wei, Jinxiong; Noto, Jennifer M.; Peek, Richard M.

    2015-01-01

    p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40). Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host–bacteria interactions and tumorigenesis associated with bacterial infections. PMID:26379246

  12. The heme-p53 interaction: Linking iron metabolism to p53 signaling and tumorigenesis.

    PubMed

    Shen, Jia; Sheng, Xiangpeng; Chang, ZeNan; Wu, Qian; Xie, Dong; Wang, Fudi; Hu, Ronggui

    2016-01-01

    Recently, we reported that heme binds to tumor suppressor p53 protein (TP53, best known as p53) and promotes its nuclear export and cytosolic degradation, whereas iron chelation stabilizes p53 protein and suppresses tumors in a p53-dependent manner. This not only provides mechanistic insights into tumorigenesis associated with iron excess, but also helps guide the administration of chemotherapy based on iron deprivation in the clinic. PMID:27308524

  13. The heme–p53 interaction: Linking iron metabolism to p53 signaling and tumorigenesis

    PubMed Central

    Shen, Jia; Sheng, Xiangpeng; Chang, ZeNan; Wu, Qian; Xie, Dong; Wang, Fudi; Hu, Ronggui

    2016-01-01

    Recently, we reported that heme binds to tumor suppressor p53 protein (TP53, best known as p53) and promotes its nuclear export and cytosolic degradation, whereas iron chelation stabilizes p53 protein and suppresses tumors in a p53-dependent manner. This not only provides mechanistic insights into tumorigenesis associated with iron excess, but also helps guide the administration of chemotherapy based on iron deprivation in the clinic. PMID:27308524

  14. Expression of p53β and Δ133p53 isoforms in different gastric tissues

    PubMed Central

    Ji, Wansheng; Zhang, Na; Zhang, Hongmei; Ma, Jingrong; Zhong, Hua; Jiao, Jianxin; Gao, Zhixing

    2015-01-01

    This study aims to detect the mRNA of p53β and Δ133p53 isoforms in three gastric carcinoma cell lines and tissues of superficial gastritis, atrophic gastritis, gastric carcinoma, or paracancerous area. Nested reverse transcription PCR was used to detect the mRNA of p53β and Δ133p53 isoforms in tissues of superficial gastritis, chronic atrophic gastritis, gastric cancer cell lines (SGC-7901, MKN45, KATO III), gastric adenocarcinoma, and paracancerous lesion. The amplified products were shown by agarose gel electrophoresis. The expression difference among various tissues was analyzed by x2 tests. The positive rates of ∆133p53 mRNA were 73.3% (11/15) in gastric adenocarcinoma and 20% (3/15) in paracancerous tissue, whereas the positive rates of p53β mRNA were 20% (3/15) in gastric adenocarcinoma and 66.7% (10/15) in paracancerous tissue. The difference between adenocarcinoma and paracancerous tissues was significant (P<0.05). The positive rates of ∆133p53 mRNA were 25% (5/20), 50% (15/30), and 75% (15/20), respectively, in superficial gastritis, atrophic gastritis, and gastric adenocarcinoma; the positive rates of p53β mRNA were 65% (13/20), 33.3% (10/30), and 25% (5/20), respectively, in superficial gastritis, atrophic gastritis, and gastric adenocarcinoma. The difference between adenocarcinoma and superficial gastritis samples was significant (P<0.05). Both p53β and ∆133p53 mRNAs were positive in MKN45; only p53β mRNA was detected in SGC7901; neither p53β nor ∆133p53 mRNA was detected in KATO III. ∆133p53 and p53β, which are possible indicators for the diagnosis and biological therapy of gastric carcinoma, were expressed differentially in different gastric tissues. PMID:26617756

  15. Simian virus 40 T antigen can regulate p53-mediated transcription independent of binding p53.

    PubMed Central

    Rushton, J J; Jiang, D; Srinivasan, A; Pipas, J M; Robbins, P D

    1997-01-01

    A simian virus 40 (SV40) T-antigen mutant containing only the N-terminal 136 amino acids, able to bind to Rb and p300 but not p53, partially inhibited p53-mediated transcription without affecting the ability of p53 to bind DNA. These results suggest that SV40 T antigen can regulate p53-mediated transcription either directly through protein-protein association or indirectly through interaction with factors which may function to confer p53-mediated transcription. PMID:9188637

  16. Genome-wide analysis of the p53 gene regulatory network in the developing mouse kidney

    PubMed Central

    Li, Yuwen; Liu, Jiao; McLaughlin, Nathan; Bachvarov, Dimcho; El-Dahr, Samir S.

    2013-01-01

    Despite mounting evidence that p53 senses and responds to physiological cues in vivo, existing knowledge regarding p53 function and target genes is largely derived from studies in cancer or stressed cells. Herein we utilize p53 transcriptome and ChIP-Seq (chromatin immunoprecipitation-high throughput sequencing) analyses to identify p53 regulated pathways in the embryonic kidney, an organ that develops via mesenchymal-epithelial interactions. This integrated approach allowed identification of novel genes that are possible direct p53 targets during kidney development. We find the p53-regulated transcriptome in the embryonic kidney is largely composed of genes regulating developmental, morphogenesis, and metabolic pathways. Surprisingly, genes in cell cycle and apoptosis pathways account for <5% of differentially expressed transcripts. Of 7,893 p53-occupied genomic regions (peaks), the vast majority contain consensus p53 binding sites. Interestingly, 78% of p53 peaks in the developing kidney lie within proximal promoters of annotated genes compared with 7% in a representative cancer cell line; 25% of the differentially expressed p53-bound genes are present in nephron progenitors and nascent nephrons, including key transcriptional regulators, components of Fgf, Wnt, Bmp, and Notch pathways, and ciliogenesis genes. The results indicate widespread p53 binding to the genome in vivo and context-dependent differences in the p53 regulon between cancer, stress, and development. To our knowledge, this is the first comprehensive analysis of the p53 transcriptome and cistrome in a developing mammalian organ, substantiating the role of p53 as a bona fide developmental regulator. We conclude p53 targets transcriptional networks regulating nephrogenesis and cellular metabolism during kidney development. PMID:24003036

  17. Evolution of p53 transactivation specificity through the lens of a yeast-based functional assay.

    PubMed

    Lion, Mattia; Raimondi, Ivan; Donati, Stefano; Jousson, Olivier; Ciribilli, Yari; Inga, Alberto

    2015-01-01

    Co-evolution of transcription factors (TFs) with their respective cis-regulatory network enhances functional diversity in the course of evolution. We present a new approach to investigate transactivation capacity of sequence-specific TFs in evolutionary studies. Saccharomyces cerevisiae was used as an in vivo test tube and p53 proteins derived from human and five commonly used animal models were chosen as proof of concept. p53 is a highly conserved master regulator of environmental stress responses. Previous reports indicated conserved p53 DNA binding specificity in vitro, even for evolutionary distant species. We used isogenic yeast strains where p53-dependent transactivation was measured towards chromosomally integrated p53 response elements (REs). Ten REs were chosen to sample a wide range of DNA binding affinity and transactivation capacity for human p53 and proteins were expressed at two levels using an inducible expression system. We showed that the assay is amenable to study thermo-sensitivity of frog p53, and that chimeric constructs containing an ectopic transactivation domain could be rapidly developed to enhance the activity of proteins, such as fruit fly p53, that are poorly effective in engaging the yeast transcriptional machinery. Changes in the profile of relative transactivation towards the ten REs were measured for each p53 protein and compared to the profile obtained with human p53. These results, which are largely independent from relative p53 protein levels, revealed widespread evolutionary divergence of p53 transactivation specificity, even between human and mouse p53. Fruit fly and human p53 exhibited the largest discrimination among REs while zebrafish p53 was the least selective. PMID:25668429

  18. Protective role of p53 in skin cancer: Carcinogenesis studies in mice lacking epidermal p53.

    PubMed

    Page, Angustias; Navarro, Manuel; Suarez-Cabrera, Cristian; Alameda, Josefa P; Casanova, M Llanos; Paramio, Jesús M; Bravo, Ana; Ramirez, Angel

    2016-04-12

    p53 is a protein that causes cell cycle arrest, apoptosis or senescence, being crucial in the process of tumor suppression in several cell types. Different in vitro and animal models have been designed for the study of p53 role in skin cancer. These models have revealed opposing results, as in some experimental settings it appears that p53 protects against skin cancer, but in others, the opposite conclusion emerges. We have generated cohorts of mice with efficient p53 deletion restricted to stratified epithelia and control littermates expressing wild type p53 and studied their sensitivity to both chemically-induced and spontaneous tumoral transformation, as well as the tumor types originated in each experimental group. Our results indicate that the absence of p53 in stratified epithelia leads to the appearance, in two-stage skin carcinogenesis experiments, of a higher number of tumors that grow faster and become malignant more frequently than tumors arisen in mice with wild type p53 genotype. In addition, the histological diversity of the tumor type is greater in mice with epidermal p53 loss, indicating the tumor suppressive role of p53 in different epidermal cell types. Aging mice with p53 inactivation in stratified epithelia developed spontaneous carcinomas in skin and other epithelia. Overall, these results highlight the truly protective nature of p53 functions in the development of cancer in skin and in other stratified epithelia. PMID:26959115

  19. Protective role of p53 in skin cancer: Carcinogenesis studies in mice lacking epidermal p53

    PubMed Central

    Page, Angustias; Navarro, Manuel; Suarez-Cabrera, Cristian; Alameda, Josefa P.; Casanova, M. Llanos; Paramio, Jesús M.; Bravo, Ana; Ramirez, Angel

    2016-01-01

    p53 is a protein that causes cell cycle arrest, apoptosis or senescence, being crucial in the process of tumor suppression in several cell types. Different in vitro and animal models have been designed for the study of p53 role in skin cancer. These models have revealed opposing results, as in some experimental settings it appears that p53 protects against skin cancer, but in others, the opposite conclusion emerges. We have generated cohorts of mice with efficient p53 deletion restricted to stratified epithelia and control littermates expressing wild type p53 and studied their sensitivity to both chemically-induced and spontaneous tumoral transformation, as well as the tumor types originated in each experimental group. Our results indicate that the absence of p53 in stratified epithelia leads to the appearance, in two-stage skin carcinogenesis experiments, of a higher number of tumors that grow faster and become malignant more frequently than tumors arisen in mice with wild type p53 genotype. In addition, the histological diversity of the tumor type is greater in mice with epidermal p53 loss, indicating the tumor suppressive role of p53 in different epidermal cell types. Aging mice with p53 inactivation in stratified epithelia developed spontaneous carcinomas in skin and other epithelia. Overall, these results highlight the truly protective nature of p53 functions in the development of cancer in skin and in other stratified epithelia. PMID:26959115

  20. 2-Phenylethynesulfonamide (PES) uncovers a necrotic process regulated by oxidative stress and p53.

    PubMed

    Mattiolo, Paolo; Barbero-Farran, Ares; Yuste, Víctor J; Boix, Jacint; Ribas, Judit

    2014-10-01

    2-Phenylethynesulfonamide (PES) or pifithrin-μ is a promising anticancer agent with preferential toxicity for cancer cells. The type of cell death and the molecular cascades activated by this compound are controversial. Here, we demonstrate PES elicits a caspase- and BAX/BAK-independent non-necroptotic necrotic cell death, since it is not inhibited by necrostatin-1. This process is characterized by an early generation of reactive oxygen species (ROS) resulting in p53 up-regulation. Accordingly, thiolic antioxidants protect cells from PES-induced death. Furthermore, inhibiting the natural sources of glutathione with l-buthionine-sulfoximine (BSO) strongly cooperates with PES in triggering cytotoxicity. Genetically modified p53-null or p53 knocked-down cells show resistance to PES-driven necrosis. The predominant localization of p53 in chromatin-enriched fractions added to the up-regulation of the p53-responsive gene p21, strongly suggest the involvement of a transcription-dependent p53 program. On the other hand, we report an augmented production of ROS in p53-positive cells that, added to the increased p53 content in response to PES-elicited ROS, suggests that p53 and ROS are mutually regulated in response to PES. In sum, p53 up-regulation by ROS triggers a positive feedback loop responsible of further increasing ROS production and reinforcing PES-driven non-necroptotic necrosis. PMID:25139326

  1. Development of an adenoviral vector with robust expression driven by p53

    SciTech Connect

    Bajgelman, Marcio C.; Strauss, Bryan E.

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG served as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.

  2. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal

    PubMed Central

    Zhao, Zhen; Zuber, Johannes; Diaz-Flores, Ernesto; Lintault, Laura; Kogan, Scott C.; Shannon, Kevin; Lowe, Scott W.

    2010-01-01

    The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here, we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML), an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models, Cre-lox technology, and in vivo RNAi to disable p53 and simultaneously activate endogenous KrasG12D—a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic KrasG12D to induce aggressive AML, while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells, such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently, myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells, resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation, and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity. PMID:20595231

  3. Expression of p53 in endometrial polyps with special reference to the p53 signature.

    PubMed

    Sho, Tomoko; Hachisuga, Toru; Kawagoe, Toshinori; Urabe, Rie; Kurita, Tomoko; Kagami, Seiji; Shimajiri, Shohei; Fujino, Yoshihisa

    2016-07-01

    We herein examined the significance of the p53 expression in endometrial polyps (EMPs). A total of 133 EMPs, including 62 premenopausal and 71 postmenopausal women with EMP, were immunohistochemically studied for the expression of estrogen receptor (ER)-alpha, Ki-67 and p53. Apoptotic cells were identified using a TUNEL assay. A DNA sequence analysis of TP53 exons 5 to 9 was performed. Among the premenopausal EMPs, a multivariate analysis showed the labeling index (LI) for Ki-67 to correlate significantly with that for p53 (P<0.001), but not that for apoptosis. On the contrary, among the postmenopausal EMPs, the LI for Ki-67 correlated significantly with that for apoptosis (P<0.001). The p53 signature (p53S) was defined by endometrial epithelial cells, which are morphologically benign in appearance but display 12 or more consecutive epithelial cell nuclei with strong p53 immunostaining. The p53S was found in nine (12.7%) postmenopausal EMPs (mean age: 70.2 years). The median Ki-67 index for the p53S was 7%, with no significant difference from that of the glands of the postmenopausal EMPs without the p53S (P=0.058). The median apoptotic index for the p53S was 0%, which was significantly lower than that of the postmenopausal EMPs without the p53S (P=0.002). Two of four p53Ss showed TP53 mutations according to the DNA sequence analysis. The presence of the p53S is not rare in postmenopausal EMPs with an advanced age. Among postmenopausal EMPs, the LI of Ki-67 significantly correlates with that of apoptosis. However, such a positive correlation between the LI of Ki-67 and apoptosis is not observed in p53S. PMID:26727623

  4. p53, Stem Cells, and Reprogramming

    PubMed Central

    Spike, Benjamin T.; Wahl, Geoffrey M.

    2011-01-01

    p53 is well recognized as a potent tumor suppressor. In its classic role, p53 responds to genotoxic insults by inducing cell cycle exit or programmed cell death to limit the propagation of cells with corrupted genomes. p53 is also implicated in a variety of other cellular processes in which its involvement is less well understood including self-renewal, differentiation, and reprogramming. These activities represent an emerging area of intense interest for cancer biologists, as they provide potential mechanistic links between p53 loss and the stem cell–like cellular plasticity that has been suggested to contribute to tumor cell heterogeneity and to drive tumor progression. Despite accumulating evidence linking p53 loss to stem-like phenotypes in cancer, it is not yet understood how p53 contributes to acquisition of “stemness” at the molecular level. Whether and how stem-like cells confer survival advantages to propagate the tumor also remain to be resolved. Furthermore, although it seems reasonable that the combination of p53 deficiency and the stem-like state could contribute to the genesis of cancers that are refractory to treatment, direct linkages and mechanistic underpinnings remain under investigation. Here, we discuss recent findings supporting the connection between p53 loss and the emergence of tumor cells bearing functional and molecular similarities to stem cells. We address several potential molecular and cellular mechanisms that may contribute to this link, and we discuss implications of these findings for the way we think about cancer progression. PMID:21779509

  5. Nucleolar stress with and without p53

    PubMed Central

    James, Allison; Wang, Yubo; Raje, Himanshu; Rosby, Raphyel; DiMario, Patrick

    2014-01-01

    A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53? PMID:25482194

  6. Nucleolar stress with and without p53.

    PubMed

    James, Allison; Wang, Yubo; Raje, Himanshu; Rosby, Raphyel; DiMario, Patrick

    2014-01-01

    A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell's energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53? PMID:25482194

  7. p53 suppresses hyper-recombination by modulating BRCA1 function

    PubMed Central

    Dong, Chao; Zhang, Fengmei; Luo, Yue; Wang, Hui; Zhao, Xipeng; Guo, Gongshe; Powell, Simon N.; Feng, Zhihui

    2015-01-01

    Both p53 and BRCA1 are tumor suppressors and are involved in a number of cellular processes including cell cycle arrest, apoptosis, transcriptional regulation, and DNA damage repair. Some studies have suggested that the association of BRCA1 and p53 is required for transcriptional regulation of genes involved in cell replication and DNA repair pathways. However, the relationship between the two proteins in molecular mechanisms of DNA repair is still not clear. Therefore, we sought to determine whether there is a functional link between p53 and BRCA1 in DNA repair. Firstly, using a plasmid recombination substrate, pDR-GFP, integrated into the genome of breast cancer cell line MCF7, we have demonstrated that p53 suppressed Rad51-mediated hyper-recombinational repair by two independent cell models of HPV-E6 induced p53 inactivation and p53 knockdown assay. Our study further indicated that p53 mediated homologous recombination (HR) through inhibiting BRCA1 over-function via mechanism of transcription regulation in response to DNA repair. Since it was found p53 and BRCA1 existed in a protein complex, indicating both proteins may be associated at post-transcriptional level. Moreover, defective p53-induced hyper-recombination was associated with cell radioresistance and chromosomal stability, strongly supporting the involvement of p53 in the inhibition of hyper-recombination, which led to genetic stability and cellular function in response to DNA damage. In addition, it was found that p53 loss rescued BRCA1 deficiency via recovering HR and chromosomal stability, suggesting that p53 is also involved in the HR-inhibition independently of BRCA1. Thus, our data indicated that p53 was involved in inhibiting recombination by both BRCA1-dependent and -independent mechanisms, and there is a functional link between p53-suppression and BRCA1-promotion in regulation of HR activity at transcription level and possible post-transcription level. PMID:26162908

  8. p53-directed translational control can shape and expand the universe of p53 target genes

    PubMed Central

    Zaccara, S; Tebaldi, T; Pederiva, C; Ciribilli, Y; Bisio, A; Inga, A

    2014-01-01

    The increasing number of genome-wide transcriptome analyses focusing on p53-induced cellular responses in many cellular contexts keeps adding to the already numerous p53-regulated transcriptional networks. To investigate post-transcriptional controls as an additional dimension of p53-directed gene expression responses, we performed a translatome analysis through polysomal profiling on MCF7 cells upon 16 hours of doxorubicin or nutlin-3a treatment. The comparison between the transcriptome and the translatome revealed a considerable level of uncoupling, characterized by genes whose transcription variations did not correlate with translation variations. Interestingly, uncoupled genes were associated with apoptosis, DNA and RNA metabolism and cell cycle functions, suggesting that post-transcriptional control can modulate classical p53-regulated responses. Furthermore, even for well-established p53 targets that were differentially expressed both at the transcriptional and translational levels, quantitative differences between the transcriptome, subpolysomal and polysomal RNAs were evident. As we searched mechanisms underlying gene expression uncoupling, we identified the p53-dependent modulation of six RNA-binding proteins, where hnRNPD (AUF1) and CPEB4 are direct p53 transcriptional targets, whereas SRSF1, DDX17, YBX1 and TARDBP are indirect targets (genes modulated preferentially in the subpolysomal or polysomal mRNA level) modulated at the translational level in a p53-dependent manner. In particular, YBX1 translation appeared to be reduced by p53 via two different mechanisms, one related to mTOR inhibition and the other to miR-34a expression. Overall, we established p53 as a master regulator of translational control and identified new p53-regulated genes affecting translation that can contribute to p53-dependent cellular responses. PMID:24926617

  9. p53-directed translational control can shape and expand the universe of p53 target genes.

    PubMed

    Zaccara, S; Tebaldi, T; Pederiva, C; Ciribilli, Y; Bisio, A; Inga, A

    2014-10-01

    The increasing number of genome-wide transcriptome analyses focusing on p53-induced cellular responses in many cellular contexts keeps adding to the already numerous p53-regulated transcriptional networks. To investigate post-transcriptional controls as an additional dimension of p53-directed gene expression responses, we performed a translatome analysis through polysomal profiling on MCF7 cells upon 16 hours of doxorubicin or nutlin-3a treatment. The comparison between the transcriptome and the translatome revealed a considerable level of uncoupling, characterized by genes whose transcription variations did not correlate with translation variations. Interestingly, uncoupled genes were associated with apoptosis, DNA and RNA metabolism and cell cycle functions, suggesting that post-transcriptional control can modulate classical p53-regulated responses. Furthermore, even for well-established p53 targets that were differentially expressed both at the transcriptional and translational levels, quantitative differences between the transcriptome, subpolysomal and polysomal RNAs were evident. As we searched mechanisms underlying gene expression uncoupling, we identified the p53-dependent modulation of six RNA-binding proteins, where hnRNPD (AUF1) and CPEB4 are direct p53 transcriptional targets, whereas SRSF1, DDX17, YBX1 and TARDBP are indirect targets (genes modulated preferentially in the subpolysomal or polysomal mRNA level) modulated at the translational level in a p53-dependent manner. In particular, YBX1 translation appeared to be reduced by p53 via two different mechanisms, one related to mTOR inhibition and the other to miR-34a expression. Overall, we established p53 as a master regulator of translational control and identified new p53-regulated genes affecting translation that can contribute to p53-dependent cellular responses. PMID:24926617

  10. The role of p53 in ribosomopathies.

    PubMed

    Fumagalli, Stefano; Thomas, George

    2011-04-01

    Impaired ribosome biogenesis is the underlying cause of the pathological conditions collectively known as ribosomopathies. Several hypotheses have been advanced to explain the mechanisms by which deficiencies in ribosome biogenesis interfere with developmental processes leading eventually to the emergence of these diseases. In recent years it has become clear that perturbation of this process triggers a cell-cycle checkpoint that, through activation of the tumor-suppressor p53, leads to cell-cycle arrest and apoptosis. Indeed, evidence is accumulating from studies in animal models that the unscheduled activation of p53 is responsible for perturbations in tissue homeostasis that cause the development of ribosomopathies such as Treacher-Collins syndrome (TCS) and 5q(-) syndrome. These findings imply that inhibition of p53, or better, of mechanisms that specifically lead to p53 activation in response to inhibition of ribosome biogenesis, could be targeted in the treatment of ribosomopathies where activation of p53 is shown to play a pathogenic role. PMID:21435506

  11. TRIM32 is a novel negative regulator of p53

    PubMed Central

    Liu, Juan; Zhu, Yu; Hu, Wenwei; Feng, Zhaohui

    2015-01-01

    To ensure proper function, the tumor suppressor p53 is tightly regulated through different post-translational modifications, particularly ubiquitination. Recently, TRIM32 was identified as a p53-regulated gene and an E3 ubiquitin ligase of p53. Thus, TRIM32 and p53 form a novel auto-regulatory negative feedback loop for p53 regulation in cells. PMID:27308422

  12. TRIM32 is a novel negative regulator of p53.

    PubMed

    Liu, Juan; Zhu, Yu; Hu, Wenwei; Feng, Zhaohui

    2015-01-01

    To ensure proper function, the tumor suppressor p53 is tightly regulated through different post-translational modifications, particularly ubiquitination. Recently, TRIM32 was identified as a p53-regulated gene and an E3 ubiquitin ligase of p53. Thus, TRIM32 and p53 form a novel auto-regulatory negative feedback loop for p53 regulation in cells. PMID:27308422

  13. Developing Integrated Curricula: Academic and Vocational Cooperation.

    ERIC Educational Resources Information Center

    Barbieri, Marty J.; Wircenski, Jerry L.

    1990-01-01

    A University of North Texas project used a team approach to develop a curriculum integrating academic subjects into vocational curricula. Ten teachers cooperated on integrated junior high/middle school lesson plans and classroom support activities. (JOW)

  14. p53 and rapamycin are additive

    PubMed Central

    Campisi, Judith; Huang, Jing; Jones, Diane; Dodds, Sherry G.; Williams, Charnae; Hubbard, Gene; Livi, Carolina B.; Gao, Xiaoli; Weintraub, Susan; Curiel, Tyler; Sharp, Z. Dave; Hasty, Paul

    2015-01-01

    Mechanistic target of rapamycin (mTOR) is a kinase found in a complex (mTORC1) that enables macromolecular synthesis and cell growth and is implicated in cancer etiology. The rapamycin-FK506 binding protein 12 (FKBP12) complex allosterically inhibits mTORC1. In response to stress, p53 inhibits mTORC1 through a separate pathway involving cell signaling and amino acid sensing. Thus, these different mechanisms could be additive. Here we show that p53 improved the ability of rapamycin to: 1) extend mouse life span, 2) suppress ionizing radiation (IR)-induced senescence-associated secretory phenotype (SASP) and 3) increase the levels of amino acids and citric acid in mouse embryonic stem (ES) cells. This additive effect could have implications for cancer treatment since rapamycin and p53 are anti-oncogenic. PMID:26158292

  15. p53 Suppresses Tetraploid Development in Mice

    PubMed Central

    Horii, Takuro; Yamamoto, Masamichi; Morita, Sumiyo; Kimura, Mika; Nagao, Yasumitsu; Hatada, Izuho

    2015-01-01

    Mammalian tetraploid embryos die in early development because of defects in the epiblast. Experiments with diploid/tetraploid chimeric mice, obtained via the aggregation of embryonic stem cells, clarified that while tetraploid cells are excluded from epiblast derivatives, diploid embryos with tetraploid extraembryonic tissues can develop to term. Today, this method, known as tetraploid complementation, is usually used for rescuing extraembryonic defects or for obtaining completely embryonic stem (ES) cell-derived pups. However, it is still unknown why defects occur in the epiblast during mammalian development. Here, we demonstrated that downregulation of p53, a tumour suppressor protein, rescued tetraploid development in the mammalian epiblast. Tetraploidy in differentiating epiblast cells triggered p53-dependent cell-cycle arrest and apoptosis, suggesting the activation of a tetraploidy checkpoint during early development. Finally, we found that p53 downregulation rescued tetraploid embryos later in gestation. PMID:25752699

  16. A defect in the p53 response pathway induced by de novo purine synthesis inhibition.

    PubMed

    Bronder, Julie L; Moran, Richard G

    2003-12-01

    p53 is believed to sense cellular ribonucleotide depletion in the absence of DNA strand breaks and to respond by imposition of a p21-dependent G1 cell cycle arrest. We now report that the p53-dependent G1 checkpoint is blocked in human carcinoma cell lines after inhibition of de novo purine synthesis by folate analogs inhibitory to glycinamide ribonucleotide formyltransferase (GART). p53 accumulated in HCT116, MCF7, or A549 carcinoma cells upon GART inhibition, but, surprisingly, transcription of several p53 targets, including p21cip1/waf1, was impaired. The mechanism of this defect was examined. The p53 accumulating in these cells was nuclear but was not phosphorylated at serines 6, 15, and 20, nor was it acetylated at lysines 373 or 382. The DDATHF-stabilized p53 bound to the p21 promoter in vitro and in vivo but did not activate histone acetylation over the p53 binding sites in the p21 promoter that is an integral part of the transcriptional response mediated by the DNA damage pathway. We concluded that the robust initial response of the p53 pathway to GART inhibitors is not transcriptionally propagated to target genes due to a defect in p53 post-translational modifications and a failure to open chromatin structure despite promoter binding of this unmodified p53. PMID:14517211

  17. EBNA3C regulates p53 through induction of Aurora kinase B.

    PubMed

    Jha, Hem C; Yang, Karren; El-Naccache, Darine W; Sun, Zhiguo; Robertson, Erle S

    2015-03-20

    In multicellular organisms p53 maintains genomic integrity through activation of DNA repair, and apoptosis. EBNA3C can down regulate p53 transcriptional activity. Aurora kinase (AK) B phosphorylates p53, which leads to degradation of p53. Aberrant expression of AK-B is a hallmark of numerous human cancers. Therefore changes in the activities of p53 due to AK-B and EBNA3C expression is important for understanding EBV-mediated cell transformation. Here we show that the activities of p53 and its homolog p73 are dysregulated in EBV infected primary cells which can contribute to increased cell transformation. Further, we showed that the ETS-1 binding site is crucial for EBNA3C-mediated up-regulation of AK-B transcription. Further, we determined the Ser 215 residue of p53 is critical for functional regulation by AK-B and EBNA3C and that the kinase domain of AK-B which includes amino acid residues 106, 111 and 205 was important for p53 regulation. AK-B with a mutation at residue 207 was functionally similar to wild type AK-B in terms of its kinase activities and knockdown of AK-B led to enhanced p73 expression independent of p53. This study explores an additional mechanism by which p53 is regulated by AK-B and EBNA3C contributing to EBV-induced B-cell transformation. PMID:25691063

  18. EBNA3C regulates p53 through induction of Aurora kinase B

    PubMed Central

    Jha, Hem C.; Yang, Karren; El-Naccache, Darine W.; Sun, Zhiguo; Robertson, Erle S.

    2015-01-01

    In multicellular organisms p53 maintains genomic integrity through activation of DNA repair, and apoptosis. EBNA3C can down regulate p53 transcriptional activity. Aurora kinase (AK) B phosphorylates p53, which leads to degradation of p53. Aberrant expression of AK-B is a hallmark of numerous human cancers. Therefore changes in the activities of p53 due to AK-B and EBNA3C expression is important for understanding EBV-mediated cell transformation. Here we show that the activities of p53 and its homolog p73 are dysregulated in EBV infected primary cells which can contribute to increased cell transformation. Further, we showed that the ETS-1 binding site is crucial for EBNA3C-mediated up-regulation of AK-B transcription. Further, we determined the Ser 215 residue of p53 is critical for functional regulation by AK-B and EBNA3C and that the kinase domain of AK-B which includes amino acid residues 106, 111 and 205 was important for p53 regulation. AK-B with a mutation at residue 207 was functionally similar to wild type AK-B in terms of its kinase activities and knockdown of AK-B led to enhanced p73 expression independent of p53. This study explores an additional mechanism by which p53 is regulated by AK-B and EBNA3C contributing to EBV-induced B-cell transformation. PMID:25691063

  19. Loss of P53 facilitates invasion and metastasis of prostate cancer cells.

    PubMed

    Wang, Yi; Zhang, Y X; Kong, C Z; Zhang, Z; Zhu, Y Y

    2013-12-01

    Prostate cancer is a lethal cancer for the invasion and metastasis in its earlier period. P53 is a tumor suppressor gene which plays a critical role on safeguarding the integrity of genome. However, loss of P53 facilitates or inhibits the invasion and metastasis of tumor is still suspended. In this study, we are going to explain whether loss of P53 affect the invasion and metastasis of prostate cancer cells. To explore whether loss of P53 influences the invasion and metastasis ability of prostate cancer cells, we first compared the invasion ability of si-P53 treated cells and control cells by wound healing, transwell assay, and adhesion assay. We next tested the activity of MMP-2, MMP-9, and MMP-14 by western blot and gelatin zymography. Moreover, we employed WB and IF to identify the EMT containing E-cad, N-cad, vimentin, etc. We also examined the expression of cortactin, cytoskeleton, and paxillin by immunofluorescence, and tested the expression of ERK and JNK by WB. Finally, we applied WB to detect the expression of FAK, Src, and the phosphorylation of them to elucidate the mechanism of si-P53 influencing invasion and metastasis. According to the inhibition rate of si-P53, we choose the optimized volume of si-P53. With the volume, we compare the invasion and metastasis ability of Du145 and si-P53 treated cells. We find si-P53 promotes the invasion and metastasis in prostate cancer cells, increases the expression and activity of MMP-2/9 and MMP-14. Also, si-P53 promotes EMT and cytoskeleton rearrangement. Further analyses explain that this effect is associated with FAK-Src signaling pathway. Loss of P53 promotes the invasion and metastasis ability of prostate cancer cells and the mechanism is correlated with FAK-Src signaling pathway. P53 is involved in the context of invasion and metastasis. PMID:23982184

  20. Regulation of the p53 response and its relationship to cancer.

    PubMed

    Meek, David W

    2015-08-01

    p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically. PMID:26205489

  1. Autoantibody recognition mechanisms of p53 epitopes

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2016-06-01

    There is an urgent need for economical blood based, noninvasive molecular biomarkers to assist in the detection and diagnosis of cancers in a cost-effective manner at an early stage, when curative interventions are still possible. Serum autoantibodies are attractive biomarkers for early cancer detection, but their development has been hindered by the punctuated genetic nature of the ten million known cancer mutations. A landmark study of 50,000 patients (Pedersen et al., 2013) showed that a few p53 15-mer epitopes are much more sensitive colon cancer biomarkers than p53, which in turn is a more sensitive cancer biomarker than any other protein. The function of p53 as a nearly universal "tumor suppressor" is well established, because of its strong immunogenicity in terms of not only antibody recruitment, but also stimulation of autoantibodies. Here we examine dimensionally compressed bioinformatic fractal scaling analysis for identifying the few sensitive epitopes from the p53 amino acid sequence, and show how it could be used for early cancer detection (ECD). We trim 15-mers to 7-mers, and identify specific 7-mers from other species that could be more sensitive to aggressive human cancers, such as liver cancer. Our results could provide a roadmap for ECD.

  2. Repression of the antiapoptotic molecule galectin-3 by homeodomain-interacting protein kinase 2-activated p53 is required for p53-induced apoptosis.

    PubMed

    Cecchinelli, Barbara; Lavra, Luca; Rinaldo, Cinzia; Iacovelli, Stefano; Gurtner, Aymone; Gasbarri, Alessandra; Ulivieri, Alessandra; Del Prete, Fabrizio; Trovato, Maria; Piaggio, Giulia; Bartolazzi, Armando; Soddu, Silvia; Sciacchitano, Salvatore

    2006-06-01

    Galectin 3 (Gal-3), a member of the beta-galactoside binding lectin family, exhibits antiapoptotic functions, and its aberrant expression is involved in various aspects of tumor progression. Here we show that p53-induced apoptosis is associated with transcriptional repression of Gal-3. Previously, it has been reported that phosphorylation of p53 at Ser46 is important for transcription of proapoptotic genes and induction of apoptosis and that homeodomain-interacting protein kinase 2 (HIPK2) is specifically involved in these functions. We show that HIPK2 cooperates with p53 in Gal-3 repression and that this cooperation requires HIPK2 kinase activity. Gene-specific RNA interference demonstrates that HIPK2 is essential for repression of Gal-3 upon induction of p53-dependent apoptosis. Furthermore, expression of a nonrepressible Gal-3 prevents HIPK2- and p53-induced apoptosis. These results reveal a new apoptotic pathway induced by HIPK2-activated p53 and requiring repression of the antiapoptotic factor Gal-3. PMID:16738336

  3. Oncogenic Intra-p53 Family Member Interactions in Human Cancers

    PubMed Central

    Ferraiuolo, Maria; Di Agostino, Silvia; Blandino, Giovanni; Strano, Sabrina

    2016-01-01

    The p53 gene family members p53, p73, and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologs but hold peculiar functional properties. p53, p73, and p63 are tumor suppressor genes that promote differentiation, senescence, and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic “gain of function” activities correlated with the induction of proliferation, invasion, chemoresistance, and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53) with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor, Ets-1, NF-kB and YAP) or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response and DNA double-strand breaks response), enhanced invasion, and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild-type p53 (wt-p53) protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73, and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers. PMID:27066457

  4. Heavy-ion-induced mutations in the gpt delta transgenic mouse: effect of p53 gene knockout.

    PubMed

    Yatagai, Fumio; Kurobe, Toshihiro; Nohmi, Takehiko; Masumura, Ken-ichi; Tsukada, Teruyo; Yamaguchi, Hirotake; Kasai-Eguchi, Kiyomi; Fukunishi, Nobuhisa

    2002-01-01

    The influence of the loss of p53 gene on heavy-ion-induced mutations was examined by constructing a new line of transgenic mice, p53 knockout (p53(-/-)) gpt delta. In this mouse model, deletions in lambda DNA integrated into the mouse genome are preferentially selected as Spi(-) phages, which can then be subjected to molecular analysis. Mice were exposed to 10 Gy of whole-body carbon-ion irradiation. The carbon ions were accelerated to 135 MeV/u by the RIKEN Ring Cyclotron. The p53 defect markedly enhanced the Spi(-) mutant frequency (MF) in the kidneys of mice exposed to C-ion irradiation: the Spi(-) MF increased 4.4- and 2.8-fold over the background level after irradiation in p53(-/-) and p53(+/+) mice, respectively. There was no significant difference in the background Spi(-) MF between p53(-/-) and p53(+/+) mice. Sequence analysis of the Spi(-) mutants indicated that the enhancement of kidney Spi(-) MF in p53(-/-) mice was primarily due to an increase in complex or rearranged-type deletions. In contrast to the kidney, the p53 defect had no effect on the Spi(-) MF in liver: Spi(-) MF increased 3.0- and 2.7-fold after the irradiation in p53(-/-) and p53(+/+) mice, respectively. Our results suggest that p53 suppresses deletion mutations induced by heavy-ion irradiation in an organ-specific manner. PMID:12355556

  5. Genome-wide analysis of p53 transcriptional programs in B cells upon exposure to genotoxic stress in vivo

    PubMed Central

    Tonelli, Claudia; Morelli, Marco J.; Bianchi, Salvatore; Rotta, Luca; Capra, Thelma; Sabò, Arianna; Campaner, Stefano; Amati, Bruno

    2015-01-01

    The tumor suppressor p53 is a transcription factor that coordinates the cellular response to DNA damage. Here we provide an integrated analysis of p53 genomic occupancy and p53-dependent gene regulation in the splenic B and non-B cell compartments of mice exposed to whole-body ionizing radiation, providing insight into general principles of p53 activity in vivo. In unstressed conditions, p53 bound few genomic targets; induction of p53 by ionizing radiation increased the number of p53 bound sites, leading to highly overlapping profiles in the different cell types. Comparison of these profiles with chromatin features in unstressed B cells revealed that, upon activation, p53 localized at active promoters, distal enhancers, and a smaller set of unmarked distal regions. At promoters, recognition of the canonical p53 motif as well as binding strength were associated with p53-dependent transcriptional activation, but not repression, indicating that the latter was most likely indirect. p53-activated targets constituted the core of a cell type-independent response, superimposed onto a cell type-specific program. Core response genes included most of the known p53-regulated genes, as well as many new ones. Our data represent a unique characterization of the p53-regulated response to ionizing radiation in vivo. PMID:26372730

  6. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer

    PubMed Central

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed. PMID:26618142

  7. p53 protects against LPS-induced lung endothelial barrier dysfunction

    PubMed Central

    Dimitropoulou, Christiana; Birmpas, Charalampos; Joshi, Atul; Thangjam, Gagan; Catravas, John D.

    2015-01-01

    New therapies toward heart and blood vessel disorders may emerge from the development of Hsp90 inhibitors. Several independent studies suggest potent anti-inflammatory activities of those agents in human tissues. The molecular mechanisms responsible for their protective effects in the vasculature remain unclear. The present study demonstrates that the transcription factor p53, an Hsp90 client protein, is crucial for the maintenance of vascular integrity, protects again LPS-induced endothelial barrier dysfunction, and is involved in the mediation of the anti-inflammatory activity of Hsp90 inhibitors in lung tissues. p53 silencing by siRNA decreased transendothelial resistance (a measure of endothelial barrier function). A similar effect was induced by the p53 inhibitor pifithrin, which also potentiated the LPS-induced hyperpermeability in human lung microvascular endothelial cells (HLMVEC). On the other hand, p53 induction by nutlin suppressed the LPS-induced vascular barrier dysfunction. LPS decreased p53 expression in lung tissues and that effect was blocked by pretreatment with Hsp90 inhibitors both in vivo and in vitro. Furthermore, the Hsp90 inhibitor 17-allyl-amino-demethoxy-geldanamycin suppressed the LPS-induced overexpression of the p53 negative regulator MDMX as well as p53 and MDM2 (another p53 negative regulator) phosphorylation in HLMVEC. Both negative p53 regulators were downregulated by LPS in vivo. Chemically induced p53 overexpression resulted in the suppression of LPS-induced RhoA activation and MLC2 phosphorylation, whereas p53 suppression caused the opposite effects. These observations reveal new mechanisms for the anti-inflammatory actions of Hsp90 inhibitors, i.e., the induction of the transcription factor p53, which in turn can orchestrate robust vascular anti-inflammatory responses both in vivo and in vitro. PMID:25713322

  8. Isolation, characterization and functional analysis of full length p53 cDNA from Bubalus bubalis.

    PubMed

    Singh, Minu; Aggarwal, Suruchi; Mohanty, Ashok K; Mukhopadhyay, Tapas

    2015-09-01

    p53 plays a pivotal role in maintaining the genomic integrity of the cell and has an important role in cellular transformation. We isolated and cloned a full length p53 cDNA (Bp53) from water buffalo in expression vectors designed to generate tagged proteins with FLAG or GFP. Bp53 was found to be 1161 nucleotide long and codes for 386 amino acid residues with 79% homology with human p53 containing 393 amino acids. Although Bp53 has some inherent differences in amino acid composition in different functional domains as compared to human p53 but the total electrostatic charge of amino acids has been maintained. Bp53 cDNA was transiently transfected in a p53 null human NSCLC cell line and as expected, it was predominantly localized in the nucleus. Besides, Bp53 effectively transactivates a number of target genes similar to human p53 and exerts most of its anti-tumorigenic potential in culture as observed in clonogenic and cell viability assays. Like human p53 mutants, core domain mutant version of Bp53 was found to be mis-localized to cytoplasm with diminished tumor suppressor activity. However, Bp53 appeared to be more sensitive to mdm2 mediated degradation and as a result, this protein was less stable as compared to human p53. For the first time we have characterized a functionally efficient wild-type p53 from buffalo having lower stability than human p53 and thus, buffalo p53 could be used as a model system for further insight to the molecular basis of wild-type p53 instability. PMID:26003295

  9. p53 Transactivation and the Impact of Mutations, Cofactors and Small Molecules Using a Simplified Yeast-Based Screening System

    PubMed Central

    Bisio, Alessandra; Lion, Mattia; Jordan, Jennifer; Fronza, Gilberto; Menichini, Paola; Resnick, Michael A.; Inga, Alberto

    2011-01-01

    Background The p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4. Methodology/Principal Findings Given the many factors that might influence p53 function, including expression levels, mutations, cofactor proteins and small molecules, we expanded our previously described yeast-based system to provide the opportunity for efficient investigation of their individual and combined impacts in a miniaturized format. The system integrates i) variable expression of p53 proteins under the finely tunable GAL1,10 promoter, ii) single copy, chromosomally located p53-responsive and control luminescence reporters, iii) enhanced chemical uptake using modified ABC-transporters, iv) small-volume formats for treatment and dual-luciferase assays, and v) opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1. Conclusions/Significance We found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins. PMID:21674059

  10. Ferroptosis: A missing puzzle piece in the p53 blueprint?

    PubMed Central

    Wang, Shang-Jui; Ou, Yang; Jiang, Le; Gu, Wei

    2016-01-01

    ABSTRACT Recent evidence indicates that canonical functions of p53 (i.e., apoptosis and growth arrest) are dispensable for p53-mediated tumor suppression. We have uncovered a novel function of p53 that contributes to tumor suppression through regulation of cystine metabolism, reactive oxygen species responses, and ferroptosis. The p53-mediated ferroptotic response via SLC7A11 denotes an extra layer of defense against tumorigenesis in conjunction with other p53 functions. PMID:27314071

  11. Pharmacological Activation of p53 in Cancer Cells

    PubMed Central

    Athar, Mohammad; Elmets, Craig A.; Kopelovich, Levy

    2013-01-01

    Tumor suppressor p53 is a transcription factor that regulates a large number of genes and guards against genomic instability. Under multiple cellular stress conditions, p53 functions to block cell cycle progression transiently unless proper DNA repair occurs. Failure of DNA repair mechanisms leads to p53-mediated induction of cell death programs. p53 also induces permanent cell cycle arrest known as cellular senescence. During neoplastic progression, p53 is often mutated and fails to efficiently perform these functions. It has been observed that cancers carrying a wild-type p53 may also have interrupted downstream p53 regulatory signaling leading to disruption in p53 functions. Therefore, strategies to reactivate p53 provide an attractive approach for blocking tumor pathogenesis and its progression. p53 activation may also lead to regression of existing early neoplastic lesions and therefore may be important in developing cancer chemoprevention protocols. A large number of small molecules capable of reactivating p53 have been developed and some are progressing through clinical trials for prospective human applications. However, several questions remain to be answered at this stage. For example, it is not certain if pharmacological activation of p53 will restore all of its multifaceted biological responses, assuming that the targeted cell is not killed following p53 activation. It remains to be demonstrated whether the distinct biological effects regulated by specific post-transnationally modified p53 can effectively be restored by refolding mutant p53. Mutant p53 can be classified as a loss of function or gain of function protein depending on the type of mutation. It is also unclear whether reactivation of mutant p53 has similar consequences in cells carrying gain-of-function and loss-of-function p53 mutants. This review provides a description of various pharmacological approaches tested to activate p53 (both wild-type and mutant) and to assess the effects of

  12. Ferroptosis: A missing puzzle piece in the p53 blueprint?

    PubMed

    Wang, Shang-Jui; Ou, Yang; Jiang, Le; Gu, Wei

    2016-05-01

    Recent evidence indicates that canonical functions of p53 (i.e., apoptosis and growth arrest) are dispensable for p53-mediated tumor suppression. We have uncovered a novel function of p53 that contributes to tumor suppression through regulation of cystine metabolism, reactive oxygen species responses, and ferroptosis. The p53-mediated ferroptotic response via SLC7A11 denotes an extra layer of defense against tumorigenesis in conjunction with other p53 functions. PMID:27314071

  13. The combination of 5-fluorouracil plus p53 pathway restoration is associated with depletion of p53-deficient or mutant p53-expressing putative colon cancer stem cells.

    PubMed

    Huang, Catherine; Zhang, Xiang M; Tavaluc, Raluca T; Hart, Lori S; Dicker, David T; Wang, Wenge; El-Deiry, Wafik S

    2009-11-01

    The cancer stem cell hypothesis suggests that rare populations of tumor-initiating cells may be resistant to therapy, lead to tumor relapse and contribute to poor prognosis for cancer patients. We previously demonstrated the feasibility of p53 pathway restoration in p53-deficient tumor cell populations using small molecules including ellipticine or its derivatives. We now establish a single cell p53-regulated green fluorescent protein (EGFP)-reporter system in human DLD1 colon tumor cells expressing mutant p53 protein. We use these p53-EGFP reporter DLD1 cells to investigate the status of p53 transcriptional activity in putative colon cancer stem cell populations following exposure to p53 pathway-restoring drugs and/or classical chemotherapy. We demonstrate induction of p53-specific EGFP reporter fluorescence following overexpression of p53 family member p73 by an Adenovirus vector. We further show that p53-reporter activity is induced in DLD1 putative cancer stem cell side-populations analyzed by their Hoechst dye efflux properties following treatment with the p53 pathway restoring drug ellipticine. Combination of ellipticine with the cytotoxic agent 5-fluorouracil resulted in increased cytotoxicity as compared to either agent alone and this was associated with depletion of putative cancer stem cell populations as compared with 5-FU alone treatment. Our results support the feasibility of therapeutic targeting of mutant p53 in putative cancer stem cells as well as the potential to enhance cytotoxic chemotherapy. PMID:19923910

  14. Targeting Oncogenic Mutant p53 for Cancer Therapy

    PubMed Central

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels. PMID:26732534

  15. p53 enables metabolic fitness and self-renewal of nephron progenitor cells

    PubMed Central

    Li, Yuwen; Liu, Jiao; Li, Wencheng; Brown, Aaron; Baddoo, Melody; Li, Marilyn; Carroll, Thomas; Oxburgh, Leif; Feng, Yumei; Saifudeen, Zubaida

    2015-01-01

    Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre+;p53fl/fl) induces progressive depletion of Cited1+/Six2+ self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre+;p53fl/fl cap has 30% fewer Six2(GFP+) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre+;p53fl/fl cells in the S and G2/M phases compared with Six2Cre+;p53+/+ cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP+) CM cells revealed that the top downregulated genes in Six2Cre+;p53fl/fl CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors. PMID:25804735

  16. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.

    PubMed

    Li, Yuwen; Liu, Jiao; Li, Wencheng; Brown, Aaron; Baddoo, Melody; Li, Marilyn; Carroll, Thomas; Oxburgh, Leif; Feng, Yumei; Saifudeen, Zubaida

    2015-04-01

    Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors. PMID:25804735

  17. The p53 target Wig-1 regulates p53 mRNA stability through an AU-rich element

    PubMed Central

    Vilborg, Anna; Glahder, Jacob A.; Wilhelm, Margareta T.; Bersani, Cinzia; Corcoran, Martin; Mahmoudi, Salah; Rosenstierne, Maiken; Grandér, Dan; Farnebo, Marianne; Norrild, Bodil; Wiman, Klas G.

    2009-01-01

    The p53 target gene Wig-1 encodes a double-stranded-RNA-binding zinc finger protein. We show here that Wig-1 binds to p53 mRNA and stabilizes it through an AU-rich element (ARE) in the 3′ UTR of the p53 mRNA. This effect is mirrored by enhanced p53 protein levels in both unstressed cells and cells exposed to p53-activating stress agents. Thus, the p53 target Wig-1 is a previously undescribed ARE-regulating protein that acts as a positive feedback regulator of p53, with implications both for the steady-state levels of p53 and for the p53 stress response. Our data reveal a previously undescribed link between the tumor suppressor p53 and posttranscriptional gene regulation via AREs in mRNA. PMID:19805223

  18. Relevant Networks involving the p53 Signalling Pathway in Renal Cell Carcinoma

    PubMed Central

    Villaamil, V. Medina; Gallego, G. Aparicio; Caínzos, I. Santamarina; Ruvira, L. Valbuena; Valladares-Ayerbes, M.; Aparicio, L. M. Antón

    2011-01-01

    Introduction: Renal cell carcinoma is the most common type of kidney cancer. A better understanding of the critical pathways and interactions associated with alterations in renal function and renal tumour properties is required. Our final goal is to combine the knowledge provided by a regulatory network with experimental observations provided by the dataset. Methods: In this study, a systems biology approach was used, integrating immunohistochemistry protein expression profiles and protein interaction information with the STRING and MeV bioinformatics tools. A group consisting of 80 patients with renal cell carcinoma was studied. The expression of selected markers was assessed using tissue microarray technology on immunohistochemically stained slides. The immunohistochemical data of the molecular factors studied were analysed using a parametric statistical test, Pearson’s correlation coefficient test. Results: Bioinformatics analysis of tumour samples resulted in 2 protein networks. The first network consists of proteins involved in the angiogenesis pathway and the apoptosis suppressor, BCL2, and includes both positive and negative correlations. The second network shows a negative interaction between the p53 tumour suppressor protein and the glucose transporter type 4. Conclusion: The comprehensive pathway network will help us to realise the cooperative behaviours among pathways. Regulation of metabolic pathways is an important role of p53. The pathway involving the tumour suppressor gene p53 could regulate tumour angiogenesis. Further investigation of the proteins that interact with this pathway in this type of tumour may provide new strategies for cancer therapies to specifically inhibit the molecules that play crucial roles in tumour progression. PMID:23675247

  19. [Advances in the study of p53 in response to DNA damage].

    PubMed

    Wang, Ya-Jie; Sun, Hua; Liu, Geng-Tao; Chen, Xiao-Guang

    2011-12-01

    p53 (encoded by TP53) is undoubtedly one of the most extensively studied genes and proteins. It is a highly potent transcription factor which, under normal circumstances, is maintained at low level. Both genotoxic and non-genotoxic stresses can induce p53 stabilized leading to changes in the expression of p53-responsive genes. The biological outcome inducing this pathway can be either growth arrest and apoptosis or senescence to maintain the integrity of the genome or to delete the damaged cells. The biochemical activity of p53 itself and the cellular environment govern the choice between these outcomes in a cell type- and stress-specific manner. So, p53 is a pivotal tumour suppressor and a mainstay of our body's natural anticancer defence. This review could provide some useful information for further study on the mechanisms of tumorigenesis and its progression, and also could contribute to the discovery of antitumor agents. PMID:22375412

  20. Analytical Validation of AmpliChip p53 Research Test for Archival Human Ovarian FFPE Sections.

    PubMed

    Marton, Matthew J; McNamara, Andrew R; Nikoloff, D Michele; Nakao, Aki; Cheng, Jonathan

    2015-01-01

    The p53 tumor suppressor gene (TP53) is reported to be mutated in nearly half of all tumors and plays a central role in genome integrity. Detection of mutations in p53 can be accomplished by many assays, including the AmpliChip p53 Research Test. The AmpliChip p53 Research Test has been successfully used to determine p53 status in hematologic malignancies and fresh frozen solid tissues but there are few reports of using the assay with formalin fixed, paraffin-embedded (FFPE) tissue. The objective of this study was to describe analytical performance characterization of the AmpliChip p53 Research Test to detect p53 mutations in genomic DNA isolated from archival FFPE human ovarian tumor tissues. Method correlation with sequencing showed 96% mutation-wise agreement and 99% chip-wise agreement. We furthermore observed 100% agreement (113/113) of the most prevalent TP53 mutations. Workflow reproducibility was 96.8% across 8 samples, with 2 operators, 2 reagent lots and 2 instruments. Section-to-section reproducibility was 100% for each sample across a 60 μm region of the FFPE block from ovarian tumors. These data indicate that the AmpliChip p53 Research Test is an accurate and reproducible method for detecting mutations in TP53 from archival FFPE human ovarian specimens. PMID:26125596

  1. Maintenance of imaginal disc plasticity and regenerative potential in Drosophila by p53.

    PubMed

    Wells, Brent S; Johnston, Laura A

    2012-01-15

    Following irradiation (IR), the DNA damage response (DDR) activates p53, which triggers death of cells in which repair cannot be completed. Lost tissue is then replaced and re-patterned through regeneration. We have examined the role of p53 in co-regulation of the DDR and tissue regeneration following IR damage in Drosophila. We find that after IR, p53 is required for imaginal disc cells to repair DNA, and in its absence the damage marker, γ-H2AX is persistently expressed. p53 is also required for the compensatory proliferation and re-patterning of the damaged discs, and our results indicate that cell death is not required to trigger these processes. We identify an IR-induced delay in developmental patterning in wing discs that accompanies an animal-wide delay of the juvenile-adult transition, and demonstrate that both of these delays require p53. In p53 mutants, the lack of developmental delays and of damage resolution leads to anueploidy and tissue defects, and ultimately to morphological abnormalities and adult inviability. We propose that p53 maintains plasticity of imaginal discs by co-regulating the maintenance of genome integrity and disc regeneration, and coordinating these processes with the physiology of the animal. These findings place p53 in a role as master coordinator of DNA and tissue repair following IR. PMID:22036477

  2. Coordinate Transcriptional and Translational Repression of p53 by TGFβ1 Impairs the Stress Response

    PubMed Central

    López-Díaz, Fernando J.; Gascard, Philippe; Balakrishnan, Sri Kripa; Zhao, Jianxin; del Rincon, Sonia V.; Spruck, Charles; Tlsty, Thea D.; Emerson, Beverly M.

    2013-01-01

    Summary Cellular stress results in profound changes in RNA and protein synthesis. How cells integrate this intrinsic, p53-centered program with extracellular signals is largely unknown. We demonstrate that TGFβ1 signaling interferes with the stress response through coordinate transcriptional and translational repression of p53 levels, which reduces p53-activated transcription, and apoptosis in precancerous cells. Mechanistically, E2F4 binds constitutively to the TP53 gene and induces transcription. TGFβ1-activated Smads are recruited to a composite Smad/E2F4 element by an E2F4/p107 complex that switches to a Smad co-repressor, which represses TP53 transcription. TGFβ1 also causes dissociation of ribosomal protein RPL26 and elongation factor eEF1A from p53 mRNA, thereby reducing p53 mRNA association with polyribosomes and p53 translation. TGFβ1-signalling is dominant over stress-induced transcription and translation of p53 and prevents stress-imposed downregulation of Smad proteins. Thus, crosstalk between the TGFβ and p53 pathways defines a major node of regulation in the cellular stress response, enhancing drug resistance. PMID:23706820

  3. Iron Metabolism Regulates p53 Signaling through Direct Heme-p53 Interaction and Modulation of p53 Localization, Stability, and Function

    PubMed Central

    Shen, Jia; Sheng, Xiangpeng; Chang, ZeNan; Wu, Qian; Wang, Sheng; Xuan, Zongliang; Li, Dan; Wu, Yalan; Shang, Yongjia; Kong, Xiangtao; Yu, Long; Li, Lin; Ruan, Kangchen; Hu, Hongyu; Huang, Ying; Hui, Lijian; Xie, Dong; Wang, Fudi; Hu, Ronggui

    2014-01-01

    SUMMARY Iron excess is closely associated with tumorigenesis in multiple types of human cancers, with underlying mechanisms yet unclear. Recently, iron deprivation has emerged as a major strategy for chemotherapy, but it exerts tumor suppression only on select human malignancies. Here, we report that the tumor suppressor protein p53 is downregulated during iron excess. Strikingly, the iron polyporphyrin heme binds to p53 protein, interferes with p53-DNA interactions, and triggers both nuclear export and cytosolic degradation of p53. Moreover, in a tumorigenicity assay, iron deprivation suppressed wild-type p53-dependent tumor growth, suggesting that upregulation of wild-type p53 signaling underlies the selective efficacy of iron deprivation. Our findings thus identify a direct link between iron/heme homeostasis and the regulation of p53 signaling, which not only provides mechanistic insights into iron-excess-associated tumorigenesis but may also help predict and improve outcomes in iron-deprivation-based chemotherapy. PMID:24685134

  4. The dichotomy of p53 regulation by noncoding RNAs.

    PubMed

    Deng, Qipan; Becker, Lindsey; Ma, Xiaodong; Zhong, Xiaoming; Young, Ken; Ramos, Kenneth; Li, Yong

    2014-06-01

    The p53 tumor suppressor gene is the most frequently mutated gene in cancer. Significant progress has been made to discern the importance of p53 in coordinating cellular responses to DNA damage, oncogene activation, and other stresses. Noncoding RNAs are RNA molecules functioning without being translated into proteins. In this work, we discuss the dichotomy of p53 regulation by noncoding RNAs with four unconventional questions. First, is overexpression of microRNAs responsible for p53 inactivation in the absence of p53 mutation? Second, are there somatic mutations in the noncoding regions of the p53 gene? Third, is there a germline mutant in the noncoding regions of the p53 gene that predisposes carriers to cancer? Fourth, can p53 activation mediated by a noncoding RNA mutation cause cancer? This work highlights the prominence of noncoding RNAs in p53 dysregulation and tumorigenesis. PMID:24706938

  5. P53 licensed to kill? Operating the assassin.

    PubMed

    Haupt, Susan; Louria-Hayon, Igal; Haupt, Ygal

    2003-01-01

    The p53 protein is a key player in the cellular response to stress. Proper regulation of p53 is imperative for the suppression of tumor development. This regulation is largely governed by its master inhibitor, Mdm2, which both blocks p53 activities and promotes its destabilization. This tight regulation of p53 by Mdm2 must be interrupted under stress conditions in order for p53 to be stabilized in an active form. A combined action of partner proteins and modifying enzymes is essential for the relief of p53 from Mdm2. The recent revelation of p53 association with the PML-nuclear bodies provides one explanation of how this regulatory network is coordinated within the nucleus in response to certain stress conditions. Thus, it is not only the nature of the p53 regulatory complex but also the spatial and temporal context of this association that governs the output inhibitory signals mediated by p53. PMID:12461776

  6. High levels of p53 protein expression do not correlate with p53 gene mutations in anaplastic large cell lymphoma.

    PubMed Central

    Cesarman, E.; Inghirami, G.; Chadburn, A.; Knowles, D. M.

    1993-01-01

    Strong immunohistochemical reactivity for p53 tumor suppressor gene product has been reported in a variety of different human malignancies including CD30- (Ki-1) positive anaplastic large cell lymphoma (ALCL). Although high levels of p53 protein have been interpreted as abnormal, rapidly proliferating benign and neoplastic lymphoid cells may have increased p53 expression in the absence of structural alterations. On the other hand, mutations in the p53 gene can lead to a lack of p53 protein production. Structural alterations of the p53 gene have not been documented in cases of ALCL and the mechanism for an abnormal pattern of p53 expression in these lymphomas has not been elucidated. Therefore, to determine whether an altered pattern of p53 expression correlates with mutations in the p53 locus in ALCL, we analyzed the expression of p53 protein immunohistochemically, compared it with the proliferation index using monoclonal antibody Ki-67, and assessed the presence of mutations in exons 5 though 9 of the p53 gene using a single-strand conformation polymorphism assay in a panel of 17 ALCLs. Furthermore, we studied the presence of allelic deletions of chromosome 17p by restriction fragment length polymorphism analysis. We found significant levels of p53 protein expression in 12 of the 15 cases studied, but identified mutations in only one of 17 cases. An allelic deletion in chromosome 17p was identified only in the one case containing a mutated p53 gene. Whereas the case containing structural alterations in the p53 gene did have strong p53 immunoreactivity, 11 cases that lacked p53 mutations in the regions examined also had significant levels of p53. Thus, our studies indicate that strong immunohistochemical reactivity for p53 is not a reliable indicator of the presence of structural alterations of p53 gene exons 5 through 9 in ALCL. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8103295

  7. Expression of TP53 Isoforms p53β or p53γ Enhances Chemosensitivity in TP53null Cell Lines

    PubMed Central

    Silden, Elisabeth; Hjelle, Sigrun M.; Wergeland, Line; Sulen, André; Andresen, Vibeke; Bourdon, Jean-Christophe; Micklem, David R.; McCormack, Emmet; Gjertsen, Bjørn Tore

    2013-01-01

    The carboxy-terminal truncated p53 alternative spliced isoforms, p53β and p53γ, are expressed at disparate levels in cancer and are suggested to influence treatment response and therapy outcome. However, their functional role in cancer remains to be elucidated. We investigated their individual functionality in the p53null background of cell lines H1299 and SAOS-2 by stable retroviral transduction or transient transfection. Expression status of p53β and p53γ protein was found to correlate with increased response to camptothecin and doxorubicin chemotherapy. Decreased DNA synthesis and clonogenicity in p53β and p53γ congenic H1299 was accompanied by increased p21(CIP1/WAF1), Bax and Mdm2 proteins. Chemotherapy induced p53 isoform degradation, most prominent for p53γ. The proteasome inhibitor bortezomib substantially increased basal p53γ protein level, while the level of p53β protein was unaffected. Treatment with dicoumarol, a putative blocker of the proteasome-related NAD(P)H quinone oxidoreductase NQO1, effectively attenuated basal p53γ protein level in spite of bortezomib treatment. Although in vitro proliferation and clonogenicity assays indicated a weak suppressive effect by p53β and p53γ expression, studies of in vivo subcutaneous H1299 tumor growth demonstrated a significantly increased growth by expression of either p53 isoforms. This study suggests that p53β and p53γ share functionality in chemosensitizing and tumor growth enhancement but comprise distinct regulation at the protein level. PMID:23409163

  8. Expression of TP53 isoforms p53β or p53γ enhances chemosensitivity in TP53(null) cell lines.

    PubMed

    Silden, Elisabeth; Hjelle, Sigrun M; Wergeland, Line; Sulen, André; Andresen, Vibeke; Bourdon, Jean-Christophe; Micklem, David R; McCormack, Emmet; Gjertsen, Bjørn Tore

    2013-01-01

    The carboxy-terminal truncated p53 alternative spliced isoforms, p53β and p53γ, are expressed at disparate levels in cancer and are suggested to influence treatment response and therapy outcome. However, their functional role in cancer remains to be elucidated. We investigated their individual functionality in the p53(null) background of cell lines H1299 and SAOS-2 by stable retroviral transduction or transient transfection. Expression status of p53β and p53γ protein was found to correlate with increased response to camptothecin and doxorubicin chemotherapy. Decreased DNA synthesis and clonogenicity in p53β and p53γ congenic H1299 was accompanied by increased p21((CIP1/WAF1)), Bax and Mdm2 proteins. Chemotherapy induced p53 isoform degradation, most prominent for p53γ. The proteasome inhibitor bortezomib substantially increased basal p53γ protein level, while the level of p53β protein was unaffected. Treatment with dicoumarol, a putative blocker of the proteasome-related NAD(P)H quinone oxidoreductase NQO1, effectively attenuated basal p53γ protein level in spite of bortezomib treatment. Although in vitro proliferation and clonogenicity assays indicated a weak suppressive effect by p53β and p53γ expression, studies of in vivo subcutaneous H1299 tumor growth demonstrated a significantly increased growth by expression of either p53 isoforms. This study suggests that p53β and p53γ share functionality in chemosensitizing and tumor growth enhancement but comprise distinct regulation at the protein level. PMID:23409163

  9. Quantitative evaluation of p53 as a new indicator of DNA damage in human spermatozoa

    PubMed Central

    Raimondo, Salvatore; Gentile, Tommaso; Cuomo, Felice; De Filippo, Stefania; Aprea, Gilda E.; Guida, John

    2014-01-01

    BACKGROUND: Sperm DNA integrity is considered an important parameter to assess seminal fluid quality and can be used as a predictive test of potential fertility. Amongst the various tests to determine sperm DNA integrity, one is the Acridine Orange test. Recent studies have demonstrated the importance of p53 in maintaining sperm DNA integrity. The aim of this study was to assess if a p53 ELISA assay could be a new indicator of DNA damage in human spermatozoa. MATERIALS AND METHODS: 103 human semen samples were evaluated using both Acridine Orange test and p53 ELISA and results were compared. RESULTS: A clear correlation between the values measured by two methods was obtained. CONCLUSIONS: If this hypothesis will be confirmed by further studies, the p53 ELISA assay could become a new and more precise indicator of DNA damage in human spermatozoa. PMID:25395748

  10. Activation and activities of the p53 tumour suppressor protein

    PubMed Central

    Bálint, É; Vousden, K H

    2001-01-01

    The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are induced by p53, as well as their implications for cancer therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11747320

  11. Wild type p53 reactivation: from lab bench to clinic.

    PubMed

    Selivanova, Galina

    2014-08-19

    The p53 tumor suppressor is the most frequently inactivated gene in cancer. Several mouse models have demonstrated that the reconstitution of the p53 function suppresses the growth of established tumors. These facts, taken together, promote the idea of p53 reactivation as a strategy to combat cancer. This review will focus on recent advances in the development of small molecules which restore the function of wild type p53 by blocking its inhibitors Mdm2 and MdmX or their upstream regulators and discuss the impact of different p53 functions for tumor prevention and tumor eradication. Finally, the recent progress in p53 research will be analyzed concerning the role of p53 cofactors and cellular environment in the biological response upon p53 reactivation and how this can be applied in clinic. PMID:24726725

  12. Mutant p53: One, No One, and One Hundred Thousand

    PubMed Central

    Walerych, Dawid; Lisek, Kamil; Del Sal, Giannino

    2015-01-01

    Encoded by the mutated variants of the TP53 tumor suppressor gene, mutant p53 proteins are getting an increased experimental support as active oncoproteins promoting tumor growth and metastasis. p53 missense mutant proteins are losing their wild-type tumor suppressor activity and acquire oncogenic potential, possessing diverse transforming abilities in cell and mouse models. Whether various mutant p53s differ in their oncogenic potential has been a matter of debate. Recent discoveries are starting to uncover the existence of mutant p53 downstream programs that are common to different mutant p53 variants. In this review, we discuss a number of studies on mutant p53, underlining the advantages and disadvantages of alternative experimental approaches that have been used to describe the numerous mutant p53 gain-of-function activities. Therapeutic possibilities are also discussed, taking into account targeting either individual or multiple mutant p53 proteins in human cancer. PMID:26734571

  13. Watching the watcher: regulation of p53 by mitochondria

    PubMed Central

    Holley, Aaron K; St Clair, Daret K

    2009-01-01

    p53 has been referred to as the ‘guardian of the genome’ because of its role in protecting the cell from DNA damage. p53 performs its duties by regulating cell-cycle progression and DNA repair and, in cases of irreparable DNA damage, by executing programmed cell death. Mitochondria are an important target of transcription-dependent and -independent actions of p53 to carry out the apoptotic function. However, increasing evidence suggests that p53 activity is regulated by mitochondria. Cellular insults that alter mitochondrial function can have important consequences on p53 activity. In light of these new findings, the following review focuses on p53/mitochondria connections, in particular how reactive oxygen species generated at mitochondria regulate p53 activity. A better understanding of the mechanisms by which mitochondria regulate p53 may have an impact on our understanding of the development and progression of many diseases, especially cancer. PMID:19243304

  14. AKT-p53 axis protect cancer cells from autophagic cell death during nutrition deprivation.

    PubMed

    Sudhagar, S; Sathya, S; Gokulapriya, G; Lakshmi, B S

    2016-03-18

    An altered metabolism supports growth of tumor. AKT, a major signal integrator plays a key role in cell metabolism. We have shown that nutritional deprivation activates AKT as observed by increased phosphorylation of both Thr308 and Ser473. Pharmacological inhibition or silencing of AKT by siRNA affects cell viability during starvation. The tumor suppressor, p53 is also observed to be elevated during nutritional deprivation due to AKT. Silencing of AKT and p53 enhanced autophagy as evidenced by increased acidic vesicular organelles and LC3B II levels, suggesting AKT-p53 to play a significant role in cell survival through regulating autophagy during nutritional deprivation. PMID:26903300

  15. In vitro expression of human p53 cDNA clones and characterization of the cloned human p53 gene.

    PubMed

    Wolf, D; Laver-Rudich, Z; Rotter, V

    1985-08-01

    The human p53 gene was cloned and characterized by using a battery of p53 DNA clones. A series of human cDNA clones of various sizes and relative localizations to the mRNA molecule were isolated by using the human p53-H14 (2.35-kilobase) cDNA probe which we previously cloned. One such isolate, clone p53-H7 (2.65 kilobases), spans the entire human mature p53 mRNA molecule. Construction of the human cDNA clones in the pSP65 RNA transcription vector facilitated the generation of p53 transcripts by the SP6 bacteriophage RNA polymerase. The p53-specific RNA transcripts obtained without further processing were translated into p53 proteins in a cell-free system. By using this rapid in vitro transcription-translation assay, we found that whereas clone p53-H7 (2.65 kilobases) coded for a mature-sized p53 protein, a shorter cDNA clone, p53-H13 (1.8 kilobases), dictated the synthesis of a smaller-sized p53 protein (45 kilodaltons). The p53 proteins synthesized in vitro immunoprecipitated efficiently with human-specific anti-p53 antibodies. Genomic analysis of human DNA revealed the presence of a single p53 gene residing within two EcoRI fragments. Heteroduplex analysis between the full-length cDNA clone p53-H7 and the cloned p53 gene indicated the presence of seven major exons. PMID:3018534

  16. Hypoxia downregulates p53 but induces apoptosis and enhances expression of BAD in cultures of human syncytiotrophoblasts.

    PubMed

    Chen, Baosheng; Longtine, Mark S; Sadovsky, Yoel; Nelson, D Michael

    2010-11-01

    Hypoxia is commonly assigned a role in the placental dysfunction characteristic of preeclampsia and intrauterine growth restriction. We previously showed that hypoxia upregulates p53 and enhances apoptosis in primary cultures of human cytotrophoblasts. Here we tested the hypothesis that hypoxia also induces apoptosis in syncytiotrophoblasts by upregulation of p53. Primary cultures of human cytotrophoblasts that had differentiated into syncytiotrophoblasts by 52 h were exposed for ≤24 h to 20% or <1% oxygen in the presence or absence of staurosporine or the p53 modulators nutlin-3, pifithrin-α, and pifithrin-μ. Proteins were detected by Western blot analysis or immunofluorescence. Compared with 20% oxygen, exposure of syncytiotrophoblasts to <1% oxygen upregulated hypoxia-inducible factor (HIF)-1α and rapidly downregulated p53. Activity of p53 in hypoxic syncytiotrophoblasts was reduced by the higher expression of the negative p53 regulator MDMX and by the reduction of phosphorylation of p53 at Ser(392), which reduces p53 activity. Conversely, staurosporine, a kinase inhibitor, and nutlin-3, a drug that enhances p53 expression, both raised p53 levels and increased the rate of apoptosis in syncytiotrophoblasts compared with vehicle controls. Immunofluorescence staining showed p53 immunolocalized to both cytoplasm and nuclei of nutlin-3-exposed syncytiotrophoblasts. The hypoxia-induced apoptosis in syncytiotrophoblasts correlated with enhanced expression of the proapoptotic BAD and a reduced level of antiapoptotic BAD phosphorylated on Ser(112). We surmise that cell death induced by extreme hypoxia in syncytiotrophoblasts follows a non-p53-dependent pathway, unlike that of a nonhypoxic stimulus and unlike hypoxic cytotrophoblasts. We speculate that downregulation of p53 activity in response to hypoxia reduces or eliminates the apoptosis transduced by the p53 pathway in syncytiotrophoblasts, thereby limiting cell death and maintaining the integrity of this

  17. Hypoxia downregulates p53 but induces apoptosis and enhances expression of BAD in cultures of human syncytiotrophoblasts

    PubMed Central

    Chen, Baosheng; Longtine, Mark S.; Sadovsky, Yoel

    2010-01-01

    Hypoxia is commonly assigned a role in the placental dysfunction characteristic of preeclampsia and intrauterine growth restriction. We previously showed that hypoxia upregulates p53 and enhances apoptosis in primary cultures of human cytotrophoblasts. Here we tested the hypothesis that hypoxia also induces apoptosis in syncytiotrophoblasts by upregulation of p53. Primary cultures of human cytotrophoblasts that had differentiated into syncytiotrophoblasts by 52 h were exposed for ≤24 h to 20% or <1% oxygen in the presence or absence of staurosporine or the p53 modulators nutlin-3, pifithrin-α, and pifithrin-μ. Proteins were detected by Western blot analysis or immunofluorescence. Compared with 20% oxygen, exposure of syncytiotrophoblasts to <1% oxygen upregulated hypoxia-inducible factor (HIF)-1α and rapidly downregulated p53. Activity of p53 in hypoxic syncytiotrophoblasts was reduced by the higher expression of the negative p53 regulator MDMX and by the reduction of phosphorylation of p53 at Ser392, which reduces p53 activity. Conversely, staurosporine, a kinase inhibitor, and nutlin-3, a drug that enhances p53 expression, both raised p53 levels and increased the rate of apoptosis in syncytiotrophoblasts compared with vehicle controls. Immunofluorescence staining showed p53 immunolocalized to both cytoplasm and nuclei of nutlin-3-exposed syncytiotrophoblasts. The hypoxia-induced apoptosis in syncytiotrophoblasts correlated with enhanced expression of the proapoptotic BAD and a reduced level of antiapoptotic BAD phosphorylated on Ser112. We surmise that cell death induced by extreme hypoxia in syncytiotrophoblasts follows a non-p53-dependent pathway, unlike that of a nonhypoxic stimulus and unlike hypoxic cytotrophoblasts. We speculate that downregulation of p53 activity in response to hypoxia reduces or eliminates the apoptosis transduced by the p53 pathway in syncytiotrophoblasts, thereby limiting cell death and maintaining the integrity of this critical

  18. Identification of p53-target genes in Danio rerio

    PubMed Central

    Mandriani, Barbara; Castellana, Stefano; Rinaldi, Carmela; Manzoni, Marta; Venuto, Santina; Rodriguez-Aznar, Eva; Galceran, Juan; Nieto, M. Angela; Borsani, Giuseppe; Monti, Eugenio; Mazza, Tommaso; Merla, Giuseppe; Micale, Lucia

    2016-01-01

    To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species. PMID:27581768

  19. Identification of p53-target genes in Danio rerio.

    PubMed

    Mandriani, Barbara; Castellana, Stefano; Rinaldi, Carmela; Manzoni, Marta; Venuto, Santina; Rodriguez-Aznar, Eva; Galceran, Juan; Nieto, M Angela; Borsani, Giuseppe; Monti, Eugenio; Mazza, Tommaso; Merla, Giuseppe; Micale, Lucia

    2016-01-01

    To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species. PMID:27581768

  20. High-level expression of human tumour suppressor P53 in the methylotrophic yeast: Pichia pastoris.

    PubMed

    Abdelmoula-Souissi, Salma; Rekik, Leila; Gargouri, Ali; Mokdad-Gargouri, Raja

    2007-08-01

    The human tumour suppressor P53 is a key protein involved in tumour suppression. P53 acts as a "guardian of genome" by regulating many target genes involved in cell cycle regulation, DNA repair and apoptosis. We report the P53 expression by the methylotrophic yeast Pichia pastoris using the methanol inducible AOX1 promoter. We have produced the rP53 in intracellular form as well as secreted using the Saccharomyces cerevisiae alpha-mating factor prepro-leader sequence in two genetic contexts of Pichia, Mut(s) and Mut(+). The intracellular P53 was successfully produced by Mut(s) (KM71) as well as Mut(+) (X33) strains, however, the secreted form was mainly observed in the Mut(s) strain, despite a higher number of p53 copies integrated in the Mut(+) strain. Interestingly, in Mut(s) phenotype, the medium pH influences markedly the rP53 production since it was higher at pH 7 than 6. PMID:17482479

  1. Neocarzinostatin induces an effective p53-dependent response in human papillomavirus-positive cervical cancer cells.

    PubMed

    Bañuelos, Adriana; Reyes, Elba; Ocadiz, Rodolfo; Alvarez, Elizabeth; Moreno, Martha; Monroy, Alberto; Gariglio, Patricio

    2003-08-01

    Human papillomavirus (HPV) E6 viral oncoprotein plays an important role during cervical carcinogenesis. This oncoprotein binds the tumor suppressor protein p53, leading to its degradation via the ubiquitin-proteasome pathway. Therefore, it is generally assumed that in HPV-positive cancer cells p53 function is completely abolished. Nevertheless, recent findings suggest that p53 activity can be recovered in cells expressing endogenous E6 protein. To investigate whether p53-dependent functions controlling genome integrity, cell proliferation, and apoptosis can be reactivated in cervical cancer cells, we examined the capacity of HeLa, INBL, CaSki, C33A, and ViBo cell lines to respond to neocarzinostatin (NCS), a natural product which induces single- and double-strand breaks in DNA. We found that NCS treatment inhibits cellular proliferation through G2 cell cycle arrest and apoptosis induction. This effect was preceded by nuclear accumulation of p53 protein and by an increase of p21 transcripts. Although apoptosis was blocked in ViBo cells (HPV-negative), nuclear accumulation of transcriptionally active p53 and inhibition of cell proliferation are observed after NCS treatment. These results suggest that HPV-positive cervical cancer cells are capable of responding efficiently to DNA damage provoked by NCS treatment through a p53-dependent pathway in spite of the presence of E6 protein. PMID:12750435

  2. Suppression of Indued Pluripotent Stem Cell Generation by the p53-p21 Pathway

    PubMed Central

    Hong, Hyenjong; Takahashi, Kazutoshi; Ichisaka, Tomoko; Aoi, Takashi; Kanagawa, Osami; Nakagawa, Masato; Okita, Keisuke; Yamanaka, Shinya

    2010-01-01

    Induced pluripotent stem (iPS) cells can be generated from somatic cells by introduction of Oct3/4, Sox2, Klf4 and c-Myc, in mouse1-4 and human5-8. Efficiency of this process, however, is low9. Pluripotency can be induced without c-Myc, but with even lower efficiency10,11. A p53 siRNA was recently shown to promote human iPS cell generation12, but specificity and mechanisms remain to be determined. Here we report that up to 10% of transduced mouse embryonic fibroblasts (MEF) lacking p53 became iPS cells, even without the Myc retrovirus. The p53 deletion also promoted induction of integration-free mouse iPS cells with plasmid transfection. Furthermore, in the p53-null background, iPS cells were generated from terminally differentiated T lymphocytes. Suppression of p53 also increased the efficiency of human iPS cell generation. DNA microarray analyses identified 34 p53-regulated genes that are common in mouse and human fibroblasts. Functional analyses of these genes demonstrate that the p53-p21 pathway serves as a safeguard not only in tumorigenicity, but also in iPS cell generation. PMID:19668191

  3. Molecular cloning, characterization, and expression analysis of p53 from the oriental river prawn, Macrobrachium nipponense, in response to hypoxia.

    PubMed

    Sun, Shengming; Gu, Zhimin; Fu, Hongtuo; Zhu, Jian; Ge, Xianping; Xuan, Fujun

    2016-07-01

    The tumor suppressor gene p53 plays a critical role in safeguarding the integrity of the genome in mammalian cells. It acts as a sequence-specific transcription factor. Once p53 is activated by a variety of cellular stresses, it transactivates downstream target genes and regulates the cell cycle and apoptosis. However, little is known about the functions of the p53 pathway in prawns in response to hypoxia. In this study, the cDNA of p53 from the oriental river prawn, Macrobrachium nipponense, (Mnp53) was cloned using a combination of homology cloning and rapid amplification of cDNA ends. The full-length cDNA of Mnp53 has 2130 bp, including an open reading frame of 1125 bp that encodes a polypeptide of 374 amino acids with a predicted molecular weight of 41.9 kDa and a theoretical isoelectric point of 6.9. Quantitative real-time (qRT)-PCR assays revealed that Mnp53 was ubiquitously expressed in all examined tissues, but at high levels in the hepatopancreas. In addition, we studied respiratory bursts and reactive oxygen species (ROS) production in the hepatopancreas of M. nipponense. Our results suggest that oxidative stress occurred in prawns in response to hypoxia and that apoptosis was associated with an increase in caspase-3 mRNA expression. qRT-PCR and western blot results confirmed that hypoxic stress induced the upregulation of Mnp53 at mRNA and protein levels. Furthermore, immunohistochemistry showed remarkable changes in immunopositive staining after the same hypoxic treatment. These results suggest that hypoxia-induced oxidative stress may cause apoptosis and cooperatively stimulate the expression of Mnp53. PMID:27044329

  4. Transcriptional control of human p53-regulated genes.

    PubMed

    Riley, Todd; Sontag, Eduardo; Chen, Patricia; Levine, Arnold

    2008-05-01

    The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation. PMID:18431400

  5. [Bcl-2 inhibits p53-induced apoptosis after genotoxic damage by inhibitors of nuclear import of p53].

    PubMed

    Beham, A; Schumacher, G; McDonnell, T J; Marin, M C; Jauch, K W

    1998-01-01

    The tumor suppressor gene p53 in overexpressed in 50% of colorectal carcinomas and is an interesting target for gene therapeutic approaches. Furthermore the protooncogen bcl-2 is known to inhibit p53 induced apoptosis and is expressed in some colorectal carcinomas. In this study mechanism of bcl-2 cell death inhibition after p53 induction were evaluated. The human colon carcinoma cell line RKO posses wild-type p53 and also expresses bcl-2 protein. RKO cells were treated with liposomal bcl-2 antisense oligonucleotides (AS), control oligonucleotides (CO) and empty liposomes (EL) resulting in decreased bcl-2 expression. After induction of p53 with gamma-irradiation p53 protein expression was induced in AS, CO and EL pretreated cells. Microscopy and immunoblotting was used to characterize subcellular localization of p53 protein. Further p53 subcellular localisation was examined after p53 transfer of wt p53 cDNA in three bcl-2 expressing cell lines. Most of the p53 protein remained localized in the cytosol and apoptosis was decreased in bcl-2 expressing cells assessed by flow cytometric analysis (Ao). Our data suggests that bcl-2 is able to modulate transmembrane trafficking of p53. This resulted in inhibition of cell death implicating that bcl-2 function is involved in regulation of transmembrane gradients. PMID:14518224

  6. A p53-bound enhancer region controls a long intergenic noncoding RNA required for p53 stress response.

    PubMed

    Melo, C A; Léveillé, N; Rooijers, K; Wijchers, P J; Geeven, G; Tal, A; Melo, S A; de Laat, W; Agami, R

    2016-08-18

    Genome-wide chromatin studies identified the tumor suppressor p53 as both a promoter and an enhancer-binding transcription factor. As an enhancer factor, p53 can induce local production of enhancer RNAs, as well as transcriptional activation of distal neighboring genes. Beyond the regulation of protein-coding genes, p53 has the capacity to regulate long intergenic noncoding RNA molecules (lincRNAs); however, their importance to the p53 tumor suppressive function remains poorly characterized. Here, we identified and characterized a novel p53-bound intronic enhancer that controls the expression of its host, the lincRNA00475 (linc-475). We demonstrate the requirement of linc-475 for the proper induction of a p53-dependent cell cycle inhibitory response. We further confirm the functional importance of linc-475 in the maintenance of CDKN1A/p21 levels, a cell cycle inhibitor and a major p53 target gene, following p53 activation. Interestingly, loss of linc-475 reduced the binding of both p53 and RNA polymerase II (RNAPII) to the promoter of p21, attenuating its transcription rate following p53 activation. Altogether, our data suggest a direct role of p53-bound enhancer domains in the activation of lincRNAs required for an efficient p53 transcriptional response. PMID:26776159

  7. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    PubMed Central

    Nantasanti, Sathidpak; Toussaint, Mathilda J. M.; Youssef, Sameh A.; Tooten, Peter C. J.; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC. PMID:26967735

  8. Transcriptional Responses to Estrogen and Progesterone in Mammary Gland Identify Networks Regulating p53 Activity

    PubMed Central

    Lu, Shaolei; Becker, Klaus A.; Hagen, Mary J.; Yan, Haoheng; Roberts, Amy L.; Mathews, Lesley A.; Schneider, Sallie S.; Siegelmann, Hava T.; MacBeth, Kyle J.; Tirrell, Stephen M.; Blanchard, Jeffrey L.; Jerry, D. Joseph

    2008-01-01

    Estrogen and progestins are essential for mammary growth and differentiation but also enhance the activity of the p53 tumor suppressor protein in the mammary epithelium. However, the pathways by which these hormones regulate p53 activity are unknown. Microarrays were used to profile the transcriptional changes within the mammary gland after administration of either vehicle, 17β-estradiol (E), or progesterone (P) individually and combined (EP). Treatment with EP yielded 1182 unique genes that were differentially expressed compared to the vehicle-treated group. Although 30% of genes were responsive to either E or P individually, combined treatment with both EP had a synergistic effect accounting for 60% of the differentially regulated genes. Analysis of protein-protein interactions identified p53, RelA, Snw1, and Igfals as common targets of genes regulated by EP. RelA and p53 form hubs within a network connected by genes that are regulated by EP and that may coordinate the competing functions of RelA and p53 in proliferation and survival of cells. Induction of early growth response 1 (Egr1) and Stratifin (Sfn) (also known as 14–3-3σ) by EP was confirmed by reverse transcription-quantitative PCR and shown to be p53 independent. In luciferase reporter assays, Egr1 was shown to enhance transcriptional activation by p53 and inhibit nuclear factor κB activity. These results identify a gene expression network that provides redundant activation of RelA to support proliferation as well as sensitize p53 to ensure proper surveillance and integration of their competing functions through factors such as Egr1, which both enhance p53 and inhibit RelA. PMID:18556351

  9. p53 genes function to restrain mobile elements.

    PubMed

    Wylie, Annika; Jones, Amanda E; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V; Rakheja, Dinesh; Chen, Kenneth S; Hammer, Robert E; Comerford, Sarah A; Amatruda, James F; Abrams, John M

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53(-) germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5' sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264

  10. p53 genes function to restrain mobile elements

    PubMed Central

    Wylie, Annika; Jones, Amanda E.; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V.; Rakheja, Dinesh; Chen, Kenneth S.; Hammer, Robert E.; Comerford, Sarah A.; Amatruda, James F.; Abrams, John M.

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53− germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5′ sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264

  11. Interaction between p53 and estradiol pathways in transcriptional responses to chemotherapeutics.

    PubMed

    Lion, Mattia; Bisio, Alessandra; Tebaldi, Toma; De Sanctis, Veronica; Menendez, Daniel; Resnick, Michael A; Ciribilli, Yari; Inga, Alberto

    2013-04-15

    Estrogen receptors (ERs) and p53 can interact via cis-elements to regulate the angiogenesis-related VEGFR-1 (FLT1) gene, as we reported previously. Here, we address cooperation between these transcription factors on a global scale. Human breast adenocarcinoma MCF7 cells were exposed to single or combinatorial treatments with the chemotherapeutic agent doxorubicin and the ER ligand 17β-estradiol (E2). Whole-genome transcriptome changes were measured by expression microarrays. Nearly 200 differentially expressed genes were identified that showed limited responsiveness to either doxorubicin treatment or ER ligand alone but were upregulated in a greater than additive manner following combined treatment. Based on exposure to 5-fuorouracil and nutlin-3a, the combined responses were treatment-specific. Among 16 genes chosen for validation using quantitative real-time PCR, seven (INPP5D, TLR5, KRT15, EPHA2, GDNF, NOTCH1, SOX9) were confirmed to be novel direct targets of p53, based on responses in MCF7 cells silenced for p53 or cooperative targets of p53 and ER. Promoter pattern searches and chromatin IP experiments for the INPP5D, TLR5, KRT15 genes supported direct, cis-mediated p53 and/or ER regulation through canonical and noncanonical p53 and ER response elements. Collectively, we establish that combinatorial activation of p53 and ER can induce novel gene expression programs that have implications for cell-cell communications, adhesion, cell differentiation, development and inflammatory responses as well as cancer treatments. PMID:23518503

  12. Interaction between p53 and estradiol pathways in transcriptional responses to chemotherapeutics

    PubMed Central

    Lion, Mattia; Bisio, Alessandra; Tebaldi, Toma; De Sanctis, Veronica; Menendez, Daniel; Resnick, Michael A.; Ciribilli, Yari; Inga, Alberto

    2013-01-01

    Estrogen receptors (ERs) and p53 can interact via cis-elements to regulate the angiogenesis-related VEGFR-1 (FLT1) gene, as we reported previously. Here, we address cooperation between these transcription factors on a global scale. Human breast adenocarcinoma MCF7 cells were exposed to single or combinatorial treatments with the chemotherapeutic agent doxorubicin and the ER ligand 17β-estradiol (E2). Whole-genome transcriptome changes were measured by expression microarrays. Nearly 200 differentially expressed genes were identified that showed limited responsiveness to either doxorubicin treatment or ER ligand alone but were upregulated in a greater than additive manner following combined treatment. Based on exposure to 5-fuorouracil and nutlin-3a, the combined responses were treatment-specific. Among 16 genes chosen for validation using quantitative real-time PCR, seven (INPP5D, TLR5, KRT15, EPHA2, GDNF, NOTCH1, SOX9) were confirmed to be novel direct targets of p53, based on responses in MCF7 cells silenced for p53 or cooperative targets of p53 and ER. Promoter pattern searches and chromatin IP experiments for the INPP5D, TLR5, KRT15 genes supported direct, cis-mediated p53 and/or ER regulation through canonical and noncanonical p53 and ER response elements. Collectively, we establish that combinatorial activation of p53 and ER can induce novel gene expression programs that have implications for cell-cell communications, adhesion, cell differentiation, development and inflammatory responses as well as cancer treatments. PMID:23518503

  13. A novel p53-binding domain in CUL7.

    PubMed

    Kasper, Jocelyn S; Arai, Takehiro; DeCaprio, James A

    2006-09-15

    CUL7 is a member of the cullin RING ligase family and forms an SCF-like complex with SKP1 and FBXW8. CUL7 is required for normal mouse embryonic development and cellular proliferation, and is highly homologous to PARC, a p53-associated, parkin-like cytoplasmic protein. We determined that CUL7, in a manner similar to PARC, can bind directly to p53 but does not affect p53 expression. We identified a discrete, co-linear domain in CUL7 that is conserved in PARC and HERC2, and is necessary and sufficient for p53-binding. The presence of p53 stabilized expression of this domain and we demonstrate that this p53-binding domain of CUL7 contributes to the cytoplasmic localization of CUL7. The results support the model that p53 plays a role in regulation of CUL7 activity. PMID:16875676

  14. Chemical Variations on the p53 Reactivation Theme

    PubMed Central

    Ribeiro, Carlos J. A.; Rodrigues, Cecília M. P.; Moreira, Rui; Santos, Maria M. M.

    2016-01-01

    Among the tumor suppressor genes, p53 is one of the most studied. It is widely regarded as the “guardian of the genome”, playing a major role in carcinogenesis. In fact, direct inactivation of the TP53 gene occurs in more than 50% of malignancies, and in tumors that retain wild-type p53 status, its function is usually inactivated by overexpression of negative regulators (e.g., MDM2 and MDMX). Hence, restoring p53 function in cancer cells represents a valuable anticancer approach. In this review, we will present an updated overview of the most relevant small molecules developed to restore p53 function in cancer cells through inhibition of the p53-MDMs interaction, or direct targeting of wild-type p53 or mutated p53. In addition, optimization approaches used for the development of small molecules that have entered clinical trials will be presented. PMID:27187415

  15. A novel p53-binding domain in CUL7

    SciTech Connect

    Kasper, Jocelyn S.; Arai, Takehiro; De Caprio, James A. . E-mail: james_decaprio@dfci.harvard.edu

    2006-09-15

    CUL7 is a member of the cullin RING ligase family and forms an SCF-like complex with SKP1 and FBXW8. CUL7 is required for normal mouse embryonic development and cellular proliferation, and is highly homologous to PARC, a p53-associated, parkin-like cytoplasmic protein. We determined that CUL7, in a manner similar to PARC, can bind directly to p53 but does not affect p53 expression. We identified a discrete, co-linear domain in CUL7 that is conserved in PARC and HERC2, and is necessary and sufficient for p53-binding. The presence of p53 stabilized expression of this domain and we demonstrate that this p53-binding domain of CUL7 contributes to the cytoplasmic localization of CUL7. The results support the model that p53 plays a role in regulation of CUL7 activity.

  16. Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB.

    PubMed

    Benoit, V; de Moraes, E; Dar, N A; Taranchon, E; Bours, V; Hautefeuille, A; Tanière, P; Chariot, A; Scoazec, J-Y; de Moura Gallo, C V; Merville, M-P; Hainaut, P

    2006-09-21

    Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-damaging agent. Pharmacological inhibition of Cox-2 enhanced apoptosis in response to daunomycin, in particular in cells containing active p53. In esophageal cancer, there was a correlation between Cox-2 expression and wild-type TP53 in Barrett's esophagus (BE) and in adenocarcinoma, but not in squamous cell carcinoma (P<0.01). These results suggest that p53 and NF-kappaB cooperate in upregulating Cox-2 expression, promoting cell survival in inflammatory precursor lesions such as BE. PMID:16682957

  17. Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation.

    PubMed Central

    el-Mahdani, N.; Vaillant, J. C.; Guiguet, M.; Prévot, S.; Bertrand, V.; Bernard, C.; Parc, R.; Béréziat, G.; Hermelin, B.

    1997-01-01

    We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cases), there were also cases in which p53 mRNA was overexpressed in the absence of any mutation (29 cases) and those with a mutant gene in which the mRNA was not overexpressed (four cases). Moreover, the mutant p53 tumours exhibited an increase of p53 mRNA expression, which was significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. These data (1) show that p53 mRNA overexpression is a frequent event in colorectal tumours and is not predictive of the status of the gene, i.e. whether or not a mutation is present; (2) provide further evidence that p53 protein overexpression does not only result from an increase in the half-life of mutated p53 and suggest that inactivation of the p53 function in colorectal cancers involves at least two distinct mechanisms, including p53 overexpression and/or mutation; and (3) suggest that p53 mRNA overexpression is an early event, since it is not correlated with Dukes stage. PMID:9052405

  18. p53 Loss Increases the Osteogenic Differentiation of BMSCs

    PubMed Central

    He, Yunlong; de Castro, Luis F; Shin, Min Hwa; Dubois, Wendy; Yang, Howard H.; Jiang, Shunlin; Mishra, Pravin J.; Ren, Ling; Gou, Hongfeng; Lal, Ashish; Khanna, Chand; Merlino, Glenn; Lee, Maxwell; Robey, Pamela G.; Huang, Jing

    2014-01-01

    The tumor suppressor, p53, plays a critical role in suppressing osteosarcoma. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) have been suggested to give rise to osteosarcomas. However, the role of p53 in BMSCs has not been extensively explored. Here, we report that p53 regulates the lineage choice of mouse BMSCs (mBMSCs). Compared to mBMSCs with wild type p53, mBMSCs deficient in p53 have enhanced osteogenic differentiation, but with similar adipogenic and chondrogenic differentiation. The role of p53 in inhibiting osteogenic lineage differentiation is mainly through the action of Runx2, a master transcription factor required for the osteogenic differentiation of mBMSCs. We find that p53 indirectly represses the expression of Runx2 by activating the microRNA-34 family, which suppresses the translation of Runx2. Since osteosarcoma may derive from BMSCs, we examined whether p53 has a role in the osteogenic differentiation of osteosarcoma cells and found that osteosarcoma cells with p53 deletion have higher levels of Runx2 and faster osteogenic differentiation than those with wild type p53. A systems biology approach reveals that p53-deficient mBMSCs are more closely related to human osteosarcoma while mBMSCs with wild type p53 are similar to normal human BMSCs. In summary, our results indicate that p53 activity can influence cell fate specification of mBMSCs, and provide molecular and cellular insights into the observation that p53 loss is associated with increased osteosarcoma incidence. PMID:25524638

  19. Loss of p53-regulatory protein IFI16 induces NBS1 leading to activation of p53-mediated checkpoint by phosphorylation of p53 SER37.

    PubMed

    Tawara, Hideyuki; Fujiuchi, Nobuko; Sironi, Juan; Martin, Sarah; Aglipay, Jason; Ouchi, Mutsuko; Taga, Makoto; Chen, Phang-Lang; Ouchi, Toru

    2008-01-01

    Our previous results that IFI16 is involved in p53 transcription activity under conditions of ionizing radiation (IR), and that the protein is frequently lost in human breast cancer cell lines and breast adenocarcinoma tissues suggesting that IFI16 plays a crucial role in controlling cell growth. Here, we show that loss of IFI16 by RNA interference in cell culture causes elevated phosphorylation of p53 Ser37 and accumulated NBS1 (nibrin) and p21WAF1, leading to growth retardation. Consistent with these observations, doxycyclin-induced NBS1 caused accumulation of p21WAF1 and increased phosphorylation of p53 Ser37, leading to cell cycle arrest in G1 phase. Wortmannin treatment was found to decrease p53 Ser37 phosphorylation in NBS-induced cells. These results suggest that loss of IFI16 activates p53 checkpoint through NBS1-DNA-PKcs pathway. PMID:17981542

  20. UV irradiation leads to transient changes in phosphorylation and stability of tumor suppressor protein p53.

    PubMed

    Scheidtmann, K; Landsberg, G

    1996-12-01

    Tumor suppressor protein p53 is thought to play a crucial role in maintaining the integrity of the genome. DNA damage caused by genotoxic drugs, UV or gamma-irradiation leads to accumulation of p53 and activation of its DNA binding and transcriptional activities and subsequently to cell cycle arrest or apoptosis. We investigated whether the apparent activation of p53 might be due to post-translational modification. The rat fibroblast cell lines REF52, 208F, and rat1 were irradiated with W-A and the synthesis, stability and phosphorylation state of p53 were investigated by pulse chase experiments, SDS-PAGE and two-dimensional phosphopeptide mapping. The three cell lines exhibited different sensitivities and biological responses to UV irradiation, REF52 cells responded with a growth arrest whereas 208F and rat1 cells underwent apoptosis. The fate of p53 was similar in all cases. Both the stability of p53 and its phosphorylation increased instantaneously but transiently. However, the amount of p53 that accumulated after UV treatment was much higher in 208F and rat1 than in REF52 cells. Interestingly, p53 that was synthesized early after irradiation was stable for more than 14 h whereas molecules synthesized 8 or more hours post irradiation were increasingly susceptible to degradation. Moreover, between 14 and 20 h after treatment, the rate of synthesis of p53 decreased to a level lower than in untreated cells suggesting negative feed back control. The expression of different p53-responsive genes, waf1/cip1, Gadd45, and bax was investigated by protein analyses. Surprisingly, p21(waf1) was expressed only in REF52 cells but not in the others. Furthermore, UV irradiation led only to a moderate increase of p21(waf1) expression. Expression of Gadd45 and box was detectable in both cell types but its expression did not change significantly upon UV treatment. Our results suggest i) that both cell types share a common pathway which upon UV irradiation results in enhanced

  1. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2.

    PubMed

    Liu, Xiaofeng; Tan, Yuqin; Zhang, Chunfeng; Zhang, Ying; Zhang, Liangliang; Ren, Pengwei; Deng, Hongkui; Luo, Jianyuan; Ke, Yang; Du, Xiaojuan

    2016-03-01

    As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2-p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53-mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor. PMID:26882543

  2. TRIM65 negatively regulates p53 through ubiquitination.

    PubMed

    Li, Yang; Ma, Chengyuan; Zhou, Tong; Liu, Ying; Sun, Luyao; Yu, Zhenxiang

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediated degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. PMID:27012201

  3. Role of p53 isoforms and aggregations in cancer

    PubMed Central

    Kim, SeJin; An, Seong Soo A.

    2016-01-01

    Abstract p53 is a master regulatory protein that is involved in diverse cellular metabolic processes such as apoptosis, DNA repair, and cell cycle arrest. The protective function of p53 (in its homotetrameric form) as a tumor suppressor is lost in more than 50% of human cancers. Despite considerable experimental evidence suggesting the presence of multiple p53 states, it has been difficult to correlate the status of p53 with cancer response to treatments and clinical outcomes, which suggest the importance of complex but essential p53 regulatory pathways. Recent studies have indicated that the expression pattern of p53 isoforms may play a crucial role in regulating normal and cancer cell fates in response to diverse stresses. The human TP53 gene encodes at least 12 p53 isoforms, which are produced in normal tissue through alternative initiation of translation, usage of alternative promoters, and alternative splicing. Furthermore, some researchers have suggested that the formation of mutant p53 aggregates may be associated with cancer pathogenesis due to loss-of function (LoF), dominant-negative (DN), and gain-of function (GoF) effects. As different isoforms or the aggregation state of p53 may influence tumorigenesis, this review aims to examine the correlation of p53 isoforms and aggregation with cancer. PMID:27368003

  4. p53: a molecular marker for the detection of cancer

    PubMed Central

    Boyd, Mark T; Vlatkovic, Nikolina

    2013-01-01

    Background The p53 gene is the most frequently mutated gene in cancer and accordingly has been the subject of intensive investigation for almost 30 years. Loss of p53 function due to mutations has been unequivocally demonstrated to promote cancer in both humans and in model systems. As a consequence, there exists an enormous body of information regarding the function of normal p53 in biology and the pathobiological consequences of p53 mutation. It has long been recognised that analysis of p53 has considerable potential as a tool for use in both diagnostic and, to a greater extent, prognostic settings and some significant progress has been made in both of these arenas. Objective To provide an overview of the biology of p53, particularly in the context of uses of p53 as a diagnostic tool. Methods A literature review focused upon the methods and uses of p53 analysis in the diagnosis of sporadic cancers, rare genetic disorders and in detection of residual disease. Conclusion p53 is currently an essential diagnostic for the rare inherited cancer prone syndrome (Li-Fraumeni) and is an important diagnostic in only a limited number of settings in sporadic disease. Research in specific cancers indicates that the uses of increasingly well informed p53 mutational analysis are likely to expand to other cancers. PMID:23495923

  5. p53 isoform profiling in glioblastoma and injured brain

    PubMed Central

    Takahashi, Rie; Giannini, Caterina; Sarkaria, Jann N.; Schroeder, Mark; Rogers, Joseph; Mastroeni, Diego; Scrable, Heidi

    2014-01-01

    The tumor suppressor p53 has been found to be the most commonly mutated gene in human cancers; however, the frequency of p53 mutations varies from 10–70% across different cancer types. This variability can partly be explained by inactivating mechanisms aside from direct genomic polymorphisms. The p53 gene encodes 12 isoforms, which have been shown to modulate full-length p53 activity in cancer. In this study, we characterized p53 isoform expression patterns in glioblastoma, gliosis, non-tumor brain, and neural progenitor cells by SDS-PAGE, immunoblot, mass spectrometry, and RT-PCR. At the protein level, we found that the most consistently expressed isoform in glioblastoma, Δ40p53, was uniquely expressed in regenerative processes, such as those involving neural progenitor cells and gliosis compared to tumor samples. Isoform profiling of glioblastoma tissues revealed the presence of both Δ40p53 and full-length p53, neither of which were detected in non-tumor cerebral cortex. Upon xenograft propagation of tumors, p53 levels increased. The variability of overall p53 expression and relative levels of isoforms suggest fluctuations in subpopulations of cells with greater or lesser capacity for proliferation, which can change as the tumor evolves under different growth conditions. PMID:22824800

  6. Role of p53 isoforms and aggregations in cancer.

    PubMed

    Kim, SeJin; An, Seong Soo A

    2016-06-01

    p53 is a master regulatory protein that is involved in diverse cellular metabolic processes such as apoptosis, DNA repair, and cell cycle arrest. The protective function of p53 (in its homotetrameric form) as a tumor suppressor is lost in more than 50% of human cancers.Despite considerable experimental evidence suggesting the presence of multiple p53 states, it has been difficult to correlate the status of p53 with cancer response to treatments and clinical outcomes, which suggest the importance of complex but essential p53 regulatory pathways.Recent studies have indicated that the expression pattern of p53 isoforms may play a crucial role in regulating normal and cancer cell fates in response to diverse stresses. The human TP53 gene encodes at least 12 p53 isoforms, which are produced in normal tissue through alternative initiation of translation, usage of alternative promoters, and alternative splicing. Furthermore, some researchers have suggested that the formation of mutant p53 aggregates may be associated with cancer pathogenesis due to loss-of function (LoF), dominant-negative (DN), and gain-of function (GoF) effects.As different isoforms or the aggregation state of p53 may influence tumorigenesis, this review aims to examine the correlation of p53 isoforms and aggregation with cancer. PMID:27368003

  7. [Punish or cherish: p53, metabolism and tumor suppression].

    PubMed

    Albagli, Olivier

    2015-10-01

    The p53 gene is essential for tumor suppression, but how it does so remains unclear. Upon genotoxic or oncogenic stresses, increased p53 activity induces transient cell cycle arrest, senescence or apoptosis, the three cornerstones of the so-called triumvirate. Accordingly, it has long been thought that p53 suppresses tumorigenesis by somehow counteracting cell proliferation or survival. However, several recently described genetically modified mice indicate that p53 can suppress tumorigenesis without triggering these three responses. Rather, as an important mechanism for tumor suppression, these mutant mice point to the ability of p53 to prevent the Warburg effect, that is to dampen glycolysis and foster mitochondrial respiration. Interestingly, these metabolic functions of p53 rely, in part, on its "unstressed" (basal) expression, a feature shared by its mechanistically linked anti-oxydant function. Together, these "conservative" activities of p53 may prevent tumor initiation by promoting and maintaining a normal oxidative metabolism and hence underly the "daily" tumor suppression by p53 in most cells. Conversely, destructive activities elicited by high p53 levels and leading to senescence or apoptosis provide a shield against partially or overtly transformed cells. This last situation, although relatively infrequent throughout life, is usual in experimental settings, which could explain the disproportionally high number of data implicating the triumvirate in tumor suppression by p53. PMID:26481026

  8. Mitofusin-2 is a novel direct target of p53

    SciTech Connect

    Wang, Weilin; Cheng, Xiaofei; Lu, Jianju; Wei, Jianfeng; Fu, Guanghou; Zhu, Feng; Jia, Changku; Zhou, Lin; Xie, Haiyang; Zheng, Shusen

    2010-10-01

    Research highlights: {yields} Mfn2 is a novel target gene of p53. {yields} Mfn2 mRNA and protein levels can be up-regulated in a p53-dependent manner. {yields} Mfn2 promoter activity can be elevated by the p53 protein. {yields} P53 protein binds the Mfn2 promoter directly both in vitro and in vivo. -- Abstract: The tumor suppressor p53 modulates transcription of a number of target genes involved in cell cycle arrest, apoptosis, DNA repair, and other important cellular responses. Mitofusin-2 (Mfn2) is a novel suppressor of cell proliferation that may also exert apoptotic effects via the mitochondrial apoptotic pathway. Through bioinformatics analysis, we identified a p53 binding site in the Mfn2 promoter. Consistent with this, we showed that the p53 protein binds the Mfn2 promoter directly both in vitro and in vivo. Additionally, we found that Mfn2 mRNA and protein levels are up-regulated in a p53-dependent manner. Furthermore, luciferase assays revealed that the activity of the wild-type Mfn2 promoter, but not a mutated version of the promoter, was up-regulated by p53. These results indicate that Mfn2 is a novel p53-inducible target gene, which provides insight into the regulation of Mfn2 and its associated activities in the inhibition of cell proliferation, promotion of apoptosis, and modulation of tumor suppression.

  9. Senescence Regulation by the p53 Protein Family

    PubMed Central

    Qian, Yingjuan; Chen, Xinbin

    2013-01-01

    p53, a guardian of the genome, exerts its tumor suppression activity by regulating a large number of downstream targets involved in cell cycle arrest, DNA repair, apoptosis, and cellular senescence. Although p53-mediated apoptosis is able to kill cancer cells, a role for cellular senescence in p53-dependent tumor suppression is becoming clear. Mouse studies showed that activation of p53-induced premature senescence promotes tumor regression in vivo. However, p53-mediated cellular senescence also leads to aging-related phenotypes, such as tissue atrophy, stem cell depletion, and impaired wound healing. In addition, several p53 isoforms and two p53 homologs, p63 and p73, have been shown to play a role in cellular senescence and/or aging. Importantly, p53, p63, and p73 are necessary for the maintenance of adult stem cells. Therefore, understanding the dual role the p53 protein family in cancer and aging is critical to solve cancer and longevity in the future. In this chapter, we provide an overview on how p53, p63, p73, and their isoforms regulate cellular senescence and aging. PMID:23296650

  10. Targeting the p53 Pathway in Ewing Sarcoma

    PubMed Central

    Neilsen, Paul M.; Pishas, Kathleen I.; Callen, David F.; Thomas, David M.

    2011-01-01

    The p53 tumour suppressor plays a pivotal role in the prevention of oncogenic transformation. Cancers frequently evade the potent antitumour surveillance mechanisms of p53 through mutation of the TP53 gene, with approximately 50% of all human malignancies expressing dysfunctional, mutated p53 proteins. Interestingly, genetic lesions in the TP53 gene are only observed in 10% of Ewing Sarcomas, with the majority of these sarcomas expressing a functional wild-type p53. In addition, the p53 downstream signaling pathways and DNA-damage cell cycle checkpoints remain functionally intact in these sarcomas. This paper summarizes recent insights into the functional capabilities and regulation of p53 in Ewing Sarcoma, with a particular focus on the cross-talk between p53 and the EWS-FLI1 gene rearrangement frequently associated with this disease. The development of several activators of p53 is discussed, with recent evidence demonstrating the potential of small molecule p53 activators as a promising systemic therapeutic approach for the treatment of Ewing Sarcomas with wild-type p53. PMID:21197471

  11. Immunohistochemical Determination of p53 Protein Overexpression for Predicting p53 Gene Mutations in Hepatocellular Carcinoma: A Meta-Analysis

    PubMed Central

    Deng, Miao; Liu, Dechun; Ma, Qingyong; Feng, Xiaoshan

    2016-01-01

    Background Whether increased expression of the tumor suppressor protein p53 indicates a p53 gene mutation in hepatocellular carcinoma (HCC) remains unclear. We conducted a meta-analysis to determine whether p53 protein overexpression detected by immunohistochemistry (IHC) offers a diagnostic prediction for p53 gene mutations in HCC patients. Methods Systematic literature searches were conducted with an end date of December 2015. A meta-analysis was performed to estimate the diagnostic accuracy of IHC-determined p53 protein overexpression in the prediction of p53 gene mutations in HCC. Sensitivity, subgroup, and publication bias analyses were also conducted. Results Thirty-six studies were included in the meta-analysis. The results showed that the overall sensitivity and specificity for IHC-determined p53 overexpression in the diagnostic prediction of p53 mutations in HCC were 0.83 (95% CI: 0.80–0.86) and 0.74 (95% CI: 0.71–0.76), respectively. The summary positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were 2.65 (95% CI: 2.21–3.18) and 0.36 (95% CI: 0.26–0.50), respectively. The diagnostic odds ratio (DOR) of IHC-determined p53 overexpression in predicting p53 mutations ranged from 0.56 to 105.00 (pooled, 9.77; 95% CI: 6.35–15.02), with significant heterogeneity between the included studies (I2 = 40.7%, P = 0.0067). Moreover, subgroup and sensitivity analyses did not alter the results of the meta-analysis. However, potential publication bias was present in the current meta-analysis. Conclusion The upregulation of the tumor suppressor protein p53 was indeed linked to p53 gene mutations. IHC determination of p53 overexpression can predict p53 gene mutations in HCC patients. PMID:27428001

  12. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells

    PubMed Central

    Wang, Y; Godin-Heymann, N; Dan Wang, X; Bergamaschi, D; Llanos, S; Lu, X

    2013-01-01

    RAS mutations occur frequently in human cancer and activated RAS signalling contributes to tumour development and progression. Apart from its oncogenic effects on cell growth, active RAS has tumour-suppressive functions via its ability to induce cellular senescence and apoptosis. RAS is known to induce p53-dependent cell cycle arrest, yet its effect on p53-dependent apoptosis remains unclear. We report here that apoptosis-stimulating protein of p53 (ASPP) 1 and 2, two activators of p53, preferentially bind active RAS via their N-terminal RAS-association domains (RAD). Additionally, ASPP2 colocalises with and contributes to RAS cellular membrane localisation and potentiates RAS signalling. In cancer cells, ASPP1 and ASPP2 cooperate with oncogenic RAS to enhance the transcription and apoptotic function of p53. Thus, loss of ASPP1 and ASPP2 in human cancer cells may contribute to the full transforming property of RAS oncogene. PMID:23392125

  13. P53 protein expression in human leukemia and lymphoma cells.

    PubMed

    Koníková, E; Kusenda, J

    2001-01-01

    The purpose of this study was to determine the value of p53 protein overexpression in human leukemia and lymphoma cells. We examined PB and/or BM samples on a series of 111 patients with immunophenotypically defined hematological malignancies at diagnosis, in remission and in relapsed disease comparing to 20 control samples of healthy individuals. p53 protein has been studied by flow cytometry using three monoclonal antibodies specific for epitopes on N-terminus (Bp53-12, DO-1) and central region (DO-11) of p53 protein. Our findigs showed, that p53 expression may contribute to phenotype of leukemic cells and that overexpression of this protein is often associated with progression of disease. All samples of early B-ALL patients and samples of patients with immunophenotypically defined T- cell disorders examined at diagnosis of disease were p53 positive. Eleven of 19 patient samples from AML at diagnosis showed also increased expression of p53 protein. The cells of all patients who responded to therapy with complete immunophenotypically defined remission were p53 negative. Relapsed T-, B- ALL and AML develop p53 alteration. We reported positive p53 expression in cells of patients with advanced stages of CLL in comparison to them with initial stage of disease at examination. As well as in the group of B- cell lymphomas only samples of patients with generalized FCC lymphoma at diagnosis were p53 positive. We detected p53 positive cells in immunologically defined myeloid blast crisis of CML opposite to p53 negativity in chronic phase of disease. The finding of p53 positive BM cells without immunophenotypic blast markers in two of followed cases documented the contributing value of p53 detection in their characterization. On the basis of above findings we conclude, that cytofluorometric determination of p53 expression may contribute to the better definition of leukemic phenotype. Loss of the normal p53 function may be important in the genesis of some leukemias

  14. p53 attenuates AKT signaling by modulating membrane phospholipid composition

    PubMed Central

    Rueda-Rincon, Natalia; Bloch, Katarzyna; Derua, Rita; Vyas, Rajesh; Harms, Amy; Hankemeier, Thomas; Khan, Niamat Ali; Dehairs, Jonas; Bagadi, Muralidhararao; Binda, Maria Mercedes; Waelkens, Etienne; Marine, Jean-Christophe; Swinnen, Johannes V.

    2015-01-01

    The p53 tumor suppressor is the central component of a complex network of signaling pathways that protect organisms against the propagation of cells carrying oncogenic mutations. Here we report a previously unrecognized role of p53 in membrane phospholipids composition. By repressing the expression of stearoyl-CoA desaturase 1, SCD, the enzyme that converts saturated to mono-unsaturated fatty acids, p53 causes a shift in the content of phospholipids with mono-unsaturated acyl chains towards more saturated phospholipid species, particularly of the phosphatidylinositol headgroup class. This shift affects levels of phosphatidylinositol phosphates, attenuates the oncogenic AKT pathway, and contributes to the p53-mediated control of cell survival. These findings expand the p53 network to phospholipid metabolism and uncover a new molecular pathway connecting p53 to AKT signaling. PMID:26061814

  15. Mutant p53 in cell adhesion and motility.

    PubMed

    Yeudall, W Andrew; Wrighton, Katharine H; Deb, Sumitra

    2013-01-01

    Pro-oncogenic properties of mutant p53 were investigated with the aid of migration assays, adhesion assays, and soft agar growth assays using cells stably expressing gain-of-function p53 mutants. To determine cell migration, "wound-healing" (scratch) assays and haptotactic (chamber) assays were used. H1299 cells expressing mutant p53 were found to migrate more rapidly than cells transfected with empty vector alone. Results from both types of migration assay were broadly similar. Migratory ability differed for different p53 mutants, suggesting allele-specific effects. Cells expressing p53 mutants also showed enhanced adhesion to extracellular matrix compare to controls. Furthermore, stable transfection of mutant p53-H179L into NIH3T3 fibroblasts was sufficient to allow anchorage-independent growth in soft agar. PMID:23150443

  16. Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death domain (FADD) proteins to induce apoptosis in colorectal cancer.

    PubMed

    Ray, Pallab; Guha, Deblina; Chakraborty, Juni; Banerjee, Shuvomoy; Adhikary, Arghya; Chakraborty, Samik; Das, Tanya; Sa, Gaurisankar

    2016-01-01

    Tumor suppressor p53 preserves the genomic integrity by restricting anomaly at the gene level. The hotspots for mutation in half of all colon cancers reside in p53. Hence, in a p53-mutated cellular milieu targeting cancer cells may be achievable by targeting the paralogue(s) of p53. Here we have shown the effectiveness of crocetin, a dietary component, in inducing apoptosis of colon cancer cells with varying p53 status. In wild-type p53-expressing cancer cells, p53 in one hand transactivates BAX and in parallel up-regulates p53-induced death domain protein (PIDD) that in turn cleaves and activates BID through caspase-2. Both BAX and t-BID converge at mitochondria to alter the transmembrane potential thereby leading to caspase-9 and caspase-3-mediated apoptosis. In contrast, in functional p53-impaired cells, this phytochemical exploits p53-paralogue p73, which up-regulates FAS to cleave BID through FAS-FADD-caspase-8-pathway. These findings not only underline the phenomenon of functional switch-over from p53 to p73 in p53-impaired condition, but also validate p73 as a promising and potential target for cancer therapy in absence of functional p53. PMID:27622714

  17. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration.

    PubMed

    Turnquist, C; Horikawa, I; Foran, E; Major, E O; Vojtesek, B; Lane, D P; Lu, X; Harris, B T; Harris, C C

    2016-09-01

    Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. PMID:27104929

  18. Transcription factors that interact with p53 and Mdm2.

    PubMed

    Inoue, Kazushi; Fry, Elizabeth A; Frazier, Donna P

    2016-04-01

    The tumor suppressor p53 is activated upon cellular stresses such as DNA damage, oncogene activation, hypoxia, which transactivates sets of genes that induce DNA repair, cell cycle arrest, apoptosis, or autophagy, playing crucial roles in the prevention of tumor formation. The central regulator of the p53 pathway is Mdm2 which inhibits transcriptional activity, nuclear localization and protein stability. More than 30 cellular p53-binding proteins have been isolated and characterized including Mdm2, Mdm4, p300, BRCA1/2, ATM, ABL and 53BP-1/2. Most of them are nuclear proteins; however, not much is known about p53-binding transcription factors. In this review, we focus on transcription factors that directly interact with p53/Mdm2 through direct binding including Dmp1, E2F1, YB-1 and YY1. Dmp1 and YB-1 bind only to p53 while E2F1 and YY1 bind to both p53 and Mdm2. Dmp1 has been shown to bind to p53 and block all the known functions for Mdm2 on p53 inhibition, providing a secondary mechanism for tumor suppression in Arf-null cells. Although E2F1-p53 binding provides a checkpoint mechanism to silence hyperactive E2F1, YB-1 or YY1 interaction with p53 subverts the activity of p53, contributing to cell cycle progression and tumorigenesis. Thus, the modes and consequences for each protein-protein interaction vary from the viewpoint of tumor development and suppression. PMID:26132471

  19. Cytoplasmic Functions of the Tumor Suppressor p53

    PubMed Central

    Green, Douglas R.; Kroemer, Guido

    2010-01-01

    The principal tumor suppressor protein, p53, accumulates in cells in response to DNA damage, oncogene activation, and other stresses. It acts as a nuclear transcription factor that transactivates genes involved in apoptosis, cell cycle regulation, and numerous other processes. An emerging area of research unravels additional activities of p53 in the cytoplasm, where it triggers apoptosis and inhibits autophagy. These novel functions contribute to p53’s mission as a tumor suppressor. PMID:19407794

  20. Free Radicals Generated by Ionizing Radiation Signal Nuclear Translocation of p53

    NASA Technical Reports Server (NTRS)

    Martinez, J. D.; Pennington, M. E.; Craven, M. T.; Warters, R. L.

    1997-01-01

    The p53 tumor suppressor is a transcription factor that regulates several pathways, which function collectively to maintain the integrity of the genome. Nuclear localization is critical for wild-type function. However, the signals that regulate subcellular localization of p53 have not been identified. Here, we examine the effect of ionizing radiation on the subcellular localization of p53 in two cell lines in which p63 is normally sequestered in the cytoplasm and found that ionizing radiation caused a biphasic translocation response. p53 entered the nucleus 1-2 hours postirradiation (early response), subsequently emerged from the nucleus, and then again entered the nucleus 12-24 hours after the cells had been irradiated (delayed response). These changes in subcellular localization could be completely blocked by the free radical scavenger, WR1065. By comparison, two DNA-damaging agents that do not generate free radicals, mitomycin C and doxorubicin, caused translocation only after 12-24 h of exposure to the drugs, and this effect could not be inhibited by WR1065. Hence, although all three DNA-damaging agents induced relocalization of p53 to the nucleus, only the translocation caused by radiation was sensitive to free radical scavenging. We suggest that the free radicals generated by ionizing radiation can signal p53 translocation to the nucleus.

  1. A small molecule directly inhibits the p53 transactivation domain from binding to replication protein A

    PubMed Central

    Glanzer, Jason G.; Carnes, Katie A.; Soto, Patricia; Liu, Shengqin; Parkhurst, Lawrence J.; Oakley, Gregory G.

    2013-01-01

    Replication protein A (RPA), essential for DNA replication, repair and DNA damage signalling, possesses six ssDNA-binding domains (DBDs), including DBD-F on the N-terminus of the largest subunit, RPA70. This domain functions as a binding site for p53 and other DNA damage and repair proteins that contain amphipathic alpha helical domains. Here, we demonstrate direct binding of both ssDNA and the transactivation domain 2 of p53 (p53TAD2) to DBD-F, as well as DBD-F-directed dsDNA strand separation by RPA, all of which are inhibited by fumaropimaric acid (FPA). FPA binds directly to RPA, resulting in a conformational shift as determined through quenching of intrinsic tryptophan fluorescence in full length RPA. Structural analogues of FPA provide insight on chemical properties that are required for inhibition. Finally, we confirm the inability of RPA possessing R41E and R43E mutations to bind to p53, destabilize dsDNA and quench tryptophan fluorescence by FPA, suggesting that protein binding, DNA modulation and inhibitor binding all occur within the same site on DBD-F. The disruption of p53–RPA interactions by FPA may disturb the regulatory functions of p53 and RPA, thereby inhibiting cellular pathways that control the cell cycle and maintain the integrity of the human genome. PMID:23267009

  2. Regulation of iron homeostasis by the p53-ISCU pathway

    PubMed Central

    Funauchi, Yuki; Tanikawa, Chizu; Yi Lo, Paulisally Hau; Mori, Jinichi; Daigo, Yataro; Takano, Atsushi; Miyagi, Yohei; Okawa, Atsushi; Nakamura, Yusuke; Matsuda, Koichi

    2015-01-01

    Accumulation of iron in tissues increases the risk of cancer, but iron regulatory mechanisms in cancer tissues are largely unknown. Here, we report that p53 regulates iron metabolism through the transcriptional regulation of ISCU (iron-sulfur cluster assembly enzyme), which encodes a scaffold protein that plays a critical role in Fe-S cluster biogenesis. p53 activation induced ISCU expression through binding to an intronic p53-binding site. Knockdown of ISCU enhanced the binding of iron regulatory protein 1 (IRP1), a cytosolic Fe-S protein, to an iron-responsive element in the 5′ UTR of ferritin heavy polypeptide 1 (FTH1) mRNA and subsequently reduced the translation of FTH1, a major iron storage protein. In addition, in response to DNA damage, p53 induced FTH1 and suppressed transferrin receptor, which regulates iron entry into cells. HCT116 p53+/+ cells were resistant to iron accumulation, but HCT116 p53−/− cells accumulated intracellular iron after DNA damage. Moreover, excess dietary iron caused significant elevation of serum iron levels in p53−/− mice. ISCU expression was decreased in the majority of human liver cancer tissues, and its reduced expression was significantly associated with p53 mutation. Our finding revealed a novel role of the p53-ISCU pathway in the maintenance of iron homeostasis in hepatocellular carcinogenesis. PMID:26560363

  3. GATA-1 associates with and inhibits p53

    PubMed Central

    Mas, Caroline; Archambault, Patrick; Di Lello, Paola

    2009-01-01

    In addition to orchestrating the expression of all erythroid-specific genes, GATA-1 controls the growth, differentiation, and survival of the erythroid lineage through the regulation of genes that manipulate the cell cycle and apoptosis. The stages of mammalian erythropoiesis include global gene inactivation, nuclear condensation, and enucleation to yield circulating erythrocytes, and some of the genes whose expression are altered by GATA-1 during this process are members of the p53 pathway. In this study, we demonstrate a specific in vitro interaction between the transactivation domain of p53 (p53TAD) and a segment of the GATA-1 DNA-binding domain that includes the carboxyl-terminal zinc-finger domain. We also show by immunoprecipitation that the native GATA-1 and p53 interact in erythroid cells and that activation of p53-responsive promoters in an erythroid cell line can be inhibited by the overexpression of GATA-1. Mutational analysis reveals that GATA-1 inhibition of p53 minimally requires the segment of the GATA-1 DNA-binding domain that interacts with p53TAD. This inhibition is reciprocal, as the activation of a GATA-1–responsive promoter can be inhibited by p53. Based on these findings, we conclude that inhibition of the p53 pathway by GATA-1 may be essential for erythroid cell development and survival. PMID:19411634

  4. GATA-1 associates with and inhibits p53.

    PubMed

    Trainor, Cecelia D; Mas, Caroline; Archambault, Patrick; Di Lello, Paola; Omichinski, James G

    2009-07-01

    In addition to orchestrating the expression of all erythroid-specific genes, GATA-1 controls the growth, differentiation, and survival of the erythroid lineage through the regulation of genes that manipulate the cell cycle and apoptosis. The stages of mammalian erythropoiesis include global gene inactivation, nuclear condensation, and enucleation to yield circulating erythrocytes, and some of the genes whose expression are altered by GATA-1 during this process are members of the p53 pathway. In this study, we demonstrate a specific in vitro interaction between the transactivation domain of p53 (p53TAD) and a segment of the GATA-1 DNA-binding domain that includes the carboxyl-terminal zinc-finger domain. We also show by immunoprecipitation that the native GATA-1 and p53 interact in erythroid cells and that activation of p53-responsive promoters in an erythroid cell line can be inhibited by the overexpression of GATA-1. Mutational analysis reveals that GATA-1 inhibition of p53 minimally requires the segment of the GATA-1 DNA-binding domain that interacts with p53TAD. This inhibition is reciprocal, as the activation of a GATA-1-responsive promoter can be inhibited by p53. Based on these findings, we conclude that inhibition of the p53 pathway by GATA-1 may be essential for erythroid cell development and survival. PMID:19411634

  5. Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage.

    PubMed

    Gamper, Armin M; Roeder, Robert G

    2008-04-01

    The recruitment of transcriptional coactivators, including histone modifying enzymes, is an important step in transcription regulation. A typical activator is thought to interact with several cofactors, presumably in a sequential manner. The common use of several cofactors raises the question of how activators achieve both cofactor selectivity and diversity. Human STAGA is a multiprotein complex with the acetyltransferase GCN5L as the catalytic subunit. Here, we first show, through RNA interference-mediated knock-down and chromatin immunoprecipitation assays, that GCN5 plays a role in p53-dependent gene activation. We then employ p53 mutagenesis, in vitro binding, protein-protein cross-linking, and chromatin immunoprecipitation assays to establish a novel role for the second p53 activation subdomain (AD2) in STAGA recruitment and, further, to demonstrate that optimal binding of STAGA to p53 involves interactions of STAGA subunits TAF9, GCN5, and ADA2b, respectively, with AD1, AD2, and carboxy-terminal domains of p53. These results provide concrete evidence for mediation of transcription factor binding to coactivator complexes through multiple interactions. Based on our data, we propose a cooperative and modular binding mode for the recruitment of coactivator complexes to promoters. PMID:18250150

  6. Long Noncoding RNA MEG3 Interacts with p53 Protein and Regulates Partial p53 Target Genes in Hepatoma Cells

    PubMed Central

    Zhu, Juanjuan; Liu, Shanshan; Ye, Fuqiang; Shen, Yuan; Tie, Yi; Zhu, Jie; Wei, Lixin; Jin, Yinghua; Fu, Hanjiang; Wu, Yongge; Zheng, Xiaofei

    2015-01-01

    Maternally Expressed Gene 3 (MEG3) encodes a lncRNA which is suggested to function as a tumor suppressor. Previous studies suggested that MEG3 functioned through activation of p53, however, the functional properties of MEG3 remain obscure and their relevance to human diseases is under continuous investigation. Here, we try to illuminate the relationship of MEG3 and p53, and the consequence in hepatoma cells. We find that transfection of expression construct of MEG3 enhances stability and transcriptional activity of p53. Deletion analysis of MEG3 confirms that full length and intact structure of MEG3 are critical for it to activate p53-mediated transactivation. Interestingly, our results demonstrate for the first time that MEG3 can interact with p53 DNA binding domain and various p53 target genes are deregulated after overexpression of MEG3 in hepatoma cells. Furthermore, results of qRT-PCR have shown that MEG3 RNA is lost or reduced in the majority of HCC samples compared with adjacent non-tumorous samples. Ectopic expression of MEG3 in hepatoma cells significantly inhibits proliferation and induces apoptosis. In conclusion, our data demonstrates that MEG3 functions as a tumor suppressor in hepatoma cells through interacting with p53 protein to activate p53-mediated transcriptional activity and influence the expression of partial p53 target genes. PMID:26444285

  7. PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53

    PubMed Central

    Yoon, Cheol-Hee; Lee, Eun-Soo; Lim, Dae-Seog; Bae, Yong-Soo

    2009-01-01

    Type I IFN-induced expression of dsRNA-activated protein kinase (PKR) during viral infection is a well-established antiviral mechanism. However, little is known about the expression of PKR in the context of p53 and about PKR involvement in p53-mediated tumor suppression. Here, we report that PKR is a p53 target gene and plays an important role in the tumor-suppressor function of p53. Activation of p53 by genotoxic stress induces a significant level of PKR expression by acting on the newly identified cis-acting element (ISRE), which is separated from the IFN-stimulated responsive element on the PKR promoter, resulting in translational inhibition and cell apoptosis. The genotoxin-mediated inhibition of translation is associated with the p53/PKR/elF2a (eukaryotic initiation factor-2α) pathway. To some extent, p53 activation induced by DNA damage facilitates cell apoptosis by activating PKR. PKR-knockdown human colon cancer cells grew rapidly in nude mice and proved resistant to anti-cancer drugs. These data indicate that p53-mediated tumor suppression can be attributed at least in part to the biological functions of PKR induced by p53 in genotoxic conditions. PMID:19416861

  8. Post-thymic T cell lymphomas frequently overexpress p53 protein but infrequently exhibit p53 gene mutations.

    PubMed Central

    Matsushima, A. Y.; Cesarman, E.; Chadburn, A.; Knowles, D. M.

    1994-01-01

    We recently demonstrated that only one of 36 T-cell neoplasms contained p53 gene mutations. Although p53 gene mutations are known to result in overexpression of the p53 gene product, we also recently discovered that p53 protein overexpression does not correlate with p53 gene mutations, but does correlate with proliferation (r = 0.92), in anaplastic large cell lymphoma. In view of these findings, we investigated 34 non-human T-cell lymphotropic virus type I (HTLV-I) related postthymic T-cell lymphomas immunohistochemically for p53 protein, using monoclonal antibody 1801, and for proliferation, using monoclonal antibody Ki-67, and quantitated the results with the CAS-200 computerized image analysis system. We evaluated the presence of mutations in conserved exons 5 to 9 of the p53 gene using single-strand conformation polymorphism analysis and DNA sequencing. p53 mutations were detected in three of 34 cases, including two that contained deletions. p53 protein overexpression was detected in 17 of 34 cases, including the three mutated cases, with reactivities ranging from 10% to 48%. However, many cases in which a structural alteration could not be detected demonstrated levels of p53 protein expression comparable to those cases that were mutated. Correlation of p53 protein expression and proliferation, as assessed by Ki-67 expression, in this group of lymphomas was poor (r = 0.34). Whether alternative mechanisms of p53 protein inactivation are causing phenotypic overexpression of the p53 protein in these malignant lymphomas is unknown, although preliminary studies do not support a major role for such mechanisms. Therefore, the etiology and the significance of p53 protein overexpression in the cases that lack a demonstrable mutation is unclear. Nevertheless, as in anaplastic large cell lymphoma, overexpression of the p53 gene product is not a reliable predictor of the presence of mutations in conserved portions of the p53 gene in non-HTLV-I associated post-thymic T

  9. p53 Regulates Period2 Expression and the Circadian Clock

    PubMed Central

    Miki, Takao; Matsumoto, Tomoko; Zhao, Zhaoyang; Lee, Cheng Chi

    2013-01-01

    The mechanistic interconnectivity between circadian regulation and the genotoxic stress response remains poorly understood. Here we show that the expression of Period 2 (Per2), a circadian regulator, is directly regulated by p53 binding to a response element in the Per2 promoter. This p53 response element is evolutionarily conserved and overlaps with the E-Box element critical for BMAL1/CLOCK binding and its transcriptional activation of Per2 expression. Our studies reveal that p53 blocks BMAL1/CLOCK binding to the Per2 promoter leading to repression of Per2 expression. In the suprachiasmatic nucleus (SCN), p53 expression and its binding to the Per2 promoter are under circadian control. Per2 expression in the SCN is altered by p53 deficiency or stabilization of p53 by Nutlin-3. Behaviorally, p53−/− mice have a shorter period length that lacks stability and they exhibit impaired photo-entrainment to a light pulse under a free-running state. Our studies demonstrate that p53 modulates mouse circadian behavior. PMID:24051492

  10. p53 Isoforms: Key Regulators of the Cell Fate Decision.

    PubMed

    Joruiz, Sebastien M; Bourdon, Jean-Christophe

    2016-01-01

    It is poorly understood how a single protein, p53, can be responsive to so many stress signals and orchestrates very diverse cell responses to maintain/restore cell/tissue functions. The uncovering that TP53 gene physiologically expresses, in a tissue-dependent manner, several p53 splice variants (isoforms) provides an explanation to its pleiotropic biological activities. Here, we summarize a decade of research on p53 isoforms. The clinical studies and the diverse cellular and animal models of p53 isoforms (zebrafish, Drosophila, and mouse) lead us to realize that a p53-mediated cell response is, in fact, the sum of the intrinsic activities of the coexpressed p53 isoforms and that unbalancing expression of different p53 isoforms leads to cancer, premature aging, (neuro)degenerative diseases, inflammation, embryo malformations, or defects in tissue regeneration. Cracking the p53 isoforms' code is, thus, a necessary step to improve cancer treatment. It also opens new exciting perspectives in tissue regeneration. PMID:26801896

  11. A role for Numb in p53 stabilization

    PubMed Central

    Carter, Stephanie; Vousden, Karen H

    2008-01-01

    The cell-fate determinant Numb has recently been shown to help activate the tumor suppressor protein p53. Loss of Numb in breast cancers would result, therefore, in both the activation of the potential oncogene Notch and the diminution of tumor suppression by p53. PMID:18492217

  12. Guilty as CHARGED: p53's expanding role in disease

    PubMed Central

    Van Nostrand, Jeanine L; Attardi, Laura D

    2014-01-01

    Unrestrained p53 activity during development, as occurs upon loss of the p53 negative regulators Mdm2 or Mdmx, causes early embryonic lethality. Surprisingly, co-expression of wild-type p53 and a transcriptionally-dead variant of p53, with mutations in both transactivation domains (p53L25Q,W26S,F53Q,F54S), also causes lethality, but later in gestation and in association with a host of very specific phenotypes reminiscent of a syndrome known as CHARGE. Molecular analyses revealed that wild-type p53 is inappropriately activated in p535,26,53,54/+ embryos, triggering cell-cycle arrest or apoptosis during development to cause CHARGE phenotypes. In addition, CHARGE syndrome is typically caused by mutations in the CHD7 chromatin remodeler, and we have shown that activated p53 contributes to phenotypes caused by CHD7-deficiency. Together, these studies provide new insight into CHARGE syndrome and expand our understanding of the role of p53 in diseases other than cancer. PMID:25483057

  13. Targeting p53 by small molecules in hematological malignancies.

    PubMed

    Saha, Manujendra N; Qiu, Lugui; Chang, Hong

    2013-01-01

    p53 is a powerful tumor suppressor and is an attractive cancer therapeutic target. A breakthrough in cancer research came from the discovery of the drugs which are capable of reactivating p53 function. Most anti-cancer agents, from traditional chemo- and radiation therapies to more recently developed non-peptide small molecules exert their effects by enhancing the anti-proliferative activities of p53. Small molecules such as nutlin, RITA, and PRIMA-1 that can activate p53 have shown their anti-tumor effects in different types of hematological malignancies. Importantly, nutlin and PRIMA-1 have successfully reached the stage of phase I/II clinical trials in at least one type of hematological cancer. Thus, the pharmacological activation of p53 by these small molecules has a major clinical impact on prognostic use and targeted drug design. In the current review, we present the recent achievements in p53 research using small molecules in hematological malignancies. Anticancer activity of different classes of compounds targeting the p53 signaling pathway and their mechanism of action are discussed. In addition, we discuss how p53 tumor suppressor protein holds promise as a drug target for recent and future novel therapies in these diseases. PMID:23531342

  14. p53 as an intervention target for cancer and aging

    PubMed Central

    Hasty, Paul; Christy, Barbara A.

    2013-01-01

    p53 is well known for suppressing tumors but could also affect other aging processes not associated with tumor suppression. As a transcription factor, p53 responds to a variety of stresses to either induce apoptosis (cell death) or cell cycle arrest (cell preservation) to suppress tumor development. Yet, the effect p53 has on the non-cancer aspects of aging is complicated and not well understood. On one side, p53 could induce cellular senescence or apoptosis to suppress cancer but as an unintended consequence enhance the aging process especially if these responses diminish stem and progenitor cell populations. But on the flip side, p53 could reduce growth and growth-related stress to enable cell survival and ultimately delay the aging process. A better understanding of diverse functions of p53 is essential to elucidate its influences on the aging process and the possibility of targeting p53 or p53 transcriptional targets to treat cancer and ameliorate general aging. PMID:24124625

  15. p53 downregulates the Fanconi anaemia DNA repair pathway

    PubMed Central

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-01-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104

  16. Functional Analysis of p53 Binding under Differential Stresses†

    PubMed Central

    Krieg, Adam J.; Hammond, Ester M.; Giaccia, Amato J.

    2006-01-01

    Hypoxia and DNA damage stabilize the p53 protein, but the subsequent effect that each stress has on transcriptional regulation of known p53 target genes is variable. We have used chromatin immunoprecipitation followed by CpG island (CGI) microarray hybridization to identify promoters bound by p53 under both DNA-damaging and non-DNA-damaging conditions in HCT116 cells. Using gene-specific PCR analysis, we have verified an association with CGIs of the highest enrichment (>2.5-fold) (REV3L, XPMC2H, HNRPUL1, TOR1AIP1, glutathione peroxidase 1, and SCFD2), with CGIs of intermediate enrichment (>2.2-fold) (COX7A2L, SYVN1, and JAG2), and with CGIs of low enrichment (>2.0-fold) (MYC and PCNA). We found little difference in promoter binding when p53 is stabilized by these two distinctly different stresses. However, expression of these genes varies a great deal: while a few genes exhibit classical induction with adriamycin, the majority of the genes are unchanged or are mildly repressed by either hypoxia or adriamycin. Further analysis using p53 mutated in the core DNA binding domain revealed that the interaction of p53 with CGIs may be occurring through both sequence-dependent and -independent mechanisms. Taken together, these experiments describe the identification of novel p53 target genes and the subsequent discovery of distinctly different expression phenomena for p53 target genes under different stress scenarios. PMID:16980608

  17. p53 in the DNA-Damage-Repair Process.

    PubMed

    Williams, Ashley B; Schumacher, Björn

    2016-01-01

    The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA-damage-response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA-repair systems. It thus appears as if p53 is multitasking in providing protection from cancer development by maintaining genome stability. PMID:27048304

  18. Low Levels of p53 Protein and Chromatin Silencing of p53 Target Genes Repress Apoptosis in Drosophila Endocycling Cells

    PubMed Central

    Zhang, Bingqing; Mehrotra, Sonam; Ng, Wei Lun; Calvi, Brian R.

    2014-01-01

    Apoptotic cell death is an important response to genotoxic stress that prevents oncogenesis. It is known that tissues can differ in their apoptotic response, but molecular mechanisms are little understood. Here, we show that Drosophila polyploid endocycling cells (G/S cycle) repress the apoptotic response to DNA damage through at least two mechanisms. First, the expression of all the Drosophila p53 protein isoforms is strongly repressed at a post-transcriptional step. Second, p53-regulated pro-apoptotic genes are epigenetically silenced in endocycling cells, preventing activation of a paused RNA Pol II by p53-dependent or p53-independent pathways. Over-expression of the p53A isoform did not activate this paused RNA Pol II complex in endocycling cells, but over-expression of the p53B isoform with a longer transactivation domain did, suggesting that dampened p53B protein levels are crucial for apoptotic repression. We also find that the p53A protein isoform is ubiquitinated and degraded by the proteasome in endocycling cells. In mitotic cycling cells, p53A was the only isoform expressed to detectable levels, and its mRNA and protein levels increased after irradiation, but there was no evidence for an increase in protein stability. However, our data suggest that p53A protein stability is regulated in unirradiated cells, which likely ensures that apoptosis does not occur in the absence of stress. Without irradiation, both p53A protein and a paused RNA pol II were pre-bound to the promoters of pro-apoptotic genes, preparing mitotic cycling cells for a rapid apoptotic response to genotoxic stress. Together, our results define molecular mechanisms by which different cells in development modulate their apoptotic response, with broader significance for the survival of normal and cancer polyploid cells in mammals. PMID:25211335

  19. Mitochondrial dysfunction impairs tumor suppressor p53 expression/function.

    PubMed

    Compton, Shannon; Kim, Chul; Griner, Nicholas B; Potluri, Prasanth; Scheffler, Immo E; Sen, Sabyasachi; Jerry, D Joseph; Schneider, Sallie; Yadava, Nagendra

    2011-06-10

    Recently, mitochondria have been suggested to act in tumor suppression. However, the underlying mechanisms by which mitochondria suppress tumorigenesis are far from being clear. In this study, we have investigated the link between mitochondrial dysfunction and the tumor suppressor protein p53 using a set of respiration-deficient (Res(-)) mammalian cell mutants with impaired assembly of the oxidative phosphorylation machinery. Our data suggest that normal mitochondrial function is required for γ-irradiation (γIR)-induced cell death, which is mainly a p53-dependent process. The Res(-) cells are protected against γIR-induced cell death due to impaired p53 expression/function. We find that the loss of complex I biogenesis in the absence of the MWFE subunit reduces the steady-state level of the p53 protein, although there is no effect on the p53 protein level in the absence of the ESSS subunit that is also essential for complex I assembly. The p53 protein level was also reduced to undetectable levels in Res(-) cells with severely impaired mitochondrial protein synthesis. This suggests that p53 protein expression is differentially regulated depending upon the type of electron transport chain/respiratory chain deficiency. Moreover, irrespective of the differences in the p53 protein expression profile, γIR-induced p53 activity is compromised in all Res(-) cells. Using two different conditional systems for complex I assembly, we also show that the effect of mitochondrial dysfunction on p53 expression/function is a reversible phenomenon. We believe that these findings will have major implications in the understanding of cancer development and therapy. PMID:21502317

  20. p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter.

    PubMed

    Marcel, V; Vijayakumar, V; Fernández-Cuesta, L; Hafsi, H; Sagne, C; Hautefeuille, A; Olivier, M; Hainaut, P

    2010-05-01

    The tumor suppressor p53 protein is activated by genotoxic stress and regulates genes involved in senescence, apoptosis and cell-cycle arrest. Nine p53 isoforms have been described that may modulate suppressive functions of the canonical p53 protein. Among them, Delta133p53 lacks the 132 proximal residues and has been shown to modulate p53-induced apoptosis and cell-cycle arrest. Delta133p53 is expressed from a specific mRNA, p53I4, driven by an alternative promoter P2 located between intron 1 and exon 5 of TP53 gene. Here, we report that the P2 promoter is regulated in a p53-dependent manner. Delta133p53 expression is increased in response to DNA damage by doxorubicin in p53 wild-type cell lines, but not in p53-mutated cells. Chromatin immunoprecipitation and luciferase assays using P2 promoter deletion constructs indicate that p53 binds functional response elements located within the P2 promoter. We also show that Delta133p53 does not bind specifically to p53 consensus DNA sequence in vitro, but competes with wild-type p53 in specific DNA-binding assays. Finally, we report that Delta133p53 counteracts p53-dependent growth suppression in clonogenic assays. These observations indicate that Delta133p53 is a novel target of p53 that may participate in a negative feedback loop controlling p53 function. PMID:20190805

  1. Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis.

    PubMed

    Wan, Chunhua; Ma, Xa; Shi, Shangshi; Zhao, Jianya; Nie, Xiaoke; Han, Jingling; Xiao, Jing; Wang, Xiaoke; Jiang, Shengyang; Jiang, Junkang

    2014-12-15

    Chronic exposure to excessive manganese (Mn) has been known to lead to neuronal loss and a clinical syndrome resembling idiopathic Parkinson's disease (IPD). p53 plays an integral role in the development of various human diseases, including neurodegenerative disorders. However, the role of p53 in Mn-induced neuronal apoptosis and neurological deficits remains obscure. In the present study, we showed that p53 was critically involved in Mn-induced neuronal apoptosis in rat striatum through both transcription-dependent and -independent mechanisms. Western blot and immunohistochemistrical analyses revealed that p53 was remarkably upregulated in the striatum of rats following Mn exposure. Coincidentally, increased level of cleaved PARP, a hallmark of apoptosis, was observed. Furthermore, using nerve growth factor (NGF)-differentiated PC12 cells as a neuronal cell model, we showed that Mn exposure decreased cell viability and induced apparent apoptosis. Importantly, p53 was progressively upregulated, and accumulated in both the nucleus and the cytoplasm. The cytoplasmic p53 had a remarkable distribution in mitochondria, suggesting an involvement of p53 mitochondrial translocation in Mn-induced neuronal apoptosis. In addition, Mn-induced impairment of mitochondrial membrane potential (ΔΨm) could be partially rescued by pretreatment with inhibitors of p53 transcriptional activity and p53 mitochondrial translocation, Pifithrin-α (PFT-α) and Pifithrin-μ (PFT-μ), respectively. Moreover, blockage of p53 activities with PFT-α and PFT-μ significantly attenuated Mn-induced reactive oxidative stress (ROS) generation and mitochondrial H₂O₂ production. Finally, we observed that pretreatment with PFT-α and PFT-μ ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings implicate that p53 transcription-dependent and -independent pathways may play crucial roles in the regulation of Mn-induced neuronal death. PMID:25448048

  2. Simulated solar light-induced p53 mutagenesis in SKH-1 mouse skin: a dose-response assessment.

    PubMed

    Verkler, Tracie L; Delongchamp, Robert R; Miller, Barbara J; Webb, Peggy J; Howard, Paul C; Parsons, Barbara L

    2008-08-01

    Sunlight and ultraviolet-induced mutation of the p53 gene is a frequent, possibly obligate step in skin cancer development, making quantitative measurement of p53 mutation an ideal biomarker for sunlight-induced skin carcinogenesis. To understand how the appearance of p53 mutation relates to skin tumor development, SKH-1 hairless mice were exposed 5 d per week to one of four different doses of simulated solar light (SSL; 0, 6.85, 13.70, 20.55 mJ x CIE/cm(2)) previously characterized for their tumorigenic potential. Allele-specific competitive blocker-PCR (ACB-PCR) was used to measure levels of p53 codon 270 CGT to TGT mutation within DNA isolated from dorsal skin of exposed mice. For each dose, p53 mutant fraction (MF) was measured after 4, 16, and 28 wk of exposure. Significant dose- and time-dependent increases in p53 MF were identified. All p53 MF measurements were integrated by relating the observed p53 MF to the cumulative dose of SSL. The increase in the logarithm of p53 MF was described by the linear function: log(10) MF = alpha + 0.0016 x d, where alpha is the spontaneous log(10) MF after a particular time point and d is the dose of SSL in mJ x CIE/cm(2). The p53 MF induced in nontumor bearing skin by 28 wk of exposure at the high dose of SSL was significantly lower than that found in skin tumors induced by approximately 32 wk of exposure to the same dose of SSL. p53 MF showed a strong negative correlation with tumor latency, suggesting this quantitative biomarker has the potential to predict tumorigenicity. PMID:18314877

  3. p53 mRNA and p53 Protein Structures Have Evolved Independently to Interact with MDM2.

    PubMed

    Karakostis, Konstantinos; Ponnuswamy, Anand; Fusée, Leïla T S; Bailly, Xavier; Laguerre, Laurent; Worall, Erin; Vojtesek, Borek; Nylander, Karin; Fåhraeus, Robin

    2016-05-01

    The p53 tumor suppressor and its key regulator MDM2 play essential roles in development, ageing, cancer, and cellular stress responses in mammals. Following DNA damage, MDM2 interacts with p53 mRNA in an ATM kinase-dependent fashion and stimulates p53 synthesis, whereas under normal conditions, MDM2 targets the p53 protein for degradation. The peptide- and RNA motifs that interact with MDM2 are encoded by the same conserved BOX-I sequence, but how these interactions have evolved is unknown. Here, we show that a temperature-sensitive structure in the invertebrate Ciona intestinalis (Ci) p53 mRNA controls its interaction with MDM2. We also show that a nonconserved flanking region of Ci-BOX-I domain prevents the p53-MDM2 protein-protein interaction. These results indicate that the temperature-regulated p53 mRNA-MDM2 interaction evolved to become kinase regulated in the mammalian DNA damage response. The data also suggest that the negative regulation of p53 by MDM2 via protein-protein interaction evolved in vertebrates following changes in the BOX-I flanking sequence. PMID:26823446

  4. Transcriptional Cross Talk between NF-κB and p53

    PubMed Central

    Webster, Gill A.; Perkins, Neil D.

    1999-01-01

    Many cellular stimuli result in the induction of both the tumor suppressor p53 and NF-κB. In contrast to activation of p53, which is associated with the induction of apoptosis, stimulation of NF-κB has been shown to promote resistance to programmed cell death. These observations suggest that a regulatory mechanism must exist to integrate these opposing outcomes and coordinate this critical cellular decision-making event. Here we show that both p53 and NF-κB inhibit each other’s ability to stimulate gene expression and that this process is controlled by the relative levels of each transcription factor. Expression of either wild-type p53 or the RelA(p65) NF-κB subunit suppresses stimulation of transcription by the other factor from a reporter plasmid in vivo. Moreover, endogenous, tumor necrosis factor alpha-activated NF-κB will inhibit endogenous wild-type p53 transactivation. Following exposure to UV light, however, the converse is observed, with p53 downregulating NF-κB-mediated transcriptional activation. Both p53 and RelA(p65) interact with the transcriptional coactivator proteins p300 and CREB-binding protein (CBP), and we demonstrate that these results are consistent with competition for a limiting pool of p300/CBP complexes in vivo. These observations have many implications for regulation of the transcriptional decision-making mechanisms that govern cellular processes such as apoptosis. Furthermore, they suggest a previously unrealized mechanism through which dysregulated NF-κB can contribute to tumorigenesis and disease. PMID:10207072

  5. p53MVA therapy in patients with refractory gastrointestinal malignancies elevates p53-specific CD8+ T cell responses

    PubMed Central

    Hardwick, Nicola R; Carrol, Mary; Kaltcheva, Teodora; Qian, Dajun; Lim, Dean; Leong, Lucille; Chu, Peiguo; Kim, Joseph; Chao, Joseph; Fakih, Marwan; Yen, Yun; Espenschied, Jonathan; Ellenhorn, Joshua D I; Diamond, Don J; Chung, Vincent

    2014-01-01

    PURPOSE: To conduct a Phase I trial of a Modified Vaccinia Ankara vaccine delivering wild type human p53 (p53MVA) in patients with refractory gastrointestinal cancers. EXPERIMENTAL DESIGN: Three patients were vaccinated with 1.0 × 108 pfu p53MVA followed by nine patients at 5.6 × 108 pfu. Toxicity was classified using the NCI Common Toxicity Criteria and clinical responses were assessed by CT scan. Peripheral blood samples were collected pre- and post-immunization for immunophenotyping, monitoring of p53MVA induced immune response and examination of PD-1 checkpoint inhibition in vitro. RESULTS: p53MVA immunization was well tolerated at both doses, with no adverse events above grade 2. CD4+ and CD8+ T cells showing enhanced recognition of a p53 overlapping peptide library were detectable after the first immunization, particularly in the CD8+ T cell compartment (p=0.03). However in most patients this did not expand further with the second and third immunization. The frequency of PD-1+ T cells detectable in patients PBMC was significantly higher than in healthy controls. Furthermore, the frequency of PD-1+ CD8+ T cells showed an inverse correlation with the peak CD8+ p53 response (p=0.02) and antibody blockade of PD-1 in vitro increased the p53 immune responses detected after the second or third immunizations. Induction of strong T cell and antibody responses to the MVA backbone were also apparent. CONCLUSION: p53MVA was well tolerated and induced robust CD8+ T cell responses. Combination of p53MVA with immune checkpoint inhibition could help sustain immune responses and lead to enhanced clinical benefit. PMID:24987057

  6. p53 regulates the mevalonate pathway in human glioblastoma multiforme

    PubMed Central

    Laezza, C; D'Alessandro, A; Di Croce, L; Picardi, P; Ciaglia, E; Pisanti, S; Malfitano, A M; Comegna, M; Faraonio, R; Gazzerro, P; Bifulco, M

    2015-01-01

    The mevalonate (MVA) pathway is an important metabolic pathway implicated in multiple aspects of tumorigenesis. In this study, we provided evidence that p53 induces the expression of a group of enzymes of the MVA pathway including 3′-hydroxy-3′-methylglutaryl-coenzyme A reductase, MVA kinase, farnesyl diphosphate synthase and farnesyl diphosphate farnesyl transferase 1, in the human glioblastoma multiforme cell line, U343 cells, and in normal human astrocytes, NHAs. Genetic and pharmacologic perturbation of p53 directly influences the expression of these genes. Furthermore, p53 is recruited to the gene promoters in designated p53-responsive elements, thereby increasing their transcription. Such effect was abolished by site-directed mutagenesis in the p53-responsive element of promoter of the genes. These findings highlight another aspect of p53 functions unrelated to tumor suppression and suggest p53 as a novel regulator of the MVA pathway providing insight into the role of this pathway in cancer progression. PMID:26469958

  7. Caught in the cross fire: p53 in inflammation.

    PubMed

    Cooks, Tomer; Harris, Curtis C; Oren, Moshe

    2014-08-01

    The p53 transcription factor is a major tumor suppressor, whose diverse activities serve to ensure genome stability and inhibit neoplastic processes. In recent years, it is becoming increasingly clear that p53 also plays a broader role in maintaining cellular homeostasis, as well as contributing to tissue homeostasis in a non-cell-autonomous fashion. Chronic inflammation is a potential cancer-promoting condition, and as such is also within the radar of p53, which mounts a multifaceted attempt to prevent the escalation of chronic tissue imbalance into neoplasia. Recent understanding of the p53 pathway and other family members reveals a broad interaction with inflammatory elements such as reactive oxygen and nitrogen species, cytokines, infectious agents and major immune-regulatory pathways like nuclear factor-kappaB. This complex cross talk is highly dependent on p53 status, as different p53 isoforms and p53 mutants can mediate different responses and even promote chronic inflammation and associated cancer, acting in the tumor cells as well as in the stromal and immune compartments. PMID:24942866

  8. Long story short: p53 mediates innate immunity.

    PubMed

    Miciak, Jessica; Bunz, Fred

    2016-04-01

    The story of p53 and how we came to understand it is punctuated by fundamental insights into the essence of cancer. In the decades since its discovery, p53 has been shown to be centrally involved in most, if not all, of the cellular processes that maintain tissue homeostasis. Extensive functional analyses of p53 and its tumor-associated mutants have illuminated many of the common defects shared by most cancer cells. As the central character in a tale that continues to unfold, p53 has become increasingly familiar and yet remains surprisingly inscrutable. New relationships periodically come to light, and surprising, novel activities continue to emerge, thereby revealing new dimensions and aspects of its function. What lies at the very core of this complex protagonist? What is its prime motivation? As every avid reader knows, the elements of character are profoundly shaped by adversity--originating from within and without. And so it is with p53. This review will briefly recap the coordinated responses of p53 to viral infection, and outline a hypothetical model that would explain how an abundance of seemingly unrelated phenotypic attributes may in the end reflect a singular function. All stories eventually draw to a conclusion. This epic tale may eventually leave us with the realization that p53, most simply described, is a protein that evolved to mediate immune surveillance. PMID:26951863

  9. The p53 family and programmed cell death

    PubMed Central

    Pietsch, E. Christine; Sykes, Stephen M.; McMahon, Steven B.; Murphy, Maureen E.

    2008-01-01

    The p53 tumor suppressor continues to hold distinction as the most frequently mutated gene in human cancer. The ability of p53 to induce programmed cell death, or apoptosis, of cells exposed to environmental or oncogenic stress constitutes a major pathway whereby p53 exerts its tumor suppressor function. In the past decade we have discovered that p53 is not alone in its mission to destroy damaged or aberrantly proliferating cells: it has two homologues, p63 and p73, that in various cellular contexts and stresses contribute to this process. In this review, the mechanisms whereby p53, and in some cases p63 and p73, induce apoptosis are discussed. Whereas other reviews have focused more extensively on the contribution of individual p53-regulated genes to apoptosis induction by this protein, in this review we focus more on those factors that mediate the decision between growth arrest and apoptosis by p53, p63 and p73, and on the post-translational modifications and protein-protein interactions that influence this decision. PMID:18955976

  10. MDM2-p53 Pathway in Hepatocellular Carcinoma

    PubMed Central

    Meng, Xuan; Franklin, Derek A; Dong, Jiahong; Zhang, Yanping

    2015-01-01

    Abnormalities in the TP53 gene and overexpression of MDM2, a transcriptional target and negative regulator of p53, are commonly observed in cancers. The MDM2-p53 feedback loop plays an important role in tumor progression and thus, increased understanding of the pathway has the potential to improve clinical outcomes for cancer patients. Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the current treatment for HCC is less effective than those used against other cancers. We review the current studies of the MDM2-p53 pathway in cancer with a focus on HCC, and specifically discuss the impact of p53 mutations along with other alterations of the MDM2-p53 feedback loop in HCC. We also discuss the potential diagnostic and prognostic applications of p53 and MDM2 in malignant tumors as well as therapeutic avenues that are being developed to target the MDM2-p53 pathway. PMID:25477334

  11. p53 and the pathogenesis of skin cancer

    SciTech Connect

    Benjamin, Cara L.; Ananthaswamy, Honnavara N.

    2007-11-01

    The p53 tumor suppressor gene and gene product are among the most diverse and complex molecules involved in cellular functions. Genetic alterations within the p53 gene have been shown to have a direct correlation with cancer development and have been shown to occur in nearly 50% of all cancers. p53 mutations are particularly common in skin cancers and UV irradiation has been shown to be a primary cause of specific 'signature' mutations that can result in oncogenic transformation. There are certain 'hot-spots' in the p53 gene where mutations are commonly found that result in a mutated dipyrimidine site. This review discusses the role of p53 from normal function and its dysfunction in pre-cancerous lesions and non-melanoma skin cancers. Additionally, special situations are explored, such as Li-Fraumeni syndrome in which there is an inherited p53 mutation, and the consequences of immune suppression on p53 mutations and the resulting increase in non-melanoma skin cancer in these patients.

  12. Caspase cleavage of iASPP potentiates its ability to inhibit p53 and NF-κB

    PubMed Central

    Hu, Ying; Ge, Wenjie; Wang, Xingwen; Sutendra, Gopinath; Zhao, Kunming; Dedeić, Zinaida; Slee, Elizabeth A.; Baer, Caroline; Lu, Xin

    2015-01-01

    An intriguing biological question relating to cell signaling is how the inflammatory mediator NF-kB and the tumour suppressor protein p53 can be induced by similar triggers, like DNA damage or infection, yet have seemingly opposing or sometimes cooperative biological functions. For example, the NF-κB subunit RelA/p65 has been shown to inhibit apoptosis, whereas p53 induces apoptosis. One potential explanation may be their co-regulation by common cellular factors: inhibitor of Apoptosis Stimulating p53 Protein (iASPP) is one such common regulator of both RelA/p65 and p53. Here we show that iASPP is a novel substrate of caspases in response to apoptotic stimuli. Caspase cleaves the N-terminal region of iASPP at SSLD294 resulting in a prominent 80kDa fragment of iASPP. This caspase cleavage site is conserved in various species from zebrafish to Homo sapiens. The 80kDa fragment of iASPP translocates from the cytoplasm to the nucleus via the RaDAR nuclear import pathway, independent of p53. The 80kDa iASPP fragment can bind and inhibit p53 or RelA/p65 more efficiently than full-length iASPP. Overall, these data reveal a potential novel regulation of p53 and RelA/p65 activities in response to apoptotic stimuli. PMID:26646590

  13. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer.

    PubMed

    Walerych, Dawid; Lisek, Kamil; Sommaggio, Roberta; Piazza, Silvano; Ciani, Yari; Dalla, Emiliano; Rajkowska, Katarzyna; Gaweda-Walerych, Katarzyna; Ingallina, Eleonora; Tonelli, Claudia; Morelli, Marco J; Amato, Angela; Eterno, Vincenzo; Zambelli, Alberto; Rosato, Antonio; Amati, Bruno; Wiśniewski, Jacek R; Del Sal, Giannino

    2016-08-01

    In cancer, the tumour suppressor gene TP53 undergoes frequent missense mutations that endow mutant p53 proteins with oncogenic properties. Until now, a universal mutant p53 gain-of-function program has not been defined. By means of multi-omics: proteome, DNA interactome (chromatin immunoprecipitation followed by sequencing) and transcriptome (RNA sequencing/microarray) analyses, we identified the proteasome machinery as a common target of p53 missense mutants. The mutant p53-proteasome axis globally affects protein homeostasis, inhibiting multiple tumour-suppressive pathways, including the anti-oncogenic KSRP-microRNA pathway. In cancer cells, p53 missense mutants cooperate with Nrf2 (NFE2L2) to activate proteasome gene transcription, resulting in resistance to the proteasome inhibitor carfilzomib. Combining the mutant p53-inactivating agent APR-246 (PRIMA-1MET) with the proteasome inhibitor carfilzomib is effective in overcoming chemoresistance in triple-negative breast cancer cells, creating a therapeutic opportunity for treatment of solid tumours and metastasis with mutant p53. PMID:27347849

  14. Zinc deficiency induces apoptosis via mitochondrial p53- and caspase-dependent pathways in human neuronal precursor cells.

    PubMed

    Seth, Rohit; Corniola, Rikki S; Gower-Winter, Shannon D; Morgan, Thomas J; Bishop, Brian; Levenson, Cathy W

    2015-04-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent increases in the pro-apoptotic mitochondrial protein BAX leading to a loss of mitochondrial membrane potential as demonstrated by a 25% decrease in JC-1 red:green fluorescence ratio. Disruption of mitochondrial membrane integrity was accompanied by efflux of the apoptosis inducing factor (AIF) from the mitochondria and translocation to the nucleus with a significant increase in reactive oxygen species (ROS) after 24h of zinc deficiency. Measurement of caspase cleavage, mRNA, and treatment with caspase inhibitors revealed the involvement of caspases 2, 3, 6, and 7 in zinc deficiency-mediated apoptosis. Down-stream targets of caspase activation, including the nuclear structure protein lamin and polyADP ribose polymerase (PARP), which participates in DNA repair, were also cleaved. Transfection with a dominant-negative p53 construct and use of the p53 inhibitor, pifithrin-μ, established that these alterations were largely dependent on p53. Together these data identify a cascade of events involving mitochondrial p53 as well as p53-dependent caspase-mediated mechanisms leading to apoptosis during zinc deficiency. PMID:25467851

  15. Transcriptional Activation of p53 during Cold Induced Torpor in the 13-Lined Ground Squirrel Ictidomys tridecemlineatus.

    PubMed

    Hefler, Joshua; Wu, Cheng-Wei; Storey, Kenneth B

    2015-01-01

    The transcription factor p53 is located at the centre of multiple pathways relating the cellular response to stress. Commonly known as a tumor suppressor, it is responsible for initiating diverse actions to protect the integrity of the genome, ranging from cell cycle arrest to apoptosis. This study investigated the regulation of p53 protein in hibernating 13-lined ground squirrel Ictidomys tridecemlineatus during multiple stages of the torpor-arousal cycle. Transcript and protein levels of p53 were both elevated in the skeletal muscle during early and late torpor stages of the hibernation cycle. Nuclear localization of p53 was also increased during late torpor, and this is associated with an increase in its DNA binding activity and expression of p53 transcriptional targets p21CIP, gadd45α, and 14-3-3σ. The increase in p53 transcriptional activity appears to be independent of its phosphorylation at Ser-15, Ser-46, and Ser-392, consistent with an absence of checkpoint kinase activation during torpor. Sequence analysis revealed unique amino acid substitutions in the ground squirrel p53 protein, which may contribute to an increase in protein stability compared to nonhibernators. Overall, the study results provided evidences for a potential role of p53 in the protection of the skeletal muscle during torpor. PMID:26843984

  16. Transcriptional Activation of p53 during Cold Induced Torpor in the 13-Lined Ground Squirrel Ictidomys tridecemlineatus

    PubMed Central

    Hefler, Joshua; Wu, Cheng-Wei; Storey, Kenneth B.

    2015-01-01

    The transcription factor p53 is located at the centre of multiple pathways relating the cellular response to stress. Commonly known as a tumor suppressor, it is responsible for initiating diverse actions to protect the integrity of the genome, ranging from cell cycle arrest to apoptosis. This study investigated the regulation of p53 protein in hibernating 13-lined ground squirrel Ictidomys tridecemlineatus during multiple stages of the torpor-arousal cycle. Transcript and protein levels of p53 were both elevated in the skeletal muscle during early and late torpor stages of the hibernation cycle. Nuclear localization of p53 was also increased during late torpor, and this is associated with an increase in its DNA binding activity and expression of p53 transcriptional targets p21CIP, gadd45α, and 14-3-3σ. The increase in p53 transcriptional activity appears to be independent of its phosphorylation at Ser-15, Ser-46, and Ser-392, consistent with an absence of checkpoint kinase activation during torpor. Sequence analysis revealed unique amino acid substitutions in the ground squirrel p53 protein, which may contribute to an increase in protein stability compared to nonhibernators. Overall, the study results provided evidences for a potential role of p53 in the protection of the skeletal muscle during torpor. PMID:26843984

  17. The p53 status of cultured human premalignant oral keratinocytes.

    PubMed Central

    Burns, J. E.; Clark, L. J.; Yeudall, W. A.; Mitchell, R.; Mackenzie, K.; Chang, S. E.; Parkinson, E. K.

    1994-01-01

    Around 60% of oral squamous cell carcinomas (SCCs) have been shown to harbour p53 mutations, and other studies have demonstrated mutant p53 genes in normal and dysplastic squamous epithelium adjacent to these SCCs. In line with these earlier studies we show here that DOK, a keratinocyte cell line derived from a dysplasia, displays elevated levels of p53 protein and harbours a 12 bp in-frame deletion of the p53 gene spanning codons 188-191. In contrast, the coding region of the p53 gene was normal in a series of six benign recurrent laryngeal papillomas and a series of four premalignant oral erythroplakia biopsies and their cell cultures. All but one of these lesions were free of malignancy at the time of biopsy, in contrast to the premalignant lesions studied by previous investigators, but keratinocytes cultured from these lesions all displayed a partially transformed phenotype that was less pronounced than that of DOK. Since three out of four of the erythroplakia patients developed SCC within 1 year of biopsy, these lesions were by definition premalignant. The availability of strains of partially transformed keratinocytes from premalignant erythroplakias which possess normal p53 genes should enable us to test the role of mutant p53 in the progression of erythroplakia to SCC. The premalignant tissues and cultures were also tested for the presence of human papillomavirus (HPV), which is known to inactivate p53 function in some cases. Only the benign papillomas were shown to contain high levels of either HPV 6 or HPV 11 E6 DNA, but not both, and none of the samples contained detectable levels of HPV 16, HPV 18 or HPV 33 E6 DNA or L1 DNA of several other HPV types. There was therefore no evidence to suggest that p53 was being inactivated by a highly oncogenic HPV in these samples. Images Figure 1 Figure 2 Figure 3 PMID:7917902

  18. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    SciTech Connect

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  19. Robustness of the p53 network and biological hackers.

    PubMed

    Dartnell, Lewis; Simeonidis, Evangelos; Hubank, Michael; Tsoka, Sophia; Bogle, I David L; Papageorgiou, Lazaros G

    2005-06-01

    The p53 protein interaction network is crucial in regulating the metazoan cell cycle and apoptosis. Here, the robustness of the p53 network is studied by analyzing its degeneration under two modes of attack. Linear Programming is used to calculate average path lengths among proteins and the network diameter as measures of functionality. The p53 network is found to be robust to random loss of nodes, but vulnerable to a targeted attack against its hubs, as a result of its architecture. The significance of the results is considered with respect to mutational knockouts of proteins and the directed attacks mounted by tumour inducing viruses. PMID:15896791

  20. Oncogenomic Approaches in Exploring Gain of Function of Mutant p53

    PubMed Central

    Donzelli, Sara; Biagioni, Francesca; Fausti, Francesca; Strano, Sabrina; Fontemaggi, Giulia; Blandino, Giovanni

    2008-01-01

    Cancer is caused by the spatial and temporal accumulation of alterations in the genome of a given cell. This leads to the deregulation of key signalling pathways that play a pivotal role in the control of cell proliferation and cell fate. The p53 tumor suppressor gene is the most frequent target in genetic alterations in human cancers. The primary selective advantage of such mutations is the elimination of cellular wild type p53 activity. In addition, many evidences in vitro and in vivo have demonstrated that at least certain mutant forms of p53 may possess a gain of function, whereby they contribute positively to cancer progression. The fine mapping and deciphering of specific cancer phenotypes is taking advantage of molecular-profiling studies based on genome-wide approaches. Currently, high-throughput methods such as array-based comparative genomic hybridization (CGH array), single nucleotide polymorphism array (SNP array), expression arrays and ChIP-on-chip arrays are available to study mutant p53-associated alterations in human cancers. Here we will mainly focus on the integration of the results raised through oncogenomic platforms that aim to shed light on the molecular mechanisms underlying mutant p53 gain of function activities and to provide useful information on the molecular stratification of tumor patients. PMID:19440517

  1. KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction

    SciTech Connect

    Okamoto, Koji . E-mail: kojokamo@gan2.res.ncc.go.jp; Kitabayashi, Issay; Taya, Yoichi . E-mail: ytaya@gan2.res.ncc.go.jp

    2006-12-08

    KAP1 recruits many proteins involved in gene silencing and functions as an integral part of co-repressor complex. KAP1 was identified as Mdm2-binding protein and shown to form a complex with Mdm2 and p53 in vivo. We examined the role of KAP1 in p53 activation after the treatment of cells with different types of external stresses. KAP1 reduction markedly enhanced the induction of p21, a product of the p53 target gene, after treatment with actinomycin D or {gamma}-irradiation, but not with camptothecin. Treatment with actinomycin D, but not with camptothecin, augmented the interaction of p53 with Mdm2 and KAP1. Further, KAP1 reduction in actinomycin D-treated cells facilitated cell cycle arrest and negatively affected clonal cell growth. Thus, the reduction of KAP1 levels promotes p53-dependent p21 induction and inhibits cell proliferation in actinomycin D-treated cells. KAP1 may serve as a therapeutic target against cancer in combination with actinomycin D.

  2. The emerging role of p53 in exercise metabolism.

    PubMed

    Bartlett, Jonathan D; Close, Graeme L; Drust, Barry; Morton, James P

    2014-03-01

    The major tumour suppressor protein, p53, is one of the most well-studied proteins in cell biology. Often referred to as the Guardian of the Genome, the list of known functions of p53 include regulatory roles in cell cycle arrest, apoptosis, angiogenesis, DNA repair and cell senescence. More recently, p53 has been implicated as a key molecular player regulating substrate metabolism and exercise-induced mitochondrial biogenesis in skeletal muscle. In this context, the study of p53 therefore has obvious implications for both human health and performance, given that impaired mitochondrial content and function is associated with the pathology of many metabolic disorders such as ageing, type 2 diabetes, obesity and cancer, as well as reduced exercise performance. Studies on p53 knockout (KO) mice collectively demonstrate that ablation of p53 content reduces intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondrial yield, reduces cytochrome c oxidase (COX) activity and peroxisome proliferator-activated receptor gamma co-activator 1-α protein content whilst also reducing mitochondrial respiration and increasing reactive oxygen species production during state 3 respiration in IMF mitochondria. Additionally, p53 KO mice exhibit marked reductions in exercise capacity (in the magnitude of 50 %) during fatiguing swimming, treadmill running and electrical stimulation protocols. p53 may regulate contractile-induced increases in mitochondrial content via modulating mitochondrial transcription factor A (Tfam) content and/or activity, given that p53 KO mice display reduced skeletal muscle mitochondrial DNA, Tfam messenger RNA and protein levels. Furthermore, upon muscle contraction, p53 is phosphorylated on serine 15 and subsequently translocates to the mitochondria where it forms a complex with Tfam to modulate expression of mitochondrial-encoded subunits of the COX complex. In human skeletal muscle, the exercise-induced phosphorylation of p53(Ser15) is enhanced in conditions

  3. The transduction of His-TAT-p53 fusion protein into the human osteogenic sarcoma cell line (Saos-2) and its influence on cell cycle arrest and apoptosis.

    PubMed

    Jiang, Lei; Ma, Yushu; Wang, Jinzhi; Tao, Xinyi; Wei, Dongzhi

    2008-03-01

    The p53 gene is a tumor suppressor gene. It encodes a nuclear phosphoprotein p53 involved in the regulation of cell cycle arrest and apoptosis to maintain the genomic integrity of the cell. As mutations of p53 gene are found in most human cancers, p53 protein becomes a hot target in the research of anticancer therapy. In the present study, an 11-amino acid domain of TAT protein which has been demonstrated to be able to transduce across cell membranes was fused with p53. The result revealed that the fusion protein His-TAT-p53 accumulated in the nucleus and inhibited the growth of the Saos-2 cells. Besides apoptosis, an increased percentage of G2 phase suggested that the transduction of His-TAT-p53 into cells might be associated with a G2 arrest of cell cycle. PMID:17206471

  4. ERβ decreases the invasiveness of triple-negative breast cancer cells by regulating mutant p53 oncogenic function

    PubMed Central

    Bado, Igor; Nikolos, Fotis; Rajapaksa, Gayani; Gustafsson, Jan-Åke; Thomas, Christoforos

    2016-01-01

    Most (80%) of the triple-negative breast cancers (TNBCs) express mutant p53 proteins that acquire oncogenic activities including promoting metastasis. We previously showed that wild-type ERβ (ERβ1) impedes epithelial to mesenchymal transition (EMT) and decreases the invasiveness of TNBC cells. In the present study we searched for signaling pathways that ERβ1 uses to inhibit EMT and invasion in TNBC cells. We show that ERβ1 binds to and opposes the transcriptional activity of mutant p53 at the promoters of genes that regulate metastasis. p63 that transcriptionally cooperates with mutant p53 also binds to ERβ1. Downregulation of p63 represses the epithelial phenotype of ERβ1-expressing cells and alters the expression of mutant p53 target genes. These results describe a novel mechanism through which ERβ1 can disturb oncogenic signals to inhibit aggressiveness in TNBCs. PMID:26871946

  5. Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis

    PubMed Central

    Kovács, Dávid; Igaz, Nóra; Keskeny, Csilla; Bélteky, Péter; Tóth, Tímea; Gáspár, Renáta; Madarász, Dániel; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M.; Kiricsi, Mónika

    2016-01-01

    Loss of function of the tumour suppressor p53 observed frequently in human cancers challenges the drug-induced apoptotic elimination of cancer cells from the body. This phenomenon is a major concern and provides much of the impetus for current attempts to develop a new generation of anticancer drugs capable of provoking apoptosis in a p53-independent manner. Since silver nanoparticles (AgNPs) possess unique cytotoxic features, we examined, whether their activity could be exploited to kill tumour suppressor-deficient cancer cells. Therefore, we investigated the effects of AgNPs on osteosarcoma cells of different p53 genetic backgrounds. As particle diameters might influence the molecular mechanisms leading to AgNP-induced cell death we applied 5 nm and 35 nm sized citrate-coated AgNPs. We found that both sized AgNPs targeted mitochondria and induced apoptosis in wild-type p53-containing U2Os and p53-deficient Saos-2 cells. According to our findings AgNPs are able to kill osteosarcoma cells independently from their actual p53 status and induce p53-independent cancer cell apoptosis. This feature renders AgNPs attractive candidates for novel chemotherapeutic approaches. PMID:27291325

  6. Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis.

    PubMed

    Kovács, Dávid; Igaz, Nóra; Keskeny, Csilla; Bélteky, Péter; Tóth, Tímea; Gáspár, Renáta; Madarász, Dániel; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M; Kiricsi, Mónika

    2016-01-01

    Loss of function of the tumour suppressor p53 observed frequently in human cancers challenges the drug-induced apoptotic elimination of cancer cells from the body. This phenomenon is a major concern and provides much of the impetus for current attempts to develop a new generation of anticancer drugs capable of provoking apoptosis in a p53-independent manner. Since silver nanoparticles (AgNPs) possess unique cytotoxic features, we examined, whether their activity could be exploited to kill tumour suppressor-deficient cancer cells. Therefore, we investigated the effects of AgNPs on osteosarcoma cells of different p53 genetic backgrounds. As particle diameters might influence the molecular mechanisms leading to AgNP-induced cell death we applied 5 nm and 35 nm sized citrate-coated AgNPs. We found that both sized AgNPs targeted mitochondria and induced apoptosis in wild-type p53-containing U2Os and p53-deficient Saos-2 cells. According to our findings AgNPs are able to kill osteosarcoma cells independently from their actual p53 status and induce p53-independent cancer cell apoptosis. This feature renders AgNPs attractive candidates for novel chemotherapeutic approaches. PMID:27291325

  7. Dynamics of Delayed p53 Mutations in Mice Given Whole-Body Irradiation at 8 Weeks

    SciTech Connect

    Okazaki, Ryuji; Ootsuyama, Akira; Kakihara, Hiroyo; Mabuchi, Yo; Matsuzaki, Yumi; Michikawa, Yuichi; Imai, Takashi; Norimura, Toshiyuki

    2011-01-01

    Purpose: Ionizing irradiation might induce delayed genotoxic effects in a p53-dependent manner. However, a few reports have shown a p53 mutation as a delayed effect of radiation. In this study, we investigated the p53 gene mutation by the translocation frequency in chromosome 11, loss of p53 alleles, p53 gene methylation, p53 nucleotide sequence, and p53 protein expression/phosphorylation in p53{sup +/+} and p53{sup +/-} mice after irradiation at a young age. Methods and Materials: p53{sup +/+} and p53{sup +/-} mice were exposed to 3 Gy of whole-body irradiation at 8 weeks of age. Chromosome instability was evaluated by fluorescence in situ hybridization analysis. p53 allele loss was evaluated by polymerase chain reaction, and p53 methylation was evaluated by methylation-specific polymerase chain reaction. p53 sequence analysis was performed. p53 protein expression was evaluated by Western blotting. Results: The translocation frequency in chromosome 11 showed a delayed increase after irradiation. In old irradiated mice, the number of mice that showed p53 allele loss and p53 methylation increased compared to these numbers in old non-irradiated mice. In two old irradiated p53{sup +/-} mice, the p53 sequence showed heteromutation. In old irradiated mice, the p53 and phospho-p53 protein expressions decreased compared to old non-irradiated mice. Conclusion: We concluded that irradiation at a young age induced delayed p53 mutations and p53 protein suppression.

  8. Characterization of the human p53 gene promoter

    SciTech Connect

    Tuck, S.P.; Crawford, L.

    1989-05-01

    Transcriptional deregulation of the p53 gene may play an important part in the genesis of some tumors. The authors report here an accurate determination of the transcriptional start sites of the human p53 gene and show that the majority of p53 mRNA molecules do not contain a postulated stem-loop structure at their 5' ends. Recombinant plasmids of the human p53 promoter-leader region fused to the bacterial chloramphenicol acetyltransferase gene (cat) were constructed. After transfection into rodent or human cells, a 350-base-pair fragment spanning the promoter region conferred 4% of the CAT activity mediated by the simian virus 40 early promoter/enhancer. They monitored the efficiency with which 15 3' and 5' promoter deletion constructs initiated transcription. Their results show that an 85-base-pair fragment, previously thought to have resided in exon 1, is that is required for full promoter activity.

  9. Nitric oxide evoked p53-accumulation and apoptosis.

    PubMed

    Brüne, Bernhard; Schneiderhan, Nicole

    2003-04-01

    The tumor suppressor p53 accumulates under conditions of cellular stress and affects cell cycle progression and/or apoptosis. This has been exemplified for endogenously produced or exogenously supplied nitric oxide (NO) and thus accounts at least in part for cell destructive signaling qualities of this bioactive molecule and/or derived reactive nitrogen species. However, detailed mechanisms of toxicity and pathways of cell demise remain to be elucidated. Establishing that NO-treatment left the ubiquitination and the p53-Mdm2 interaction intact may point to an impaired nuclear-cytoplasmic shuttling to account for p53 stabilization. This was verified by heterokaryon analysis. We conclude that attenuated nuclear export contributes to stabilization and activation of p53 under the influence of NO. PMID:12628747

  10. Cerebellum Development and Tumorigenesis: A p53-Centric Perspective.

    PubMed

    Barthelery, Nicolas J; Manfredi, James J

    2016-05-01

    The p53 protein has been extensively studied for its role in suppressing tumorigenesis, in part through surveillance and maintenance of genomic stability. p53 has been associated with the induction of a variety of cellular outcomes including cell cycle arrest, senescence, and apoptosis. This occurs primarily, but not exclusively, through transcriptional activation of specific target genes. By contrast, the participation of p53 in normal developmental processes has been largely understudied. This review focuses on possible functions of p53 in cerebellar development. It can be argued that a better understanding of such mechanisms will provide needed insight into the genesis of certain embryonic cancers including medulloblastomas, and thus lead to more effective therapies. PMID:27085812

  11. Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis

    SciTech Connect

    Wan, Chunhua; Ma, Xa; Shi, Shangshi; Zhao, Jianya; Nie, Xiaoke; Han, Jingling; Xiao, Jing; Wang, Xiaoke; Jiang, Shengyang; Jiang, Junkang

    2014-12-15

    Chronic exposure to excessive manganese (Mn) has been known to lead to neuronal loss and a clinical syndrome resembling idiopathic Parkinson's disease (IPD). p53 plays an integral role in the development of various human diseases, including neurodegenerative disorders. However, the role of p53 in Mn-induced neuronal apoptosis and neurological deficits remains obscure. In the present study, we showed that p53 was critically involved in Mn-induced neuronal apoptosis in rat striatum through both transcription-dependent and -independent mechanisms. Western blot and immunohistochemistrical analyses revealed that p53 was remarkably upregulated in the striatum of rats following Mn exposure. Coincidentally, increased level of cleaved PARP, a hallmark of apoptosis, was observed. Furthermore, using nerve growth factor (NGF)-differentiated PC12 cells as a neuronal cell model, we showed that Mn exposure decreased cell viability and induced apparent apoptosis. Importantly, p53 was progressively upregulated, and accumulated in both the nucleus and the cytoplasm. The cytoplasmic p53 had a remarkable distribution in mitochondria, suggesting an involvement of p53 mitochondrial translocation in Mn-induced neuronal apoptosis. In addition, Mn-induced impairment of mitochondrial membrane potential (ΔΨm) could be partially rescued by pretreatment with inhibitors of p53 transcriptional activity and p53 mitochondrial translocation, Pifithrin-α (PFT-α) and Pifithrin-μ (PFT-μ), respectively. Moreover, blockage of p53 activities with PFT-α and PFT-μ significantly attenuated Mn-induced reactive oxidative stress (ROS) generation and mitochondrial H{sub 2}O{sub 2} production. Finally, we observed that pretreatment with PFT-α and PFT-μ ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings implicate that p53 transcription-dependent and -independent pathways may play crucial roles in the regulation of Mn-induced neuronal death. - Highlights: • p53 is robustly

  12. TRIM24 Is a p53-Induced E3-Ubiquitin Ligase That Undergoes ATM-Mediated Phosphorylation and Autodegradation during DNA Damage

    PubMed Central

    Jain, Abhinav K.; Allton, Kendra; Duncan, Aundrietta D.

    2014-01-01

    Tumor suppressor p53 protects cells from genomic insults and is a target of mutation in more than 50% of human cancers. Stress-mediated modification and increased stability of p53 promote p53 interaction with chromatin, which results in transcription of target genes that are critical for the maintenance of genomic integrity. We recently discovered that TRIM24, an E3-ubiquitin ligase, ubiquitinates and promotes proteasome-mediated degradation of p53. Here, we show that TRIM24 is destabilized by ATM-mediated phosphorylation of TRIM24S768 in response to DNA damage, which disrupts TRIM24-p53 interactions and promotes the degradation of TRIM24. Transcription of TRIM24 is directly induced by damage-activated p53, which binds p53 response elements and activates expression of TRIM24. Newly synthesized TRIM24 interacts with phosphorylated p53 to target it for degradation and termination of the DNA damage response. These studies indicate that TRIM24, like MDM2, controls p53 levels in an autoregulatory feedback loop. However, unlike MDM2, TRIM24 also targets activated p53 to terminate p53-regulated response to DNA damage. PMID:24820418

  13. UHRF2, another E3 ubiquitin ligase for p53

    SciTech Connect

    Bai, Lu; Wang, Xiaohui; Jin, Fangmin; Yang, Yan; Qian, Guanhua; Duan, Changzhu

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UHRF2 associates with p53 in vivo and in vitro. Black-Right-Pointing-Pointer UHRF2 interacts with p53 through its SRA/YDG domain. Black-Right-Pointing-Pointer UHRF2 ubiquitinates p53 in vivo and in vitro. -- Abstract: UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.

  14. p53 AND MDM2 PROTEIN EXPRESSION IN ACTINIC CHEILITIS

    PubMed Central

    de Freitas, Maria da Conceição Andrade; Ramalho, Luciana Maria Pedreira; Xavier, Flávia Caló Aquino; Moreira, André Luis Gomes; Reis, Sílvia Regina Almeida

    2008-01-01

    Actinic cheilitis is a potentially malignant lip lesion caused by excessive and prolonged exposure to ultraviolet radiation, which can lead to histomorphological alterations indicative of abnormal cell differentiation. In this pathology, varying degrees of epithelial dysplasia may be found. There are few published studies regarding the p53 and MDM2 proteins in actinic cheilitis. Fifty-eight cases diagnosed with actinic cheilitis were histologically evaluated using Banóczy and Csiba (1976) parameters, and were subjected to immunohistochemical analysis using the streptavidin-biotin method in order to assess p53 and MDM2 protein expression. All studied cases expressed p53 proteins in basal and suprabasal layers. In the basal layer, the nuclei testing positive for p53 were stained intensely, while in the suprabasal layer, cells with slightly stained nuclei were predominant. All cases also tested positive for the MDM2 protein, but with varying degrees of nuclear expression and a predominance of slightly stained cells. A statistically significant correlation between the percentage of p53 and MDM2-positive cells was established, regardless of the degree of epithelial dysplasia. The expression of p53 and MDM2 proteins in actinic cheilitis can be an important indicator in lip carcinogenesis, regardless of the degree of epithelial dysplasia. PMID:19082401

  15. Estradiol induces functional inactivation of p53 by intracellular redistribution.

    PubMed

    Molinari, A M; Bontempo, P; Schiavone, E M; Tortora, V; Verdicchio, M A; Napolitano, M; Nola, E; Moncharmont, B; Medici, N; Nigro, V; Armetta, I; Abbondanza, C; Puca, G A

    2000-05-15

    Estrogen treatment of MCF-7 cells grown in serum-free medium induced a modification of the intracellular distribution of p53 protein. Western blot analysis and immunofluorescence staining showed that p53 was localized in the nucleus of untreated cell and that after 48 h of hormone treatment, it was mostly localized in the cytoplasm. This effect was blocked by the antiestrogen ICI182,780. Intracellular redistribution of p53 was correlated to a reduced expression of the WAF1/CIP1 gene product and to the presence of degradation fragments of p53 in the cytosol. Estradiol treatment prevented the growth inhibition induced by oligonucleotide transfection, simulating DNA damage. This observation indicated that the wild-type p53 gene product present in the MCF-7 cell could be inactivated by estradiol through nuclear exclusion to permit the cyclin-dependent phosphorylation events leading to the G1-S transition. In addition, the estradiol-induced inactivation of p53 could be involved in the tumorigenesis of estrogen-dependent neoplasm. PMID:10825127

  16. Regulation of rheumatoid synoviocyte proliferation by endogenous p53 induction

    PubMed Central

    Migita, K; Tanaka, F; Yamasaki, S; Shibatomi, K; Ida, H; Kawakami, A; Aoyagi, T; Kawabe, Y; Eguchi, K

    2001-01-01

    The p53 tumour suppressor protein protects cells from tumorigenic alterations by inducing either cell growth arrest or apoptosis. In the present study, we investigated the role of endogenous p53 expressed in rheumatoid arthritis synovial fibroblasts which show transformed-appearing phenotypes. Type B synovial cells (fibroblast-like synovial cells) were exposed to a proteasome inhibitor, carbobenzoxyl-leucinyl-leucinyl-leucinal (MG-132). During this process, the expressions of p53 and p21 were examined by Western blot. Cell cycle analysis of the synovial cells was determined by DNA staining using propidium iodide (PI). Inhibition of proteasome resulted in the accumulation of p53 which was followed by an increase in the amount of a cyclin-dependent kinase (CDK)-inhibitor, p21. As a consequence, the retinoblastoma gene product, Rb, remained in the hypophosphorylated state, thus preventing PDGF-stimulated synovial cells from progressing into S-phase. This study shows that endogenous p53, which is inducible in rheumatoid synovial cells, is functionally active based on the findings that its expression blocks the G1/S transition by inhibiting the CDK-mediated phosphorylation of Rb via p21 induction. Thus the induction of p53 using proteasome inhibitor may provide a new approach in the treatment of RA. PMID:11703379

  17. Characterization of p53 expression in rainbow trout.

    PubMed

    Liu, Michelle; Tee, Catherine; Zeng, Fanxing; Sherry, James P; Dixon, Brian; Bols, Niels C; Duncker, Bernard P

    2011-11-01

    The tumour suppressor protein p53 is a critical component of cell cycle checkpoint responses. It upregulates the expression of cyclin-dependent kinase inhibitors in response to DNA damage and other cellular perturbations, and promotes apoptosis when DNA repair pathways are overwhelmed. Given the high incidence of p53 mutations in human cancers, it has been extensively studied, though only a small fraction of these investigations have been in non-mammalian systems. For the present study, an anti-rainbow trout p53 polyclonal antibody was generated. A variety of rainbow trout (Oncorhynchus mykiss) tissues and cell lines were examined through western blot analysis of cellular protein extracts, which revealed relatively high p53 levels in brain and gills. To evaluate the checkpoint response of rainbow trout p53, RTbrain-W1 and RTgill-W1 cell lines were exposed to varying concentrations of the DNA damaging agent bleomycin and ribonucleotide reductase inhibitor hydroxyurea. In contrast to mammals, these checkpoint-inducing agents provoked no apparent increase in rainbow trout p53 levels. These results infer the presence of alternate DNA damage checkpoint mechanisms in rainbow trout cells. PMID:21767662

  18. Xenogeneic human p53 DNA vaccination by electroporation breaks immune tolerance to control murine tumors expressing mouse p53.

    PubMed

    Soong, Ruey-Shyang; Trieu, Janson; Lee, Sung Yong; He, Liangmei; Tsai, Ya-Chea; Wu, T-C; Hung, Chien-Fu

    2013-01-01

    The pivotal role of p53 as a tumor suppressor protein is illustrated by the fact that this protein is found mutated in more than 50% of human cancers. In most cases, mutations in p53 greatly increase the otherwise short half-life of this protein in normal tissue and cause it to accumulate in the cytoplasm of tumors. The overexpression of mutated p53 in tumor cells makes p53 a potentially desirable target for the development of cancer immunotherapy. However, p53 protein represents an endogenous tumor-associated antigen (TAA). Immunization against a self-antigen is challenging because an antigen-specific immune response likely generates only low affinity antigen-specific CD8(+) T-cells. This represents a bottleneck of tumor immunotherapy when targeting endogenous TAAs expressed by tumors. The objective of the current study is to develop a safe cancer immunotherapy using a naked DNA vaccine. The vaccine employs a xenogeneic p53 gene to break immune tolerance resulting in a potent therapeutic antitumor effect against tumors expressing mutated p53. Our study assessed the therapeutic antitumor effect after immunization with DNA encoding human p53 (hp53) or mouse p53 (mp53). Mice immunized with xenogeneic full length hp53 DNA plasmid intramuscularly followed by electroporation were protected against challenge with murine colon cancer MC38 while those immunized with mp53 DNA were not. In a therapeutic model, established MC38 tumors were also well controlled by treatment with hp53 DNA therapy in tumor bearing mice compared to mp53 DNA. Mice vaccinated with hp53 DNA plasmid also exhibited an increase in mp53-specific CD8(+) T-cell precursors compared to vaccination with mp53 DNA. Antibody depletion experiments also demonstrated that CD8(+) T-cells play crucial roles in the antitumor effects. This study showed intramuscular vaccination with xenogeneic p53 DNA vaccine followed by electroporation is capable of inducing potent antitumor effects against tumors expressing mutated

  19. R248Q mutation--Beyond p53-DNA binding.

    PubMed

    Ng, Jeremy W K; Lama, Dilraj; Lukman, Suryani; Lane, David P; Verma, Chandra S; Sim, Adelene Y L

    2015-12-01

    R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants. PMID:26442703

  20. Gulf Cooperation Council: Arabia's model of integration

    SciTech Connect

    Etaibi, G.T.

    1984-01-01

    This study is an analysis of the foundations and emergence in 1981 of the Gulf Cooperation Council (GCC), which consists of six traditional Arab Gulf states (the United Arab Emirates, Bahrain, Saudi Arabia, Oman, Qatar, and Kuwait). It finds the GCC to be a unique case among twentieth-century integrative schemes. The study also identifies and analyzes relevant local, regional, and international forces. Among the local forces are traditional religio-political systems, economic dependence on a depletable resource, and the presence of a large number of foreign residents. On the regional level, this study takes into consideration such issues as the Arab League, Arab Nationalism, and the Islamic revolutionary movement in Iran. On the international level, the influence of the superpowers and the major industrialized nations on the emergence and future of the GCC Community are analyzed. Throughout the past decade there has been a growing scholarly interest in the Gulf region. In preparation for this study, the author relied heavily on the literature generated by this new research, as well as on documents and official publications, mostly in Arabic. A survey was conducted among a limited number of GCC graduate students during the summer of 1983. In addition, interviews with selected members of the GCC Secretariat-General and various member-state officials were conducted during a research trip in the region in the spring of 1984.

  1. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response.

    PubMed

    Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C

    2014-09-01

    In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9β/9γ. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and α variant, supporting our experimental data. Using siRNA specifically targeting exons 9β/9γ, we demonstrate that cell growth can be driven by modulating p53β and p53γ expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53β and p53γ promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53β enhanced p53α transcriptional activity on the p21 and Bax promoters, while p53γ increased p53α transcriptional activity on the Bax promoter only. Moreover, p53β and p53γ co-immunoprecipitate with p53α only in the presence of p53-responsive promoter. Interestingly, although p53β and p53γ promote apoptosis in MCF7 cells, p53β and p53γ maintain cell growth in response to TG003 in a p53α-dependent manner. The dual activities of p53β and p53γ isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53β and p53γ regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616

  2. Sequence-dependent sliding kinetics of p53

    NASA Astrophysics Data System (ADS)

    Leith, Jason; Tafvizi, Anahita; Huang, Fang; Uspal, William; Doyle, Patrick; Fersht, Alan; Mirny, Leonid; van Oijen, Antoine

    2012-02-01

    Theoretical work has long proposed that one-dimensional sliding along DNA while simultaneously reading its sequence can accelerate transcription factors' (TFs) search for their target sites. More recently, functional sliding has been shown to require TFs to possess at least two DNA-binding modes. The tumor suppressor p53 has been directly observed to slide on DNA, and structural and single-molecule studies have provided evidence for a two-mode model for the protein. If the model is in fact applicable to p53, then the requirement that TFs read while they slide implies that p53's mobility on DNA should be affected by non-cognate sites and thus that its diffusivity should be generally sequence-dependent. Here we confirm this prediction with single-molecule microscopy measurements of p53's local diffusivity on non-cognate DNA. We show how a two-mode model accurately predicts the variation in local diffusivity while a single-mode model does not. Our work provides evidence that p53's sliding is indeed functional and suggests that the timing and efficiency of its activating and repressing transcription can depend on its non-cognate binding properties and its ability to change between multiple modes of binding, in addition to the much better-studied effects of cognate-site binding.

  3. Chk'ing p53-deficient breast cancers.

    PubMed

    Schoppy, David W; Brown, Eric J

    2012-04-01

    Loss or functional impairment of p53 occurs in many human cancers, and its absence is often associated with a poor response to conventional chemotherapy. Hence, much effort is currently devoted to developing novel treatments for p53-deficient malignancies. One approach is to target pathways that are selectively required for the survival of p53-deficient cancer cells, thus exploiting a synthetic lethal interaction. Previous studies have demonstrated that inhibition of the ataxia telangiectasia and Rad3-related (ATR) and checkpoint kinase 1 (Chk1) pathway in p53-deficient cells can induce such a synthetic lethal outcome. In this issue of the JCI, Ma et al. take these findings a step closer to the clinic by demonstrating that highly specific inhibitors of Chk1 synergize with chemotherapy to stem progression of p53-deficient triple-negative breast cancers in a xenotransplant model of this disease. Together with other recent studies, this report highlights the promise of ATR and Chk1 inhibitors in targeted cancer treatment. PMID:22446183

  4. p53 Prevents Entry into Mitosis with Uncapped Telomeres

    PubMed Central

    Thanasoula, Maria; Escandell, Jose Miguel; Martinez, Paula; Badie, Sophie; Muñoz, Purificacion; Blasco, María A.; Tarsounas, Madalena

    2016-01-01

    Summary Telomeres are protected by capping structures consisting of core protein complexes that bind with sequence specificity to telomeric DNA (reviewed in [1]). In their absence, telomeres trigger a DNA damage response, materialized in accumulation at the telomere of damage response proteins, e.g., phosphorylated histone H2AX (γH2AX), into telomere-dysfunction-induced foci [2, 3]. Telomere uncapping occurs transiently in every cell cycle in G2 [4], following DNA replication, but little is known about how protective structures are reassembled or whether this process is controlled by the cell-cycle surveillance machinery. Here, we report that telomere capping is monitored at the G2/M transition by the p53/p21 damage response pathway. Unlike their wild-type counterparts, human and mouse cells lacking p53 or p21 progress into mitosis prematurely with persisting uncapped telomeres. Furthermore, artificially uncapped telomeres delay mitotic entry in a p53- and p21-dependent manner. Uncapped telomeres that persist in mitotic p53-deficient cells are shorter than average and religate to generate end-to-end fusions. These results suggest that a p53-dependent pathway monitors telomere capping after DNA replication and delays G2/M progression in the presence of unprotected telomeres. This mechanism maintains a cell-cycle stage conducive for capping reactions and prevents progression into stages during which uncapped telomeres are prone to deleterious end fusions. PMID:20226664

  5. The expanding regulatory universe of p53 in gastrointestinal cancer

    PubMed Central

    Fesler, Andrew; Zhang, Ning; Ju, Jingfang

    2016-01-01

    Tumor suppresser gene TP53 is one of the most frequently deleted or mutated genes in gastrointestinal cancers. As a transcription factor, p53 regulates a number of important protein coding genes to control cell cycle, cell death, DNA damage/repair, stemness, differentiation and other key cellular functions. In addition, p53 is also able to activate the expression of a number of small non-coding microRNAs (miRNAs) through direct binding to the promoter region of these miRNAs.  Many miRNAs have been identified to be potential tumor suppressors by regulating key effecter target mRNAs. Our understanding of the regulatory network of p53 has recently expanded to include long non-coding RNAs (lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer biology.  With our increased understanding of the important functions of these non-coding RNAs and their relationship with p53, we are gaining exciting new insights into the biology and function of cells in response to various growth environment changes. In this review we summarize the current understanding of the ever expanding involvement of non-coding RNAs in the p53 regulatory network and its implications for our understanding of gastrointestinal cancer.

  6. FAK and p53 Synergistically Decrease Neuroblastoma Cell Survival

    PubMed Central

    Gillory, Lauren A.; Stewart, Jerry E.; Megison, Michael L.; Waters, Alicia M.; Beierle, Elizabeth A.

    2015-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is important in many facets of neuroblastoma tumor development and progression. The p53 oncogene, although wild type in most neuroblastomas, lacks significant function as a tumor suppressor in these tumors. Recent reports have found that FAK and p53 interact in some tumor types. We have hypothesized FAK and p53 coordinately control each other’s expression and also interact in neuroblastoma. In the current study, we showed that not only do FAK and p53 interact but each one controls the expression of the other. In addition, we also examined the effects of FAK inhibition combined with p53 activation in neuroblastoma and showed that these two, in combination, had a synergistic effect upon neuroblastoma cell survival. The findings from this current study help to further our understanding of the regulation of neuroblastoma tumorigenesis, and may provide novel therapeutic strategies and targets for neuroblastoma and other pediatric solid tumors. PMID:25862488

  7. The evolution of thymic lymphomas in p53 knockout mice.

    PubMed

    Dudgeon, Crissy; Chan, Chang; Kang, Wenfeng; Sun, Yvonne; Emerson, Ryan; Robins, Harlan; Levine, Arnold J

    2014-12-01

    Germline deletion of the p53 gene in mice gives rise to spontaneous thymic (T-cell) lymphomas. In this study, the p53 knockout mouse was employed as a model to study the mutational evolution of tumorigenesis. The clonality of the T-cell repertoire from p53 knockout and wild-type thymic cells was analyzed at various ages employing TCRβ sequencing. These data demonstrate that p53 knockout thymic lymphomas arose in an oligoclonal fashion, with tumors evolving dominant clones over time. Exon sequencing of tumor DNA revealed that all of the independently derived oligoclonal mouse tumors had a deletion in the Pten gene prior to the formation of the TCRβ rearrangement, produced early in development. This was followed in each independent clone of the thymic lymphoma by the amplification or overexpression of cyclin Ds and Cdk6. Alterations in the expression of Ikaros were common and blocked further development of CD-4/CD-8 T cells. While the frequency of point mutations in the genome of these lymphomas was one per megabase, there were a tremendous number of copy number variations producing the tumors' driver mutations. The initial inherited loss of p53 functions appeared to delineate an order of genetic alterations selected for during the evolution of these thymic lymphomas. PMID:25452272

  8. The impact of p53 loss on murine plasmacytoma development.

    PubMed

    Mai, Sabine; Wiener, Francis

    2002-01-01

    Mouse plasmacytomas (PCTs) are characterized by c-myc-activating translocations that juxtapose c-myc on chromosome 15 onto one of the immunoglobulin loci (IgH on chromosome 12, IgK on chromosome 6, or IgA on chromosome 16). To assess the impact of p53 loss on PCT genesis, we induced PCTs in p53-deficient BALB/cRb6.15 mouse strains. We show that p53 loss accelerates tumor development and causes a shift in the typical translocation patterns. PCTs that carry variant T(6;15) translocations become as frequent as those with typical T(12;15) translocations (41.66%). In addition, in the absence of p53, the number of translocation-negative PCTs increases from less than 1% to 16.66%. It is noteworthy that neither the shortened latency periods nor the shift in translocation patterns had an impact on the incidence of PCT development. The 42.2% incidence in N3p53-/- mice is similar to the percentages recorded in groups of conventional BALB/cAn mice. The possible mechanisms underlying the accelerated tumorigenesis and the shift in translocation patterns are discussed. PMID:12067213

  9. E2F1 and p53 Transcription Factors as Accessory Factors for Nucleotide Excision Repair

    PubMed Central

    Vélez-Cruz, Renier; Johnson, David G.

    2012-01-01

    Many of the biochemical details of nucleotide excision repair (NER) have been established using purified proteins and DNA substrates. In cells however, DNA is tightly packaged around histones and other chromatin-associated proteins, which can be an obstacle to efficient repair. Several cooperating mechanisms enhance the efficiency of NER by altering chromatin structure. Interestingly, many of the players involved in modifying chromatin at sites of DNA damage were originally identified as regulators of transcription. These include ATP-dependent chromatin remodelers, histone modifying enzymes and several transcription factors. The p53 and E2F1 transcription factors are well known for their abilities to regulate gene expression in response to DNA damage. This review will highlight the underappreciated, transcription-independent functions of p53 and E2F1 in modifying chromatin structure in response to DNA damage to promote global NER. PMID:23202967

  10. p53 and ARF: Unexpected players in autophagy

    PubMed Central

    Balaburski, Gregor M.; Hontz, Robert D.; Murphy, Maureen E.

    2010-01-01

    p53 and ARF are well-established tumor suppressor proteins that function together in the negative regulation of cancer. Recently, both of these proteins were found to play surprising roles in autophagy. Autophagy (“self-eating”) is a critical response of eukaryotic cells to metabolic and other stress. During this process, portions of the cytosol are sequestered into characteristic double membrane vesicles that are delivered to the lysosome for degradation, leading to the release of free amino acids and subsequent survival. The mechanisms whereby p53 and ARF control autophagy are only now becoming elucidated. An emerging question is whether we can develop metabolic poisons that preferentially destroy tumor cells depending on their reliance on autophagy for survival, and on their p53 and ARF status. PMID:20303758