Science.gov

Sample records for p53 mutation analysis

  1. Immunohistochemical Determination of p53 Protein Overexpression for Predicting p53 Gene Mutations in Hepatocellular Carcinoma: A Meta-Analysis

    PubMed Central

    Deng, Miao; Liu, Dechun; Ma, Qingyong; Feng, Xiaoshan

    2016-01-01

    Background Whether increased expression of the tumor suppressor protein p53 indicates a p53 gene mutation in hepatocellular carcinoma (HCC) remains unclear. We conducted a meta-analysis to determine whether p53 protein overexpression detected by immunohistochemistry (IHC) offers a diagnostic prediction for p53 gene mutations in HCC patients. Methods Systematic literature searches were conducted with an end date of December 2015. A meta-analysis was performed to estimate the diagnostic accuracy of IHC-determined p53 protein overexpression in the prediction of p53 gene mutations in HCC. Sensitivity, subgroup, and publication bias analyses were also conducted. Results Thirty-six studies were included in the meta-analysis. The results showed that the overall sensitivity and specificity for IHC-determined p53 overexpression in the diagnostic prediction of p53 mutations in HCC were 0.83 (95% CI: 0.80–0.86) and 0.74 (95% CI: 0.71–0.76), respectively. The summary positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were 2.65 (95% CI: 2.21–3.18) and 0.36 (95% CI: 0.26–0.50), respectively. The diagnostic odds ratio (DOR) of IHC-determined p53 overexpression in predicting p53 mutations ranged from 0.56 to 105.00 (pooled, 9.77; 95% CI: 6.35–15.02), with significant heterogeneity between the included studies (I2 = 40.7%, P = 0.0067). Moreover, subgroup and sensitivity analyses did not alter the results of the meta-analysis. However, potential publication bias was present in the current meta-analysis. Conclusion The upregulation of the tumor suppressor protein p53 was indeed linked to p53 gene mutations. IHC determination of p53 overexpression can predict p53 gene mutations in HCC patients. PMID:27428001

  2. Correlation analysis of p53 protein isoforms with NPM1/FLT3 mutations and therapy response in acute myeloid leukemia.

    PubMed

    Ånensen, N; Hjelle, S M; Van Belle, W; Haaland, I; Silden, E; Bourdon, J-C; Hovland, R; Taskén, K; Knappskog, S; Lønning, P E; Bruserud, Ø; Gjertsen, B T

    2012-03-22

    The wild-type tumor-suppressor gene TP53 encodes several isoforms of the p53 protein. However, while the role of p53 in controlling normal cell cycle progression and tumor suppression is well established, the clinical significance of p53 isoform expression is unknown. A novel bioinformatic analysis of p53 isoform expression in 68 patients with acute myeloid leukemia revealed distinct p53 protein biosignatures correlating with clinical outcome. Furthermore, we show that mutated FLT3, a prognostic marker for short survival in AML, is associated with expression of full-length p53. In contrast, mutated NPM1, a prognostic marker for long-term survival, correlated with p53 isoforms β and γ expression. In conclusion, p53 biosignatures contain useful information for cancer evaluation and prognostication. PMID:21860418

  3. Analysis of a p53 Mutation Associated with Cancer Susceptibility for Biochemistry and Genetic Laboratory Courses

    ERIC Educational Resources Information Center

    Soto-Cruz, Isabel; Legorreta-Herrera, Martha

    2009-01-01

    We have devised and implemented a module for an upper division undergraduate laboratory based on the amplification and analysis of a p53 polymorphism associated with cancer susceptibility. First, students collected a drop of peripheral blood cells using a sterile sting and then used FTA cards to extract the genomic DNA. The p53 region is then PCR…

  4. p53 mutation heterogeneity in cancer

    SciTech Connect

    Soussi, T. . E-mail: thierry.soussi@free.fr; Lozano, G.

    2005-06-10

    The p53 gene is inactivated in about 50% of human cancers and the p53 protein is an essential component of the cell response induced by genotoxic stresses such as those generated by radiotherapy or chemotherapy. It is therefore highly likely that these alterations are an important component in tumor resistance to therapy. The particular characteristics of these alterations, 80% of which are missense mutations leading to functionally heterogeneous proteins, make p53 a unique gene in the class of tumor suppressor genes. A considerable number of mutant p53 proteins probably have an oncogenic activity per se and therefore actively participate in cell transformation. The fact that the apoptotic and antiproliferative functions of p53 can be dissociated in certain mutants also suggests another level of complexity in the relationships between p53 inactivation and neoplasia.

  5. High levels of p53 protein expression do not correlate with p53 gene mutations in anaplastic large cell lymphoma.

    PubMed Central

    Cesarman, E.; Inghirami, G.; Chadburn, A.; Knowles, D. M.

    1993-01-01

    Strong immunohistochemical reactivity for p53 tumor suppressor gene product has been reported in a variety of different human malignancies including CD30- (Ki-1) positive anaplastic large cell lymphoma (ALCL). Although high levels of p53 protein have been interpreted as abnormal, rapidly proliferating benign and neoplastic lymphoid cells may have increased p53 expression in the absence of structural alterations. On the other hand, mutations in the p53 gene can lead to a lack of p53 protein production. Structural alterations of the p53 gene have not been documented in cases of ALCL and the mechanism for an abnormal pattern of p53 expression in these lymphomas has not been elucidated. Therefore, to determine whether an altered pattern of p53 expression correlates with mutations in the p53 locus in ALCL, we analyzed the expression of p53 protein immunohistochemically, compared it with the proliferation index using monoclonal antibody Ki-67, and assessed the presence of mutations in exons 5 though 9 of the p53 gene using a single-strand conformation polymorphism assay in a panel of 17 ALCLs. Furthermore, we studied the presence of allelic deletions of chromosome 17p by restriction fragment length polymorphism analysis. We found significant levels of p53 protein expression in 12 of the 15 cases studied, but identified mutations in only one of 17 cases. An allelic deletion in chromosome 17p was identified only in the one case containing a mutated p53 gene. Whereas the case containing structural alterations in the p53 gene did have strong p53 immunoreactivity, 11 cases that lacked p53 mutations in the regions examined also had significant levels of p53. Thus, our studies indicate that strong immunohistochemical reactivity for p53 is not a reliable indicator of the presence of structural alterations of p53 gene exons 5 through 9 in ALCL. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8103295

  6. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    EPA Science Inventory

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation Analysis

    Phouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.
    <...

  7. Dynamics of Delayed p53 Mutations in Mice Given Whole-Body Irradiation at 8 Weeks

    SciTech Connect

    Okazaki, Ryuji; Ootsuyama, Akira; Kakihara, Hiroyo; Mabuchi, Yo; Matsuzaki, Yumi; Michikawa, Yuichi; Imai, Takashi; Norimura, Toshiyuki

    2011-01-01

    Purpose: Ionizing irradiation might induce delayed genotoxic effects in a p53-dependent manner. However, a few reports have shown a p53 mutation as a delayed effect of radiation. In this study, we investigated the p53 gene mutation by the translocation frequency in chromosome 11, loss of p53 alleles, p53 gene methylation, p53 nucleotide sequence, and p53 protein expression/phosphorylation in p53{sup +/+} and p53{sup +/-} mice after irradiation at a young age. Methods and Materials: p53{sup +/+} and p53{sup +/-} mice were exposed to 3 Gy of whole-body irradiation at 8 weeks of age. Chromosome instability was evaluated by fluorescence in situ hybridization analysis. p53 allele loss was evaluated by polymerase chain reaction, and p53 methylation was evaluated by methylation-specific polymerase chain reaction. p53 sequence analysis was performed. p53 protein expression was evaluated by Western blotting. Results: The translocation frequency in chromosome 11 showed a delayed increase after irradiation. In old irradiated mice, the number of mice that showed p53 allele loss and p53 methylation increased compared to these numbers in old non-irradiated mice. In two old irradiated p53{sup +/-} mice, the p53 sequence showed heteromutation. In old irradiated mice, the p53 and phospho-p53 protein expressions decreased compared to old non-irradiated mice. Conclusion: We concluded that irradiation at a young age induced delayed p53 mutations and p53 protein suppression.

  8. Regulation of P53 stability in p53 mutated human and mouse hepatoma cells.

    PubMed

    Hailfinger, Stephan; Jaworski, Maike; Marx-Stoelting, Philip; Wanke, Ines; Schwarz, Michael

    2007-04-01

    The tumor suppressor p53 is frequently mutated in cancer. We have investigated the regulation of P53 in p53 wild type mouse hepatoma cells (line 55.1c), in p53 heterozygeously mutated cells (56.1b) and in p53 defective cells (lines 56.1d, 70.4 and HUH7) under various experimental settings. The basal levels of P53 were low in 55.1c cells, but nuclear accumulation occurred upon UV-irradiation. Similarly, UV-exposure induced stabilization of P53 in the heterozygeously p53 mutated 56.1b hepatoma cells. By contrast, the 3 hepatoma lines, which lack transcriptionally active P53, demonstrated high basal nuclear concentrations of P53 protein and, unexpectedly, showed loss of P53 upon UV-irradiation. Expression of p53 mRNA was also decreased in p53 defective cells after 24 hr post UV-irradiation, which may be linked to induction of apoptosis of the irradiated cells under these conditions. Other stressors like H2O2 also mediated a decrease in P53 concentration in p53 defective cells. This effect occurred at very low concentrations and was already detectable 1-2 hr after exposure of cells. There were no signs of apoptosis of H2O2-exposed cells at this time point and no significant changes in p53 mRNA or MDM2 level. These unexpected findings indicate a new aspect related to regulation of P53 stability in cells with a defect in the tumor suppressor protein. PMID:17205518

  9. Post-thymic T cell lymphomas frequently overexpress p53 protein but infrequently exhibit p53 gene mutations.

    PubMed Central

    Matsushima, A. Y.; Cesarman, E.; Chadburn, A.; Knowles, D. M.

    1994-01-01

    We recently demonstrated that only one of 36 T-cell neoplasms contained p53 gene mutations. Although p53 gene mutations are known to result in overexpression of the p53 gene product, we also recently discovered that p53 protein overexpression does not correlate with p53 gene mutations, but does correlate with proliferation (r = 0.92), in anaplastic large cell lymphoma. In view of these findings, we investigated 34 non-human T-cell lymphotropic virus type I (HTLV-I) related postthymic T-cell lymphomas immunohistochemically for p53 protein, using monoclonal antibody 1801, and for proliferation, using monoclonal antibody Ki-67, and quantitated the results with the CAS-200 computerized image analysis system. We evaluated the presence of mutations in conserved exons 5 to 9 of the p53 gene using single-strand conformation polymorphism analysis and DNA sequencing. p53 mutations were detected in three of 34 cases, including two that contained deletions. p53 protein overexpression was detected in 17 of 34 cases, including the three mutated cases, with reactivities ranging from 10% to 48%. However, many cases in which a structural alteration could not be detected demonstrated levels of p53 protein expression comparable to those cases that were mutated. Correlation of p53 protein expression and proliferation, as assessed by Ki-67 expression, in this group of lymphomas was poor (r = 0.34). Whether alternative mechanisms of p53 protein inactivation are causing phenotypic overexpression of the p53 protein in these malignant lymphomas is unknown, although preliminary studies do not support a major role for such mechanisms. Therefore, the etiology and the significance of p53 protein overexpression in the cases that lack a demonstrable mutation is unclear. Nevertheless, as in anaplastic large cell lymphoma, overexpression of the p53 gene product is not a reliable predictor of the presence of mutations in conserved portions of the p53 gene in non-HTLV-I associated post-thymic T

  10. Analysis of p53, K-ras gene mutation & Helicobacter pylori infection in patients with gastric cancer & peptic ulcer disease at a tertiary care hospital in north India

    PubMed Central

    Saxena, Ashish; Shukla, Sanket Kumar; Prasad, Kashi Nath; Ghoshal, Uday Chand

    2012-01-01

    Background & objectives: Mutations in the oncogene and tumour suppressor genes play an important role in carcinogenesis. We investigated the association of p53 and K-ras gene mutation and Helicobacter pylori infection in patients with gastric cancer (GC) and peptic ulcer disease (PUD) attending a tertiary care hospital in north India. Methods: In total, 348 adult patients [62 GC, 45 PUD and 241 non-ulcer dyspepsia (NUD)] who underwent an upper gastrointestinal endoscopy were enrolled. H. pylori infection was diagnosed by rapid urease test, culture, histopathology and PCR. Mutation in the exon 5-8 of p53 gene was analyzed by PCR-single stranded conformational polymorphism (SSCP) and confirmed by sequence analysis. K-ras gene codon 12 mutation was analyzed by PCR-based restriction fragment length polymorphism. Results: Overall p53 gene mutation was found in 4.6 per cent of the study population, and its distribution in GC, PUD and NUD was 21, 4.4 and 0.4 per cent, respectively. p53 gene mutation was significantly higher in patients with GC than PUD (P<0.05) and NUD (P<0.001). No difference in p53 gene mutation was observed between H. pylori infected and non-infected individuals. K-ras gene mutation was absent in all the patients. Interpretation & conclusions: Our results show that p53 gene mutation may be associated with gastric carcinogenesis independent to H. pylori infection and absence of K-ras gene mutation questions its role in the pathogenesis of GC and PUD in Indian patients. PMID:23168708

  11. The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation

    PubMed Central

    Chen, Liang; Rashid, Farooq; Shah, Abdullah; Awan, Hassaan M.; Wu, Mingming; Liu, An; Wang, Jun; Zhu, Tao; Luo, Zhaofeng; Shan, Ge

    2015-01-01

    p53, known as a tumor suppressor, is a DNA binding protein that regulates cell cycle, activates DNA repair proteins, and triggers apoptosis in multicellular animals. More than 50% of human cancers contain a mutation or deletion of the p53 gene, and p53R175 is one of the hot spots of p53 mutation. Nucleic acid aptamers are short single-stranded oligonucleotides that are able to bind various targets, and they are typically isolated from an experimental procedure called systematic evolution of ligand exponential enrichment (SELEX). Using a previously unidentified strategy of contrast screening with SELEX, we have isolated an RNA aptamer targeting p53R175H. This RNA aptamer (p53R175H-APT) has a significantly stronger affinity to p53R175H than to the wild-type p53 in both in vitro and in vivo assays. p53R175H-APT decreased the growth rate, weakened the migration capability, and triggered apoptosis in human lung cancer cells harboring p53R175H. Further analysis actually indicated that p53R175H-APT might partially rescue or correct the p53R175H to function more like the wild-type p53. In situ injections of p53R175H-APT to the tumor xenografts confirmed the effects of this RNA aptamer on p53R175H mutation in mice. PMID:26216949

  12. The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation.

    PubMed

    Chen, Liang; Rashid, Farooq; Shah, Abdullah; Awan, Hassaan M; Wu, Mingming; Liu, An; Wang, Jun; Zhu, Tao; Luo, Zhaofeng; Shan, Ge

    2015-08-11

    p53, known as a tumor suppressor, is a DNA binding protein that regulates cell cycle, activates DNA repair proteins, and triggers apoptosis in multicellular animals. More than 50% of human cancers contain a mutation or deletion of the p53 gene, and p53R175 is one of the hot spots of p53 mutation. Nucleic acid aptamers are short single-stranded oligonucleotides that are able to bind various targets, and they are typically isolated from an experimental procedure called systematic evolution of ligand exponential enrichment (SELEX). Using a previously unidentified strategy of contrast screening with SELEX, we have isolated an RNA aptamer targeting p53R175H. This RNA aptamer (p53R175H-APT) has a significantly stronger affinity to p53R175H than to the wild-type p53 in both in vitro and in vivo assays. p53R175H-APT decreased the growth rate, weakened the migration capability, and triggered apoptosis in human lung cancer cells harboring p53R175H. Further analysis actually indicated that p53R175H-APT might partially rescue or correct the p53R175H to function more like the wild-type p53. In situ injections of p53R175H-APT to the tumor xenografts confirmed the effects of this RNA aptamer on p53R175H mutation in mice. PMID:26216949

  13. p53 mutation, but not p53 overexpression, correlates with survival in head and neck squamous cell carcinoma.

    PubMed Central

    Mineta, H.; Borg, A.; Dictor, M.; Wahlberg, P.; Akervall, J.; Wennerberg, J.

    1998-01-01

    Survival in squamous cell carcinoma of the head and neck (HNSCC) was compared with overexpression and mutation of the p53 gene. Archival tissue from 77 tumours was analysed for protein expression using immunohistochemistry (IHC) with the monoclonal antibody Do-7, and for the presence of mutation in exons 5-8 using single-stranded conformation polymorphism (SSCP), followed by DNA sequencing in SSCP-positive cases. p53 expression was scored as high (>70% nuclei stained) in 25 (32%) tumours, as intermediate (10-70% nuclei stained) in 19 (25%) tumours and as low (<10% nuclei stained) in 33 (43%) tumours. Twelve (18%) tumours exhibited gene mutation (ten missense and two nonsense mutations) and an additional five tumours contained changes that could not result in amino acid substitution or protein truncation. There was no correlation between gene expression and mutation, mutations being equally frequent in tumours with either high (4/25), intermediate (4/19) or low protein expression (4/33). Fifty-eight patients were eligible for survival analysis. There was a strong correlation between p53 mutation and cause-specific survival; median survival among mutated cases was 12.5 months compared with >160 months among non-mutated patients (P < 0.005). There was no correlation between p53 overexpression and survival. The results suggest that p53 mutation status is an important prognostic factor in HNSCC, and that IHC analysis of protein overexpression is an inadequate measure of gene mutation in these tumours. Images Figure 1 PMID:9792155

  14. Pancreatic adenocarcinomas frequently show p53 gene mutations.

    PubMed Central

    Scarpa, A.; Capelli, P.; Mukai, K.; Zamboni, G.; Oda, T.; Iacono, C.; Hirohashi, S.

    1993-01-01

    Thirty-four pancreatic adenocarcinomas were studied for the presence of p53 gene mutations by the single-strand conformation polymorphism method and by direct sequencing of PCR-amplified fragments. p53 protein expression was immunohistochemically evaluated using monoclonal PAb1801 and polyclonal CM1 antibodies. Mutations were detected in 14 cases. The transitions were six G to A and two A to G; the transversions were one C to G and two A to C; the remaining three were frameshift mutations. Immunostaining results were identical with both antibodies. Nuclear immunohistochemical p53-positive cells were found in nine p53 mutated cases and in 12 cases in which no mutation was detected. In most of these latter cases only a minority of cancer cells showed immunohistochemical positivity. Twenty-nine cases, including all p53 mutated cancers, were known to contain codon 12 Ki-ras gene mutations. Also in the light of the demonstrated cooperation of ras and p53 gene alterations in the transformation of cultured cells, our data suggest that p53 mutation is one of the genetic defects that may have a role in the pathogenesis of a proportion of pancreatic cancers. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8494051

  15. Characterization of p53 mutations in colorectal liver metastases and correlation with clinical parameters.

    PubMed

    Tullo, A; D'Erchia, A M; Honda, K; Mitry, R R; Kelly, M D; Habib, N A; Saccone, C; Sbisà, E

    1999-11-01

    The presence and type of mutations of the p53 tumor suppressor gene were determined in 40 patients undergoing curative hepatic resection for metastatic colorectal carcinoma. This represents the largest series in the literature on the screening of p53 mutations for liver metastases. The analysis was performed in exons 5-9 by denaturing gradient gel electrophoresis followed by direct sequencing. Forty-five percent of tumors showed mutation in p53, and this was observed only in exons 5-8. Mutations at codon positions 167, 196, 204, 213, 245, 281, 282, 286, and 306; deletion of codon 251 and of the first nucleotide of codon 252; and Leu residue (CTC) insertion downstream codon 252 are reported for the first time in colorectal liver metastasis. Mutations at codon positions 163, 248, and 273 have been reported previously. Correlation of p53 status with clinical parameters showed that patients with mutated p53 had a statistically higher number of lesions when compared with patients with wild-type p53 (P<0.050). In particular, of patients with mutated p53, 41% had three or more metastases compared with 14% of patients with wild-type p53. Synchronous metastases were present in 70% of the patients with p53 mutations and in only 29% of patients with wild-type p53 (P<0.025). In addition, patients with p53 mutations are more likely to develop recurrence (73%) compared with patients with wild-type p53 (33%; P<0.001). Other factors considered, including preoperative carcinoembryonic antigen level, bilobar distribution, and size of the lesion(s), did not show significant correlation with p53 status. These results suggest that p53 status might be an important prognostic indicator to predict the pattern and likelihood of treatment failure after hepatic resection. PMID:10589767

  16. Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome

    SciTech Connect

    Frebourg, T.; Barbier, N.; Yan, Yu-xin; Friend, S.H. |; Garber, J.E.; Dreyfus, M.; Li, F.P.; Fraumeni, J. Jr.

    1995-03-01

    Germ-line mutations of the tumor-suppressor gene p53 have been observed in some families with the Li-Fraumeni syndrome (LFS), a familial cancer syndrome in which affected relatives develop a diverse set of early-onset malignancies including breast carcinoma, sarcomas, and brain tumors. The analysis of the p53 gene in LFS families has been limited, in most studies to date, to the region between exon 5 and exon 9. In order to determine the frequency and distribution of germ-line p53 mutations in LFS, we sequenced the 10 coding exons of the p53 gene in lymphocytes and fibroblast cell lines derived from 14 families with the syndrome. Germ-line mutations were observed in eight families. Six mutations were missense mutations located between exons 5 and 8. One mutation was a nonsense mutation in exon 6, and one mutation was a splicing mutation in intron 4, generating aberrant shorter p53 RNA(s). In three families, a mutation of the p53 gene was observed in the fibroblast cell line derived from the proband. However, the mutation was not found in affected relatives in two families and in the blood from the one individual, indicating that the mutation probably occurred during cell culture in vitro. In four families, no mutation was observed. This study indicates that germ-line p53 mutations in LFS are mostly located between exons 5 and 8 and that {approximately}50% of patients with LFS have no germ-line mutations in the coding region of the p53 gene. The observation of p53 mutations occurring during primary cultures of human fibroblasts shows that analysis for germ-line p53 mutations must be performed on cells that have not been grown in vitro. 49 refs., 1 fig., 4 tabs.

  17. Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation.

    PubMed Central

    el-Mahdani, N.; Vaillant, J. C.; Guiguet, M.; Prévot, S.; Bertrand, V.; Bernard, C.; Parc, R.; Béréziat, G.; Hermelin, B.

    1997-01-01

    We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cases), there were also cases in which p53 mRNA was overexpressed in the absence of any mutation (29 cases) and those with a mutant gene in which the mRNA was not overexpressed (four cases). Moreover, the mutant p53 tumours exhibited an increase of p53 mRNA expression, which was significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. These data (1) show that p53 mRNA overexpression is a frequent event in colorectal tumours and is not predictive of the status of the gene, i.e. whether or not a mutation is present; (2) provide further evidence that p53 protein overexpression does not only result from an increase in the half-life of mutated p53 and suggest that inactivation of the p53 function in colorectal cancers involves at least two distinct mechanisms, including p53 overexpression and/or mutation; and (3) suggest that p53 mRNA overexpression is an early event, since it is not correlated with Dukes stage. PMID:9052405

  18. Functional Analysis of p53 Binding under Differential Stresses†

    PubMed Central

    Krieg, Adam J.; Hammond, Ester M.; Giaccia, Amato J.

    2006-01-01

    Hypoxia and DNA damage stabilize the p53 protein, but the subsequent effect that each stress has on transcriptional regulation of known p53 target genes is variable. We have used chromatin immunoprecipitation followed by CpG island (CGI) microarray hybridization to identify promoters bound by p53 under both DNA-damaging and non-DNA-damaging conditions in HCT116 cells. Using gene-specific PCR analysis, we have verified an association with CGIs of the highest enrichment (>2.5-fold) (REV3L, XPMC2H, HNRPUL1, TOR1AIP1, glutathione peroxidase 1, and SCFD2), with CGIs of intermediate enrichment (>2.2-fold) (COX7A2L, SYVN1, and JAG2), and with CGIs of low enrichment (>2.0-fold) (MYC and PCNA). We found little difference in promoter binding when p53 is stabilized by these two distinctly different stresses. However, expression of these genes varies a great deal: while a few genes exhibit classical induction with adriamycin, the majority of the genes are unchanged or are mildly repressed by either hypoxia or adriamycin. Further analysis using p53 mutated in the core DNA binding domain revealed that the interaction of p53 with CGIs may be occurring through both sequence-dependent and -independent mechanisms. Taken together, these experiments describe the identification of novel p53 target genes and the subsequent discovery of distinctly different expression phenomena for p53 target genes under different stress scenarios. PMID:16980608

  19. Frameshift and nonsense p53 mutations in squamous-cell carcinoma of head and neck - non-reactivity with 3 anti-p53 monoclonal-antibodies.

    PubMed

    Chen, Y; Xu, L; Massey, L; Zlotolow, I; Huvos, A; Garinchesa, P; Old, L

    1994-03-01

    p53 mutations in human tumors are often associated with overexpression of p53, and immunohistochemical detection of p53 has frequently been chosen as a simpler method than genetic analysis to access p53 mutations. In this study, we analyzed the p53 gene by single-strand conformational polymorphism (SSCP) and DNA sequencing, and correlated findings to Ab staining results. In a series of 58 squamous cell carcinoma, 15 showed mutations in exons 5, 6, 7, 8 and 9 by SSCP. Of these 15 cases, 11 were positive by antibody staining, and DNA sequencing showed missense mutations but no frameshift or nonsense mutations. In contrast, the antibody-negative cases had frameshift or nonsense mutations, but no missense mutations. SSCP analysis of these 4 cases showed mutations in exon 6 (2 cases), exon 7 (1), and exon 8 (1), respectively. In case 1, sequencing data revealed a single-base addition in exon 6, leading to a truncated gene product of 207 amino acids (aa), in contrast to 393 aa in wild-type p53. Similar frameshift mutations were shown in case 2 and case 3. Case 4, instead of a frameshift mutation, carried a nonsense mutation, and a truncated peptide of 235 aa. All these mutations thus shared the feature of producing truncated p53 products nonreactive with antibodies. We conclude that frameshift mutations as well as nonsense mutations can lead to altered p53 undetectable by available monoclonal antibodies. Our finding indicates that the absence of Ab reactivity does not rule out genetic alterations of the p53 gene in human tumors. PMID:21566966

  20. R248Q mutation--Beyond p53-DNA binding.

    PubMed

    Ng, Jeremy W K; Lama, Dilraj; Lukman, Suryani; Lane, David P; Verma, Chandra S; Sim, Adelene Y L

    2015-12-01

    R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants. PMID:26442703

  1. Depression of p53-independent Akt survival signals after high-LET radiation in mutated p53 cells

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo; Takahashi, Akihisa; Nakagawa, Yosuke

    Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses the activities of serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signals were analyzed with Western blotting analysis 1 h, 2 h, 3 h and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis.Akt-related protein levels were decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G _{2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and depresses cell growth by suppressing Akt-related signals, even in the mp53 cells.

  2. p53 mutations and overexpression in locally advanced breast cancers.

    PubMed Central

    Faille, A.; De Cremoux, P.; Extra, J. M.; Linares, G.; Espie, M.; Bourstyn, E.; De Rocquancourt, A.; Giacchetti, S.; Marty, M.; Calvo, F.

    1994-01-01

    Alterations in the p53 gene were analysed in 39 patients with locally advanced breast cancers (LABCs) (stage III-IV) with inflammatory signs in most cases (UICC stage T4d = 32 patients) by molecular and immunohistochemical (IHC) approaches. All patients were included in the same therapy protocol. Using polymerase chain reaction (PCR) and a single-strand conformational polymorphism migration technique (SSCP), the presence of mutations in exons 2-11, covering the entire coding sequence of the p53 gene, was evaluated. Using the mouse specific anti-human p53 monoclonal antibody (PAb 1801), we also looked for overexpression of the p53 protein in tissue sections. In 16 cases shifted bands were reproducibly identified by PCR-SSCP, and all but one (localised to exon 10) were in exons 5-8, the usual mutational hotspots. Fifteen of these 16 samples were sequenced and 14 of the suspected mutations (36%) were confirmed. Most of them (12) were single nucleotide substitutions, and transitions were more frequent (eight cases) than transversions (four cases). Fourteen of the tumour samples were positively stained with the monoclonal antibody PAb 1801, 11 with nuclear staining only, two with mixed cytoplasmic and nuclear staining and one with cytoplasmic staining only. Staining patterns were very heterogeneous in terms of the percentage of positive cells (10-75%) and their distribution in the tissue section (isolated foci or dispersed cells). In 11 of the 14 mutated cases a positive immunostaining was observed. The presence of a p53 mutation was significantly associated with larger tumour diameter (chi 2 = 7.490, P = 0.0062) and the presence of clinical metastases (stage IV) (chi 2 = 10.113, P = 0.0015). A non-statistically significant trend of association was observed between p53 mutation, negative oestrogen receptors and lower response rate to therapy. Our results in this group of patients and the heterogeneity of the staining of tumour cells in tissue sections suggest that p53

  3. p53 mutations and human papillomavirus DNA in oral squamous cell carcinoma: correlation with apoptosis.

    PubMed Central

    Koh, J. Y.; Cho, N. P.; Kong, G.; Lee, J. D.; Yoon, K.

    1998-01-01

    Forty-two oral squamous cell carcinomas (SCCs) were analysed for p53 mutations and human papillomavirus (HPV) infection to examine the prevalency of these factors and correlation with apoptotic index (AI; number of apoptotic cells per 100 tumour cells) of the tumour tissue. In polymerase chain reaction (PCR)-Southern blot analysis, HPV DNAs were detected from 22 out of 42 SCCs (52%) with predominance of HPV-16 (68%). p53 mutations in exons 5-8, screened by nested PCR-single-strand conformation polymorphism (PCR-SSCP) analysis, were observed in 16 of 42 tumours (38%). The state of the p53 gene did not show any correlation with HPV infection. The terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labelling (TUNEL) method was used for detection of apoptotic cells. The mean AI was 2.35, ranging from 0.31 to 6.63. SCCs associated with p53 mutation had significantly lower AI than those without p53 mutation (P < 0.01), whereas no difference in AI was found between SCCs with and without HPV infection. The results of this study confirmed that HPV infection and/or p53 mutations are implicated, but are not mutually exclusive events, in carcinogenesis of oral SCC and also showed that decrease in apoptosis is more closely related to p53 mutation than HPV infection. Images Figure 1 Figure 2 Figure 3 PMID:9703282

  4. Overexpression of p53 protein in squamous cell carcinomas of head and neck without apparent gene mutations.

    PubMed

    Xu, L; Chen, Y T; Huvos, A G; Zlotolow, I M; Rettig, W J; Old, L J; Garin-Chesa, P

    1994-06-01

    Structural alterations of p53 and overexpression of the p53 protein are found in a large proportion of human cancers. In this study, we examined the frequency of p53 mutations and p53 overexpression in squamous cell carcinomas (SQCC) of head and neck. Expression of p53 was detected by immunochemistry (IHC) with monoclonal antibodies defining three distinct epitopes: PAb421 (species cross-reactive epitope on normal and mutated p53), PAb1801 (epitope on normal and mutated human p53), and PAb240 (conformational epitope of mutated p53 and denatured normal p53). Genetic alterations of p53 were identified by single-strand conformational polymorphism (SSCP) analysis and DNA sequencing in selected cases. IHC assays revealed nuclear p53 immunostaining in 53% of cases (32 of 60) with PAb1801, 38% (23 of 60) with PAb421, and 32% (19 of 60) with PAb240. Cases positive with PAb421 or PAb240 were also positive with PAb1801, whereas PAb421 and PAb240 identified overlapping but distinct tumor subsets. Areas of carcinoma in situ present in the tumor specimens showed nuclear p53 immunostaining in 11 of 26 cases. SSCP analysis for exons 5-9, the most common sites of p53 abnormalities, revealed mutations in 26% (15 of 58) of the evaluable cases. Comparison of the SSCP results with the IHC results for PAb1801 identified 11 cases that were positive by both methods, 4 cases with p53 mutations that were negative by IHC, 20 cases positive by IHC but without detectable p53 mutations, and 23 cases negative by both methods. IHC with PAb240, which is thought to be specific for mutated p53, was positive in 9 cases with demonstrable p53 mutations and in 9 cases with no detectable mutations. DNA sequence analysis of nine tumors identified point mutations, nonsense mutations, and frame-shift mutations. In conclusion, our study shows that p53 overexpression in SQCC of head and neck as detected by IHC is a frequent finding, and that overexpression is associated with common types of p53 mutations in

  5. p53MutaGene: an online tool to estimate the effect of p53 mutational status on gene regulation in cancer

    PubMed Central

    Amelio, I; Knight, R A; Lisitsa, A; Melino, G; Antonov, A V

    2016-01-01

    p53MutaGene is the first online tool for statistical validation of hypotheses regarding the effect of p53 mutational status on gene regulation in cancer. This tool is based on several large-scale clinical gene expression data sets and currently covers breast, colon and lung cancers. The tool detects differential co-expression patterns in expression data between p53 mutated versus p53 normal samples for the user-specified genes. Statistically significant differential co-expression for a gene pair is indicative that regulation of two genes is sensitive to the presence of p53 mutations. p53MutaGene can be used in ‘single mode' where the user can test a specific pair of genes or in ‘discovery mode' designed for analysis of several genes. Using several examples, we demonstrate that p53MutaGene is a useful tool for fast statistical validation in clinical data of p53-dependent gene regulation patterns. The tool is freely available at http://www.bioprofiling.de/tp53 PMID:26986515

  6. Mutation of p53 Tumor Suppressor Gene in Hepatocellular Carcinoma.

    PubMed

    Tullo, A; Sbisà, E

    2000-01-01

    In recent years, the most commonly observed genetic alteration in hepatocellular carcinoma (HCC), as in many other tumors affecting man, has been reported to be the mutation of the p53 coding gene (1,2). This gene has the features of a recessive oncosuppressor in its wild-type form and can be a dominant oncogene in its mutated form. The gene (20 kb) is located in a single copy on the short arm of chromosome 17 and contains 11 exons interrupted by 10 introns. The mRNA (2.8 kb) codes for a protein of 393 amino acids, which is expressed at relatively low levels in all tissues. p53 product is a 53-kDa phosphoprotein involved in the regulation of cell cycle, in DNA synthesis and repair, and in cell differentiation and apoptosis (see refs. 3-6, for reviews). PMID:21341051

  7. p53 exon 5 mutations as a prognostic indicator of shortened survival in non-small-cell lung cancer.

    PubMed Central

    Vega, F. J.; Iniesta, P.; Caldés, T.; Sanchez, A.; López, J. A.; de Juan, C.; Diaz-Rubio, E.; Torres, A.; Balibrea, J. L.; Benito, M.

    1997-01-01

    Inactivation of the tumour-suppressor gene p53 has been described as one of the most common molecular changes found in lung tumours. Our purpose was to study the prognostic value of p53 alterations and to determine whether some specific mutation type in the p53 gene could be associated with poor clinical evolution in non-small-cell lung cancer (NSCLC) patients. To this end, we studied 81 resected primary NSCLCs in order to detect p53 alterations. p53 protein accumulation was analysed using immunohistochemistry methods; p53 gene mutations in exons 5-9 were studied using polymerase chain reaction-single-strand conformation polymorphism and sequencing techniques. p53 protein was immunodetected in 46.9% of lung carcinomas and 44.7% of p53-immunopositive tumours showed p53 mutations. Survival analysis was performed on 62 patients. No survival differences were found for patients with or without p53 immunopositivity. A shorter survival was found in patients with underlying p53 gene mutations, mainly in patients with squamous cell lung tumours; the worst prognosis was found when mutations were located in exon 5 (P = 0.007). In conclusion, the location of p53 mutations might be considered as a prognostic indicator for the evaluation of poor clinical evolution in NSCLC patients. Images Figure 1 PMID:9218731

  8. Tumors associated with p53 germline mutations: a synopsis of 91 families.

    PubMed Central

    Kleihues, P.; Schäuble, B.; zur Hausen, A.; Estève, J.; Ohgaki, H.

    1997-01-01

    Although inherited p53 mutations are present in all somatic cells, malignant transformation is limited to certain organs and target cells. The analysis of 475 tumors in 91 families with p53 germline mutations reported since 1990 shows that breast carcinomas are most frequent (24.0%), followed by bone sarcomas (12.6%), brain tumors (12.0%), and soft tissue sarcomas (11.6%). The sporadic counterparts of these tumors also carry a high incidence of p53 mutations, suggesting that in these tissues p53 mutations are capable of initiating the process of malignant transformation. Hematological neoplasms (acute lymphoblastic leukemia and Hodgkin's lymphoma) and adrenocortical carcinomas occurred at a frequency of 4.2 and 3.6%, respectively. One-half of the families fulfilled the diagnostic criteria of the Li-Fraumeni syndrome. There were marked organ-specific differences in the mean age at which carriers of p53 germline mutations present with neoplastic disease: 5 years for adrenocortical carcinomas, 16 years for sarcomas, 25 years for brain tumors, 37 years for breast cancer, and almost 50 years for lung cancer. Analysis of the mutational spectrum showed a predominance of G:C-->A:T transitions at CpG sites, suggesting an endogenous formation, eg, by deamination of 5-methylcytosine, rather than a causation by environmental mutagenic carcinogens. The location of mutations within the p53 gene was found to be similar to that of somatic mutations in sporadic tumors. There is no evidence of an organ or target cell specificity of p53 germline mutations; the occasional familial clustering of certain tumor types is more likely to reflect the genetic background of the respective kindred or the additional influence of environmental and nongenetic host factors. Images Figure 4 PMID:9006316

  9. Role of p53 gene mutations in human esophageal carcinogenesis: results from immunohistochemical and mutation analyses of carcinomas and nearby non-cancerous lesions.

    PubMed

    Shi, S T; Yang, G Y; Wang, L D; Xue, Z; Feng, B; Ding, W; Xing, E P; Yang, C S

    1999-04-01

    In order to characterize p53 alterations in esophageal cancer and to study their roles in carcinogenesis, we performed gene mutation and immunohistochemical analysis on 43 surgically resected human esophageal specimens, which contain squamous cell carcinoma (SCC) and adjacent non-cancerous lesions, from a high-incidence area of Linzhou in Henan, China. A newly developed immunohisto-selective sequencing (IHSS) method was used to enrich the p53 immunostain-positive cells for mutation analysis. p53 gene mutations were detected in 30 out of 43 (70%) SCC cases. Among 29 SCC cases that were stained positive for p53 protein, 25 (86%) were found to contain p53 mutations. In five cases of SCC with homogeneous p53 staining, the same mutation was observed in samples taken from four different positions of each tumor. In a well differentiated cancer nest, p53 mutation was detected in only the peripheral p53-positive cells. In tumor areas with heterogeneous p53 staining, either the area stained positive for p53 had an additional mutation to the negatively stained area or both areas lacked any detectable p53 mutation. In the p53-positive non-cancerous lesions adjacent to cancer, p53 mutations were detected in seven out of 16 (47%) samples with basal cell hyperplasia (BCH), eight out of 12 (67%) samples with dysplasia (DYS), and six out of seven (86%) samples with carcinoma in situ (CIS). All mutations found in lesions with DYS and CIS were the same as those in the nearby SCC. In seven cases of BCH containing mutations, only three had the same mutations as the nearby SCC. The results suggest that p53 mutation is an early event in esophageal carcinogenesis occurring in most of the DYS and CIS lesions, and cells with such mutations will progress to carcinoma, whereas the role of p53 mutations in BCH is less clear. PMID:10223186

  10. Heavy-ion-induced mutations in the gpt delta transgenic mouse: effect of p53 gene knockout.

    PubMed

    Yatagai, Fumio; Kurobe, Toshihiro; Nohmi, Takehiko; Masumura, Ken-ichi; Tsukada, Teruyo; Yamaguchi, Hirotake; Kasai-Eguchi, Kiyomi; Fukunishi, Nobuhisa

    2002-01-01

    The influence of the loss of p53 gene on heavy-ion-induced mutations was examined by constructing a new line of transgenic mice, p53 knockout (p53(-/-)) gpt delta. In this mouse model, deletions in lambda DNA integrated into the mouse genome are preferentially selected as Spi(-) phages, which can then be subjected to molecular analysis. Mice were exposed to 10 Gy of whole-body carbon-ion irradiation. The carbon ions were accelerated to 135 MeV/u by the RIKEN Ring Cyclotron. The p53 defect markedly enhanced the Spi(-) mutant frequency (MF) in the kidneys of mice exposed to C-ion irradiation: the Spi(-) MF increased 4.4- and 2.8-fold over the background level after irradiation in p53(-/-) and p53(+/+) mice, respectively. There was no significant difference in the background Spi(-) MF between p53(-/-) and p53(+/+) mice. Sequence analysis of the Spi(-) mutants indicated that the enhancement of kidney Spi(-) MF in p53(-/-) mice was primarily due to an increase in complex or rearranged-type deletions. In contrast to the kidney, the p53 defect had no effect on the Spi(-) MF in liver: Spi(-) MF increased 3.0- and 2.7-fold after the irradiation in p53(-/-) and p53(+/+) mice, respectively. Our results suggest that p53 suppresses deletion mutations induced by heavy-ion irradiation in an organ-specific manner. PMID:12355556

  11. Distinct pattern of p53 mutations in bladder cancer: relationship to tobacco usage.

    PubMed

    Spruck, C H; Rideout, W M; Olumi, A F; Ohneseit, P F; Yang, A S; Tsai, Y C; Nichols, P W; Horn, T; Hermann, G G; Steven, K

    1993-03-01

    A distinct mutational spectrum for the p53 tumor suppressor gene in bladder carcinomas was established in patients with known exposures to cigarette smoke. Single-strand conformational polymorphism analysis of exons 5 through 8 of the p53 gene showed inactivating mutations in 16 of 40 (40%) bladder tumors from smokers and 13 of 40 (33%) tumors from lifetime nonsmokers. Overall, 13 of the 50 (26%) total point mutations discovered in this and previous work were G:C-->C:G transversions, a relatively rare mutational type in human tumors. In six tumors, identical AGA (Arg)-->ACA (Thr) point mutations at codon 280 were observed, suggesting a mutational hotspot in these tumors. Comparison of the mutational spectra from smokers and nonsmokers revealed no obvious differences in the types or positions of inactivating mutations; however, 5 of 15 tumors containing point mutations from cigarette smokers had double mutations, four of which were tandem mutations on the same allele. No double mutations were found in tumors from nonsmoking patients. None of the mutations in smokers were G:C-->T:A transversions, which would be anticipated for exposure to the suspected cigarette smoke carcinogen 4-aminobiphenyl. The results suggest that, although cigarette smoke exposure may not significantly alter the kinds of mutations sustained in the p53 gene, it may act to increase the extent of DNA damage per mutagenic event. PMID:8439962

  12. Mutations in p53 change phosphatidylinositol acyl chain composition

    PubMed Central

    Naguib, Adam; Bencze, Gyula; Engle, Dannielle; Chio, Iok I. C.; Herzka, Tali; Watrud, Kaitlin; Bencze, Szilvia; Tuveson, David A.; Pappin, Darryl J; Trotman, Lloyd C.

    2014-01-01

    Phosphatidylinositol phosphate (PIP) second messengers relay extracellular growth cues through the phosphorylation status of the inositol sugar, a signal transduction system that is deregulated in cancer. In stark contrast to PIP inositol head group phosphorylation, changes in phosphatidylinositol (PI) lipid acyl chains in cancer have remained ill-defined. Here, we apply a mass spectrometry-based method capable of unbiased high-throughput identification and quantification of cellular PI acyl chain composition. Using this approach we find that PI lipid chains represent a cell-specific fingerprint and are unperturbed by serum-mediated signaling in contrast to the inositol head group. We find that mutation of Trp53 results in PIs containing reduced-length fatty acid moieties. Our results suggest that the anchoring tails of lipid second messengers form an additional layer of PIP signaling in cancer that operates independently of PTEN/PI3-Kinase activity, but is instead linked somehow to p53. PMID:25543136

  13. Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity.

    PubMed

    Xu, J; Wang, J; Hu, Y; Qian, J; Xu, B; Chen, H; Zou, W; Fang, J-Y

    2014-01-01

    Mutation of p53 is the most common genetic change in human cancer, causing complex effects including not only loss of wild-type function but also gain of novel oncogenic functions (GOF). It is increasingly likely that p53-hotspot mutations may confer different types and magnitudes of GOF, but the evidences are mainly supported by cellular and transgenic animal models. Here we combine large-scale cancer genomic data to characterize the prognostic significance of different p53 mutations in human cancers. Unexpectedly, only mutations on the Arg248 and Arg282 positions displayed significant association with shorter patient survival, but such association was not evident for other hotspot GOF mutations. Gene set enrichment analysis on these mutations revealed higher activity of drug-metabolizing enzymes, including the CYP3A4 cytochrome P450. Ectopic expression of p53 mutant R282W in H1299 and SaOS2 cells significantly upregulated CYP3A4 mRNA and protein levels, and cancer cell lines bearing mortality-associated p53 mutations display higher CYP3A4 expression and resistance to several CYP3A4-metabolized chemotherapeutic drugs. Our results suggest that p53 mutations have unequal GOF activities in human cancers, and future evaluation of p53 as a cancer biomarker should consider which mutation is present in the tumor, rather than having comparison between wild-type and mutant genotypes. PMID:24603336

  14. Mutation of p53 in squamous cell cancer of the head and neck: relationship to tumor cell proliferation.

    PubMed

    Wood, N B; Kotelnikov, V; Caldarelli, D D; Hutchinson, J; Panje, W R; Hegde, P; Leurgans, S; LaFollette, S; Taylor, S G; Preisler, H D; Coon, J S

    1997-06-01

    Rapid proliferation of squamous cell carcinomas of the head and neck (SCCHN) during therapy may contribute to treatment failure. We have investigated the presence of p53 abnormalities in patients with SCCHN as a correlate of proliferation rate and other pathologic and clinical variables. p53 Mutation, as determined by polymerase chain reaction and single-strand conformation polymorphism analysis of microdissected frozen sections of tumor biopsies, was significantly associated with a high labeling index, as determined by in vivo infusion of IUdR and BrdU (P = 0.017). p53 Protein expression was detected by immunohistochemistry with two different antibodies, followed by quantitative image analysis. Many cases exhibited strong p53 protein expression in the absence of mutations within the conserved region of the gene, and expression was not related to proliferation. The presence of p53 mutations was related to tumor differentiation in this group of patients. PMID:9185741

  15. Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53

    NASA Astrophysics Data System (ADS)

    Roemer, Rudolf A.; Shih, Chi-Tin; Roche, Stephan

    2008-03-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective tight-binding models which simulate hole propagation along the DNA, a statistical analysis of mutation-induced charge transfer modifications is performed. In contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker changes of transmission properties. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  16. Exclusive Association of p53 Mutation with Super-High Methylation of Tumor Suppressor Genes in the p53 Pathway in a Unique Gastric Cancer Phenotype

    PubMed Central

    Ema, Akira; Katada, Natsuya; Kikuchi, Shiro; Watanabe, Masahiko

    2015-01-01

    Background A comprehensive search for DNA methylated genes identified candidate tumor suppressor genes that have been proven to be involved in the apoptotic process of the p53 pathway. In this study, we investigated p53 mutation in relation to such epigenetic alteration in primary gastric cancer. Methods The methylation profiles of the 3 genes: PGP9.5, NMDAR2B, and CCNA1, which are involved in the p53 tumor suppressor pathway in combination with p53 mutation were examined in 163 primary gastric cancers. The effect of epigenetic reversion in combination with chemotherapeutic drugs on apoptosis was also assessed according to the tumor p53 mutation status. Results p53 gene mutations were found in 44 primary gastric tumors (27%), and super-high methylation of any of the 3 genes was only found in cases with wild type p53. Higher p53 pathway aberration was found in cases with male gender (p = 0.003), intestinal type (p = 0.005), and non-infiltrating type (p = 0.001). The p53 pathway aberration group exhibited less recurrence in lymph nodes, distant organs, and peritoneum than the p53 non-aberration group. In the NUGC4 gastric cancer cell line (p53 wild type), epigenetic treatment augmented apoptosis by chemotherapeutic drugs, partially through p53 transcription activity. On the other hand, in the KATO III cancer cell line (p53 mutant), epigenetic treatment alone induced robust apoptosis, with no trans-activation of p53. Conclusion In gastric cancer, p53 relevant and non-relevant pathways exist, and tumors with either pathway type exhibited unique clinical features. Epigenetic treatments can induce apoptosis partially through p53 activation, however their apoptotic effects may be explained largely by mechanism other than through p53 pathways. PMID:26447864

  17. p53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia

    SciTech Connect

    Gaidano, G.; Ballerini, P.; Gong, J.Z.; Inghirami, G.; Knowles, D.M.; Dalla-Favera, R. ); Neri, A, Centro Malattie del Sangue G. Marcora, Milan ); Newcomb, E.W. ); Magrath, I.T. )

    1991-06-15

    The authors have investigated the frequency of p53 mutations in B- and T-cell human lymphoid malignancies, including acute lymphoblastic leukemia, the major subtypes of non-Hodgkin lymphoma, and chronic lymphocytic leukemia. p53 exons 5-9 were studied by using genomic DNA from 197 primary tumors and 27 cell lines by single-strand conformation polymorphism analysis and by direst sequencing of PCR-amplified fragments. Mutations were found associated with (i) Burkitt lymphoma (9/27 biopsoes; 17/27 cell lines) and its leukemic counterpart L{sub 3}-type B-cell acute lymphoblastic leukemia (5/9), both of which also carry activated c-myc oncogenes, and (ii) B-cell chronic lymphocytic leukemia (6/40) and, in particular, its stage of progression known as Richter's transformation (3/7). Mutations were not found at any significant frequency in other types of non-Hodgkin lymphoma or acute lymphoblastic leukemia. In many cases, only the mutated allele was detectable, implying loss of the normal allele. These results suggest that (1) significant differences in the frequency of p53 mutations are present among subtypes of neoplasms derived from the same tissue; (2) p53 may play a role in tumor progression in B-cell chronic lymphocytic leukemia; (3) the presence of both p53 loss/inactivation and c-myc oncogene activation may be important in the pathogenesis of Burkitt lymphoma and its leukemia form L{sub 3}-type B-cell acute lymphoblastic leukemia.

  18. p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma.

    PubMed

    von Deimling, A; Eibl, R H; Ohgaki, H; Louis, D N; von Ammon, K; Petersen, I; Kleihues, P; Chung, R Y; Wiestler, O D; Seizinger, B R

    1992-05-15

    Loss of genetic material on the short arm of chromosome 17 is observed in approximately 40% of human astrocytomas (WHO grades II and III) and in approximately 30% of cases of glioblastoma multiforme (WHO grade IV). Previous studies of glioblastoma multiforme have shown that the p53 gene, located on the short arm of chromosome 17, is frequently mutated in these glioblastomas. To explore whether lower-grade astrocytomas are also associated with corresponding mutations of the p53 gene, we have investigated a series of 22 human astrocytomas of WHO grades II and III both for loss of heterozygosity on chromosome 17p and for p53 mutations. Mutations in the conserved regions of the p53 gene were identified by single strand conformation polymorphism analysis of exons 5, 6, 7, and 8 and were verified by direct DNA sequencing of the polymerase chain reaction products. p53 mutations were observed in 3 of 8 grade II astrocytomas and 4 of 14 grade II astrocytomas. In all 22 tumors, allelic loss of the short arm of chromosome 17 was investigated by restriction fragment length polymorphism analysis. One-half of the grade II astrocytomas (4 of 8) and grade III astrocytomas (7 of 14) exhibited allelic loss on chromosome 17p. Mutations in the p53 gene were exclusively observed in tumors with allelic loss on 17p. Our results show that p53 mutations are not restricted to glioblastoma multiforme and may be important in the tumorigenesis of lower-grade astrocytomas and that p53 mutations in lower-grade astrocytomas are associated with loss of chromosome 17p. These findings are consistent with a recessive mechanism of action of p53 in WHO grade II and III astrocytoma tumorigenesis. PMID:1349850

  19. Mutations of the p53 gene in human functional adrenal neoplasms

    SciTech Connect

    Shiu-Ru Lin; Yau-Jiunn Lee; Juei-Hsiung Tsai

    1994-02-01

    To clarify gene alterations in functional human adrenal tumors, the authors performed molecular analysis for p53 abnormalities in 23 cases with adrenal neoplasms. The immunohistochemical study with anti-p53 monoclonal antibody pAb1801 demonstrated that 10 of 23 (43.5%) cases overexpressed p53 protein in the tumor cells. Using a polymerase chain reaction-single strand conformation polymorphism study, 5 of 6 (83.3%) pheochromocytoma tissues (1 malignant and 5 benign) and 11 of 15 (73.3%) adrenocortical adenomas (2 with Cushing`s syndrome and 13 with primary aldosteronism, all benign) showed an apparent electrophoretic mobility shift between the tumor and its paired adjacent normal adrenal tissue. Such differences were detected in exon 4 (12 cases), exon 5 (2 cases), and exon 7 (3 cases). The types of these mutations in exon 4 were a substitution from threonine (ACC) to isoleucine (ATC) at codon 102 in 5 cases, from glutamine (CAG) to histidine (CAC) at codon 104 in 1 case, from glycine (GGG) to alanine (CGG) at codon 117 in 1 case, from glutamate (GAG) to glutamine (CAG) at codon 68 in 1 case, and single base changes resulting in a premature stop codon at codon 100 in 2 cases. A 2-basepair deletion at codon 175 in exon 5 resulting in a frame shift was identified in 1 case. A single point mutation was identified, resulting in the substitution of glutamine (CAG) for arginine (CGG) at codon 248 of exon 7 in 1 case. A single basepair deletion at codon 249 resulted in a frame shift in 2 cases. There was 1 case with malignant pheochromocytoma that combined a single point mutation in exon 4 and a single base deletion in exon 7. Only 2 of 23 cases showed a loss of a normal allele encoding in the p53 gene. Northern blot analysis with 1.8-kilobase p53 cDNA revealed that p53 mRNA was overexpressed in 6 cases. The results indicate that high frequencies of p53 gene mutation, especially in exon 4, exist in functional adrenal tumors. 39 refs., 6 figs., 4 tabs.

  20. Adiposity is associated with p53 gene mutations in breast cancer.

    PubMed

    Ochs-Balcom, Heather M; Marian, Catalin; Nie, Jing; Brasky, Theodore M; Goerlitz, David S; Trevisan, Maurizio; Edge, Stephen B; Winston, Janet; Berry, Deborah L; Kallakury, Bhaskar V; Freudenheim, Jo L; Shields, Peter G

    2015-10-01

    Mutations in the p53 gene are among the most frequent genetic events in human cancer and may be triggered by environmental and occupational exposures. We examined the association of clinical and pathological characteristics of breast tumors and breast cancer risk factors according to the prevalence and type of p53 mutations. Using tumor blocks from incident cases from a case-control study in western New York, we screened for p53 mutations in exons 2-11 using the Affymetrix p53 Gene Chip array and analyzed case-case comparisons using logistic regression. The p53 mutation frequency among cases was 28.1 %; 95 % were point mutations (13 % of which were silent) and the remainder were single base pair deletions. Sixty seven percent of all point mutations were transitions; 24 % of them are G:C>A:T at CpG sites. Positive p53 mutation status was associated with poorer differentiation (OR, 95 % CI 2.29, 1.21-4.32), higher nuclear grade (OR, 95 % CI 1.99, 1.22-3.25), and increased Ki-67 status (OR, 95 % CI 1.81, 1.10-2.98). Cases with P53 mutations were more likely to have a combined ER-positive and PR-negative status (OR, 95 % CI 1.65, 1.01-2.71), and a combined ER-negative and PR-negative status (OR, 95 % CI 2.18, 1.47-3.23). Body mass index >30 kg/m(2), waist circumference >79 cm, and waist-to-hip ratio >0.86 were also associated with p53 status; obese breast cancer cases are more likely to have p53 mutations (OR, 95 % CI 1.78, 1.19-2.68). We confirmed that p53 mutations are associated with less favorable tumor characteristics and identified an association of p53 mutation status and adiposity. PMID:26364297

  1. Activation of p53-Dependent Growth Suppression in Human Cells by Mutations in PTEN or PIK3CA▿

    PubMed Central

    Kim, Jung-Sik; Lee, Carolyn; Bonifant, Challice L.; Ressom, Habtom; Waldman, Todd

    2007-01-01

    In an effort to identify genes whose expression is regulated by activated phosphatidylinositol 3-kinase (PI3K) signaling, we performed microarray analysis and subsequent quantitative reverse transcription-PCR on an isogenic set of PTEN gene-targeted human cancer cells. Numerous p53 effectors were upregulated following PTEN deletion, including p21, GDF15, PIG3, NOXA, and PLK2. Stable depletion of p53 led to reversion of the gene expression program. Western blots revealed that p53 was stabilized in HCT116 PTEN−/− cells via an Akt1-dependent and p14ARF-independent mechanism. Stable depletion of PTEN in untransformed human fibroblasts and epithelial cells also led to upregulation of p53 and senescence-like growth arrest. Simultaneous depletion of p53 rescued this phenotype, enabling PTEN-depleted cells to continue proliferating. Next, we tested whether oncogenic PIK3CA, like inactivated PTEN, could activate p53. Retroviral expression of oncogenic human PIK3CA in MCF10A cells led to activation of p53 and upregulation of p53-regulated genes. Stable depletion of p53 reversed these PIK3CA-induced expression changes and synergized with oncogenic PIK3CA in inducing anchorage-independent growth. Finally, targeted deletion of an endogenous allele of oncogenic, but not wild-type, PIK3CA in a human cancer cell line led to a reduction in p53 levels and a decrease in the expression of p53-regulated genes. These studies demonstrate that activation of PI3K signaling by mutations in PTEN or PIK3CA can lead to activation of p53-mediated growth suppression in human cells, indicating that p53 can function as a brake on phosphatidylinositol (3,4,5)-triphosphate-induced mitogenesis during human cancer pathogenesis. PMID:17060456

  2. Functional analysis of the p53 pathway in neuroblastoma cells using the small-molecule MDM2 antagonist nutlin-3.

    PubMed

    Van Maerken, Tom; Rihani, Ali; Dreidax, Daniel; De Clercq, Sarah; Yigit, Nurten; Marine, Jean-Christophe; Westermann, Frank; De Paepe, Anne; Vandesompele, Jo; Speleman, Frank

    2011-06-01

    Suppression of p53 activity is essential for proliferation and survival of tumor cells. A direct p53-activating compound, nutlin-3, was used in this study, together with p53 mutation analysis, to characterize p53 pathway defects in a set of 34 human neuroblastoma cell lines. We identified 9 cell lines (26%) with a p53 loss-of-function mutation, including 6 missense mutations, 1 nonsense mutation, 1 in-frame deletion, and 1 homozygous deletion of the 3' end of the p53 gene. Sensitivity to nutlin-3 was highly predictive of absence of p53 mutation. Signaling pathways downstream of p53 were functionally intact in 23 of 25 cell lines with wild-type p53. Knockdown and overexpression experiments revealed a potentiating effect of p14(ARF) expression on the response of neuroblastoma cells to nutlin-3. Our findings shed light on the spectrum of p53 pathway lesions in neuroblastoma cells, indicate that defects in effector molecules downstream of p53 are remarkably rare in neuroblastoma, and identify p14(ARF) as a determinant of the outcome of the response to MDM2 inhibition. These insights may prove useful for the clinical translation of evolving strategies aimed at p53 reactivation and for the development of new therapeutic approaches. PMID:21460101

  3. 9-Hydroxyellipticine alters the conformation and DNA binding characteristics of mutated p53 protein.

    PubMed

    Sugikawa, E; Tsunoda, S; Nakanishi, N; Ohashi, M

    2001-01-01

    The tumor suppressor protein p53 is a phosphoprotein which shows growth and transformation suppression functions. Mutational loss of p53 function is the most frequently detected genetic event in human cancers. We examined whether 9-hydroxyellipticine (9HE), a cytotoxic agent, affected the tertiary structure of mutant p53 and DNA binding characteristics. Although several types of p53 mutants were resistant to degradation by calpain, the p53 mutants treated with 9HE were markedly sensitive to calpain as well as wild-type p53. Furthermore, mutant p53 proteins isolated from 9HE-treated cells regained the ability to bind a wild-type-specific p53 DNA consensus sequence. Wild-type p53 proteins prepared from both untreated and 9HE-treated cells bound the p53 consensus sequence and were degradaded by calpain equally well. These results suggest that 9HE affects the tertiary structure of mutated p53, which results in the restoration of DNA binding characteristics. PMID:11724337

  4. Associations between Polycyclic Aromatic Hydrocarbon–Related Exposures and p53 Mutations in Breast Tumors

    PubMed Central

    Mordukhovich, Irina; Rossner, Pavel; Terry, Mary Beth; Santella, Regina; Zhang, Yu-Jing; Hibshoosh, Hanina; Memeo, Lorenzo; Mansukhani, Mahesh; Long, Chang-Min; Garbowski, Gail; Agrawal, Meenakshi; Gaudet, Mia M.; Steck, Susan E.; Sagiv, Sharon K.; Eng, Sybil M.; Teitelbaum, Susan L.; Neugut, Alfred I.; Conway-Dorsey, Kathleen; Gammon, Marilie D.

    2010-01-01

    Background Previous studies have suggested that polycyclic aromatic hydrocarbons (PAHs) may be associated with breast cancer. However, the carcinogenicity of PAHs on the human breast remains unclear. Certain carcinogens may be associated with specific mutation patterns in the p53 tumor suppressor gene, thereby contributing information about disease etiology. Objectives We hypothesized that associations of PAH-related exposures with breast cancer would differ according to tumor p53 mutation status, effect, type, and number. Methods We examined this possibility in a population-based case–control study using polytomous logistic regression. As previously reported, 151 p53 mutations among 859 tumors were identified using Surveyor nuclease and confirmed by sequencing. Results We found that participants with p53 mutations were less likely to be exposed to PAHs (assessed by smoking status in 859 cases and 1,556 controls, grilled/smoked meat intake in 822 cases and 1,475 controls, and PAH–DNA adducts in peripheral mononuclear cells in 487 cases and 941 controls) than participants without p53 mutations. For example, active and passive smoking was associated with p53 mutation–negative [odds ratio (OR) = 1.55; 95% confidence interval (CI), 1.11–2.15] but not p53 mutation–positive (OR = 0.77; 95% CI, 0.43–1.38) cancer (ratio of the ORs = 0.50, p < 0.05). However, frameshift mutations, mutation number, G:C→A:T transitions at CpG sites, and insertions/deletions were consistently elevated among exposed subjects. Conclusions These findings suggest that PAHs may be associated with specific breast tumor p53 mutation subgroups rather than with overall p53 mutations and may also be related to breast cancer through mechanisms other than p53 mutation. PMID:20064791

  5. Splice-acceptor site mutation in p53 gene of hu888 zebrafish line.

    PubMed

    Piasecka, Alicja; Brzuzan, Paweł; Woźny, Maciej; Ciesielski, Sławomir; Kaczmarczyk, Dariusz

    2015-02-01

    The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response, which has been a subject of intense research for over 30 years. Recently, a zebrafish line which carries splice site mutation (G>T) in intron 8 of p53 gene (p53 (hu888) ), encoding the p53 paralogue, was developed (The Zebrafish Mutation Project). To uncover molecular effects of the mutation, we raised hu888 zebrafish line to adulthood and analyzed DNA, mRNA data, and protein levels of p53 to assess their potential contribution in molecular mechanisms of the mutant fish. To obtain zebrafish individuals homozygous for the point mutation, p53 (hu888) carriers were repeatedly incrossed but only heterozygous mutants (p53 (hu888/+) ) or p53-wild type hu888 zebrafish (p53 (+/+) ) were identified in their progeny. By evaluation of p53 expression changes in the liver of mutant and wild type hu888 zebrafish as well as of Tübingen reference strain, we demonstrated that two types of splicing occurred in each case: a classical one and the alternative splicing which involves the activation of cryptic splice-acceptor site in the exon 9 of zebrafish p53 pre-mRNA. The alternative splicing event results in a deletion 12 nucleotides in the mature mRNA, and produces a shortened variant of p53 protein. Interestingly, expression of p53 protein in liver of both heterozygous and wild type hu888 zebrafish was highly reduced compared to that in the reference strain. PMID:25183022

  6. p53 mutations, protein expression and cell proliferation in squamous cell carcinomas of the head and neck.

    PubMed Central

    Nylander, K.; Nilsson, P.; Mehle, C.; Roos, G.

    1995-01-01

    Thirty-three patients with squamous cell carcinoma of the head and neck region were studied concerning p53 protein expression and mutations in exons 4-9 of the p53 gene using immunohistochemistry, polymerase chain reaction (PCR)-single strand conformation polymorphism analysis and DNA sequencing. Immunoreactivity was found in 64% and p53 gene mutations in 39% of the tumours. Thirty-three per cent of the immunopositive and 50% of the immunonegative tumours were mutated within exons 5-8. In one immunopositive tumour three variants of deletions were observed. Sequencing of the p53 mutated, immunonegative tumours revealed four cases with deletions, one case with a transversion resulting in a stop codon and one case with a splice site mutation which could result in omission of the following exon at splicing. All mutations in the immunonegative tumours resulted in a truncated p53 protein. No association between p53 gene status and expression of proliferating cell nuclear antigen (PCNA) or cell proliferation as judged by in vivo incorporation of the thymidine analogue iododeoxyuridine (IdUrd) was found. Images Figure 1 Figure 2 PMID:7710950

  7. Reactive oxygen species generated by PAH o-quinones cause change-in-function mutations in p53.

    PubMed

    Yu, Deshan; Berlin, Jesse A; Penning, Trevor M; Field, Jeffrey

    2002-06-01

    Polycyclic aromatic hydrocarbons (PAHs) in tobacco smoke may cause human lung cancer via metabolic activation to ultimate carcinogens. p53 is one of the most commonly mutated tumor suppressor genes in this disease. An analysis of the p53 mutational database shows that G to T transversions are a signature mutation of lung cancer. Aldo-keto reductases (AKRs) activate PAH trans-dihydrodiol proximate carcinogens to yield their corresponding reactive and redox-active o-quinones, e.g., benzo[a]pyrene-7,8-dione (BP-7,8-dione). We employed a yeast reporter system to determine whether PAH o-quinones or the ROS they generate cause change-in-function mutations in p53. N-Methyl-N-nitroso-N'-nitro-guanidine, a standard alkylating mutagen was used as a positive control. MNNG caused a dose-dependent increase in mutant yeast colonies and at the highest concentrations 8-14% of the yeast colonies were mutated and were characterized by G:C to A:T transitions in the p53 DNA binding domain. Treatment of p53 cDNA with micromolar concentrations of (+/-)-anti-7,8-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene, (anti-BPDE, an ultimate carcinogen) or sub-micromolar concentrations of BP-7,8-dione in the presence of redox-cycling conditions (NADPH and CuCl(2)) also caused p53 mutations in a dose-dependent manner. We found that no mutants were observed with PAH o-quinones or NADPH alone. p53 mutagenesis by BP-7,8-dione was attenuated by ROS scavengers and completely abrogated by a combination of superoxide dismutase and catalase, indicating that both superoxide anion and hydroxyl radicals were the responsible mutagens. The bulk of the mutations detected were single-point mutations and were not random in occurrence. Over 46% of BP-7,8-dione-induced mutations were G:C to T:A transversions, consistent with the formation of 8-oxo-dGuo or its secondary oxidation products. In addition, 25% of these mutations were at hotspots in p53 which are known to be mutated in lung cancer

  8. CD4+ T cell responses to self- and mutated p53 determinants during tumorigenesis in mice.

    PubMed

    Fedoseyeva, E V; Boisgérault, F; Anosova, N G; Wollish, W S; Arlotta, P; Jensen, P E; Ono, S J; Benichou, G

    2000-06-01

    We analyzed CD4+ T helper responses to wild-type (wt) and mutated (mut) p53 protein in normal and tumor-bearing mice. In normal mice, we observed that although some self-p53 determinants induced negative selection of p53-reactive CD4+ T cells, other p53 determinants (cryptic) were immunogenic. Next, BALB/c mice were inoculated with J774 syngeneic tumor cell line expressing mut p53. BALB/c tumor-bearing mice mounted potent CD4+ T cell responses to two formerly cryptic peptides on self-p53. This response was characterized by massive production of IL-5, a Th2-type lymphokine. Interestingly, we found that T cell response was induced by different p53 peptides depending upon the stage of cancer. Mut p53 gene was shown to contain a single mutation resulting in the substitution of a tyrosine by a histidine at position 231 of the protein. Two peptides corresponding to wt and mutated sequences of this region were synthesized. Both peptides bound to the MHC class II-presenting molecule (Ed) with similar affinities. However, only mut p53.225-239 induced T cell responses in normal BALB/c mice, a result strongly suggesting that high-affinity wt p53.225-239 autoreactive T cells had been eliminated in these mice. Surprisingly, CD4+ T cell responses to both mut and wt p53.225-239 peptides were recorded in J774 tumor-bearing mice, a phenomenon attributed to the recruitment of low-avidity p53.225-239 self-reactive T cells. PMID:10820239

  9. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    SciTech Connect

    Herbert, Katharine J.; Cook, Anthony L. Snow, Elizabeth T.

    2014-06-15

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.

  10. The anti-leukemic activity of sodium dichloroacetate in p53mutated/null cells is mediated by a p53-independent ILF3/p21 pathway

    PubMed Central

    Agnoletto, Chiara; Brunelli, Laura; Melloni, Elisabetta; Pastorelli, Roberta; Casciano, Fabio; Rimondi, Erika; Rigolin, Gian Matteo; Cuneo, Antonio; Secchiero, Paola; Zauli, Giorgio

    2015-01-01

    B-chronic lymphocytic leukemia (B-CLL) patients harboring p53 mutations are invariably refractory to therapies based on purine analogues and have limited treatment options and poor survival. Having recently demonstrated that the mitochondria-targeting small molecule sodium dichloroacetate (DCA) exhibits anti-leukemic activity in p53wild-type B-CLL cells, the aim of this study was to evaluate the effect of DCA in p53mutated B-CLL cells and in p53mutated/null leukemic cell lines. DCA exhibited comparable cytotoxicity in p53wild-type and p53mutated B-CLL patient cell cultures, as well as in p53mutated B leukemic cell lines (MAVER, MEC-1, MEC-2). At the molecular level, DCA promoted the transcriptional induction of p21 in all leukemic cell types investigated, including p53null HL-60. By using a proteomic approach, we demonstrated that DCA up-regulated the ILF3 transcription factor, which is a known regulator of p21 expression. The role of the ILF3/p21 axis in mediating the DCA anti-leukemic activity was underscored by knocking-down experiments. Indeed, transfection with ILF3 and p21 siRNAs significantly decreased both the DCA-induced p21 expression and the DCA-mediated cytotoxicity. Taken together, our results emphasize that DCA is a small molecule that merits further evaluation as a therapeutic agent also for p53mutated leukemic cells, by acting through the induction of a p53-independent pathway. PMID:25544776

  11. An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations

    PubMed Central

    Caulin, Carlos; Nguyen, Thao; Lang, Gene A.; Goepfert, Thea M.; Brinkley, Bill R.; Cai, Wei-Wen; Lozano, Guillermina; Roop, Dennis R.

    2007-01-01

    Mutations in ras and p53 are the most prevalent mutations found in human nonmelanoma skin cancers. Although some p53 mutations cause a loss of function, most result in expression of altered forms of p53, which may exhibit gain-of-function properties. Therefore, understanding the consequences of acquiring p53 gain-of-function versus loss-of-function mutations is critical for the generation of effective therapies for tumors harboring p53 mutations. Here we describe an inducible mouse model in which skin tumor formation is initiated by activation of an endogenous K-rasG12D allele. Using this model we compared the consequences of activating the p53 gain-of-function mutation p53R172H and of deleting the p53 gene. Activation of the p53R172H allele resulted in increased skin tumor formation, accelerated tumor progression, and induction of metastasis compared with deletion of p53. Consistent with these observations, the p53R172H tumors exhibited aneuploidy associated with centrosome amplification, which may underlie the mechanism by which p53R172H exerts its oncogenic properties. These results clearly demonstrate that p53 gain-of-function mutations confer poorer prognosis than loss of p53 during skin carcinogenesis and have important implications for the future design of therapies for tumors that exhibit p53 gain-of-function mutations. PMID:17607363

  12. Mutations of the adenomatous polyposis coli and p53 genes in a child with Turcot's syndrome.

    PubMed

    Barel, D; Cohen, I J; Mor, C; Stern, S; Shapiro, R; Shomrat, R; Galanti, Y; Legum, C; Zaizov, R; Avigad, S

    1998-10-23

    Turcot's syndrome is a rare heritable complex that is characterized by an association between a primary neuroepithelial tumor of the central nervous system and multiple colonic polyps. The aim of this study was to analyze genetic alterations in a case of Turcot's syndrome in a 10.5-year-old boy in whom a colorectal tumor developed 3.5 years following astrocytoma. An APC germline non-sense mutation at codon 1284 leading to a truncated protein was identified, as was a somatic p53 mutation in the colorectal carcinoma in exon 7, codon 244. The latter was not identified in the primary astrocytoma. However, immunohistochemistry revealed high p53 protein expression in both tumors, suggesting an additional p53 mutation in the primary astrocytic tumor. The diverse p53 mutations observed in this unique syndrome in two different sites and stages of the disease may shed light on the multistep progression of the malignant events. PMID:10397462

  13. Simultaneous adrenocortical carcinoma and ganglioneuroblastoma in a child with Turner syndrome and germline p53 mutation.

    PubMed Central

    Pivnick, E K; Furman, W L; Velagaleti, G V; Jenkins, J J; Chase, N A; Ribeiro, R C

    1998-01-01

    The predisposition to malignancy that is dominantly inherited in Li-Fraumeni syndrome is associated with germline mutations of the tumour suppressor gene p53. Although second malignant neoplasms have been described in children with p53 mutations, the synchronous occurrence of two embryologically different tumours in these children has not been reported. A 20 month old girl with failure to thrive and congenital heart defects was found to have unilateral adrenal masses which, at surgical removal, proved to be an adrenocortical carcinoma and a ganglioneuroblastoma. Further investigation showed a germline p53 mutation and Turner syndrome. It remains to be determined what effect the 45,X chromosomal complement may have on the expression of neoplasms seen in patients with p53 germline mutations. Images PMID:9598730

  14. The therapeutic potential of p53 reactivation by nutlin-3a in ALK+ anaplastic large cell lymphoma with wild-type or mutated p53.

    PubMed

    Drakos, E; Atsaves, V; Schlette, E; Li, J; Papanastasi, I; Rassidakis, G Z; Medeiros, L J

    2009-12-01

    p53 is expressed frequently, but is rarely mutated in anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) tumours. Nutlin-3a is a recently developed small molecule that targets Mdm2, a critical negative regulator of p53, and disrupts the p53-Mdm2 interaction resulting in p53 stabilization and activation. We show that nutlin-3a activates p53 in ALK+ ALCL cells carrying a wild type (wt) or mutated but partially functional p53 gene resulting in p53-dependent cell-cycle arrest and apoptosis. Cell-cycle arrest was associated with upregulation of the cyclin-dependent kinase inhibitor p21. Nutlin-3a-induced apoptotic cell death was accompanied by Bax and Puma upregulation, downregulation of Bcl-xl, survivin, and caspase-3 cleavage, and this was reduced when p53-dependent transactivation activity was inhibited by pifithrin-alpha, or when pifithrin-mu was used to inhibit direct p53 targeting of mitochondria. Nutlin-3a sensitized the activation of the extrinsic apoptotic pathway in wt-p53 ALK+ ALCL cells, in part, through upregulation of DR-5 and downregulation of c-Flip(S/L), and was synergistic with TRAIL in cell death induction. In addition, nutlin-3a treatment enhanced doxorubicin cytotoxicity against ALK+ ALCL cells harbouring mt p53, and this was associated with p73 upregulation. These data suggest that disruption of the p53-mdm2 interaction by nutlin-3a offers a novel therapeutic approach for ALK+ ALCL patients. PMID:19741726

  15. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway.

    PubMed

    Antunes, Ana T; Goos, Yvonne J; Pereboom, Tamara C; Hermkens, Dorien; Wlodarski, Marcin W; Da Costa, Lydie; MacInnes, Alyson W

    2015-07-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  16. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    PubMed Central

    Hermkens, Dorien; Wlodarski, Marcin W.; Da Costa, Lydie; MacInnes, Alyson W.

    2015-01-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  17. Divergence between the high rate of p53 mutations in skin carcinomas and the low prevalence of anti-p53 antibodies

    PubMed Central

    Moch, C; Moysan, A; Lubin, R; Salmonière, P de La; Soufir, N; Galisson, F; Vilmer, C; Venutolo, E; Pelletier, F Le; Janin, A; Basset-Séguin, N

    2001-01-01

    Circulating anti-p53 antibodies have been described and used as tumoural markers in patients with various cancers and strongly correlate with the p53 mutated status of the tumours. No study has yet looked at the prevalence of such antibodies in skin carcinoma patients although these tumours have been shown to be frequently p53 mutated. Most skin carcinoma can be diagnosed by examination or biopsy, but aggressive, recurrent and/or non-surgical cases' follow up would be helped by a biological marker of residual disease. We performed a prospective study looking at the prevalence of anti-p53 antibodies using an ELISA technique in a series of 105 skin carcinoma patients in comparison with a sex- and age-matched control skin carcinoma-free group (n = 130). Additionally, p53 accumulation was studied by immunohistochemistry to confirm p53 protein altered expression in a sample of tumours. Anti-p53 antibodies were detected in 2.9% of the cases, with a higher prevalence in patients suffering from the more aggressive squamous cell type (SCC) of skin carcinoma (8%) than for the more common and slowly growing basal cell carcinoma type or BCC (1.5%). p53 protein stabilization could be confirmed in 80% of tumours studied by IHC. This low level of anti-p53 antibody detection contrasts with the high rate of p53 mutations reported in these tumours. This observation shows that the anti-p53 humoral response is a complex and tissue-specific mechanism. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11747330

  18. p53 mutation is a poor prognostic indicator for survival in patients with hepatocellular carcinoma undergoing surgical tumour ablation.

    PubMed Central

    Honda, K.; Sbisà, E.; Tullo, A.; Papeo, P. A.; Saccone, C.; Poole, S.; Pignatelli, M.; Mitry, R. R.; Ding, S.; Isla, A.; Davies, A.; Habib, N. A.

    1998-01-01

    Forty-two patients with hepatocellular carcinoma (HCC) were resected and their tumours were analysed for p53 mutations by GC-clamped denaturing gradient gel electrophoresis (DGGE), single-strand conformation polymorphism (SSCP) and gene sequencing. All the exons have been analysed in this study. Eight of 12 HCCs with cirrhosis due to viral hepatitis and the two patients with sarcomatoid changes displayed p53 mutations. In contrast, no mutation was observed in the fibrolamellar variant (n = 9), non-cirrhotics (n = 13) and alcoholic cirrhosis (n = 6). The mutations observed were in exons 5-8. Two mutations were observed in codons 136 and 213 as well as a T insertion between residues 156 and 157 (exon 5) and these are reported for the first time in HCC. Likewise, the silent mutation polymorphism in codon 213 was noticed in 3 of the 42 patients. Survival analysis of these patients after surgery showed the mean and median survival in patients with wild-type p53 to be 60 and 43 months respectively. In the group with p53 mutations, the mean and median survival was 15 and 12 months. The difference was statistically significant (P= 0.003). Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9514057

  19. p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)

    SciTech Connect

    Isoe, Yasuko; Okuyama, Teruhiro; Taniguchi, Yoshihito; Kubo, Takeo; Takeuchi, Hideaki

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Progenitor migration is accompanied by an increase in their numbers in the adult brain. Black-Right-Pointing-Pointer p53 Mutation suppressed an increase in the number of the migrated progenitors. Black-Right-Pointing-Pointer The decreased progenitor number is not due to enhanced cell death. Black-Right-Pointing-Pointer p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zones in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.

  20. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    SciTech Connect

    Nakagawa, Yosuke; Takahashi, Akihisa; Kajihara, Atsuhisa; Yamakawa, Nobuhiro; Imai, Yuichiro; Ota, Ichiro; Okamoto, Noritomo; Mori, Eiichiro; Noda, Taichi; Furusawa, Yoshiya; Kirita, Tadaaki; Ohnishi, Takeo

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp

  1. p53 mutations in colorectal cancer- molecular pathogenesis and pharmacological reactivation

    PubMed Central

    Li, Xiao-Lan; Zhou, Jianbiao; Chen, Zhi-Rong; Chng, Wee-Joo

    2015-01-01

    Colorectal cancer (CRC) is one of the most common malignancies with high prevalence and low 5-year survival. CRC is a heterogeneous disease with a complex, genetic and biochemical background. It is now generally accepted that a few important intracellular signaling pathways, including Wnt/β-catenin signaling, Ras signaling, and p53 signaling are frequently dysregulated in CRC. Patients with mutant p53 gene are often resistant to current therapies, conferring poor prognosis. Tumor suppressor p53 protein is a transcription factor inducing cell cycle arrest, senescence, and apoptosis under cellular stress. Emerging evidence from laboratories and clinical trials shows that some small molecule inhibitors exert anti-cancer effect via reactivation and restoration of p53 function. In this review, we summarize the p53 function and characterize its mutations in CRC. The involvement of p53 mutations in pathogenesis of CRC and their clinical impacts will be highlighted. Moreover, we also describe the current achievements of using p53 modulators to reactivate this pathway in CRC, which may have great potential as novel anti-cancer therapy. PMID:25574081

  2. [Mutation of P53 gene in a highly metastatic human lung cancer cell line].

    PubMed

    Zhang, B; Cui, W; Gao, Y

    1995-07-01

    PG cell line, derived from a lung giant cell carcinoma, has the characteristics of rapid growth and high tumorigenicity. When transplanted to nude mice, spontanious metastasis to lung and lymphnode is high in frequency and stable. To understand the molecular basis of PG's biological behaviors, expression of tumor suppressor gene p53 was studied. It was found that expression of p53 protein was increased as demonstrated by immunohistochemical stainning. A change in polymorphsim in exon 7 of p53 gene was detected by nonisotopic PCR-SSCP, suggesting a change in base composition. Thermal cycling sequencing of both strands of exon 7 demonstrated a transversion of CGG to CTT at codon 248. Similar study with the same methods on Ki-ras oncogene was done, but no mutation was found. The relationship between p53 gene mutation and the metastatic potential of PG cells needs further exploration. PMID:7587895

  3. KrasG12D and p53 mutation cause primary intra-hepatic cholangiocarcinoma

    PubMed Central

    O’Dell, Michael R.; Huang, Jing-Li; Whitney-Miller, Christa L.; Deshpande, Vikram; Rothberg, Paul; Grose, Valerie; Rossi, Randall M.; Zhu, Andrew X.; Land, Hartmut; Bardeesy, Nabeel; Hezel, Aram F.

    2012-01-01

    Intrahepatic cholangiocarcinoma (IHCC) is a primary cancer of the liver with a rising incidence and poor prognosis. Preclinical studies of the etiology and treatment of this disease are hampered by the relatively small number of available IHCC cell lines or genetically faithful animal models. Here we report the development of a genetically engineered mouse model of IHCC that incorporates two of the most common mutations in human IHCC, activating mutations of Kras (KrasG12D) and deletion of p53. Tissue-specific activation of KrasG12D alone resulted in the development of invasive IHCC with low penetrance and long latency. Latency was shortened by combining KrasG12D activation with heterozygous or homozygous deletion of p53 (mean survival of 56 weeks versus 19 weeks, respectively), which also resulted in widespread local and distant metastasis. Serial analysis showed that the murine models closely recapitulated the multistage histopathologic progression of the human disease, including the development of stroma-rich tumors and the pre-malignant biliary lesions, intraductal papillary biliary neoplasms (IPBN) and Von Meyenburg complexes (VMC; also known as biliary hamartomas). These findings establish a new genetically and histopathologically faithful model of IHCC and lend experimental support to the hypothesis that IPBN and VMC are precursors to invasive cancers. PMID:22266220

  4. Comparison of Effects of p53 Null and Gain-of-Function Mutations on Salivary Tumors in MMTV-Hras Transgenic Mice

    PubMed Central

    Jiang, Dadi; Dumur, Catherine I.; Massey, H. Davis; Ramakrishnan, Viswanathan; Subler, Mark A.; Windle, Jolene J.

    2015-01-01

    p53 is an important tumor suppressor gene which is mutated in ~50% of all human cancers. Some of these mutants appear to have acquired novel functions beyond merely losing wild-type functions. To investigate these gain-of-function effects in vivo, we generated mice of three different genotypes: MMTV-Hras/p53+/+, MMTV-Hras/p53-/-, and MMTV-Hras/p53R172H/R172H. Salivary tumors from these mice were characterized with regard to age of tumor onset, tumor growth rates, cell cycle distribution, apoptotic levels, tumor histopathology, as well as response to doxorubicin treatment. Microarray analysis was also performed to profile gene expression. The MMTV-Hras/p53-/- and MMTV-Hras/p53R172H/R172H mice displayed similar properties with regard to age of tumor onset, tumor growth rates, tumor histopathology, and response to doxorubicin, while both groups were clearly distinct from the MMTV-Hras/p53+/+ mice by these measurements. In addition, the gene expression profiles of the MMTV-Hras/p53-/- and MMTV-Hras/p53R172H/R172H tumors were tightly clustered, and clearly distinct from the profiles of the MMTV-Hras/p53+/+ tumors. Only a small group of genes showing differential expression between the MMTV-Hras/p53-/- and MMTV-Hras/p53R172H/R172H tumors, that did not appear to be regulated by wild-type p53, were identified. Taken together, these results indicate that in this MMTV-Hras-driven salivary tumor model, the major effect of the p53 R172H mutant is due to the loss of wild-type p53 function, with little or no gain-of-function effect on tumorigenesis, which may be explained by the tissue- and tumor type-specific properties of this gain-of-function mutant of p53. PMID:25695772

  5. Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53

    NASA Astrophysics Data System (ADS)

    Denissenko, Mikhail F.; Pao, Annie; Tang, Moon-Shong; Pfeifer, Gerd P.

    1996-10-01

    Cigarette smoke carcinogens such as benzo[a]pyrene are implicated in the development of lung cancer. The distribution of benzo[a]pyrene diol epoxide (BPDE) adducts along exons of the P53 gene in BPDE-treated HeLa cells and bronchial epithelial cells was mapped at nucleotide resolution. Strong and selective adduct formation occurred at guanine positions in codons 157, 248, and 273. These same positions are the major mutational hotspots in human lung cancers. Thus, targeted adduct formation rather than phenotypic selection appears to shape the P53 mutational spectrum in lung cancer. These results provide a direct etiological link between a defined chemical carcinogen and human cancer.

  6. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells.

    PubMed

    Bailey, J M; Hendley, A M; Lafaro, K J; Pruski, M A; Jones, N C; Alsina, J; Younes, M; Maitra, A; McAllister, F; Iacobuzio-Donahue, C A; Leach, S D

    2016-08-11

    Pancreatic cancer is one of the most lethal malignancies, with virtually all patients eventually succumbing to their disease. Mutations in p53 have been documented in >50% of pancreatic cancers. Owing to the high incidence of p53 mutations in PanIN 3 lesions and pancreatic tumors, we interrogated the comparative ability of adult pancreatic acinar and ductal cells to respond to oncogenic Kras and mutant Tp53(R172H) using Hnf1b:CreER(T2) and Mist1:CreER(T2) mice. These studies involved co-activation of a membrane-tethered GFP lineage label, allowing for direct visualization and isolation of cells undergoing Kras and mutant p53 activation. Kras activation in Mist1(+) adult acinar cells resulted in brisk PanIN formation, whereas no evidence of pancreatic neoplasia was observed for up to 6 months following Kras activation in Hnf1beta(+) adult ductal cells. In contrast to the lack of response to oncogenic Kras alone, simultaneous activation of Kras and mutant p53 in adult ductal epithelium generated invasive PDAC in 75% of mice as early as 2.5 months after tamoxifen administration. These data demonstrate that pancreatic ductal cells, whereas exhibiting relative resistance to oncogenic Kras alone, can serve as an effective cell of origin for pancreatic ductal adenocarcinoma in the setting of gain-of-function mutations in p53. PMID:26592447

  7. Association Between BRCA Status and P53 Status in Breast Cancer: A Meta-Analysis.

    PubMed

    Peng, Lin; Xu, Tao; Long, Ting; Zuo, Huaiquan

    2016-01-01

    BACKGROUND Research on BRCA mutation has meaningful clinical implications, such as identifying risk of second primary cancers and risk of hereditary cancers. This study seeks to summarize available data to investigate the association between BRCA status and P53 status by meta-analysis. MATERIAL AND METHODS We searched PubMed, Embase, and Cochrane library databases for relevant studies. Meta-analysis was conducted using STATA software. We summarized odds ratios by fixed-effects or random-effects models. RESULTS This study included a total of 4288 cases from 16 articles, which including 681 BRCA1 mutation carriers (BRCA1Mut), 366 carriers of BRCA2 mutation (BRCA2Mut), and 3241 carriers of normal versions of these genes. BRCA1Mut was significantly associated with P53 over-expression compared with BRCA2Mut (OR 1.851, 95% CI=1.393-2.458) or non-carriers (OR=2.503, 95% CI=1.493-4.198). No difference was found between p53 protein expression in BRCA2 Mut carriers and non-carriers (OR=0.881, 95% CI=0.670-1.158). CONCLUSIONS Our meta-analysis suggests that BRCA1Mut breast cancer patients are more likely to have P53 overexpression compared with BRCA2Mut and non-carriers. This information provides valuable information for clinicians who perform related studies in the future. PMID:27272763

  8. Association Between BRCA Status and P53 Status in Breast Cancer: A Meta-Analysis

    PubMed Central

    Peng, Lin; Xu, Tao; Long, Ting; Zuo, Huaiquan

    2016-01-01

    Background Research on BRCA mutation has meaningful clinical implications, such as identifying risk of second primary cancers and risk of hereditary cancers. This study seeks to summarize available data to investigate the association between BRCA status and P53 status by meta-analysis. Material/Methods We searched PubMed, Embase, and Cochrane library databases for relevant studies. Meta-analysis was conducted using STATA software. We summarized odds ratios by fixed-effects or random-effects models. Results This study included a total of 4288 cases from 16 articles, which including 681 BRCA1 mutation carriers (BRCA1Mut), 366 carriers of BRCA2 mutation (BRCA2Mut), and 3241 carriers of normal versions of these genes. BRCA1Mut was significantly associated with P53 over-expression compared with BRCA2Mut (OR 1.851, 95% CI=1.393–2.458) or non-carriers (OR=2.503, 95% CI=1.493–4.198). No difference was found between p53 protein expression in BRCA2 Mut carriers and non-carriers (OR=0.881, 95% CI=0.670–1.158). Conclusions Our meta-analysis suggests that BRCA1Mut breast cancer patients are more likely to have P53 overexpression compared with BRCA2Mut and non-carriers. This information provides valuable information for clinicians who perform related studies in the future. PMID:27272763

  9. Point-Mutation Effects on Charge-Transport Properties of the Tumor-Suppressor Gene p53

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Tin; Roche, Stephan; Römer, Rudolf A.

    2008-01-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective tight-binding models which simulate hole propagation along the DNA, a statistical analysis of mutation-induced charge transfer modifications is performed. In contrast to noncancerous mutations, mutation hot spots tend to result in significantly weaker changes of transmission properties. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  10. Two Li-Fraumeni syndrome families with novel germline p53 mutations: loss of the wild-type p53 allele in only 50% of tumours.

    PubMed Central

    Sedlacek, Z.; Kodet, R.; Kriz, V.; Seemanova, E.; Vodvarka, P.; Wilgenbus, P.; Mares, J.; Poustka, A.; Goetz, P.

    1998-01-01

    We describe two Li-Fraumeni syndrome families. Family A was remarkable for two early childhood cases of adrenocortical tumours, family B for a high incidence of many characteristic cancers, including a childhood case of choroid plexus tumour. Using direct sequencing, we analysed exons 5-9 of the p53 gene in constitutional DNA of individuals from both families and found two novel germline mutations in exon 5. In family A, we detected a point substitution in codon 138 (GCC to CCC), which resulted in the replacement of the alanine by a proline residue. Family B harboured a single-base pair deletion in codon 178 (CAC to -AC), resulting in a frameshift and premature chain termination. Three out of six tumours examined from both families, a renal cell carcinoma, a rhabdomyosarcoma and a breast cancer, showed loss of heterozygosity and contained only the mutant p53 allele. The remaining three neoplasms, both adrenocortical tumours and the choroid plexus tumour retained heterozygosity. Immunohistochemistry with anti-p53 antibody confirmed accumulation of p53 protein in tumours with loss of heterozygosity, while the remaining tumours were p53 negative. These results support the view that complete loss of activity of the wild-type p53 need not be the initial event in the formation of all tumours in Li-Fraumeni individuals. Images Figure 3 PMID:9569035

  11. Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants

    PubMed Central

    Danziger, Samuel A.; Swamidass, S. Joshua; Zeng, Jue; Dearth, Lawrence R.; Lu, Qiang; Chen, Jonathan H.; Cheng, Jainlin; Hoang, Vinh P.; Saigo, Hiroto; Luo, Ray; Baldi, Pierre; Brachmann, Rainer K.; Lathrop, Richard H.

    2009-01-01

    Many biomedical problems relate to mutant functional properties across a sequence space of interest, e.g., flu, cancer, and HIV. Detailed knowledge of mutant properties and function improves medical treatment and prevention. A functional census of p53 cancer rescue mutants would aid the search for cancer treatments from p53 rescue. We devised a general methodology for conducting a functional census of a mutation sequence space, and conducted a double-blind predictive test on the functional rescue property of 71 novel putative p53 cancer rescue mutants iteratively predicted in sets of 3. Double-blind predictive accuracy (15-point moving window) rose from 47% to 86% over the trial (r = 0.74). Code and data are available upon request1. PMID:17048398

  12. 4-Aminobiphenyl-DNA adducts and p53 mutations in bladder cancer.

    PubMed

    Martone, T; Airoldi, L; Magagnotti, C; Coda, R; Randone, D; Malaveille, C; Avanzi, G; Merletti, F; Hautefeuille, A; Vineis, P

    1998-02-01

    Epidemiologic studies have suggested that smokers of air-cured tobacco (rich in arylamines) are at higher risk of bladder cancer than smokers of flue-cured tobacco. The risk has been shown to be modulated by the N-acetyltransferase genotype. We analyzed the biopsies of 45 patients with bladder cancer. p53 mutations were sought by direct sequencing, and 4-aminobiphenyl-DNA adducts were measured by negative ion gas chromatography-mass spectrometry. 4-Aminobiphenyl-DNA adducts were higher in smokers of air-cured tobacco and in current smokers, but no relationship with the number of cigarettes smoked was found. Adducts were higher in more advanced histologic grades of tumors. No pattern was evident for p53 mutations. Seven of 9 mutations occurred in grade 3 tumors. No association was found between 4-ABP adducts and GSTM1 or NAT2 genetic polymorphisms. PMID:9466649

  13. p53 Transactivation and the Impact of Mutations, Cofactors and Small Molecules Using a Simplified Yeast-Based Screening System

    PubMed Central

    Bisio, Alessandra; Lion, Mattia; Jordan, Jennifer; Fronza, Gilberto; Menichini, Paola; Resnick, Michael A.; Inga, Alberto

    2011-01-01

    Background The p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4. Methodology/Principal Findings Given the many factors that might influence p53 function, including expression levels, mutations, cofactor proteins and small molecules, we expanded our previously described yeast-based system to provide the opportunity for efficient investigation of their individual and combined impacts in a miniaturized format. The system integrates i) variable expression of p53 proteins under the finely tunable GAL1,10 promoter, ii) single copy, chromosomally located p53-responsive and control luminescence reporters, iii) enhanced chemical uptake using modified ABC-transporters, iv) small-volume formats for treatment and dual-luciferase assays, and v) opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1. Conclusions/Significance We found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins. PMID:21674059

  14. Identification and characterization of two novel germ line p53 mutations in the non-LFS/non-LFL breast cancer families in Chinese population.

    PubMed

    Cao, A-Yong; Jin, Wei; Shi, Peng-Cheng; Di, Gen-hong; Shen, Zhen-Zhou; Shao, Zhi-Ming

    2010-01-01

    Germ line mutations in the tumor suppressor gene, p53, are known to cause Li-Fraumeni syndrome (LFS) or Li-Fraumeni-like syndrome (LFL). We sought to identify p53 germ line mutations in potential hereditary breast cancer patients without LFS/LFL phenotype, which will help us establish the genetic testing strategy for p53 in Chinese high-risk breast cancer families. We screened all coding exons and intron-exon boundaries of p53 in 240 women with early-onset breast cancer or affected relatives from four breast disease clinical centers in China by utilizing PCR-DHPLC and DNA sequencing analysis. Additionally, three cell lines (H1299, MCF-7, and MDA-MB-231) were transfected with pEGFP-N1-only or pEGFP-N1 vectors expressing either wild-type or two novel identified mutant p53. And then we performed flow cytometry analysis in the transfected cells to determine the status of cell apoptosis, and real-time PCR as well as western blot analysis to ascertain the expression of p53, p21, and p27. Two novel germ line mutations (563T > C and 643_660del18) were detected in two independent families. Neither of them, however, was present in the 768 normal controls. Functional assays revealed that the ability to trigger cell apoptosis and transcriptional activation of target gene under similar expression of p53 were lower in two mutants versus wild-type p53. Deleterious mutations of p53 seemed to be responsible for approximately 1% of non-BRCA1/BRCA2 hereditary breast cancer in Chinese population, and our findings suggested that p53 should be included in genetic testing of Chinese non-LFS/non-LFL high-risk breast cancer families. PMID:19238535

  15. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines.

    PubMed

    Bartek, J; Iggo, R; Gannon, J; Lane, D P

    1990-06-01

    The expression of the tumour suppressor gene p53 was analysed in 11 human breast cancer cell lines by immunohistochemistry, immunoprecipitation and cDNA sequencing. We used a panel of anti-p53 monoclonal antibodies for cell staining and found abnormalities in every case. Eight of the cell lines produce a form of p53 which can be immunoprecipitated by the monoclonal antibody PAb240 but not by PAb1620. In the murine system PAb240 only immunoprecipitates mutant p53. We sequenced p53 cDNA directly from four of the PAb240 positive cell lines using asymmetric PCR templates. All four contained missense mutations in p53 RNA, with no detectable expression of the wild type sequence. Different residues were affected in each cell line, but all the mutations changed amino acids conserved from man to Xenopus. These results imply that as in the murine system, the PAb240 antibody reliably detects a wide variety of p53 mutations and that these mutations have a common effect on the structure of p53. Immunohistochemical data suggest that p53 mutation is the commonest genetic alteration so far detected in primary breast cancer. PMID:1694291

  16. Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells

    SciTech Connect

    Biernat, W.; Aguzzi, A.; Sure, U.

    1995-09-01

    Gliosarcomas are morphologically heterogeneous tumors of the central nervous system composed of gliomatous and sarcomatous components. The histogenesis of the latter is still a matter of debate. As mutations of the p53 tumor suppressor gene represent an early event in the development of gliomas, we attempted to determine whether both components of gliosarcomas share identical alterations of the p53 gene. Using single-strand conformation analysis (SSCA) and direct DNA sequencing of the p53 gene, we analyzed dissected gliomatous and sarcomatous parts of 12 formalin-fixed, paraffin-embedded gliosarcomas. The two tumors that contained a p53 alteration were found to carry the identical mutation (exon 5; codon 151, CCC {r_arrow} TCC; codon 173, GTG {r_arrow} GTA) in the gliomatous and the sarcomatous components. These findings suggest a common origin of the two cellular components from neoplastic glial cells. 37 refs., 3 figs., 1 tab.

  17. UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement.

    PubMed Central

    Nakazawa, H; English, D; Randell, P L; Nakazawa, K; Martel, N; Armstrong, B K; Yamasaki, H

    1994-01-01

    Many human skin tumors contain mutated p53 genes that probably result from UV exposure. To investigate the link between UV exposure and p53 gene mutation, we developed two methods to detect presumptive UV-specific p53 gene mutations in UV-exposed normal skin. The methods are based on mutant allele-specific PCRs and ligase chain reactions and designed to detect CC to TT mutations at codons 245 and 247/248, using 10 micrograms of DNA samples. These specific mutations in the p53 gene have been reported in skin tumors. CC to TT mutations in the p53 gene were detected in cultured human skin cells only after UV irradiation, and the mutation frequency increased with increasing UV dose. Seventeen of 23 samples of normal skin from sun-exposed sites (74%) on Australian skin cancer patients contained CC to TT mutations in one or both of codons 245 and 247/248 of the p53 gene, and only 1 of 20 samples from non-sun-exposed sites (5%) harbored the mutation. None of 15 biopsies of normal skin from non-sun-exposed or intermittently exposed sites on volunteers living in France carried such mutations. Our results suggest that specific p53 gene mutations associated with human skin cancer are induced in normal skin by solar UV radiation. Measurement of these mutations may be useful as a biologically relevant measure of UV exposure in humans and as a possible predictor of risk for skin cancer. Images Fig. 2 Fig. 3 Fig. 4 PMID:8278394

  18. Genome-scale functional analysis of the human genes modulating p53 activity by regulating MDM2 expression in a p53-independent manner.

    PubMed

    Kim, Dong Min; Choi, Seung-Hyun; Yeom, Young Il; Min, Sang-Hyun; Kim, Il-Chul

    2016-09-16

    MDM2, a critical negative regulator of p53, is often overexpressed in leukemia, but few p53 mutations are found, suggesting that p53-independent MDM2 expression occurs due to alterations in MDM2 upstream regulators. In this study, a high MDM2 transcription level was observed (41.17%) regardless of p53 expression in patient with acute myeloid leukemia (AML). Therefore, we performed genome-scale functional screening of the human genes modulating MDM2 expression in a p53-independent manner. We searched co-expression profiles of genes showing a positive or negative pattern with MDM2 expression in a DNA microarray database, selected1089 links, and composed a screening library of 368 genes. Using MDM2 P1 and P2 promoter-reporter systems, we screened clones regulating MDM2 transcriptions in a p53-independent manner by overexpression. Nine clones from the screening library showed enhanced MDM2 promoter activity and MDM2 expression in p53-deficient HCT116 cells. Among them, six clones, including NTRK2, GNA15, SFRS2, EIF5A, ELAVL1, and YWHAB mediated MAPK signaling for expressing MDM2. These results indicate that p53-independent upregulation of MDM2 by increasing selected clones may lead to oncogenesis in AML and that MDM2-modulating genes are novel potential targets for AML treatment. PMID:27524244

  19. FOLATE AND VITAMIN B6 INTAKE AND RISK OF COLON CANCER IN RELATION TO P53 MUTATIONAL STATUS

    PubMed Central

    Schernhammer, Eva S.; Ogino, Shuji; Fuchs, Charles S.

    2009-01-01

    BACKGROUND AND AIMS Considerable evidence suggests a low-folate diet increases colorectal cancer risk, although a recent randomized trial indicates that folate supplementation may not reduce the risk of adenoma recurrence. In laboratory models, folate deficiency appears to induce p53 mutation. METHODS We immunohistochemically assayed p53 expression in paraffin-fixed colon cancer specimens in a large prospective cohort of women with 22 years of follow-up, to examine the relationship of folate intake and intake of other one-carbon nutrients to risks by tumor p53-mutational status. RESULTS A total of 399 incident colon cancers accessible for p53 expression were available. The effect of folate differed significantly according to p53 mutational status (Pheterogeneity = 0.01). Compared with women reporting less than 200 μg of folate per day, the multivariate relative risks (RRs) for p53 overexpressing (mutated) cancers were 0.54 (95% CI, 0.36-0.81) for women who consumed 200-299 μg per day, 0.42 (95% CI, 0.24-0.76) for those who consumed 300-399 μg per day, and 0.54 (95% CI, 0.35-0.83) for ≥ 400 μg per day. In contrast, total folate intake had no influence on wild-type tumors (RR, 1.05; 95% CI, 0.73-1.51, comparing ≥ 400 to < 200 μg per day). Similarly, high vitamin B6 intake conferred a protective effect on p53-mutated cancers (top versus bottom quintile, RR, 0.57; 95% CI, 0.35-0.94; Pheterogeneity = 0.01) but had no effect on p53 wild-type tumors. CONCLUSIONS We found that low folate and vitamin B6 intake was associated with an increased risk of p53 mutated colon cancers but not wild-type tumors. PMID:18619459

  20. Genome-wide analysis of the p53 gene regulatory network in the developing mouse kidney

    PubMed Central

    Li, Yuwen; Liu, Jiao; McLaughlin, Nathan; Bachvarov, Dimcho; El-Dahr, Samir S.

    2013-01-01

    Despite mounting evidence that p53 senses and responds to physiological cues in vivo, existing knowledge regarding p53 function and target genes is largely derived from studies in cancer or stressed cells. Herein we utilize p53 transcriptome and ChIP-Seq (chromatin immunoprecipitation-high throughput sequencing) analyses to identify p53 regulated pathways in the embryonic kidney, an organ that develops via mesenchymal-epithelial interactions. This integrated approach allowed identification of novel genes that are possible direct p53 targets during kidney development. We find the p53-regulated transcriptome in the embryonic kidney is largely composed of genes regulating developmental, morphogenesis, and metabolic pathways. Surprisingly, genes in cell cycle and apoptosis pathways account for <5% of differentially expressed transcripts. Of 7,893 p53-occupied genomic regions (peaks), the vast majority contain consensus p53 binding sites. Interestingly, 78% of p53 peaks in the developing kidney lie within proximal promoters of annotated genes compared with 7% in a representative cancer cell line; 25% of the differentially expressed p53-bound genes are present in nephron progenitors and nascent nephrons, including key transcriptional regulators, components of Fgf, Wnt, Bmp, and Notch pathways, and ciliogenesis genes. The results indicate widespread p53 binding to the genome in vivo and context-dependent differences in the p53 regulon between cancer, stress, and development. To our knowledge, this is the first comprehensive analysis of the p53 transcriptome and cistrome in a developing mammalian organ, substantiating the role of p53 as a bona fide developmental regulator. We conclude p53 targets transcriptional networks regulating nephrogenesis and cellular metabolism during kidney development. PMID:24003036

  1. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    SciTech Connect

    Yu Xiaozhong Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S.; Faustman, Elaine M.

    2008-12-15

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As{sup 3+}) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53{sup +/+} and p53{sup -/-} mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53{sup -/-} cells than in the p53{sup +/+} cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As{sup 3+}. A significant alteration in the Nrf2-mediated oxidative stress response pathway was found in both genotypes. In p53{sup +/+} MEFs, As{sup 3+} induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53{sup -/-} MEFs, As{sup 3+} induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic's dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent.

  2. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    PubMed Central

    Yu, Xiaozhong; Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S; Faustman, Elaine M

    2008-01-01

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As3+) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53+/+ and p53−/− mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53−/− cells than in the p53+/+ cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As3+. A significant alteration in the Nrf2-mediated oxidative stress response pathway were found in both genotypes. In p53+/+ MEFs, As3+ induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53−/− MEFs, As3+ induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic’s dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent. PMID:18929588

  3. A novel p53 mutant in human breast cancer revealed by multiple SSCP analysis.

    PubMed

    Nigro, V; Napolitano, M; Abbondanza, C; Medici, N; Puca, A A; Schiavulli, M; Armetta, I; Moncharmont, B; Puca, G A; Molinari, A M

    1994-04-29

    DNA from tumor tissue and peripheral blood lymphocytes of primary breast cancer patients was screened for the presence of p53 mutations. In DNA from one tumor we found that the histidine codon 193 (CAT) was somatically converted to arginine (CGT). This amino acid residue is highly conserved in many species, thus suggesting that such mutation plays an important role in the loss of wt-p53 function. PMID:8187056

  4. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms

    PubMed Central

    Allen, Mary Ann; Andrysik, Zdenek; Dengler, Veronica L; Mellert, Hestia S; Guarnieri, Anna; Freeman, Justin A; Sullivan, Kelly D; Galbraith, Matthew D; Luo, Xin; Kraus, W Lee; Dowell, Robin D; Espinosa, Joaquin M

    2014-01-01

    The p53 transcription factor is a potent suppressor of tumor growth. We report here an analysis of its direct transcriptional program using Global Run-On sequencing (GRO-seq). Shortly after MDM2 inhibition by Nutlin-3, low levels of p53 rapidly activate ∼200 genes, most of them not previously established as direct targets. This immediate response involves all canonical p53 effector pathways, including apoptosis. Comparative global analysis of RNA synthesis vs steady state levels revealed that microarray profiling fails to identify low abundance transcripts directly activated by p53. Interestingly, p53 represses a subset of its activation targets before MDM2 inhibition. GRO-seq uncovered a plethora of gene-specific regulatory features affecting key survival and apoptotic genes within the p53 network. p53 regulates hundreds of enhancer-derived RNAs. Strikingly, direct p53 targets harbor pre-activated enhancers highly transcribed in p53 null cells. Altogether, these results enable the study of many uncharacterized p53 target genes and unexpected regulatory mechanisms. DOI: http://dx.doi.org/10.7554/eLife.02200.001 PMID:24867637

  5. Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice.

    PubMed

    Lin, Patrick P; Pandey, Manoj K; Jin, Fenghua; Raymond, A Kevin; Akiyama, Haruhiko; Lozano, Guillermina

    2009-10-01

    Mice bearing germ line mutations of p53 develop sarcomas at a significant rate. Since they are susceptible to a variety of other malignancies, they are not ideally suited to the study of sarcomas. To test the possibility that targeted mutation of tumor suppressor genes in early mesenchymal cells would induce formation of sarcomas, the Prx1-cre transgenic mouse was crossed to mice-bearing floxed alleles of p53 and Rb. Mice with homozygous deletion of p53 (Prx1-cre p53(lox/lox)) developed sarcomas in the extremities at a mean time of 50 weeks. Osteosarcomas (OS) were the most common type of sarcoma (61%) followed by poorly differentiated soft tissue sarcomas (PDSTS) (32%). Homozygous deletion of p53 produced sarcomas significantly more rapidly than heterozygous deletion, which resulted in sarcoma formation after a mean of 96 weeks. Mice with homozygous Rb mutation (Prx1-cre Rb(lox/lox)) developed normally and had no ostensible defects in the limbs. In contrast to p53, targeted deletion of Rb did not produce sarcomas in the limbs. However, simultaneous deletion of Rb and p53 accelerated the time to sarcoma formation, and a greater percentage of PDSTS were found. Deletion of p53 in committed osteoblasts by the Col1a1-cre transgenic mouse bearing an osteoblast-specific enhancer resulted in a high percentage of OS. These findings suggest that deletion of p53 in mesenchymal cells that give rise to osteoblasts is a powerful initiator of OS. Deletion of Rb does not initiate sarcoma formation in mice, but it accelerates formation of both soft tissue sarcomas and OS. PMID:19635748

  6. CHEMICAL SELECTIVITY OF NUCLEOBASE ADDUCTION RELATIVE TO IN VIVO MUTATION SITES ON EXON 7 FRAGMENT OF P53 TUMOR SUPPRESSOR GENE

    PubMed Central

    Malla, Spundana; Kadimisetty, Karteek; Fu, You-Jun; Choudhary, Dharamainder; Jansson, Ingela; Schenkman, John B.; Rusling, James F.

    2015-01-01

    Damage to p53 tumor suppressor gene is found in half of all human cancers. Databases integrating studies of large numbers of tumors and cancer cell cultures show that mutation sites of specific p53 codons are correlated with specific types of cancers. If the most frequently damaged p53 codons in vivo correlate with the most frequent chemical damage sites in vitro, predictions of organ-specific cancer risks might result. Herein, we describe LC-MS/MS methodology to reveal codons with metabolite-adducted nucleobases by LC-MS/MS for oligonucleotides longer than 20 base pairs. Specifically, we used a known carcinogen, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) to determine the most frequently adducted nucleobases within codons. We used a known sequence of 32 base pairs (bp) representing part of p53 exon 7 with 5 possible reactive hot spots. This is the first nucleobase reactivity study of a double stranded DNA p53 fragment featuring more than 20 base pairs with multiple reactive sites. We reacted the 32 bp fragment with benzo[a]pyrene metabolite BPDE that undergoes nucleophilic substitution by DNA bases. Liquid chromatography-mass spectrometry (LC-MS/MS) was used for sequencing of oligonucleotide products from the reacted 32 bp fragment after fragmentation by a restriction endonuclease. Analysis of the adducted p53 fragment compared with unreacted fragment revealed guanines of codons 248 and 244 as most frequently targeted, which are also mutated with high frequency in human tumors. Codon 248 is mutated in non-small cell and small cell lung, head and neck, colorectal and skin cancer, while codon 244 is mutated in small cell lung cancer, all of which involve possible BDPE exposure. Results suggest the utility of this approach for screening of adducted p53 gene by drugs and environmental chemicals to predict risks for organ specific cancers. PMID:26417421

  7. Destabilizing missense mutations in the tumour suppressor protein p53 enhance its ubiquitination in vitro and in vivo

    PubMed Central

    Shimizu, Harumi; Saliba, David; Wallace, Maura; Finlan, Lee; Langridge-Smith, Patrick R. R.; Hupp, Ted R.

    2006-01-01

    p53 ubiquitination catalysed by MDM2 (murine double minute clone 2 oncoprotein) provides a biochemical assay to dissect stages in E3-ubiquitin-ligase-catalysed ubiquitination of a conformationally flexible protein. A mutant form of p53 (p53F270A) containing a mutation in the second MDM2-docking site in the DNA-binding domain of p53 (F270A) is susceptible to modification of long-lived and high-molecular-mass covalent adducts in vivo. Mutant F270A is hyperubiquitinated in cells as defined by immunoprecipitation and immunoblotting with an anti-ubiquitin antibody. Transfection of His-tagged ubiquitin along with p53R175H or p53F270A also results in selective hyperubiquitination in cells under conditions where wild-type p53 is refractory to covalent modification. The extent of mutant p53R175H or p53F270A unfolding in cells as defined by exposure of the DO-12 epitope correlates with the extent of hyperubiquitination, suggesting a link between substrate conformation and E3 ligase function. The p53F270A:6KR chimaeric mutant (where 6KR refers to the simultaneous mutation of lysine residues at positions 370, 372, 373, 381, 382 and 386 to arginine) maintains the high-molecular-mass covalent adducts and is modified in an MDM2-dependent manner. Using an in vitro ubiquitination system, mutant p53F270A and the p53F270A:6KR chimaeric mutant is also subject to hyperubiquitination outwith the C-terminal domain, indicating direct recognition of the mutant p53 conformation by (a) factor(s) in the cell-free ubiquitination system. These data identify an in vitro and in vivo assay with which to dissect how oligomeric protein conformational alterations are linked to substrate ubiquitination in cells. This has implications for understanding the recognition of misfolded proteins during aging and in human diseases such as cancer. PMID:16579792

  8. Splice-site mutation of the p53 gene in a family with hereditary breast-ovarian cancer.

    PubMed

    Jolly, K W; Malkin, D; Douglass, E C; Brown, T F; Sinclair, A E; Look, A T

    1994-01-01

    Germline mutations within evolutionary conserved exons of the p53 gene predispose to tumor development in several familial cancer syndromes. We now report identification of a novel p53 mutation affecting the splice acceptor site of exon 6 in the germline DNA of a family with hereditary breast-ovarian cancer. This splice-site mutation, which results in omission of exon 6 and creates a frame-shift and premature stop codon in transcripts from the mutant allele, was found in seven family members--four of whom have developed breast, ovarian or choroid plexus tumors before age 35. Our finding suggests the need to examine the entire p53 gene for splice-site, frame-shift, and nonsense (as well as missense) mutations in families with early-onset hereditary breast and breast-ovarian cancers not linked to the BRCA1 gene on chromosome 17q. We propose that the term 'p53 familial cancer syndrome' be applied to clusters of tumors in families with documented germline p53 mutations, regardless of the histopathologic findings or pattern of tumor development. PMID:8302608

  9. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    ERIC Educational Resources Information Center

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  10. A constitutional de novo mutation in exon 8 of the p53 gene in a patient with multiple primary malignancies.

    PubMed Central

    Speiser, P.; Gharehbaghi-Schnell, E.; Eder, S.; Haid, A.; Kovarík, J.; Nenutil, R.; Sauter, G.; Schneeberger, C. H.; Vojtesek, B.; Wiltschke, C. H.; Zeillinger, R.

    1996-01-01

    We report a constitutional point mutation of codon 278 in exon 8 of the TP53 gene that has not yet been described as a germ-line mutation. A 52-year-old female developed multiple primary malignancies (liposarcoma, breast cancer, malignant histiocytoma, occult adenocarcinoma). The mutation found in her tumour and peripheral blood lymphocyte DNA is a cytosine to thymine transition at the second position of codon 278 resulting in an amino acid exchange from proline to leucine in the DNA-binding domain. Evaluation of the patient's family revealed that both of her sons were affected by the same mutation. Although the patient's mother had died already, we were able to demonstrate by polymorphic microsatellite analysis that the defective allele originated from the maternal side. As four brothers and one sister had inherited the same allele, which however was wild type, we were able to show that the mutation must have occurred in the germ cells of the patient's mother and that it may therefore be called de novo. This explains the lack of a high cancer incidence in the family history. All tumours tested showed positive immunohistochemical staining for p53. Loss of heterozygosity was found in five of seven tumours, one showing chromosome 17 monosomy. Images Figure 1 PMID:8688334

  11. The conformationally flexible S9-S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo.

    PubMed

    Shimizu, Harumi; Burch, Lindsay R; Smith, Amanda J; Dornan, David; Wallace, Maura; Ball, Kathryn L; Hupp, Ted R

    2002-08-01

    Although the N-terminal BOX-I domain of the tumor suppressor protein p53 contains the primary docking site for MDM2, previous studies demonstrated that RNA stabilizes the MDM2.p53 complex using a p53 mutant lacking the BOX-I motif. In vitro assays measuring the specific activity of MDM2 in the ligand-free and RNA-bound state identified a novel MDM2 interaction site in the core domain of p53. As defined using phage-peptide display, the RNA.MDM2 isoform exhibited a notable switch in peptide binding specificity, with enhanced affinity for novel peptide sequences in either p53 or small nuclear ribonucleoprotein-U (snRNP-U) and substantially reduced affinity for the primary p53 binding site in the BOX-I domain. The consensus binding site for the RNA.MDM2 complex within p53 is SGXLLGESXF, which links the S9-S10 beta-sheets flanking the BOX-IV and BOX-V motifs in the core domain and which is a site of reversible conformational flexibility in p53. Mutation of conserved amino acids in the linker at Ser(261) and Leu(264), which bridges the S9-S10 beta-sheets, stimulated p53 activity from reporter templates and increased MDM2-dependent ubiquitination of p53. Furthermore, mutation of the conserved Phe(270) within the S10 beta-sheet resulted in a mutant p53, which binds more stably to RNA.MDM2 complexes in vitro and which is strikingly hyper-ubiquitinated in vivo. Introducing an Ala(19) mutation into the p53(F270A) protein abolished both RNA.MDM2 complex binding and hyper-ubiquitination in vivo, thus indicating that p53(F270A) protein hyper-ubiquitination depends upon MDM2 binding to its primary site in the BOX-I domain. Together, these data identify a novel MDM2 binding interface within the S9-S10 beta-sheet region of p53 that plays a regulatory role in modulating the rate of MDM2-dependent ubiquitination of p53 in cells. PMID:11925449

  12. Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53.

    PubMed

    Williamson, Chris T; Kubota, Eiji; Hamill, Jeffrey D; Klimowicz, Alexander; Ye, Ruiqiong; Muzik, Huong; Dean, Michelle; Tu, LiRen; Gilley, David; Magliocco, Anthony M; McKay, Bruce C; Bebb, D Gwyn; Lees-Miller, Susan P

    2012-06-01

    Poly-ADP ribose polymerase (PARP) inhibitors have shown promise in the treatment of human malignancies characterized by deficiencies in the DNA damage repair proteins BRCA1 and BRCA2 and preclinical studies have demonstrated the potential effectiveness of PARP inhibitors in targeting ataxia-telangiectasia mutated (ATM)-deficient tumours. Here, we show that mantle cell lymphoma (MCL) cells deficient in both ATM and p53 are more sensitive to the PARP inhibitor olaparib than cells lacking ATM function alone. In ATM-deficient MCL cells, olaparib induced DNA-PK-dependent phosphorylation and stabilization of p53 as well as expression of p53-responsive cell cycle checkpoint regulators, and inhibition of DNA-PK reduced the toxicity of olaparib in ATM-deficient MCL cells. Thus, both DNA-PK and p53 regulate the response of ATM-deficient MCL cells to olaparib. In addition, small molecule inhibition of both ATM and PARP was cytotoxic in normal human fibroblasts with disruption of p53, implying that the combination of ATM and PARP inhibitors may have utility in targeting p53-deficient malignancies. PMID:22416035

  13. Analysis of the correlation between P53 and Cox-2 expression and prognosis in esophageal cancer

    PubMed Central

    CHEN, JUN; WU, FANG; PEI, HONG-LEI; GU, WEN-DONG; NING, ZHONG-HUA; SHAO, YING-JIE; HUANG, JIN

    2015-01-01

    The present study aimed to explore the importance of P53 and Cox-2 protein expression in esophageal cancer and assess their influence on prognosis. The expression of P53 and Cox-2 was assessed in esophageal cancer samples from 195 patients subjected to radical surgery at Changzhou First People's Hospital (Changzhou, China) between May 2010 and December 2011. Expression of P53 and Cox-2 proteins were detected in 60.5% (118/195) and 69.7% (136/195) of the samples, respectively, and were co-expressed in 43.1% (84/195) of the samples. A correlation was identified between P53 expression and overall survival (OS) (P=0.0351) as well as disease-free survival (DFS) (P=0.0307). In addition, the co-expression of P53 and Cox-2 also correlated with OS (P=0.0040) and DFS (P=0.0042). P53 expression (P=0.023), TNM staging (P<0.001) and P53/Cox-2 co-expression (P=0.009) were identified as independent factors affecting OS in patients with esophageal cancer via a Cox multivariate regression model analysis. A similar analysis also identified P53 expression (P=0.020), TNM staging (P<0.001) and P53/Cox-2 co-expression (P=0.008) as independent prognostic factors influencing DFS in these patients. Binary logistic regression analysis demonstrated a correlation between P53 expression (P=0.012), TNM staging (P<0.001), tumor differentiation level (P=0.023) and P53/Cox-2 co-expression (P=0.021), and local recurrence or distant esophageal cancer metastasis. The results of the present study indicate that P53 and Cox-2 proteins may act synergistically in the development of esophageal cancer, and the assessment of P53/Cox-2 co-expression status in esophageal cancer biopsies may become an important diagnostic criterion to evaluate the prognosis of patients with esophageal cancer. PMID:26622818

  14. Intracellular CD24 disrupts the ARF–NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation

    PubMed Central

    Wang, Lizhong; Liu, Runhua; Ye, Peiying; Wong, Chunshu; Chen, Guo-Yun; Zhou, Penghui; Sakabe, Kaoru; Zheng, Xincheng; Wu, Wei; Zhang, Peng; Jiang, Taijiao; Bassetti, Michael F.; Jube, Sandro; Sun, Yi; Zhang, Yanping; Zheng, Pan; Liu, Yang

    2015-01-01

    CD24 is overexpressed in nearly 70% human cancers, whereas TP53 is the most frequently mutated tumour-suppressor gene that functions in a context-dependent manner. Here we show that both targeted mutation and short hairpin RNA (shRNA) silencing of CD24 retard the growth, progression and metastasis of prostate cancer. CD24 competitively inhibits ARF binding to NPM, resulting in decreased ARF, increase MDM2 and decrease levels of p53 and the p53 target p21/CDKN1A. CD24 silencing prevents functional inactivation of p53 by both somatic mutation and viral oncogenes, including the SV40 large T antigen and human papilloma virus 16 E6-antigen. In support of the functional interaction between CD24 and p53, in silico analyses reveal that TP53 mutates at a higher rate among glioma and prostate cancer samples with higher CD24 mRNA levels. These data provide a general mechanism for functional inactivation of ARF and reveal an important cellular context for genetic and viral inactivation of TP53. PMID:25600590

  15. ALTERNATE PATHWAY TO LUNG CANCER INDICATED BY KRAS AND P53 MUTATIONS IN NONSMOKERS EXPOSED TO INDOOR SMOKY COAL EMISSIONS

    EPA Science Inventory

    Alternate Pathway to Lung Cancer Indicated by KRAS and P53 Mutations in Nonsmokers Exposed to Indoor Smoky Coal Emissions

    Use of smoky coal in unvented homes in Xuan Wei County, Yunnan Province, China, is
    associated with lung cancer among nonsmoking females. Such wome...

  16. Expression and Prognostic Significance of p53 in Glioma Patients: A Meta-analysis.

    PubMed

    Jin, Yueling; Xiao, Weizhong; Song, Tingting; Feng, Guangjia; Dai, Zhensheng

    2016-07-01

    Glioma is a brain tumor deriving from the neoplastic glial cells or neuroglia. Due to its resistance to anticancer drugs and different disease progress of individuals, patients with high-grade glioma are difficult to completely cure, leading to a poor prognosis and low overall survival. Therefore, there is an urgent need to look for prognostic and diagnostic indicators that can predict glioma grades. P53 is one of the widely studied biomarkers in human glioma. The purpose of this study was to comprehensively evaluate the significance of p53 expression in glioma grades and overall survival. We searched commonly used electronic databases to retrieve related articles of p53 expression in glioma. Overall, a total of 21 studies including 1322 glioma patients were finally screened out. We observed that the frequency of p53 immuno-positivity was higher in high-grade patients than that in low-grade category (63.8 vs. 41.6 %), and our statistic analysis indicated that p53 expression was associated with pathological grade of glioma (OR 2.93, 95 % CI 1.87-4.60, P < 0.00001). This significant correction was also found in 1-, 3- and 5-year overall survival. However, no positive relationship was found between age, sex, tumor size and p53 expression in patients with glioma. In conclusion, our results suggested that p53 immunohistochemical expression might have an effective usefulness in predicting the prognosis in patients with glioma. PMID:27038932

  17. Modulation of the Disordered Conformational Ensembles of the p53 Transactivation Domain by Cancer-Associated Mutations

    PubMed Central

    Ganguly, Debabani; Chen, Jianhan

    2015-01-01

    Intrinsically disordered proteins (IDPs) are frequently associated with human diseases such as cancers, and about one-fourth of disease-associated missense mutations have been mapped into predicted disordered regions. Understanding how these mutations affect the structure-function relationship of IDPs is a formidable task that requires detailed characterization of the disordered conformational ensembles. Implicit solvent coupled with enhanced sampling has been proposed to provide a balance between accuracy and efficiency necessary for systematic and comparative assessments of the effects of mutations as well as post-translational modifications on IDP structure and interaction. Here, we utilize a recently developed replica exchange with guided annealing enhanced sampling technique to calculate well-converged atomistic conformational ensembles of the intrinsically disordered transactivation domain (TAD) of tumor suppressor p53 and several cancer-associated mutants in implicit solvent. The simulations are critically assessed by quantitative comparisons with several types of experimental data that provide structural information on both secondary and tertiary levels. The results show that the calculated ensembles reproduce local structural features of wild-type p53-TAD and the effects of K24N mutation quantitatively. On the tertiary level, the simulated ensembles are overly compact, even though they appear to recapitulate the overall features of transient long-range contacts qualitatively. A key finding is that, while p53-TAD and its cancer mutants sample a similar set of conformational states, cancer mutants could introduce both local and long-range structural modulations to potentially perturb the balance of p53 binding to various regulatory proteins and further alter how this balance is regulated by multisite phosphorylation of p53-TAD. The current study clearly demonstrates the promise of atomistic simulations for detailed characterization of IDP conformations, and

  18. EGFR, p53, IDH-1 and MDM2 immunohistochemical analysis in glioblastoma: therapeutic and prognostic correlation.

    PubMed

    Montgomery, Richard Murdoch; Queiroz, Luciano de Souza; Rogerio, Fabio

    2015-07-01

    We studied 36 glioblastoma cases at HC-UNICAMP from 2008 to 2012 and classified the immunohistochemical distribution of the wild-type epidermal growth factor receptor (EGFR), mutated forms of p53 protein and isocitrate dehydrogenase-1 (IDH-1) and murine double protein 2 (MDM2). Immunostaining findings were correlated with clinical data and response to treatment (surgery, chemotherapy and radiotherapy). About 97% of the tumors were primary, most of them localized in the frontal lobe. Mean time free of clinical or symptomatic disease and free time of radiological disease were 7.56 and 7.14 months, respectively. We observed a significant positive correlation between expressions of p53 and MDM2, EGFR and MDM2. Clinical, radiological and overall survivals also showed a significant positive correlation. p53 staining and clinical survival showed a significant negative correlation. The current series provides clinical and histopathological data that contribute to knowledge on glioblastoma in Brazilians. PMID:26200049

  19. Drug resistance to inhibitors of the human double minute-2 E3 ligase is mediated by point mutations of p53, but can be overcome with the p53 targeting agent RITA.

    PubMed

    Jones, Richard J; Bjorklund, Chad C; Baladandayuthapani, Veerabhadran; Kuhn, Deborah J; Orlowski, Robert Z

    2012-10-01

    The human double minute (HDM)-2 E3 ubiquitin ligase plays a key role in p53 turnover and has been validated preclinically as a target in multiple myeloma (MM) and mantle cell lymphoma (MCL). HDM-2 inhibitors are entering clinical trials, and we therefore sought to understand potential mechanisms of resistance in lymphoid models. Wild-type p53 H929 MM and Granta-519 MCL cells resistant to MI-63 or Nutlin were generated by exposing them to increasing drug concentrations. MI-63-resistant H929 and Granta-519 cells were resistant to Nutlin, whereas Nutlin-resistant cells displayed cross-resistance to MI-63. These cells also showed cross-resistance to bortezomib, doxorubicin, cisplatin, and melphalan, but remained sensitive to the small molecule inhibitor RITA (reactivation of p53 and induction of tumor cell apoptosis). HDM-2 inhibitor-resistant cells harbored increased p53 levels, but neither genotoxic nor nongenotoxic approaches to activate p53 induced HDM-2 or p21. Resequencing revealed wild-type HDM-2, but mutations were found in the p53 DNA binding and dimerization domains. In resistant cells, RITA induced a G(2)-M arrest, upregulation of p53 targets HDM-2, PUMA, and NOXA, and PARP cleavage. Combination regimens with RITA and MI-63 resulted in enhanced cell death compared with RITA alone. These findings support the possibility that p53 mutation could be a primary mechanism of acquired resistance to HDM-2 inhibitors in MCL and MM. Furthermore, they suggest that simultaneous restoration of p53 function and HDM-2 inhibition is a rational strategy for clinical translation. PMID:22933706

  20. Numerical and Experimental Analysis of the p53-mdm2 Regulatory Pathway

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Ingeborg M. M.; Sanders, Ian; Staples, Oliver; Lain, Sonia; Munro, Alastair J.

    The p53 tumour suppressor plays key regulatory roles in various fundamental biological processes, including development, ageing and cell differentiation. It is therefore known as "the guardian of the genome" and is currently the most extensively studied protein worldwide. Besides members of the biomedical community, who view p53 as a promising target for novel anti-cancer therapies, the complex network of protein interactions modulating p53's activity has captivated the attention of theoreticians and modellers due to the possible occurrence of oscillations in protein levels in response to stress. This paper presents new insights into the behaviour of the p53 network, which we acquired by combining mathematical and experimental techniques. Notably, our data raises the question of whether the discrete p53 pulses in single cells, observed using fluorescent labelling, could in fact be an artefact. Furthermore, we propose a new model for the p53 pathway that is amenable to analysis by computational methods developed within the OPAALS project.

  1. Drug Resistance to Inhibitors of the Human Double Minute-2 E3 Ligase is Mediated by Point Mutations of p53, but can be Overcome with the p53 Targeting Agent RITA

    PubMed Central

    Jones, Richard J.; Bjorklund, Chad C.; Baladandayuthapani, Veerabhadran; Kuhn, Deborah J.; Orlowski, Robert Z.

    2012-01-01

    The human double minute (HDM)-2 E3 ubiquitin ligase plays a key role in p53 turnover, and has been validated pre-clinically as a target in multiple myeloma (MM) and mantle cell lymphoma (MCL). HDM-2 inhibitors are entering clinical trials, and we therefore sought to understand potential mechanisms of resistance in lymphoid models. Wild-type p53 H929 MM and Granta-519 MCL cells resistant to MI-63 or Nutlin were generated by exposing them to increasing drug concentrations. MI-63-resistant H929 and Granta-519 cells were resistant to Nutlin, while Nutlin-resistant cells displayed cross-resistance to MI-63. These cells also showed cross-resistance to bortezomib, doxorubicin, cisplatin, and melphalan, but remained sensitive to the small molecule inhibitor RITA. HDM-2 inhibitor-resistant cells harbored increased p53 levels, but neither genotoxic nor non-genotoxic approaches to activate p53 induced HDM-2 or p21. Resequencing revealed wild-type HDM-2, but mutations were found in the p53 DNA binding and dimerization domains. In resistant cells, RITA induced a G2/M arrest, up-regulation of p53 targets HDM-2, PUMA, and NOXA, and PARP cleavage. Combination regimens with RITA and MI-63 resulted in enhanced cell death compared to RITA alone. These findings support the possibility that p53 mutation could be a primary mechanism of acquired resistance to HDM-2 inhibitors in MCL and MM. Furthermore, they suggest that simultaneous restoration of p53 function and HDM-2 inhibition is a rational strategy for clinical translation. PMID:22933706

  2. Genome-wide analysis of p53 transcriptional programs in B cells upon exposure to genotoxic stress in vivo

    PubMed Central

    Tonelli, Claudia; Morelli, Marco J.; Bianchi, Salvatore; Rotta, Luca; Capra, Thelma; Sabò, Arianna; Campaner, Stefano; Amati, Bruno

    2015-01-01

    The tumor suppressor p53 is a transcription factor that coordinates the cellular response to DNA damage. Here we provide an integrated analysis of p53 genomic occupancy and p53-dependent gene regulation in the splenic B and non-B cell compartments of mice exposed to whole-body ionizing radiation, providing insight into general principles of p53 activity in vivo. In unstressed conditions, p53 bound few genomic targets; induction of p53 by ionizing radiation increased the number of p53 bound sites, leading to highly overlapping profiles in the different cell types. Comparison of these profiles with chromatin features in unstressed B cells revealed that, upon activation, p53 localized at active promoters, distal enhancers, and a smaller set of unmarked distal regions. At promoters, recognition of the canonical p53 motif as well as binding strength were associated with p53-dependent transcriptional activation, but not repression, indicating that the latter was most likely indirect. p53-activated targets constituted the core of a cell type-independent response, superimposed onto a cell type-specific program. Core response genes included most of the known p53-regulated genes, as well as many new ones. Our data represent a unique characterization of the p53-regulated response to ionizing radiation in vivo. PMID:26372730

  3. Characterization and Prognostic Value of Mutations in Exons 5 and 6 of the p53 Gene in Patients with Colorectal Cancers in Central Iran

    PubMed Central

    Golmohammadi, Rahim; Namazi, Mohammad J.; Nikbakht, Mehdi; Salehi, Mohammad

    2013-01-01

    Background/Aims We aimed to investigate the relation-ships among various mutations of the p53 gene and their protein products, histological characteristics, and disease prognosis of primary colorectal cancer in Isfahan, central Iran. Methods Sixty-one patients with colorectal adenocarcinoma were enrolled in the study. Mutations of the p53 gene were detected by single-stranded conformation polymorphism and DNA sequencing. The protein stability was evaluated by immunohistochemistry. Patients were followed up to 48 months. Results Twenty-one point mutations in exons 5 and 6 were detected in the tumor specimens of 14 patients (23%). Of those, 81% and 9.5% were missense and nonsense mutations, respectively. There were also two novel mutations in the intronic region between exons 5 and 6. In 11 mutated specimens, protein stability and protein accumulation were identified. There was a relationship between the type of mutation and protein accumulation in exons 5 and 6 of the p53 gene. The presence of the mutation was associated with an advanced stage of cancer (trend, p<0.009). Patients with mutated p53 genes had significantly lower survival rates than those with wild type p53 genes (p<0.01). Conclusions Mutations in exons 5 and 6 of the p53 gene are common genetic alterations in colorectal adenocarcinoma in central Iran and are associated with a poor prognosis of the disease. PMID:23710310

  4. Cooperation between p53 Mutation and High Telomerase Transgenic Expression in Spontaneous Cancer Development

    PubMed Central

    González-Suárez, Eva; Flores, Juana M.; Blasco, María A.

    2002-01-01

    Telomerase reintroduction in adult somatic tissues is envisioned as a way to extend their proliferative capacity. It is still a question, however, whether constitutive telomerase expression in adult tissues impacts the normal aging and spontaneous cancer incidence of an organism. Here, we studied the aging and spontaneous cancer incidence of mice with transgenic telomerase expression in a wide range of adult tissues, K5-Tert mice. For this, we maintained large colonies of K5-Tert mice for more than 2 years. K5-Tert mice showed a decreased life span compared to wild-type cohorts associated with a higher incidence of preneoplastic and neoplastic lesions in various tissue types. Neoplasias in K5-Tert mice were coincident with transgene expression in the affected tissues. These observations suggest that high telomerase activity may cooperate with genetic alterations that occur with age to promote tumorigenesis. Indeed, we demonstrate here that increased cancer incidence and the reduced viability of K5-Tert mice are aggravated in a p53+/− genetic background, indicating that telomerase cooperates with loss of p53 function in inducing tumorigenesis. Altogether, these results demonstrate that constitutive high levels of telomerase activity result in a decreased life span associated with an increased incidence of neoplasias as the organism ages. PMID:12242304

  5. Using an International p53 Mutation Database as a Foundation for an Online Laboratory in an Upper Level Undergraduate Biology Class

    ERIC Educational Resources Information Center

    Melloy, Patricia G.

    2015-01-01

    A two-part laboratory exercise was developed to enhance classroom instruction on the significance of p53 mutations in cancer development. Students were asked to mine key information from an international database of p53 genetic changes related to cancer, the IARC TP53 database. Using this database, students designed several data mining activities…

  6. Integrated high-throughput analysis identifies Sp1 as a crucial determinant of p53-mediated apoptosis

    PubMed Central

    Li, H; Zhang, Y; Ströse, A; Tedesco, D; Gurova, K; Selivanova, G

    2014-01-01

    The restoration of p53 tumor suppressor function is a promising therapeutic strategy to combat cancer. However, the biological outcomes of p53 activation, ranging from the promotion of growth arrest to the induction of cell death, are hard to predict, which limits the clinical application of p53-based therapies. In the present study, we performed an integrated analysis of genome-wide short hairpin RNA screen and gene expression data and uncovered a previously unrecognized role of Sp1 as a central modulator of the transcriptional response induced by p53 that leads to robust induction of apoptosis. Sp1 is indispensable for the pro-apoptotic transcriptional repression by p53, but not for the induction of pro-apoptotic genes. Furthermore, the p53-dependent pro-apoptotic transcriptional repression required the co-binding of Sp1 to p53 target genes. Our results also highlight that Sp1 shares with p53 a common regulator, MDM2, which targets Sp1 for proteasomal degradation. This uncovers a new mechanism of the tight control of apoptosis in cells. Our study advances the understanding of the molecular basis of p53-mediated apoptosis and implicates Sp1 as one of its key modulators. We found that small molecules reactivating p53 can differentially modulate Sp1, thus providing insights into how to manipulate p53 response in a controlled way. PMID:24971482

  7. Specific-mutational patterns of p53 gene in bladder transitional cell carcinoma among a group of Iraqi patients exposed to war environmental hazards

    PubMed Central

    2012-01-01

    Background To unfold specific-mutational patterns in TP53 gene due to exposures to war environmental hazards and to detect the association of TP53 gene alteration with the depth of bladder cancer. Methods Twenty-nine bladder carcinomas were analyzed for TP53 alterations. PCR-single strand conformational polymorphism analysis, DNA sequencing and immunohistochemical analysis using monoclonal mouse anti-human p53 antibody (Clone DO-7) were employed. Results TP53 gene mutations occurred in 37.9% of the cases while TP53 overexpression occurred in 58.6%. Both of them were associated with deep invasive-tumors. Single mutations were seen in 63.6%, whereas only 27.3% have shown double mutations. Four mutations were frameshifted (30.8%); two of them showed insertion A after codon 244. There was no significant association between TP53 mutations and protein overexpression (P>0.05), while a significant association was observed between TP53 alterations and tumors progression (P ≤ 0.01). Conclusion The infrequent TP53mutations, especially insertion A and 196 hotspot codon, may represent the specific-mutational patterns in bladder carcinoma among the Iraqi patients who were exposed to war environmental hazards. TP53 alteration associated with bladder cancer progression should be analyzed by both mutational and protein expression analysis. PMID:22929185

  8. Expression of p53 in endometrial polyps with special reference to the p53 signature.

    PubMed

    Sho, Tomoko; Hachisuga, Toru; Kawagoe, Toshinori; Urabe, Rie; Kurita, Tomoko; Kagami, Seiji; Shimajiri, Shohei; Fujino, Yoshihisa

    2016-07-01

    We herein examined the significance of the p53 expression in endometrial polyps (EMPs). A total of 133 EMPs, including 62 premenopausal and 71 postmenopausal women with EMP, were immunohistochemically studied for the expression of estrogen receptor (ER)-alpha, Ki-67 and p53. Apoptotic cells were identified using a TUNEL assay. A DNA sequence analysis of TP53 exons 5 to 9 was performed. Among the premenopausal EMPs, a multivariate analysis showed the labeling index (LI) for Ki-67 to correlate significantly with that for p53 (P<0.001), but not that for apoptosis. On the contrary, among the postmenopausal EMPs, the LI for Ki-67 correlated significantly with that for apoptosis (P<0.001). The p53 signature (p53S) was defined by endometrial epithelial cells, which are morphologically benign in appearance but display 12 or more consecutive epithelial cell nuclei with strong p53 immunostaining. The p53S was found in nine (12.7%) postmenopausal EMPs (mean age: 70.2 years). The median Ki-67 index for the p53S was 7%, with no significant difference from that of the glands of the postmenopausal EMPs without the p53S (P=0.058). The median apoptotic index for the p53S was 0%, which was significantly lower than that of the postmenopausal EMPs without the p53S (P=0.002). Two of four p53Ss showed TP53 mutations according to the DNA sequence analysis. The presence of the p53S is not rare in postmenopausal EMPs with an advanced age. Among postmenopausal EMPs, the LI of Ki-67 significantly correlates with that of apoptosis. However, such a positive correlation between the LI of Ki-67 and apoptosis is not observed in p53S. PMID:26727623

  9. Assessment of apoptosis in relation to proliferation and mutational status of p53 gene in head and neck cancers.

    PubMed

    Mundle, S; Kotelnikov, V; Wood, N; Coon, J; Horvath, E; Taylor, S; Lafollette, S; Caldarelli, D; Hutchinson, J; Panje, W; Preisler, H; Raza, A

    1996-06-01

    The present studies were undertaken to determine the incidence of apoptosis in plastic embedded head and neck (HN) tumor biopsies (n=31) using in situ end labeling (ISEL) of fragmented DNA. The extent of spontaneous apoptosis in untreated tumors was correlated with histological grade, percent S-phase cells (Labeling Index, LI) and with the mutational status of p53 gene in these tumors. Additionally, the in vivo effects of chemo- and/or radiotherapy on apoptosis were evaluated in seven patients. In the majority of tumors studied (25/31) spontaneous apoptosis was virtually undetectable or was very low (1-15% positively labeled cells). Only 6 tumors showed intermediate to high apoptosis (>15% positively labeled cells). High apoptosis was more frequent in poorly differentiated tumors (similar to 50%), as compared to well and moderately differentiated tumors. The median LI for 31 tumors studied was 20.2%. The mean LI for moderately differentiated tumors (23.7+/-1.7%) was significantly higher than that in well differentiated (15.1+/-2.1%, p=0.005) and was comparable in poorly differentiated tumors (24.5%). Cytotoxic therapy significantly increased the degree of apoptosis in 5/7 specimens studied (p=0.03). Double labeling of 5 of these tumors before and after the therapy, combining ISEL with detection of IUdR/BrdU, showed compartmentalized apoptosis and proliferation with virtually no double labeled cells in any specimen. Interestingly, tumors with a mutated p53 gene (n=6) showed intermediate to high degree of pretherapy, baseline apoptosis in contrast to low or undetectable levels of apoptosis in tumors bearing wild-type p53 (n=13, p=0.034). It appears that low levels of apoptosis and high proliferation may be characteristic of HN tumors. The spontaneous apoptosis in HN tumors seems unrelated to mutations in the p53 gene. Moreover, our data also show that despite overall increase in apoptosis induced by cytotoxic therapy, some proliferating tumor cells escaped the

  10. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation

    SciTech Connect

    Kamada, R.; Anderson, C.; Nomura, T.; Sakaguchi, K.

    2011-01-07

    The tumor suppressor p53, a 393-amino acid transcription factor, induces cell cycle arrest and apoptosis in response to genotoxic stress. Its inactivation via the mutation of its gene is a key step in tumor progression, and tetramer formation is critical for p53 post-translational modification and its ability to activate or repress the transcription of target genes vital in inhibiting tumor growth. About 50% of human tumors have TP53 gene mutations; most are missense ones that presumably lower the tumor suppressor activity of p53. In this study, we explored the effects of known tumor-derived missense mutations on the stability and oligomeric structure of p53; our comprehensive, quantitative analyses encompassed the tetramerization domain peptides representing 49 such substitutions in humans. Their effects on tetrameric structure were broad, and the stability of the mutant peptides varied widely ({Delta}T{sub m} = 4.8 {approx} -46.8 C). Because formation of a tetrameric structure is critical for protein-protein interactions, DNA binding, and the post-translational modification of p53, a small destabilization of the tetrameric structure could result in dysfunction of tumor suppressor activity. We suggest that the threshold for loss of tumor suppressor activity in terms of the disruption of the tetrameric structure of p53 could be extremely low. However, other properties of the tetramerization domain, such as electrostatic surface potential and its ability to bind partner proteins, also may be important.

  11. p53: a molecular marker for the detection of cancer

    PubMed Central

    Boyd, Mark T; Vlatkovic, Nikolina

    2013-01-01

    Background The p53 gene is the most frequently mutated gene in cancer and accordingly has been the subject of intensive investigation for almost 30 years. Loss of p53 function due to mutations has been unequivocally demonstrated to promote cancer in both humans and in model systems. As a consequence, there exists an enormous body of information regarding the function of normal p53 in biology and the pathobiological consequences of p53 mutation. It has long been recognised that analysis of p53 has considerable potential as a tool for use in both diagnostic and, to a greater extent, prognostic settings and some significant progress has been made in both of these arenas. Objective To provide an overview of the biology of p53, particularly in the context of uses of p53 as a diagnostic tool. Methods A literature review focused upon the methods and uses of p53 analysis in the diagnosis of sporadic cancers, rare genetic disorders and in detection of residual disease. Conclusion p53 is currently an essential diagnostic for the rare inherited cancer prone syndrome (Li-Fraumeni) and is an important diagnostic in only a limited number of settings in sporadic disease. Research in specific cancers indicates that the uses of increasingly well informed p53 mutational analysis are likely to expand to other cancers. PMID:23495923

  12. Mutational signature of the proximate bladder carcinogen N-hydroxy-4-acetylaminobiphenyl: inconsistency with the p53 mutational spectrum in bladder cancer.

    PubMed

    Besaratinia, Ahmad; Bates, Steven E; Pfeifer, Gerd P

    2002-08-01

    We studied the mutagenicity of the proximate bladder carcinogen, N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) in embryonic fibroblasts of the Big Blue mouse. Treatment of these cells with increasing concentrations of N-OH-AABP for 24 h resulted in a dose-dependent increase in mutation frequency of the cII transgene up to 12.8-fold over the background. Single base substitutions comprised 86% of the N-OH-AABP-induced mutations and 74% of the spontaneous cII mutations (sequenced number of mutant plaques, 141 and 145, respectively). Of these, 63 and 36%, respectively, occurred at guanine residues along the cII gene. Whereas G to T transversions predominated in the induced cII mutations (47%), insertion was the most spontaneously derived cII mutation (19%). Mapping of N-OH-AABP-induced DNA adducts along the cII gene by terminal transferase-dependent PCR showed the formation of DNA adducts at specific nucleotide positions. Five preferential DNA adduction sites were established, of which four were major mutation sites for N-OH-AABP, especially for G to T transversions. This unique mutational signature of N-OH-AABP in the cII gene was, however, in sharp contrast with the mutational spectrum of the p53 gene in human bladder cancer. G to A transitions are the dominant type of p53 mutations (53%), being also prevalent in almost all of its five mutational hotspots (codons 175, 248, 273, 280, and 285). In addition, the majority of mutations in three of these hotspots (codons 175, 248, and 273) are at a methylated CpG site, whereas in the cII gene neither the preferential N-OH-AABP DNA adduction sites nor the induced mutational hotspots are biased toward methylated CpG dinucleotides. We conclude that N-OH-AABP leaves a characteristic mutational signature in the cII transgene, which is consistent with its preferential DNA adduction profile. However, the pattern of mutation induced by N-OH-AABP in the cII gene is largely at odds with the mutational spectrum of the p53 gene in human

  13. Simulated sunlight and benzo[a]pyrene diol epoxide induced mutagenesis in the human p53 gene evaluated by the yeast functional assay: lack of correspondence to tumor mutation spectra.

    PubMed

    Yoon, Jung-Hoon; Lee, Chong-Soon; Pfeifer, Gerd P

    2003-01-01

    Many mutations in the p53 gene destroy the transcriptional transactivation function of the p53 protein. This function of p53 can be determined in a yeast assay using a p53 responsive reporter gene. The yeast assay could hold promise for the identification of mutagens implicated in human cancer if the p53 mutational spectra obtained with this assay would match human tumor mutation data. Ultraviolet (UV) light from the sun and polycyclic aromatic hydrocarbons, such as benzo[a]pyrene, are strongly implicated in the spectrum of p53 mutations found in human non-melanoma skin cancers and smoking-associated lung cancers, respectively. We have used these two model mutagens to assess the feasibility of using the p53 yeast assay in cancer epidemiology. After treatment of CpG methylated p53 DNA with a solar UV simulator or with benzo[a]pyrene diol epoxide (BPDE), the modified p53 sequences were assayed in yeast for mutational outcome. As expected, BPDE produced predominantly G to T transversions and simulated sunlight produced mostly C to T transitions at dipyrimidine sites in the p53 coding sequence. However, the preferentially mutated p53 sequences (hotspots) in the yeast assay were completely different from those in the mutational spectra found in human lung and skin cancers. The data indicate that this assay is not a reliable measurement of p53 mutagenesis in human tissues and that, perhaps, transcriptional activation is not the primary function of p53 in tumor suppression. PMID:12538356

  14. Data for a proteomic analysis of p53-independent induction of apoptosis by bortezomib.

    PubMed

    Yerlikaya, Azmi; Okur, Emrah; Tarık Baykal, Ahmet; Acılan, Ceyda; Boyacı, İhsan; Ulukaya, Engin

    2014-12-01

    This data article contains data related to the research article entitled, "A proteomic analysis of p53-independent induction of apoptosis by bortezomib in 4T1 breast cancer cell line" by Yerlikaya et al. [1]. The research article presented 2-DE and nLC-MS/MS based proteomic analysis of proteasome inhibitor bortezomib-induced changes in the expression of cellular proteins. The report showed that GRP78 and TCEB2 were over-expressed in response to treatment with bortezomib for 24 h. In addition, the report demonstrated that Hsp70, the 26S proteasome non-ATPase regulatory subunit 14 and sequestosome 1 were increased at least 2 fold in p53-deficient 4T1 cells. The data here show for the first time the increased expressions of Card10, Dffb, Traf3 and Trp53bp2 in response to inhibition of the 26S proteasome. The information presented here also shows that both Traf1 and Xiap (a member of IAPs) are also downregulated simultaneously upon proteasomal inhibition. The increases in the level of Card10 and Trp53bp2 proteins were verified by Western blot analysis in response to varying concentrations of bortezomib for 24 h. PMID:26217687

  15. Isolation, characterization and functional analysis of full length p53 cDNA from Bubalus bubalis.

    PubMed

    Singh, Minu; Aggarwal, Suruchi; Mohanty, Ashok K; Mukhopadhyay, Tapas

    2015-09-01

    p53 plays a pivotal role in maintaining the genomic integrity of the cell and has an important role in cellular transformation. We isolated and cloned a full length p53 cDNA (Bp53) from water buffalo in expression vectors designed to generate tagged proteins with FLAG or GFP. Bp53 was found to be 1161 nucleotide long and codes for 386 amino acid residues with 79% homology with human p53 containing 393 amino acids. Although Bp53 has some inherent differences in amino acid composition in different functional domains as compared to human p53 but the total electrostatic charge of amino acids has been maintained. Bp53 cDNA was transiently transfected in a p53 null human NSCLC cell line and as expected, it was predominantly localized in the nucleus. Besides, Bp53 effectively transactivates a number of target genes similar to human p53 and exerts most of its anti-tumorigenic potential in culture as observed in clonogenic and cell viability assays. Like human p53 mutants, core domain mutant version of Bp53 was found to be mis-localized to cytoplasm with diminished tumor suppressor activity. However, Bp53 appeared to be more sensitive to mdm2 mediated degradation and as a result, this protein was less stable as compared to human p53. For the first time we have characterized a functionally efficient wild-type p53 from buffalo having lower stability than human p53 and thus, buffalo p53 could be used as a model system for further insight to the molecular basis of wild-type p53 instability. PMID:26003295

  16. Non-Thermal Atmospheric Pressure Plasma Preferentially Induces Apoptosis in p53-Mutated Cancer Cells by Activating ROS Stress-Response Pathways

    PubMed Central

    Ma, Yonghao; Ha, Chang Seung; Hwang, Seok Won; Lee, Hae June; Kim, Gyoo Cheon; Lee, Kyo-Won; Song, Kiwon

    2014-01-01

    Non-thermal atmospheric pressure plasma (NTAPP) is an ionized gas at room temperature and has potential as a new apoptosis-promoting cancer therapy that acts by generating reactive oxygen species (ROS). However, it is imperative to determine its selectivity and standardize the components and composition of NTAPP. Here, we designed an NTAPP-generating apparatus combined with a He gas feeding system and demonstrated its high selectivity toward p53-mutated cancer cells. We first determined the proper conditions for NTAPP exposure to selectively induce apoptosis in cancer cells. The apoptotic effect of NTAPP was greater for p53-mutated cancer cells; artificial p53 expression in p53-negative HT29 cells decreased the pro-apoptotic effect of NTAPP. We also examined extra- and intracellular ROS levels in NTAPP-treated cells to deduce the mechanism of NTAPP action. While NTAPP-mediated increases in extracellular nitric oxide (NO) did not affect cell viability, intracellular ROS increased under NTAPP exposure and induced apoptotic cell death. This effect was dose-dependently reduced following treatment with ROS scavengers. NTAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of NTAPP as a potent cancer therapy. Collectively, these results strongly support the potential of NTAPP as a selective anticancer treatment, especially for p53-mutated cancer cells. PMID:24759730

  17. Single-strand conformation polymorphism for p53 mutation by a combination of neutral pH buffer and temperature gradient in capillary electrophoresis.

    PubMed

    Gelfi, Cecilia; Vigano, Agnese; De Palma, Sara; Righetti, Pier Giorgio; Righetti, Sabin Carla; Corna, Elisabetta; Zunino, Franco

    2002-05-01

    A large number of point mutations in the p53 gene have been detected by capillary zone electrophoresis via single-strand conformation polymorphism (SSCP) analysis. A much improved detection sensitivity was obtained via the following modifications in running conditions: use of low-viscosity 3% hydroxyethylcellulose (HEC), a neutral pH (pH 6.8) buffer, in which the standard Tris moiety was substituted with a 2-(N-morpholino)ethanesulfonic acid (MES)/Tris mixture, use of SYBR Green II for improved fluorescent signal at the lower pH adopted; and, finally, the use of a temperature gradient in the 15-25 degrees C interval, for favoring the conformational transitions in the mutated samples. The typical temperature gradient activated had a slope of 2 degrees C/min and were induced externally. A total of 24 samples from affected patients, both in the homo- and heterozygous state, were analyzed. All the mutations could be detected by this improved protocol, raising the sensitivity from the standard ca. 80% of conventional SSCP to essentially 100% with the present methodology. All the mutations were confirmed by sequence analysis of the affected samples. PMID:12116163

  18. Systems-level analysis of the regulation and function of p53 dynamics in cancer

    NASA Astrophysics Data System (ADS)

    Batchelor, Eric

    Living cells use complex signaling pathways to detect environmental stimuli and generate appropriate responses. As methods for quantifying intracellular signaling have improved, several signaling pathways have been found to transmit information using signals that pulse in time. The transcription factor p53 is a key tumor suppressor and stress-response regulator that exhibits pulsatile dynamics. In response to DNA double-strand breaks, the concentration of p53 in the cell nucleus increases in pulses with a fixed amplitude, duration, and period; the mean number of pulses increases with DNA damage. p53 regulates the expression of over 100 target genes involved in a range of cellular stress responses including apoptosis, cell cycle arrest, and changes in metabolism. p53 pulsing directly impacts p53 function: altering p53 dynamics by pharmacologically inhibiting p53 degradation changes patterns of target gene expression and cell fate. While p53 pulsing serves an important signaling function, it is less clear what it accomplishes mechanistically. Here we will describe our recent efforts to determine the impact of p53 pulsing on the dynamics and coordination of target gene expression.

  19. The mitochondrial p53 pathway

    PubMed Central

    Vaseva, Angelina V.; Moll, Ute M.

    2010-01-01

    p53 is one of the most mutated tumor suppressors in human cancers and as such has been intensively studied for a long time. p53 is a major orchestrator of the cellular response to a broad array of stress types by regulating apoptosis, cell cycle arrest, senescence, DNA repair and genetic stability. For a long time it was thought that these functions of p53 solely rely on its function as a transcription factor, and numerous p53 target genes have been identified [1]. In the last 8 years however, a novel transcription-independent proapoptotic function mediated by the cytoplasmic pool of p53 has been revealed. p53 participates directly in the intrinsic apoptosis pathway by interacting with the multidomain members of the Bcl-2 family to induce mitochondrial outer membrane permeabilization. Our review will discuss these studies, focusing on recent advances in the field. PMID:19007744

  20. Chromosome instability induced by Mps1 and p53 mutation generates aggressive lymphomas exhibiting aneuploidy-induced stress

    PubMed Central

    Foijer, Floris; Xie, Stephanie Z.; Simon, Judith E.; Bakker, Petra L.; Conte, Nathalie; Davis, Stephanie H.; Kregel, Eva; Jonkers, Jos; Bradley, Allan; Sorger, Peter K.

    2014-01-01

    Aneuploidy is a hallmark of human solid cancers that arises from errors in mitosis and results in gain and loss of oncogenes and tumor suppressors. Aneuploidy poses a growth disadvantage for cells grown in vitro, suggesting that cancer cells adapt to this burden. To understand better the consequences of aneuploidy in a rapidly proliferating adult tissue, we engineered a mouse in which chromosome instability was selectively induced in T cells. A flanked by Lox mutation was introduced into the monopolar spindle 1 (Mps1) spindle-assembly checkpoint gene so that Cre-mediated recombination would create a truncated protein (Mps1DK) that retained the kinase domain but lacked the kinetochore-binding domain and thereby weakened the checkpoint. In a sensitized p53+/− background we observed that Mps1DK/DK mice suffered from rapid-onset acute lymphoblastic lymphoma. The tumors were highly aneuploid and exhibited a metabolic burden similar to that previously characterized in aneuploid yeast and cultured cells. The tumors nonetheless grew rapidly and were lethal within 3–4 mo after birth. PMID:25197064

  1. The Association Between p53 Codon 72 Polymorphism and Endometrial Cancer Risk: A System Review and Meta-analysis.

    PubMed

    Yi, Ke; Yang, LingYun; Lan, Zhu; Xi, MingRong

    2016-07-01

    Polymorphism of p53 codon 72 plays an important role in pathogenesis and development of cancer. Published data on the association between the p53 codon 72 polymorphism and endometrial cancer risk are controversial. A meta-analysis was performed to assess whether the polymorphism of p53 codon 72 is associated with endometrial cancer risk. Medline, Embase, China National Knowledge Infrastructure, and Chinese Biomedicine Databases were searched to identify eligible studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for p53 codon 72 polymorphism and endometrial cancer were appropriately derived from fixed-effects or random effects models. A total of 12 studies were enrolled in this meta-analysis. The pooled analyses revealed that p53 codon 72 polymorphism was not associated with endometrial cancer risk. Stratified analysis by Hardy-Weinberg equilibrium exhibited a significantly increased risk of endometrial cancer among studies deviated from Hardy-Weinberg equilibrium in heterozygote comparison (Pro/Arg vs Arg/Arg; OR, 0.61; 95% CI, 0.42-0.87) and dominant model (Pro/Pro + Pro/Arg vs Arg/Arg; OR, 0.66; 95% CI, 0.47-0.92). This study indicated that the p53 codon 72 polymorphism may not be associated with endometrial cancer risk. PMID:27327151

  2. Amino-terminal p53 mutations lead to expression of apoptosis proficient p47 and prognosticate better survival, but predispose to tumorigenesis

    PubMed Central

    Phang, Beng Hooi; Othman, Rashidah; Bougeard, Gaelle; Chia, Ren Hui; Frebourg, Thierry; Tang, Choong Leong; Cheah, Peh Yean; Sabapathy, Kanaga

    2015-01-01

    Whereas most mutations in p53 occur in the DNA-binding domain and lead to its functional inactivation, their relevance in the amino-terminal transactivation domain is unclear. We show here that amino-terminal p53 (ATp53) mutations often result in the abrogation of full-length p53 expression, but concomitantly lead to the expression of the amino-terminally truncated p47 isoform. Using genetically modified cancer cells that only express p47, we demonstrate it to be up-regulated in response to various stimuli, and to contribute to cell death, through its ability to selectively activate a group of apoptotic target genes. Target gene selectivity is influenced by K382 acetylation, which depends on the amino terminus, and is required for recruitment of selective cofactors. Consistently, cancers capable of expressing p47 had a better overall survival. Nonetheless, retention of the apoptotic function appears insufficient for tumor suppression, because these mutations are also found in the germ line and lead to Li–Fraumeni syndrome. These data from ATp53 mutations collectively demonstrate that p53’s apoptosis proficiency is dispensable for tumor suppression, but could prognosticate better survival. PMID:26578795

  3. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons.

    PubMed

    Alves da Costa, Cristine; Paitel, Erwan; Mattson, Mark P; Amson, Robert; Telerman, Adam; Ancolio, Karine; Checler, Frédéric; Mattson, Marc P

    2002-03-19

    Presenilins 1 and 2 are two homologous proteins that, when mutated, account for most early onset Alzheimer's disease. Several lines of evidence suggest that, among various functions, presenilins could modulate cell apoptotic responses. Here we establish that the overexpression of presenilin 2 (PS2) and its mutated form Asn-141-Ile-PS2 alters the viability of human embryonic kidney (HEK)293 cells as established by combined trypan blue exclusion, sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate assay, and propidium iodide incorporation FACS analyses. The two parent proteins increase the acetyl-DEVD-al-sensitive caspase-3-like activity in both HEK293 cells and Telencephalon specific murine neurons, modulate Bax and bcl-2 expressions, and enhance cytochrome C translocation into the cytosol. We show that overexpression of both wild-type and mutated PS2 increases p53-like immunoreactivity and transcriptional activity. We also establish that wild-type- and mutated PS2-induced caspase activation is reduced by p53 antisense approach and by pifithrin-alpha, a chemical inhibitor of p53. Furthermore, mouse fibroblasts in which the PS2 gene has been knocked out exhibited strongly reduced p53-transcriptional activity. Finally, we establish that the overexpression of both wild-type and mutated PS2 is accompanied by a drastic reduction of endogenous presenilin 1 (PS1) expression. Interestingly, pifithrin-alpha diminished endogenous PS2 immunoreactivity, whereas the inhibitor increases PS1 expression. Altogether, our data demonstrate that wild-type and familial Alzheimer's disease-linked PS2 trigger apoptosis and down-regulate PS1 expression through p53-dependent mechanisms. PMID:11904448

  4. Caffeine Suppresses Apoptosis of Bladder Cancer RT4 Cells in Response to Ionizing Radiation by Inhibiting Ataxia Telangiectasia Mutated-Chk2-p53 Axis

    PubMed Central

    Zhang, Zhe-Wei; Xiao, Jing; Luo, Wei; Wang, Bo-Han; Chen, Ji-Min

    2015-01-01

    Background: Caffeine suppresses ataxia telangiectasia and Rad3 related and ataxia telangiectasia mutated (ATM) activities; ATM is the major kinase for DNA damage detection. This study aimed to investigate the effects of caffeine on DNA damage responses in cells from the bladder cancer cell line RT4 those were exposed to ionizing radiation (IR). Methods: Immunofluorescent staining was performed to investigate changes in the proteins involved in DNA damage responses with or without caffeine. A mouse xenograft model was used to study the effects of caffeine on the DNA damage responses. Western blotting was used to investigate the effects of caffeine pretreatment on the ATM-Chk2-p53-Puma axis, while real-time polymerase chain reaction (RT-PCR) assessed changes in messenger RNA levels of p53 and downstream targets responding to IR. Finally, terminal deoxynucleotidyl transferase-dUTP nick end labeling assay. Western blotting and colony formation assay were used to measure the effects of caffeine on radiation-related apoptosis. All of the data were analyzed with a two-tailed Student's t-test. Results: Immunofluorescent staining showed that caffeine pretreatment profoundly suppressed the formation of γH2AXand p53-binding protein 1 foci in RT4 cells in response to irradiation. Cellular and animal experiments suggested that this suppression was mediated by suppression of the ATM-Chk2-p53-Puma DNA damage-signaling axis. RT-PCR indicated caffeine also attenuated transactivation of p53 and p53-inducible genes. The colony formation assay revealed that caffeine displayed radioprotective effects on RT4 cells in response to low-dose radiation compared to the radiosensitization effects on T24 cells. Conclusion: Caffeine may inhibit IR-related apoptosis of bladder cancer RT4 cells by suppressing activation of the ATM-Chk2-p53-Puma axis. PMID:26521794

  5. Comparative analysis of P16 and P53 expression in uterine malignant mixed mullerian tumors.

    PubMed

    Buza, Natalia; Tavassoli, Fattaneh A

    2009-11-01

    Recent studies have shown that, in addition to cervical carcinomas, a substantial proportion of endometrial adenocarcinomas are also immunoreactive with p16. The expression of p16 in uterine malignant mixed mullerian tumors (MMMTs), in contrast, has not yet been analyzed in a large series. To our knowledge, we present the first study assessing p16 expression in both components of MMMTs. We performed p16 and p53 immunostains on 30 cases of uterine MMMTs. Both the epithelial and mesenchymal components were subclassified; p16 and p53 immunoreactions were assessed using a semiquantitative scoring system. p16 overexpression was noted in the carcinomatous component in 96.7% (29/30), and in the sarcomatous component in 86.7% (26/30) of cases. In comparison, p53 immunoreactivity was present in the carcinomatous component in 76.7% (23/30), and in the sarcomatous component in 83.3% (25/30) of cases. p16 immunoreactivity was more intense and diffuse than p53 in 40% of type I, 30% of type II carcinomas, and 27% of sarcomatous components. There was no significant difference in p16 or p53 immunoreactivity between the homologous and heterologous sarcomas. The concordance rates for p16 and p53 immunoreactivity between the 2 components were 83% and 90%, respectively. We conclude that p16 immunostain is positive in the vast majority of uterine MMMTs with no significant difference in staining between the 2 components. Compared with p53, p16 immunoreactivity is significantly more intense and diffuse in both components. Our findings indicate that alterations in the p16-Rb pathway play an important role in the pathogenesis of uterine MMMTs. PMID:19851197

  6. Immunohistochemical Analysis of ATRX, IDH1 and p53 in Glioblastoma and Their Correlations with Patient Survival

    PubMed Central

    2016-01-01

    Glioblastoma (GBM) can be classified into molecular subgroups, on the basis of biomarker expression. Here, we classified our cohort of 163 adult GBMs into molecular subgroups according to the expression of proteins encoded by genes of alpha thalassemia/mental retardation syndrome X-linked (ATRX), isocitrate dehydrogenase (IDH) and TP53. We focused on the survival rate of molecular subgroups, depending on each and various combination of these biomarkers. ATRX, IDH1 and p53 protein expression were evaluated immunohistochemically and Kaplan-Meier analysis were carried out in each group. A total of 15.3% of enrolled GBMs demonstrated loss of ATRX expression (ATRX-), 10.4% expressed an aberrant IDH1 R132H protein (IDH1+), and 48.4% exhibited p53 overexpression (p53+). Survival differences were statistically significant when single protein expression or different combinations of expression of these proteins were analyzed. In conclusion, in the case of single protein expression, the patients with each IDH1+, or ATRX-, or p53- GBMs showed better survival than patients with counterparts protein expressed GBMs. In the case of double protein pairs, the patients with ATRX-/p53-, ATRX-/IDH1+, and IDH1+/p53- GBMs revealed better survival than the patients with GBMs with the remained pairs. In the case of triple protein combinations, the patients with ATRX-/p53-/IDH+ showed statistically significant survival gain than the patients with remained combination of proteins-expression status. Therefore, these three biomarkers, individually and as a combination, can stratify GBMs into prognostically relevant subgroups and have strong prognostic values in adult GBMs. PMID:27478330

  7. Immunohistochemical Analysis of ATRX, IDH1 and p53 in Glioblastoma and Their Correlations with Patient Survival.

    PubMed

    Chaurasia, Ajay; Park, Sung-Hye; Seo, Jeong-Wook; Park, Chul-Kee

    2016-08-01

    Glioblastoma (GBM) can be classified into molecular subgroups, on the basis of biomarker expression. Here, we classified our cohort of 163 adult GBMs into molecular subgroups according to the expression of proteins encoded by genes of alpha thalassemia/mental retardation syndrome X-linked (ATRX), isocitrate dehydrogenase (IDH) and TP53. We focused on the survival rate of molecular subgroups, depending on each and various combination of these biomarkers. ATRX, IDH1 and p53 protein expression were evaluated immunohistochemically and Kaplan-Meier analysis were carried out in each group. A total of 15.3% of enrolled GBMs demonstrated loss of ATRX expression (ATRX-), 10.4% expressed an aberrant IDH1 R132H protein (IDH1+), and 48.4% exhibited p53 overexpression (p53+). Survival differences were statistically significant when single protein expression or different combinations of expression of these proteins were analyzed. In conclusion, in the case of single protein expression, the patients with each IDH1+, or ATRX-, or p53- GBMs showed better survival than patients with counterparts protein expressed GBMs. In the case of double protein pairs, the patients with ATRX-/p53-, ATRX-/IDH1+, and IDH1+/p53- GBMs revealed better survival than the patients with GBMs with the remained pairs. In the case of triple protein combinations, the patients with ATRX-/p53-/IDH+ showed statistically significant survival gain than the patients with remained combination of proteins-expression status. Therefore, these three biomarkers, individually and as a combination, can stratify GBMs into prognostically relevant subgroups and have strong prognostic values in adult GBMs. PMID:27478330

  8. P53 mutations in triple negative breast cancer upregulate endosomal recycling of epidermal growth factor receptor (EGFR) increasing its oncogenic potency.

    PubMed

    Shapira, Iuliana; Lee, Annette; Vora, Reena; Budman, Daniel R

    2013-11-01

    There is no available targeted therapy for triple-negative or its more aggressive subtype, basal-like breast cancer. Multiple therapeutic strategies based on translational knowledge have not improved the treatment options for triple negative patients. As understanding of molecular pathways that drive tumor development is rapidly increasing, it is imperative to adapt our treatment strategies to perturbations in molecular pathways driving the malignant process. Basal-like breast cancers over-express EGFR (without mutations or EGFR gene amplifications) and have p53 mutations. While EGFR drives the malignant behavior in triple negative breast cancer (TNBC), anti-EGFR therapies have fallen short of the expected results in clinical trials. Here we bring evidence that the less than optimal results of the anti-EGFR therapies may be explained in part by the increased potency of the EGFR signaling due to increased endosomal recycling. The functional connection between EGFR and endosomal trafficking in TNBC is mutant p53 found in the most aggressive forms of TNBC. Mutant p53 acquires oncogenic functions and binds p63 protein, a member of p53 family with tumor suppressor activities. In the absence of functional p63 there is an upregulation of endosomal recycling EGFR and integrin to the membrane with increased proinvasive abilities of cancer cells. Blocking endosomal trafficking combined with anti-EGFR treatments may result in better clinical outcomes in TNBC. PMID:23755891

  9. Mitofusin-2 is a novel direct target of p53

    SciTech Connect

    Wang, Weilin; Cheng, Xiaofei; Lu, Jianju; Wei, Jianfeng; Fu, Guanghou; Zhu, Feng; Jia, Changku; Zhou, Lin; Xie, Haiyang; Zheng, Shusen

    2010-10-01

    Research highlights: {yields} Mfn2 is a novel target gene of p53. {yields} Mfn2 mRNA and protein levels can be up-regulated in a p53-dependent manner. {yields} Mfn2 promoter activity can be elevated by the p53 protein. {yields} P53 protein binds the Mfn2 promoter directly both in vitro and in vivo. -- Abstract: The tumor suppressor p53 modulates transcription of a number of target genes involved in cell cycle arrest, apoptosis, DNA repair, and other important cellular responses. Mitofusin-2 (Mfn2) is a novel suppressor of cell proliferation that may also exert apoptotic effects via the mitochondrial apoptotic pathway. Through bioinformatics analysis, we identified a p53 binding site in the Mfn2 promoter. Consistent with this, we showed that the p53 protein binds the Mfn2 promoter directly both in vitro and in vivo. Additionally, we found that Mfn2 mRNA and protein levels are up-regulated in a p53-dependent manner. Furthermore, luciferase assays revealed that the activity of the wild-type Mfn2 promoter, but not a mutated version of the promoter, was up-regulated by p53. These results indicate that Mfn2 is a novel p53-inducible target gene, which provides insight into the regulation of Mfn2 and its associated activities in the inhibition of cell proliferation, promotion of apoptosis, and modulation of tumor suppression.

  10. Development of functionalized nanodiamond fluorescence detection platform: Analysis the specific promoter regulated by p53

    NASA Astrophysics Data System (ADS)

    Wu, Diansyue; Chu, Hsueh-Liang; Chuang, Hung; Lu, Yu-Ning; Ho, Li-Ping; Li, Hsing-Yuan; Hsu, Ming-Hua; Chang, Chia-Ching

    2014-03-01

    Nanodiamond (ND) is one of the biocompatible nanomaterials with large tunable surface for chemical modification. It possesses unique mechanical, spectroscopy, and thermal properties. It is an excellent molecular vehicle to deliver specific molecules in biological system. The green fluorescent protein (GFP) is a protein that emits strong green fluorescence when it is excited by ultra-violet to blue light. It makes GFP a good indicator. By combining ND-GFP, a visible biocompatible delivery system will be developed. p53 is a tumor suppressor protein encoded by the TP53 gene. P53 plays an important role in apoptosis, genomic stability, and inhibition of angiogenesis by interacting with specific DNA sequence of promoter of related genes. In this study, a p53 functionalized ND-GFP will be developed. This complex can recognize the specific DNA sequence of promoter and the intermolecular interactions can be monitored directly by fluorescence and Raman spectroscopy both in vivo and in vitro.

  11. Mice Lacking Dystrophin or α Sarcoglycan Spontaneously Develop Embryonal Rhabdomyosarcoma with Cancer-Associated p53 Mutations and Alternatively Spliced or Mutant Mdm2 Transcripts

    PubMed Central

    Fernandez, Karen; Serinagaoglu, Yelda; Hammond, Sue; Martin, Laura T.; Martin, Paul T.

    2010-01-01

    Altered expression of proteins in the dystrophin-associated glycoprotein complex results in muscular dystrophy and has more recently been implicated in a number of forms of cancer. Here we show that loss of either of two members of this complex, dystrophin in mdx mice or α sarcoglycan in Sgca−/− mice, results in the spontaneous development of muscle-derived embryonal rhabdomyosarcoma (RMS) after 1 year of age. Many mdx and Sgca−/− tumors showed increased expression of insulin-like growth factor 2, retinoblastoma protein, and phosphorylated Akt and decreased expression of phosphatase and tensin homolog gene, much as is found in a human RMS. Further, all mdx and Sgca−/− RMS analyzed had increased expression of p53 and murine double minute (mdm)2 protein and contained missense p53 mutations previously identified in human cancers. The mdx RMS also contained missense mutations in Mdm2 or alternatively spliced Mdm2 transcripts that lacked an exon encoding a portion of the p53-binding domain. No Pax3:Fkhr or Pax7:Fkhr translocation mRNA products were evident in any tumor. Expression of natively glycosylated α dystroglycan and α sarcoglycan was reduced in mdx RMS, whereas dystrophin expression was absent in almost all human RMS, both for embryonal and alveolar RMS subtypes. These studies show that absence of members of the dystrophin-associated glycoprotein complex constitutes a permissive environment for spontaneous development of embryonal RMS associated with mutation of p53 and mutation or altered splicing of Mdm2. PMID:20019182

  12. Immunohistochemical Analysis of E-Cadherin, p53 and Inhibin-α Expression in Hydatidiform Mole and Hydropic Abortion.

    PubMed

    Erol, Onur; Süren, Dinç; Tutuş, Birsel; Toptaş, Tayfun; Gökay, Ahmet Arda; Derbent, Aysel Uysal; Özel, Mustafa Kemal; Sezer, Cem

    2016-07-01

    The purpose of this study was to investigate the role of E-cadherin, p53, and inhibin-α immunostaining in the differential diagnosis of hydropic abortion (HA), partial hydatidiform mole (PHM), and complete hydatidiform mole (CHM). E-cadherin, p53, and inhibin-α protein expression patterns were investigated immunohistochemically using paraffin -embedded tissue sections from histologically diagnosed cases of HA (n = 23), PHM (n = 24), and CHM (n = 23). Expression patterns of these markers were scored semi-quantitatively according to the staining intensity, percentage of positive cells, and immunoreactivity score. Classification of cases was established on histologic criteria and supported by the molecular genotyping. Immunostaining allowed the identification of specific cell types with E-cadherin, p53, and inhibin-α expression in all cases. E-cadherin expression was detected on the cell surface of villous cytotrophoblasts. We observed a marked decline in the expression of E-cadherin from HAs to PHMs to CHMs. The p53-positive reaction was restricted to the nucleus of villous cytotrophoblasts. Significantly increased p53 expression was observed in CHMs, compared with HAs and PHMs. The expression of inhibin-α was localised in the cytoplasm of villous syncytiotrophoblasts, and the expression of this marker was significantly higher in PHMs and CHMs than HAs. In conclusion, immunohistochemical analysis of E-cadherin, p53, and inhibin-α expression could serve as a useful adjunct to conventional methods in the differential diagnosis of HA, PHM, and CHM. PMID:26683836

  13. Whole Genome Pathway Analysis Identifies an Association of Cadmium Response Gene Loss with Copy Number Variation in Mutant p53 Bearing Uterine Endometrial Carcinomas

    PubMed Central

    Stupack, Dwayne G

    2016-01-01

    Background Massive chromosomal aberrations are a signature of advanced cancer, although the factors promoting the pervasive incidence of these copy number alterations (CNAs) are poorly understood. Gatekeeper mutations, such as p53, contribute to aneuploidy, yet p53 mutant tumors do not always display CNAs. Uterine Corpus Endometrial Carcinoma (UCEC) offers a unique system to begin to evaluate why some cancers acquire high CNAs while others evolve another route to oncogenesis, since about half of p53 mutant UCEC tumors have a relatively flat CNA landscape and half have 20–90% of their genome altered in copy number. Methods We extracted copy number information from 68 UCEC genomes mutant in p53 by the GISTIC2 algorithm. GO term pathway analysis, via GOrilla, was used to identify suppressed pathways. Genes within these pathways were mapped for focal or wide distribution. Deletion hotspots were evaluated for temporal incidence. Results Multiple pathways contributed to the development of pervasive CNAs, including developmental, metabolic, immunological, cell adhesion and cadmium response pathways. Surprisingly, cadmium response pathway genes are predicted as the earliest loss events within these tumors: in particular, the metallothionein genes involved in heavy metal sequestration. Loss of cadmium response genes were associated with copy number changes and poorer prognosis, contrasting with 'copy number flat' tumors which instead exhibited substantive mutation. Conclusion Metallothioneins are lost early in the development of high CNA endometrial cancer, providing a potential mechanism and biological rationale for increased incidence of endometrial cancer with cadmium exposure. Developmental and metabolic pathways are altered later in tumor progression. PMID:27391266

  14. Association of the p53 or GSTM1 polymorphism with the risk of nasopharyngeal carcinoma: A meta-analysis

    PubMed Central

    WU, MUYUN; HUANG, SHUJING; LIU, DONG; PENG, MIAO; YANG, FAN; WANG, XICHENG

    2016-01-01

    p53 and glutathione S-transferase M1 (GSTM1) are the most popular suppressor genes. Several previous studies demonstrated positive associations of these gene polymorphisms with numerous cancer types, including hepatocellular cancer, while the association between p53/GSTM1 polymorphisms and the nasopharyngeal carcinoma (NPC) risk was inconsistent and underpowered. However, no studies investigating the combinational effect of these two genes on NPC risk were performed. To confirm the effects of p53 and GSTM1 polymorphisms on the risk of NPC, a meta-analysis of all the available previous studies associating p53 and GSTM1 with the risk of NPC was performed. A comprehensive search of PubMed, Web of Science and SD database until November 2014 was performed to identify the relevant studies. The data were extracted by two independent authors and pooled odds ratio (OR) with 95% confidence interval (CI) was calculated. Meta-regression and subgroup analyses were performed to identify the source of heterogeneity. Finally, five studies with 1,419 cases and 1,707 controls were included for the p53 polymorphism and three studies with 837 cases and 1,299 controls were included for the GSTM1 polymorphism. Regarding p53, a significantly increased NPC risk was observed in the overall population (C vs. G, OR, 1.245; 95% CI, 1.045–1.483; P=0.014; additive models: CC vs. GG, OR, 1.579; 95% CI, 1.100–2.265; P=0.013 and CG vs. GG, OR, 1.230; 95% CI, 1.039–1.456; P=0.016; dominant model, OR, 1.321; 95% CI, 1.127–1.549; P=0.001; recessive model, OR, 1.429; 95% CI, 1.017–2.009; P=0.040). Concerning GSTM1, a significantly increased NPC risk was observed in the overall population (null versus non-null, OR, 1.282; 95% CI, 1.075–1.530; P=0.006). In the subgroup analyses stratified by the source of controls, a significant association of p53 with NPC risk was also demonstrated, while no association with GSTM1 was observed. Therefore, the p53 G72C polymorphism may have a susceptible

  15. Computational analysis of spiro-oxindole inhibitors of the MDM2-p53 interaction: insights and selection of novel inhibitors.

    PubMed

    Huang, Wei; Cai, Lulu; Chen, Can; Xie, Xin; Zhao, Qiong; Zhao, Xing; Zhou, Hong-yun; Han, Bo; Peng, Cheng

    2016-01-01

    Since MDM2 is an inhibitor of the p53 tumor suppressor, disrupting the MDM2-p53 interaction is a promising approach for cancer therapy. Here, we used molecular dynamics simulations followed by free energy decomposition analysis to study conformational changes in MDM2 induced by three known spiro-oxindole inhibitors. Analysis of individual energy terms suggests that van der Waals and electrostatic interactions explain much of the binding affinities of these inhibitors. Binding free energies calculated for the three inhibitors using the molecular mechanics-generalized Born surface area model were consistent with experimental data, suggesting the validity of this approach. Based on this structure-function analysis, several novel spiro-oxindole derivatives were selected and evaluated for their ability to block the MDM2-p53 interaction in vitro. These results suggest that combining in silico and experimental techniques can provide insights into the structure-function relationships of MDM2 inhibitors and guide the rational design of anticancer drugs targeting the MDM2-p53 interaction. PMID:25808617

  16. Immunohistochemical detection of p53 in Wilms' tumors correlates with unfavorable outcome.

    PubMed Central

    Lahoti, C.; Thorner, P.; Malkin, D.; Yeger, H.

    1996-01-01

    The role of p53 in the pathogenesis and progression of Wilms' tumors is only partly understood. Although p53 mutations were initially reported only in anaplastic Wilms' tumors, we had reported that, of two of twenty-one cases that had a p53 mutation, one tumor showed no evidence of anaplasia. To determine the significance of p53 expression in all clinical stages of Wilms' tumor, twenty-eight cases were analyzed for p53 immunoreactivity. Paraffin sections were immunolabeled with two different monoclonal antibodies, recognizing both mutant and wild-type p53. Fifteen of sixteen tumors in the recurrent/metastatic group and three of twelve tumors in the nonmetastatic/nonrecurrent group showed p53 immunopositivity. Only one of three positive tumors in the latter group showed moderate to strong positivity, whereas twelve of sixteen metastatic/recurrent tumors revealed a similar degree of p53 positivity. The positivity was stronger in the metastasis/recurrences as compared with the corresponding primary tumor. Western blot analysis revealed p53 expression in all of the Wilms' tumors tested, suggesting its involvement in the development of Wilms' tumors. Single-strand conformation polymorphism analysis performed on twenty-three of these tumors revealed p53 mutations in four of fourteen recurrent/metastatic tumors and none in the nonmetastatic/nonrecurrent group. Our results show that, whereas 60% of cases were immunopositive for p53 protein, mutations were detected in only 16% of tumors, indicating that wild-type p53 protein is retained in the other tumors. We conclude that p53 immunopositivity strongly correlates with recurrence/metastasis in Wilms' tumors. Furthermore, the accumulation of p53 in these tumors is not only due to mutations but may also involve stabilization of normal p53 with other proteins. Images Figure 1 Figure 2 Figure 3 PMID:8623926

  17. Flavopiridol Potentiates the Cytotoxic Effects of Radiation in Radioresistant Tumor Cells in Which p53 is Mutated or Bcl-2 is Overexpressed

    SciTech Connect

    Hara, Takamitsu; Omura-Minamisawa, Motoko Kang, Yun; Cheng, Chao; Inoue, Tomio

    2008-08-01

    Purpose: Loss of the cell-cycle regulatory protein p53 or overexpression of the antiapoptotic protein Bcl-2 is associated with resistance to radiation in several types of cancer cells. Flavopiridol, a synthetic flavone, inhibits the growth of malignant tumors cells in vitro and in vivo through multiple mechanisms. The purpose of the present study is to clarify whether flavopiridol enhances the cytotoxic effects of radiation in tumor cells that contain dysfunction p53 or that overexpress Bcl-2. Methods and Materials: A human glioma cell line (A172/mp53) stably transfected with a plasmid containing mutated p53 and a human cervical cancer cell line (HeLa/bcl-2) transfected with a bcl-2 expression plasmid were used. Cells were incubated with flavopiridol for 24 h after radiation, and then cell viability was determined by a colony formation assay. Foci of phosphorylated histone H2AX were also evaluated as a sensitive indicator of DNA double-strand breaks. Results: Compared with the parental wild-type cells, both transfected cell lines were more resistant to radiation. Post-treatment with flavopiridol increased the cytotoxic effects of radiation in both transfected cell lines, but not in their parental wild-type cell lines. Post-treatment with flavopiridol inhibited sublethal damage repair as well as the repair of DNA double-strand breaks in response to radiation. Conclusions: Flavopiridol enhanced the cytotoxic effect of radiation in radioresistant tumor cells that harbor p53 dysfunction or Bcl-2 overexpression. A combination treatment of flavopiridol with radiation has the potential to conquer the radioresistance of malignant tumors induced by the genetic alteration of p53 or bcl-2.

  18. Regulation of Mutant p53 Protein Expression

    PubMed Central

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be explained in mutant p53-expressing cells by the lack of an auto-regulatory loop with Mdm2 and other negative regulators, which are pivotal for wt p53 regulation. Further, additional protective mechanisms are acquired by mutant p53, largely mediated by the co-chaperones and their paralogs, the stress-induced heat shock proteins. Consequently, mutant p53 is accumulated in cancer cells in response to chronic stress and this accumulation is critical for its oncogenic gain of functions (GOF). Building on the extensive knowledge regarding wt p53, the regulation of mutant p53 is unraveling. In this review, we describe the current understanding on the major levels at which mutant p53 is regulated. These include the regulation of p53 protein levels by microRNA and by enzymes controlling p53 proteasomal degradation. PMID:26734569

  19. GATA-1 associates with and inhibits p53

    PubMed Central

    Mas, Caroline; Archambault, Patrick; Di Lello, Paola

    2009-01-01

    In addition to orchestrating the expression of all erythroid-specific genes, GATA-1 controls the growth, differentiation, and survival of the erythroid lineage through the regulation of genes that manipulate the cell cycle and apoptosis. The stages of mammalian erythropoiesis include global gene inactivation, nuclear condensation, and enucleation to yield circulating erythrocytes, and some of the genes whose expression are altered by GATA-1 during this process are members of the p53 pathway. In this study, we demonstrate a specific in vitro interaction between the transactivation domain of p53 (p53TAD) and a segment of the GATA-1 DNA-binding domain that includes the carboxyl-terminal zinc-finger domain. We also show by immunoprecipitation that the native GATA-1 and p53 interact in erythroid cells and that activation of p53-responsive promoters in an erythroid cell line can be inhibited by the overexpression of GATA-1. Mutational analysis reveals that GATA-1 inhibition of p53 minimally requires the segment of the GATA-1 DNA-binding domain that interacts with p53TAD. This inhibition is reciprocal, as the activation of a GATA-1–responsive promoter can be inhibited by p53. Based on these findings, we conclude that inhibition of the p53 pathway by GATA-1 may be essential for erythroid cell development and survival. PMID:19411634

  20. GATA-1 associates with and inhibits p53.

    PubMed

    Trainor, Cecelia D; Mas, Caroline; Archambault, Patrick; Di Lello, Paola; Omichinski, James G

    2009-07-01

    In addition to orchestrating the expression of all erythroid-specific genes, GATA-1 controls the growth, differentiation, and survival of the erythroid lineage through the regulation of genes that manipulate the cell cycle and apoptosis. The stages of mammalian erythropoiesis include global gene inactivation, nuclear condensation, and enucleation to yield circulating erythrocytes, and some of the genes whose expression are altered by GATA-1 during this process are members of the p53 pathway. In this study, we demonstrate a specific in vitro interaction between the transactivation domain of p53 (p53TAD) and a segment of the GATA-1 DNA-binding domain that includes the carboxyl-terminal zinc-finger domain. We also show by immunoprecipitation that the native GATA-1 and p53 interact in erythroid cells and that activation of p53-responsive promoters in an erythroid cell line can be inhibited by the overexpression of GATA-1. Mutational analysis reveals that GATA-1 inhibition of p53 minimally requires the segment of the GATA-1 DNA-binding domain that interacts with p53TAD. This inhibition is reciprocal, as the activation of a GATA-1-responsive promoter can be inhibited by p53. Based on these findings, we conclude that inhibition of the p53 pathway by GATA-1 may be essential for erythroid cell development and survival. PMID:19411634

  1. Analysis of the expression of p53 during the morphogenesis of the gastroesophageal mucosa of Gallus gallus domesticus (Linnaeus, 1758).

    PubMed

    Ventura, Adriana; do Nascimento, Aparecida Alves; dos Santos, Marcos Antônio José; Vieira-Lopes, Danielle Alcantara; Sales, Armando; Pinheiro, Nadja Lima

    2014-01-01

    Ontogenesis comprises a series of events including cell proliferation and apoptosis and resulting in the normal development of the embryo. Protein p53 has been described as being involved in the development of several animal species. The aim of this study was to analyze the expression of protein p53 during the morphogenesis of the gastroesophageal mucosa of Gallus gallus domesticus and to correlate it with the histogenesis of structures present in this tissue. We used 24 embryos (at 12-20 days of incubation) and the thymus of two chickens. Immunohistochemical analysis was performed with the ABC indirect method. The expression of p53 in the gastroesophageal mucosa increased during the formation of the organ, mainly at the stages during which tissue remodeling and cell differentiation began. In the esophagus at stages 42 and 45, we observed immunoreactive (IR) cells in the surface epithelium and in early esophageal glands. In the proventriculus at stages 39-45, IR cells were present in the epithelial mucosa and rarely in the proventricular glands. In the gizzard after stage 42, we found IR cells mainly in the medial and basal epithelial layers of the mucosa and especially within the intercellular spaces that appeared at this phase and formed the tubular gland ducts. Thus, protein p53 occurs at key stages of development: in the esophagus during the remodeling of esophageal glands, in the proventriculus during the differentiation of the epithelium of the mucosa and in the gizzard during the formation of tubular glands. PMID:24068480

  2. Pla2g16 phospholipase mediates gain-of-function activities of mutant p53.

    PubMed

    Xiong, Shunbin; Tu, Huolin; Kollareddy, Madhusudhan; Pant, Vinod; Li, Qin; Zhang, Yun; Jackson, James G; Suh, Young-Ah; Elizondo-Fraire, Ana C; Yang, Peirong; Chau, Gilda; Tashakori, Mehrnoosh; Wasylishen, Amanda R; Ju, Zhenlin; Solomon, Hilla; Rotter, Varda; Liu, Bin; El-Naggar, Adel K; Donehower, Lawrence A; Martinez, Luis Alfonso; Lozano, Guillermina

    2014-07-29

    p53(R172H/+) mice inherit a p53 mutation found in Li-Fraumeni syndrome and develop metastatic tumors at much higher frequency than p53(+/-) mice. To explore the mutant p53 metastatic phenotype, we used expression arrays to compare primary osteosarcomas from p53(R172H/+) mice with metastasis to osteosarcomas from p53(+/-) mice lacking metastasis. For this study, 213 genes were differentially expressed with a P value <0.05. Of particular interest, Pla2g16, which encodes a phospholipase that catalyzes phosphatidic acid into lysophosphatidic acid and free fatty acid (both implicated in metastasis), was increased in p53(R172H/+) osteosarcomas. Functional analyses showed that Pla2g16 knockdown decreased migration and invasion in mutant p53-expressing cells, and vice versa: overexpression of Pla2g16 increased the invasion of p53-null cells. Furthermore, Pla2g16 levels were increased upon expression of mutant p53 in both mouse and human osteosarcoma cell lines, indicating that Pla2g16 is a downstream target of the mutant p53 protein. ChIP analysis revealed that several mutant p53 proteins bind the Pla2g16 promoter at E26 transformation-specific (ETS) binding motifs and knockdown of ETS2 suppressed mutant p53 induction of Pla2g16. Thus, our study identifies a phospholipase as a transcriptional target of mutant p53 that is required for metastasis. PMID:25024203

  3. A bidirectional promoter reporter vector for the analysis of the p53/WDR79 dual regulatory element.

    PubMed

    Polson, Amanda; Durrett, Emily; Reisman, David

    2011-09-01

    Analysis of numerous genomes has identified a class of regulatory regions that contain a head-to-head arrangement (5' to 5') on opposite strands of DNA. Often these regulatory regions have fewer than 1000 base pairs separating their corresponding transcription start sites and have been termed as being "bidirectional". This bidirectional arrangement and the divergent gene pairs under the control of these regulatory regions appear to be a common feature within genomes. Establishing methods to study these bidirectional transcriptional promoters, and understanding how they are regulated will allow researchers to gain more insight into the roles that divergent transcription plays in the expression and maintenance of protein coding genes. Recently, the p53 tumor suppressor gene was shown to have a bidirectional gene partner, WDR79. The transcription start sites (TSSs) of human and murine p53 and WDR79 genes are separated by approximately 800 and 930bp, respectively, in a head-to-head fashion, and fit the criteria of what is designated to be a putative bidirectional regulatory region. However, further testing is needed to demonstrate that the region between these genes contains a functional bidirectional promoter. Here, we have developed a bidirectional reporter vector, termed pLucRLuc, to study the transcriptional output of each promoter. This bidirectional reporter vector will allow researchers to determine the output of transcripts mediated by the bidirectional promoters. By focusing our studies on the transcriptional regulation of p53 and its bidirectional gene partner, WDR79, we hope to elucidate key factors that can control and regulate the expression of the p53 and WDR79 genes. Here, we demonstrate that pLucRLuc is a vector capable of expressing reporter genes under the control of bidirectional promoters in multiple human and murine cell lines and that the regulatory region upstream of the p53 and WDR79 TSSs is a bidirectional promoter controlled by common

  4. Hot-spot mutations in the p53 gene of liver nodules induced in rats fed DL-ethionine with a methyl-deficient diet.

    PubMed Central

    Tsujiuchi, T.; Yeleswarapu, L.; Konishi, Y.; Lombardi, B.

    1997-01-01

    Male F-344 rats were fed for 15 weeks a methyl-deficient L-amino acid defined diet containing 0.05% DL-ethionine. Nodules protruding from the surface of the liver were dissected free of surrounding tissue, and polyadenylated RNA isolated from the nodules was reverse transcribed. The region of the p53 gene comprising codons 120-290 was amplified by the polymerase chain reaction, and cDNAs were sequenced. Mutations were detected in nodules obtained from 7 of 12 rats. In all seven cases, the same two point mutations were present. The first was at the first base of codon 246 and consisted of a C-->T transition (C:G-->T:A, Arg-->Cys), while the second was at the second base of codon 247 and consisted of a G-->T transversion (G:C-->T:A, Arg-->Leu). It is concluded that the hepatocarcinogen ethionine induces specific hot-spot p53 gene mutations; this is in contrast to the mutations at various sites previously observed to occur in rats fed a hepatocarcinogenic methyl-deficient diet alone. The results also provide the first evidence that ethionine is mutagenic in the rat. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9218726

  5. Human p53 with a mutation in codone 273 facilitates the amplification of the gene dhfr in rat-1 and LIM1215 cells

    SciTech Connect

    Il`inskaya, G.V.; Sokova, O.I.; Kopnin, B.P.

    1995-05-01

    The effect of the expression of the exogenous human mutant p53 (Arg {yields} His in codone 273) on the amplification rate of the gene dhfr in permissive Rat-1 and LIM1215 cells was studied. It was shown that introduction of a retroviral construct with p53His273 resulted in the accumulation of methotrexate-resistant variants with an increased number of dhfr copies in populations of recipient cells. Luria-Delbruck fluctuation analysis revealed a four- to six-fold increase in the rate of appearance of new methotrexate-resistant cells. Chromosomal analysis demonstrated an extrachromosomal location of amplified DNA in cells containing p53His273, as was the case for control sublines. The data obtained indicate that modifications of p53 may induce gene amplification not only via removing the proliferation block of cells with amplified genes in selective medium, but also via some other mechanisms that seem to increase the chromosomal recombination rate. 24 refs., 3 figs., 3 tabs.

  6. Immunohistoselective sequencing (IHSS) of p53 tumor suppressor gene in human oesophageal precancerous lesions.

    PubMed

    Shi, S T; Feng, B; Yang, G Y; Wang, L D; Yang, C S

    1996-10-01

    Accumulation of p53 protein occurs in human oesophageal precancerous lesions and even in near-normal oesophageal epithelium. In some instances, p53 gene mutations have been detected. In many of the cases of p53 protein accumulation in early lesions, however, p53 mutations were not detected due to either the lack of mutation or the low abundance of cells with a mutation. In order to enrich p53 immunostain-positive cells for single strand conformation polymorphism (SSCP) analysis and DNA sequencing, an immunohisto-selective sequencing (IHSS) method was developed. Anti-p53 antibody-peroxidase stained oesophageal tissue sections were subjected to ultraviolet (UV) irradiation to damage the DNA in p53 immunostain-negative cells. The immunostain protected p53 immunostain-positive cells from the UV light and thus preserved the DNA in those cells for PCR amplification. Comparison of the SSCP results from sections with and without UV treatment showed that the IHSS method selectively enriched p53 immunostain-positive cells. With this method, we could analyse mutations in samples with as few as 30 p53 immunostain-positive cells per tissue section. Analysis was carried out on tissues with precancerous lesions from six surgically-resected oesophageal specimens and 13 oesophageal biopsies from symptom-free subjects. The results of mutation analysis for some of the samples were confirmed by microdissection to enrich the p53-positive cells. The mutations in tissues with precancerous lesions were compared with those in the corresponding squamous cell carcinomas. The IHSS method is shown to be a simple and effective way to analyse mutations in p53 immunostain-positive cells. IHSS may also be a general method for molecular analysis of biological specimens after immunohistochemical staining. PMID:8895479

  7. Naturally occurring germline and tumor-associated mutations within the ATP-binding motifs of PTEN lead to oxidative damage of DNA associated with decreased nuclear p53

    PubMed Central

    He, Xin; Ni, Ying; Wang, Yu; Romigh, Todd; Eng, Charis

    2011-01-01

    Somatic and germline mutations in PTEN (phosphatase and tensin homolog deleted on chromosome 10) are found in sporadic cancers and Cowden syndrome patients, respectively. Recent identification of naturally occurring cancer and germline mutations within the ATP-binding motifs of PTEN (heretofore referred to as PTEN ATP-binding mutations) has revealed that these mutations disrupted the subcellular localization and tumor-suppressor activity of PTEN. However, very little is known about the underlying mechanisms of PTEN ATP-binding mutations in tumorigenesis. Here we show that these mutations impair PTEN's function both qualitatively and quantitatively. On the one hand, PTEN ATP-binding mutants lose their phosphatase activity and the effect of downregulation of cyclin D1. On the other, the mislocalized mutant PTEN results in a significantly decreased nuclear p53 protein level and transcriptional activity, enhanced production of reactive oxygen species, induction of Cu/Zn superoxide dismutase as well as dramatically increased DNA double-strand breaks (DSBs). When compared with wild-type PTEN, the ATP-binding mutant PTEN has reduced half-life in vitro and decreased protein expression levels in vivo. Our data, thus, reveal a novel mechanism of tumorigenesis in patients with germline or somatic mutations affecting PTEN ATP-binding motifs, i.e. qualitative and quantitative impairment of PTEN due to the loss of its phosphatase activity, and nuclear mislocalization, resulting in rapid PTEN protein degradation, suppression of p53-mediated transcriptional activity, loss of protection against oxidative stress as well as accumulation of spontaneous DNA DSBs. PMID:20926450

  8. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction

    PubMed Central

    Thayer, Kelly M.; Beyer, George A.

    2016-01-01

    The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field. PMID:26992014

  9. Energetic Landscape of MDM2-p53 Interactions by Computational Mutagenesis of the MDM2-p53 Interaction.

    PubMed

    Thayer, Kelly M; Beyer, George A

    2016-01-01

    The ubiquitin ligase MDM2, a principle regulator of the tumor suppressor p53, plays an integral role in regulating cellular levels of p53 and thus a prominent role in current cancer research. Computational analysis used MUMBO to rotamerize the MDM2-p53 crystal structure 1YCR to obtain an exhaustive search of point mutations, resulting in the calculation of the ΔΔG comprehensive energy landscape for the p53-bound regulator. The results herein have revealed a set of residues R65-E69 on MDM2 proximal to the p53 hydrophobic binding pocket that exhibited an energetic profile deviating significantly from similar residues elsewhere in the protein. In light of the continued search for novel competitive inhibitors for MDM2, we discuss possible implications of our findings on the drug discovery field. PMID:26992014

  10. The checkpoint kinase inhibitor AZD7762 potentiates chemotherapy-induced apoptosis of p53-mutated multiple myeloma cells.

    PubMed

    Landau, Heather J; McNeely, Samuel C; Nair, Jayasree S; Comenzo, Raymond L; Asai, Takashi; Friedman, Hillel; Jhanwar, Suresh C; Nimer, Stephen D; Schwartz, Gary K

    2012-08-01

    DNA cross-linking agents are frequently used in the treatment of multiple myeloma-generating lesions, which activate checkpoint kinase 1 (Chk1), a critical transducer of the DNA damage response. Chk1 activation promotes cell survival by regulating cell-cycle arrest and DNA repair following genotoxic stress. The ability of AZD7762, an ATP-competitive Chk1/2 inhibitor to increase the efficacy of the DNA-damaging agents bendamustine, melphalan, and doxorubicin was examined using four human myeloma cell lines, KMS-12-BM, KMS-12-PE, RPMI-8226, and U266B1. The in vitro activity of AZD7762 as monotherapy and combined with alkylating agents and the "novel" drug bortezomib was evaluated by studying its effects on cytotoxicity, signaling, and apoptotic pathways. The Chk1/2 inhibitor AZD7762 potentiated the antiproliferative effects of bendamustine, melphalan, and doxorubicin but not bortezomib in multiple myeloma cell lines that were p53-deficient. Increased γH2AX staining in cells treated with bendamustine or melphalan plus AZD7762 indicates a greater degree of DNA damage with combined therapy. Abrogation of the G(2)-M checkpoint by AZD7762 resulted in mitotic catastrophe with ensuing apoptosis evidenced by PARP and caspase-3 cleavage. In summary, the cytotoxic effects of bendamustine, melphalan and doxorubicin on p53-deficient multiple myeloma cell lines were enhanced by the coadministration of AZD7762. These data provide a rationale for testing these combinations in patients with relapsed and/or refractory multiple myeloma. PMID:22653969

  11. Comprehensive Expression Profiling and Functional Network Analysis of p53-Regulated MicroRNAs in HepG2 Cells Treated with Doxorubicin

    PubMed Central

    Yang, Yalan; Liu, Wenrong; Ding, Ruofan; Xiong, Lili; Dou, Rongkun; Zhang, Yiming; Guo, Zhiyun

    2016-01-01

    Acting as a sequence-specific transcription factor, p53 tumor suppressor involves in a variety of biological processes after being activated by cellular stresses such as DNA damage. In recent years, microRNAs (miRNAs) have been confirmed to be regulated by p53 in several cancer types. However, it is still unclear how miRNAs orchestrate their regulation and function in p53 network after p53 activation in hepatocellular carcinoma (HCC). In this study, we used small RNA sequencing and systematic bioinformatic analysis to characterize the regulatory networks of differentially expressed miRNAs after the p53 activation in HepG2. Here, 33 miRNAs significantly regulated by p53 (12 up-regulated and 21 down-regulated) were detected between the doxorubicin-treated and untreated HepG2 cells in two biological replicates for small RNA sequencing and 8 miRNAs have been reported previously to be associated with HCC. Gene ontology (GO) and KEGG pathway enrichment analysis showed that 87.9% (29 out of 33) and 90.9% (30 out of 33) p53-regulated miRNAs were involved in p53-related biological processes and pathways with significantly low p-value, respectively. Remarkably, 18 out of 33 p53-regulated miRNAs were identified to contain p53 binding sites around their transcription start sites (TSSs). Finally, comprehensive p53-miRNA regulatory networks were constructed and analyzed. These observations provide a new insight into p53-miRNA co-regulatory network in the context of HCC. PMID:26886852

  12. Association of p53 codon72 Arg>Pro polymorphism with susceptibility to nasopharyngeal carcinoma: evidence from a case-control study and meta-analysis.

    PubMed

    Sahu, S K; Chakrabarti, S; Roy, S D; Baishya, N; Reddy, R R; Suklabaidya, S; Kumar, A; Mohanty, S; Maji, S; Suryanwanshi, A; Rajasubramaniam, S; Asthana, M; Panda, A K; Singh, S P; Ganguly, S; Shaw, O P; Bichhwalia, A K; Sahoo, P K; Chattopadhyay, N R; Chatterjee, K; Kundu, C N; Das, A K; Kannan, R; Zorenpuii; Zomawia, E; Sema, S A; Singh, Y I; Ghosh, S K; Sharma, K; Das, B S; Choudhuri, T

    2016-01-01

    Tumor suppressor p53 is a critical player in the fight against cancer as it controls the cell cycle check point, apoptotic pathways and genomic stability. It is known to be the most frequently mutated gene in a wide variety of human cancers. Single-nucleotide polymorphism of p53 at codon72 leading to substitution of proline (Pro) in place of arginine (Arg) has been identified as a risk factor for development of many cancers, including nasopharyngeal carcinoma (NPC). However, the association of this polymorphism with NPC across the published literature has shown conflicting results. We aimed to conduct a case-control study for a possible relation of p53 codon72 Arg>Pro polymorphism with NPC risk in underdeveloped states of India, combine the result with previously available records from different databases and perform a meta-analysis to draw a more definitive conclusion. A total of 70 NPC patients and 70 healthy controls were enrolled from different hospitals of north-eastern India. The p53 codon72 Arg>Pro polymorphism was typed by polymerase chain reaction, which showed an association with NPC risk. In the meta-analysis consisting of 1842 cases and 2330 controls, it was found that individuals carrying the Pro allele and the ProPro genotype were at a significantly higher risk for NPC as compared with those with the Arg allele and the ArgArg genotype, respectively. Individuals with a ProPro genotype and a combined Pro genotype (ProPro+ArgPro) also showed a significantly higher risk for NPC over a wild homozygote ArgArg genotype. Additionally, the strength of each study was tested by power analysis and genotype distribution by Hardy-Weinberg equilibrium. The outcome of the study indicated that both allele frequency and genotype distribution of p53 codon72 Arg>Pro polymorphism were significantly associated with NPC risk. Stratified analyses based on ethnicity and source of samples supported the above result. PMID:27159678

  13. P53 and MDM2 co-expression in tobacco and betel chewing-associated oral squamous cell carcinomas.

    PubMed

    Shwe, M; Chiguchi, G; Yamada, S; Nakajima, T; Maung, K K; Takagi, M; Amagasa, T; Tsuchida, N

    2001-12-01

    Oral cancers of tobacco and betel chewers represents a unique in-vivo model to understand the genotoxic effect of tobacco and betel carcinogens on oncogenes and tumor suppressor genes. Coordinated interactions of p53 and MDM2 play an important role in regulation of critical growth control gene following exposure to DNA damaging agents. The purpose of this study is to determine if the tumor suppressor function of p53 is inactivated by mutation or other alternative mechanisms in carcinogen-induced oral squamous cell carcinoma (SCC), and to investigate the clinicopathological significance of p53 and MDM2 expression. The p53 mutation in oral SCC of tobacco and betel chewers (n=40) was detected by polymerase chain reaction - single strand conformation polymorphism (PCR-SSCP) analysis and immunohistochemistry (IHC) was done to investigate p53 and MDM2 proteins overexpression. The incidence of p53 mutation was relatively low (17.5%), but there was a high prevalence of MDM2 overexpression (72.5%). In the total of 40 cases, IHC phenotype showed p53 positive immunostaining with MDM2 positive immunostaining (p53+/MDM2+) 62.5%, p53 negative immunostaining with MDM2 negative immunostaining (p53-/MDM2-) 15%, p53 positive immunostaining with MDM2 negative immunostaining (p53+/MDM2-) 12.5%, and p53 negative immunostaining with MDM2 positive immunostaining (p53-/MDM2+) 10%. A significant correlation was found between MDM2 and p53 overexpression (p=0.0289). Moreover, p53+/MDM2+ phenotype was significantly associated with poorly differentiated tumors (p= 0.0007). These results conclude that other factors than p53 mutation is likely to be the targets of tobacco/betel carcinogens and MDM2 may play an important role in tobacco/betel chewing-related oral SCCs. Overexpression of MDM2 protein may constitute an alternative mechanism for p53 inactivation. PMID:12160248

  14. Quantitative analysis of p53 expression in human normal and cancer tissue microarray with global normalization method

    PubMed Central

    Idikio, Halliday A

    2011-01-01

    Tissue microarray based immunohistochemical staining and proteomics are important tools to create and validate clinically relevant cancer biomarkers. Immunohistochemical stains using formalin-fixed tissue microarray sections for protein expression are scored manually and semi-quantitatively. Digital image analysis methods remove some of the drawbacks of manual scoring but may need other methods such as normalization to provide across the board utility. In the present study, quantitative proteomics-based global normalization method was used to evaluate its utility in the analysis of p53 protein expression in mixed human normal and cancer tissue microarray. Global normalization used the mean or median of β-actin to calculate ratios of individual core stain intensities, then log transformed the ratios, calculate a mean or median and subtracted the value from the log of ratios. In the absence of global normalization of p53 protein expression, 44% (42 of 95) of tissue cores were positive using the median of intensity values and 40% (38 of 95) using the mean of intensities as cut-off points. With global normalization, p53 positive cores changed to 20% (19 of 95) when using median of intensities and 15.8%(15 of 95) when the mean of intensities were used. In conclusion, the global normalization method helped to define positive p53 staining in the tissue microarray set used. The method used helped to define clear cut-off points and confirmed all negatively stained tissue cores. Such normalization methods should help to better define clinically useful biomarkers. PMID:21738821

  15. FGFR3b Extracellular Loop Mutation Lacks Tumorigenicity In Vivo but Collaborates with p53/pRB Deficiency to Induce High-grade Papillary Urothelial Carcinoma

    PubMed Central

    Zhou, Haiping; He, Feng; Mendelsohn, Cathy L.; Tang, Moon-shong; Huang, Chuanshu; Wu, Xue-Ru

    2016-01-01

    Missense mutations of fibroblast growth factor receptor 3 (FGFR3) occur in up to 80% of low-grade papillary urothelial carcinoma of the bladder (LGP-UCB) suggesting that these mutations are tumor drivers, although direct experimental evidence is lacking. Here we show that forced expression of FGFR3b-S249C, the most prevalent FGFR3 mutation in human LGP-UCB, in cultured urothelial cells resulted in slightly reduced surface translocation than wild-type FGFR3b, but nearly twice as much proliferation. When we expressed a mouse equivalent of this mutant (FGFR3b-S243C) in urothelia of adult transgenic mice in a tissue-specific and inducible manner, we observed significant activation of AKT and MAPK pathways. This was, however, not accompanied by urothelial proliferation or tumorigenesis over 12 months, due to compensatory tumor barriers in p16-pRB and p19-p53-p21 axes. Indeed, expressing FGFR3b-S249C in cultured human urothelial cells expressing SV40T, which functionally inactivates pRB/p53, markedly accelerated proliferation and cell-cycle progression. Furthermore, expressing FGFR3b-S243C in transgenic mouse urothelium expressing SV40T converted carcinoma-in-situ to high-grade papillary urothelial carcinoma. Together, our study provides new experimental evidence indicating that the FGFR3 mutations have very limited urothelial tumorigenicity and that these mutations must collaborate with other genetic events to drive urothelial tumorigenesis. PMID:27157475

  16. FGFR3b Extracellular Loop Mutation Lacks Tumorigenicity In Vivo but Collaborates with p53/pRB Deficiency to Induce High-grade Papillary Urothelial Carcinoma.

    PubMed

    Zhou, Haiping; He, Feng; Mendelsohn, Cathy L; Tang, Moon-Shong; Huang, Chuanshu; Wu, Xue-Ru

    2016-01-01

    Missense mutations of fibroblast growth factor receptor 3 (FGFR3) occur in up to 80% of low-grade papillary urothelial carcinoma of the bladder (LGP-UCB) suggesting that these mutations are tumor drivers, although direct experimental evidence is lacking. Here we show that forced expression of FGFR3b-S249C, the most prevalent FGFR3 mutation in human LGP-UCB, in cultured urothelial cells resulted in slightly reduced surface translocation than wild-type FGFR3b, but nearly twice as much proliferation. When we expressed a mouse equivalent of this mutant (FGFR3b-S243C) in urothelia of adult transgenic mice in a tissue-specific and inducible manner, we observed significant activation of AKT and MAPK pathways. This was, however, not accompanied by urothelial proliferation or tumorigenesis over 12 months, due to compensatory tumor barriers in p16-pRB and p19-p53-p21 axes. Indeed, expressing FGFR3b-S249C in cultured human urothelial cells expressing SV40T, which functionally inactivates pRB/p53, markedly accelerated proliferation and cell-cycle progression. Furthermore, expressing FGFR3b-S243C in transgenic mouse urothelium expressing SV40T converted carcinoma-in-situ to high-grade papillary urothelial carcinoma. Together, our study provides new experimental evidence indicating that the FGFR3 mutations have very limited urothelial tumorigenicity and that these mutations must collaborate with other genetic events to drive urothelial tumorigenesis. PMID:27157475

  17. Immunochemical and genetic analysis of the p53 gene in liver preneoplastic nodules from aflatoxin-induced rats in one year.

    PubMed

    Liu, Y P; Lin, Y; Ng, M L

    1996-01-01

    Mutations of the p53 tumour-suppressor gene in human hepatocellular carcinomas from certain geographic areas appear to be associated with high dietary exposure to aflatoxin B1 (AFB1). In this study, the effects of AFB1 on p53 locus at the preneoplastic stage of rat liver oncogenesis were assessed. Male Wistar rats were treated with a single dose of 1.5 mg AFB1/kg body weight by a gastric tube. Liver biopsies over a period of one year were examined for aberrations of the p53 gene together with the expression of placental glutathione-S transferase (GST-P), a marker for preneoplasia. Immunohistochemistry, Western blot, polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing techniques were used. AFB1 induction resulted in GST-P overexpression, forming GST-P-positive multi-foci and nodules of hepatocytes, but no aberrations in the p53 expression and the microstructure of exons 5-8 of the p53 gene. These results suggested that p53 mutation(s) might not occur at this early stage of AFB1-induced hepatocarcinogenesis. PMID:8779543

  18. Autoantibody recognition mechanisms of p53 epitopes

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2016-06-01

    There is an urgent need for economical blood based, noninvasive molecular biomarkers to assist in the detection and diagnosis of cancers in a cost-effective manner at an early stage, when curative interventions are still possible. Serum autoantibodies are attractive biomarkers for early cancer detection, but their development has been hindered by the punctuated genetic nature of the ten million known cancer mutations. A landmark study of 50,000 patients (Pedersen et al., 2013) showed that a few p53 15-mer epitopes are much more sensitive colon cancer biomarkers than p53, which in turn is a more sensitive cancer biomarker than any other protein. The function of p53 as a nearly universal "tumor suppressor" is well established, because of its strong immunogenicity in terms of not only antibody recruitment, but also stimulation of autoantibodies. Here we examine dimensionally compressed bioinformatic fractal scaling analysis for identifying the few sensitive epitopes from the p53 amino acid sequence, and show how it could be used for early cancer detection (ECD). We trim 15-mers to 7-mers, and identify specific 7-mers from other species that could be more sensitive to aggressive human cancers, such as liver cancer. Our results could provide a roadmap for ECD.

  19. Mutant p53: one name, many proteins

    PubMed Central

    Freed-Pastor, William A.; Prives, Carol

    2012-01-01

    There is now strong evidence that mutation not only abrogates p53 tumor-suppressive functions, but in some instances can also endow mutant proteins with novel activities. Such neomorphic p53 proteins are capable of dramatically altering tumor cell behavior, primarily through their interactions with other cellular proteins and regulation of cancer cell transcriptional programs. Different missense mutations in p53 may confer unique activities and thereby offer insight into the mutagenic events that drive tumor progression. Here we review mechanisms by which mutant p53 exerts its cellular effects, with a particular focus on the burgeoning mutant p53 transcriptome, and discuss the biological and clinical consequences of mutant p53 gain of function. PMID:22713868

  20. Absence of p21 expression is associated with abnormal p53 in human breast carcinomas.

    PubMed Central

    Ellis, P. A.; Lonning, P. E.; Borresen-Dale, A.; Aas, T.; Geisler, S.; Akslen, L. A.; Salter, I.; Smith, I. E.; Dowsett, M.

    1997-01-01

    The p53 tumour-suppressor gene is important in the regulation of cell growth and apoptosis, and loss of functional wild-type activity may be associated with tumour formation and resistance to therapy. Differentiation of functionally normal wild-type protein from mutant or abnormal protein remains difficult using either immunohistochemical assays or mutational DNA sequencing. p21(WAF1/CIP1) (p21) is induced by wild type p53 and plays an important role in promoting cell cycle arrest. To test the hypothesis that p21 protein expression may act as a downstream marker of tumours from patients with locally advanced breast cancer before treatment with doxorubicin, pretreatment p53 status had been characterized in 63 tumours by p53 protein immunostaining and DNA mutational analysis. There was a significant association between immunostaining for p53 and the presence of p53 mutations (P = 0.01). Of 56 patients available for determination of p21, 31 (55%) expressed p21 protein. Twenty-eight out of 31 patients (90%) positive for p21 had low negative p53 protein expression, whereas only 3 of 13 patients (23%) with high p53 expressed p21 (P = 0.009). No association was seen between p21 protein expression and p53 mutations (P = 0.24). The combination of p53 and p21 immunostaining results improved the specificity of the immunostaining but at a cost of significant reduction in sensitivity. Immunohistochemical assessment of p21 protein expression is inversely associated with abnormal p53 protein in human breast cancer. The detection of p21 protein expression in combination with p53 protein expression did not improve the ability of immunohistochemistry (IHC) to differentiate between normal and mutant p53 protein. Images Figure 1 PMID:9275025

  1. More targets, more pathways and more clues for mutant p53

    PubMed Central

    Garritano, S; Inga, A; Gemignani, F; Landi, S

    2013-01-01

    Mutations in the transcription factor p53 are among the most common genetic alterations in human cancer, and missense p53 mutations in cancer cells can lead to aggressive phenotypes. So far, only few studies investigated transcriptional reprogramming under mutant p53 expression as a means to identify deregulated targets and pathways. A review of the literature was carried out focusing on mutant p53-dependent transcriptome changes with the aims of (i) verifying whether different p53 mutations can be equivalent for their effects, or whether there is a mutation-specific transcriptional reprogramming of target genes, (ii) understanding what is the main mechanism at the basis of upregulation or downregulation of gene expression under the p53 mutant background, (iii) identifying novel candidate target genes of WT and/or mutant p53 and (iv) defining cellular pathways affected by the mutant p53-dependent gene expression reprogramming. Nearly 600 genes were consistently found upregulated or downregulated upon ectopic expression of mutant p53, regardless of the specific p53 mutation studied. Promoter analysis and the use of ChIP-seq data indicate that, for most genes, the expression changes could be ascribed to a loss both of WT p53 transcriptional activation and repressor functions. Pathway analysis indicated changes in the metabolism/catabolism of amino acids such as aspartate, glutamate, arginine and proline. Novel p53 candidate target genes were also identified, including ARID3B, ARNT2, CLMN, FADS1, FTH1, KPNA2, LPHN2, PARD6B, PDE4C, PIAS2, PRPF40A, PYGL and RHOBTB2, involved in the metabolism, xenobiotic responses and cell differentiation. PMID:23817466

  2. Mutations in the TP53 gene and protein expression of p53, MDM 2 and p21/WAF-1 in primary cervical carcinomas with no or low human papillomavirus load.

    PubMed Central

    Helland, A.; Karlsen, F.; Due, E. U.; Holm, R.; Kristensen, G.; Børresen-Dale, A. l.

    1998-01-01

    Several studies have focused on the role of p53 inactivation in cervical cancer, either by inactivating mutations in the TP53 gene or by degradation of the p53 protein by human papillomavirus (HPV). In this study, primary cervical carcinomas from 365 patients were analysed for presence of HPV using both consensus primer-sets and type-specific primer-sets. Nineteen samples were determined to have no or low virus load, and were selected for further analyses: mutation screening of the TP53 gene using constant denaturant gel electrophoresis (CDGE) followed by sequencing, and protein expression of p53, MDM2 and p21 using immunohistochemistry (IHC). Mutations in the TP53 gene were found in eight samples (42%). Elevated p53 protein expression was significantly associated with presence of a mutation (P < 0.007). P21 protein expression was detected in 16 of the 19 carcinomas. No p21 expression was seen in normal cervical tissue. Two samples, both with wild-type p53, had elevated MDM2 expression. Compared with a previous study from our group, of mainly HPV-positive cervical carcinomas, in which only one sample was found to contain a TP53 mutation, a significantly higher mutation frequency (P < 0.001) was found among the carcinomas with no or low virus load. Although p53 inactivation pathways are not detected in every tumour, our study supports the hypothesis that p53 inactivation, either by binding to cellular or viral proteins or by mutation, is essential in the development of cervical carcinomas. Images Figure 1 PMID:9662253

  3. Towards MIB-1 and p53 detection in glioma magnetic resonance image: a novel computational image analysis method

    NASA Astrophysics Data System (ADS)

    Liu, Chenbin; Zhang, Haishi; Pan, Ying; Huang, Fengping; Xia, Shunren

    2012-12-01

    Glioma is the primary tumor in the central nervous system, and poses one of the greatest challenges in clinical treatment. MIB-1 and p53 are the most useful biomarkers for gliomas and could help neurosurgeons establish a therapeutic schedule. However, these biomarkers are commonly detected with the help of immunohistochemistry (IHC), which wastes time and energy and is often influenced by subjective factors. To reduce the subjective factors and improve the efficiency in the judgment of IHC, a novel magnetic resonance image (MRI) analysis method is proposed in the present study to detect the expression status of MIB-1 and p53 in IHC. The proposed method includes two kinds of MRI acquisition (FLAIR and T1 FLAIR images), regions of interest (ROIs) selection, texture features (i.e. the gray level gradient co-occurrence matrix (GLGCM), Minkowski functions (MFs), etc) extraction in ROIs, and classification with a support vector machine in a leave-one-out cross validation strategy. By classifying the ROIs, the performance of the method was evaluated by accuracy, area under ROC curve (AUC), etc. A high accuracy (0.7640 ± 0.0225) and AUC (0.7873 ± 0.0377) for MIB-I detection were achieved. In terms of the texture features, 0.7621 ± 0.0199, 0.7666 ± 0.0365 and 0.7426 ± 0.0451 AUC can be obtained using only GLCM, RLM or GLGCM for MIB-1 detection, respectively. In all, the experimental results demonstrated that MR image texture features are associated with the expression status of MIB-1 and p53. The proposed method has the potential to realize high accuracy and robust detection for MIB-I expression status, which makes it promising for clinical glioma diagnosis and prognosis.

  4. The dichotomy of p53 regulation by noncoding RNAs.

    PubMed

    Deng, Qipan; Becker, Lindsey; Ma, Xiaodong; Zhong, Xiaoming; Young, Ken; Ramos, Kenneth; Li, Yong

    2014-06-01

    The p53 tumor suppressor gene is the most frequently mutated gene in cancer. Significant progress has been made to discern the importance of p53 in coordinating cellular responses to DNA damage, oncogene activation, and other stresses. Noncoding RNAs are RNA molecules functioning without being translated into proteins. In this work, we discuss the dichotomy of p53 regulation by noncoding RNAs with four unconventional questions. First, is overexpression of microRNAs responsible for p53 inactivation in the absence of p53 mutation? Second, are there somatic mutations in the noncoding regions of the p53 gene? Third, is there a germline mutant in the noncoding regions of the p53 gene that predisposes carriers to cancer? Fourth, can p53 activation mediated by a noncoding RNA mutation cause cancer? This work highlights the prominence of noncoding RNAs in p53 dysregulation and tumorigenesis. PMID:24706938

  5. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer

    PubMed Central

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed. PMID:26618142

  6. Bifurcation analysis and potential landscapes of the p53-Mdm2 module regulated by the co-activator programmed cell death 5

    NASA Astrophysics Data System (ADS)

    Bi, Yuanhong; Yang, Zhuoqin; Zhuge, Changjing; Lei, Jinzhi

    2015-11-01

    The dynamics of p53 play important roles in the regulation of cell fate decisions in response to various stresses, and programmed cell death 5 (PDCD5) functions as a co-activator of p53 that modulates p53 dynamics. In the present paper, we investigated how p53 dynamics are modulated by PDCD5 during the deoxyribose nucleic acid damage response using methods of bifurcation analysis and potential landscape. Our results revealed that p53 activities display rich dynamics under different PDCD5 levels, including monostability, bistability with two stable steady states, oscillations, and the coexistence of a stable steady state (or two states) and an oscillatory state. The physical properties of the p53 oscillations were further demonstrated by the potential landscape in which the potential force attracts the system state to the limit cycle attractor, and the curl flux force drives coherent oscillation along the cyclic trajectory. We also investigated the efficiency with which PDCD5 induced p53 oscillations. We show that Hopf bifurcation can be induced by increasing the PDCD5 efficiency and that the system dynamics exhibited clear transition features in both barrier height and energy dissipation when the efficiency was close to the bifurcation point.

  7. Bifurcation analysis and potential landscapes of the p53-Mdm2 module regulated by the co-activator programmed cell death 5.

    PubMed

    Bi, Yuanhong; Yang, Zhuoqin; Zhuge, Changjing; Lei, Jinzhi

    2015-11-01

    The dynamics of p53 play important roles in the regulation of cell fate decisions in response to various stresses, and programmed cell death 5 (PDCD5) functions as a co-activator of p53 that modulates p53 dynamics. In the present paper, we investigated how p53 dynamics are modulated by PDCD5 during the deoxyribose nucleic acid damage response using methods of bifurcation analysis and potential landscape. Our results revealed that p53 activities display rich dynamics under different PDCD5 levels, including monostability, bistability with two stable steady states, oscillations, and the coexistence of a stable steady state (or two states) and an oscillatory state. The physical properties of the p53 oscillations were further demonstrated by the potential landscape in which the potential force attracts the system state to the limit cycle attractor, and the curl flux force drives coherent oscillation along the cyclic trajectory. We also investigated the efficiency with which PDCD5 induced p53 oscillations. We show that Hopf bifurcation can be induced by increasing the PDCD5 efficiency and that the system dynamics exhibited clear transition features in both barrier height and energy dissipation when the efficiency was close to the bifurcation point. PMID:26627563

  8. Germ cell tumors of the testis overexpress wild-type p53.

    PubMed Central

    Guillou, L.; Estreicher, A.; Chaubert, P.; Hurlimann, J.; Kurt, A. M.; Metthez, G.; Iggo, R.; Gray, A. C.; Jichlinski, P.; Leisinger, H. J.; Benhattar, J.

    1996-01-01

    Several recent studies have suggested that testicular germ cell tumors express high levels of wild-type p53 protein. To clarify and confirm this unexpected result, we have investigated seminomatous and nonseminomatous germ cell tumors at the genomic, mRNA, and protein levels. Thirty-five tumors were examined for p53 overexpression using antibodies directed against the p53 (PAb1801, PAb240, and CM1), mdm2 (IF2), and p21Waf1/Clp1 (EA10) proteins. Thirty-two tumors were screened for p53 mutations by single-strand conformation polymorphism analysis. Eighteen tumors were screened with a functional assay that tests the transcriptional competence of human p53 protein expressed in yeast. On frozen sections, 100, 65, 35, 73, and 0% of tumors reacted with the CM1, PAb240, PAb1801, IF2, and EA10 antibodies, respectively. No p53 mutations were detected by single-strand conformation polymorphism or by functional assay. The fact that many tumors overexpress wild-type p53 but not mdm2 rules out mdm2 overexpression as a general explanation for the presence of wild-type p53 in these tumors. The absence of p21 overexpression suggests that p53 may be unable to activate transcription of critical target genes, which may explain why the presence of wild-type p53 is tolerated in this tumor type, although the mechanism for this transcriptional inactivity remains to be established. Images Figure 1 Figure 2 PMID:8863671

  9. Different Mechanisms of Cell Death in Radiosensitive and Radioresistant P53 Mutated Head and Neck Squamous Cell Carcinoma Cell Lines Exposed to Carbon Ions and X-Rays

    SciTech Connect

    Maalouf, Mira; Alphonse, Gersende; Colliaux, Anthony; Beuve, Michael Ph.D.; Trajkovic-Bodennec, Selena; Battiston-Montagne, Priscillia B.Sc.; Testard, Isabelle; Chapet, Olivier; Bajard, Marcel; Taucher-Scholz, Gisela; Fournier, Claudia; Rodriguez-Lafrasse, Claire

    2009-05-01

    Purpose: We initiated studies on the mechanisms of cell death in head and neck squamous cell carcinoma cell lines (HNSCC) since recent clinical trials have shown that local treatment of HNSCC by carbon hadrontherapy is less efficient than it is in other radioresistant cancers. Methods and Materials: Two p53-mutated HNSCC cell lines displaying opposite radiosensitivity were used. Different types of cell death were determined after exposure to carbon ions (33.6 and 184 keV/{mu}m) or X-rays. Results: Exposure to radiation with high linear energy transfer (LET) induced clonogenic cell death for SCC61 (radiosensitive) and SQ20B (radioresistant) cells, the latter systematically showing less sensitivity. Activation of an early p53-independent apoptotic process occurred in SCC61 cells after both types of irradiation, which increased with time, dose and LET. In contrast, SQ20B cells underwent G2/M arrest associated with Chk1 activation and Cdc2 phosphorylation. This inhibition was transient after X-rays, compared with a more prolonged and LET-dependent accumulation after carbon irradiation. After release, a LET-dependent increase of polyploid and multinucleated cells, both typical signs of mitotic catastrophe, was identified. However, a subpopulation of SQ20B cells was able to escape mitotic catastrophe and continue to proliferate. Conclusions: High LET irradiation induced distinct types of cell death in HNSCC cell lines and showed an increased effectiveness compared with X-rays. However, the reproliferation of SQ20B may explain the potential locoregional recurrence observed among some HNSCC patients treated by hadrontherapy. An adjuvant treatment forcing the tumor cells to enter apoptosis may therefore be necessary to improve the outcome of radiotherapy.

  10. Targeting Oncogenic Mutant p53 for Cancer Therapy

    PubMed Central

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels. PMID:26732534

  11. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    SciTech Connect

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira; Tan, Martha; Senear, Donald F.; Luecke, Hartmut

    2013-10-01

    X-ray crystallographic structures of four p53 core-domain variants were determined in order to gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53. To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol{sup −1} (15.1 kJ mol{sup −1}). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the

  12. Integrative Analysis Reveals an Outcome-associated and Targetable Pattern of p53 and Cell Cycle Deregulation in Diffuse Large B-cell Lymphoma

    PubMed Central

    Monti, Stefano; Chapuy, Bjoern; Takeyama, Kunihiko; Rodig, Scott J; Hao, Yangsheng; Yeda, Kelly T.; Inguilizian, Haig; Mermel, Craig; Curie, Treeve; Dogan, Ahmed; Kutok, Jeffery L; Beroukim, Rameen; Neuberg, Donna; Habermann, Thomas; Getz, Gad; Kung, Andrew L; Golub, Todd R; Shipp, Margaret A

    2013-01-01

    Summary Diffuse large B-cell lymphoma (DLBCL) is a clinically and biologically heterogeneous disease with a high proliferation rate. By integrating copy number data with transcriptional profiles and performing pathway analysis in primary DLBCLs, we identified a comprehensive set of copy number alterations (CNAs) that decreased p53 activity and perturbed cell cycle regulation. Primary tumors either had multiple complementary alterations of p53 and cell cycle components or largely lacked these lesions. DLBCLs with p53 and cell cycle pathway CNAs had decreased abundance of p53 target transcripts and increased expression of E2F target genes and the Ki67 proliferation marker. CNAs of the CDKN2A-TP53-RB-E2F axis provide a structural basis for increased proliferation in DLBCL, predict outcome with current therapy and suggest targeted treatment approaches. PMID:22975378

  13. Microarray and ChIP-seq data analysis revealed changes in p53-mediated transcriptional regulation in Nutlin-3-treated U2OS cells

    PubMed Central

    ZHAO, SONG; NIU, FENG; XU, CHANG-YAN; YE, LONG; BI, GUI-BIN; CHEN, LIN; GONG, PING; TIAN, GANG; NIE, TIAN-HONG

    2015-01-01

    Integrative analysis of chromatin immunoprecipitation-sequencing (ChIP-seq) data and microarray data was performed to illustrate the effect of Nutlin-3 on promoter selectivity and transcriptional regulation by the tumor suppressor p53 in U2OS human osteosarcoma cells. Raw data (accession number, GSE46642) were downloaded from Gene Expression Omnibus. Differential analyses were performed using package limma of R software. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the differentially expressed genes (DEGs) using the Database for Annotation, Visualization and Integration Discovery. Integrative analysis of ChIP-seq data and microarray data were confirmed with ChIP-Array. A total of 565 DEGs were identified, including 373 upregulated genes and 192 downregulated genes. Genes involved in the p53 signaling pathway, cell cycle, DNA replication, cytokine-cytokine receptor interaction and melanoma were markedly over-represented in the DEGs. A total of 39 DEGs were directly regulated by p53 and two were the transcription factors (TFs), E2F2 and HOXA1. E2F2 regulated 25 DEGs, while HOXA1 regulated one DEG. The cell cycle, p53 signaling pathway, melanoma and pathways involved in cancer were enriched in the direct and indirect target genes. Changes in the p53-binding pattern induced by Nutlin-3 were described in the present study, which may advance the understanding of the regulatory network of p53 in osteosarcoma and aid in the development of novel therapies. PMID:26080812

  14. Alterations in the K-ras and p53 genes in rat lung tumors

    SciTech Connect

    Belinsky, S.A.; Swafford, D.S.; Finch, G.L.; Mitchell, C.E.

    1997-06-01

    Activation of the K-ras protooncogene and inactivation of the p53 tumor suppressor gene are events common to many types of human cancers. Molecular epidemiology studies have associated mutational profiles in these genes with specific exposures. The purpose of this paper is to review investigations that have examined the role of the K-ras and p53 genes in lung tumors induced in the F344 rat by mutagenic and nonmutagenic exposures. Mutation profiles within the K-ras and p53 genes, if present in rat lung tumors, would help to define some of the molecular mechanisms underlying cancer induction by various environmental agents. Pulmonary adenocarcinomas or squamous cell carcinomas were induced by tetranitromethane (TNM), 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), beryllium metal, plutonium-239, X-ray, diesel exhaust, or carbon black. These agents were chosen because the tumors they produced could arise via different types of DNA damage. Mutation of the K-ras gene was determined by approaches that included DNA transfection, direct sequencing, mismatch hybridization, and restriction fragment length polymorphism analysis. The frequency for mutation of the K-ras gene was exposure dependent. The transition mutations formed could have been derived from deamination of cytosine. Alteration in the p53 gene was assessed by immunohistochemical analysis for p53 protein and single-strand conformation polymorphism (SSCP) analysis of exons 4 to 9. None of the 93 adenocarinomas examined was immunoreactive toward the anti-p53 antibody CM1. In contrast, 14 of 71 squamous cell carcinomas exhibited nuclear p53 immunoreactivity with no correlation to type of exposure. However, SSCP analysis only detected mutations in 2 of 14 squamous cell tumors that were immunoreactive, suggesting that protein stabilization did not stem from mutations within the p53 gene. Thus, the p53 gene does not appear to be involved in the genesis of most rat lung tumors. 2 figs., 2 tabs., 48 refs.

  15. Experimentally guided structural modeling and dynamics analysis of Hsp90-p53 interactions: allosteric regulation of the Hsp90 chaperone by a client protein.

    PubMed

    Blacklock, Kristin; Verkhivker, Gennady M

    2013-11-25

    A fundamental role of the Hsp90 chaperone system in mediating maturation of protein clients is essential for the integrity of signaling pathways involved in cell cycle control and organism development. Molecular characterization of Hsp90 interactions with client proteins is fundamental to understanding the activity of many tumor-inducing signaling proteins and presents an active area of structural and biochemical studies. In this work, we have probed mechanistic aspects of allosteric regulation of Hsp90 by client proteins via a detailed computational study of Hsp90 interactions with the tumor suppressor protein p53. Experimentally guided protein docking and molecular dynamics structural refinement have reconstructed the recognition-competent states of the Hsp90-p53 complexes that are consistent with the NMR studies. Protein structure network analysis has identified critical interacting networks and specific residues responsible for structural integrity and stability of the Hsp90-p53 complexes. Coarse-grained modeling was used to characterize the global dynamics of the regulatory complexes and map p53-induced changes in the conformational equilibrium of Hsp90. The variations in the functional dynamics profiles of the Hsp90-p53 complexes are consistent with the NMR studies and could explain differences in the functional role of the alternative binding sites. Despite the overall similarity of the collective movements and the same global interaction footprint, p53 binding at the C-terminal interaction site of Hsp90 may have a more significant impact on the chaperone dynamics, which is consistent with the stronger allosteric effect of these interactions revealed by the experimental studies. The results suggest that p53-induced modulation of the global dynamics and structurally stable interaction networks can target the regulatory hinge regions and facilitate stabilization of the closed Hsp90 dimer that underlies the fundamental stimulatory effect of the p53 client. PMID

  16. Quantitative phosphoproteomic analysis reveals γ-bisabolene inducing p53-mediated apoptosis of human oral squamous cell carcinoma via HDAC2 inhibition and ERK1/2 activation.

    PubMed

    Jou, Yu-Jen; Chen, Chao-Jung; Liu, Yu-Ching; Way, Tzong-Der; Lai, Chih-Ho; Hua, Chun-Hung; Wang, Ching-Ying; Huang, Su-Hua; Kao, Jung-Yie; Lin, Cheng-Wen

    2015-10-01

    γ-Bisabolene, one of main components in cardamom, showed potent in vitro and in vivo anti-proliferative activities against human oral squamous cell carcinoma (OSCC). γ-Bisabolene activated caspases-3/9 and decreased mitochondrial memebrane potential, leading to apoptosis of OSCC cell lines (Ca9-22 and SAS), but not normal oral fibroblast cells. Phosphoproteome profiling of OSCC cells treated with γ-bisabolene was identified using TiO2-PDMS plate and LC-MS/MS, then confirmed using Western blotting and real-time RT-PCR assays. Phosphoproteome profiling revealed that γ-bisabolene increased the phosphorylation of ERK1/2, protein phosphatases 1 (PP1), and p53, as well as decreased the phosphorylation of histone deacetylase 2 (HDAC2) in the process of apoptosis induction. Protein-protein interaction network analysis proposed the involvement of PP1-HDAC2-p53 and ERK1/2-p53 pathways in γ-bisabolene-induced apoptosis. Subsequent assays indicated γ-bisabolene eliciting p53 acetylation that enhanced the expression of p53-regulated apoptotic genes. PP1 inhibitor-2 restored the status of HDAC2 phosphorylation, reducing p53 acetylation and PUMA mRNA expression in γ-bisabolene-treated Ca9-22 and SAS cells. Meanwhile, MEK and ERK inhibitors significantly decreased γ-bisabolene-induced PUMA expression in both cancer cell lines. Notably, the results ascertained the involvement of PP1-HDAC2-p53 and ERK1/2-p53 pathways in mitochondria-mediated apoptosis of γ-bisabolene-treated cells. This study demonstrated γ-bisabolene displaying potent anti-proliferative and apoptosis-inducing activities against OSCC in vitro and in vivo, elucidating molecular mechanisms of γ-bisabolene-induced apoptosis. The novel insight could be useful for developing anti-cancer drugs. PMID:26194454

  17. Characterization of p53 expression in rainbow trout.

    PubMed

    Liu, Michelle; Tee, Catherine; Zeng, Fanxing; Sherry, James P; Dixon, Brian; Bols, Niels C; Duncker, Bernard P

    2011-11-01

    The tumour suppressor protein p53 is a critical component of cell cycle checkpoint responses. It upregulates the expression of cyclin-dependent kinase inhibitors in response to DNA damage and other cellular perturbations, and promotes apoptosis when DNA repair pathways are overwhelmed. Given the high incidence of p53 mutations in human cancers, it has been extensively studied, though only a small fraction of these investigations have been in non-mammalian systems. For the present study, an anti-rainbow trout p53 polyclonal antibody was generated. A variety of rainbow trout (Oncorhynchus mykiss) tissues and cell lines were examined through western blot analysis of cellular protein extracts, which revealed relatively high p53 levels in brain and gills. To evaluate the checkpoint response of rainbow trout p53, RTbrain-W1 and RTgill-W1 cell lines were exposed to varying concentrations of the DNA damaging agent bleomycin and ribonucleotide reductase inhibitor hydroxyurea. In contrast to mammals, these checkpoint-inducing agents provoked no apparent increase in rainbow trout p53 levels. These results infer the presence of alternate DNA damage checkpoint mechanisms in rainbow trout cells. PMID:21767662

  18. Pharmacological Activation of p53 in Cancer Cells

    PubMed Central

    Athar, Mohammad; Elmets, Craig A.; Kopelovich, Levy

    2013-01-01

    Tumor suppressor p53 is a transcription factor that regulates a large number of genes and guards against genomic instability. Under multiple cellular stress conditions, p53 functions to block cell cycle progression transiently unless proper DNA repair occurs. Failure of DNA repair mechanisms leads to p53-mediated induction of cell death programs. p53 also induces permanent cell cycle arrest known as cellular senescence. During neoplastic progression, p53 is often mutated and fails to efficiently perform these functions. It has been observed that cancers carrying a wild-type p53 may also have interrupted downstream p53 regulatory signaling leading to disruption in p53 functions. Therefore, strategies to reactivate p53 provide an attractive approach for blocking tumor pathogenesis and its progression. p53 activation may also lead to regression of existing early neoplastic lesions and therefore may be important in developing cancer chemoprevention protocols. A large number of small molecules capable of reactivating p53 have been developed and some are progressing through clinical trials for prospective human applications. However, several questions remain to be answered at this stage. For example, it is not certain if pharmacological activation of p53 will restore all of its multifaceted biological responses, assuming that the targeted cell is not killed following p53 activation. It remains to be demonstrated whether the distinct biological effects regulated by specific post-transnationally modified p53 can effectively be restored by refolding mutant p53. Mutant p53 can be classified as a loss of function or gain of function protein depending on the type of mutation. It is also unclear whether reactivation of mutant p53 has similar consequences in cells carrying gain-of-function and loss-of-function p53 mutants. This review provides a description of various pharmacological approaches tested to activate p53 (both wild-type and mutant) and to assess the effects of

  19. The p53-dependent radioadaptive response

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo

    We already reported that conditioning exposures at low doses, or at low dose-rates, lowered radiation-induced p53-dependent apoptosis in cultured cells in vitro and in the spleens of mice in vivo. In this study, the aim was to characterize the p53-dependent radioadaptive response at the molecular level. We used wild-type (wt) p53 and mutated (m) p53 containing cells derived from the human lung cancer H1299 cell line, which is p53-null. Cellular radiation sensitivities were determined with a colony-forming assay. The accumulation of p53, Hdm2, and iNOS was analyzed with Western blotting. The quantification of chromosomal aberrations was estimated by scoring dicentrics per cell. In wtp53 cells, it was demonstrated that the lack of p53 accumulation was coupled with the activation of Hdm2 after low dose irradiation (0.02 Gy). Although NO radicals were only minimally induced in wtp53 cells irradiated with a challenging irradiation (6 Gy) alone, NO radicals were seen to increase about 2-4 fold after challenging irradiation following a priming irradiation (0.02 Gy). Under similar irradiation conditions with a priming and challenging irradiation in wtp53 cells, induction of radioresistance and a depression of chromosomal aberrations were observed only in the absence of Pifithrin-α (a p53 inhibitor), RITA or Nutlin-3 (p53-Hdm2 interaction inhibitors), aminoguanidine (an iNOS inhibitor) and c-PTIO (an NO radical scavenger). On the other hand, in p53 dysfunctional cells, a radioadaptive response was not observed in the presence or absence of those inhibitors. Moreover, radioresistance developed when wtp53 cells were treated with ISDN (an NO generating agent) alone. These findings suggest that NO radicals are an initiator of the radioadaptive response acting through the activation of Hdm2 and the depression of p53 accumulations.

  20. Radiation response and cell cycle regulation of p53 rescued malignant keratinocytes

    SciTech Connect

    Niemantsverdriet, Maarten; Jongmans, Wim; Backendorf, Claude . E-mail: backendo@chem.leidenuniv.nl

    2005-10-15

    Mutations in the tumor suppressor gene p53 were found in more than 90% of all human squamous cell carcinomas (SCC). To study the function of p53 in a keratinocyte background, a tetracycline-controlled p53 transgene was introduced into a human SCC cell line (SCC15), lacking endogenous p53. Conditional expression of wild-type p53 protein upon withdrawal of tetracycline was accompanied with increased expression of p21{sup WAF1/Cip1} resulting in reduced cell proliferation. Flow-cytometric analysis revealed that these cells were transiently arrested in the G1/S phase of the cell cycle. However, when SCC15 cells expressing p53 were exposed to ionizing radiation (IR), a clear shift from a G1/S to a G2/M cell cycle arrest was observed. This effect was greatly depending on the presence of wild-type p53, as it was not observed to the same extent in SCC15 cells lacking p53. Unexpectedly, the p53- and IR-dependent G2/M cell cycle arrest in the keratinocyte background was not depending on increased expression or stabilization of 14-3-3{sigma}, a p53-regulated effector of G2/M progression in colorectal cancer cells. In keratinocytes, 14-3-3{sigma} (stratifin) is involved in terminal differentiation and its cell cycle function in this cell type might diverge from the one it fulfills in other cellular backgrounds.

  1. NOD/SCID IL2Rγ-null mouse xenograft model of human p53-mutated chronic lymphocytic leukemia and ATM-mutated mantle cell lymphoma using permanent cell lines.

    PubMed

    Verner, Jan; Trbusek, Martin; Chovancova, Jana; Jaskova, Zuzana; Moulis, Mojmir; Folber, Frantisek; Halouzka, Roman; Mayer, Jiri; Pospisilova, Sarka; Doubek, Michael

    2015-01-01

    Xenograft models represent a promising tool to study the pathogenesis of hematological malignancies. To establish a reliable and appropriate in vivo model of aggressive human B-cell leukemia and lymphoma we xenotransplanted four p53-mutated cell lines and one ATM-mutated cell line into immunodeficient NOD/SCID IL2Rγ-null mice. The cell lines MEC-1, SU-DHL-4, JEKO-1, REC-1, and GRANTA-519 were transplanted intraperitoneally or subcutaneously and the engraftment was investigated using immunohistochemistry and flow cytometry. We found significant differences in engraftment efficiency. MEC-1, JEKO-1 and GRANTA-519 cell lines engrafted most efficiently, while SU-DHL-4 cells did not engraft at all. MEC-1 and GRANTA-519 massively infiltrated organs and the whole intraperitoneal cavity showing very aggressive growth. In addition, GRANTA-519 cells massively migrated to the bone marrow regardless of the transplantation route. The MEC-1 and GRANTA-519 cells can be especially recommended for in vivo study of p53-mutated chronic lymphocytic leukemia and ATM-mutated mantle cell lymphoma, respectively. PMID:25827173

  2. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth.

    PubMed

    Zhu, Jiajun; Sammons, Morgan A; Donahue, Greg; Dou, Zhixun; Vedadi, Masoud; Getlik, Matthäus; Barsyte-Lovejoy, Dalia; Al-awar, Rima; Katona, Bryson W; Shilatifard, Ali; Huang, Jing; Hua, Xianxin; Arrowsmith, Cheryl H; Berger, Shelley L

    2015-09-10

    TP53 (which encodes p53 protein) is the most frequently mutated gene among all human cancers. Prevalent p53 missense mutations abrogate its tumour suppressive function and lead to a 'gain-of-function' (GOF) that promotes cancer. Here we show that p53 GOF mutants bind to and upregulate chromatin regulatory genes, including the methyltransferases MLL1 (also known as KMT2A), MLL2 (also known as KMT2D), and acetyltransferase MOZ (also known as KAT6A or MYST3), resulting in genome-wide increases of histone methylation and acetylation. Analysis of The Cancer Genome Atlas shows specific upregulation of MLL1, MLL2, and MOZ in p53 GOF patient-derived tumours, but not in wild-type p53 or p53 null tumours. Cancer cell proliferation is markedly lowered by genetic knockdown of MLL1 or by pharmacological inhibition of the MLL1 methyltransferase complex. Our study reveals a novel chromatin mechanism underlying the progression of tumours with GOF p53, and suggests new possibilities for designing combinatorial chromatin-based therapies for treating individual cancers driven by prevalent GOF p53 mutations. PMID:26331536

  3. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6.

    PubMed

    Hu, Hao; Yu, Ting; Arpiainen, Satu; Lang, Matti A; Hakkola, Jukka; Abu-Bakar, A'edah

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5'-Luc constructs--down to -160bp from the TSS--showed p53 responsiveness in p53 overexpressed C3A cells. However, a further deletion from -160 to -74bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene--a well-known p53 activator--increased the expression of the p53 responsive positive control and the CYP2A6-5'-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5'-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. PMID:26343999

  4. Functional analysis of the p53 codon 72 polymorphism in black South Africans with rheumatoid arthritis--a pilot study.

    PubMed

    Moodley, Devapregasan; Mody, Girish M; Chuturgoon, Anil A

    2010-10-01

    The p53 tumor-suppressor protein plays an integral role in apoptosis. Perturbations in peripheral lymphocyte (PL) apoptosis may be associated with rheumatoid arthritis (RA). Polymorphisms at codon 72 of p53 (arginine (Arg72) to proline transition) confers differences in mitochondrial translocation and apoptosis inducing capabilities of p53 in vitro. We examined associations of this polymorphism with PL apoptosis, mitochondrial depolarization, and clinical markers of disease activity in a cohort of black South African RA patients. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism. PL apoptosis was measured using the annexin-V assay and mitochondrial membrane potential with the JC-1 assay. Clinical and laboratory parameters were recorded for all patients. Statistical differences in these parameters were investigated according to genotype. Genotype distribution did not differ significantly between RA patients and controls (Arg/Arg, Arg/Pro, Pro/Pro: 12%, 46%, and 42% versus 3%, 34%, and 63%), despite significantly higher frequency of the Arg72 allele in patients (p = 0.0406). There was no significant difference in PL apoptosis and mitochondrial depolarization based on p53 codon 72 genotype. In addition, clinical markers of disease activity were not significantly different between genotypes. We conclude that p53 codon 72 genotype does not influence PL apoptosis or mitochondrial depolarization and is not associated with clinical markers of disease in RA. PMID:20532936

  5. Improvement of gemcitabine sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells by RUNX2 depletion-mediated augmentation of TAp73-dependent cell death.

    PubMed

    Nakamura, M; Sugimoto, H; Ogata, T; Hiraoka, K; Yoda, H; Sang, M; Sang, M; Zhu, Y; Yu, M; Shimozato, O; Ozaki, T

    2016-01-01

    Pancreatic cancer exhibits the worst prognostic outcome among human cancers. Recently, we have described that depletion of RUNX2 enhances gemcitabine (GEM) sensitivity of p53-deficient pancreatic cancer AsPC-1 cells through the activation of TAp63-mediated cell death pathway. These findings raised a question whether RUNX2 silencing could also improve GEM efficacy on pancreatic cancer cells bearing p53 mutation. In the present study, we have extended our study to p53-mutated pancreatic cancer MiaPaCa-2 cells. Based on our current results, MiaPaCa-2 cells were much more resistant to GEM as compared with p53-proficient pancreatic cancer SW1990 cells, and there existed a clear inverse relationship between the expression levels of TAp73 and RUNX2 in response to GEM. Forced expression of TAp73α in MiaPaCa-2 cells significantly promoted cell cycle arrest and/or cell death, indicating that a large amount of TAp73 might induce cell death even in the presence of mutant p53. Consistent with this notion, overexpression of TAp73α stimulated luciferase activity driven by p53/TAp73-target gene promoters in MiaPaCa-2 cells. Similar to AsPC-1 cells, small interfering RNA-mediated knockdown of RUNX2 remarkably enhanced GEM sensitivity of MiPaCa-2 cells. Under our experimental conditions, TAp73 further accumulated in RUNX2-depleted MiaPaCa-2 cells exposed to GEM relative to GEM-treated non-silencing control cells. As expected, silencing of p73 reduced GEM sensitivity of MiPaCa-2 cells. Moreover, GEM-mediated Tyr phosphorylation level of TAp73 was much more elevated in RUNX2-depleted MiaPaCa-2 cells. Collectively, our present findings strongly suggest that knockdown of RUNX2 contributes to a prominent enhancement of GEM sensitivity of p53-mutated pancreatic cancer cells through the activation of TAp73-mediated cell death pathway, and also provides a promising strategy for the treatment of patients with pancreatic cancer bearing p53 mutation. PMID:27294865

  6. Improvement of gemcitabine sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells by RUNX2 depletion-mediated augmentation of TAp73-dependent cell death

    PubMed Central

    Nakamura, M; Sugimoto, H; Ogata, T; Hiraoka, K; Yoda, H; Sang, M; Sang, M; Zhu, Y; Yu, M; Shimozato, O; Ozaki, T

    2016-01-01

    Pancreatic cancer exhibits the worst prognostic outcome among human cancers. Recently, we have described that depletion of RUNX2 enhances gemcitabine (GEM) sensitivity of p53-deficient pancreatic cancer AsPC-1 cells through the activation of TAp63-mediated cell death pathway. These findings raised a question whether RUNX2 silencing could also improve GEM efficacy on pancreatic cancer cells bearing p53 mutation. In the present study, we have extended our study to p53-mutated pancreatic cancer MiaPaCa-2 cells. Based on our current results, MiaPaCa-2 cells were much more resistant to GEM as compared with p53-proficient pancreatic cancer SW1990 cells, and there existed a clear inverse relationship between the expression levels of TAp73 and RUNX2 in response to GEM. Forced expression of TAp73α in MiaPaCa-2 cells significantly promoted cell cycle arrest and/or cell death, indicating that a large amount of TAp73 might induce cell death even in the presence of mutant p53. Consistent with this notion, overexpression of TAp73α stimulated luciferase activity driven by p53/TAp73-target gene promoters in MiaPaCa-2 cells. Similar to AsPC-1 cells, small interfering RNA-mediated knockdown of RUNX2 remarkably enhanced GEM sensitivity of MiPaCa-2 cells. Under our experimental conditions, TAp73 further accumulated in RUNX2-depleted MiaPaCa-2 cells exposed to GEM relative to GEM-treated non-silencing control cells. As expected, silencing of p73 reduced GEM sensitivity of MiPaCa-2 cells. Moreover, GEM-mediated Tyr phosphorylation level of TAp73 was much more elevated in RUNX2-depleted MiaPaCa-2 cells. Collectively, our present findings strongly suggest that knockdown of RUNX2 contributes to a prominent enhancement of GEM sensitivity of p53-mutated pancreatic cancer cells through the activation of TAp73-mediated cell death pathway, and also provides a promising strategy for the treatment of patients with pancreatic cancer bearing p53 mutation. PMID:27294865

  7. Targeting the p53 pathway.

    PubMed

    Golubovskaya, Vita M; Cance, William G

    2013-10-01

    This article summarizes data on translational studies to target the p53 pathway in cancer. It describes the functions of the p53 and Mdm-2 signaling pathways, and discusses current therapeutic approaches to target p53 pathways, including reactivation of p53. In addition, direct interaction and colocalization of the p53 and focal adhesion kinase proteins in cancer cells have been demonstrated, and different approaches to target this interaction are reviewed. This is a broad review of p53 function as it relates to the diagnosis and treatment of a wide range of cancers. PMID:24012397

  8. Enhanced sensitivity to irinotecan by Cdk1 inhibition in the p53-deficient HT29 human colon cancer cell line.

    PubMed

    Abal, Miguel; Bras-Goncalves, Rui; Judde, Jean-Gabriel; Fsihi, Hafida; De Cremoux, Patricia; Louvard, Daniel; Magdelenat, Henri; Robine, Sylvie; Poupon, Marie-France

    2004-03-01

    Mutations in the tumor-suppressor gene p53 have been associated with advanced colorectal cancer (CRC). Irinotecan (CPT-11), a DNA topoisomerase 1 inhibitor, has been recently incorporated to the adjuvant therapy. Since the DNA-damage checkpoint depends on p53 activation, the status of p53 might critically influence the response to CPT-11. We analysed the sensitivity to CPT-11 in the human colon cancer cell line HT29 (mut p53) and its wild-type (wt)-p53 stably transfected subclone HT29-A4. Cell-cycle analysis in synchronised cells demonstrated the activation of transfected wt-p53 and a p21(WAF1/CIP1)-dependent cell-cycle blockage in the S phase. Activated wt-p53 increased apoptosis and enhanced sensitivity to CPT-11. In p53-deficient cells, cDNA-macroarray analysis and western blotting showed an accumulation of the cyclin-dependent kinase (cdk)1/cyclin B complex. Subsequent p53-independent activation of the cdk-inhibitor (cdk-I) p21(WAF1/CIP1) prevented cell-cycle progression. Cdk1 induction was exploited in vivo to improve the sensitivity to CPT-11 by additional treatment with the cdk-I CYC-202. We demonstrate a gain of sensitivity to CPT-11 in a p53-mutated colon cancer model either by restoring wild-type p53 function or by sequential treatment with cdk-Is. Considering that mutations in p53 are among the most common genetic alterations in CRC, a therapeutic approach specifically targeting p53-deficient tumors could greatly improve the treatment outcomes. PMID:15001986

  9. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  10. Cellular adaptation to hypoxia and p53 transcription regulation.

    PubMed

    Zhao, Yang; Chen, Xue-qun; Du, Ji-zeng

    2009-05-01

    Tumor suppressor p53 is the most frequently mutated gene in human tumors. Meanwhile, under stress conditions, p53 also acts as a transcription factor, regulating the expression of a series of target genes to maintain the integrity of genome. The target genes of p53 can be classified into genes regulating cell cycle arrest, genes involved in apoptosis, and genes inhibiting angiogenesis. p53 protein contains a transactivation domain, a sequence-specific DNA binding domain, a tetramerization domain, a non-specific DNA binding domain that recognizes damaged DNA, and a later identified proline-rich domain. Under stress, p53 proteins accumulate and are activated through two mechanisms. One, involving ataxia telangiectasia-mutated protein (ATM), is that the interaction between p53 and its down-regulation factor murine double minute 2 (MDM2) decreases, leading to p53 phosphorylation on Ser15, as determined by the post-translational mechanism; the other holds that p53 increases and is activated through the binding of ribosomal protein L26 (RPL26) or nucleolin to p53 mRNA 5( untranslated region (UTR), regulating p53 translation. Under hypoxia, p53 decreases transactivation and increases transrepression. The mutations outside the DNA binding domain of p53 also contribute to tumor progress, so further studies on p53 should also be focused on this direction. The subterranean blind mole rat Spalax in Israel is a good model for hypoxia-adaptation. The p53 of Spalax mutated in residue 172 and residue 207 from arginine to lysine, conferring it the ability to survive hypoxic conditions. This model indicates that p53 acts as a master gene of diversity formation during evolution. PMID:19434769

  11. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  12. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53

    PubMed Central

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1–393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using “hot-spot” p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  13. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53.

    PubMed

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1-393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using "hot-spot" p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  14. Activation and activities of the p53 tumour suppressor protein

    PubMed Central

    Bálint, É; Vousden, K H

    2001-01-01

    The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are induced by p53, as well as their implications for cancer therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11747320

  15. Mutant p53: One, No One, and One Hundred Thousand

    PubMed Central

    Walerych, Dawid; Lisek, Kamil; Del Sal, Giannino

    2015-01-01

    Encoded by the mutated variants of the TP53 tumor suppressor gene, mutant p53 proteins are getting an increased experimental support as active oncoproteins promoting tumor growth and metastasis. p53 missense mutant proteins are losing their wild-type tumor suppressor activity and acquire oncogenic potential, possessing diverse transforming abilities in cell and mouse models. Whether various mutant p53s differ in their oncogenic potential has been a matter of debate. Recent discoveries are starting to uncover the existence of mutant p53 downstream programs that are common to different mutant p53 variants. In this review, we discuss a number of studies on mutant p53, underlining the advantages and disadvantages of alternative experimental approaches that have been used to describe the numerous mutant p53 gain-of-function activities. Therapeutic possibilities are also discussed, taking into account targeting either individual or multiple mutant p53 proteins in human cancer. PMID:26734571

  16. Prevalent p53 mutants co-opt chromatin pathways to drive cancer growth

    PubMed Central

    Zhu, Jiajun; Sammons, Morgan A.; Donahue, Greg; Dou, Zhixun; Vedadi, Masoud; Getlik, Matthaeus; Barsyte-Lovejoy, Dalia; Al-Awar, Rima; Katona, Bryson W.; Shilatifard, Ali; Huang, Jing; Hua, Xianxin; Arrowsmith, Cheryl H.; Berger, Shelley L.

    2015-01-01

    SUMMARY TP53 is the most frequently mutated gene among all human cancers. Prevalent p53 missense mutations abrogate its tumor suppressive function and lead to “gain-of-function” (GOF) that promotes cancer. Here we show that p53 GOF mutants bind to and upregulate chromatin regulatory genes, including the methyltransferases KMT2A (MLL1) and KMT2D (MLL2), and acetyltransferase KAT6A (MOZ or MYST3), resulting in genome-wide increases of histone methylation and acetylation. Analysis of The Cancer Genome Atlas shows specific upregulation of MLL1, MLL2, and MOZ in p53 GOF patient-derived tumors, but not in p53 wildtype or p53 null tumors. Cancer cell proliferation is dramatically lowered by genetic knockdown of MLL1, or by pharmacological inhibition of the MLL1 methyltransferase complex. Our study reveals a novel chromatin mechanism underlying the progression of tumors with GOF p53, and suggests new possibilities for designing combinatorial chromatin-based therapies for treating individual cancers driven by prevalent GOF p53 mutations. PMID:26331536

  17. p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter.

    PubMed

    Marcel, V; Vijayakumar, V; Fernández-Cuesta, L; Hafsi, H; Sagne, C; Hautefeuille, A; Olivier, M; Hainaut, P

    2010-05-01

    The tumor suppressor p53 protein is activated by genotoxic stress and regulates genes involved in senescence, apoptosis and cell-cycle arrest. Nine p53 isoforms have been described that may modulate suppressive functions of the canonical p53 protein. Among them, Delta133p53 lacks the 132 proximal residues and has been shown to modulate p53-induced apoptosis and cell-cycle arrest. Delta133p53 is expressed from a specific mRNA, p53I4, driven by an alternative promoter P2 located between intron 1 and exon 5 of TP53 gene. Here, we report that the P2 promoter is regulated in a p53-dependent manner. Delta133p53 expression is increased in response to DNA damage by doxorubicin in p53 wild-type cell lines, but not in p53-mutated cells. Chromatin immunoprecipitation and luciferase assays using P2 promoter deletion constructs indicate that p53 binds functional response elements located within the P2 promoter. We also show that Delta133p53 does not bind specifically to p53 consensus DNA sequence in vitro, but competes with wild-type p53 in specific DNA-binding assays. Finally, we report that Delta133p53 counteracts p53-dependent growth suppression in clonogenic assays. These observations indicate that Delta133p53 is a novel target of p53 that may participate in a negative feedback loop controlling p53 function. PMID:20190805

  18. Molecular cloning, characterization, and expression analysis of p53 from the oriental river prawn, Macrobrachium nipponense, in response to hypoxia.

    PubMed

    Sun, Shengming; Gu, Zhimin; Fu, Hongtuo; Zhu, Jian; Ge, Xianping; Xuan, Fujun

    2016-07-01

    The tumor suppressor gene p53 plays a critical role in safeguarding the integrity of the genome in mammalian cells. It acts as a sequence-specific transcription factor. Once p53 is activated by a variety of cellular stresses, it transactivates downstream target genes and regulates the cell cycle and apoptosis. However, little is known about the functions of the p53 pathway in prawns in response to hypoxia. In this study, the cDNA of p53 from the oriental river prawn, Macrobrachium nipponense, (Mnp53) was cloned using a combination of homology cloning and rapid amplification of cDNA ends. The full-length cDNA of Mnp53 has 2130 bp, including an open reading frame of 1125 bp that encodes a polypeptide of 374 amino acids with a predicted molecular weight of 41.9 kDa and a theoretical isoelectric point of 6.9. Quantitative real-time (qRT)-PCR assays revealed that Mnp53 was ubiquitously expressed in all examined tissues, but at high levels in the hepatopancreas. In addition, we studied respiratory bursts and reactive oxygen species (ROS) production in the hepatopancreas of M. nipponense. Our results suggest that oxidative stress occurred in prawns in response to hypoxia and that apoptosis was associated with an increase in caspase-3 mRNA expression. qRT-PCR and western blot results confirmed that hypoxic stress induced the upregulation of Mnp53 at mRNA and protein levels. Furthermore, immunohistochemistry showed remarkable changes in immunopositive staining after the same hypoxic treatment. These results suggest that hypoxia-induced oxidative stress may cause apoptosis and cooperatively stimulate the expression of Mnp53. PMID:27044329

  19. Metabolite and transcriptome analysis during fasting suggest a role for the p53-Ddit4 axis in major metabolic tissues

    PubMed Central

    2013-01-01

    Background Fasting induces specific molecular and metabolic adaptions in most organisms. In biomedical research fasting is used in metabolic studies to synchronize nutritional states of study subjects. Because there is a lack of standardization for this procedure, we need a deeper understanding of the dynamics and the molecular mechanisms in fasting. Results We investigated the dynamic changes of liver gene expression and serum parameters of mice at several time points during a 48 hour fasting experiment and then focused on the global gene expression changes in epididymal white adipose tissue (WAT) as well as on pathways common to WAT, liver, and skeletal muscle. This approach produced several intriguing insights: (i) rather than a sequential activation of biochemical pathways in fasted liver, as current knowledge dictates, our data indicates a concerted parallel response; (ii) this first characterization of the transcriptome signature of WAT of fasted mice reveals a remarkable activation of components of the transcription apparatus; (iii) most importantly, our bioinformatic analyses indicate p53 as central node in the regulation of fasting in major metabolic tissues; and (iv) forced expression of Ddit4, a fasting-regulated p53 target gene, is sufficient to augment lipolysis in cultured adipocytes. Conclusions In summary, this combination of focused and global profiling approaches provides a comprehensive molecular characterization of the processes operating during fasting in mice and suggests a role for p53, and its downstream target Ddit4, as novel components in the transcriptional response to food deprivation. PMID:24191950

  20. Nucleolar stress with and without p53

    PubMed Central

    James, Allison; Wang, Yubo; Raje, Himanshu; Rosby, Raphyel; DiMario, Patrick

    2014-01-01

    A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53? PMID:25482194

  1. Nucleolar stress with and without p53.

    PubMed

    James, Allison; Wang, Yubo; Raje, Himanshu; Rosby, Raphyel; DiMario, Patrick

    2014-01-01

    A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell's energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53? PMID:25482194

  2. The p53 Codon 72 Pro/Pro Genotype Identifies Poor-Prognosis Neuroblastoma Patients: Correlation with Reduced Apoptosis and Enhanced Senescence by the p53-72P Isoform12

    PubMed Central

    Cattelani, Sara; Ferrari-Amorotti, Giovanna; Galavotti, Sara; Defferrari, Raffaella; Tanno, Barbara; Cialfi, Samantha; Vergalli, Jenny; Fragliasso, Valentina; Guerzoni, Clara; Manzotti, Gloria; Soliera, Angela Rachele; Menin, Chiara; Bertorelle, Roberta; McDowell, Heather P; Inserra, Alessandro; Belli, Maria Luisa; Varesio, Luigi; Tweddle, Deborah; Tonini, Gian Paolo; Altavista, Pierluigi; Dominici, Carlo; Raschellà, Giuseppe; Calabretta, Bruno

    2012-01-01

    The p53 gene is rarely mutated in neuroblastoma, but codon 72 polymorphism that modulates its proapoptotic activity might influence cancer risk and clinical outcome. We investigated whether this polymorphism affects neuroblastoma risk and disease outcome and assessed the biologic effects of the p53-72R and p53-72P isoforms in p53-null cells. Comparison of 288 healthy subjects and 286 neuroblastoma patients revealed that the p53-72 polymorphism had no significant impact on the risk of developing neuroblastoma; however, patients with the Pro/Pro genotype had a shorter survival than those with the Arg/Arg or the Arg/Pro genotypes even in the stage 3 and 4 subgroup without MYCN amplification. By Cox regression analysis, the p53 Pro/Pro genotype seems to be an independent marker of poor prognosis (hazard ratio = 2.74; 95% confidence interval = 1.14–6.55, P = .014) together with clinical stage, MYCN status, and age at diagnosis. In vitro, p53-72P was less effective than p53-72R in inducing apoptosis and inhibiting survival of p53-null LAN-1 cells treated with etoposide, topotecan, or ionizing radiation but not taxol. By contrast, p53-72P was more effective in promoting p21-dependent accelerated senescence, alone or in the presence of etoposide. Thus, the p53-72 Pro/Pro genotype might be a marker of poor outcome independent of MYCN amplification, possibly improving risk stratification. Moreover, the lower apoptosis and the enhanced accelerated senescence by the p53-72P isoform in response to DNA damage suggest that patients with neuroblastoma with the p53-72 Pro/Pro genotype may benefit from therapeutic protocols that do not rely only on cytotoxic drugs that function, in part, through p53 activation. PMID:22904680

  3. p53-directed translational control can shape and expand the universe of p53 target genes

    PubMed Central

    Zaccara, S; Tebaldi, T; Pederiva, C; Ciribilli, Y; Bisio, A; Inga, A

    2014-01-01

    The increasing number of genome-wide transcriptome analyses focusing on p53-induced cellular responses in many cellular contexts keeps adding to the already numerous p53-regulated transcriptional networks. To investigate post-transcriptional controls as an additional dimension of p53-directed gene expression responses, we performed a translatome analysis through polysomal profiling on MCF7 cells upon 16 hours of doxorubicin or nutlin-3a treatment. The comparison between the transcriptome and the translatome revealed a considerable level of uncoupling, characterized by genes whose transcription variations did not correlate with translation variations. Interestingly, uncoupled genes were associated with apoptosis, DNA and RNA metabolism and cell cycle functions, suggesting that post-transcriptional control can modulate classical p53-regulated responses. Furthermore, even for well-established p53 targets that were differentially expressed both at the transcriptional and translational levels, quantitative differences between the transcriptome, subpolysomal and polysomal RNAs were evident. As we searched mechanisms underlying gene expression uncoupling, we identified the p53-dependent modulation of six RNA-binding proteins, where hnRNPD (AUF1) and CPEB4 are direct p53 transcriptional targets, whereas SRSF1, DDX17, YBX1 and TARDBP are indirect targets (genes modulated preferentially in the subpolysomal or polysomal mRNA level) modulated at the translational level in a p53-dependent manner. In particular, YBX1 translation appeared to be reduced by p53 via two different mechanisms, one related to mTOR inhibition and the other to miR-34a expression. Overall, we established p53 as a master regulator of translational control and identified new p53-regulated genes affecting translation that can contribute to p53-dependent cellular responses. PMID:24926617

  4. p53-directed translational control can shape and expand the universe of p53 target genes.

    PubMed

    Zaccara, S; Tebaldi, T; Pederiva, C; Ciribilli, Y; Bisio, A; Inga, A

    2014-10-01

    The increasing number of genome-wide transcriptome analyses focusing on p53-induced cellular responses in many cellular contexts keeps adding to the already numerous p53-regulated transcriptional networks. To investigate post-transcriptional controls as an additional dimension of p53-directed gene expression responses, we performed a translatome analysis through polysomal profiling on MCF7 cells upon 16 hours of doxorubicin or nutlin-3a treatment. The comparison between the transcriptome and the translatome revealed a considerable level of uncoupling, characterized by genes whose transcription variations did not correlate with translation variations. Interestingly, uncoupled genes were associated with apoptosis, DNA and RNA metabolism and cell cycle functions, suggesting that post-transcriptional control can modulate classical p53-regulated responses. Furthermore, even for well-established p53 targets that were differentially expressed both at the transcriptional and translational levels, quantitative differences between the transcriptome, subpolysomal and polysomal RNAs were evident. As we searched mechanisms underlying gene expression uncoupling, we identified the p53-dependent modulation of six RNA-binding proteins, where hnRNPD (AUF1) and CPEB4 are direct p53 transcriptional targets, whereas SRSF1, DDX17, YBX1 and TARDBP are indirect targets (genes modulated preferentially in the subpolysomal or polysomal mRNA level) modulated at the translational level in a p53-dependent manner. In particular, YBX1 translation appeared to be reduced by p53 via two different mechanisms, one related to mTOR inhibition and the other to miR-34a expression. Overall, we established p53 as a master regulator of translational control and identified new p53-regulated genes affecting translation that can contribute to p53-dependent cellular responses. PMID:24926617

  5. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene

    SciTech Connect

    Felley-Bosco, E.; Weston, A.; Cawley, H.M.; Bennett, W.P.; Harris, C.C.

    1993-09-01

    A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Causasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53. 30 refs., 3 figs., 3 tabs.

  6. Critical evaluation of p53 as a prognostic marker in ovarian cancer.

    PubMed

    Hall, Jacqueline; Paul, Jim; Brown, Robert

    2004-05-01

    The tumour suppressor gene encoding p53 has been shown from experimental studies to have a crucial role in how cells respond to DNA damage. p53 has important functions in apoptosis, cell-cycle arrest and DNA repair, largely mediated by its activity on gene transcription. However, despite this wealth of in vitro data, its role in how tumours respond to DNA damage induced by chemotherapeutic drugs remains controversial. In this review, we highlight some of the problems surrounding design and analysis of studies of p53 as a prognostic marker of clinical outcome, using ovarian cancer as an example. We aim to build on the knowledge of the published literature in ovarian cancer to identify criteria for clinical studies that should give a more definitive estimate of the role of p53 in clinical drug resistance. A search of three public databases using keywords combined with Boolean operators identified 64 clinical publications investigating the relationship of p53 to clinical outcome following chemotherapy in ovarian cancer. Although 43% of 215 published analyses from the 64 papers reported a significant correlation between p53 status and a clinical endpoint relevant to chemoresistance, only six analyses fulfil minimum criteria and none of these finds a statistically significant correlation of p53 with chemotherapy-resistance endpoints. The results from published clinical studies suggest a more complex role of p53 mutation in the mechanism of resistance in ovarian cancer than is suggested by in vitro studies. PMID:15147608

  7. Of humans and canines: Immunohistochemical analysis of PCNA, Bcl-2, p53, cytokeratin and ER in mammary tumours.

    PubMed

    Kumaraguruparan, R; Prathiba, D; Nagini, S

    2006-10-01

    Mammary tumours are the most common neoplasms in humans and canines. Human and canine mammary tumours share several important epidemiological, clinicopathological and biochemical features. Development of mammary tumours involves accumulation of mutant cells caused by excessive proliferation and insufficient apoptosis or dysregulation of cellular differentiation. The present study was therefore designed to investigate the expression of proliferation, differentiation, and apoptosis associated proteins together with expression of estrogen receptors (ER) in both human and canine mammary tumours. Thirty breast cancer patients categorized as pre- and postmenopausal, and 30 mammary gland tumours obtained from bitches were included in this study. The expression of proliferating cell nuclear antigen (PCNA), Bcl-2, p53, cytokeratin and ER in tumour tissues and adjacent tissues were investigated using immunohistochemical staining. While the expression of PCNA, Bcl-2, p53 and ER was significantly increased, expression of cytokeratin was significantly lower in both human as well as canine mammary tumours compared to corresponding adjacent tissues. The magnitude of the changes was however more pronounced in premenopausal patients compared to postmenopausal patients. The changes in proliferation, apoptosis and differentiation associated proteins in human and canine mammary tumours validate use of the canine model to understand the molecular mechanisms of mammary carcinogenesis. PMID:16740286

  8. Chemical Variations on the p53 Reactivation Theme

    PubMed Central

    Ribeiro, Carlos J. A.; Rodrigues, Cecília M. P.; Moreira, Rui; Santos, Maria M. M.

    2016-01-01

    Among the tumor suppressor genes, p53 is one of the most studied. It is widely regarded as the “guardian of the genome”, playing a major role in carcinogenesis. In fact, direct inactivation of the TP53 gene occurs in more than 50% of malignancies, and in tumors that retain wild-type p53 status, its function is usually inactivated by overexpression of negative regulators (e.g., MDM2 and MDMX). Hence, restoring p53 function in cancer cells represents a valuable anticancer approach. In this review, we will present an updated overview of the most relevant small molecules developed to restore p53 function in cancer cells through inhibition of the p53-MDMs interaction, or direct targeting of wild-type p53 or mutated p53. In addition, optimization approaches used for the development of small molecules that have entered clinical trials will be presented. PMID:27187415

  9. Alterations in K-ras, APC and p53-multiple genetic pathway in colorectal cancer among Indians.

    PubMed

    Malhotra, Pooja; Anwar, Mumtaz; Nanda, Neha; Kochhar, Rakesh; Wig, Jai Dev; Vaiphei, Kim; Mahmood, Safrun

    2013-06-01

    The incidence of colorectal cancer (CRC) is increasing rapidly in Asian countries during the past few decades, but no comprehensive analysis has been done to find out the exact cause of this disease. In this study, we investigated the frequencies of mutations and expression pattern of K-ras, APC (adenomatosis polyposis coli) and p53 in tumor, adjoining and distant normal mucosa and to correlate these alterations with patients clinicopathological parameters as well as with the survival. Polymerase chain reaction (PCR)-restriction digestion was used to detect mutations in K-ras and PCR-SSCP (Single Strand Conformation Polymorphism) followed by DNA sequencing was used to detect mutations in APC and p53 genes. Immunohistochemistry was used to detect the expression pattern of K-ras, APC and p53 proteins. The frequencies of mutations of K-ras, APC and p53 in 30 tumor tissues samples were 26.7 %, 46.7 % and 20 %, respectively. Only 3.3 % of tumors contained mutations in all the three genes. The most common combination of mutation was APC and p53 whereas mutation in both p53 and K-ras were extremely rare. There was no association between the mutations and expression pattern of K-ras, APC and p53 (p>0.05). In Indians, the frequency of alterations of K-ras and APC is similar as in Westerns, whereas the frequency of p53 mutation is slightly lower. The lack of multiple mutations in tumor specimens suggests that these genetic alterations might have independent influences on CRC development and there could be multiple alternative genetic pathways to CRC in our present study cohort. PMID:23526092

  10. p53 isoform profiling in glioblastoma and injured brain

    PubMed Central

    Takahashi, Rie; Giannini, Caterina; Sarkaria, Jann N.; Schroeder, Mark; Rogers, Joseph; Mastroeni, Diego; Scrable, Heidi

    2014-01-01

    The tumor suppressor p53 has been found to be the most commonly mutated gene in human cancers; however, the frequency of p53 mutations varies from 10–70% across different cancer types. This variability can partly be explained by inactivating mechanisms aside from direct genomic polymorphisms. The p53 gene encodes 12 isoforms, which have been shown to modulate full-length p53 activity in cancer. In this study, we characterized p53 isoform expression patterns in glioblastoma, gliosis, non-tumor brain, and neural progenitor cells by SDS-PAGE, immunoblot, mass spectrometry, and RT-PCR. At the protein level, we found that the most consistently expressed isoform in glioblastoma, Δ40p53, was uniquely expressed in regenerative processes, such as those involving neural progenitor cells and gliosis compared to tumor samples. Isoform profiling of glioblastoma tissues revealed the presence of both Δ40p53 and full-length p53, neither of which were detected in non-tumor cerebral cortex. Upon xenograft propagation of tumors, p53 levels increased. The variability of overall p53 expression and relative levels of isoforms suggest fluctuations in subpopulations of cells with greater or lesser capacity for proliferation, which can change as the tumor evolves under different growth conditions. PMID:22824800

  11. Targeting the p53 Pathway in Ewing Sarcoma

    PubMed Central

    Neilsen, Paul M.; Pishas, Kathleen I.; Callen, David F.; Thomas, David M.

    2011-01-01

    The p53 tumour suppressor plays a pivotal role in the prevention of oncogenic transformation. Cancers frequently evade the potent antitumour surveillance mechanisms of p53 through mutation of the TP53 gene, with approximately 50% of all human malignancies expressing dysfunctional, mutated p53 proteins. Interestingly, genetic lesions in the TP53 gene are only observed in 10% of Ewing Sarcomas, with the majority of these sarcomas expressing a functional wild-type p53. In addition, the p53 downstream signaling pathways and DNA-damage cell cycle checkpoints remain functionally intact in these sarcomas. This paper summarizes recent insights into the functional capabilities and regulation of p53 in Ewing Sarcoma, with a particular focus on the cross-talk between p53 and the EWS-FLI1 gene rearrangement frequently associated with this disease. The development of several activators of p53 is discussed, with recent evidence demonstrating the potential of small molecule p53 activators as a promising systemic therapeutic approach for the treatment of Ewing Sarcomas with wild-type p53. PMID:21197471

  12. The p53 circuit board

    PubMed Central

    Sullivan, Kelly D.; Gallant-Behm, Corrie L.; Henry, Ryan E.; Fraikin, Jean-Luc; Espinosa, Joaquín M.

    2012-01-01

    The p53 tumor suppressor is embedded in a large gene network controlling diverse cellular and organismal phenotypes. Multiple signaling pathways converge onto p53 activation, mostly by relieving the inhibitory effects of its repressors, MDM2 and MDM4. In turn, signals originating from increased p53 activity diverge into distinct effector pathways to deliver a specific cellular response to the activating stimuli. Much attention has been devoted to dissecting how the various input pathways trigger p53 activation and how the activity of the p53 protein itself can be modulated by a plethora of co-factors and post-translational modifications. In this review we will focus instead on the multiple configurations of the effector pathways. We will discuss how p53-generated signals are transmitted, amplified, resisted and eventually integrated by downstream gene circuits operating at the transcriptional, post-transcriptional and post-translational level. We will also discuss how context-dependent variations in these gene circuits define the cellular response to p53 activation and how they may impact the clinical efficacy of p53-based targeted therapies. PMID:22333261

  13. p53 genes function to restrain mobile elements.

    PubMed

    Wylie, Annika; Jones, Amanda E; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V; Rakheja, Dinesh; Chen, Kenneth S; Hammer, Robert E; Comerford, Sarah A; Amatruda, James F; Abrams, John M

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53(-) germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5' sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264

  14. p53 genes function to restrain mobile elements

    PubMed Central

    Wylie, Annika; Jones, Amanda E.; D'Brot, Alejandro; Lu, Wan-Jin; Kurtz, Paula; Moran, John V.; Rakheja, Dinesh; Chen, Kenneth S.; Hammer, Robert E.; Comerford, Sarah A.; Amatruda, James F.; Abrams, John M.

    2016-01-01

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53− germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5′ sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility. PMID:26701264

  15. In vitro expression of human p53 cDNA clones and characterization of the cloned human p53 gene.

    PubMed

    Wolf, D; Laver-Rudich, Z; Rotter, V

    1985-08-01

    The human p53 gene was cloned and characterized by using a battery of p53 DNA clones. A series of human cDNA clones of various sizes and relative localizations to the mRNA molecule were isolated by using the human p53-H14 (2.35-kilobase) cDNA probe which we previously cloned. One such isolate, clone p53-H7 (2.65 kilobases), spans the entire human mature p53 mRNA molecule. Construction of the human cDNA clones in the pSP65 RNA transcription vector facilitated the generation of p53 transcripts by the SP6 bacteriophage RNA polymerase. The p53-specific RNA transcripts obtained without further processing were translated into p53 proteins in a cell-free system. By using this rapid in vitro transcription-translation assay, we found that whereas clone p53-H7 (2.65 kilobases) coded for a mature-sized p53 protein, a shorter cDNA clone, p53-H13 (1.8 kilobases), dictated the synthesis of a smaller-sized p53 protein (45 kilodaltons). The p53 proteins synthesized in vitro immunoprecipitated efficiently with human-specific anti-p53 antibodies. Genomic analysis of human DNA revealed the presence of a single p53 gene residing within two EcoRI fragments. Heteroduplex analysis between the full-length cDNA clone p53-H7 and the cloned p53 gene indicated the presence of seven major exons. PMID:3018534

  16. Intratumor Cellular Heterogeneity and Alterations in ras Oncogene and p53 Tumor Suppressor Gene in Human Prostate Carcinoma

    PubMed Central

    Konishi, Noboru; Hiasa, Yoshio; Matsuda, Hirofumi; Tao, Ming; Tsuzuki, Toshihide; Hayashi, Isao; Kitahori, Yoshiteru; Shiraishi, Taizo; Yatani, Ryuichi; Shimazaki, Jun; Lin, Jung-Chung

    1995-01-01

    To assess the potential role of ras oncogene activation and P53 tumor suppressor gene mutations in the development of human prostate carcinoma, nine cases of histologically heterogeneous prostate tumors obtained from total prostatectomies were probed for these specific events. Each tumor was divided into 5 to 10 areas according to different growth or histological patterns. Targeted DNA sequences coding for ras and p53 were amplified by the polymerase chain reaction, analyzed by single-strand conformational polymorphisms, and confirmed by direct DNA sequencing. Point mutations of the ras gene were found in three of the nine tumors. Two contained K-ras codon 13 and H-ras codon 61 mutations, found in only one and three areas of each lesion, respectively. The third tumor contained two different point mutations in K-ras codons 13 and 61 in different foci of the sample. Loss of heterozygosity at the polymorphic codon 72 in the p53 gene was detected in two of four informative cases (50%) showing fragment cleavage by restriction fragment length polymorphism analysis. Mutations in p53, missense transversions, single base insertions, and two base deletions were also detected in three tumors. The present results reveal mutated ras and p53 occasionally occurring in small foci of the tumor and that genetic mutations in p53, as opposed to those in ras, are more closely associated with invasive growth of heterogeneous prostate carcinoma. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:7573356

  17. Identification of p53-target genes in Danio rerio

    PubMed Central

    Mandriani, Barbara; Castellana, Stefano; Rinaldi, Carmela; Manzoni, Marta; Venuto, Santina; Rodriguez-Aznar, Eva; Galceran, Juan; Nieto, M. Angela; Borsani, Giuseppe; Monti, Eugenio; Mazza, Tommaso; Merla, Giuseppe; Micale, Lucia

    2016-01-01

    To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species. PMID:27581768

  18. Identification of p53-target genes in Danio rerio.

    PubMed

    Mandriani, Barbara; Castellana, Stefano; Rinaldi, Carmela; Manzoni, Marta; Venuto, Santina; Rodriguez-Aznar, Eva; Galceran, Juan; Nieto, M Angela; Borsani, Giuseppe; Monti, Eugenio; Mazza, Tommaso; Merla, Giuseppe; Micale, Lucia

    2016-01-01

    To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species. PMID:27581768

  19. A SENSITIVE IMMUNOFLUORESCENCE ASSAY FOR DETECTION OF P53 PROTEIN ACCUMULATION IN SPUTUM

    EPA Science Inventory

    p53 mutations are common genetic alterations in lung cancers and usually result in p53 protein accumulation in tumor cells. Sputum is noninvasive to collect and ideal for screening p53 abnormalities. This study was to determine the feasibility of detecting p53 protein accumulatio...

  20. Tumor suppressor gene P53 in fish species as a target for genotoxic effects monitoring

    SciTech Connect

    Kusser, W.C.; Brand, D.; Glickman, B.W.; Cretney, W.

    1995-12-31

    Analysis of environmentally induced molecular changes in DNA from fish was initiated with a study of tumor suppressor gene p53. This gene was chosen because of the high number of documented mutations in p53 from humans and their relevance in tumorigenesis. Bottom-feeding flatfish (e.g. English sole, Pleuronectes vetulus) and members of the salmonid family (e.g. rainbow trout, Oncorhynchus mykiss and chinook salmon, O. tschaaytsha) were chosen, because they are widespread and of commercial and recreational importance. The studies include the use of histopathological, biochemical, and molecular genetic tools in aquatic systems. The authors are currently examining the deposition of DNA damage and mutation in the p53 gene in fish. Parallel histopathology of liver showed idiopathic liver lesions that were strongly dependent on location of capture (0.01 < p(X{sup 2} 0.05, 2 > 6.89) < 0.025) with a prevalence of 30% for fish collected from the vicinity of pulp mills. To assess DNA damage and mutation analysis, DNA was extracted from fish liver. Polymerase chain reaction (PCR) and DNA sequencing of the p53 gene was performed for rainbow trout, chinook and sockeye salmon, O. nerka. Southern blotting with a labeled p53 probe from rainbow trout was performed using genomic DNA from various teleost fish species. The presence of p53 could be shown in all fish species examined, including salmonids and sentinel species for environmental monitoring like English sole and white sucker (Catostomus commersom). To correlate histopathology with molecular analysis the authors initiated the determination of DNA damage, DNA adducts and mutations in the p53 gene (conserved exons 5 to 9).

  1. p53 and the pathogenesis of skin cancer

    SciTech Connect

    Benjamin, Cara L.; Ananthaswamy, Honnavara N.

    2007-11-01

    The p53 tumor suppressor gene and gene product are among the most diverse and complex molecules involved in cellular functions. Genetic alterations within the p53 gene have been shown to have a direct correlation with cancer development and have been shown to occur in nearly 50% of all cancers. p53 mutations are particularly common in skin cancers and UV irradiation has been shown to be a primary cause of specific 'signature' mutations that can result in oncogenic transformation. There are certain 'hot-spots' in the p53 gene where mutations are commonly found that result in a mutated dipyrimidine site. This review discusses the role of p53 from normal function and its dysfunction in pre-cancerous lesions and non-melanoma skin cancers. Additionally, special situations are explored, such as Li-Fraumeni syndrome in which there is an inherited p53 mutation, and the consequences of immune suppression on p53 mutations and the resulting increase in non-melanoma skin cancer in these patients.

  2. Polymorphism of P53-Ets/AP1 transactivation region of MDM2 oncogene and its immunohistochemical analysis in canine tumours.

    PubMed

    Rezaie, A; Tabandeh, M R; Noori, S M A

    2016-06-01

    Mouse Double Minute-2 (MDM2) is an ubiquitin ligase which is overexpressed or its promoter polymorphism has been reported in different tumours. The objective of this study was to examine the MDM2 protein expression and its promoter polymorphism in some canine tumours. Twenty specimens were collected from 20 dogs with 15 mammary gland carcinomas, 3 lymphomas, 1 transmissible venereal tumour and 1 trichoblastoma. Samples were analysed immunohistochemically using human antibody against MDM2 protein. PCR and DNA sequencing were carried out to identify MDM2 promoter polymorphism. MDM2 gene was expressed in 13 of 20 samples including 11 mammary carcinomas, 1 lymphoma and 1 trichoblastoma. We found 94% homology between canine and human sequences. Four mutations including G169C, A177G, G291T and A177G were identified in different types of breast carcinomas. An extra p53 response element was found in a mixed mammary carcinoma. PMID:24447820

  3. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53.

    PubMed

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena; Spiotto, Michael T

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  4. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53

    PubMed Central

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  5. p53 attenuates AKT signaling by modulating membrane phospholipid composition

    PubMed Central

    Rueda-Rincon, Natalia; Bloch, Katarzyna; Derua, Rita; Vyas, Rajesh; Harms, Amy; Hankemeier, Thomas; Khan, Niamat Ali; Dehairs, Jonas; Bagadi, Muralidhararao; Binda, Maria Mercedes; Waelkens, Etienne; Marine, Jean-Christophe; Swinnen, Johannes V.

    2015-01-01

    The p53 tumor suppressor is the central component of a complex network of signaling pathways that protect organisms against the propagation of cells carrying oncogenic mutations. Here we report a previously unrecognized role of p53 in membrane phospholipids composition. By repressing the expression of stearoyl-CoA desaturase 1, SCD, the enzyme that converts saturated to mono-unsaturated fatty acids, p53 causes a shift in the content of phospholipids with mono-unsaturated acyl chains towards more saturated phospholipid species, particularly of the phosphatidylinositol headgroup class. This shift affects levels of phosphatidylinositol phosphates, attenuates the oncogenic AKT pathway, and contributes to the p53-mediated control of cell survival. These findings expand the p53 network to phospholipid metabolism and uncover a new molecular pathway connecting p53 to AKT signaling. PMID:26061814

  6. Transcriptional control of human p53-regulated genes.

    PubMed

    Riley, Todd; Sontag, Eduardo; Chen, Patricia; Levine, Arnold

    2008-05-01

    The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation. PMID:18431400

  7. [Bcl-2 inhibits p53-induced apoptosis after genotoxic damage by inhibitors of nuclear import of p53].

    PubMed

    Beham, A; Schumacher, G; McDonnell, T J; Marin, M C; Jauch, K W

    1998-01-01

    The tumor suppressor gene p53 in overexpressed in 50% of colorectal carcinomas and is an interesting target for gene therapeutic approaches. Furthermore the protooncogen bcl-2 is known to inhibit p53 induced apoptosis and is expressed in some colorectal carcinomas. In this study mechanism of bcl-2 cell death inhibition after p53 induction were evaluated. The human colon carcinoma cell line RKO posses wild-type p53 and also expresses bcl-2 protein. RKO cells were treated with liposomal bcl-2 antisense oligonucleotides (AS), control oligonucleotides (CO) and empty liposomes (EL) resulting in decreased bcl-2 expression. After induction of p53 with gamma-irradiation p53 protein expression was induced in AS, CO and EL pretreated cells. Microscopy and immunoblotting was used to characterize subcellular localization of p53 protein. Further p53 subcellular localisation was examined after p53 transfer of wt p53 cDNA in three bcl-2 expressing cell lines. Most of the p53 protein remained localized in the cytosol and apoptosis was decreased in bcl-2 expressing cells assessed by flow cytometric analysis (Ao). Our data suggests that bcl-2 is able to modulate transmembrane trafficking of p53. This resulted in inhibition of cell death implicating that bcl-2 function is involved in regulation of transmembrane gradients. PMID:14518224

  8. Clinical implications of cytosine deletion of exon 5 of P53 gene in non small cell lung cancer patients

    PubMed Central

    Mir, Rashid; Masroor, Mirza; Javid, Jamsheed; Ahamad, Imtiyaz; Farooq, Shazia; Yadav, Prasant; Zuberi, Mariyam; Lone, Maqbool; Ray, P. C; Saxena, Alpana

    2016-01-01

    Aim: Lung cancer is considered to be the most common cancer in the world. In humans, about 50% or more cancers have a mutated tumor suppressor p53 gene thereby resulting in accumulation of p53 protein and losing its function to activate the target genes that regulate the cell cycle and apoptosis. Extensive research conducted in murine cancer models with activated p53, loss of p53, or p53 missense mutations have facilitated researchers to understand the role of this key protein. Our study was aimed to evaluate the frequency of cytosine deletion in nonsmall cell lung cancer (NSCLC) patients. Methods: One hundred NSCLC patients were genotyped for P53 (exon5, codon168) cytosine deletion leading to loss of its function and activate the target genes by allele-specific polymerase chain reaction. The P53 cytosine deletion was correlated with all the clinicopathological parameters of the patients. Results and Analysis: 59% cases were carrying P53 cytosine deletion. Similarly, the significantly higher incidence of cytosine deletion was reported in current smokers (75%) in comparison to exsmoker and nonsmoker. Significantly higher frequency of cytosine deletion was reported in adenocarcinoma (68.08%) than squamous cell carcinoma (52.83%). Also, a significant difference was reported between p53 cytosine deletion and metastasis (64.28%). Further, the majority of the cases assessed for response carrying P53 cytosine deletion were found to show faster disease progression. Conclusion: The data suggests that there is a significant association of the P53 exon 5 deletion of cytosine in codon 168 with metastasis and staging of the disease. PMID:27169122

  9. Accumulation of p53 is associated with tumour progression in cutaneous lesions of renal allograft recipients.

    PubMed Central

    Stark, L. A.; Arends, M. J.; McLaren, K. M.; Benton, E. C.; Shahidullah, H.; Hunter, J. A.; Bird, C. C.

    1994-01-01

    Renal allograft recipients suffer from a markedly increased susceptibility to premalignant and malignant cutaneous lesions. Although various aetiological factors have been implicated, little is known of the associated genetic events. In this study we initially employed immunocytochemical techniques to investigate the prevalence and localisation of accumulated p53 in over 200 cutaneous biopsies (including 56 squamous cell carcinomas) from renal allograft recipients and immunocompetent controls. In renal allograft recipients accumulated p53 was present in 24% of uninvolved skin samples, 14% of viral warts, 41% of premalignant keratoses, 65% of intraepidermal carcinomas and 56% of squamous cell carcinomas [squamous cell carcinoma and intraepidermal carcinoma differed significantly from uninvolved skin (P < 0.005) and viral warts (P < 0.01)]. A similar trend was revealed in immunocompetent patients (an older, chronically sun-exposed population) but with lower prevalence of p53 immunoreactivity: 25% of uninvolved skin samples, 0% of viral warts, 25% of keratoses, 53% of intraepidermal carcinomas and 53% of squamous cell carcinomas. These differences were not statistically significant. Morphologically, p53 immunoreactivity strongly associated with areas of epidermal dysplasia and the abundance of staining correlated positively with the severity of dysplasia. These data suggest that p53 plays a role in skin carcinogenesis and is associated with progression towards the invasive state. No correlation was observed between accumulated p53 and the presence of human papillomavirus (HPV) DNA in any of the lesions. Single-strand conformational polymorphism analysis (exons 5-8) was used to determine the frequency of mutated p53 in 28 malignancies with varying degrees of immunopositivity. p53 mutations were found in 5/9 (56%) malignancies with p53 staining in > 50% of cells, reducing to 1/6 (17%) where 10-50% of cells were positively stained and none where < 10% of cells were

  10. Mutant p53 promotes ovarian cancer cell adhesion to mesothelial cells via integrin β4 and Akt signals

    PubMed Central

    Lee, Jong-Gyu; Ahn, Ji-Hye; Jin Kim, Tae; Ho Lee, Jae; Choi, Jung-Hye

    2015-01-01

    Missense mutations in the TP53 gene resulting in the accumulation of mutant proteins are extremely common in advanced ovarian cancer, which is characterised by peritoneal metastasis. Attachment of cancer cells to the peritoneal mesothelium is regarded as an initial, key step for the metastatic spread of ovarian cancer. In the present study, we investigated the possible role of a p53 mutant in the mesothelial adhesion of ovarian cancer cells. We found that OVCAR-3 cells with the R248 TP53 mutation (p53R248) were more adhesive to mesothelial Met5A cells than were A2780 cells expressing wild-type p53. In addition, ectopic expression of p53R248 in p53-null SKOV-3 cells significantly increased adhesion to Met5A cells. Knockdown of mutant p53 significantly compromised p53R248-induced cell adhesion to Met5A cells. Microarray analysis revealed that several adhesion-related genes, including integrin β4, were markedly up-regulated, and certain signalling pathways, including PI3K/Akt, were activated in p53R248 transfectants of SKOV-3 cells. Inhibition of integrin β4 and Akt signalling using blocking antibody and the inhibitor LY294002, respectively, significantly attenuated p53R248-mediated ovarian cancer-mesothelial adhesion. These data suggest that the p53R248 mutant endows ovarian cancer cells with increased adhesiveness and that integrin β4 and Akt signalling are associated with the mutation-enhanced ovarian cancer-mesothelial cell adhesion. PMID:26223322

  11. A p53-like protein from a freshwater mollusc Lamellidens corrianus.

    PubMed

    Mohanty, B P

    2006-08-01

    p53 is the most frequently mutated protein in human cancers and the accumulation of its high levels is a potential novel marker for malignancy. Recently, its homologues such as p63 and p73 have been reported in human, mice and fish. Environmentally induced alterations in p53 protein have been reported to contribute to pathogenesis of leukemia in soft-shell clam Mya arenaria inhabiting polluted water, suggesting that p53 proteins can also be used as pollution markers. In the present study, the presence of p53 protein or its homologues was investigated in tissues of bivalve molluscs Lamellidens corrianus that are predominant in the freshwater riverine environment and are well suited to act as test organisms for evaluation of habitat degradation. The molluscs were collected live from the river Ganga at three sampling sites viz., Kanpur, Allahabad and Varanasi and different tissues (foot, gill and mantle) were collected. Proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). On immunoblot analysis, a 45 kDa protein (p45) was recognized by the monoclonal anti-p53 antibody in the molluscan tissues. The p45 showed immunoreactivity in all the three tissues of molluscs collected at Kanpur, in foot and gill tissues in those collected at Allahabad, and in foot tissue only, in those collected at Varanasi. Since monoclonal anti-p53 recognizes a denaturation-resistant epitope on the p53 (53 kDa) nuclear protein and does not react with other cellular proteins, the molluscan p45 is a p53-homologue or p53-like protein. Further, the differential expression of p45 in the different organs might serve as a useful biomarker that would help in establishing pollution gradient for environmental monitoring in the large aquatic ecosystems. PMID:17133770

  12. A new prognostic index to make short-term prognoses in MDS patients treated with azacitidine: A combination of p53 expression and cytogenetics.

    PubMed

    Nishiwaki, Satoshi; Ito, Masafumi; Watarai, Rie; Okuno, Shingo; Harada, Yasuhiko; Yamamoto, Satomi; Suzuki, Kotaro; Kurahashi, Shingo; Iwasaki, Toshihiro; Sugiura, Isamu

    2016-02-01

    TP53 mutation is associated with various hematological malignancies and immunohistochemistry of p53 has been used as a simple method to establish the presence of a TP53 mutation. Since the significance of p53 expression is controversial in myelodysplastic syndrome (MDS) patients treated with azacitidine (Aza), we analyzed the prevalence of p53 expression as a prognostic factor in 60 MDS patients treated with Aza. To assess p53 expression, immunohistochemical analyses of bone marrow clot sections were performed. Overall survival (OS) was significantly lower in p53-positive patients compared with p53-negetive patients (59% vs. 85% at 12 months; P=0.006). Multivariate analysis demonstrated that p53-positive was a significant prognostic factor for OS along with poor cytogenetics. Here, we propose a new prognostic index to make short-term prognoses of MDS patients in the era of Aza treatment; high: p53-positive and poor cytogenetics, low: p53-negative and absence of poor cytogenetics, and intermediate: the others. OS was significantly different among the three groups according to this index (Low 92%, Intermediate 65% and High 27% at 12 months; P<0.0001). In conclusion, p53 expression was a significant prognostic factor in MDS patients treated with Aza. In combination with cytogenetic abnormalities, it is possible to make short-term prognoses. PMID:26651421

  13. FUSE Binding Protein 1 Facilitates Persistent Hepatitis C Virus Replication in Hepatoma Cells by Regulating Tumor Suppressor p53

    PubMed Central

    Dixit, Updesh; Pandey, Ashutosh K.; Liu, Zhihe; Kumar, Sushil; Neiditch, Matthew B.; Klein, Kenneth M.

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) is a leading cause of chronic hepatitis C (CHC), liver cirrhosis, and hepatocellular carcinoma (HCC). Immunohistochemistry of archived HCC tumors showed abundant FBP1 expression in HCC tumors with the CHC background. Oncomine data analysis of normal versus HCC tumors with the CHC background indicated a 4-fold increase in FBP1 expression with a concomitant 2.5-fold decrease in the expression of p53. We found that FBP1 promotes HCV replication by inhibiting p53 and regulating BCCIP and TCTP, which are positive and negative regulators of p53, respectively. The severe inhibition of HCV replication in FBP1-knockdown Huh7.5 cells was restored to a normal level by downregulation of either p53 or BCCIP. Although p53 in Huh7.5 cells is transcriptionally inactive as a result of Y220C mutation, we found that the activation and DNA binding ability of Y220C p53 were strongly suppressed by FBP1 but significantly activated upon knockdown of FBP1. Transient expression of FBP1 in FBP1 knockdown cells fully restored the control phenotype in which the DNA binding ability of p53 was strongly suppressed. Using electrophoretic mobility shift assay (EMSA) and isothermal titration calorimetry (ITC), we found no significant difference in in vitro target DNA binding affinity of recombinant wild-type p53 and its Y220C mutant p53. However, in the presence of recombinant FBP1, the DNA binding ability of p53 is strongly inhibited. We confirmed that FBP1 downregulates BCCIP, p21, and p53 and upregulates TCTP under radiation-induced stress. Since FBP1 is overexpressed in most HCC tumors with an HCV background, it may have a role in promoting persistent virus infection and tumorigenesis. IMPORTANCE It is our novel finding that FUSE binding protein 1 (FBP1) strongly inhibits the function of tumor suppressor p53 and is an essential host cell factor required for HCV replication. Oncomine data analysis of a large number of samples has revealed that overexpression of

  14. Regulation of iron homeostasis by the p53-ISCU pathway

    PubMed Central

    Funauchi, Yuki; Tanikawa, Chizu; Yi Lo, Paulisally Hau; Mori, Jinichi; Daigo, Yataro; Takano, Atsushi; Miyagi, Yohei; Okawa, Atsushi; Nakamura, Yusuke; Matsuda, Koichi

    2015-01-01

    Accumulation of iron in tissues increases the risk of cancer, but iron regulatory mechanisms in cancer tissues are largely unknown. Here, we report that p53 regulates iron metabolism through the transcriptional regulation of ISCU (iron-sulfur cluster assembly enzyme), which encodes a scaffold protein that plays a critical role in Fe-S cluster biogenesis. p53 activation induced ISCU expression through binding to an intronic p53-binding site. Knockdown of ISCU enhanced the binding of iron regulatory protein 1 (IRP1), a cytosolic Fe-S protein, to an iron-responsive element in the 5′ UTR of ferritin heavy polypeptide 1 (FTH1) mRNA and subsequently reduced the translation of FTH1, a major iron storage protein. In addition, in response to DNA damage, p53 induced FTH1 and suppressed transferrin receptor, which regulates iron entry into cells. HCT116 p53+/+ cells were resistant to iron accumulation, but HCT116 p53−/− cells accumulated intracellular iron after DNA damage. Moreover, excess dietary iron caused significant elevation of serum iron levels in p53−/− mice. ISCU expression was decreased in the majority of human liver cancer tissues, and its reduced expression was significantly associated with p53 mutation. Our finding revealed a novel role of the p53-ISCU pathway in the maintenance of iron homeostasis in hepatocellular carcinogenesis. PMID:26560363

  15. Guilty as CHARGED: p53's expanding role in disease

    PubMed Central

    Van Nostrand, Jeanine L; Attardi, Laura D

    2014-01-01

    Unrestrained p53 activity during development, as occurs upon loss of the p53 negative regulators Mdm2 or Mdmx, causes early embryonic lethality. Surprisingly, co-expression of wild-type p53 and a transcriptionally-dead variant of p53, with mutations in both transactivation domains (p53L25Q,W26S,F53Q,F54S), also causes lethality, but later in gestation and in association with a host of very specific phenotypes reminiscent of a syndrome known as CHARGE. Molecular analyses revealed that wild-type p53 is inappropriately activated in p535,26,53,54/+ embryos, triggering cell-cycle arrest or apoptosis during development to cause CHARGE phenotypes. In addition, CHARGE syndrome is typically caused by mutations in the CHD7 chromatin remodeler, and we have shown that activated p53 contributes to phenotypes caused by CHD7-deficiency. Together, these studies provide new insight into CHARGE syndrome and expand our understanding of the role of p53 in diseases other than cancer. PMID:25483057

  16. p53 downregulates the Fanconi anaemia DNA repair pathway

    PubMed Central

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-01-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104

  17. p53: Guardian of Ploidy

    PubMed Central

    Aylon, Yael; Oren, Moshe

    2011-01-01

    Aneuploidy, often preceded by tetraploidy, is one of the hallmarks of solid tumors. Indeed, both aneuploidy and tetraploidy are oncogenic occurrences that are sufficient to drive neoplastic transformation and cancer progression. True to form, the tumor suppressor p53 obstructs propagation of these dangerous chromosomal events by either instigating irreversible cell cycle arrest or apoptosis. The tumor suppressor Lats2, along with other tumor inhibitory proteins such as BRCA1/2 and BubR1, are central to p53-dependent elimination of tetraploid cells. Not surprisingly, these proteins are frequently inactivated or downregulated in tumors, synergizing with p53 inactivation to establish an atmosphere of “tolerance” for a nondiploid state. PMID:21852209

  18. The regulation of p53 by phosphorylation: a model for how distinct signals integrate into the p53 pathway.

    PubMed

    Maclaine, Nicola J; Hupp, Ted R

    2009-05-01

    The tumour suppressor p53 is a transcription factor that has evolved the ability to integrate distinct environmental signals including DNA damage, virus infection, and cytokine signaling into a common biological outcome that maintains normal cellular control. Mutations in p53 switch the cellular transcription program resulting in deregulation of the stress responses that normally maintain cell and tissue integrity. Transgenic studies in mice have indicated that changes in the specific activity of p53 can have profound effects not only on cancer development, but also on organism aging. As the specific activity of p53 is regulated at a post-translational level by sets of enzymes that mediate phosphorylation, acetylation, methylation, and ubiquitin-like modifications, it is likely that physiological modifiers of the aging function of p53 would be enzymes that catalyze such covalent modifications. We demonstrate that distinct stress-activated kinases, including ataxia telangiectasia mutated (ATM), casein kinase 1 (CK1) and AMP-activated protein kinase (AMPK), mediate phosphorylation of a key phospho-acceptor site in the p53 transactivation domain in response to diverse stresses including ionizing radiation, DNA virus infection, and elevation in the intracellular AMP/ATP ratio. As diseases linked to aging can involve activation of p53-dependent changes in cellular protective pathways, the development of specific physiological models might further shed light on the role of p53 kinases in modifying age-related diseases. PMID:20157532

  19. INGN 201: Ad-p53, Ad5CMV-p53, Adenoviral p53, INGN 101, p53 gene therapy--Introgen, RPR/INGN 201.

    PubMed

    2003-01-01

    Introgen's adenoviral p53 gene therapy [INGN 201, ADVEXIN] is in clinical development for the treatment of various cancers. The p53 tumour suppressor gene is deleted or mutated in many tumour cells and is one of the most frequently mutated genes in human tumours. INGN 201 has been shown to kill cancer cells directly. In August 2002, Introgen announced plans to file an application for INGN 201 with the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of head and neck cancer; the European filing will be submitted simultaneously with the previously scheduled (planned for 2004) submission of a Biologics License Application (BLA) for ADVEXIN to the US FDA. On 20 February 2003, INGN 201 received orphan drug designation from the US FDA for head and neck cancer. INGN 201 is available for licensing although Introgen favours retaining partial or full rights to the therapy in the US. Introgen Therapeutics and its collaborative partner for the p53 programme, Aventis Gencell, have been developing p53 gene therapy products. The agreement was originally signed by Rhône-Poulenc Rorer's Gencell division, which became Aventis Gencell after Rhône-Poulenc Rorer merged with Hoechst Marion Roussel to form Aventis Pharma. According to the original agreement, Introgen was responsible for phase I and preclinical development in North America, while Aventis Gencell was responsible for clinical trials conducted in Europe and for clinical trials in North America beyond phase I. In April 2001, Aventis Gencell and Introgen restructured their existing collaboration agreement for p53 gene therapy products. Aventis Gencell indicated that p53 research had suffered from internal competition for resources and was pulling back from its development agreement with Introgen for p53 gene therapy products. Introgen will assume responsibility for worldwide development of all p53 programmes and will obtain exclusive worldwide commercial rights to p53-based gene therapy

  20. Highly metastatic hepatocellular carcinomas induced in male F344 rats treated with N-nitrosomorpholine in combination with other hepatocarcinogens show a high incidence of p53 gene mutations along with altered mRNA expression of tumor-related genes.

    PubMed

    Masui, T; Nakanishi, H; Inada, K; Imai, T; Mizoguchi, Y; Yada, H; Futakuchi, M; Shirai, T; Tatematsu, M

    1997-01-15

    The carcinogenic and metastatic processes are thought to consist of a sequence of steps, and animal models featuring highly metastatic lesions are clearly necessary to allow analysis of the whole process of transformation from preneoplastic changes to high grade metastatic tumors, and to access effectiveness of therapeutic treatments of advanced cancers in vivo. The purpose of the present study was to establish a model and to screen for reported genetic alterations in induced lesions. In the present study, it was confirmed that lung metastasis of hepatocellular carcinomas (HCCs) induced in male F344 rats by N-nitrosomorpholine (NNM), given in the drinking water at a dose of 120 ppm for 24 weeks, was significantly enhanced by additional carcinogenic pretreatments and that a single i.p. injection of 100 mg/kg body weight N-diethylnitrosamine (DEN) alone was sufficient for that purpose. Molecular biological analyses of the induced lesions revealed point mutations in the p53 gene in 60.9% of HCCs, and elevated expression of mRNAs for p53, c-myc, c-fos, TGF-alpha, TGF-beta1, alpha-fetoprotein, GST-P, and GGT, and decreased mRNA expression of EGF and EGFR in HCCs when compared to controls. No obvious association of gene alterations with metastatic potential of primary tumors was found except for an increase in the incidence of p53 mutations. Since the process of metastasis is thought to be sequential and selective, further comparative analysis of metastatic and primary lesions should clarify the mechanisms involved in the multi-step process of metastasis. PMID:9029167

  1. A new genotoxicity assay based on p53 target gene induction.

    PubMed

    Zerdoumi, Y; Kasper, E; Soubigou, F; Adriouch, S; Bougeard, G; Frebourg, T; Flaman, J-M

    2015-08-01

    The p53 tumor suppressor protein has emerged as a universal sensor of genotoxic stress that regulates the transcription of numerous genes required for appropriate cellular response to DNA damage. Therefore, transcriptional induction of p53 target genes can be considered as a global and early indicator of genotoxic stress. By performing expression microarrays and RNA-Seq analysis on wild-type and mutant TP53 human lymphocytes respectively derived from controls and Li-Fraumeni patients and exposed to different classes of genotoxic agents, we first determined a common p53-dependent transcriptional signature of DNA damage. We then derived a simple and fast assay based on the exposure of wild-type TP53 lymphocytes to physical or chemical agents and on the quantitative measurement of selected p53 target gene transcriptional induction. The specificity of the p53 genotoxicity assay can easily be demonstrated by performing the same experiment in control lymphocytes with heterozygous TP53 mutations, which compromise responses to DNA damage. This assay allowed us to show that most of the drugs commonly used in cancer treatment, except the microtubule poisons, are highly genotoxic. The p53 genotoxicity assay should facilitate the measurement of the genotoxic effects of chemical and physical agents and the identification of drugs that are not genotoxic and do not expose patients to the risk of secondary malignancies, especially those with a constitutional defect in response to DNA damage, such as patients with Li-Fraumeni syndrome. PMID:26232255

  2. HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response.

    PubMed

    Lim, Key-Hwan; Park, Jang-Joon; Gu, Bon-Hee; Kim, Jin-Ock; Park, Sang Gyu; Baek, Kwang-Hyun

    2015-01-01

    HAUSP (herpes virus-associated ubiquitin specific protease, known as ubiquitin specific protease 7), one of DUBs, regulates the dynamics of the p53 and Mdm2 network in response to DNA damage by deubiquitinating both p53 and its E3 ubiquitin ligase, Mdm2. Its concerted action increases the level of functional p53 by preventing proteasome-dependent degradation of p53. However, the protein substrates that are targeted by HAUSP to mediate DNA damage responses in the context of the HAUSP-p53-Mdm2 complex are not fully identified. Here, we identified nucleolin as a new substrate for HAUSP by proteomic analysis. Nucleolin has two HAUSP binding sites in its N- and C-terminal regions, and the mutation of HAUSP interacting peptides on nucleolin disrupts their interaction and it leads to the increased level of nucleolin ubiquitination. In addition, HAUSP regulates the stability of nucleolin by removing ubiquitin from nucleolin. Nucleolin exists as a component of the HAUSP-p53-Mdm2 complex, and both Mdm2 and p53 are required for the interaction between HAUSP and nucleolin. Importantly, the irradiation increases the HAUSP-nucleolin interaction, leading to nucleolin stabilization significantly. Taken together, this study reveals a new component of the HAUSP-p53-Mdm2 complex that governs dynamic cellular responses to DNA damage. PMID:26238070

  3. Induction of p53-mediated transcription and apoptosis by exportin-1 (XPO1) inhibition in mantle cell lymphoma.

    PubMed

    Yoshimura, Mariko; Ishizawa, Jo; Ruvolo, Vivian; Dilip, Archana; Quintás-Cardama, Alfonso; McDonnell, Timothy J; Neelapu, Sattva S; Kwak, Larry W; Shacham, Sharon; Kauffman, Michael; Tabe, Yoko; Yokoo, Masako; Kimura, Shinya; Andreeff, Michael; Kojima, Kensuke

    2014-07-01

    The nuclear transporter exportin-1 (XPO1) is highly expressed in mantle cell lymphoma (MCL) cells, and is believed to be associated with the pathogenesis of this disease. XPO1-selective inhibitors of nuclear export (SINE) compounds have been shown to induce apoptosis in MCL cells. Given that p53 is a cargo protein of XPO1, we sought to determine the significance of p53 activation through XPO1 inhibition in SINE-induced apoptosis of MCL cells. We investigated the prognostic impact of XPO1 expression in MCL cells using Oncomine analysis. The significance of p53 mutational/functional status on sensitivity to XPO1 inhibition in cell models and primary MCL samples, and the functional role of p53-mediated apoptosis signaling, were also examined. Increased XPO1 expression was associated with poor prognosis in MCL patients. The XPO1 inhibitor KPT-185 induced apoptosis in MCL cells through p53-dependent and -independent mechanisms, and p53 status was a critical determinant of its apoptosis induction. The KPT-185-induced, p53-mediated apoptosis in the MCL cells occurred in a transcription-dependent manner. Exportin-1 appears to influence patient survival in MCL, and the SINE XPO1 antagonist KPT-185 effectively activates p53-mediated transcription and apoptosis, which would provide a novel strategy for the therapy of MCL. PMID:24766216

  4. HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response

    PubMed Central

    Lim, Key-Hwan; Park, Jang-Joon; Gu, Bon-Hee; Kim, Jin-Ock; Park, Sang Gyu; Baek, Kwang-Hyun

    2015-01-01

    HAUSP (herpes virus-associated ubiquitin specific protease, known as ubiquitin specific protease 7), one of DUBs, regulates the dynamics of the p53 and Mdm2 network in response to DNA damage by deubiquitinating both p53 and its E3 ubiquitin ligase, Mdm2. Its concerted action increases the level of functional p53 by preventing proteasome-dependent degradation of p53. However, the protein substrates that are targeted by HAUSP to mediate DNA damage responses in the context of the HAUSP-p53-Mdm2 complex are not fully identified. Here, we identified nucleolin as a new substrate for HAUSP by proteomic analysis. Nucleolin has two HAUSP binding sites in its N- and C-terminal regions, and the mutation of HAUSP interacting peptides on nucleolin disrupts their interaction and it leads to the increased level of nucleolin ubiquitination. In addition, HAUSP regulates the stability of nucleolin by removing ubiquitin from nucleolin. Nucleolin exists as a component of the HAUSP-p53-Mdm2 complex, and both Mdm2 and p53 are required for the interaction between HAUSP and nucleolin. Importantly, the irradiation increases the HAUSP-nucleolin interaction, leading to nucleolin stabilization significantly. Taken together, this study reveals a new component of the HAUSP-p53-Mdm2 complex that governs dynamic cellular responses to DNA damage. PMID:26238070

  5. p53 in the DNA-Damage-Repair Process.

    PubMed

    Williams, Ashley B; Schumacher, Björn

    2016-01-01

    The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA-damage-response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA-repair systems. It thus appears as if p53 is multitasking in providing protection from cancer development by maintaining genome stability. PMID:27048304

  6. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation

    PubMed Central

    2011-01-01

    Background Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the P53 tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of P53 in melanoma is uncommon; however, its function often appears abnormal. Methods In this study whole genome bead arrays were used to examine the transcript expression of P53 target genes in extracts from 82 melanoma metastases and 6 melanoma cell lines, to provide a global assessment of aberrant P53 function. The expression of these genes was also examined in extracts derived from diploid human melanocytes and fibroblasts. Results The results indicated that P53 target transcripts involved in apoptosis were under-expressed in melanoma metastases and melanoma cell lines, while those involved in the cell cycle were over-expressed in melanoma cell lines. There was little difference in the transcript expression of P53 target genes between cell lines with null/mutant P53 compared to those with wild-type P53, suggesting that altered expression in melanoma was not related to P53 status. Similarly, down-regulation of P53 by short-hairpin RNA (shRNA) had limited effect on P53 target gene expression in melanoma cells, whereas there were a large number of P53 target genes whose mRNA expression was significantly altered by P53 inhibition in melanocytes. Analysis of whole genome gene expression profiles indicated that the ability of P53 to regulate genes involved in the cell cycle was significantly reduced in melanoma cells. Moreover, inhibition of P53 in melanocytes induced changes in gene expression profiles that were characteristic of melanoma cells and resulted in increased proliferation. Conversely, knockdown of P53 in melanoma cells resulted in decreased proliferation. Conclusions These results indicate that P53 target genes involved in apoptosis and cell cycle regulation are aberrantly

  7. Effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells: dependency on p53 status of tumor cells and types of (10)B-carriers.

    PubMed

    Masunaga, Shin-ichiro; Tatebe, Hitoshi; Nishimura, Yasumasa; Tano, Keizo; Sanada, Yu; Moriwaki, Takahiro; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Ono, Koji

    2016-01-01

    Purpose To evaluate the effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells. Materials and methods Cultured human head and neck squamous cell carcinoma cell line transfected with mutant TP53 (SAS/mp53), or with a neo vector as a control (SAS/neo) was incubated with L-para-boronophenylalanine-(10)B (BPA) or sodium mercaptoundecahydrododecaborate-(10)B (BSH) as a (10)B-carrier at the (10)B concentration of 60 ppm for 24 h under aerobic (20.7% of oxygen) or hypoxic (0.28% of oxygen) conditions. Immediately after incubation, cultured tumor cells received reactor thermal neutron beams, and a cell survival assay was performed. (10)B concentration of cultured SAS/neo or SAS/mp53 cells incubated under aerobic or hypoxic conditions was determined with a thermal neutron guide tube. Results Hypoxic incubation significantly decreased (10)B concentration of cultured cells with a clearer tendency observed following BPA than BSH treatment in both SAS/neo and SAS/mp53 cells. Following neutron beam irradiation, SAS/mp53 cells showed significantly higher relative biological effectiveness values than SAS/neo cells because of the significantly lower radiosensitivity of SAS/mp53 to γ-rays than SAS/neo cells. Conclusion Oxygen pressure during incubation with a (10)B-carrier had a critical impact on (10)B uptake of cultured tumor cells. PMID:26887694

  8. Robustness of the p53 network and biological hackers.

    PubMed

    Dartnell, Lewis; Simeonidis, Evangelos; Hubank, Michael; Tsoka, Sophia; Bogle, I David L; Papageorgiou, Lazaros G

    2005-06-01

    The p53 protein interaction network is crucial in regulating the metazoan cell cycle and apoptosis. Here, the robustness of the p53 network is studied by analyzing its degeneration under two modes of attack. Linear Programming is used to calculate average path lengths among proteins and the network diameter as measures of functionality. The p53 network is found to be robust to random loss of nodes, but vulnerable to a targeted attack against its hubs, as a result of its architecture. The significance of the results is considered with respect to mutational knockouts of proteins and the directed attacks mounted by tumour inducing viruses. PMID:15896791

  9. Reactivating p53 functions by suppressing its novel inhibitor iASPP: a potential therapeutic opportunity in p53 wild-type tumors

    PubMed Central

    Dong, Peixin; Ihira, Kei; Hamada, Junichi; Watari, Hidemichi; Yamada, Takahiro; Hosaka, Masayoshi; Hanley, Sharon J.B.; Kudo, Masataka; Sakuragi, Noriaki

    2015-01-01

    Although mutational inactivation of p53 is found in 50% of all human tumors, a subset of tumors display defective p53 function, but retain wild-type (WT) p53. Here, direct and indirect mechanisms leading to the loss of WT p53 activities are discussed. We summarize the oncogenic roles of iASPP, an inhibitor of WT p53, in promoting proliferation, invasion, drug or radiation-resistance and metastasis. From the therapeutic view, we highlight promising perspectives of microRNA-124, peptide and small molecules that reduce or block iASPP for the treatment of cancer. High iASPP expression enhances proliferation, aggressive behavior, the resistance to radiation/chemotherapy and correlates with poor prognosis in a range of human tumors. Overexpression of iASPP accelerates tumorigenesis and invasion through p53-dependent and p53-independent mechanisms. MicroRNA-124 directly targets iASPP and represses the growth and invasiveness of cancer cells. The disruption of iASPP-p53 interaction by a p53-derived peptide A34 restores p53 function in cancer cells. The inhibition of iASPP phosphorylation with small molecules induces p53-dependent apoptosis and growth suppression. The mechanisms underlying aberrant expression of iASPP in human tumors should be further investigated. Reactivating WT p53 functions by targeting its novel inhibitor iASPP holds promise for potential therapeutic interventions in the treatment of WT p53-containing tumors. PMID:26343523

  10. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.