These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

p70 Ribosomal protein S6 kinase (Rps6kb1): an update.  

PubMed

The Rps6kb1 gene encodes the 70?kDa ribosomal protein S6 kinase (p70S6K), which is a serine/threonine kinase regulated by phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway. p70S6K plays a crucial role in controlling cell cycle, growth and survival. The PI3K/mTOR signalling pathway is one of the major mechanisms for controlling cell survival, proliferation and metabolism and is the central regulator of translation of some components of protein synthesis system. Upon activation, this kinase phosphorylates S6 protein of ribosomal subunit 40S resulting in selective translation of unique family of mRNAs that contain oligopyrimidine tract on 5' transcriptional site (5'TOP). 5'TOP mRNAs are coding the components of translational apparatus including ribosomal proteins and elongation factors. Due to the role of p70S6K in protein synthesis and also its involvement in a variety of human diseases ranging from diabetes and obesity to cancer, p70S6K is now being considered as a new therapeutic target for drug development. Furthermore, p70S6K acts as a biomarker for response to immunosuppressant as well as anticancer effects of inhibitors of the mTOR. Because of the narrow therapeutic index of mTOR inhibitors, drug monitoring is essential, and this is usually done by measuring blood drug levels, therapeutic response and drug-induced adverse effects. Recent studies have suggested that plasma p70S6K is a reliable index for the monitoring of patient response to mTOR inhibitors. Therefore, a better understanding of p70S6K and its role in various pathological conditions could enable the development of strategies to aid diagnosis, prognosis and treatment schedules. PMID:25100792

Bahrami-B, Farnaz; Ataie-Kachoie, Parvin; Pourgholami, Mohammad H; Morris, David L

2014-12-01

2

Ionizing radiation activates Erb-B receptor dependent Akt and p70 S6 kinase signaling in carcinoma cells.  

PubMed

In this study we have investigated the effects of low dose ionizing radiation (2 Gy) on p70 S6 kinase and Akt signaling with respect to Erb-B receptors in both the A431 squamous and the MDA-MB-231 mammary carcinoma cell lines. Ionizing radiation caused a 2-3-fold increase in p70 S6 kinase activity that was blocked pharmacologically using an EGFR inhibitor (AG1478) alone, or in combination with an Erb-B2 inhibitor (AG825). These results suggested that both EGFR and Erb-B2 receptors could initiate radiation-induced activation of p70 S6K. EGFR dependent Erb-B3 signaling also contributed to p70 S6 kinase activity through recruitment and activation of PI3K, which has been shown to regulate p70 S6 kinase activity. Furthermore, inhibition of the EGFR blocked IR stimulated increases in protein translation, a biologic consequence of p70 S6 kinase activation. We also report that ionizing radiation stimulated Akt activity that was partially independent of PI3K activity, but dependent on Erb-B2 function. Erb-B2 inhibition also correlated with enhanced apoptosis following IR exposure, suggesting an important role for Erb-B2 in cell survival. Together this work demonstrates that the Erb-B receptor tyrosine kinase network stimulates cytoprotective p70 S6 kinase and Akt activity in response to clinically relevant doses of ionizing radiation. PMID:12037685

Contessa, Joseph N; Hampton, Jaime; Lammering, Guido; Mikkelsen, Ross B; Dent, Paul; Valerie, Kristoffer; Schmidt-Ullrich, Rupert K

2002-06-01

3

Vascular tumors have increased p70 S6-kinase activation and are inhibited by topical rapamycin.  

PubMed

Vascular tumors are endothelial cell neoplasms whose cellular and molecular mechanisms, leading to tumor formation, are poorly understood, and current therapies have limited efficacy with significant side effects. We have investigated mechanistic (mammalian) target of rapamycin (mTOR) signaling in benign and malignant vascular tumors, and the effects of mTOR kinase inhibitor as a potential therapy for these lesions. Human vascular tumors (infantile hemangioma and angiosarcoma) were analyzed by immunohistochemical stains and western blot for the phosphorylation of p70 S6-kinase (S6K) and S6 ribosomal protein (S6), which are activated downstream of mTOR complex-1 (mTORC1). To assess the function of S6K, tumor cells with genetic knockdown of S6K were analyzed for cell proliferation and migration. The effects of topical rapamycin, an mTOR inhibitor, on mTORC1 and mTOR complex-2 (mTORC2) activities, as well as on tumor growth and migration, were determined. Vascular tumors showed increased activation of S6K and S6. Genetic knockdown of S6K resulted in reduced tumor cell proliferation and migration. Rapamycin fully inhibited mTORC1 and partially inhibited mTORC2 activities, including the phosphorylation of Akt (serine 473) and PKC?, in vascular tumor cells. Rapamycin significantly reduced vascular tumor growth in vitro and in vivo. As a potential localized therapy for cutaneous vascular tumors, topically applied rapamycin effectively reduced tumor growth with limited systemic drug absorption. These findings reveal the importance of mTOR signaling pathways in benign and malignant vascular tumors. The mTOR pathway is an important therapeutic target in vascular tumors, and topical mTOR inhibitors may provide an alternative and well-tolerated therapy for the treatment of cutaneous vascular lesions. PMID:23938603

Du, Wa; Gerald, Damien; Perruzzi, Carole A; Rodriguez-Waitkus, Paul; Enayati, Ladan; Krishnan, Bhuvaneswari; Edmonds, Joseph; Hochman, Marcelo L; Lev, Dina C; Phung, Thuy L

2013-10-01

4

Stimulation of protein kinase B and p70 S6 kinase by the histamine H1 receptor in DDT1MF-2 smooth muscle cells  

PubMed Central

Previous studies have shown that the histamine H1 receptor activates p42/p44 mitogen-activated protein kinases (MAPK) in DDT1MF-2 smooth muscle cells via a phosphatidylinositol 3-kinase (PI-3K)-dependent pathway. In this study the effect of histamine H1 receptor stimulation on protein kinase B (PKB) and p70 S6 kinase, both of which are downstream targets of PI-3K, has been investigated. Increases in PKB and p70 S6 kinase activation were monitored by Western blotting using phospho-specific PKB (Ser473) and p70 S6 kinase (Thr421/Ser424) antibodies. Histamine stimulated time and concentration-dependent increases in the phosphorylation of PKB and p70 S6 kinase in DDT1MF-2 cells. Both responses were completely inhibited by the histamine H1 receptor antagonist mepyramine and following pre-treatment with pertussis toxin, to block Gi/Go protein dependent pathways. The PI-3K inhibitors wortmannin (IC50 5.9±0.5?nM) and LY 294002 (IC50 6.9±0.8??M) attenuated the increase in PKB phosphorylation induced by histamine (100??M) in a concentration-dependent manner. Histamine-induced increases in p70 S6 kinase phosphorylation were partially sensitive to rapamycin (20?nM; 68% inhibition) but completely blocked by wortmannin (100?nM), LY 294002 (30??M) and the MAPK kinase inhibitor PD 98059 (50 ?M). In summary, these data demonstrate that the histamine H1 receptor stimulates PKB and p70 S6 kinase phosphorylation in DDT1MF-2 smooth muscle cells. However, functional studies revealed that histamine does not stimulate DDT1MF-2 cell proliferation or attenuate staurosporine-induced caspase-3 activity. The challenge for future research will be to link the stimulation of these kinase pathways with the physiological and pathophysiological roles of the histamine H1 receptor. PMID:11959800

Dickenson, John M

2002-01-01

5

Mitogenic signalling by delta opioid receptors expressed in rat-1 fibroblasts involves activation of the p70s6k/p85s6k S6 kinase.  

PubMed Central

The regulation of mitogenic signalling pathways by G-protein-coupled receptors has been studied in Rat-1 fibroblasts stably transfected with the murine delta opioid receptor. We showed recently that stimulation of this receptor led to the activation of the p42 and p44 isoforms of mitogen-activated protein (MAP) kinase [Burt, Carr, Mullaney, Anderson and Milligan (1996) Biochem. J. 320, 227-235]. The present study has examined the role of the ribosomal S6 kinase p70(s6k) in mitogenic signalling by the delta opioid receptor. Treatment of Rat-1 fibroblasts expressing this receptor with the synthetic enkephalin [d-Ala,d-Leu]-enkephalin (DADLE) led to a dose-dependent increase in p70(s6k) enzyme activity. Activation of p70(s6k) was dependent on the level of delta opioid receptor expressed and was sustained above basal levels for several hours. Immunoblotting revealed that p70(s6k) was subject to increased phosphorylation, the extent of which coincided temporally with enzyme activation. Activation of p70(s6k) by DADLE, but not by platelet-derived growth factor, was blocked by pretreatment of cells with pertussis toxin. Activation of p70(s6k) was also partly blocked by wortmannin, indicating that phosphoinositide 3-OH kinase is required for full activation of p70(s6k) by opioid receptor agonists. Activation of the delta opioid receptor in transfected cells led to increased DNA synthesis. This increase was prevented by rapamycin, which also completely blocked activation of p70(s6k) by DADLE. In addition, prevention of the activation of p42 and p44 MAP kinases also blocked the induction of DNA synthesis by DADLE. These results suggest that the activation of both MAP kinases and p70(s6k) might be crucial to the induction of mitogenic responses by Gi-linked receptors such as the delta opioid receptor. PMID:9224649

Wilson, M A; Burt, A R; Milligan, G; Anderson, N G

1997-01-01

6

Inhibition of p70 S6 Kinase (S6K1) Activity by A77 1726 and Its Effect on Cell Proliferation and Cell Cycle Progress12  

PubMed Central

Leflunomide is a novel immunomodulatory drug prescribed for treating rheumatoid arthritis. It inhibits the activity of protein tyrosine kinases and dihydroorotate dehydrogenase, a rate-limiting enzyme in the pyrimidine nucleotide synthesis pathway. Here, we report that A77 1726, the active metabolite of leflunomide, inhibited the phosphorylation of ribosomal protein S6 and two other substrates of S6K1, insulin receptor substrate-1 and carbamoyl phosphate synthetase 2, in an A375 melanoma cell line. A77 1726 increased the phosphorylation of AKT, p70 S6 (S6K1), ERK1/2, and MEK through the feedback activation of the IGF-1 receptor–mediated signaling pathway. Invitro kinase assay revealed that leflunomide and A77 1726 inhibited S6K1 activity with IC50 values of approximately 55 and 80 ?M, respectively. Exogenous uridine partially blocked A77 1726–induced inhibition of A375 cell proliferation. S6K1 knockdown led to the inhibition of A375 cell proliferation but did not potentiate the antiproliferative effect of A77 1726. A77 1726 stimulated bromodeoxyuridine incorporation in A375 cells but arrested the cell cycle in the S phase, which was reversed by addition of exogenous uridine or by MAP kinase pathway inhibitors but not by rapamycin and LY294002 (a phosphoinositide 3-kinase inhibitor). These observations suggest that A77 1726 accelerates cell cycle entry into the S phase through MAP kinase activation and that pyrimidine nucleotide depletion halts the completion of the cell cycle. Our study identified a novel molecular target of A77 1726 and showed that the inhibition of S6K1 activity was in part responsible for its antiproliferative activity. Our study also provides a novel mechanistic insight into A77 1726–induced cell cycle arrest in the S phase. PMID:25379019

Doscas, Michelle E.; Williamson, Ashley J.; Usha, Lydia; Bogachkov, Yedida; Rao, Geetha S.; Xiao, Fei; Wang, Yimin; Ruby, Carl; Kaufman, Howard; Zhou, Jingsong; Williams, James W.; Li, Yi; Xu, Xiulong

2014-01-01

7

Absence of ?-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle  

PubMed Central

Background The dystrophin glycoprotein complex (DGC) is located at the sarcolemma of muscle fibers, providing structural integrity. Mutations in and loss of DGC proteins cause a spectrum of muscular dystrophies. When only the sarcoglycan subcomplex is absent, muscles display severe myofiber degeneration, but little susceptibility to contractile damage, suggesting that disease occurs not by structural deficits but through aberrant signaling, namely, loss of normal mechanotransduction signaling through the sarcoglycan complex. We extended our previous studies on mechanosensitive, ?-sarcoglycan-dependent ERK1/2 phosphorylation, to determine whether additional pathways are altered with the loss of ?-sarcoglycan. Methods We examined mechanotransduction in the presence and absence of ?-sarcoglycan, using C2C12 myotubes, and primary cultures and isolated muscles from C57Bl/6 (C57) and ?-sarcoglycan-null (?-SG-/-) mice. All were subjected to cyclic passive stretch. Signaling protein phosphorylation was determined by immunoblotting of lysates from stretched and non-stretched samples. Calcium dependence was assessed by maintaining muscles in calcium-free or tetracaine-supplemented Ringer’s solution. Dependence on mTOR was determined by stretching isolated muscles in the presence or absence of rapamycin. Results C2C12 myotube stretch caused a robust increase in P-p70S6K, but decreased P-FAK and P-ERK2. Neither Akt nor ERK1 were responsive to passive stretch. Similar but non-significant trends were observed in C57 primary cultures in response to stretch, and ?-SG-/- cultures displayed no p70S6K response. In contrast, in isolated muscles, p70S6K was mechanically responsive. Basal p70S6K activation was elevated in muscles of ?-SG-/- mice, in a calcium-independent manner. p70S6K activation increased with stretch in both C57 and ?-SG-/- isolated muscles, and was sustained in ?-SG-/- muscles, unlike the transient response in C57 muscles. Rapamycin treatment blocked all of p70S6K activation in stretched C57 muscles, and reduced downstream S6RP phosphorylation. However, even though rapamycin treatment decreased p70S6K activation in stretched ?-SG-/- muscles, S6RP phosphorylation remained elevated. Conclusions p70S6K is an important component of ?-sarcoglycan-dependent mechanotransduction in skeletal muscle. Our results suggest that loss of ?-sarcoglycan uncouples the response of p70S6K to stretch and implies that ?-sarcoglycan is important for inactivation of this pathway. Overall, we assert that altered load-sensing mechanisms exist in muscular dystrophies where the sarcoglycans are absent. PMID:25024843

2014-01-01

8

EGF-induced activation of Akt results in mTOR-dependent p70S6 kinase phosphorylation and inhibition of HC11 cell lactogenic differentiation  

PubMed Central

Background HC11 mouse mammary epithelial cells differentiate in response to lactogenic hormone resulting in expression of milk proteins including ?-casein. Previous studies have shown that epidermal growth factor (EGF) blocks differentiation not only through activation of the Ras/Mek/Erk pathway but also implicated phosphatidylinositol-3-kinase (PI-3-kinase) signaling. The current study analyzes the mechanism of the PI-3-kinase pathway in an EGF-induced block of HC11 lactogenic differentiation. Results HC11 and HC11-luci cells, which contain luciferase gene under the control of a ?-casein promotor, were treated with specific chemical inhibitors of signal transduction pathways or transiently infected/transfected with vectors encoding dominant negative-Akt (DN-Akt) or conditionally active-Akt (CA-Akt). The expression of CA-Akt inhibited lactogenic differentiation of HC11 cells, and the infection with DN-Akt adenovirus enhanced ?-casein transcription and rescued ?-casein promotor-regulated luciferase activity in the presence of EGF. Treatment of cells with Rapamycin, an inhibitor of mTOR, blocked the effects of EGF on ?-casein promotor driven luciferase activity as effectively as PI-3-kinase inhibitors. While expression of CA-Akt caused a constitutive activation of p70S6 kinase (p70S6K) in HC11 cells, the inhibition of either PI-3-kinase or mTOR abolished the activation of p70S6K by EGF. The activation of p70S6K by insulin or EGF resulted in the phosphorylation of ribosomal protein S6 (RPS6), elongation initiation factor 4E (elF4E) and 4E binding protein1 (4E-BP1). But lower levels of PI-3-K and mTOR inhibitors were required to block insulin-induced phosphorylation of RPS6 than EGF-induced phosphorylation, and insulin-induced phosphorylation of elF4E and 4E-BP1 was not completely mTOR dependent suggesting some diversity of signaling for EGF and insulin. In HC11 cells undergoing lactogenic differentiation the phosphorylation of p70S6K completely diminished by 12 hours, and this was partly attributable to dexamethasone, a component of lactogenic hormone mix. However, p70S6K phosphorylation persisted in the presence of lactogenic hormone and EGF, but the activation could be blocked by a PI-3-kinase inhibitor. Conclusion PI-3-kinase signaling contributes to the EGF block of lactogenic differentiation via Akt and p70S6K. The EGF-induced activation of PI-3-kinase-Akt-mTOR regulates phosphorylation of molecules including ribosomal protein S6, eIF4E and 4E-BP1 that influence translational control in HC11 cells undergoing lactogenic differentiation. PMID:16984645

Galbaugh, Traci; Cerrito, Maria Grazia; Jose, Cynthia C; Cutler, Mary Lou

2006-01-01

9

P70S6K 1 regulation of angiogenesis through VEGF and HIF-1{alpha} expression  

SciTech Connect

Research highlights: {yields} P70S6K1 regulates VEGF expression; {yields} P70S6K1 induces transcriptional activation through HIF-1{alpha} binding site; {yields} P70S6K1 regulates HIF-1{alpha}, but not HIF-1{beta} protein expression; {yields} P70S6K1 mediates tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression. -- Abstract: The 70 kDa ribosomal S6 kinase 1 (p70S6K1), a downstream target of phosphoinositide 3-kinase (PI3K) and ERK mitogen-activated protein kinase (MAPK), is an important regulator of cell cycle progression, and cell proliferation. Recent studies indicated an important role of p70S6K1 in PTEN-negative and AKT-overexpressing tumors. However, the mechanism of p70S6K1 in tumor angiogenesis remains to be elucidated. In this study, we specifically inhibited p70S6K1 activity in ovarian cancer cells using vector-based small interfering RNA (siRNA) against p70S6K1. We found that knockdown of p70S6K1 significantly decreased VEGF protein expression and VEGF transcriptional activation through the HIF-1{alpha} binding site at its enhancer region. The expression of p70S6K1 siRNA specifically inhibited HIF-1{alpha}, but not HIF-1{beta} protein expression. We also found that p70S6K1 down-regulation inhibited ovarian tumor growth and angiogenesis, and decreased cell proliferation and levels of VEGF and HIF-1{alpha} expression in tumor tissues. Our results suggest that p70S6K1 is required for tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression, providing a molecular mechanism of human ovarian cancer mediated by p70S6K1 signaling.

Bian, Chuan-Xiu; Shi, Zhumei [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China)] [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Meng, Qiao; Jiang, Yue; Liu, Ling-Zhi [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)] [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jiang, Bing-Hua, E-mail: binghjiang@yahoo.com [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China) [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

2010-07-30

10

Differential regulation of eEF2 and p70S6K by AMPKalpha2 in heart.  

PubMed

Eukaryotic elongation factor 2 (eEF-2) and mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K) signaling pathways control protein synthesis and are inhibited during myocardial ischemia. Intracellular acidosis and AMP-activated protein kinase (AMPK) activation, both occurring during ischemia, have been proposed to participate in this inhibition. We evaluated the contribution of AMPK?2, the main cardiac AMPK catalytic subunit isoform, in eEF2 and mTOR-p70S6K regulation using AMPK?2 KO mice. Hearts were perfused ex vivo with or without insulin, and then submitted or not to ischemia. Insulin pre-incubation was necessary to activate mTOR-p70S6K and evaluate their subsequent inhibition by ischemia. Ischemia decreased insulin-induced mTOR-p70S6K phosphorylation in WT and AMPK?2 KO mice to a similar extent. This AMPK?2-independent p70S6K inhibition correlated well with the inhibition of PKB/Akt, located upstream of mTOR-p70S6K and can be mimicked in cardiomyocytes by decreasing pH. By contrast, ischemia-induced inhibitory phosphorylation of eEF-2 was drastically reduced in AMPK?2 KO mice. Interestingly, AMPK?2 also played a role under normoxia. Its deletion increased the insulin-induced p70S6K stimulation. This p70S6K over-stimulation was associated with a decrease in inhibitory phosphorylation of Raptor, an mTOR partner identified as an AMPK target. In conclusion, AMPK?2 controls cardiac p70S6K under normoxia and regulates eEF-2 but not the mTOR-p70S6K pathway during ischemia. This challenges the accepted notion that mTOR-p70S6K is inhibited by myocardial ischemia mainly via an AMPK-dependent mechanism. PMID:23466593

Demeulder, Bénédicte; Zarrinpashneh, Elham; Ginion, Audrey; Viollet, Benoit; Hue, Louis; Rider, Mark H; Vanoverschelde, Jean-Louis; Beauloye, Christophe; Horman, Sandrine; Bertrand, Luc

2013-06-01

11

Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise.  

PubMed

High-resistance exercise training results in an increase in muscle wet mass and protein content. To begin to address the acute changes following a single bout of high-resistance exercise, a new model has been developed. Training rats twice a week for 6 wk resulted in 13.9 and 14.4% hypertrophy in the extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, respectively. Polysome profiles after high-resistance lengthening contractions suggest that the rate of initiation is increased. The activity of the 70-kDa S6 protein kinase (p70(S6k)), a regulator of translation initiation, is also increased following high-resistance lengthening contractions (TA, 363 +/- 29%; EDL, 353 +/- 39%). Furthermore, the increase in p70(S6k) activity 6 h after exercise correlates with the percent change in muscle mass after 6 wk of training (r = 0.998). The tight correlation between the activation of p70(S6k) and the long-term increase in muscle mass suggests that p70(S6k) phosphorylation may be a good marker for the phenotypic changes that characterize muscle hypertrophy and may play a role in load-induced skeletal muscle growth. PMID:9886927

Baar, K; Esser, K

1999-01-01

12

Mechanistic target of rapamycin (mTOR) signaling genes in decapod crustaceans: cloning and tissue expression of mTOR, Akt, Rheb, and p70 S6 kinase in the green crab, Carcinus maenas, and blackback land crab, Gecarcinus lateralis.  

PubMed

Mechanistic target of rapamycin (mTOR) controls global translation of mRNA into protein by phosphorylating p70 S6 kinase (S6K) and eIF4E-binding protein-1. Akt and Rheb, a GTP-binding protein, regulate mTOR protein kinase activity. Molting in crustaceans is regulated by ecdysteroids synthesized by a pair of molting glands, or Y-organs (YOs), located in the cephalothorax. During premolt, the YOs hypertrophy and increase production of ecdysteroids. Rapamycin (1?M) inhibited ecdysteroid secretion in Carcinus maenas and Gecarcinus lateralis YOs in vitro, indicating that ecdysteroidogenesis requires mTOR-dependent protein synthesis. The effects of molting on the expression of four key mTOR signaling genes (mTOR, Akt, Rheb, and S6K) in the YO was investigated. Partial cDNAs encoding green crab (C. maenas) mTOR (4031bp), Akt (855bp), and S6K (918bp) were obtained from expressed sequence tags. Identity/similarity of the deduced amino acid sequence of the C. maenas cDNAs to human orthologs were 72%/81% for Cm-mTOR, 58%/73% for Cm-Akt, and 77%/88% for Cm-S6K. mTOR, Akt, S6K, and elongation factor 2 (EF2) in C. maenas and blackback land crab (G. lateralis) were expressed in all tissues examined. The two species differed in the effects of molting on gene expression in the YO. In G. lateralis, Gl-mTOR, Gl-Akt, and Gl-EF2 mRNA levels were increased during premolt. By contrast, molting had no effect on the expression of Cm-mTOR, Cm-Akt, Cm-S6K, Cm-Rheb, and Cm-EF2. These data suggest that YO activation during premolt involves up regulation of mTOR signaling genes in G. lateralis, but is not required in C. maenas. PMID:24269559

Abuhagr, Ali M; Maclea, Kyle S; Chang, Ernest S; Mykles, Donald L

2014-02-01

13

Mechanical stimuli of skeletal muscle: implications on mTOR\\/p70s6k and protein synthesis  

Microsoft Academic Search

The skeletal muscle is a tissue with adaptive properties which are essential to the survival of many species. When mechanically\\u000a stimulated it is liable to undergo remodeling, namely, changes in its mass\\/volume resulting mainly from myofibrillar protein\\u000a accumulation. The mTOR pathway (mammalian target of rapamycin) via its effector p70s6k (ribosomal protein kinase S6) has been\\u000a reported to be of importance

Nelo Eidy Zanchi; Antonio Herbert Lancha

2008-01-01

14

The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k.  

PubMed Central

Employing specific inhibitors and docking-site mutants of growth factor receptors, recent studies have indicated that the insulin-induced increase in 40S ribosomal protein S6 and initiation factor 4E binding protein 1 (4E-BP1) phosphorylation is mediated by the mTOR/FRAP-p70s6k signal transduction pathway. However, it has not been resolved whether the phosphorylation of both proteins is mediated by p70s6k or whether they reside on parallel pathways which bifurcate upstream of p70s6k. Here we have used either rapamycin-resistant, kinase-dead, or wild-type p70s6k variants to distinguish between these possibilities. The rapamycin-resistant p70s6k, which has high constitutive activity, was able to signal to S6 in the absence of insulin and to prevent the rapamycin-induced block of S6 phosphorylation. This same construct did not increase the basal state of 4E-BP1 phosphorylation or protect it from the rapamycin-induced block in phosphorylation. Unexpectedly, the rapamycin-resistant p70s6k inhibited insulin-induced 4E-BP1 phosphorylation in a dose-dependent manner. This effect was mimicked by the kinase-dead and wild-type p70s6k constructs, which also blocked insulin-induced dissociation of 4E-BP1 from initiation factor 4E. Both the kinase-dead and wild-type constructs also blocked reporter p70s6k activation, although only the kinase-dead p70s6k had a dominant-interfering effect on S6 phosphorylation. Analysis of phosphopeptides from reporter 4E-BP1 and p70s6k revealed that the kinase-dead p70s6k affected the same subset of sites as rapamycin in both proteins. The results demonstrate, for the first time, that activated p70s6k mediates increased S6 phosphorylation in vivo. Furthermore, they show that increased 4E-BP1 phosphorylation is controlled by a parallel signalling pathway that bifurcates immediately upstream of p70s6k, with the two pathways sharing a common rapamycin-sensitive activator. PMID:9271419

von Manteuffel, S R; Dennis, P B; Pullen, N; Gingras, A C; Sonenberg, N; Thomas, G

1997-01-01

15

Protective role of p70S6K in intestinal ischemia/reperfusion injury in mice.  

PubMed

The mTOR signaling pathway plays a crucial role in the regulation of cell growth, proliferation, survival and in directing immune responses. As the intestinal epithelium displays rapid cell growth and differentiation and is an important immune regulatory organ, we hypothesized that mTOR may play an important role in the protection against intestinal ischemia reperfusion (I/R)-induced injury. To better understand the molecular mechanisms by which the mTOR pathway is altered by intestinal I/R, p70S6K, the major effector of the mTOR pathway, was investigated along with the effects of rapamycin, a specific inhibitor of mTOR and an immunosuppressant agent used clinically in transplant patients. In vitro experiments using an intestinal epithelial cell line and hypoxia/reoxygenation demonstrated that overexpression of p70S6K promoted cell growth and migration, and decreased cell apoptosis. Inhibition of p70S6K by rapamycin reversed these protective effects. In a mouse model of gut I/R, an increase of p70S6K activity was found by 5 min and remained elevated after 6 h of reperfusion. Inhibition of p70S6K by rapamycin worsened gut injury, promoted inflammation, and enhanced intestinal permeability. Importantly, rapamycin treated animals had a significantly increased mortality. These novel results demonstrate a key role of p70S6K in protection against I/R injury in the intestine and suggest a potential danger in using mTOR inhibitors in patients at risk for gut hypoperfusion. PMID:22848534

Ban, Kechen; Kozar, Rosemary A

2012-01-01

16

Resistance to Selumetinib (AZD6244) in Colorectal Cancer Cell Lines is Mediated by p70S6K and RPS6 Activation1  

PubMed Central

Selumetinib (AZD6244, ARRY-142886) is a MEK1/2 inhibitor that has gained interest as an anti-tumour agent. We have determined the degree of sensitivity/resistance to Selumetinib in a panel of colorectal cancer cell lines using cell proliferation and soft agar assays. Sensitive cell lines underwent G1 arrest, whereas Selumetinib had no effect on the cell cycle of resistant cells. Some of the resistant cell lines showed high levels of ERK1/2 phosphorylation in the absence of serum. Selumetinib inhibited phosphorylation of ERK1/2 and RSK and had no effect on AKT phosphorylation in both sensitive and resistant cells. Furthermore, mutations in KRAS, BRAF, or PIK3CA were not clearly associated with Selumetinib resistance. Surprisingly, Selumetinib was able to inhibit phosphorylation of p70 S6 kinase (p70S6K) and its downstream target ribosomal protein S6 (RPS6) in sensitive cell lines. However, p70S6K and RPS6 phosphorylation remained unaffected or even increased in resistant cells. Moreover, in some of the resistant cell lines p70S6K and RPS6 were phosphorylated in the absence of serum. Interestingly, colorectal primary cultures derived from tumours excised to patients exhibited the same behaviour than established cell lines. Pharmacological inhibition of p70S6K using the PI3K/mTOR inhibitor NVP-BEZ235, the specific mTOR inhibitor Rapamycin and the specific p70S6K inhibitor PF-4708671 potentiated Selumetinib effects in resistant cells. In addition, biological inhibition of p70S6K using siRNA rendered responsiveness to Selumetinib in resistant cell lines. Furthermore, combination of p70S6K silencing and PF-47086714 was even more effective. We can conclude that p70S6K and its downstream target RPS6 are potential biomarkers of resistance to Selumetinib in colorectal cancer. PMID:25379021

Grasso, Silvina; Tristante, Elena; Saceda, Miguel; Carbonell, Pablo; Mayor-López, Leticia; Carballo-Santana, Mar; Carrasco-García, Estefanía; Rocamora-Reverte, Lourdes; García-Morales, Pilar; Carballo, Fernando; Ferragut, José A.; Martínez-Lacaci, Isabel

2014-01-01

17

Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines  

PubMed Central

Background The Hedgehog (HH) pathway promotes tumorigenesis in a diversity of cancers. Activation of the HH signaling pathway is caused by overexpression of HH ligands or mutations in the components of the HH/GLI1 cascade, which lead to increased transactivation of GLI transcription factors. Although negative kinase regulators that antagonize the activity of GLI transcription factors have been reported, including GSK3?, PKA and CK1s, little is known regarding positive kinase regulators that are suitable for use on cancer therapeutic targets. The present study attempted to identify kinases whose silencing inhibits HH/GLI signalling in non-small cell lung cancer (NSCLC). Results To find positive kinase regulators in the HH pathway, kinome-wide siRNA screening was performed in a NSCLC cell line, A549, harboring the GLI regulatory reporter gene. This showed that p70S6K2-silencing remarkably reduced GLI reporter gene activity. The decrease in the activity of the HH pathway caused by p70S6K2-inhibition was accompanied by significant reduction in cell viability. We next investigated the mechanism for p70S6K2-mediated inhibition of GLI1 transcription by hypothesizing that GSK3?, a negative regulator of the HH pathway, is activated upon p70S6K2-silencing. We found that phosphorylated-GSK3? (Ser9) was reduced by p70S6K2-silencing, causing a decreased level of GLI1 protein. Finally, to further confirm the involvement of p70S6K2 in GLI1 signaling, down-regulation in GLI-mediated transcription by PI3KCA-inhibition was confirmed, establishing the pivotal role of the PI3K/p70S6K2 pathway in GLI1 cascade regulation. Conclusion We report herein that inhibition of p70S6K2, known as a downstream effector of the PI3K pathway, remarkably decreases GLI-mediated transactivation in NSCLC by reducing phosphorylated-GSK3? followed by GLI1 degradation. These results infer that p70S6K2 is a potential therapeutic target for NSCLC with hyperactivated HH/GLI pathway. PMID:19575820

Mizuarai, Shinji; Kawagishi, Aki; Kotani, Hidehito

2009-01-01

18

MEK1/2 overactivation can promote growth arrest by mediating ERK1/2-dependent phosphorylation of p70S6K.  

PubMed

The extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway has been involved in the positive and negative regulation of cell proliferation. Upon mitogen stimulation, ERK1/ERK2 activation is necessary for G1- to S-phase progression whereas when hyperactived, this pathway could elicit cell cycle arrest. The mechanisms involved are not fully elucidated but a kinase-independent function of ERK1/2 has been evidenced in the MAPK-induced growth arrest. Here, we show that p70S6K, a central regulator of protein biosynthesis, is essential for the cell cycle arrest induced by overactivation of ERK1/2. Indeed, whereas MEK1 silencing inhibits cell cycle progression, we demonstrate that active mutant form of MEK1 or MEK2 triggers a G1 phase arrest by stimulating an activation of p70S6K by ERK1/2 kinases. Silencing of ERK1/2 activity by shRNA efficiently suppresses p70S6K phosphorylation on Thr421/Ser424 and S6 phosphorylation on Ser240/244 as well as p21 expression, but these effects can be partially reversed by the expression of kinase-dead mutant form of ERK1 or ERK2. In addition, we demonstrate that the kinase p70S6K modulates neither the p21 gene transcription nor the stability of the protein but enhances the translation of the p21 mRNA. In conclusion, our data emphasizes the importance of the translational regulation of p21 by the MEK1/2-ERK1/2-p70S6K pathway to negatively control the cell cycle progression. PMID:24501087

Guégan, Jean-Philippe; Ezan, Frédéric; Gailhouste, Luc; Langouët, Sophie; Baffet, Georges

2014-07-01

19

Association of sirolimus adverse effects with m-TOR, p70S6K or Raptor polymorphisms in kidney transplant recipients  

E-print Network

transplant recipients Jean-Baptiste Woillard123 * and Nassim Kamar456 *, Annick Rousseau12 , Lionel Rostaing, Department of Nephrology-Dialysis and Multi-Organ Transplantation, Toulouse, France; 5 INSERM U563, IFR is an immunosuppressive drug used in kidney transplantation. m-TOR binds with Raptor and phosphorylates p70S6 kinase

Paris-Sud XI, Université de

20

Osteopontin selectively regulates p70S6K/mTOR phosphorylation leading to NF-?B dependent AP-1-mediated ICAM-1 expression in breast cancer cells  

PubMed Central

Background Breast cancer is one of the most frequently diagnosed cancer and accounts for over 400,000 deaths each year worldwide. It causes premature death in women, despite progress in early detection, treatment, and advances in understanding the molecular basis of the disease. Therefore, it is important to understand the in depth mechanism of tumor progression and develop new strategies for the treatment of breast cancer. Thus, this study is aimed at gaining an insight into the molecular mechanism by which osteopontin (OPN), a member of SIBLING (Small Integrin Binding LIgand N-linked Glycoprotein) family of protein regulates tumor progression through activation of various transcription factors and expression of their downstream effector gene(s) in breast cancer. Results In this study, we report that purified native OPN induces ICAM-1 expression in breast cancer cells. The data revealed that OPN induces NF-?B activation and NF-?B dependent ICAM-1 expression. We also observed that OPN-induced NF-?B further controls AP-1 transactivation, suggesting that there is cross talk between NF-?B and AP-1 which is unidirectional towards AP-1 that in turn regulates ICAM-1 expression in these cells. We also delineated the role of mTOR and p70S6 kinase in OPN-induced ICAM-1 expression. The study suggests that inhibition of mTOR by rapamycin augments whereas overexpression of mTOR/p70S6 kinase inhibits OPN-induced ICAM-1 expression. Moreover, overexpression of mTOR inhibits OPN-induced NF-?B and AP-1-DNA binding and transcriptional activity. However, rapamycin further enhanced these OPN-induced effects. We also report that OPN induces p70S6 kinase phosphorylation at Thr-421/Ser-424, but not at Thr-389 or Ser-371 and mTOR phosphorylation at Ser-2448. Overexpression of mTOR has no effect in regulation of OPN-induced phosphorylation of p70S6 kinase at Thr-421/Ser-424. Inhibition of mTOR by rapamycin attenuates Ser-371 phosphorylation but does not have any effect on Thr-389 and Thr-421/Ser-424 phosphorylation of p70S6 kinase. However, OPN-induced phosphorylation of p70S6 kinase at Thr-421/Ser-424 is being controlled by MEK/ERK pathway. Conclusion These results suggest that blocking of OPN-induced ICAM-1 expression through mTOR/p70S6 kinase signaling pathway may be an important therapeutic strategy for the treatment of breast cancer. PMID:20459645

2010-01-01

21

Overexpression of CD133 enhances chemoresistance to 5-fluorouracil by activating the PI3K/Akt/p70S6K pathway in gastric cancer cells.  

PubMed

CD133 has been reported to be associated with chemoresistance in various cancer cells. The efficacy of 5-fluorouracil (5-FU), an important chemotherapeutic agent for advanced gastric cancer (GC), is limited by 5-FU resistance. Hence, the present study investigated the function of CD133 in 5-FU resistance in human GC cells. We isolated CD133+ GC cells by immunomagnetic cell sorting and CD133 expression was modulated by transfection of CD133 gene or CD133 small interfering ribonucleic acid. To assess the 5-FU cytotoxicity, Cell Counting Kit-8 was used. Expression of CD133, P-glycoprotein (P-gp), B-cell lymphoma 2 (Bcl?2), Bcl-2-associated X protein (Bax), phospho-Akt (p-Akt) and phospho-p70S6 kinase (p-p70S6K) were analyzed by western blotting. CD133, P-gp, Bcl-2 and Bax messenger ribonucleic acids were evaluated using semi-quantitative reverse transcriptase-polymerase chain reaction. Cell apoptosis was assessed by Hoechst 33258 staining. CD133+ cells were more resistant to 5-FU than CD133- cells, and showed higher expression of P-gp and Bcl-2 with lower expression of Bax. Furthermore, CD133 silencing enhanced 5-FU cytotoxicity and apoptotic characteristics, whereas CD133 overexpression increased 5-FU resistance. CD133 silencing and activation directly decreased and increased the expression of P-gp, Bcl?2, p-Akt and p-p70S6K, respectively. Notably, Akt inhibition by LY294002 restored the 5-FU cytotoxicity suppressed by CD133 overexpression, while Akt activation by epidermal growth factor reversed the 5-FU cytotoxicity enhanced by CD133 silencing. Therefore, CD133 may inhibit 5-FU-induced apoptosis by regulating the expression of P-gp and Bcl-2 family mediated by phosphoinositide 3-kinase/Akt/p70S6K pathway in GC cells. PMID:25230779

Zhu, Youlong; Yu, Jiwei; Wang, Shoulian; Lu, Ruiqi; Wu, Jugang; Jiang, Bojian

2014-12-01

22

FTY720 reduces migration and invasion of human glioblastoma cell lines via inhibiting the PI3K/AKT/mTOR/p70S6K signaling pathway.  

PubMed

2-Amino-2-[2-(4-octylphenyl)]-1,3-propanediol hydrochloride (FTY720), a synthetic compound from Isaria sinclairii, has been proven to possess various biological benefits including anti-cancer activity. However, the effects and related mechanisms of FTY720 on the migration and invasion of glioblastoma cells are still unclear. In the present study, we utilized U251MG and U87MG human glioblastoma cell lines to assess the effects of FTY720. We found that FTY720 significantly inhibited migration and invasion of glioblastoma cells. The anti-migration and invasion effects of FTY720 were associated with its down-regulation of matrix metalloproteinase-2 (MMP-2) and MMP-9 while up-regulation of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Furthermore, FTY720 modulated the expression of roundabouts 1 (ROBO1), Rho-associated kinase-1 (ROCK1), and epithelial-to-mesenchymal transition (EMT)-related factors. In addition, the phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) signaling pathway participated in FTY720-mediated suppression of migration and invasion. Thus, our findings demonstrated that FTY720 reduced glioblastoma cells migration and invasion via multiple signaling pathways, suggesting that FTY720 is a potential therapeutic agent against glioblastoma. PMID:25070489

Zhang, Li; Wang, Handong; Zhu, Jianhong; Ding, Ke; Xu, Jianguo

2014-11-01

23

Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Chronic exposure to arsenite induces cell proliferation and transformation. Black-Right-Pointing-Pointer Arsenite-induced transformation increases ROS production and downstream signalings. Black-Right-Pointing-Pointer Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. Black-Right-Pointing-Pointer Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.

Carpenter, Richard L.; Jiang, Yue; Jing, Yi; He, Jun [Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)] [Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Rojanasakul, Yon [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)] [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Liu, Ling-Zhi, E-mail: ling-zhi.liu@jefferson.edu [Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)] [Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jiang, Bing-Hua, E-mail: bhjiang@jefferson.edu [Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)] [Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

2011-10-28

24

AKT/mTOR substrate P70S6K is frequently phosphorylated in gallbladder cancer tissue and cell lines  

PubMed Central

Background Gallbladder carcinoma is a highly malignant tumor and a public health problem in some parts of the world. It is characterized by a poor prognosis and its resistance to radio and chemotherapy. There is an urgent need to develop novel therapeutic alternatives for the treatment of gallbladder carcinoma. The mammalian target of the rapamycin (mTOR) signaling pathway is activated in about 50% of human malignancies, and its role in gallbladder carcinoma has previously been suggested. In the present study, we investigated the phosphorylation status of the mTOR substrate p70S6K in preneoplastic and neoplastic gallbladder tissues and evaluated the effect of three mTOR inhibitors on cell growth and migration in gallbladder carcinoma cell lines. Methods Immunohistochemical staining of phospho-p70S6K was analyzed in 181 gallbladder carcinoma cases, classified according to lesion type as dysplasia, early carcinoma, or advanced carcinoma. Protein expression of AKT/mTOR members was also evaluated in eight gallbladder carcinoma cell lines by Western blot analysis. We selected two gallbladder carcinoma cell lines (G415 and TGBC-2TKB) to evaluate the effect of rapamycin, RAD001, and AZD8055 on cell viability, cell migration, and protein expression. Results Our results showed that phospho-p70S6K is highly expressed in dysplasia (66.7%, 12/18), early cancer (84.6%, 22/26), and advanced cancer (88.3%, 121/137). No statistical correlation was observed between phospho-p70S6K status and any clinical or pathological features, including age, gender, ethnicity, wall infiltration level, or histological differentiation (P < 0.05). In vitro treatment with rapamycin, RAD001, and AZD8055 reduced cell growth, cell migration, and phospho-p70S6K expression significantly in G-415 and TGBC-2TKB cancer cells (P < 0.001). Conclusion Our findings confirm the upregulation of this signaling pathway in gallbladder carcinoma and provide a rationale for the potential use of mTOR inhibitors as a therapeutic strategy for human gallbladder carcinoma. PMID:24124380

Leal, Pamela; Garcia, Patricia; Sandoval, Alejandra; Buchegger, Kurt; Weber, Helga; Tapia, Oscar; Roa, Juan C

2013-01-01

25

PGF2?-associated vascular smooth muscle hypertrophy is ROS dependent and involves the activation of mTOR, p70S6k, and PTEN  

PubMed Central

Prostaglandin F2? (PGF2?) increases reactive oxygen species (ROS) and induces vascular smooth muscle cell (VSMC) hypertrophy by largely unknown mechanism(s). To investigate the signaling events governing PGF2? –induced VSMC hypertrophy we examined the ability of the PGF2? analog, fluprostenol to elicit phosphorylation of Akt, the mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6k), glycogen synthase kinase-3? (GSK-3?), phosphatase and tensin homolog (PTEN), extracellular signal-regulated kinase 1/2 (ERK1/2) and Jun N-terminal kinase (JNK) in growth arrested A7r5 VSMC. Fluprostenol-induced hypertrophy was associated with increased ROS, mTOR translocation from the nucleus to the cytoplasm, along with Akt, mTOR, GSK-3?, PTEN and ERK1/2 but not JNK phosphorylation. Whereas inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 blocked fluprostenol-induced changes in total protein content, pretreatment with rapamycin or with the ERK1/2-MAPK inhibitor UO126 did not. Taken together, these findings suggest that fluprostenol-induced changes in A7R5 hypertrophy involve mTOR translocation and occur through PI3K-dependent mechanisms. PMID:18160324

Rice, K. M.; Uddemarri, S.; Desai, D. H.; Morrison, R.G.; Harris, R.; Wright, G.L.; Blough, E.R.

2008-01-01

26

Dietary fish oil inhibits the early stage of recovery of atrophied soleus muscle in rats via Akt-p70s6k signaling and PGF2?.  

PubMed

Skeletal muscle recovery from disuse atrophy requires the recruitment of insulin signaling for muscle growth, which is driven by protein synthesis. Dietary fish oil, which is rich in long-chain n-3 polyunsaturated fatty acids, is known to enhance insulin signaling and protein metabolism. Therefore, this study was performed to evaluate whether dietary fish oil facilitates muscle recovery during remobilization after disuse atrophy. Ten days of immobilization, followed by 3 or 13 days of remobilization, were applied to the hindlimbs of rats fed corn oil [corn oil diet group as control (CO)] or fish oil [fish oil diet group (FO)] as source of dietary fat. The immobilization-induced reductions in soleus muscle weight and myosin heavy-chain content were significantly restored by 3 days of remobilization in CO. However, in FO, these muscle recovery measurements did not significantly change until 13 days of remobilization. At 3 days of remobilization, both groups had significant elevations in p70 ribosomal S6 kinase (p70s6k) activation and at a greater extent in CO than in FO. The activation of Akt was also increased on Day 3, but it was not significant in FO. Throughout the remobilization period, levels of prostaglandin F2? (PGF2?) and cyclooxygenase-2 mRNA were significantly augmented. However, FO had a lesser increase in PGF2? than CO until Day 13. These findings indicate that dietary fish oil inhibits the early stage of soleus muscle recovery after disuse atrophy by suppressing the activation of Akt-p70s6k signaling and PGF2? synthesis. PMID:19954953

You, Jae-Sung; Park, Mi-Na; Lee, Yeon-Sook

2010-10-01

27

Jurkat cell proliferation is suppressed by Chlamydia (Chlamydophila) pneumoniae infection accompanied with attenuation of phosphorylation at Thr389 of host cellular p70S6K.  

PubMed

Chlamydia (Chlamydophila) pneumoniae infects T lymphocytes and multiplies within them. Our previous studies have indicated that C. pneumoniae infection suppresses proliferation of peripheral blood mononuclear cells stimulated with Staphylococcus-enterotoxin B; however, the mechanism of suppression was unclear. In this study, we explored the molecular mechanism involved in C. pneumoniae infection by using human acute T cell leukemia cell line, Jurkat E6-1. Proliferation of Jurkat cells was suppressed in an m.o.i.-dependent manner by C. pneumoniae infection. The suppression by the infection was particularly evident during the initial 24h of the infection, and down modulation of cyclin D3 protein levels were observed at the same time period by immunoblot analysis. The suppression of the Jurkat cell proliferation and the down modulation of cyclin D3 protein level were only induced by viable C. pneumoniae infection, not by exposure to UV-killed or heat-killed C. pneumoniae. Phosphorylations at Thr308 and Ser473 of AKT were induced by C. pneumoniae infection; however, phosphorylation at Thr389 of the downstream kinase, p70S6K was inhibited by unidentified mechanism associated with C. pneumoniae infection. Taking into account that G1 arrest of the C. pneumoniae infected Jurkat cells were not observed and that p70S6K is one of the most important regulators of protein synthesis, it was suggested that the suppression of Jurkat cell proliferation by C. pneumoniae was at least in part mediated by down modulation of protein synthesis through attenuation of Thr389 phosphorylation of p70S6K. PMID:22795649

Hirai, Itaru; Ebara, Megumi; Nakanishi, Shoko; Yamamoto, Chihiro; Sasaki, Tadahiro; Ikuta, Kazuyoshi; Yamamoto, Yoshimasa

2013-04-01

28

Temporal changes in ERK phosphorylation are harmonious with 4E-BP1, but not p70S6K, during clenbuterol-induced hypertrophy in the rat gastrocnemius.  

PubMed

Extracellular signal-regulated kinase (ERK) is required for clenbuterol (CB)-dependent fast-type myofibril enlargement; however, its contribution to translation control is unclear. ERK mediates translational regulation through mammalian target of rapamycin complex 1 (mTORC1) activation and (or) mTORC1-independent pathways. In this study, we aimed to investigate the role of ERK in translational control during CB-induced muscular hypertrophy by measuring time-dependent changes in the phosphorylation statuses of ERK, p70 ribosomal S6 kinase (p70S6K; an indicator of mTORC1 activity), 4E-binding protein 1 (4E-BP1), eukaryotic elongation factor 2 (eEF2), and other related signaling molecules in rat gastrocnemius muscles. Five-day administration of CB induced phenotypes associated with muscular hypertrophy (significant increases in wet weight and isometric ankle flexion torque in the gastrocnemius muscle), but was not accompanied by elevated ERK or p70S6K phosphorylation. One-day administration of CB caused significant increases in the phosphorylation of ERK, p70S6K, and 4E-BP1. In contrast, 3-day administration of CB caused significant increases in the phosphorylation of ERK and 4E-BP1, but not p70S6K. In addition, positive correlations were observed between ERK and 4E-BP1 on days 1 and 3, whereas a correlation between ERK and p70S6K was only observed on day 1. eEF2 phosphorylation was unchanged on both days 1 and 3. These findings suggest that ERK accelerates the initiation of translation, but does not support the involvement of ERK in translational elongation. Furthermore, ERK may play a major role in promoting translational initiation by mediating the phosphorylation of 4E-BP1, and may contribute to the initial activation of mTORC1 during CB administration. PMID:24941107

Sumi, Koichiro; Higashi, Seiichiro; Natsume, Midori; Kawahata, Keiko; Nakazato, Koichi

2014-08-01

29

Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling.  

PubMed

The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. PMID:24675012

Syed, Deeba N; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K; Adhami, Vaqar M; Mukhtar, Hasan

2014-06-01

30

MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis  

PubMed Central

MiR-145 can regulate cell apoptosis, proliferation, neural development and stem cell differentiation. Previous studies indicate that miR-145 is downregulated in human colon cancer cells. However, the molecular mechanisms of miR-145 used to regulate colon carcinogenesis and angiogenesis remain to be clarified. Here, we show that the expression of miR-145 is downregulated in colon and ovarian cancer tissues and cell lines. MiR-145 inhibits p70S6K1 post-transcriptional expression by binding to its 3?-UTR. The angiogenic factors hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF), which are downstream molecules of p70S6K1, are decreased by miR-145 overexpression. P70S6K1 rescues miR-145-suppressed HIF-1 and VEGF levels, tumorigenesis and tumor angiogenesis. Furthermore, the miR-145 level is inversely correlated with the amount of p70S6K1 protein in colon cancer tissues. Taken together, these studies suggest that miR-145 serves as a tumor suppressor which downregulates HIF-1 and VEGF expression by targeting p70S6K1, leading to the inhibition of tumor growth and angiogenesis. The miR-145 rescue could be a rationale for therapeutic applications in colon cancer in the future. PMID:21917858

Xu, Qing; Liu, Ling-Zhi; Qian, Xu; Chen, Qi; Jiang, Yue; Li, Dan; Lai, Lihui; Jiang, Bing-Hua

2012-01-01

31

Octreotide and the mTOR Inhibitor RAD001 (Everolimus) Block Proliferation and Interact with the Akt-mTOR-p70S6K Pathway in a NeuroEndocrine Tumour Cell Line  

Microsoft Academic Search

Background\\/Aim: The mode of action of the somatostatin analog octreotide on neuro-endocrine tumour proliferation is largely unknown. Overexpression of the proto-oncogene Akt\\/PKB (protein kinase B) has been demonstrated in certain neuro-endocrine tumours: Akt activates downstream proteins including mTOR and p70S6K, which play an important role in cell proliferation. RAD001 (everolimus) is a novel agent that is being trialled in the

Simona Grozinsky-Glasberg; Giulia Franchi; Mabel Teng; Chrysanthia A. Leontiou; Antônio Ribeiro de Oliveira Jr.; Paolo Dalino; Nabila Salahuddin; Márta Korbonits; Ashley B. Grossman

2008-01-01

32

Carnosine Inhibits the Proliferation of Human Gastric Carcinoma Cells by Retarding Akt/mTOR/p70S6K Signaling.  

PubMed

Carnosine (?-alanyl-L-histidine), described as an enigmatic peptide for its antioxidant, anti-aging and especially antiproliferation properties, has been demonstrated to play an anti-tumorigenic role in certain types of cancer. However, its function in human gastric carcinoma remains unclear. In this study, the effect of carnosine on cell proliferation and its underlying mechanisms were investigated in the cultured human gastric carcinoma cells. The mTOR signaling axis molecules were analyzed in carnosine treated cells. The results showed that treatment with carnosine led to proliferation inhibition, cell cycle arrest in the G0/G1 phase, apoptosis increase, and inhibition of mTOR signaling activation by decreasing the phosphorylation of Akt, mTOR and p70S6K, suggesting that proliferation inhibition of carnosine in human gastric carcinoma was through the inhibition of Akt/mTOR/p70S6K pathway, and carnosine would be a mimic of rapamycin. PMID:24799956

Zhang, Zhenwei; Miao, Lei; Wu, Xin; Liu, Guangze; Peng, Yuting; Xin, Xiaoming; Jiao, Binghua; Kong, Xiangping

2014-01-01

33

Regulation of matrix metalloproteinase-1, -3, and -9 in Mycobacterium tuberculosis-dependent respiratory networks by the rapamycin-sensitive PI3K/p70(S6K) cascade.  

PubMed

This study was designed to investigate the role of the phosphatidyl inositol 3-kinase (PI3K)/AKT/p70(S6K) signaling path on regulation of primary normal human bronchial epithelial cell-derived matrix metalloproteinase (MMP)-1, -3, and -9 expression in tuberculosis (TB). These MMPs are key in pathological extracellular matrix degradation in TB. Normal human bronchial epithelials were stimulated with conditioned medium from monocytes infected with virulent TB (CoMTb) and components of the PI3K/AKT signaling pathway blocked using specific chemical inhibitors and siRNA. MMP gene expression was measured by RT-PCR and secretion by ELISA, luminex, or zymography. Phospho-p70 S6K was detected by Western blot analysis and activity blocked by rapamycin. Chemical blockade of the proximal catalytic PI3K p110 subunit augmented MMP-1 and MMP-9 in a dose-dependent manner (all P<0.001) but suppressed MMP-3 (P<0.01). Targeted siRNA studies identified the p110? isoform as key causing 5-fold increase in TB network-dependent MMP-1 secretion to 4900 ± 1100 pg/ml. Specific inhibition of the AKT node suppressed all 3 MMPs. Phospho-p70(S6K) was identified in the cellular model, and rapamycin, a p70(S6K) inhibitor, inhibited MMP-1 (P<0.001) and MMP-3 (P<0.01) but not MMP-9. Controls were epithelial cells that were unstimulated or exposed to conditioned medium from monocytes not exposed to TB. In summary, blockade of the proximal PI3K catalytic subunit increases MMP-1 and MMP-9, whereas rapamycin decreased both MMP-1 and MMP-3. The regulation of the PI3K path in TB is complex, MMP specific, and a potential immunotherapeutic target in diseases characterized by tissue destruction. PMID:24076964

Singh, Shivani; Saraiva, Luisa; Elkington, Paul T G; Friedland, Jon S

2014-01-01

34

S6K2: The Neglected S6 Kinase Family Member  

PubMed Central

S6 kinase 2 (S6K2) is a member of the AGC kinases super-family. Its closest homolog, S6K1, has been extensively studied along the years. However, due to the belief in the community that the high degree of identity between these two isoforms would translate in essentially identical biological functions, S6K2 has been largely neglected. Nevertheless, recent research has clearly highlighted that these two proteins significantly differ in their roles in vitro as well as in vivo. These findings are significant to our understanding of S6 kinase signaling and the development of therapeutic strategies for several diseases including cancer. Here, we will focus on S6K2 and review the protein–protein interactions and specific substrates that determine the selective functions of this kinase. PMID:23898460

Pardo, Olivier E.; Seckl, Michael J.

2013-01-01

35

MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1  

SciTech Connect

Highlights: •MiR-145 is downregulated in human ovarian cancer. •MiR-145 targets p70S6K1 and MUC1. •p70S6K1 and MUC1 are involved in miR-145 mediated tumor cell growth and cell invasion, respectively. -- Abstract: MicroRNAs (miRNAs) are a family of small non-coding RNA molecules that regulate gene expression at post-transcriptional levels. Previous studies have shown that miR-145 is downregulated in human ovarian cancer; however, the roles of miR-145 in ovarian cancer growth and invasion have not been fully demonstrated. In the present study, Northern blot and qRT-PCR analysis indicate that miR-145 is downregulated in ovarian cancer tissues and cell lines, as well as in serum samples of ovarian cancer, compared to healthy ovarian tissues, cell lines and serum samples. Functional studies suggest that miR-145 overexpression leads to the inhibition of colony formation, cell proliferation, cell growth viability and invasion, and the induction of cell apoptosis. In accordance with the effect of miR-145 on cell growth, miR-145 suppresses tumor growth in vivo. MiR-145 is found to negatively regulate P70S6K1 and MUC1 protein levels by directly targeting their 3?UTRs. Importantly, the overexpression of p70S6K1 and MUC1 can restore the cell colony formation and invasion abilities that are reduced by miR-145, respectively. MiR-145 expression is increased after 5-aza-CdR treatment, and 5-aza-CdR treatment results in the same phenotype as the effect of miR-145 overexpression. Our study suggests that miR-145 modulates ovarian cancer growth and invasion by suppressing p70S6K1 and MUC1, functioning as a tumor suppressor. Moreover, our data imply that miR-145 has potential as a miRNA-based therapeutic target for ovarian cancer.

Wu, Huijuan [Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060 (China)] [Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060 (China); Xiao, ZhengHua [Department of gynecology, Yongchuan Affiliated Hospital of Chongqing Medical University, Chongqing City 404100 (China)] [Department of gynecology, Yongchuan Affiliated Hospital of Chongqing Medical University, Chongqing City 404100 (China); Wang, Ke; Liu, Wenxin [Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060 (China)] [Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060 (China); Hao, Quan, E-mail: quanhao2002@163.com [Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060 (China)] [Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060 (China)

2013-11-29

36

mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza A infection.  

PubMed

Autophagy, a stress response activated in influenza A virus infection helps the cell avoid apoptosis. However, in the absence of apoptosis infected cells undergo vastly expanded autophagy and nevertheless die in the presence of necrostatin but not of autophagy inhibitors. Combinations of inhibitors indicate that the controls of protective and lethal autophagy are different. Infection that triggers apoptosis also triggers canonical autophagy signaling exhibiting transient PI3K and mTORC1 activity. In terminal autophagy phospho-mTOR(Ser2448) is suppressed while mTORC1, PI3K and mTORC2 activities increase. mTORC1 substrate p70S6K becomes highly phosphorylated while its activity, now regulated by mTORC2, is required for LC3-II formation. Inhibition of mTORC2/p70S6K, unlike that of PI3K/mTORC1, blocks expanded autophagy in the absence of apoptosis but not moderate autophagy. Inhibitors of expanded autophagy limit virus reproduction. Thus expanded, lethal autophagy is activated by a signaling mechanism different from autophagy that helps cells survive toxic or stressful episodes. PMID:24606695

Datan, Emmanuel; Shirazian, Alireza; Benjamin, Shawna; Matassov, Demetrius; Tinari, Antonella; Malorni, Walter; Lockshin, Richard A; Garcia-Sastre, Adolfo; Zakeri, Zahra

2014-03-01

37

Monepantel induces autophagy in human ovarian cancer cells through disruption of the mTOR/p70S6K signalling pathway  

PubMed Central

We have recently shown that the novel anthelmintic drug monepantel (MPL) inhibits growth, proliferation and colony formation, arrests the cell cycle and induces cleavage of PARP-1 in ovarian cancer cell lines. Here we report on the mechanism behind the anticancer properties of MPL. The cytotoxic effect of MPL on ovarian cancer cells (OVCAR-3 and A2780) was investigated employing a panel of tests used for the detection of apoptosis and autophagy. Apoptosis and autophagy were defined by caspase activity, DNA-laddering, Annexin-V and acridine orange (AO) staining. Autophagy markers such as LC3B, SQSTM1/p62 and mammalian target of rapamycin (mTOR) pathway related proteins were assessed by western blotting and ELISA techniques. MPL did not activate caspases 3 or 8, nor did it alter the percentage of Annexin V positive stained cells. Failure to cause DNA laddering and the inability of z-VAD-fmk to block the MPL antiproliferative effects led to the ruling out of apoptosis as the mechanism behind MPL-induced cell death. On the other hand, accumulation of acidic vacuoles with distinct chromatin morphology and an increase in punctuate localization of green fluorescent protein-LC3B, and MPL-induced changes in the expression of SQSTM1/p62 were all indicative of MPL-induced autophagy. Consistent with this, we found inhibition of mTOR phosphorylation leading to suppression of the mTOR/p70S6K signalling pathway. Our findings provide the first evidence to show that MPL triggers autophagy through the deactivation of mTOR/p70S6K signalling pathway.

Bahrami, Farnaz; Pourgholami, Mohammad H; Mekkawy, Ahmed H; Rufener, Lucien; Morris, David L

2014-01-01

38

Novel Role for SHP-2 in Nutrient-Responsive Control of S6 Kinase 1 Signaling  

PubMed Central

Amino acids are required for the activation of the mammalian target of rapamycin complex 1 (mTORC1), which plays a critical role in cell growth, proliferation, and metabolism. The branched-chain amino acid leucine is an essential nutrient that stimulates mTORC1 to promote protein synthesis by activating p70 S6 kinase 1 (S6K1). Here we show that the protein tyrosine phosphatase SHP-2 is required for leucine-induced activation of S6K1 in skeletal myoblasts. In response to leucine, S6K1 activation is inhibited in myoblasts either lacking SHP-2 expression or overexpressing a catalytically inactive mutant of SHP-2. Activation of S6K1 by leucine requires the mobilization of intracellular calcium (Ca2+), which we show is mediated by SHP-2 in an inositol-1,4,5-trisphosphate-dependent manner. Ectopic Ca2+ mobilization rescued the S6K1 activation defect in SHP-2-deficient myoblasts. SHP-2 was identified to act upstream of phospholipase C ?4, linking it to the generation of nutrient-induced Ca2+ release and S6K1 phosphorylation. Consistent with these results, SHP-2-deficient myoblasts exhibited impaired leucine sensing, leading to defective autophagy and reduced myoblast size. These data define a new role for SHP-2 as a nutrient-sensing regulator in skeletal myoblasts that is required for the activation of S6K1. PMID:23129808

Mercan, Fatih; Lee, Hojin; Kolli, Sivanagarani

2013-01-01

39

Melittin Suppresses HIF-1?/VEGF Expression through Inhibition of ERK and mTOR/p70S6K Pathway in Human Cervical Carcinoma Cells  

PubMed Central

Objective Melittin (MEL), a major component of bee venom, has been associated with various diseases including arthritis, rheumatism and various cancers. In this study, the anti-angiogenic effects of MEL in CaSki cells that were responsive to the epidermal growth factor (EGF) were examined. Methodology/Principal Findings MEL decreased the EGF-induced hypoxia-inducible factor-1? (HIF-1?) protein and significantly regulated angiogenesis and tumor progression. We found that inhibition of the HIF-1? protein level is due to the shortened half-life by MEL. Mechanistically, MEL specifically inhibited the EGF-induced HIF-1? expression by suppressing the phosphorylation of ERK, mTOR and p70S6K. It also blocked the EGF-induced DNA binding activity of HIF-1? and the secretion of the vascular endothelial growth factor (VEGF). Furthermore, the chromatin immunoprecipitation (ChIP) assay revealed that MEL reduced the binding of HIF-1? to the VEGF promoter HRE region. The anti-angiogenesis effects of MEL were confirmed through a matrigel plus assay. Conclusions MEL specifically suppressed EGF-induced VEGF secretion and new blood vessel formation by inhibiting HIF-1?. These results suggest that MEL may inhibit human cervical cancer progression and angiogenesis by inhibiting HIF-1? and VEGF expression. PMID:23936001

Cho, Hyun-Ji; Park, Kwan-Kyu; Chung, Il-Kyung; Lee, In-Kyu; Kwak, Jong-Young; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Moon, Sung-Kwon; Kim, Wun-Jae; Choi, Yung-Hyun; Chang, Young-Chae

2013-01-01

40

Antisense Inhibition of S6 Kinase 1 Produces Improved Glucose Tolerance and Is Well Tolerated for 4 Weeks of Treatment in Rats  

Microsoft Academic Search

p70 ribosomal S6 kinase 1 (S6K1) is implicated in the pathogenesis of type 2 diabetes as knockout mice are hypoinsulinemic, hypersensitive to insulin treatment and are less susceptible to obesity-induced insulin resistance. Although S6K1 knockout mice provide important information on the biology of this target, the therapeutic relevance of S6K1 inhibition in adult animals is unknown. Thus, this research evaluated

H. S. Younis; B. Hirakawa; W. Scott; P. Tran; G. Bhat; T. Affolter; J. Chapman; J. Heyen; K. Chakravarty; G. Alton

2011-01-01

41

Celastrol inhibits the HIF-1? pathway by inhibition of mTOR/p70S6K/eIF4E and ERK1/2 phosphorylation in human hepatoma cells.  

PubMed

Hypoxia-inducible factor-1 (HIF-1) is the central mediator of cellular responses to low oxygen and vital to many aspects of cancer biology. In a search for HIF-1 inhibitors, we identified celastrol as an inhibitor of HIF-1 activation from Tripterygium wilfordii. In the present study, we demonstrated the effect of celastrol on HIF-1 activation. Celastrol showed a potent inhibitory activity against HIF-1 activation induced by hypoxia in various human cancer cell lines. This compound markedly decreased the hypoxia-induced accumulation of HIF-1? protein dose-dependently, whereas it did not affect the expressions of HIF-1? and topoisomerase-I (topo?I). Furthermore, celastrol prevented hypoxia-induced expression of HIF-1 target genes for vascular endothelial growth factor (VEGF) and erythropoietin (EPO). Further analysis revealed that celastrol inhibited HIF-1? protein synthesis, without affecting the expression level of HIF-1? mRNA or degradation of HIF-1? protein. Markedly, we found that suppression of HIF-1? accumulation by celastrol correlated with strong dephosphorylation of mammalian target of rapamycin (mTOR) and its effectors, ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E (eIF4E) and extracellular signal-regulated kinase (ERK), pathways known to regulate HIF-1? expression at the translational level. In vivo studies further confirmed the inhibitory effect of celastrol on the expression of HIF-1? proteins, leading to a decreased growth of Hep3B cells in a xenograft tumor model. Our data suggested that celastrol is an effective inhibitor of HIF-1 and provide new perspectives into the mechanism of its anticancer activity. PMID:24859482

Ma, Juan; Han, Li Zhuo; Liang, He; Mi, Chunliu; Shi, Hui; Lee, Jung Joon; Jin, Xuejun

2014-07-01

42

Phosphatidylinositol 3-kinase, protein kinase B and ribosomal S6 kinases in the stimulation of thyroid epithelial cell proliferation by cAMP and growth factors in the presence of insulin.  

PubMed Central

The proliferation of most normal cells depends on the co-operation of several growth factors and hormones, each with a specific role, but the key events involved in the action of each necessary stimulant remain largely uncharacterized. In the present study, the pathways involved in the mechanism(s) of co-operation have been investigated in primary cultures of dog thyroid epithelial cells. In this physiologically relevant system, thyroid stimulating hormone (TSH) acting through cAMP, epidermal growth factor (EGF) and phorbol esters (such as PMA) induce DNA synthesis. Their effect requires stimulation of the insulin-like growth factor-1 (IGF-1) receptor by either IGF-1 or insulin, which are not themselves mitogenic agents. In contrast, hepatocyte growth factor (HGF) is itself fully mitogenic. The results of the study demonstrate that cAMP, EGF, HGF and PMA stimulate p70 ribosomal S6 kinase (p70 S6 kinase). However, insulin/IGF-1 also stimulate p70 S6 kinase. Thus stimulation of p70 S6 kinase might be necessary, but is certainly not sufficient, for the induction of DNA synthesis and is not specific for any stimulated pathway. In contrast, phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase B (PKB) activation by insulin and HGF is strong and sustained, whereas it is weak and transient with EGF and absent in the presence of TSH or PMA. These findings suggest that: (i) stimulation of PI 3-kinases and/or PKB is not involved in the cAMP-dependent pathways leading to thyrocyte proliferation, or in the action of PMA, (ii) the stimulation of the PI 3-kinase/PKB pathway may account for the permissive action of insulin/IGF-1 in the proliferation of these cells, and (iii) the stimulation of this pathway by HGF may explain why this agent does not require insulin or IGF-1 for its mitogenic action. PMID:10816429

Coulonval, K; Vandeput, F; Stein, R C; Kozma, S C; Lamy, F; Dumont, J E

2000-01-01

43

The discovery of potent ribosomal S6 kinase inhibitors by high-throughput screening and structure-guided drug design  

PubMed Central

The ribosomal P70 S6 kinases play a crucial role in PI3K/mTOR regulated signalling pathways and are therefore potential targets for the treatment of a variety of diseases including diabetes and cancer. In this study we describe the identification of three series of chemically distinct S6K1 inhibitors. In addition, we report a novel PKA-S6K1 chimeric protein with five mutations in or near its ATP-binding site, which was used to determine the binding mode of two of the three inhibitor series, and provided a robust system to aid the optimisation of the oxadiazole-substituted benzimidazole inhibitor series. We show that the resulting oxadiazole-substituted aza-benzimidazole is a potent and ligand efficient S6 kinase inhibitor, which blocks the phosphorylation of RPS6 at Ser235/236 in TSC negative HCV29 human bladder cancer cells by inhibiting S6 kinase activity and thus provides a useful tool compound to investigate the function of S6 kinases. PMID:24072592

Kalusa, Andrew; Cano, Celine; Travers, Jon; Boxall, Kathy; Chow, Chiau Ling; Burns, Sam; Schmitt, Jessica; Pickard, Lisa; Barillari, Caterina; McAndrew, P. Craig; Clarke, Paul A.; Linardopoulos, Spiros; Griffin, Roger J.; Aherne, G. Wynne; Raynaud, Florence I.; Workman, Paul; Jones, Keith; van Montfort, Rob L.M.

2013-01-01

44

Anisomycin and rapamycin define an area upstream of p70/85S6k containing a bifurcation to histone H3-HMG-like protein phosphorylation and c-fos-c-jun induction.  

PubMed Central

Anisomycin, a translational inhibitor, synergizes with growth factors and phorbol esters to superinduce c-fos and c-jun by a number mechanisms, one of which is its ability to act as a potent signalling agonist, producing strong, prolonged activation of the same nuclear responses as epidermal growth factor or tetradecanoyl phorbol acetate. These responses include the phosphorylation of pp33, which exists in complexed and chromatin-associated forms, and of histone H3 and an HMG-like protein. By peptide mapping and microsequencing, we show here that pp33 is the phosphoprotein S6, present in ribosomes and in preribosomes in the nucleolus. Ablation of epidermal growth factor-, tetradecanoyl phorbol acetate-, or anisomycin-stimulated S6 phosphorylation by using the p70/85S6k inhibitor rapamycin has no effect on histone H3 and HMG-like protein phosphorylation or on the induction and superinduction of c-fos and c-jun. Further, [35S]methionine-labelling and immunoprecipitation studies show that the ablation of S6 phosphorylation has no discernible effect on translation in general or translation of newly induced c-fos transcripts. Finally, we show that anisomycin augments and prolongs S6 phosphorylation not by blocking S6 phosphatases but by sustained activation of p70/85S6k. These results suggest the possible use of anisomycin and rapamycin to define upstream and downstream boundaries of an area of signalling above p70/85S6k which contains a bifurcation that produces histone H3-HMG-like protein phosphorylation and c-fos-c-jun induction in the nucleus. Images PMID:8289787

Kardalinou, E; Zhelev, N; Hazzalin, C A; Mahadevan, L C

1994-01-01

45

Activation of the PI3K/Akt/mTOR/p70S6K Pathway is Involved in S100A4-induced Viability and Migration in Colorectal Cancer Cells  

PubMed Central

The S100 protein family member S100A4 regulates various cellular functions. Previous studies have shown that elevated expression of S100A4 is associated with progression and metastasis of colorectal cancer (CRC). However, little is known about whether and how S100A4 contributes to CRC development. In our present study, the elevated expression of S100A4 in CRC tissues compared to matched adjacent normal tissues was confirmed by immunohistochemistry, semi-quantitative RT-PCR and Western blot. Adenovirus-mediated S100A4 overexpression obviously enhanced viability and migration of CRC cells, which was detected by MTT assay and transwell assay, respectively. Additionally, S100A4 overexpression increased the phosphorylation levels of Akt, mTOR and p70S6K. These effects of S100A4 were abolished by treatment with either the specific PI3K/Akt inhibitor LY294002, or the specific mTOR/p70S6K inhibitor rapamycin. Furthermore, overexpression of S100A4 resulted in upregulation of VEGF and downregulation of E-cadherin, which were strongly reversed by either LY294002 or rapamycin. Altogether, our results demonstrate that activation of the PI3K/Akt/mTOR/p70S6K signaling pathway is involved in S100A4-induced viability, migration, upregulation of VEGF and downregulation of E-cadherin in CRC cells. PMID:24936148

Wang, Haiyan; Duan, Liang; Zou, Zhengyu; Li, Huan; Yuan, Shimei; Chen, Xian; Zhang, Yunyuan; Li, Xueru; Sun, Hui; Zha, He; Zhang, Yan; Zhou, Lan

2014-01-01

46

Characterization of a phorbol ester-stimulated S6 kinase from MDCK renal epithelial cells  

SciTech Connect

Increased phosphorylation of S6, a 40S ribosomal subunit protein, is observed in mammalian cells in response to growth factors and phorbol esters. The goal of this study was to identify the S6 kinase that is stimulated by phorbol ester treatment of MDCK cells. MDCK clone D1 cells express high levels of protein kinase C(PKC). PKC and S6 kinase activities were measured following DEAE-Sephacel fractionation of cytosol; this procedure separated the two kinase activities. When confluent MDCK-D1 cells were exposed to 100 nM phorbol 12-myristate 13-acetate (PMA), 95% of the total cellular PKC activity became associated with the particulate fraction within 1 hour. Cytosolic S6 kinase activity was maximal by 1 hour and then declined thereafter, preceding any detectable loss of total cellular PKC. The PMA-responsive S6 kinase was partially purified from MDCK-D1 cytosol by consecutive steps of DEAE-Sephacel, ammonium sulfate precipitation, Ultrogel AcA 34, heparin-agarose, and Ultrogel AcA 34. The partially-purified enzyme had an apparent molecular size of approximately 80 kDa. In addition to S6, the enzyme phosphorylated synthetic peptides based on the carboxyl terminal sequence of S6. S6 kinase activity utilized ATP but not GTP, and was inhibited by heparin, NaCl, and ..beta..-glycerophosphate. In conclusion, a phorbol ester-stimulated S6 kinase has been partially purified from an epithelial cell line. This kinase is distinct from PKC.

Meier, K.E.; Krebs, E.G.

1987-05-01

47

IL-6 impairs myogenic differentiation by downmodulation of p90RSK/eEF2 and mTOR/p70S6K axes, without affecting AKT activity.  

PubMed

IL-6 is a multifaceted pleiotropic cytokine, which is produced by a variety of cell types and targets different cells and tissues. In physiological conditions, IL-6 can be locally and transiently produced by skeletal muscle and plays an important role in muscle homeostasis. Circulating IL-6 levels are normally very low or undetectable but are dramatically increased in several pathologic conditions. In this study, we aimed to define the potential molecular mechanisms underlying the effects of IL-6 on myogenic program. We explored the molecular mechanisms through which exogenous IL-6, or the conditioned medium from the murine C-26 adenocarcinoma cells (a cellular model that secretes high levels of IL-6 and induces cancer cachexia in mice), interferes with the myogenic program. Our study revealed that IL-6 induces the activation of the Stat3 signaling and promotes the downmodulation of the p90RSK/eEF2 and mTOR/p70S6K axes, while it does not affect the activation of AKT. We thus identified potential molecular mediators of the inhibitory effects of IL-6 on myogenic program. PMID:24967341

Pelosi, Michele; De Rossi, Manuela; Barberi, Laura; Musarò, Antonio

2014-01-01

48

IL-6 Impairs Myogenic Differentiation by Downmodulation of p90RSK/eEF2 and mTOR/p70S6K Axes, without Affecting AKT Activity  

PubMed Central

IL-6 is a multifaceted pleiotropic cytokine, which is produced by a variety of cell types and targets different cells and tissues. In physiological conditions, IL-6 can be locally and transiently produced by skeletal muscle and plays an important role in muscle homeostasis. Circulating IL-6 levels are normally very low or undetectable but are dramatically increased in several pathologic conditions. In this study, we aimed to define the potential molecular mechanisms underlying the effects of IL-6 on myogenic program. We explored the molecular mechanisms through which exogenous IL-6, or the conditioned medium from the murine C-26 adenocarcinoma cells (a cellular model that secretes high levels of IL-6 and induces cancer cachexia in mice), interferes with the myogenic program. Our study revealed that IL-6 induces the activation of the Stat3 signaling and promotes the downmodulation of the p90RSK/eEF2 and mTOR/p70S6K axes, while it does not affect the activation of AKT. We thus identified potential molecular mediators of the inhibitory effects of IL-6 on myogenic program. PMID:24967341

Pelosi, Michele; De Rossi, Manuela; Barberi, Laura; Musaro, Antonio

2014-01-01

49

Regulation of Protein Kinase A Activity by p90 Ribosomal S6 Kinase 1*  

PubMed Central

Previously, we reported that the catalytic subunit of cAMP-dependent protein kinase (PKAc) binds to the active p90 ribosomal S6 kinase 1 (RSK1) (Chaturvedi, D., Poppleton, H. M., Stringfield, T., Barbier, A., and Patel, T. B. (2006) Mol. Cell. Biol. 26, 4586–4600). Herein, by overexpressing hemagglutinin-tagged RSK1 fragments in HeLa cells we have identified the region of RSK1 that is responsible for the interaction with PKAc. PKAc bound to the last 13 amino acids of RSK1, which overlaps the Erk1/2 docking site. This interaction between PKAc and RSK1 required the phosphorylation of Ser-732 in the C terminus of RSK1. Depending upon its phosphorylation status, RSK1 switched interactions between Erk1/2 and PKAc. In addition, a peptide corresponding to the last 13 amino acids of RSK1 with substitution of Ser-732 with Glu (peptide E), but not Ala (peptide A), decreased interactions between endogenous active RSK1 and PKAc. RSK1 attenuated the ability of cAMP to activate PKA in vitro and this modulation was abrogated by peptide E, but not by peptide A. Similarly, in intact cells, cAMP-mediated phosphorylation of Bcl-xL/Bcl-2-associated death promoter on Ser-115, the PKA site, was reduced when RSK1 was activated by epidermal growth factor, and this effect was blocked by peptide E, but not by peptide A. These findings demonstrate that interactions between endogenous RSK1 and PKAc in intact cells regulate the ability of cAMP to activate PKA and identify a novel mechanism by which PKA activity is regulated by the Erk1/2 pathway. PMID:19808666

Gao, Xianlong; Patel, Tarun B.

2009-01-01

50

Cordycepin, 3'-deoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3?/p70S6K signaling pathway and HO-1 expression.  

PubMed

Cordycepin (3'-deoxyadenosine) isolated from Cordyceps militaris, a species of the fungal genus Cordyceps, has been shown to exhibit many pharmacological functions, such as anticancer, anti-inflammatory, and antioxidant activities. In this study, we investigated the preventive role of cordycepin in ischemic/reperfusion (I/R) injury of isolated rat hearts and anesthetized rats. After Sprague-Dawley rats received cordycepin (3, 10, and 30 mg/kg) or control (0.5 % carboxyl methylcellulose) orally once a day for a week, hearts were isolated and mounted on Langendorff heart perfusion system. Isolated hearts were perfused with Krebs-Henseleit buffer for 15-min pre-ischemic stabilization period and subjected to 30-min global ischemia and 30-min reperfusion. Cordycepin administration (10 mg/kg, p.o.) significantly increased left ventricular developed pressure during the reperfusion period compared to that in the control group, but without any effect on coronary flow. Cordycepin (10 mg/kg, p.o.) significantly increased the phosphorylation of Akt/GSK-3?/p70S6K pathways, which are known to modulate multiple survival pathways. In addition, cordycepin decreased Bax and cleaved caspase-3 expression while increasing Bcl-2 expression, Bcl-2/Bax ratio, and heme oxygenase (HO-1) expression in isolated rat hearts. In anesthetized rats subjected to 30 min occlusion of left anterior descending coronary artery/2.5-h reperfusion, cordycepin (1, 3, and 10 mg/kg, i.v.) administered 15 min before the onset of ischemia dose-dependently decreased the infarct size in left ventricle. In conclusion, cordycepin could be an attractive therapeutic candidate with oral activity against I/R-associated heart diseases such as myocardial infarction. PMID:24178833

Park, Eun-Seok; Kang, Do-Hyun; Yang, Min-Kyu; Kang, Jun Chul; Jang, Yong Chang; Park, Jong Seok; Kim, Si-Kwan; Shin, Hwa-Sup

2014-03-01

51

Growth Inhibition by Bupivacaine Is Associated with Inactivation of Ribosomal Protein S6 Kinase 1  

PubMed Central

Bupivacaine is an amide type long acting local anesthetic used for epidural anesthesia and nerve blockade in patients. Use of bupivacaine is associated with severe cytotoxicity and apoptosis along with inhibition of cell growth and proliferation. Although inhibition of Erk, Akt, and AMPK seemingly appears to mediate some of the bupivacaine effects, potential downstream targets that mediate its effect remain unknown. S6 kinase 1 is a common downstream effector of several growth regulatory pathways involved in cell growth and proliferation known to be affected by bupivacaine. We have accordingly attempted to relate the growth inhibitory effects of bupivacaine with the status of S6K1 activity and we present evidence that decrease in cell growth and proliferation by bupivacaine is mediated through inactivation of S6 kinase 1 in a concentration and time dependent manner. We also show that ectopic expression of constitutively active S6 kinase 1 imparts substantial protection from bupivacaine induced cytotoxicity. Inactivation of S6K1 though associated with loss of putative mTOR mediated phosphorylation did not correspond with loss of similar phosphorylations in 4EBP1 indicating that S6K1 inhibition was not mediated through inactivation of mTORC1 signaling pathway or its down regulation. PMID:24605337

Beigh, Mushtaq Ahmad; Showkat, Mehvish; Bashir, Basharat; Bashir, Asma; Hussain, Mahboob ul; Andrabi, Khurshid Iqbal

2014-01-01

52

Mechanism of PDK1-catalyzed Thr-229 Phosphorylation of the S6K1 Protein Kinase*  

PubMed Central

PDK1 (phosphoinositide-dependent protein kinase-1) catalyzes phosphorylation of Thr-229 in the T-loop of S6K1?II (the 70-kDa 40 S ribosomal protein S6 kinase-1 ?II isoform), and Thr-229 phosphorylation is synergistic with C-terminal Thr-389 phosphorylation to activate S6K1?II regulatory functions in protein translation preinitiation complexes. Unlike its common AGC kinase subfamily member S6K1?II, PDK1 does not contain the synergistic C-terminal phosphorylation site, and it has been proposed that phosphorylated Thr-389 in S6K1?II may initially serve to trans-activate PDK1-catalyzed Thr-229 phosphorylation. Herein, we report direct binding and kinetic studies that showed PDK1 to exhibit nearly equal binding affinities and steady-state kinetic turnover numbers toward native (KdS6K1 = 1.2 ?m and kcat = 1.1 s?1) and the phosphomimicking T389E mutant S6K1?II (KdS6K1 = 1.5 ?m and kcat = 1.2 s?1), although ?2-fold enhanced specificity was displayed for the T389E mutant (kcat/KmS6K1 = 0.08 ?m?1 s?1 compared with 0.04 ?m?1 s?1). Considering that transient kinetic binding studies showed all nucleotide and S6K1?II substrates and products to rapidly associate with PDK1 (kon = 1–6 ?m?1 s?1), it was concluded that positioning a negative charge at residue Thr-389 reduced ?2-fold the occurrence of nonproductive binding events that precede formation of a reactive ternary complex for Thr-229 phosphorylation. In addition, steady-state kinetic data were most simply accommodated by an Ordered Bi Bi mechanism with competitive substrate inhibition, where (i) the initially formed PDK1-ATP complex phosphorylates the nucleotide-free form of the S6K1?II kinase and (ii) initial binding of S6K1?II precludes ATP binding to PDK1. PMID:19570988

Keshwani, Malik M.; Gao, Xinxin; Harris, Thomas K.

2009-01-01

53

Ribosomal protein S6 kinase 1 interacts with and is ubiquitinated by ubiquitin ligase ROC1.  

PubMed

Ribosomal protein S6 kinase (S6K) is involved in the regulation of cell growth and cellular metabolism. The activation of S6K in response to diverse extracellular stimuli is mediated by multiple phosphorylations coordinated by the mTOR and PI3K signaling pathways. We have recently found that both forms of S6K are modified by ubiquitination. Following these findings, we demonstrate here for the first time that S6K1 associates specifically with ubiquitin ligase ROC1 in vitro and in vivo. The interaction was initially identified in the yeast two-hybrid screening and further confirmed by pull-down and co-immunoprecipitation assays. Furthermore, the overexpression of ROC1 leads to an increase in S6K1 ubiquitination. Consistent with this observation, we showed that the steady-state level of S6K1 is regulated by ROC1, since downregulation of ROC1 by specific siRNA promotes stabilization of S6K1 protein. The results suggest the involvement of ROC1 in S6K1 ubiquitination and subsequent proteasomal degradation. PMID:18279656

Panasyuk, Ganna; Nemazanyy, Ivan; Filonenko, Valeriy; Gout, Ivan

2008-05-01

54

Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway.  

PubMed

Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies. PMID:24875531

Heijnen, Harry F; van Wijk, Richard; Pereboom, Tamara C; Goos, Yvonne J; Seinen, Cor W; van Oirschot, Brigitte A; van Dooren, Rowie; Gastou, Marc; Giles, Rachel H; van Solinge, Wouter; Kuijpers, Taco W; Gazda, Hanna T; Bierings, Marc B; Da Costa, Lydie; MacInnes, Alyson W

2014-05-01

55

Celastrol Stimulates Hypoxia-Inducible Factor-1 Activity in Tumor Cells by Initiating the ROS/Akt/p70S6K Signaling Pathway and Enhancing Hypoxia-Inducible Factor-1? Protein Synthesis  

PubMed Central

Celastrol, a tripterine derived from the traditional Chinese medicine plant Tripterygium wilfordii Hook F. (“Thunder of God Vine”), has been reported to have multiple effects, such as anti-inflammation, suppression of tumor angiogenesis, inhibition of tumor growth, induction of apoptosis and protection of cells against human neurodegenerative diseases. However, the mechanisms that underlie these functions are not well defined. In this study, we reported for the first time that Celastrol could induce HIF-1? protein accumulation in multiple cancer cell lines in an oxygen-independent manner and that the enhanced HIF-1? protein entered the nucleus and promoted the transcription of the HIF-1 target genes VEGF and Glut-1. Celastrol did not influence HIF-1? transcription. Instead, Celastrol induced the accumulation of the HIF-1? protein by inducing ROS and activating Akt/p70S6K signaling to promote HIF-1? translation. In addition, we found that the activation of Akt by Celastrol was transient. With increased exposure time, inhibition of Hsp90 chaperone function by Celastrol led to the subsequent depletion of the Akt protein and thus to the suppression of Akt activity. Moreover, in HepG2 cells, the accumulation of HIF-1? increased the expression of BNIP3, which induced autophagy. However, HIF-1? and BNIP3 did not influence the cytotoxicity of Celastrol because the main mechanism by which Celastrol kills cancer cells is through stimulating ROS-mediated JNK activation and inducing apoptosis. Furthermore, our data showed that the dose required for Celastrol to induce HIF-1? protein accumulation and enhance HIF-1? transcriptional activation was below its cytotoxic threshold. A cytotoxic dose of Celastrol for cancer cells did not display cytotoxicity in LO2 normal human liver cells, which indicated that the novel functions of Celastrol in regulating HIF-1 signaling and inducing autophagy might be used in new applications, such as in anti-inflammation and protection of cells against human neurodegenerative diseases. Future studies regarding these applications are required. PMID:25383959

Zhao, Ming; Cheng, Xiang; Chen, Guozhu; Lin, Song; Guan, Yifu; Yu, Xiaodan

2014-01-01

56

Celastrol Stimulates Hypoxia-Inducible Factor-1 Activity in Tumor Cells by Initiating the ROS/Akt/p70S6K Signaling Pathway and Enhancing Hypoxia-Inducible Factor-1? Protein Synthesis.  

PubMed

Celastrol, a tripterine derived from the traditional Chinese medicine plant Tripterygium wilfordii Hook F. ("Thunder of God Vine"), has been reported to have multiple effects, such as anti-inflammation, suppression of tumor angiogenesis, inhibition of tumor growth, induction of apoptosis and protection of cells against human neurodegenerative diseases. However, the mechanisms that underlie these functions are not well defined. In this study, we reported for the first time that Celastrol could induce HIF-1? protein accumulation in multiple cancer cell lines in an oxygen-independent manner and that the enhanced HIF-1? protein entered the nucleus and promoted the transcription of the HIF-1 target genes VEGF and Glut-1. Celastrol did not influence HIF-1? transcription. Instead, Celastrol induced the accumulation of the HIF-1? protein by inducing ROS and activating Akt/p70S6K signaling to promote HIF-1? translation. In addition, we found that the activation of Akt by Celastrol was transient. With increased exposure time, inhibition of Hsp90 chaperone function by Celastrol led to the subsequent depletion of the Akt protein and thus to the suppression of Akt activity. Moreover, in HepG2 cells, the accumulation of HIF-1? increased the expression of BNIP3, which induced autophagy. However, HIF-1? and BNIP3 did not influence the cytotoxicity of Celastrol because the main mechanism by which Celastrol kills cancer cells is through stimulating ROS-mediated JNK activation and inducing apoptosis. Furthermore, our data showed that the dose required for Celastrol to induce HIF-1? protein accumulation and enhance HIF-1? transcriptional activation was below its cytotoxic threshold. A cytotoxic dose of Celastrol for cancer cells did not display cytotoxicity in LO2 normal human liver cells, which indicated that the novel functions of Celastrol in regulating HIF-1 signaling and inducing autophagy might be used in new applications, such as in anti-inflammation and protection of cells against human neurodegenerative diseases. Future studies regarding these applications are required. PMID:25383959

Han, Xiaoxi; Sun, Shengkun; Zhao, Ming; Cheng, Xiang; Chen, Guozhu; Lin, Song; Guan, Yifu; Yu, Xiaodan

2014-01-01

57

Functional analysis of the PP2A subfamily of protein phosphatases in regulating Drosophila S6 kinase  

Microsoft Academic Search

Phosphorylation and activation of ribosomal S6 protein kinase is an important link in the regulation of cell size by the target of rapamycin (TOR) protein kinase. A combination of selective inhibition and RNA interference were used to test the roles of members of the PP2A subfamily of protein phosphatases in dephosphorylation of Drosophila S6 kinase (dS6K). Treatment of Drosophila Schneider

Vincent A. Bielinski; Marc C. Mumby

2007-01-01

58

Sequence and expression of chicken and mouse rsk: homologs of Xenopus laevis ribosomal S6 kinase.  

PubMed

We have previously reported the isolation of cDNAs encoding two closely related Xenopus ribosomal S6 kinases, S6KII alpha and -beta (S. W. Jones, E. Erikson, J. Blenis, J. L. Maller, and R. L. Erikson, Proc. Natl. Acad. Sci. USA 85:3377-3381, 1988). We report here the molecular cloning of one chicken and two mouse homologs of the Xenopus laevis cDNAs. As described for the Xenopus proteins, these cDNAs were found to predict polypeptides that contain two distinct kinase domains, of which one is most closely related to the catalytic subunit of cyclic AMP-dependent protein kinase and the other is most closely related to the catalytic subunit of phosphorylase b kinase. The three predicted proteins were more than 79% identical to the Xenopus S6KII alpha protein. The chicken and one of the mouse cDNAs were, respectively, 3.7 and 3.1 kilobase pairs in length, predicted proteins of 752 and 724 amino acids with molecular weights of 84.4 and 81.6 kilodaltons, and hybridized to mRNAs in fibroblasts and tissues of approximately 3.6 and 3.4 kilobases (kb). The second mouse cDNA was approximately 6.1 kilobase pairs and was not full length but predicted the C-terminal 633 amino acids of a protein that is similar to the C-terminal portion of Xenopus S6KII alpha. This clone hybridized to mRNA transcripts of 7.6 and 3.4 kb. In vitro transcription and translation of the chicken and the mouse cDNAs that predict complete proteins produced major products with apparent molecular weights of 96 and 84 kilodaltons. Analysis of mRNA levels in chicken tissues showed significant quantities of the 3.6-kb transcript in small and large intestine, spleen, and bursa. Both mouse cDNA were similarly expressed at significant levels in intestine, thymus, and lung; however, the 7.6-kb mRNA was differentially and more highly expressed in heart and brain. The two mouse cDNAs represent two different S6 kinase genes, as shown by comparison of their protein sequences, mRNA transcript sizes, genomic organizations, and nucleic acid sequences. We propose that this family of genes be named rsk, for ribosomal S6 kinase. PMID:2779569

Alcorta, D A; Crews, C M; Sweet, L J; Bankston, L; Jones, S W; Erikson, R L

1989-09-01

59

The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells  

Microsoft Academic Search

Background: Protein kinase B (PKB), and the p70 and p90 ribosomal S6 kinases (p70 S6 kinase and p90 Rsk, respectively), are activated by phosphorylation of two residues, one in the ‘T-loop’ of the kinase domain and, the other, in the hydrophobic motif carboxy terminal to the kinase domain. The 3-phosphoinositide-dependent protein kinase 1 (PDK1) activates many AGC kinases in vitro

Michayla R. Williams; J. Simon C. Arthur; Anudharan Balendran; Jeroen van der Kaay; Valeria Poli; Philip Cohen; Dario R. Alessi

2000-01-01

60

The Nuclear Receptor DHR3 Modulates dS6 Kinase-Dependent Growth in Drosophila  

PubMed Central

S6 kinases (S6Ks) act to integrate nutrient and insulin signaling pathways and, as such, function as positive effectors in cell growth and organismal development. However, they also have been shown to play a key role in limiting insulin signaling and in mediating the autophagic response. To identify novel regulators of S6K signaling, we have used a Drosophila-based, sensitized, gain-of-function genetic screen. Unexpectedly, one of the strongest enhancers to emerge from this screen was the nuclear receptor (NR), Drosophila hormone receptor 3 (DHR3), a critical constituent in the coordination of Drosophila metamorphosis. Here we demonstrate that DHR3, through dS6K, also acts to regulate cell-autonomous growth. Moreover, we show that the ligand-binding domain (LBD) of DHR3 is essential for mediating this response. Consistent with these findings, we have identified an endogenous DHR3 isoform that lacks the DBD. These results provide the first molecular link between the dS6K pathway, critical in controlling nutrient-dependent growth, and that of DHR3, a major mediator of ecdysone signaling, which, acting together, coordinate metamorphosis. PMID:20463884

Montagne, Jacques; Lecerf, Caroline; Parvy, Jean-Philippe; Bennion, Janis M.; Radimerski, Thomas; Ruhf, Marie-Laure; Zilbermann, Frederic; Vouilloz, Nicole; Stocker, Hugo; Hafen, Ernst; Kozma, Sara C.; Thomas, George

2010-01-01

61

MEK1-independent activation of MAPK and MEK1-dependent activation of p70 S6 kinase by stem cell factor (SCF) in ovarian cancer cells  

SciTech Connect

We discovered a stem cell factor (SCF)-triggered, MEK1-independent, and PI3K-dependent MAPK activation pathway in the Kit-expressing ovarian cancer cell line HEY. When we knocked down MEK1 with RNA interference (RNAi) to study the function of MEK1 on the proliferation and survival of ovarian cancer cells, we found that impaired cell growth still occurred after MEK1 expression had been suppressed, although MAPK activation remained intact. This suggests that there is MEK1-independent activation of MAPK in the SCF-induced ovarian cancer cell growth process, and that MEK1 still plays a crucial role in maintaining the malignant properties of ovarian cancer cells even when it fails to activate MAPK as expected.

Liu, Lian, E-mail: tounao@126.com [Department of Chemotherapy, Cancer Center, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012 (China) [Department of Chemotherapy, Cancer Center, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012 (China); Institute of Immunology, School of Medicine, Shandong University, Jinan 250012 (China); Zhang, Xin [Department of Chemotherapy, Cancer Center, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012 (China)] [Department of Chemotherapy, Cancer Center, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012 (China); Du, Chao; Zhang, Xiaoning; Hou, Nan; Zhao, Di [Institute of Immunology, School of Medicine, Shandong University, Jinan 250012 (China)] [Institute of Immunology, School of Medicine, Shandong University, Jinan 250012 (China); Sun, Jianzhi; Li, Li; Wang, Xiuwen [Department of Chemotherapy, Cancer Center, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012 (China)] [Department of Chemotherapy, Cancer Center, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012 (China); Ma, Chunhong [Institute of Immunology, School of Medicine, Shandong University, Jinan 250012 (China)] [Institute of Immunology, School of Medicine, Shandong University, Jinan 250012 (China)

2009-05-01

62

Nuclear export of S6K1 II is regulated by protein kinase CK2 phosphorylation at Ser-17.  

PubMed

Ribosomal S6 kinases (S6Ks) are principal players in the regulation of cell growth and energy metabolism. Signaling via phosphatidylinositol 3-kinase and mammalian target of rapamycin pathways mediates the activation of S6K in response to various mitogenic stimuli. The family of S6Ks consists of two forms, S6K1 and -2, that have cytoplasmic and nuclear splicing variants, S6K1 II and S6K1 I, respectively. Nuclear-cytoplasmic shuttling of both isoforms induced by mitogenic stimuli has been reported recently. Here we present the identification of protein kinase CK2 (CK2) as a novel binding and regulatory partner for S6K1 II. The interaction between S6K1 II and CK2beta regulatory subunit was initially identified in a yeast two-hybrid screen and further confirmed by co-immunoprecipitation of transiently expressed and endogenous proteins. The interaction between S6K1 II and CK2 was found to occur in serum-starved and serum-stimulated cells. In addition, we found that S6K1 II is a substrate for CK2. The localization of the CK2 phosphorylation site was narrowed down to Ser-17 in S6K1 II. Mutational analysis and the use of phosphospecific antibody indicate that Ser-17 is a major in vitro and in vivo phosphorylation site for CK2. Functional studies reveal that, in contrast to the wild type kinase, the phosphorylation-mimicking mutant of S6K1 II (S17E) retains its cytoplasmic localization in serum-stimulated cells. Treatment of cells with the nuclear export inhibitor leptomycin B revealed that the S17E mutant accumulates in the nucleus to the same extent as S6K1 II wild type. These results indicate that nuclear import of the S17E mutant is not affected, although the export is significantly enhanced. We also provide evidence that nuclear export of S6K1 is mediated by a CRM1-dependent mechanism. Taken together, this study establishes a functional link between S6K1 II and CK2 signaling, which involves the regulation of S6K1 II nuclear export by CK2-mediated phosphorylation of Ser-17. PMID:16895915

Panasyuk, Ganna; Nemazanyy, Ivan; Zhyvoloup, Alexander; Bretner, Maria; Litchfield, David W; Filonenko, Valeriy; Gout, Ivan T

2006-10-20

63

Functional analysis of the PP2A subfamily of protein phosphatases in regulating Drosophila S6 kinase.  

PubMed

Phosphorylation and activation of ribosomal S6 protein kinase is an important link in the regulation of cell size by the target of rapamycin (TOR) protein kinase. A combination of selective inhibition and RNA interference were used to test the roles of members of the PP2A subfamily of protein phosphatases in dephosphorylation of Drosophila S6 kinase (dS6K). Treatment of Drosophila Schneider 2 cells with calyculin A, a selective inhibitor of PP2A-like phosphatases, resulted in a 7-fold increase in the basal level of dS6K phosphorylation at the TOR phosphorylation site (Thr398) and blocked dephosphorylation following inactivation of TOR by amino acid starvation or rapamycin treatment. Knockdown of the PP2A catalytic subunit increased basal dS6K phosphorylation and inhibited dephosphorylation induced by amino acid withdrawal. In contrast, depletion of the catalytic subunits of the other two members of the subfamily did not enhance dS6K phosphorylation. Knockdown of PP4 caused a 20% decrease in dS6K phosphorylation and knockdown of PP6 had no effect. Knockdown of the Drosophila B56-2 subunit resulted in enhanced dephosphorylation of dS6K following removal of amino acids. In contrast, knockdown of the homologs of the other PP2A regulatory subunits had no effects. Knockdown of the Drosophila homolog of the PP2A/PP4/PP6 interaction protein alpha4/Tap42 did not affect S6K phosphorylation, but did induce apoptosis. These results indicate that PP2A, but not other members of this subfamily, is likely to be a major S6K phosphatase in intact cells and is consistent with an important role for this phosphatase in the TOR pathway. PMID:17570358

Bielinski, Vincent A; Mumby, Marc C

2007-08-15

64

Molecular Characterization and Expression Analysis of S6K1 in Cashmere Goats (Capra hircus)  

PubMed Central

p70 ribosomal S6 kinase (p70S6K) can integrate nutrient and growth factor signals to promote cell growth and survival. We report our molecular characterization of the complementary DNA (cDNA) that encodes the goat p70S6K gene 40S ribosomal S6 kinase 1 (S6K1) (GenBank accession GU144017) and its 3? noncoding sequence in Inner Mongolia Cashmere goats (Capra hircus). Goat S6K1 cDNA was 2,272 bp and include an open reading frame (ORF) of 1,578 bp, corresponding to a polypeptide of 525 amino acids, and a 694-residue 3? noncoding sequence with a polyadenylation signal at nucleotides 2,218 to 2,223. The relative abundance of S6K1 mRNA was measured by real-time PCR in 6 tissues, and p70S6K expression was examined by immunohistochemistry in heart and testis. The phosphorylation of p70S6K is regulated by mitogen-activated protein kinase (MAPK) signaling in fetal fibroblasts. PMID:25049885

Manlin, Wu; Wenlei, Bao; Xiyan, Hao; Xu, Zheng; Yanfeng, Wang; Zhigang, Wang

2013-01-01

65

Molecular Characterization and Expression Analysis of S6K1 in Cashmere Goats (Capra hircus).  

PubMed

p70 ribosomal S6 kinase (p70S6K) can integrate nutrient and growth factor signals to promote cell growth and survival. We report our molecular characterization of the complementary DNA (cDNA) that encodes the goat p70S6K gene 40S ribosomal S6 kinase 1 (S6K1) (GenBank accession GU144017) and its 3' noncoding sequence in Inner Mongolia Cashmere goats (Capra hircus). Goat S6K1 cDNA was 2,272 bp and include an open reading frame (ORF) of 1,578 bp, corresponding to a polypeptide of 525 amino acids, and a 694-residue 3' noncoding sequence with a polyadenylation signal at nucleotides 2,218 to 2,223. The relative abundance of S6K1 mRNA was measured by real-time PCR in 6 tissues, and p70S6K expression was examined by immunohistochemistry in heart and testis. The phosphorylation of p70S6K is regulated by mitogen-activated protein kinase (MAPK) signaling in fetal fibroblasts. PMID:25049885

Manlin, Wu; Wenlei, Bao; Xiyan, Hao; Xu, Zheng; Yanfeng, Wang; Zhigang, Wang

2013-08-01

66

Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily  

SciTech Connect

Recently the authors reported the purification of a mitogen-activated S6 kinase from Swiss mouse 3T3 fibroblasts and rat liver. The rat liver protein was cleaved with cyanogen bromide or trypsin and 17 of the resulting peptides were sequenced. DNA primers were generated from 3 peptides that had homology to sequences of the conserved catalytic domain of protein kinases. These primers were used in the polymerase chain reaction to obtain a 0.4-kilobase DNA fragment. This fragment was either radioactively labeled and hybridized to Northern blots of poly(A){sup {sup plus}} mRNA or used to screen a rat liver cDNA library. Northern blot analysis revealed four transcripts of 2.5, 3.2, 4.0, and 6.0 kilobases, and five S6 kinase clones were obtained by screening the library. Only two of the clones, which were identical, encoded a full-length protein. This protein had a molecular weight of 56,160, which correlated closely to that of the dephosphorylated kinase determined by SDS/PAGE. The catalytic domain of the kinase resembles that of other serine/threonine kinases belonging to the second messenger subfamily of protein kinases.

Kozma, S.C.; Ferrari, S. Bassand, P.; Siegmann, M.; Thomas, G. (Friedrich Miescher Institute, Basel (Switzerland)); Totty, N. (Ludwig Institute for Cancer Research, London (United Kingdom))

1990-10-01

67

Control of Paip1-Eukayrotic Translation Initiation Factor 3 Interaction by Amino Acids through S6 Kinase  

PubMed Central

The simultaneous interaction of poly(A)-binding protein (PABP) with eukaryotic translation initiation factor 4G (eIF4G) and the mRNA 3? poly(A) tail promotes translation initiation. We previously showed that the interaction of PABP-interacting protein 1 (Paip1) with PABP and eukaryotic translation initiation factor 3 (eIF3; via the eIF3g subunit) further stimulates translation. Here, we demonstrate that the interaction of eIF3 with Paip1 is regulated by amino acids through the mTORC1 signaling pathway. The Paip1-eIF3 interaction is impaired by the mTORC1 inhibitors, rapamycin and PP242. We show that ribosomal protein S6 kinases 1 and 2 (S6K1/2) promote the interaction of eIF3 with Paip1. The enhancement of Paip1-eIF3 interaction by amino acids is abrogated by an S6K inhibitor or shRNA against S6K1/2. S6K1 interacts with eIF3f and, in vitro, phosphorylates eIF3. Finally, we show that S6K inhibition leads to a reduction in translation by Paip1. We propose that S6K1/2 phosphorylate eIF3 to stimulate Paip1-eIF3 interaction and consequent translation initiation. Taken together, these data demonstrate that eIF3 is a new translation target of the mTOR/S6K pathway. PMID:24396066

Martineau, Yvan; Wang, Xiaoshan; Alain, Tommy; Petroulakis, Emmanuel; Shahbazian, David; Fabre, Bertrand; Bousquet-Dubouch, Marie-Pierre; Monsarrat, Bernard

2014-01-01

68

Stimulation of ribosomal protein S6 kinase activity by pp60/sup v-src/ or by serum: dissociation from phorbol ester-stimulated activity  

SciTech Connect

Ribosomal protein S6 kinase activity was measured in lysates prepared from serum-deprived chicken embryo fibroblasts (CEF) treated for various times with phorbol 12-myristate 13-acetate (PMA). Maximal activity was observed within 15 min, and it declined to the initial level by 4 hr. Incubation of these cells with PMA 4-60 hr after the initial treatment did not result in an additional increase in S6 protein kinase activity. These results are consistent with down-regulation of the PMA receptor, protein kinase C, and the dependence of PMA-stimulated S6 kinase activity on this enzyme. Long-term pretreatment of CEF with PMA only partially attenuated the stimulation of the S6 protein kinase activity by serum or by expression of the Rous sarcoma virus transforming gene product, pp60/sup v-src/. A similar protein kinase activity also was stimulated in cells treated with cycloheximide or sodium vanadate. Pretreatment with PMA had little effect on this response. These data indicate that it is likely that there are at least two mechanisms through which S6 kinase activity can be regulated, one of which apparently utilizes protein kinase C whereas the other(s) does not. Additional experiments show PMA-stimulated glucose transport was not attenuated by long-term incubation with phorbol ester, suggesting that another mechanism, which is not dependent on the presence of protein kinase C, maintains this response after the proposed down-regulation of the PMA receptor.

Blenis, J.; Erikson, R.L.

1986-03-01

69

Localization and retention of p90 ribosomal S6 kinase 1 in the nucleus: implications for its function  

PubMed Central

Ribosomal S6 kinase 1 (RSK1) belongs to a family of proteins with two kinase domains. Following activation in the cytoplasm by extracellular signal-regulated kinases (ERK1/2), it mediates the cell-proliferative, cell-growth, and survival-promoting actions of a number of growth factors and other agonists. These diverse biological actions of RSK1 involve regulation of both cytoplasmic and nuclear events. However, the mechanisms that permit nuclear accumulation of RSK1 remain unknown. Here, we show that phosphorylation of RSK1 on S221 is important for its dissociation from the type I? regulatory subunit of protein kinase A (PKA) in the cytoplasm and that RSK1 contains a bipartite nuclear localization sequence that is necessary for its nuclear entry. Once inside, the active RSK1 is retained in the nucleus via its interactions with PKA catalytic subunit and AKAP95. Mutations of RSK1 that do not affect its activity but disrupt its entry into the nucleus or expression of AKAP95 forms that do not enter the nucleus inhibit the ability of active RSK1 to stimulate DNA synthesis. Our findings identify novel mechanisms by which active RSK1 accumulates in the nucleus and also provide new insights into how AKAP95 orchestrates cell cycle progression. PMID:22130794

Gao, Xianlong; Chaturvedi, Deepti; Patel, Tarun B.

2012-01-01

70

p90 ribosomal S6 kinase 3 contributes to cardiac insufficiency in ?-tropomyosin Glu180Gly transgenic mice  

PubMed Central

Myocardial interstitial fibrosis is an important contributor to the development of heart failure. Type 3 p90 ribosomal S6 kinase (RSK3) was recently shown to be required for concentric myocyte hypertrophy under in vivo pathological conditions. However, the role of RSK family members in myocardial fibrosis remains uninvestigated. Transgenic expression of ?-tropomyosin containing a Glu180Gly mutation (TM180) in mice of a mixed C57BL/6:FVB/N background induces a cardiomyopathy characterized by a small left ventricle, interstitial fibrosis, and diminished systolic and diastolic function. Using this mouse model, we now show that RSK3 is required for the induction of interstitial fibrosis in vivo. TM180 transgenic mice were crossed to RSK3 constitutive knockout (RSK3?/?) mice. Although RSK3 knockout did not affect myocyte growth, the decreased cardiac function and mild pulmonary edema associated with the TM180 transgene were attenuated by RSK3 knockout. The improved cardiac function was consistent with reduced interstitial fibrosis in the TM180;RSK3?/? mice as shown by histology and gene expression analysis, including the decreased expression of collagens. The specific inhibition of RSK3 should be considered as a potential novel therapeutic strategy for improving cardiac function and the prevention of sudden cardiac death in diseases in which interstitial fibrosis contributes to the development of heart failure. PMID:23913705

Passariello, Catherine L.; Gayanilo, Marjorie; Kritzer, Michael D.; Thakur, Hrishikesh; Cozacov, Zoharit; Rusconi, Francesca; Wieczorek, David; Sanders, Michael; Li, Jinliang

2013-01-01

71

p90 Ribosomal S6 Kinase 1 (RSK1) and the Catalytic Subunit of Protein Kinase A (PKA) Compete for Binding the Pseudosubstrate Region of PKAR1?  

PubMed Central

Previously we showed that the inactive form of p90 ribosomal S6 kinase 1 (RSK1) interacts with the regulatory subunit, PKARI?, of protein kinase A (PKA), whereas the active RSK1 interacts with the catalytic subunit (PKAc) of PKA. Herein, we demonstrate that the N-terminal kinase domain (NTK) of RSK1 is necessary for interactions with PKARI?. Substitution of the activation loop phosphorylation site (Ser-221) in the NTK with the negatively charged Asp residue abrogated the association between RSK1 and PKARI?. This explains the lack of an interaction between active RSK1 and PKARI?. Full-length RSK1 bound to PKARI? with an affinity of 0.8 nm. The NTK domain of RSK1 competed with PKAc for binding to the pseudosubstrate region (amino acids 93–99) of PKARI?. Overexpressed RSK1 dissociated PKAc from PKARI?, increasing PKAc activity, whereas silencing of RSK1 increased PKAc/PKARI? interactions and decreased PKAc activity. Unlike PKAc, which requires Arg-95 and -96 in the pseudosubstrate region of PKARI? for their interactions, RSK1/PKARI? association requires all four Arg residues (Arg-93–96) in the pseudosubstrate site of PKARI?. A peptide (Wt-PS) corresponding to residues 91–99 of PKARI? competed for binding of RSK1 with PKARI? both in vitro and in intact cells. Furthermore, peptide Wt-PS (but not control peptide Mut-PS), by dissociating RSK1 from PKARI?, activated RSK1 in the absence of any growth factors and protected cells from apoptosis. Thus, by competing for binding to the pseudosubstrate region of PKARI?, RSK1 regulates PKAc activity in a cAMP-independent manner, and PKARI? by associating with RSK1 regulates its activation and its biological functions. PMID:20048145

Gao, Xianlong; Chaturvedi, Deepti; Patel, Tarun B.

2010-01-01

72

IKK-? mediates hydrogen peroxide induced cell death through p85 S6K1  

PubMed Central

The I?B kinase (IKK)/NF-?B pathway has been shown to be a major regulator in cell survival. However, the mechanisms through which IKK mediates cell death are not clear. In this study, we showed that IKK-? contributed to hydrogen peroxide (H2O2)-induced cell death independent of the NF-?B pathway. Our results demonstrated that the pro-death function of IKK-? under oxidative stress was mediated by p85 S6K1 (S6 kinase 1), but not p70 S6K1 through a rapamycin-insensitive and mammalian target of rapamycin complex 1 kinase-independent mechanism. We found that IKK-? associated with p85, but not p70 S6K1, which was required for H2O2-induced activation of p85 S6K1. IKK-? and p85 S6K1 contributed to H2O2-induced phosphorylation of Mdm2 (S166) and p53 accumulation. p85 S6K1 is critical for IKK-?-mediated cell death. Thus, these findings established a novel oxidative stress-responsive pathway that involves IKK-?, p85 S6K1 and Mdm2, which is response for H2O2-induced cell death. Our results have important implications for IKK-? and p85 S6K1 as potential targets for the prevention of diseases involved in oxidative stress-induced aberrant cell death. PMID:22955948

Jia, C-H; Li, M; Liu, J; Zhao, L; Lin, J; Lai, P-L; Zhou, X; Zhang, Y; Chen, Z-G; Li, H-Y; Liu, A-L; Yang, C-L; Gao, T-M; Jiang, Y; Bai, X-C

2013-01-01

73

Tumor Suppressor PDCD4 Represses Internal Ribosome Entry Site-Mediated Translation of Antiapoptotic Proteins and Is Regulated by S6 Kinase 2  

PubMed Central

Apoptosis can be regulated by extracellular signals that are communicated by peptides such as fibroblast growth factor 2 (FGF-2) that have important roles in tumor cell proliferation. The prosurvival effects of FGF-2 are transduced by the activation of the ribosomal protein S6 kinase 2 (S6K2), which increases the expression of the antiapoptotic proteins X chromosome-linked Inhibitor of Apoptosis (XIAP) and Bcl-xL. We now show that the FGF-2–S6K2 prosurvival signaling is mediated by the tumor suppressor programmed cell death 4 (PDCD4). We demonstrate that PDCD4 specifically binds to the internal ribosome entry site (IRES) elements of both the XIAP and Bcl-xL messenger RNAs and represses their translation by inhibiting the formation of the 48S translation initiation complex. Phosphorylation of PDCD4 by activated S6K2 leads to the degradation of PDCD4 and thus the subsequent derepression of XIAP and Bcl-xL translation. Our results identify PDCD4 as a specific repressor of the IRES-dependent translation of cellular mRNAs (such as XIAP and Bcl-xL) that mediate FGF-2–S6K2 prosurvival signaling and provide further insight into the role of PDCD4 in tumor suppression. PMID:22431522

Liwak, Urszula; Thakor, Nehal; Jordan, Lindsay E.; Roy, Rajat; Lewis, Stephen M.; Pardo, Olivier E.; Seckl, Michael

2012-01-01

74

S6 kinase 2 potentiates interleukin-3-driven cell proliferation Rebecca Cruz,* Lee Hedden,* Derek Boyer,* Michael G. Kharas,  

E-print Network

Ba/F3 cell line and that this is me- diated by mTOR and its upstream activator PI-3K bone marrow-derived mast cells upon IL-3 stimulation. Expression of a rapamycin- resistant form of S6K2, apoptosis, and cytoskeletal regulation in many different cell types [3, 4]. When PI-3K is activated

75

Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle  

Microsoft Academic Search

In rat epitrochlearis skeletal muscle, contraction inhibited the basal and insulin-stimulated rates of protein synthesis by\\u000a 75 and 70%, respectively, while increasing adenosine monophosphate-activated protein kinase (AMPK) activity. Insulin, on the\\u000a other hand, stimulated protein synthesis (by 30%) and increased p70 ribosomal protein S6 kinase (p70S6K) Thr389, 40S ribosomal\\u000a protein S6 (rpS6) Ser235\\/236, rpS6 Ser240\\/244 and eukaryotic initiation factor-4E-binding protein-1

Lisa Miranda; Sandrine Horman; Isabelle De Potter; Louis Hue; Jørgen Jensen; Mark H. Rider

2008-01-01

76

PAS Kinase Is a Nutrient and Energy Sensor in Hypothalamic Areas Required for the Normal Function of AMPK and mTOR/S6K1.  

PubMed

The complications caused by overweight, obesity and type 2 diabetes are one of the main problems that increase morbidity and mortality in developed countries. Hypothalamic metabolic sensors play an important role in the control of feeding and energy homeostasis. PAS kinase (PASK) is a nutrient sensor proposed as a regulator of glucose metabolism and cellular energy. The role of PASK might be similar to other known metabolic sensors, such as AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR). PASK-deficient mice resist diet-induced obesity. We have recently reported that AMPK and mTOR/S6K1 pathways are regulated in the ventromedial and lateral hypothalamus in response to nutritional states, being modulated by anorexigenic glucagon-like peptide-1 (GLP-1)/exendin-4 in lean and obese rats. We identified PASK in hypothalamic areas, and its expression was regulated under fasting/re-feeding conditions and modulated by exendin-4. Furthermore, PASK-deficient mice have an impaired activation response of AMPK and mTOR/S6K1 pathways. Thus, hypothalamic AMPK and S6K1 were highly activated under fasted/re-fed conditions. Additionally, in this study, we have observed that the exendin-4 regulatory effect in the activity of metabolic sensors was lost in PASK-deficient mice, and the anorexigenic properties of exendin-4 were significantly reduced, suggesting that PASK could be a mediator in the GLP-1 signalling pathway. Our data indicated that the PASK function could be critical for preserving the nutrient effect on AMPK and mTOR/S6K1 pathways and maintain the regulatory role of exendin-4 in food intake. Some of the antidiabetogenic effects of exendin-4 might be modulated through these processes. PMID:24445950

Hurtado-Carneiro, Verónica; Roncero, Isabel; Egger, Sascha S; Wenger, Roland H; Blazquez, Enrique; Sanz, Carmen; Alvarez, Elvira

2014-10-01

77

Both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signalling are required in epidermal growth factor-induced human trophoblast migration  

Microsoft Academic Search

Adequate extravillous trophoblast (EVT) invasion is an essential step for placental formation. The aim of this study was to examine the possible role of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling in epidermal growth factor (EGF)-induced EVT migration and to determine if the 70 kDa ribosomal S6 kinase (p70S6K) is involved in this process. In this study, EGF

Qing Qiu; Mingyan Yang; Benjamin K. Tsang; Andree Gruslin

2004-01-01

78

ERK/ribosomal S6 kinase (RSK) signaling positively regulates death receptor 5 expression through co-activation of CHOP and Elk1.  

PubMed

Death receptor 5 (DR5) is a death domain-containing transmembrane receptor that triggers apoptosis upon binding to its ligand or when overexpressed. Its expression is induced by certain small molecule drugs, including celecoxib, through mechanisms that have not been fully elucidated. The current study has revealed a novel ERK/ribosomal S6 kinase (RSK)-dependent mechanism that regulates DR5 expression primarily using celecoxib as a DR5 inducer. Both C/EBP homologous protein (CHOP) and Elk1 are required for celecoxib-induced DR5 expression based on promoter deletion and mutation analysis and siRNA-mediated gene silencing results. Co-expression of both CHOP and Elk1 exhibited enhanced effects on increasing DR5 promoter activity and DR5 expression, indicating that CHOP and Elk1 co-operatively regulate DR5 expression. Because Elk1 is an ERK-regulated protein, we accordingly found that celecoxib increased the levels of phosphorylated ERK1/2, RSK2, and Elk1. Inhibition of either ERK signaling with a MEK inhibitor or ERK1/2 siRNA, or RSK2 signaling with an RSK2 inhibitor or RSK2 siRNA abrogated DR5 up-regulation by celecoxib as well as other agents. Moreover, these inhibitions suppressed celecoxib-induced CHOP up-regulation. Thus, ERK/RSK-dependent, CHOP and Elk1-mediated mechanisms are critical for DR5 induction. Additionally, celecoxib increased CHOP promoter activity in an ATF4-dependent manner, and siRNA-mediated blockade of ATF4 abrogated both CHOP induction and DR5 up-regulation, indicating that ATF4 is involved in celecoxib-induced CHOP and DR5 expression. Collectively, we conclude that small molecules such as celecoxib induce DR5 expression through activating ERK/RSK signaling and subsequent Elk1 activation and ATF4-dependent CHOP induction. PMID:21044953

Oh, You-Take; Liu, Xiangguo; Yue, Ping; Kang, Sumin; Chen, Jing; Taunton, Jack; Khuri, Fadlo R; Sun, Shi-Yong

2010-12-31

79

Osmotic regulation of insulin-induced mitogen-activated protein kinase phosphatase (MKP-1) expression in H4IIE rat hepatoma cells.  

PubMed

A contribution of intracellular dehydration to insulin resistance has been established in human subjects and in different experimental systems. Here the effect of hyperosmolarity (405 mosmol/l) on insulin-induced mitogen-activated protein (MAP) kinase phosphatase (MKP)-1 expression was studied in H4IIE rat hepatoma cells. Insulin induces robust MKP-1 expression which correlates with a vanadate-sensitive decay of extracellular-signal-regulated kinase (Erk-1/Erk-2) activity. Hyperosmolarity delays MKP-1 accumulation by insulin and this corresponds to impaired MKP-1 synthesis, whereas MKP-1 degradation remains unaffected by hyperosmolarity. Rapamycin, which inhibits signalling downstream from the mammalian target of rapamycin (mTOR) and a peptide inhibiting protein kinase C (PKC) zeta/lambda abolish insulin-induced MKP-1 protein but not mRNA expression, suggesting the involvement of the p70 ribosomal S6 protein kinase (p70S6-kinase) and/or the eukaryotic initiation factor 4E-binding proteins (4E-BPs) as well as atypical PKCs in MKP-1 translation. Hyperosmolarity induces sustained suppression of p70S6-kinase and 4E-BP1 hyperphosphorylation by insulin, whereas insulin-induced tyrosine phosphorylation of the insulin receptor (IR) beta subunit and the IR substrates IRS1 and IRS2, recruitment of the phosphoinositide 3-kinase (PI 3-kinase) regulatory subunit p85 to the receptor substrates as well as PI 3-kinase activation, and Ser-473 phosphorylation of protein kinase B and Thr-410/403 phosphorylation of PKC zeta/lambda are largely unaffected under hyperosmotic conditions. The hyperosmotic impairment of both, MKP-1 expression and p70S6-kinase hyperphosphorylation by insulin is insensitive to K(2)CrO(4), calyculin A and vanadate, and inhibition of the Erk-1/Erk-2 and p38 pathways. The suppression of MKP-1 may further contribute to insulin resistance under dehydrating conditions by allowing unbalanced MAP kinase activation. PMID:12529177

Lornejad-Schäfer, Mohammad Reza; Schäfer, Christine; Graf, Dirk; Häussinger, Dieter; Schliess, Freimut

2003-04-15

80

Y-box binding protein-1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells  

Microsoft Academic Search

INTRODUCTION: Basal-like breast cancers (BLBC) frequently overexpress the epidermal growth factor receptor (EGFR) and subsequently have high levels of signaling through the MAP kinase pathway, which is thought to contribute to their aggressive behavior. While we have previously reported the expression of Y-box binding protein-1 (YB-1) in 73% of BLBC, it is unclear whether it can be regulated by a

Anna L Stratford; Christopher J Fry; Curtis Desilets; Alastair H Davies; Yong Y Cho; Yvonne Li; Zigang Dong; Isabelle M Berquin; Philippe P Roux; Sandra E Dunn

2008-01-01

81

The p90 ribosomal S6 kinase (RSK) inhibitor BI-D1870 prevents gamma irradiation-induced apoptosis and mediates senescence via RSK- and p53-independent accumulation of p21WAF1/CIP1  

PubMed Central

The p90 ribosomal S6 kinase (RSK) family is a group of highly conserved Ser/Thr kinases that promote cell proliferation, growth, motility and survival. As they are almost exclusively activated downstream of extracellular signal-regulated kinases 1 and 2 (ERK1/2), therapeutic intervention by RSK inhibition is less likely to produce such severe side effects as those observed following inhibition of the upstream master regulators Raf, MEK and ERK1/2. Here, we report that BI-D1870, a potent small molecule inhibitor of RSKs, induces apoptosis, although preferentially, in a p21-deficient background. On the other hand, BI-D1870 also induces a strong transcription- and p53-independent accumulation of p21 protein and protects cells from gamma irradiation (?IR)-induced apoptosis, driving them into senescence even in the absence of ?IR. Although we identified p21 in in vitro kinase assays as a novel RSK substrate that specifically becomes phosphorylated by RSK1-3 at Ser116 and Ser146, RNA-interference, overexpression and co-immunoprecipitation studies as well as the use of SL0101, another specific RSK inhibitor, revealed that BI-D1870 mediates p21 accumulation via a yet unknown pathway that, besides its off-site targets polo-like kinase-1 and AuroraB, also does also not involve RSKs. Thus, this novel off-target effect of BI-D1870 should be taken into serious consideration in future studies investigating the role of RSKs in cellular signaling and tumorigenesis. PMID:24136223

Neise, D; Sohn, D; Stefanski, A; Goto, H; Inagaki, M; Wesselborg, S; Budach, W; Stuhler, K; Janicke, R U

2013-01-01

82

Insights into the inhibition of the p90 ribosomal S6 kinase (RSK) by the flavonol glycoside SL010 from the 1.5 ? crystal structure of the N-terminal domain of RSK2 with bound inhibitor  

PubMed Central

The p90 ribosomal S6 family of kinases (RSK) are potential drug targets, due to their involvement in cancer and other pathologies. There are currently only two known selective inhibitors of RSK, but the basis for selectivity is not known. One of these inhibitors is a naturally occurring kaempferol-?-L-diacetylrhamnoside, SL0101. Here, we report the crystal structure of the complex of the N-terminal kinase domain of the RSK2 isoform with SL0101 at 1.5 Å resolution. The refined atomic model reveals unprecedented structural reorganization of the protein moiety, as compared to the nucleotide-bound form. The entire N-lobe, the hinge region and the ?D-helix undergo dramatic conformational changes resulting in a rearrangement of the nucleotide binding site with concomitant formation of a highly hydrophobic pocket spatially suited to accommodate SL0101. These unexpected results will be invaluable in further optimization of the SL0101 scaffold as a promising lead for a novel class of kinase inhibitors. PMID:22846040

Utepbergenov, Darkhan; Derewenda, Urszula; Olekhnovich, Natalya; Szukalska, Gabriela; Banerjee, Budhaditya; Hilinski, Michael K.; Lannigan, Deborah A.; Stukenberg, P. Todd; Derewenda, Zygmunt S.

2012-01-01

83

Insights into the Inhibition of the p90 Ribosomal S6 Kinase (RSK) by the Flavonol Glycoside SL0101 from the 1.5 Å Crystal Structure of the N-Terminal Domain of RSK2 with Bound Inhibitor  

SciTech Connect

The p90 ribosomal S6 family of kinases (RSK) are potential drug targets, due to their involvement in cancer and other pathologies. There are currently only two known selective inhibitors of RSK, but the basis for selectivity is not known. One of these inhibitors is a naturally occurring kaempferol-a-l-diacetylrhamnoside, SL0101. Here, we report the crystal structure of the complex of the N-terminal kinase domain of the RSK2 isoform with SL0101 at 1.5 {angstrom} resolution. The refined atomic model reveals unprecedented structural reorganization of the protein moiety, as compared to the nucleotide-bound form. The entire N-lobe, the hinge region, and the aD-helix undergo dramatic conformational changes resulting in a rearrangement of the nucleotide binding site with concomitant formation of a highly hydrophobic pocket spatially suited to accommodate SL0101. These unexpected results will be invaluable in further optimization of the SL0101 scaffold as a promising lead for a novel class of kinase inhibitors.

Utepbergenov, Darkhan; Derewenda, Urszula; Olekhnovich, Natalya; Szukalska, Gabriela; Banerjee, Budhaditya; Hilinski, Michael K.; Lannigan, Deborah A.; Stukenberg, P. Todd; Derewenda, Zygmunt S. (Lodz - Poland); (UV)

2012-09-11

84

Diacylglycerol kinase ? exacerbates cardiac injury after ischemia/reperfusion.  

PubMed

Early coronary reperfusion of the ischemic myocardium is a desired therapeutic goal for the preservation of myocardial function. However, reperfusion itself causes additional myocardium injuries. Activation of the diacylglycerol-protein kinase C (DAG-PKC) cascade has been implicated in the cardioprotective effects occurring after ischemia/reperfusion (I/R). DAG kinase (DGK) controls cellular DAG levels by converting DAG to phosphatidic acid, and may act as an endogenous regulator of DAG-PKC signaling. In the present study, we examined the functional role of DGK? in cardiac injury after I/R in in vivo mouse hearts. We generated transgenic mice with cardiac-specific overexpression of DGK? (DGK?-TG). The left anterior descending coronary artery was transiently occluded for 20 min and reperfused for 24 h in DGK?-TG mice and wild-type littermate (WT) mice. The levels of phosphorylation activity of PKC?, extracellular-signal regulated kinase (ERK) 1/2, and p70 ribosomal S6 kinase (p70S6K) were increased after I/R in WT mouse hearts. However, in DGK?-TG mice, activation of PKC?, ERK1/2, and p70S6K was attenuated compared to WT mice. After 24 h, Evans blue/triphenyltetrazolium chloride double staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining showed that DGK?-TG mice had significantly larger myocardial infarctions and larger numbers of TUNEL-positive cardiomyocytes than WT mice. Echocardiography and cardiac catheterization revealed that left ventricular systolic function was more severely depressed in DGK?-TG mice than in WT mice after I/R. These findings suggest that DGK? exacerbates I/R injury by inhibiting the cardioprotective effects of PKC?, ERK1/2, and p70S6K activation. PMID:23719772

Sasaki, Toshiki; Shishido, Tetsuro; Kadowaki, Shinpei; Kitahara, Tatsuro; Suzuki, Satoshi; Katoh, Shigehiko; Funayama, Akira; Netsu, Shunsuke; Watanabe, Tetsu; Goto, Kaoru; Takeishi, Yasuchika; Kubota, Isao

2014-01-01

85

Tumor necrosis factor receptor-associated factor family protein 2 is a key mediator of the epidermal growth factor-induced ribosomal S6 kinase 2/cAMP-responsive element-binding protein/Fos protein signaling pathway.  

PubMed

TRAF2 has an important function in mediating the TNF-R signaling pathway toward activation of NF-?B and JNKs. Here we reveal a novel function of TRAF2 in the epidermal growth factor (EGF) signaling pathway. Knockdown of TRAF2 blocked EGF-induced AP-1 activity and anchorage- independent cell transformation. Notably, we showed that EGF induces ribosomal S6 kinase 2 (RSK2) ubiquitination, and knocking down TRAF2 suppresses ubiquitination of RSK2 induced by EGF. We also found that TRAF2 affects RSK2 activity through RSK2 ubiquitination. RSK2 plays a critical role in AP-1 activity mediated through CREB and c-Fos, which regulates anchorage-independent cell transformation. In addition, TRAF2 is overexpressed in colon cancer and required for colon cancer development, suggesting that TRAF2 might be a potential molecular target for cancer prevention and treatment. PMID:22685297

Peng, Cong; Zhu, Feng; Wen, Weihong; Yao, Ke; Li, Shengqing; Zykova, Tatyana; Liu, Kangdong; Li, Xiang; Ma, Wei-Ya; Bode, Ann M; Dong, Zigang

2012-07-27

86

Application of the [?-32P] ATP kinase assay to study anabolic signaling in human skeletal muscle.  

PubMed

AMPK (AMP-dependant protein kinase)-mTORC1 (mechanistic target of rapamycin in complex 1)-p70S6K1 (ribosomal protein S6 kinase 1 of 70 kDa) signaling plays a crucial role in muscle protein synthesis (MPS). Understanding this pathway has been advanced by the application of the Western blot (WB) technique. However, because many components of the mTORC1 pathway undergo numerous, multisite posttranslational modifications, solely studying the phosphorylation changes of mTORC1 and its substrates may not adequately represent the true metabolic signaling processes. The aim of this study was to develop and apply a quantitative in vitro [?-(32)P] ATP kinase assay (KA) for p70S6K1 to assess kinase activity in human skeletal muscle to resistance exercise (RE) and protein feeding. In an initial series of experiments the assay was validated in tissue culture and in p70S6K1-knockout tissues. Following these experiments, the methodology was applied to assess p70S6K1 signaling responses to a physiologically relevant stimulus. Six men performed unilateral RE followed by the consumption of 20 g of protein. Muscle biopsies were obtained at pre-RE, and 1 and 3 h post-RE. In response to RE and protein consumption, p70S6K1 activity as assessed by the KA was significantly increased from pre-RE at 1 and 3 h post-RE. However, phosphorylated p70S6K1(thr389) was not significantly elevated. AMPK activity was suppressed from pre-RE at 3 h post-RE, whereas phosphorylated ACC(ser79) was unchanged. Total protein kinase B activity also was unchanged after RE from pre-RE levels. Of the other markers we assessed by WB, 4EBP1(thr37/46) phosphorylation was the only significant responder, being elevated at 3 h post-RE from pre-RE. These data highlight the utility of the KA to study skeletal muscle plasticity. PMID:24436296

McGlory, Chris; White, Amanda; Treins, Caroline; Drust, Barry; Close, Graeme L; Maclaren, Don P M; Campbell, Iain T; Philp, Andrew; Schenk, Simon; Morton, James P; Hamilton, D Lee

2014-03-01

87

TGF? enforces activation of eukaryotic elongation factor-2 (eEF2) via inactivation of eEF2 kinase by p90 ribosomal S6 kinase (p90Rsk) to induce mesangial cell hypertrophy  

Microsoft Academic Search

eEF2 phosphorylation is under tight control to maintain mRNA translation elongation. We report that TGF? activates eEF2 by decreasing eEF2 phosphorylation and simultaneously increasing eEF2 kinase phosphorylation. Remarkably, inhibition of Erk1\\/2 blocked the TGF?-induced dephosphorylation and phosphorylation of eEF2 and eEF2 kinase. TGF? increased phosphorylation of p90Rsk in an Erk1\\/2-dependent manner. Inactive p90Rsk reversed TGF?-inhibited phosphorylation of eEF2 and suppressed

Falguni Das; Nandini Ghosh-Choudhury; Balakuntalam S. Kasinath; Goutam Ghosh Choudhury

2010-01-01

88

Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signalling pathways in Chinese-hamster ovary cells.  

PubMed

To examine the roles of PLD (phospholipase D) in the regulation of the apoptotic process, PLD1 and PLD2 were stably overexpressed in S1P3-CHO cells [CHO (Chinese-hamster ovary) cells expressing the S1P (sphingosine 1-phosphate) receptor S1P3]. Treatment of S1P3-CHO cells with ActD (actinomycin D) induced apoptosis, as shown by the occurrence of nuclear fragmentation and the caspase-dependent proteolytic cleavage of PARP [poly(ADP-ribose) polymerase] and protein kinase Cd. Overexpression of either PLD1 or PLD2 protected S1P3-CHO cells from ActD-induced apoptosis, as demonstrated by an increased number of viable cells and inhibition of PARP and protein kinase Cd cleavage. However, in the early phase of apoptosis, ActD induced an increase in PLD activity and activation of key factors in the cell-survival signalling pathways, such as PI3K (phosphoinositide 3-kinase), Akt, p70S6K (p70 S6 kinase) and ERK (extracellular-signal-regulated kinase). Furthermore, the ActD-induced activation of these survival signalling enzymes was potentiated by overexpression of either PLD1 or PLD2. The PI3K inhibitor LY294002 inhibited the ActD-induced activation of Akt and p70S6K, and completely abolished the effects of PLD1 or PLD2, whereas inhibition of ERK activity by the MEK inhibitor U0126 had a milder effect. The ActD-induced activation of p70S6K and ERKs was blocked by 1-butanol, but not by t-butanol; similar to S1P, exogenous PLD suppressed the ActD-induced events in the apoptosis signalling pathways. These results show that, in S1P3-CHO cells, increased expression of PLDs prevents ActD-induced apoptosis by enhanced activation of the PI3K signalling pathways. PMID:14640974

Yamada, Momoko; Banno, Yoshiko; Takuwa, Yoh; Koda, Masahiro; Hara, Akira; Nozawa, Yoshinori

2004-03-01

89

The N-terminal region of p27 inhibits HIF-1? protein translation in ribosomal protein S6-dependent manner by regulating PHLPP-Ras-ERK-p90RSK axis.  

PubMed

P27 was identified as a tumor suppressor nearly two decades, being implicated in cell-cycle control, differentiation, senescence, apoptosis and motility. Our present study, for the first time to the best of our knowledge, revealed a potential role of p27 in inhibiting S6-mediated hypoxia-inducible factor-1? (HIF-1?) protein translation, which contributed to the protection from environmental carcinogen (sodium arsenite)-induced cell transformation. Our findings showed that depletion of p27 expression by knockout and knockdown approaches efficiently enhanced S6 phosphorylation in arsenite response via overactivating Ras/Raf/MEK/ERK pathway, which consequently resulted in the stimulation of p90RSK (90?kDa ribosomal S6 kinase), a direct kinase for S6 phosphorylation. Although PI3K/AKT pathway was also involved in S6 activation, blocking AKT and p70S6K activation did not attenuate arsenite-induced S6 activation in p27-/- cells, suggesting p27 specifically targeted Ras/ERK pathway rather than PI3K/AKT pathway for inhibition of S6 activation in response to arsenite exposure. Further functional studies found that p27 had a negative role in cell transformation induced by chronic low-dose arsentie exposure. Mechanistic investigations showed that HIF-1? translation was upregulated in p27-deficient cells in an S6 phosphorylation-dependent manner and functioned as a driving force in arsenite-induced cell transformation. Knockdown of HIF-1? efficiently reversed arsenite-induced cell transformation in p27-depleted cells. Taken together, our findings provided strong evidence showing that by targeting Ras/ERK pathway, p27 provided a negative control over HIF-1? protein synthesis in an S6-dependent manner, and abrogated arsenite-induced cell transformation via downregulation of HIF-1? translation. PMID:25412313

Zhang, D; Liu, J; Mi, X; Liang, Y; Li, J; Huang, C

2014-01-01

90

Notch- and Transducin-like Enhancer of Split (TLE)-dependent Histone Deacetylation Explain Interleukin 12 (IL-12) p70 Inhibition by Zymosan*  

PubMed Central

The fungal analog zymosan induces IL-23 and low amounts of IL-12 p70. This study addresses the molecular mechanisms underlying this cytokine pattern in human monocyte-derived dendritic cells. The transcriptional regulation of il23a, one of the chains of IL-23, depended on the activation of c-Rel and histone H3 phosphorylation, as judged from the association of c-Rel with the il23a promoter and the correlation between IL-23 production and Ser-10-histone H3 phosphorylation. Consistent with its reduced ability to produce IL-12 p70, zymosan induced a transient occupancy of the il12a promoter by c-Rel, blocked the production of IL-12 p70 and the transcription of il12a induced by other stimuli, and triggered the expression and nuclear translocation of the transcriptional repressors of the Notch family hairy and enhancer of split (Hes)-1, Hes5, hairy/enhancer-of-split related with YRPW motif protein (Hey)-1, and transducin-like enhancer of split (TLE). Zymosan also induced the interaction of Hes1 and TLE with histone H3 phosphorylated on Ser-10 and deacetylated on Lys-14. Inhibition of class III histone deacetylases increased the production of IL-12 p70 and partially blunted the inhibitory effect of zymosan on the production of IL-12 p70 elicited by LPS and IFN-?. These results indicate that the selective induction of IL-23 by ?-glucans is explained by the activation of c-Rel associated with Ser-10-histone H3 phosphorylation in the il23a promoter mediated by mitogen- and stress-activated kinase and/or protein kinase A and inhibition of il12a transcription by a mechanism involving activation of several corepressors with the ability to bind TLE and to promote histone deacetylation. PMID:21402701

Alvarez, Yolanda; Municio, Cristina; Hugo, Etzel; Zhu, Jimmy; Alonso, Sara; Hu, Xiaoyu; Fernández, Nieves; Crespo, Mariano Sánchez

2011-01-01

91

Current Biology, Vol. 14, 15401549, September 7, 2004, 2004 Elsevier Ltd. All rights reserved. DOI 10.1016/j.cub.2004.08.061 SKAR Is a Specific Target of S6 Kinase 1  

E-print Network

- teins TSC1 and TSC2. TSC2 links TOR to the mitogen-13353 Berlin Germany sensing phosphoinositide 32. Furthermore, TSC2 regu- lates the ability of TOR to sense cellular energy levels, asSummary the AMP-activated and LKB1-dependent kinase, AMPK, phosphorylates and activates TSC2 to reduce TOR ac

92

Generation of clinical grade dendritic cells with capacity to produce biologically active IL12p70  

Microsoft Academic Search

BACKGROUND: For optimal T cell activation it is desirable that dendritic cells (DCs) display peptides within MHC molecules as signal 1, costimulatory molecules as signal 2 and, in addition, produce IL-12p70 as signal 3. IL-12p70 polarizes T cell responses towards CD4+ T helper 1 cells, which then support the development of CD8+ cytotoxic T lymphocytes. We therefore developed new maturation

Anke Zobywalski; Miran Javorovic; Bernhard Frankenberger; Heike Pohla; Elisabeth Kremmer; Iris Bigalke; Dolores J Schendel

2007-01-01

93

Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets  

PubMed Central

Background Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Methods Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Results Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)–stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y12. PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y12 antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. Conclusion These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y12, in a manner largely independent of the canonical PI3 kinase/Akt pathway. PMID:24612393

Moore, S F; Hunter, R W; Hers, I

2014-01-01

94

Exercise improves phosphatidylinositol-3,4,5-trisphosphate responsiveness of atypical protein kinase C and interacts with insulin signalling to peptide elongation in human skeletal muscle.  

PubMed

We investigated if acute endurance-type exercise interacts with insulin-stimulated activation of atypical protein kinase C (aPKC) and insulin signalling to peptide chain elongation in human skeletal muscle. Four hours after acute one-legged exercise, insulin-induced glucose uptake was approximately 80% higher (N = 12, P < 0.05) in previously exercised muscle, measured during a euglycaemic-hyperinsulinaemic clamp (100 microU ml(-1)). Insulin increased (P < 0.05) both insulin receptor substrate (IRS)-1 and IRS-2 associated phosphatidylinositol (PI)-3 kinase activity and led to increased (P < 0.001) phosphorylation of Akt on Ser(473) and Thr(308) in skeletal muscle. Interestingly, in response to prior exercise IRS-2-associated PI-3 kinase activity was higher (P < 0.05) both at basal and during insulin stimulation. This coincided with correspondingly altered phosphorylation of the extracellular-regulated protein kinase 1/2 (ERK 1/2), p70S6 kinase (P70S6K), eukaryotic elongation factor 2 (eEF2) kinase and eEF2. aPKC was similarly activated by insulin in rested and exercised muscle, without detectable changes in aPKC Thr(410) phosphorylation. However, when adding phosphatidylinositol-3,4,5-triphosphate (PIP3), the signalling product of PI-3 kinase, to basal muscle homogenates, aPKC was more potently activated (P = 0.01) in previously exercised muscle. Collectively, this study shows that endurance-type exercise interacts with insulin signalling to peptide chain elongation. Although protein turnover was not evaluated, this suggests that capacity for protein synthesis after acute endurance-type exercise may be improved. Furthermore, endurance exercise increased the responsiveness of aPKC to PIP3 providing a possible link to improved insulin-stimulated glucose uptake after exercise. PMID:17540697

Frøsig, Christian; Sajan, Mini P; Maarbjerg, Stine J; Brandt, Nina; Roepstorff, Carsten; Wojtaszewski, Jørgen F P; Kiens, Bente; Farese, Robert V; Richter, Erik A

2007-08-01

95

Insulin signal transduction in rat small intestine: role of MAP kinases in expression of mucosal hydrolases.  

PubMed

The postreceptor events regulating the signal of insulin downstream in rat intestinal cells have not yet been analyzed. Our objectives were to identify the nature of receptor substrates and phosphorylated proteins involved in the signaling of insulin and to investigate the mechanism(s) by which insulin enhances intestinal hydrolases. In response to insulin, the following proteins were rapidly phosphorylated on tyrosine residues: 1) insulin receptor substrates-1 (IRS-1), -2, and -4; 2) phospholipase C-isoenzyme-gamma; 3) the Ras-GTPase-activating protein (GAP) associated with Rho GAP and p62(Src); 4) the insulin receptor beta-subunit; 5) the p85 subunits of phosphatidylinositol 3-kinase (PI 3-kinase); 6) the Src homology 2 alpha-collagen protein; 7) protein kinase B; 8) mitogen-activated protein (MAP) kinase-1 and -2; and 9) growth receptor-bound protein-2. Compared with controls, insulin enhanced the intestinal activity of MAP kinase-2 and protein kinase B by two- and fivefold, respectively, but did not enhance p70/S6 ribosomal kinase. Administration of an antireceptor antibody or MAP-kinase inhibitor PD-98059 but not a PI 3-kinase inhibitor (wortmannin) to sucklings inhibited the effects of insulin on mucosal mass and enzyme expression. We conclude that normal rat enterocytes express all of the receptor substrates and mediators involved in different insulin signaling pathways and that receptor binding initiates a signal enhancing brush-border membrane hydrolase, which appears to be regulated by the cascade of MAP kinases but not by PI 3-kinase. PMID:11208545

Marandi, S; De Keyser, N; Saliez, A; Maernoudt, A S; Sokal, E M; Stilmant, C; Rider, M H; Buts, J P

2001-02-01

96

Specific interaction between S6K1 and CoA synthase: a potential link between the mTOR/S6K pathway, CoA biosynthesis and energy metabolism.  

PubMed

Ribosomal protein S6 kinase (S6K) is a key regulator of cell size and growth. It is regulated via phosphoinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR) signaling pathways. We demonstrate for the first time that CoA synthase associates specifically with S6K1. The association was observed between native and transiently overexpressed proteins in vivo, as well as by BIAcore analysis in vitro. The sites of interaction were mapped to the C-terminal regions of both CoA synthase and S6K1. In vitro studies indicated that the interaction does not affect their enzymatic activities and that CoA synthase is not a substrate for S6 kinase. This study uncovers a potential link between mTor/S6K signaling pathway and energy metabolism through CoA and its thioester derivatives, but its physiological relevance should be further elucidated. PMID:15589845

Nemazanyy, Ivan; Panasyuk, Ganna; Zhyvoloup, Alexander; Panayotou, George; Gout, Ivan T; Filonenko, Valeriy

2004-12-17

97

Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex  

PubMed Central

Behaviorally controllable stressors confer protection from the neurochemical and behavioral consequences of future uncontrollable stressors, a phenomenon termed “behavioral immunization”. Recent data implicate protein synthesis within the ventromedial prefrontal cortex (mPFC) as critical to behavioral immunization. Adult, male Sprague-Dawley rats were exposed to a series of controllable tailshocks and 1 week later to uncontrollable tailshocks, followed 24 h later by social exploration and shuttlebox escape tests. To test the involvement of N-methyl-D-aspartate receptors (NMDARs) and the extracellular signal-regulated kinase (ERK) cascade in behavioral immunization, either D-AP5 or the MEK inhibitor U0126 was injected to the prelimbic (PL) or infralimbic (IL) mPFC prior to controllable stress exposure. Phosphorylated ERK and P70S6K, regulators of transcription and translation, were quantified by Western blot or immunohistochemistry after controllable or uncontrollable tailshocks. Prior controllable stress prevented the social exploration and shuttlebox performance deficits caused by the later uncontrollable stressor, and this effect was blocked by injections of D-AP5 into mPFC. A significant increase in phosphorylated ERK1 and ERK2, but not P70S6K, occurred within the PL and IL in rats exposed to controllable stress, but not to uncontrollable stress. However, U0126 only prevented behavioral immunization when injected to the PL. We provide evidence that NMDAR and ERK dependent signaling within the PL region is required for behavioral immunization, a learned form of stressor resistance.

Christianson, John P.; Flyer-Adams, Johanna G.; Drugan, Robert C.; Amat, Jose; Daut, Rachel A.; Foilb, Allison R.; Watkins, Linda R.; Maier, Steven F.

2014-01-01

98

Insulin inhibits glucocorticoid-stimulated L-type 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression by activation of the c-Jun N-terminal kinase pathway.  

PubMed

The hepatic isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PF2K/Fru-2,6-BPase) is transcriptionally stimulated by glucocorticoids, whereas insulin blocks this stimulatory effect. Although this inhibitory effect has been extensively reported, nothing is known about the signalling pathway responsible. We have used well-characterized inhibitors for proteins involved in different signalling cascades to assess the involvement of these pathways on the transcriptional regulation of glucocorticoid-stimulated PF2K/Fru-2,6-BPase by insulin. Our results demonstrate that the phosphoinositide 3-kinase, p70/p85 ribosomal S6 kinase, extracellular signal-regulated protein kinase (ERK)1/2 and p38 mitogen-activated protein (MAP) kinase pathways are not involved in the inhibitory effect of insulin on glucocorticoid-stimulated PF2K/Fru-2,6-BPase. To evaluate the implication of the MAP kinase/ERK kinase (MEK)-4-stress-activated protein kinase-c-Jun-N-terminal protein kinase ('JNK-SAPK') pathway we overexpressed the N-terminal JNK-binding domain of the JNK-interacting protein 1 ('JIP-1'), demonstrating that activation of JNK is necessary for the insulin inhibitory effect. Moreover, overexpression of MEK kinase 1 and JNK-haemagglutinin resulted in the inhibition of the glucocorticoid-stimulated PF2K/Fru-2,6-BPase. These results provide clear and specific evidence for the role of JNK in the insulin inhibition of glucocorticoid-stimulated PF2K/Fru-2,6-BPase gene expression. In addition, we performed experiments with a mutant of the glucocorticoid receptor in which the JNK phosphorylation target Ser-246 had been mutated to Ala. Our results demonstrate that the phosphorylation of the glucocorticoid receptor on Ser-246 is not responsible for the JNK repression of glucocorticoid-stimulated PF2K/Fru-2,6-BPase gene expression. PMID:11139390

De Los Pinos E; Fernández De Mattos S; Joaquin, M; Tauler, A

2001-01-15

99

S6K1 determines the metabolic requirements for BCR-ABL survival  

PubMed Central

In Chronic Myelogenous Leukemia, the constitutive activation of the BCR-ABL kinase transforms cells to an “addicted” state that requires glucose metabolism for survival. We investigated S6K1, a protein kinase that drives glycolysis in leukemia cells, as a target for counteracting glucose-dependent survival induced by BCR-ABL. BCR-ABL potently activated S6K1-dependent signaling and glycolysis. Although S6K1 knockdown or rapamycin treatment suppressed glycolysis in BCR-ABL transformed cells, these treatments did not induce cell death. Instead, loss of S6K1 triggered compensatory activation of fatty acid oxidation, a metabolic program that can support glucose-independent cell survival. Fatty acid oxidation in response to S6K1-inactivation required the expression of the fatty acid transporter Cpt1c, which was recently linked to rapamycin resistance in cancer. Finally, addition of an inhibitor of fatty acid oxidation significantly enhanced cytotoxicity in response to S6K1 inactivation. These data indicate that S6K1 dictates the metabolic requirements mediating BCR-ABL survival and provide a rationale for combining targeted inhibitors of signal transduction with strategies to interrupt oncogene-induced metabolism. PMID:22391570

Barger, Jennifer F.; Gallo, Catherine A.; Tandon, Preeti; Liu, Hongqi; Sullivan, Ashley; Grimes, H. Leighton; Plas, David R.

2012-01-01

100

Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo  

PubMed Central

Myricetin is one of the principal phytochemicals in onions, berries and red wine. Previous studies showed that myricetin exhibits potent anticancer and chemopreventive effects. The present study examined the effect of myricetin on ultraviolet (UV) B-induced angiogenesis in an SKH-1 hairless mouse skin tumorigenesis model. Topical treatment with myricetin inhibited repetitive UVB-induced neovascularization in SKH-1 hairless mouse skin. The induction of vascular endothelial growth factor, matrix metalloproteinase (MMP)-9 and MMP-13 expression by chronic UVB irradiation was significantly suppressed by myricetin treatment. Immunohistochemical and western blot analyses revealed that myricetin inhibited UVB-induced hypoxia inducible factor-1? expression in mouse skin. Western blot analysis and kinase assay data revealed that myricetin suppressed UVB-induced phosphatidylinositol-3 (PI-3) kinase activity and subsequently attenuated the UVB-induced phosphorylation of Akt/p70S6K in mouse skin lysates. A pull-down assay revealed the direct binding of PI-3 kinase and myricetin in mouse skin lysates. Our results indicate that myricetin suppresses UVB-induced angiogenesis by regulating PI-3 kinase activity in vivo in mouse skin. PMID:20008033

Jung, Sung Keun; Lee, Ki Won; Byun, Sanguine; Lee, Eun Jung; Kim, Jong-Eun; Bode, Ann M.; Dong, Zigang

2010-01-01

101

Identification of Ki (Ku, p70/p80) autoantigens and analysis of anti-Ki autoantibody reactivity  

SciTech Connect

Anti-Ki (Ku, p70/p80) autoantibodies, named after the prototype patient Kikuta by Tojo et al., occur in approximately 10% of patients with SLE, often in association with anti-Sm autoantibodies. Anti-Ki sera specifically immunoprecipitated two protein antigens, Ki/sub 86/ (M/sub r/ 86,000) and Ki/sub 66/ (M/sub r/ 66,000), from radiolabeled cell extracts. The Ki system was found to be immunologically identical to the Ku system described by Mimori et al. and the p70/p80 system described by Reeves. The Ki primary in vitro translation products were identified and proved similar in size to the cellular antigens. The Ki antigens were purified from human spleen by immunoaffinity chromatography followed by SDS-PAGE. The purified Ki antigens proved to be closely related by amino acid composition, and did not appear to be phosphorylated, glycosylated, or associated with RNA. The Ki antigens were found to bind to DNA, in agreement with the observations on the Ku and p70/p80 antigens. They were found to be widely conserved in mammals and were coordinately expressed in all tissues tested.

Francoeur, A.M.; Peebles, C.L.; Gompper, P.T.; Tan, E.M.

1986-03-01

102

Molecular Characterization and Expression Analysis of Ribosomal Protein S6 Gene in the Cashmere Goat (Capra hircus)  

PubMed Central

Ribosomal protein (rp) S6 is the substrate of ribosomal protein S6K (S6 kinase) and is involved in protein synthesis by mTOR/S6K/S6 signaling pathway. Some S6 cDNA have been cloned in mammals in recent years but has not been identified in the goat. To facilitate such studies, we cloned the cDNA encoding Cashmere goat (Capra hircus) S6 (GenBank accession GU131122) and then detected mRNA expression in seven tissues by real time PCR and protein expression in testis tissue by immunohistochemisty. Sequence analysis indicated that the obtained goat S6 was a 808 bp product, including a 3? untranslated region of 58 bp and an open reading frame of 750 bp which predicted a protein of 249 amino acids. The predicted amino acid sequence was highly homologous to cattle, human, mouse and rat S6. Expression analysis indicated S6 mRNA was expressed extensively in detected tissues and S6 protein was expressed in testis tissue. PMID:25049753

Wenlei, Bao; Xiyan, Hao; Xu, Zheng; Yan, Liang; Yuhao, Chen; Yanfeng, Wang; Zhigang, Wang

2013-01-01

103

Molecular Characterization and Expression Analysis of Ribosomal Protein S6 Gene in the Cashmere Goat (Capra hircus).  

PubMed

Ribosomal protein (rp) S6 is the substrate of ribosomal protein S6K (S6 kinase) and is involved in protein synthesis by mTOR/S6K/S6 signaling pathway. Some S6 cDNA have been cloned in mammals in recent years but has not been identified in the goat. To facilitate such studies, we cloned the cDNA encoding Cashmere goat (Capra hircus) S6 (GenBank accession GU131122) and then detected mRNA expression in seven tissues by real time PCR and protein expression in testis tissue by immunohistochemisty. Sequence analysis indicated that the obtained goat S6 was a 808 bp product, including a 3' untranslated region of 58 bp and an open reading frame of 750 bp which predicted a protein of 249 amino acids. The predicted amino acid sequence was highly homologous to cattle, human, mouse and rat S6. Expression analysis indicated S6 mRNA was expressed extensively in detected tissues and S6 protein was expressed in testis tissue. PMID:25049753

Wenlei, Bao; Xiyan, Hao; Xu, Zheng; Yan, Liang; Yuhao, Chen; Yanfeng, Wang; Zhigang, Wang

2013-11-01

104

Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways.  

PubMed

Steady laminar flow in the straight parts of the arterial tree is atheroprotective, whereas disturbed flow with oscillation in branch points and the aortic root are athero-prone, in part, because of the distinct roles of the flow patterns in regulating the cell cycle of vascular endothelial cells (ECs). To elucidate the molecular basis underlying the endothelial cell cycle regulated by distinct flow patterns, we conducted flow-channel experiments to investigate the effects of laminar versus oscillatory flows on activation of AMP-activated protein kinase (AMPK) and Akt in ECs. Laminar flow caused a transient activation of both AMPK and Akt, but oscillatory flow activated only Akt, with AMPK being maintained at its basal level. Constitutively active and dominant-negative mutants of AMPK and Akt were used to elucidate further the positive effect of Akt and negative role of AMPK in mediating mTOR (mammalian target of rapamycin) and its target p70S6 kinase (S6K) in response to laminar and oscillatory flows. Measurements of phosphorylation of mTOR Ser2448 and S6K Thr389 showed that AMPK, by counteracting Akt under laminar flow, resulted in a transient activation of S6K. Under oscillatory flow, because of the lack of AMPK activation to effect negative regulation, S6K was activated in a sustained manner. As a functional consequence, AMPK activation attenuated cell cycle progression in response to both laminar and oscillatory flows. In contrast, AMPK inhibition promoted EC cycle progression by decreasing the cell population in the G(0)/G(1) phase and increasing it in the S+G(2)/M phase. In vivo, phosphorylation of the promitotic S6K in mouse thoracic aorta was much less than that in mouse aortic root. In contrast, AMPK phosphorylation was higher in the thoracic aorta. These results provide a molecular mechanism by which laminar versus oscillatory flow regulates the endothelial cell cycle. PMID:17272808

Guo, Deliang; Chien, Shu; Shyy, John Y-J

2007-03-01

105

Phosphatidylinositol 5-phosphate 4-kinase (PIP4K) regulates TOR signaling and cell growth during Drosophila development  

PubMed Central

During development, Drosophila larvae undergo a dramatic increase in body mass wherein nutritional and developmental cues are transduced into growth through the activity of complex signaling pathways. Class I phosphoinositide 3-kinases have an established role in this process. In this study we identify Drosophila phosphatidylinositol 5-phosphate 4-kinase (dPIP4K) as a phosphoinositide kinase that regulates growth during larval development. Loss-of-function mutants in dPIP4K show reduced body weight and prolonged larval development, whereas overexpression of dPIP4K results both in an increase in body weight and shortening of larval development. The growth defect associated with dPIP4K loss of function is accompanied by a reduction in the average cell size of larval endoreplicative tissues. Our findings reveal that these phenotypes are underpinned by changes in the signaling input into the target of rapamycin (TOR) signaling complex and changes in the activity of its direct downstream target p70 S6 kinase. Together, these results define dPIP4K activity as a regulator of cell growth and TOR signaling during larval development. PMID:23530222

Gupta, Amit; Toscano, Sarah; Trivedi, Deepti; Jones, David R.; Mathre, Swarna; Clarke, Jonathan H.; Divecha, Nullin; Raghu, Padinjat

2013-01-01

106

Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity  

Microsoft Academic Search

Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced

Sung Hee Um; Francesca Frigerio; Mitsuhiro Watanabe; Frédéric Picard; Manel Joaquin; Melanie Sticker; Stefano Fumagalli; Peter R. Allegrini; Sara C. Kozma; Johan Auwerx; George Thomas

2004-01-01

107

Hydrogen Sulfide Inhibits High Glucose-induced Matrix Protein Synthesis by Activating AMP-activated Protein Kinase in Renal Epithelial Cells*?  

PubMed Central

Hydrogen sulfide, a signaling gas, affects several cell functions. We hypothesized that hydrogen sulfide modulates high glucose (30 mm) stimulation of matrix protein synthesis in glomerular epithelial cells. High glucose stimulation of global protein synthesis, cellular hypertrophy, and matrix laminin and type IV collagen content was inhibited by sodium hydrosulfide (NaHS), an H2S donor. High glucose activation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), shown by phosphorylation of p70S6 kinase and 4E-BP1, was inhibited by NaHS. High glucose stimulated mTORC1 to promote key events in the initiation and elongation phases of mRNA translation: binding of eIF4A to eIF4G, reduction in PDCD4 expression and inhibition of its binding to eIF4A, eEF2 kinase phosphorylation, and dephosphorylation of eEF2; these events were inhibited by NaHS. The role of AMP-activated protein kinase (AMPK), an inhibitor of protein synthesis, was examined. NaHS dose-dependently stimulated AMPK phosphorylation and restored AMPK phosphorylation reduced by high glucose. Compound C, an AMPK inhibitor, abolished NaHS modulation of high glucose effect on events in mRNA translation as well as global and matrix protein synthesis. NaHS induction of AMPK phosphorylation was inhibited by siRNA for calmodulin kinase kinase ?, but not LKB1, upstream kinases for AMPK; STO-609, a calmodulin kinase kinase ? inhibitor, had the same effect. Renal cortical content of cystathionine ?-synthase and cystathionine ?-lyase, hydrogen sulfide-generating enzymes, was significantly reduced in mice with type 1 diabetes or type 2 diabetes, coinciding with renal hypertrophy and matrix accumulation. Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes. PMID:22158625

Lee, Hak Joo; Mariappan, Meenalakshmi M.; Feliers, Denis; Cavaglieri, Rita C.; Sataranatarajan, Kavithalakshmi; Abboud, Hanna E.; Choudhury, Goutam Ghosh; Kasinath, Balakuntalam S.

2012-01-01

108

mTOR inhibitors and the anti-diabetic biguanide metformin: new insights into the molecular management of breast cancer resistance to the HER2 tyrosine kinase inhibitor lapatinib (Tykerb).  

PubMed

The small molecule HER2 tyrosine kinase inhibitor (TKI) lapatinib (Tykerb) is approved for the therapy of patients with HER2-positive breast carcinomas who have progressed on trastuzumab (Herceptin). Unfortunately, the efficacy of this HER2 TKI is limited by both primary (inherent) and acquired resistance, the latter typically occurring within 12 months of starting therapy. One of the key factors limiting our understanding of the mechanisms involved in lapatinib resistance is the lack of published preclinical models. We herein review lapatinib-refractory models recently developed at the bench and the survival pathways discovered. As hyperactivation of the pharmacologically targetable PI3K/mTOR/p70S6K1 axis appears to be central to the occurrence of lapatinib resistance, preclinical data showing enhanced antitumour effects when combining lapatinib with mTOR inhibitors (e.g., rapamycin analogues and NVP-BEZ235) highlight the importance of translational work to yield clinically useful regimens capable of delaying or treating lapatinib resistance. The unexpected ability of the anti-type II diabetes drug metformin to inactivate mTOR and decrease p70S6K1 activity further reveals that this biguanide, generally considered non-toxic and remarkably inexpensive, might be considered for new combinatorial lapatinib-based protocols in HER2-overexpressing breast cancer patients. PMID:19574203

Vázquez-Martín, Alejandro; Oliveras-Ferraros, Cristina; del Barco, Sonia; Martín-Castillo, Begoña; Menéndez, Javier A

2009-07-01

109

A small molecule inhibitor of Pim protein kinases blocks the growth of precursor T-cell lymphoblastic leukemia/lymphoma  

PubMed Central

The serine/threonine Pim kinases are up-regulated in specific hematologic neoplasms, and play an important role in key signal transduction pathways, including those regulated by MYC, MYCN, FLT3-ITD, BCR-ABL, HOXA9, and EWS fusions. We demonstrate that SMI-4a, a novel benzylidene-thiazolidine-2, 4-dione small molecule inhibitor of the Pim kinases, kills a wide range of both myeloid and lymphoid cell lines with precursor T-cell lymphoblastic leukemia/lymphoma (pre–T-LBL/T-ALL) being highly sensitive. Incubation of pre–T-LBL cells with SMI-4a induced G1 phase cell-cycle arrest secondary to a dose-dependent induction of p27Kip1, apoptosis through the mitochondrial pathway, and inhibition of the mammalian target of rapamycin C1 (mTORC1) pathway based on decreases in phospho-p70 S6K and phospho-4E-BP1, 2 substrates of this enzyme. In addition, treatment of these cells with SMI-4a was found to induce phosphorylation of extracellular signal-related kinase1/2 (ERK1/2), and the combination of SMI-4a and a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor was highly synergistic in killing pre–T-LBL cells. In immunodeficient mice carrying subcutaneous pre–T-LBL tumors, treatment twice daily with SMI-4a caused a significant delay in the tumor growth without any change in the weight, blood counts, or chemistries. Our data suggest that inhibition of the Pim protein kinases may be developed as a therapeutic strategy for the treatment of pre–T-LBL. PMID:19965690

Lin, Ying-Wei; Beharry, Zanna M.; Hill, Elizabeth G.; Song, Jin H.; Wang, Wenxue; Xia, Zuping; Zhang, Zhenhua; Aplan, Peter D.; Aster, Jon C.; Smith, Charles D.

2010-01-01

110

Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with nilotinib against BCR-ABL-positive leukemia cells involves the ABL kinase domain mutation.  

PubMed

Imatinib, an ABL tyrosine kinase inhibitor (TKI), has shown clinical efficacy against chronic myeloid leukemia (CML). However, a substantial number of patients develop resistance to imatinib treatment due to the emergence of clones carrying mutations in the protein BCR-ABL. The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway regulates various processes, including cell proliferation, cell survival, and antiapoptosis activity. In this study, we investigated the efficacy of NVP-BEZ235, a dual PI3K and mTOR inhibitor, using BCR-ABL-positive cell lines. Treatment with NVP-BEZ235 for 48 h inhibited cell growth and induced apoptosis. The phosphorylation of the AKT kinase, eukaryotic initiation factor 4-binding protein 1 (4E-BP1), and p70 S6 kinase were decreased after NVP-BEZ235 treatment. The combination of NVP-BEZ235 with a BCR-ABL kinase inhibitor, imatinib, or nilotinib, induced a more pronounced colony growth inhibition, whereas the combination of NVP-BEZ235 and nilotinib was more effective in inducing apoptosis and reducing the phosphorylation of AKT, 4E-BP1, and S6 kinase. NVP-BEZ235 in combination with nilotinib also inhibited tumor growth in a xenograft model and inhibited the growth of primary T315I mutant cells and ponatinib-resistant cells. Taken together, these results suggest that administration of the dual PI3K and mTOR inhibitor NVP-BEZ235 may be an effective strategy against BCR-ABL mutant cells and may enhance the cytotoxic effects of nilotinib in ABL TKI-resistant BCR-ABL mutant cells. PMID:24100660

Okabe, Seiichi; Tauchi, Tetsuzo; Tanaka, Yuko; Kitahara, Toshihiko; Kimura, Shinya; Maekawa, Taira; Ohyashiki, Kazuma

2014-02-01

111

Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor.  

PubMed

Although preclinical work with rapalogs suggests potential in treatment of multiple myeloma (MM), they have been less successful clinically. These drugs allostearically inhibit the mammalian target of rapamycin kinase primarily curtailing activity of the target of rapamycin complex (TORC)1. To assess if the mammalian target of rapamycin within the TORC2 complex could be a better target in MM, we tested a new agent, pp242, which prevents activation of TORC2 as well as TORC1. Although comparable to rapamycin against phosphorylation of the TORC1 substrates p70S6kinase and 4E-BP-1, pp242 could also inhibit phosphorylation of AKT on serine 473, a TORC2 substrate, while rapamycin was ineffective. pp242 was also more effective than rapamycin in achieving cytoreduction and apoptosis in MM cells. In addition, pp242 was an effective agent against primary MM cells in vitro and growth of 8226 cells in mice. Knockdown of the TORC2 complex protein, rictor, was deleterious to MM cells further supporting TORC2 as the critical target for pp242. TORC2 activation was frequently identified in primary specimens by immunostaining for AKT phosphorylation on serine 473. Potential mechanisms of up-regulated TORC2 activity in MM were stimulation with interleukin-6 or insulin-like growth factor 1, and phosphatase and tensin homolog or RAS alterations. Combining pp242 with bortezomib led to synergistic anti-MM effects. These results support TORC2 as a therapeutic target in MM. PMID:20686120

Hoang, Bao; Frost, Patrick; Shi, Yijiang; Belanger, Eileen; Benavides, Angelica; Pezeshkpour, Gholam; Cappia, Susanna; Guglielmelli, Tommasina; Gera, Joseph; Lichtenstein, Alan

2010-11-25

112

Interleukin-12 (IL-12p70) Promotes Induction of Highly Potent Th1-Like CD4+CD25+ T Regulatory Cells That Inhibit Allograft Rejection in Unmodified Recipients  

PubMed Central

In rat models, CD4+CD25+ T regulatory cells (Treg) play a key role in the induction and maintenance of antigen-specific transplant tolerance, especially in DA rats with PVG cardiac allografts (1, 2). We have previously described generation of alloantigen-specific Treg (Ts1), by culture of naïve natural CD4+CD25+ Treg (nTreg) with specific alloantigen and IL-2 for 4?days. These cells express mRNA for IFN-? receptor (ifngr) and suppress donor but not third party cardiac allograft rejection mediated by alloreactive CD4+ T cells at ratios of <1:10. Here, we show that Ts1 also expressed the IL-12p70 specific receptor (il-12r?2) and that rIL-12p70 can induce their proliferation. Ts1 cells re-cultured with rIL-12p70 alone or rIL-12p70 and recombinant interleukin-2 (rIL-2), suppressed proliferation of CD4+ T cells in mixed lymphocyte culture at <1:1024, whereas Ts1 cells re-cultured with rIL-2 and alloantigen only suppressed at 1:32–64. The rIL-12p70 alloactivated Ts1 cells markedly delayed PVG, but not third party Lewis, cardiac allograft rejection in normal DA recipients. Ts1 cells re-cultured for 4?days with rIL-12p70 alone, but not those re-cultured with rIL-12p70 and rIL-2, expressed more il-12r?2, t-bet, and ifn-?, and continued to express the markers of Ts1 cells, foxp3, ifngr, and il-5 indicating Th1-like Treg were induced. Ts1 cells re-cultured with rIL-2 and alloantigen remained of the Ts1 phenotype and did not suppress cardiac graft rejection in normal DA rats. We induced highly suppressive Th1-like Treg from naïve nTreg in 7?days by culture with alloantigen, first with rIL-2 then with rIL-12p70. These Th1-like Treg delayed specific donor allograft rejection demonstrating therapeutic potential. PMID:24847323

Verma, Nirupama Darshan; Hall, Bruce Milne; Plain, Karren Michelle; Robinson, Catherine M.; Boyd, Rochelle; Tran, Giang T.; Wang, Chuanmin; Bishop, G. Alex; Hodgkinson, Suzanne J.

2014-01-01

113

Saporin-S6: A Useful Tool in Cancer Therapy  

PubMed Central

Thirty years ago, the type 1 ribosome-inactivating protein (RIP) saporin-S6 (also known as saporin) was isolated from Saponaria officinalis L. seeds. Since then, the properties and mechanisms of action of saporin-S6 have been well characterized, and it has been widely employed in the construction of conjugates and immunotoxins for different purposes. These immunotoxins have shown many interesting results when used in cancer therapy, particularly in hematological tumors. The high enzymatic activity, stability and resistance to conjugation procedures and blood proteases make saporin-S6 a very useful tool in cancer therapy. High efficacy has been reported in clinical trials with saporin-S6-containing immunotoxins, at dosages that induced only mild and transient side effects, which were mainly fever, myalgias, hepatotoxicity, thrombocytopenia and vascular leak syndrome. Moreover, saporin-S6 triggers multiple cell death pathways, rendering impossible the selection of RIP-resistant mutants. In this review, some aspects of saporin-S6, such as the chemico-physical characteristics, the structural properties, its endocytosis, its intracellular routing and the pathogenetic mechanisms of the cell damage, are reported. In addition, the recent progress and developments of saporin-S6-containing immunotoxins in cancer immunotherapy are summarized, including in vitro and in vivo pre-clinical studies and clinical trials. PMID:24105401

Polito, Letizia; Bortolotti, Massimo; Mercatelli, Daniele; Battelli, Maria Giulia; Bolognesi, Andrea

2013-01-01

114

Saporin-S6: a useful tool in cancer therapy.  

PubMed

Thirty years ago, the type 1 ribosome-inactivating protein (RIP) saporin-S6 (also known as saporin) was isolated from Saponaria officinalis L. seeds. Since then, the properties and mechanisms of action of saporin-S6 have been well characterized, and it has been widely employed in the construction of conjugates and immunotoxins for different purposes. These immunotoxins have shown many interesting results when used in cancer therapy, particularly in hematological tumors. The high enzymatic activity, stability and resistance to conjugation procedures and blood proteases make saporin-S6 a very useful tool in cancer therapy. High efficacy has been reported in clinical trials with saporin-S6-containing immunotoxins, at dosages that induced only mild and transient side effects, which were mainly fever, myalgias, hepatotoxicity, thrombocytopenia and vascular leak syndrome. Moreover, saporin-S6 triggers multiple cell death pathways, rendering impossible the selection of RIP-resistant mutants. In this review, some aspects of saporin-S6, such as the chemico-physical characteristics, the structural properties, its endocytosis, its intracellular routing and the pathogenetic mechanisms of the cell damage, are reported. In addition, the recent progress and developments of saporin-S6-containing immunotoxins in cancer immunotherapy are summarized, including in vitro and in vivo pre-clinical studies and clinical trials. PMID:24105401

Polito, Letizia; Bortolotti, Massimo; Mercatelli, Daniele; Battelli, Maria Giulia; Bolognesi, Andrea

2013-10-01

115

Eukaryotic elongation factor-2 kinase (eEF2K): a potential therapeutic target in cancer.  

PubMed

Eukaryotic elongation factor-2 kinase (eEF2K), encoded by the EEF2K gene, is well-known to be a Ca(2+)/calmodulin (CaM)-dependent kinase which can negatively modulate protein synthesis. It is highly conserved among eukaryotes from mammals to invertebrates, of which human and mouse may have 99 % overall amino acid identity. This kinase can phosphorylate eukaryotic elongation factor-2 (eEF2) or undergo the process of autophosphorylation at multiple sites to inhibit its function in translation elongation. Due to the fact that regulation of eEF2 by eEF2K is an evolutionarily conserved mechanism, eEF2K activity may confer tumor cell adaption to metabolic stress under acute nutrient depletion, and the high expressed level of eEF2K has been found in several types of malignancies. eEF2K may modulate the expression of some apoptotic proteins such as XIAP, c-FLIPL, Bcl-XL, PI3KCI and p70(S6K) to inhibit apoptotic process in cancer. On the other hand, it plays a regulatory role in autophagy involved in mTORC1, AMPK and Atg8, thereby promoting cancer cell survival. Additionally, eEF2K may play a crucial role in the crosstalk between apoptosis and autophagy in cancer. Collectively, these findings have led to the conclusions that eEF2K may contribute to carcinogenesis, and thus being utilized as a potential target for future cancer therapy. PMID:25023961

Fu, L L; Xie, T; Zhang, S Y; Liu, B

2014-10-01

116

ErbB receptor tyrosine kinase network inhibition radiosensitizes carcinoma cells  

SciTech Connect

Purpose The expression of epidermal growth factor receptor (EGFR)-CD533, a truncation mutant of the wild-type EGFR, radiosensitizes carcinoma and malignant glioma cell lines. This deletion mutant disrupts EGFR activation and downstream signaling through the formation of inhibitory dimerizations. In this study, the effects of EGFR-CD533 on other ErbB receptor tyrosine kinase (RTK) family members were quantified to better understand the mechanism of EGFR-CD533-mediated radiosensitization. Methods and Materials Breast carcinoma cell lines with different ErbB RTK expression profiles were transduced with EGFR or ErbB2 deletion mutants (EGFR-CD533 and ErbB2-CD572) using an adenoviral vector. ErbB RTK activation, mitogen activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/p70S6K signaling, and clonogenic survival were determined for expression of each deletion mutant. Results EGFR-CD533 radiosensitizes carcinoma cells with either high EGFR expression (MDA-MB231) or low EGFR expression (T47D) through significant blockade of the ErbB RTK network. Analysis of clonogenic survival demonstrate significant enhancement of the {alpha}/{beta} ratios, as determined by the linear-quadratic model. Split-dose survival experiments confirm that EGFR-CD533 reduces the repair of cellular damage after ionizing radiation. Conclusion Expression of EGFR-CD533 inhibits the ErbB RTK network and radiosensitizes carcinoma cells irrespective of the ErbB RTK expression patterns, and ErbB2-CD572 does not radiosensitize cells with low EGFR expression. These studies demonstrate that the mechanism of action for EGFR-CD533-mediated radiosensitization is inhibition of the ErbB RTK network, and is an advantage for radiosensitizing multiple malignant cell types.

Contessa, Joseph N. [Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond VA (United States)]. E-mail: jcontess@med.umich.edu; Abell, Angela [Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond VA (United States); Valerie, Kristoffer [Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond VA (United States); Lin, Peck-Sun [Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond VA (United States); Schmidt-Ullrich, Rupert K. [Department of Radiation Oncology, Medical College of Virginia/Virginia Commonwealth University, Richmond VA (United States)

2006-07-01

117

IL-2 increases human telomerase reverse transcriptase activity transcriptionally and posttranslationally through phosphatidylinositol 3'-kinase/Akt, heat shock protein 90, and mammalian target of rapamycin in transformed NK cells.  

PubMed

Human telomerase activity is induced by Ag receptor ligation in T and B cells. However, it is unknown whether telomerase activity is increased in association with activation and proliferation of NK cells. We found that telomerase activity in a human NK cell line (NK-92), which requires IL-2 for proliferation, was increased within 24 h after stimulation with IL-2. Levels of human telomerase reverse transcriptase (hTERT) mRNA and protein correlated with telomerase activity. ERK1/2 and Akt kinase (Akt) were activated by IL-2 stimulation. LY294002, an inhibitor of PI3K, abolished expression of hTERT mRNA and protein expression and abolished hTERT activity, whereas PD98059, which inhibits MEK1/2 and thus ERK1/2, had no effect. In addition, radicicol, an inhibitor of heat shock protein 90 (Hsp90), and rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), blocked IL-2-induced hTERT activity and nuclear translocation of hTERT but not hTERT mRNA expression. hTERT was coimmunoprecipitated with Akt, Hsp90, mTOR, and p70 S6 kinase (S6K), suggesting that these molecules form a physical complex. Immunoprecipitates of Akt, Hsp90, mTOR, and S6K from IL-2-stimulated NK-92 cells contained telomerase activity. Furthermore, the findings that Hsp90 and mTOR immunoprecipitates from primary samples contained telomerase activity are consistent with the results from NK-92 cells. These results indicate that IL-2 stimulation induces hTERT activation and that the mechanism of IL-2-induced hTERT activation involves transcriptional or posttranslational regulation through the pathway including PI3K/Akt, Hsp90, mTOR, and S6K in NK cells. PMID:15843522

Kawauchi, Kiyotaka; Ihjima, Kimiko; Yamada, Osamu

2005-05-01

118

70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH{sub 2}-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins  

SciTech Connect

70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) is a member of ATP-binding cassette (ABC) protein subfamily D. ABC subfamily D proteins are also known as peroxisomal ABC proteins. Therefore, P70R is thought to be a peroxisomal membrane protein. However, the subcellular localization of P70R is not extensively investigated. In this study, we transiently expressed P70R in fusion with HA (P70R-HA) in CHO cells and examined subcellular localization by immunofluorescence. Surprisingly, P70R-HA was localized to the endoplasmic reticulum (ER), not to peroxisomes. To examine the ER-targeting property of P70R, we expressed various NH{sub 2}-terminal deletion constructs of P70R. Among the NH{sub 2}-terminal deletion constructs, mutant proteins starting with hydrophobic transmembrane segment (TMS) were localized to ER, but the ones containing the NH{sub 2}-terminal hydrophilic cytosolic domain were not. ABC subfamily D proteins destined for peroxisomes have NH{sub 2}-terminal hydrophilic region adjacent to TMS1. However, only P70R lacks the region and is translated with NH{sub 2}-terminal hydrophobic TMS1. Furthermore, attachment of the NH{sub 2}-terminal hydrophilic domain to the NH{sub 2}-terminus of P70R excluded P70R from the ER-targeting pathway. These data suggest that P70R resides in the ER but not the peroxisomal membranes, and the hydrophobic property of NH{sub 2}-terminal region determines the subcellular localization of ABC subfamily D proteins.

Kashiwayama, Yoshinori; Seki, Midori; Yasui, Akina; Murasaki, Yoshiyuki; Morita, Masashi [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Yamashita, Yukari; Sakaguchi, Masao [Department of Biochemistry, Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297 (Japan); Tanaka, Yoshitaka [Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582 (Japan); Imanaka, Tsuneo [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)], E-mail: imanaka@pha.u-toyama.ac.jp

2009-01-15

119

IGF-I stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK.  

PubMed

The IGF-I (insulin-like growth factor-I) signalling pathway responsible for regulation of proteoglycan synthesis in chondrocytes has not been defined and is the focus of the present study. Chondrocytes isolated from normal human articular cartilage were stimulated with IGF-I in monolayer culture or in suspension in alginate. IGF-I activated members of both the PI3K (phosphoinositide 3-kinase) pathway and the ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) pathway. The PI3K inhibitors LY294002 and wortmannin blocked IGF-I-stimulated Akt phosphorylation without blocking ERK phosphorylation and this was associated with complete inhibition of proteoglycan synthesis. A decrease in IGF-I-stimulated proteoglycan synthesis was also observed upon inhibition of mTOR (mammalian target of rapamycin) and p70S6 kinase, both of which are downstream of Akt. The MEK (MAPK/ERK kinase) inhibitors PD98059 and U0126 blocked IGF-I-stimulated ERK phosphorylation but did not block the phosphorylation of Akt and did not decrease proteoglycan synthesis. Instead, in alginate- cultured chondrocytes, the MEK inhibitors increased IGF-I-stimulated proteoglycan synthesis when compared with cells treated with IGF-I alone. This is the first study to demonstrate that IGF-I stimulation of the PI3K signalling pathway is responsible for the ability of IGF-I to increase proteoglycan synthesis. Although IGF-I also activates the ERK/MAPK pathway, ERK activity is not required for proteoglycan synthesis and may serve as a negative regulator. PMID:15801908

Starkman, Bela G; Cravero, John D; Delcarlo, Marcello; Loeser, Richard F

2005-08-01

120

Protein Kinases  

NSDL National Science Digital Library

This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein kinases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the genomics and evolutionary relationships among kinases and then proceeds to describe the structure-function relationships of specific kinases, the molecular mechanisms underlying substrate specificity, and selected issues in regulation of kinase activity.

Avrom Caplan (Mount Sinai School of Medicine;Department of Pharmacology and Biological Chemistry REV)

2005-02-22

121

A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells.  

PubMed

Dendritic cells (DC) produce interleukin-12 (IL-12) in response to Toll-like receptor (TLR) activation. Two major TLR signaling pathways participate in the response to pathogens: the nuclear factor-kappaB (NF-kappaB)-dependent pathway leading to inflammatory cytokine secretion including IL-12 and the interferon (IFN)-dependent pathway inducing type I IFN and IFN-regulated genes. Here we show that the two pathways cooperate and are likely both necessary for inducing an optimal response to pathogens. R-848/Resiquimod (TLR7 ligand in the mouse and TLR7/8 ligand in human) synergized with poly(I:C) (TLR3 ligand) or lipopolysaccharide (LPS; TLR4 ligand) in inducing high levels of bioactive IL-12p70 secretion and IFN-beta mRNA accumulation by mouse bone marrow-derived DC (BM-DC). Strikingly, IL-12p70 but not IL-12p40 secretion was strongly reduced in BM-DC from STAT1(-/-) and IFNAR(-/-) mice. STAT1 tyrosine-phosphorylation, IL-12p35, and IFN-beta mRNA accumulation were strongly inhibited in IFNAR(-/-) BM-DC activated with the TLR ligand combinations. Similar observation were obtained in human TLR8-expressing monocyte-derived DC (moDC) using neutralizing anti-IFNAR2 antibodies, although results also pointed to a possible involvement of IFN-lambda1 (also known as IL-29). This suggests that TLR engagement on DC induces endogenous IFNs that further synergize with the NF-kappaB pathway for optimal IL-12p70 secretion. Moreover, analysis of interferon regulatory factors (IRF) regulation in moDC suggests a role for IRF7/8 in mediating IRF3-independent type I IFN and possibly IL-12p35 synthesis in response to TLR7/8. PMID:15851485

Gautier, Grégory; Humbert, Martine; Deauvieau, Florence; Scuiller, Mathieu; Hiscott, John; Bates, Elizabeth E M; Trinchieri, Giorgio; Caux, Christophe; Garrone, Pierre

2005-05-01

122

The in vitro antitumor activity of Siegesbeckia glabrescens against ovarian cancer through suppression of receptor tyrosine kinase expression and the signaling pathways.  

PubMed

Siegesbeckia glabrescens (SG) Makino (Compositae) has been used as a traditional medicine for the treatment of a variety of diseases such as allergy, inflammation, acute hepatitis and hypertension. The primary aim of this study was to determine whether the ethanol extract of SG has antitumor activity against ovarian cancer and to identify molecular mechanisms and targets involved in the regulation of cell growth and progression. We demonstrate that SG treatment inhibits proliferation, adhesion, migration and invasion of SKOV-3 human ovarian cancer cells. The anti-proliferative effect of SG on SKOV-3 cells is accompanied by reduced expression of cyclin E and enhanced expression of the cyclin-dependent kinase inhibitor p27(Kip1), leading to inhibition of pRb phosphorylation. We also show that these antitumor activities are found to be mediated through suppression of FAK, ERK, Akt and p70(S6K)-dependent signaling pathways and downregulation of receptor tyrosine kinases such as EGFR, VEGFR-2 and FGFR-1 as well as the cell adhesion molecule N-cadherin. Taken together, our findings suggest further development and evaluation of SG for the treatment of ovarian cancer. PMID:23673404

Cho, Young-Rak; Choi, Shin Wook; Seo, Dong-Wan

2013-07-01

123

PATTERNS OF KINASE ACTIVATION INDUCED BY INJURY IN THE MURINE FEMORAL ARTERY  

PubMed Central

Background Intimal hyperplasia remains the principal lesion in the development of restenosis after vessel wall injury. Cell signaling in vascular smooth muscle cells remains a potential molecular target to modulate the development of intimal hyperplasia. The aim of this study is to define a baseline pattern of histological changes and kinase activation in a murine model. Methods The murine femoral wire injury model was employed in which a micro wire was passed through a branch of the femoral artery and used to denude the common femoral artery. Pluronic gel was used to apply MAPK inhibitors (PD98059, SB230580 and SP600125) on the exterior of the vessels. Specimens were perfusion-fixed and sections were stained for morphometry using an ImagePro system. Additional specimens of femoral artery were also harvested and snap frozen for western blotting and zymography to allow for the study of kinase and protease activation. Contralateral vessels were used as controls Results The injured femoral arteries developed intimal hyperplasia, which is maximal at 28 days and does not change substantially between day 28 and day 56. Sham operated vessels did not produce such a response. Cell apoptosis peaked within 3 days and cell proliferation peaked at 7 days after injury. There is a time dependent increase in kinase activity immediately after injury. MEK1/2 activation peaks at 20 mins after injury and is followed by a peak in ERK1/2 activation at 45 mins. The stress kinases p38MAPK and JNK peak between 10 and 20 mins. Activation of akt is later at 45mins and 120 mins and activation of p70S6K was biphasic. There was a time dependent increase in uPA/PAI-1 expression and activity after injury. Local application of MAPK inhibitors (PD98059, SB230580 and SP600125) within a pluronic gel reduced respective MAPK activity, decreased cell proliferation and enhanced cell apoptosis, increased PAI-1 and decreased uPA expression and activity; at 14 days there was a decrease in intimal hyperplasia. Conclusions These data demonstrate that femoral wire injury in the mouse induces a consistent model of intimal hyperplasia and that it is associated with a time dependent increase in signaling kinase activity. Interruption of these pathways will interrupt uPA/ PAI-1 pathway and decrease intimal hyperplasia development. Accurate characterization of cell signaling is a necessary step in the development of molecular therapeutics PMID:17631902

Zou, Yiping; Qi, Yan; Roztocil, Elisa; Nicholl, Suzanne M.; Davies, Mark G.

2007-01-01

124

Interleukin-12p70 expression by dendritic cells of HIV-1-infected patients fails to stimulate gag-specific immune responses.  

PubMed

A variety of immune-based therapies has been developed in order to boost or induce protective CD8(+) T cell responses in order to control HIV replication. Since dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique capability to stimulate naïve T cells into effector T cells, their use for the induction of HIV-specific immune responses has been studied intensively. In the present study we investigated whether modulation of the activation state of DCs electroporated with consensus codon-optimized HxB2 gag mRNA enhances their capacity to induce HIV gag-specific T cell responses. To this end, mature DCs were (i) co-electroporated with mRNA encoding interleukin (IL)-12p70 mRNA, or (ii) activated with a cytokine cocktail consisting of R848 and interferon (IFN)-?. Our results confirm the ability of HxB2 gag-expressing DCs to expand functional HIV-specific CD8(+) T cells. However, although most of the patients had detectable gag-specific CD8(+) T cell responses, no significant differences in the level of expansion of functional CD8(+) T cells could be demonstrated when comparing conventional or immune-modulated DCs expressing IL-12p70. This result which goes against expectation may lead to a re-evaluation of the need for IL-12 expression by DCs in order to improve T-cell responses in HIV-1-infected individuals. PMID:22844321

Van Gulck, Ellen; Cools, Nathalie; Atkinson, Derek; Bracke, Lotte; Vereecken, Katleen; Vekemans, Marc; Van Tendeloo, Viggo F I; Berneman, Zwi N; Vanham, Guido

2012-01-01

125

Interleukin-12p70 Expression by Dendritic Cells of HIV-1-Infected Patients Fails to Stimulate gag-Specific Immune Responses  

PubMed Central

A variety of immune-based therapies has been developed in order to boost or induce protective CD8+ T cell responses in order to control HIV replication. Since dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique capability to stimulate naïve T cells into effector T cells, their use for the induction of HIV-specific immune responses has been studied intensively. In the present study we investigated whether modulation of the activation state of DCs electroporated with consensus codon-optimized HxB2 gag mRNA enhances their capacity to induce HIV gag-specific T cell responses. To this end, mature DCs were (i) co-electroporated with mRNA encoding interleukin (IL)-12p70 mRNA, or (ii) activated with a cytokine cocktail consisting of R848 and interferon (IFN)-?. Our results confirm the ability of HxB2 gag-expressing DCs to expand functional HIV-specific CD8+ T cells. However, although most of the patients had detectable gag-specific CD8+ T cell responses, no significant differences in the level of expansion of functional CD8+ T cells could be demonstrated when comparing conventional or immune-modulated DCs expressing IL-12p70. This result which goes against expectation may lead to a re-evaluation of the need for IL-12 expression by DCs in order to improve T-cell responses in HIV-1-infected individuals. PMID:22844321

Van Gulck, Ellen; Cools, Nathalie; Atkinson, Derek; Bracke, Lotte; Vereecken, Katleen; Vekemans, Marc; Van Tendeloo, Viggo F. I.; Berneman, Zwi N.; Vanham, Guido

2012-01-01

126

Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis  

PubMed Central

Introduction Honokiol, a small-molecule polyphenol isolated from magnolia species, is widely known for its therapeutic potential as an antiinflammatory, antithrombosis, and antioxidant agent, and more recently, for its protective function in the pathogenesis of carcinogenesis. In the present study, we sought to examine the effectiveness of honokiol in inhibiting migration and invasion of breast cancer cells and to elucidate the underlying molecular mechanisms. Methods Clonogenicity and three-dimensional colony-formation assays were used to examine breast cancer cell growth with honokiol treatment. The effect of honokiol on invasion and migration of breast cancer cells was evaluated by using Matrigel invasion, scratch-migration, spheroid-migration, and electric cell-substrate impedance sensing (ECIS)-based migration assays. Western blot and immunofluorescence analysis were used to examine activation of the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) axis. Isogenic LKB1-knockdown breast cancer cell line pairs were developed. Functional importance of AMPK activation and LKB1 overexpression in the biologic effects of honokiol was examined by using AMPK-null and AMPK-wild type (WT) immortalized mouse embryonic fibroblasts (MEFs) and isogenic LKB1-knockdown cell line pairs. Finally, mouse xenografts, immunohistochemical and Western blot analysis of tumors were used. Results Analysis of the underlying molecular mechanisms revealed that honokiol treatment increases AMP-activated protein kinase (AMPK) phosphorylation and activity, as evidenced by increased phosphorylation of the downstream target of AMPK, acetyl-coenzyme A carboxylase (ACC) and inhibition of phosphorylation of p70S6kinase (pS6K) and eukaryotic translation initiation factor 4E binding protein 1 (4EBP1). By using AMPK-null and AMPK-WT (MEFs), we found that AMPK is required for honokiol-mediated modulation of pACC-pS6K. Intriguingly, we discovered that honokiol treatment increased the expression and cytoplasmic translocation of tumor-suppressor LKB1 in breast cancer cells. LKB1 knockdown inhibited honokiol-mediated activation of AMPK and, more important, inhibition of migration and invasion of breast cancer cells. Furthermore, honokiol treatment resulted in inhibition of breast tumorigenesis in vivo. Analysis of tumors showed significant increases in the levels of cytoplasmic LKB1 and phospho-AMPK in honokiol-treated tumors. Conclusions Taken together, these data provide the first in vitro and in vivo evidence of the integral role of the LKB1-AMPK axis in honokiol-mediated inhibition of the invasion and migration of breast cancer cells. In conclusion, honokiol treatment could potentially be a rational therapeutic strategy for breast carcinoma. PMID:22353783

2012-01-01

127

Molecular Architecture of a Sodium Channel S6 Helix  

PubMed Central

Voltage-gated sodium (NaV) channels are membrane proteins that consist of 24 transmembrane segments organized into four homologous domains and are essential for action potential generation and propagation. Although the S6 helices of NaV channels line the ion-conducting pore and participate in channel activation, their functional architecture is incompletely understood. Our recent studies show that a naturally occurring in-frame deletion mutation (Del-L955) of NaV1.7 channel, identified in individuals with a severe inherited pain syndrome (inherited erythromelalgia) causes a substantial hyperpolarizing shift of channel activation. Here we took advantage of this deletion mutation to understand the role of the S6 helix in the channel activation. Based on the recently published structure of a bacterial NaV channel (NaVAb), we modeled the WT and Del-L955 channel. Our structural model showed that Del-L955 twists the DII/S6 helix, shifting location and radial orientation of the activation gate residue (Phe960). Hypothesizing that these structural changes produce the shift of channel activation of Del-L955 channels, we restored a phenylalanine in wild-type orientation by mutating Ser961 (Del-L955/S961F), correcting activation by ?10 mV. Correction of the displaced Phe960 (F960S) together with introduction of the rescuing activation gate residue (S961F) produced an additional ?6-mV restoration of activation of the mutant channel. A simple point mutation in the absence of a twist (L955A) did not produce a radial shift and did not hyperpolarize activation. Our results demonstrate the functional importance of radial tuning of the sodium channel S6 helix for the channel activation. PMID:23536180

Yang, Yang; Estacion, Mark; Dib-Hajj, Sulayman D.; Waxman, Stephen G.

2013-01-01

128

Evodiamine Inhibits Insulin-Stimulated mTOR-S6K Activation and IRS1 Serine Phosphorylation in Adipocytes and Improves Glucose Tolerance in Obese/Diabetic Mice  

PubMed Central

Evodiamine, an alkaloid extracted from the dried unripe fruit of the tree Evodia rutaecarpa Bentham (Rutaceae), reduces obesity and insulin resistance in obese/diabetic mice; however, the mechanism underlying the effect of evodiamine on insulin resistance is unknown. This study investigated the effect of evodiamine on signal transduction relating to insulin resistance using obese/diabetic KK-Ay mice and an in vitro adipocyte culture. There is a significant decrease in the mammalian target of rapamycin (mTOR) and ribosomal S6 protein kinase (S6K) signaling in white adipose tissue (WAT) in KK-Ay mice treated with evodiamine, in which glucose tolerance is improved. In addition, reduction of insulin receptor substrate 1 (IRS1) serine phosphorylation, an indicator of insulin resistance, was detected in their WAT, suggesting suppression of the negative feedback loop from S6K to IRS1. As well as the stimulation of IRS1 and Akt serine phosphorylation, insulin-stimulated phosphorylation of mTOR and S6K is time-dependent in 3T3-L1 adipocytes, whereas evodiamine does not affect their phosphorylation except for an inhibitory effect on mTOR phosphorylation. Moreover, evodiamine inhibits the insulin-stimulated phosphorylation of mTOR and S6K, leading to down-regulation of IRS1 serine phosphorylation in the adipocytes. Evodiamine also stimulates phosphorylation of AMP-activated protein kinase (AMPK), an important regulator of energy metabolism, which may cause down-regulation of mTOR signaling in adipocytes. A similar effect on AMPK, mTOR and IRS1 phosphorylation was found in adipocytes treated with rosiglitazone. These results suggest evodiamine improves glucose tolerance and prevents the progress of insulin resistance associated with obese/diabetic states, at least in part, through inhibition of mTOR-S6K signaling and IRS1 serine phosphorylation in adipocytes. PMID:24391749

Wang, Ting; Kusudo, Tatsuya; Takeuchi, Tamaki; Yamashita, Yukari; Kontani, Yasuhide; Okamatsu, Yuko; Saito, Masayuki; Mori, Nozomu; Yamashita, Hitoshi

2013-01-01

129

Lipopolysaccharide-Induced M2 to M1 Macrophage Transformation for IL-12p70 Production Is Blocked by Candida albicans Mediated Up-Regulation of EBI3 Expression  

PubMed Central

Macrophages are heterogeneous cell populations that are present in all tissues. Macrophages can be divided into classically activated inflammatory macrophages (M1) and alternatively activated anti-inflammatory macrophages (M2). It has been generally accepted that M1 macrophages are polarised in an inflammatory environment to produce pro-inflammatory cytokines, whilst M2 macrophages are involved in anti-inflammation and aid tissue repair in wound healing. Bacterial endotoxin (lipopolysaccharide; LPS) is a potent factor in infection, which induces M1 macrophages resulting in higher levels of iNOS, TNF? and IL-12p70 which dictate inflammatory T cell responses. M2 macrophages can be transformed into M1 macrophages following LPS stimulation to promote inflammation. Candida albicans is a commensal fungal microorganism, which has been suggested to induce immune tolerance; however, the mechanism of C. albicans-induced immune tolerance has not been investigated in detail. IL-35 is a recently identified anti-inflammatory cytokine which is a heterodimeric protein consisting of the Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35. IL-35 shares the protein subunit p35, with IL-12p70. IL-12p70 is the most potent cytokine to induce Th1 responses during inflammation. In this study, we demonstrate that heat-killed C. albicans (HKC) strongly suppressed LPS-induced IL-12p70 production in M2 macrophages. Candida albicans induced a high level of EBI3 expression in M2 macrophages, which served as a mechanism for IL-12p70 suppression by competitive binding of the common protein subunit (p35) of IL-35 and IL-12p70. To demonstrate that EBI3 expression had the ability to block IL-12p70 production intracellularly, a Chinese Hamster Ovary (CHO) cell line with biscistronic expression of IL-12p40 and p35 was constructed, followed by ectopic over-expression of EBI3. The over-expression of EBI3 in the IL-12p70 producing cell line effectively suppressed IL-12p70 production. IL-35 secretion was also detected in the cell line, with suppressed IL-12p70 production by immune-precipitation Western blotting. However, this secretion was not evident in M2 macrophages following stimulation by HKC. This can be explained by the constitutive expression of IL-35 receptors (gp130 and IL-12R?2) in M2 macrophages for cytokine consumption. Our results have indicated that C. albicans can suppress host inflammatory responses in mucosal skin by suppressing LPS-induced IL-12p70 production. Lower IL-12p70 production may avoid an unnecessary Th1 response in order to retain immune tolerance, which may be one of the mechanisms by which C. albicans achieves a successful commensal lifestyle without having a detrimental effect on the host’s health. PMID:23724011

Zheng, Xing-Feng; Hong, Yu-Xiao; Feng, Gui-Jie; Zhang, Gao-Feng; Rogers, Helen; Lewis, Michael A. O.; Williams, David W.; Xia, Zhao-Fan; Song, Bing; Wei, Xiao-Qing

2013-01-01

130

Greatwall kinase  

PubMed Central

Mutations in the Drosophila gene greatwall cause improper chromosome condensation and delay cell cycle progression in larval neuroblasts. Chromosomes are highly undercondensed, particularly in the euchromatin, but nevertheless contain phosphorylated histone H3, condensin, and topoisomerase II. Cells take much longer to transit the period of chromosome condensation from late G2 through nuclear envelope breakdown. Mutant cells are also subsequently delayed at metaphase, due to spindle checkpoint activity. These mutant phenotypes are not caused by spindle aberrations, by global defects in chromosome replication, or by activation of a caffeine-sensitive checkpoint. The Greatwall proteins in insects and vertebrates are located in the nucleus and belong to the AGC family of serine/threonine protein kinases; the kinase domain of Greatwall is interrupted by a long stretch of unrelated amino acids. PMID:14970188

Yu, Jiangtao; Fleming, Shawna L.; Williams, Byron; Williams, Erika V.; Li, ZeXiao; Somma, Patrizia; Rieder, Conly L.; Goldberg, Michael L.

2004-01-01

131

Oncoprotein kinase  

DOEpatents

An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA)

2001-02-27

132

Regulation of death induction and chemosensitizing action of 3-bromopyruvate in myeloid leukemia cells: energy depletion, oxidative stress, and protein kinase activity modulation.  

PubMed

3-Bromopyruvate (3-BrP) is an alkylating, energy-depleting drug that is of interest in antitumor therapies, although the mechanisms underlying its cytotoxicity are ill-defined. We show here that 3-BrP causes concentration-dependent cell death of HL60 and other human myeloid leukemia cells, inducing both apoptosis and necrosis at 20-30 ?M and a pure necrotic response at 60 ?M. Low concentrations of 3-BrP (10-20 ?M) brought about a rapid inhibition of glycolysis, which at higher concentrations was followed by the inhibition of mitochondrial respiration. The combination of these effects causes concentration-dependent ATP depletion, although this cannot explain the lethality at intermediate 3-BrP concentrations (20-30 ?M). The oxidative stress caused by exposure to 3-BrP was evident as a moderate overproduction of reactive oxygen species and a concentration-dependent depletion of glutathione, which was an important determinant of 3-BrP toxicity. In addition, 3-BrP caused glutathione-dependent stimulation of p38 mitogen-activated protein kinase (MAPK), mitogen-induced extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK), and protein kinase B (Akt)/mammalian target of rapamycin/p70S6K phosphorylation or activation, as well as rapid LKB-1/AMP kinase (AMPK) activation, which was later followed by Akt-mediated inactivation. Experiments with pharmacological inhibitors revealed that p38 MAPK activation enhances 3-BrP toxicity, which is conversely restrained by ERK and Akt activity. Finally, 3-BrP was seen to cooperate with antitumor agents like arsenic trioxide and curcumin in causing cell death, a response apparently mediated by both the generation of oxidative stress induced by 3-BrP and the attenuation of Akt and ERK activation by curcumin. In summary, 3-BrP cytotoxicity is the result of several combined regulatory mechanisms that might represent important targets to improve therapeutic efficacy. PMID:24307199

Calviño, Eva; Estañ, María Cristina; Sánchez-Martín, Carlos; Brea, Rocío; de Blas, Elena; Boyano-Adánez, María del Carmen; Rial, Eduardo; Aller, Patricio

2014-02-01

133

hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/S6K2 signalling  

PubMed Central

The increased cap-independent translation of anti-apoptotic proteins is involved in the development of drug resistance in lung cancer but signalling events regulating this are poorly understood. Fibroblast growth factor 2 (FGF-2) signalling-induced S6 kinase 2 (S6K2) activation is necessary, but the downstream mediator(s) coupling this kinase to the translational response is unknown. Here, we show that S6K2 binds and phosphorylates hnRNPA1 on novel Ser4/6 sites, increasing its association with BCL-XL and XIAP mRNAs to promote their nuclear export. In the cytoplasm, phosphoS4/6-hnRNPA1 dissociates from these mRNAs de-repressing their IRES-mediated translation. This correlates with the phosphorylation-dependent association of hnRNPA1 with 14-3-3 leading to hnRNPA1 sumoylation on K183 and its re-import into the nucleus. A non-phosphorylatible, S4/6A mutant prevented these processes, hindering the pro-survival activity of FGF-2/S6K2 signalling. Interestingly, immunohistochemical staining of lung and breast cancer tissue samples demonstrated that increased S6K2 expression correlates with decreased cytoplasmic hnRNPA1 and increased BCL-XL expression. In short, phosphorylation on novel N-term sites of hnRNPA1 promotes translation of anti-apoptotic proteins and is indispensable for the pro-survival effects of FGF-2. PMID:25324306

Roy, Rajat; Durie, Danielle; Li, Hui; Liu, Bing-Qian; Skehel, John Mark; Mauri, Francesco; Cuorvo, Lucia Veronica; Barbareschi, Mattia; Guo, Lin; Holcik, Martin; Seckl, Michael J.; Pardo, Olivier E.

2014-01-01

134

hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/S6K2 signalling.  

PubMed

The increased cap-independent translation of anti-apoptotic proteins is involved in the development of drug resistance in lung cancer but signalling events regulating this are poorly understood. Fibroblast growth factor 2 (FGF-2) signalling-induced S6 kinase 2 (S6K2) activation is necessary, but the downstream mediator(s) coupling this kinase to the translational response is unknown. Here, we show that S6K2 binds and phosphorylates hnRNPA1 on novel Ser4/6 sites, increasing its association with BCL-XL and XIAP mRNAs to promote their nuclear export. In the cytoplasm, phosphoS4/6-hnRNPA1 dissociates from these mRNAs de-repressing their IRES-mediated translation. This correlates with the phosphorylation-dependent association of hnRNPA1 with 14-3-3 leading to hnRNPA1 sumoylation on K183 and its re-import into the nucleus. A non-phosphorylatible, S4/6A mutant prevented these processes, hindering the pro-survival activity of FGF-2/S6K2 signalling. Interestingly, immunohistochemical staining of lung and breast cancer tissue samples demonstrated that increased S6K2 expression correlates with decreased cytoplasmic hnRNPA1 and increased BCL-XL expression. In short, phosphorylation on novel N-term sites of hnRNPA1 promotes translation of anti-apoptotic proteins and is indispensable for the pro-survival effects of FGF-2. PMID:25324306

Roy, Rajat; Durie, Danielle; Li, Hui; Liu, Bing-Qian; Skehel, John Mark; Mauri, Francesco; Cuorvo, Lucia Veronica; Barbareschi, Mattia; Guo, Lin; Holcik, Martin; Seckl, Michael J; Pardo, Olivier E

2014-11-10

135

A virtual screen identified C96 as a novel inhibitor of phosphatidylinositol 3-kinase that displays potent preclinical activity against multiple myeloma in vitro and in vivo  

PubMed Central

The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is emerging as a promising therapeutic target for multiple myeloma (MM). In the present study, we performed a virtual screen against 800,000 of small molecule compounds by targeting PI3K?. C96, one of such compounds, inhibited PI3K activated by insulin-like growth factor-1 (IGF-1), but did not suppress IGF-1R activation. The cell-free assay revealed that C96 preferred to inhibit PI3K? and ?, but was not active against AKT1, 2, 3 or mTOR. C96 inhibited PI3K activation in a time- and concentration-dependent manner. Consistent with its inhibition on PI3K/AKT, C96 downregulated the activation of mTOR, p70S6K, 4E-BP1, but did not suppress other kinases such as ERK and c-Src. Inhibition of the PI3K/AKT signaling pathway by C96 led to MM cell apoptosis which was demonstrated by Annexin V staining and activation of the pro-apoptotic signals. Furthermore, C96 displayed potent anti-myeloma activity in a MM xenograft model in nude mice. Oral administration of 100 mg/kg bodyweight almost fully suppressed tumor growth within 16 days, but without gross toxicity. Importantly, AKT activation was suppressed in tumor tissues from C96-treated mice, which was consistent with delayed tumor growth. Thus, we identified a novel PI3K inhibitor with a great potential for MM therapy. PMID:25003534

Yu, Yang; Zhang, Zubin; Chen, Guodong; Zhou, Xiumin; Qiao, Chunhua; Hou, Tingjun; Mao, Xinliang

2014-01-01

136

A Ribosomal S-6 Kinase-Mediated Signal to C/EBP-? Is Critical for the Development of Liver Fibrosis  

PubMed Central

Background In response to liver injury, hepatic stellate cell (HSC) activation causes excessive liver fibrosis. Here we show that activation of RSK and phosphorylation of C/EBP? on Thr217 in activated HSC is critical for the progression of liver fibrosis. Methodology/Principal Findings Chronic treatment with the hepatotoxin CCl4 induced severe liver fibrosis in C/EBP?+/+ mice but not in mice expressing C/EBP?-Ala217, a non-phosphorylatable RSK-inhibitory transgene. C/EBP?-Ala217 was present within the death receptor complex II, with active caspase 8, and induced apoptosis of activated HSC. The C/EBP?-Ala217 peptides directly stimulated caspase 8 activation in a cell-free system. C/EBP?+/+ mice with CCl4-induced severe liver fibrosis, while continuing on CCl4, were treated with a cell permeant RSK-inhibitory peptide for 4 or 8 weeks. The peptide inhibited RSK activation, stimulating apoptosis of HSC, preventing progression and inducing regression of liver fibrosis. We found a similar activation of RSK and phosphorylation of human C/EBP? on Thr266 (human phosphoacceptor) in activated HSC in patients with severe liver fibrosis but not in normal livers, suggesting that this pathway may also be relevant in human liver fibrosis. Conclusions/Significance These data indicate that the RSK-C/EBP? phosphorylation pathway is critical for the development of liver fibrosis and suggest a potential therapeutic target. PMID:18159255

Buck, Martina; Chojkier, Mario

2007-01-01

137

The selectivity of protein kinase inhibitors: a further update  

PubMed Central

The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

2007-01-01

138

ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions  

PubMed Central

Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in relaying extracellular stimulations to intracellular responses. The MAPKs coordinately regulate cell proliferation, differentiation, motility, and survival, which are functions also known to be mediated by members of a growing family of MAPK-activated protein kinases (MKs; formerly known as MAPKAP kinases). The MKs are related serine/threonine kinases that respond to mitogenic and stress stimuli through proline-directed phosphorylation and activation of the kinase domain by extracellular signal-regulated kinases 1 and 2 and p38 MAPKs. There are currently 11 vertebrate MKs in five subfamilies based on primary sequence homology: the ribosomal S6 kinases, the mitogen- and stress-activated kinases, the MAPK-interacting kinases, MAPK-activated protein kinases 2 and 3, and MK5. In the last 5 years, several MK substrates have been identified, which has helped tremendously to identify the biological role of the members of this family. Together with data from the study of MK-knockout mice, the identities of the MK substrates indicate that they play important roles in diverse biological processes, including mRNA translation, cell proliferation and survival, and the nuclear genomic response to mitogens and cellular stresses. In this article, we review the existing data on the MKs and discuss their physiological functions based on recent discoveries. PMID:15187187

Roux, Philippe P.; Blenis, John

2004-01-01

139

Phenotypic and functional activation of hyporesponsive KIRnegNKG2Aneg human NK-cell precursors requires IL12p70 provided by Poly(I:C)-matured monocyte-derived dendritic cells.  

PubMed

A functionally responsive natural killer (NK)-cell repertoire requires the acquisition of inhibitory NKG2A and killer immunoglobulin-like receptors (KIR) through pathways that remain undefined. Functional donor NK cells expressing KIRs for non-self class I MHC ligands contribute to a positive outcome after allogeneic hematopoietic stem cell transplantation (alloHSCT) by targeting HLA-matched recipient leukemic cells. Insofar as circulating donor conventional dendritic cells (DC) reconstitute with comparable kinetics with donor NK cells after alloHSCT, we used hyporesponsive KIRnegNKG2Aneg precursor cells to evaluate how specific DC subtypes generate a functionally active NK-cell repertoire. Both monocyte-derived DCs (moDC) and Langerhans-type DCs (LC) induce KIRnegNKG2Aneg precursor cells to express the inhibitory receptors NKG2A and KIR, without requiring cell proliferation. Poly(I:C)-matured moDCs significantly augmented the expression of NKG2A, but not KIR, in an IL12p70-dependent manner. Although all DC-stimulated KIRnegNKG2Aneg cells were able to acquire cytolytic activity against class I MHC-negative targets, the ability to secrete IFN? was restricted to cells that were stimulated by IL12p70-producing, poly(I:C)-matured moDCs. This critical ability of poly(I:C)-matured moDCs to provide IL12p70 to developing KIRnegNKG2Aneg precursors results in a dom4inant, multifunctional, NKG2Apos NK-cell population that is capable of both cytolysis and IFN? production. Poly(I:C)-matured moDCs are, therefore, the most effective conventional DC subtype for generating a functionally competent NK-cell repertoire by an IL12p70-dependent mechanism. PMID:25023628

Curran, Shane A; Romano, Emanuela; Kennedy, Michael G; Hsu, Katharine C; Young, James W

2014-10-01

140

MOLECULAR AND CELLULAR BIOLOGY, May 2008, p. 32583272 Vol. 28, No. 10 0270-7306/08/$08.00 0 doi:10.1128/MCB.02032-07  

E-print Network

of the PDK1 PH Domain Inhibits Protein Kinase B/Akt, Leading to Small Size and Insulin Resistance Jose R)/Akt, p70 ribosomal S6 kinase (S6K), and serum and glucocorticoid-induced protein kinase (SGK are significantly small, insulin resistant, and hyperinsulinemic. Activation of PKB is markedly reduced in knock

van Aalten, Daan

141

The PP242 Mammalian Target of Rapamycin (mTOR) Inhibitor Activates Extracellular Signal-regulated Kinase (ERK) in Multiple Myeloma Cells via a Target of Rapamycin Complex 1 (TORC1)/ Eukaryotic Translation Initiation Factor 4E (eIF-4E)/RAF Pathway and Activation Is a Mechanism of Resistance*  

PubMed Central

Activation of PI3-K-AKT and ERK pathways is a complication of mTOR inhibitor therapy. Newer mTOR inhibitors (like pp242) can overcome feedback activation of AKT in multiple myeloma (MM) cells. We, thus, studied if feedback activation of ERK is still a complication of therapy with such drugs in this tumor model. PP242 induced ERK activation in MM cell lines as well as primary cells. Surprisingly, equimolar concentrations of rapamycin were relatively ineffective at ERK activation. Activation was not correlated with P70S6kinase inhibition nor was it prevented by PI3-kinase inhibition. ERK activation was prevented by MEK inhibitors and was associated with concurrent stimulation of RAF kinase activity but not RAS activation. RAF activation correlated with decreased phosphorylation of RAF at Ser-289, Ser-296, and Ser-301 inhibitory residues. Knockdown studies confirmed TORC1 inhibition was the key proximal event that resulted in ERK activation. Furthermore, ectopic expression of eIF-4E blunted pp242-induced ERK phosphorylation. Since pp242 was more potent than rapamycin in causing sequestering of eIF-4E, a TORC1/4E-BP1/eIF-4E-mediated mechanism of ERK activation could explain the greater effectiveness of pp242. Use of MEK inhibitors confirmed ERK activation served as a mechanism of resistance to the lethal effects of pp242. Thus, although active site mTOR inhibitors overcome AKT activation often seen with rapalog therapy, feedback ERK activation is still a problem of resistance, is more severe than that seen with use of first generation rapalogs and is mediated by a TORC1- and eIF-4E-dependent mechanism ultimately signaling to RAF. PMID:22556409

Hoang, Bao; Benavides, Angelica; Shi, Yijiang; Yang, Yonghui; Frost, Patrick; Gera, Joseph; Lichtenstein, Alan

2012-01-01

142

The PP242 mammalian target of rapamycin (mTOR) inhibitor activates extracellular signal-regulated kinase (ERK) in multiple myeloma cells via a target of rapamycin complex 1 (TORC1)/eukaryotic translation initiation factor 4E (eIF-4E)/RAF pathway and activation is a mechanism of resistance.  

PubMed

Activation of PI3-K-AKT and ERK pathways is a complication of mTOR inhibitor therapy. Newer mTOR inhibitors (like pp242) can overcome feedback activation of AKT in multiple myeloma (MM) cells. We, thus, studied if feedback activation of ERK is still a complication of therapy with such drugs in this tumor model. PP242 induced ERK activation in MM cell lines as well as primary cells. Surprisingly, equimolar concentrations of rapamycin were relatively ineffective at ERK activation. Activation was not correlated with P70S6kinase inhibition nor was it prevented by PI3-kinase inhibition. ERK activation was prevented by MEK inhibitors and was associated with concurrent stimulation of RAF kinase activity but not RAS activation. RAF activation correlated with decreased phosphorylation of RAF at Ser-289, Ser-296, and Ser-301 inhibitory residues. Knockdown studies confirmed TORC1 inhibition was the key proximal event that resulted in ERK activation. Furthermore, ectopic expression of eIF-4E blunted pp242-induced ERK phosphorylation. Since pp242 was more potent than rapamycin in causing sequestering of eIF-4E, a TORC1/4E-BP1/eIF-4E-mediated mechanism of ERK activation could explain the greater effectiveness of pp242. Use of MEK inhibitors confirmed ERK activation served as a mechanism of resistance to the lethal effects of pp242. Thus, although active site mTOR inhibitors overcome AKT activation often seen with rapalog therapy, feedback ERK activation is still a problem of resistance, is more severe than that seen with use of first generation rapalogs and is mediated by a TORC1- and eIF-4E-dependent mechanism ultimately signaling to RAF. PMID:22556409

Hoang, Bao; Benavides, Angelica; Shi, Yijiang; Yang, Yonghui; Frost, Patrick; Gera, Joseph; Lichtenstein, Alan

2012-06-22

143

Raf1 activates MAP kinase-kinase  

Microsoft Academic Search

THE normal cellular homologue of the acutely transforming oncogene v-ra\\/is c-raf-l, which encodes a serine\\/threonine protein kinase that is activated by many extracellular stimuli1. The physiological substrates of the protein c-Raf-1 are unknown. The mitogen-activated protein (MAP) kinases ErkI and 2 are also activated by mitogens through phosphorylation of Erk tyrosine and threonine residues catalysed by a protein kinase of

John M. Kyriakis; Harald App; Xian-Feng Zhang; Papia Banerjee; David L. Brautigan; Ulf R. Rapp; Joseph Avruch

1992-01-01

144

Phosphorylated S6 as an immunohistochemical biomarker of vulvar intraepithelial neoplasia.  

PubMed

As life expectancy lengthens, cases of non-viral-associated vulvar squamous cell carcinoma and its precursor lesion, so-called differentiated vulvar intraepithelial neoplasia (VIN), continue to increase in frequency. Differentiated VIN often is difficult to recognize and failure to detect it before invasion results in morbidity and mortality. Thus, identification of a reliable biomarker for this type of lesion would be of great clinical benefit. Our recent studies have identified activation (ser235/236 phosphorylation) of ribosomal protein S6 (p-S6) in basal epithelial cells as an event that precedes and accompanies laminin ?(2) overexpression in most preinvasive oral dysplasias. To test this as a potential biomarker of vulvar dysplasia, we immunostained seven differentiated VINs and nine papillomavirus-related 'classic' VINs, most of which were associated with carcinoma, for p-S6. All carcinomas, all differentiated VINs, and most classic VINs contained regions of p-S6 staining in the basal layer, whereas basal and parabasal cells of normal vulvar epithelium and hyperplastic and inflamed lesions lacking cellular atypia were p-S6 negative. Laminin ?(2) was expressed in a subset of VINs, always occurring within basal p-S6 positive regions, as we had found previously for oral dysplasias. Lichen sclerosus is considered a potential precursor of vulvar carcinoma. Two lichen sclerosus lesions of patients with a concurrent carcinoma and one of six lichen sclerosus lesions without atypia or known concurrent carcinoma were basal p-S6 positive. In summary, there is a distinct difference in p-S6 basal cell layer staining between benign and neoplastic vulvar squamous epithelium, with consistent staining of differentiated VIN and of some lichen sclerosus lesions. These results support further studies to assess the potential of p-S6 as a biomarker to identify vulvar lesions at risk of progressing to invasive cancer. PMID:23765247

Pinto, Alvaro P; Degen, Martin; Barron, Patricia; Crum, Christopher P; Rheinwald, James G

2013-11-01

145

Electronic Structure and Phase Transition in Ferroelectic Sn2P2S6 Crystal  

PubMed Central

An analysis of the P2S6 cluster electronic structure and its comparison with the crystal valence band in the paraelectric and ferroelectric phases has been done by first-principles calculations for Sn2P2S6 ferroelectrics. The origin of ferroelectricity has been outlined. It was established that the spontaneous polarization follows from the stereochemical activity of the electron lone pair of tin cations, which is determined by hybridization with P2S6 molecular orbitals. The chemical bonds covalence increase and rearrangement are related to the valence band changes at transition from the paraelectric phase to the ferroelectric phase. PMID:23203069

Glukhov, Konstantin; Fedyo, Kristina; Banys, Juras; Vysochanskii, Yulian

2012-01-01

146

FACTEURS DE LAND DES NIVEAUX DE LA CONFIGURATION 6s 6d M. HUET (*)  

E-print Network

329 FACTEURS DE LAND� DES NIVEAUX DE LA CONFIGURATION 6s 6d DU MERCURE M. HUET (*) Laboratoire de Landé électroniques des niveaux 6s 6d 3D3, 3D2, 3D1 et 1D2 du mercure, à partir d'un isotope pair très configurations 6s 6p et 6s 7s du mercure sont d6jA connues avec une bonne precision, de l'ordre de 10-4, par des

Boyer, Edmond

147

Identification of Novel Kinase Targets for the Treatment of Estrogen Receptor-Negative Breast Cancer  

PubMed Central

Purpose Previous gene expression profiling studies of breast cancer have focused on the entire genome to identify genes differentially expressed between estrogen receptor alpha (ER)-positive and ER-alpha-negative cancers. Experimental Design Here we used gene expression microarray profiling to identify a distinct kinase gene expression profile that identifies ER-negative breast tumors and subsets ER-negative breast tumors into 4 distinct subtypes. Results Based upon the types of kinases expressed in these clusters, we identify a cell cycle regulatory subset, a S6 kinase pathway cluster, an immunomodulatory kinase expressing cluster, and a MAPK pathway cluster. Furthermore, we show that this specific kinase profile is validated using independent sets of human tumors, and is also seen in a panel of breast cancer cell lines. Kinase expression knockdown studies show that many of these kinases are essential for the growth of ER-negative, but not ER-positive, breast cancer cell lines. Finally, survival analysis of patients with breast cancer shows that the S6 kinase pathway signature subtype of ER-negative cancers confers an extremely poor prognosis, while patients whose tumors express high levels of immunomodulatory kinases have a significantly better prognosis. Conclusions This study identifies a list of kinases that are prognostic and may serve as druggable targets for the treatment of ER-negative breast cancer. PMID:19808870

Speers, Corey; Tsimelzon, Anna; Sexton, Krystal; Herrick, Ashley M.; Gutierrez, Carolina; Culhane, Aedin; Quackenbush, John; Hilsenbeck, Susan; Chang, Jenny; Brown, Powel

2009-01-01

148

Cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinases, but not exchange proteins directly activated by cAMP (Epac), mediate thyrotropin/cAMP-dependent regulation of thyroid cells.  

PubMed

TSH, mainly acting through cAMP, is the principal physiological regulator of thyroid gland function, differentiation expression, and cell proliferation. Both cAMP-dependent protein kinases [protein kinase A (PKA)] and the guanine-nucleotide-exchange factors for Rap proteins, exchange proteins directly activated by cAMP (Epac) 1 and Epac2, are known to mediate a broad range of effects of cAMP in various cell systems. In the present study, we found a high expression of Epac1 in dog thyrocytes, which was further increased in response to TSH stimulation. Epac1 was localized in the perinuclear region. Epac2 showed little or no expression. The TSH-induced activation of Rap1 was presumably mediated by Epac1 because it was mimicked by the Epac-selective cAMP analog (8-p-chloro-phenyl-thio-2'-O-methyl-cAMP) and not by PKA-selective cAMP analogs. Surprisingly, in view of the high Epac1 expression and its TSH responsiveness, all the cAMP-dependent functions of TSH in cultures or tissue incubations of dog thyroid, including acute stimulation of thyroid hormone secretion, H(2)O(2) generation, actin cytoskeleton reorganization, p70(S6K1) activity, delayed stimulation of differentiation expression, and mitogenesis, were induced only by PKA-selective cAMP analogs. The Epac activator 8-p-chloro-phenyl-thio-2'-O-methyl-cAMP, used alone or combined with PKA-selective cAMP analogs, had no measurable effect on any of these TSH targets. Therefore, PKA activation seems to mediate all the recognized cAMP-dependent effects of TSH and is thus presumably responsible for the pathological consequences of its deregulation. The role of Epac1 and TSH-stimulated Rap1 activation in thyrocytes is still elusive. PMID:17584967

Dremier, Sarah; Milenkovic, Milutin; Blancquaert, Sara; Dumont, Jacques E; Døskeland, Stein O; Maenhaut, Carine; Roger, Pierre P

2007-10-01

149

Stacking Pima S-6 fiber length alleles in a Tamcot 2111 background  

E-print Network

Molecular markers can be used to stack fiber quality alleles among recombinant inbred lines and thus, aid in the development of unique genotypes. The objective of this study was to determine the potential for stacking Gossypium barbadense (Pima S-6...

Souder, Christopher Lee

2012-06-07

150

Piezooptic Coefficients and Acoustic Wave Velocities in Sn2P2S6 Crystals  

E-print Network

Piezooptic coefficients of Sn2P2S6 crystals are experimentally determined for l=623.8 nm and T=293 K with the aid of interferometric technique. The components of the elastic stiffness tensor for these crystals are calculated on the basis of studies for the acoustic wave velocities. It is shown that acoustooptic figure of merit can achieve extremely high values for Sn2P2S6 crystals (M2 - 2x10-12s3/kg2).

O. Mys; I. Martynyuk-Lototska; A. Grabar; Yu. Vysochanskii; R. Vlokh

2007-06-28

151

Role of GalNAc4S-6ST in Astrocytic Tumor Progression  

PubMed Central

N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) is the sulfotransferase responsible for biosynthesis of highly sulfated chondroitin sulfate CS-E. Although involvements of CS-E in neuronal cell functions have been extensively analyzed, the role of GalNAc4S-6ST in astrocytic tumor progression remains unknown. Here, we reveal that GalNAc4S-6ST transcripts were detected in astrocytic tumors derived from all 30 patients examined using quantitative reverse transcription-PCR analysis. Patients with high GalNAc4S-6ST mRNA expression had significantly worse outcome compared with patients with low expression, and multivariate survival analysis disclosed that GalNAc4S-6ST is an independent poor prognostic factor for astrocytic tumors. We then tested whether CS-E enhanced haptotaxic migration of glioblastoma U251-MG cells that endogenously express both the CS-E’s scaffold tyrosine phosphatase ? (PTP?) and GalNAc4S-6ST, in the presence of CS-E’s preferred ligands, pleiotrophin (PTN) or midkine (MK), using a modified Boyden chamber method. Haptotaxic stimulation of cell migration by PTN was most robust on control siRNA-transfected U251-MG cells, while that enhancing effect was cancelled following transduction of GalNAc4S-6ST siRNA. Similar results were obtained using MK, suggesting that both PTN and MK enhance migration of U251-MG cells by binding to CS-E. We also found that PTP? as well as PTN and MK were frequently expressed in astrocytic tumor cells. Thus, our findings indicate that GalNAc4S-6ST mRNA expressed by astrocytic tumor cells is associated with poor patient prognosis likely by enhancing CS-E-mediated tumor cell motility in the presence of PTN and/or MK. PMID:23349846

Kobayashi, Tatsuya; Yan, Huimin; Kurahashi, Yasuhiro; Ito, Yuki; Maeda, Hiroshi; Tada, Tsuyoshi; Hongo, Kazuhiro; Nakayama, Jun

2013-01-01

152

Physiological control of phosphorylation ribosomal protein S6 in Mucor racemosus.  

PubMed Central

The level of phosphorylation of ribosomal protein S6 increased with accelerating rates of growth and protein synthesis in Mucor racemosus. Lowered levels of phosphorylation were seen under conditions of metabolic shift-down or the onset of stationary phase, and no phosphorylation was detected in sporangiospores. Changing metabolic states, changing intracellular levels of adenosine triphosphatase, and the level of phosphorylation of protein S6 were correlated in M. racemosus. Images PMID:7353998

Larsen, A; Sypherd, P S

1980-01-01

153

S6K1 promotes invasiveness of breast cancer cells in a model of metastasis of triple-negative breast cancer  

PubMed Central

Breast cancer is the second-leading cause of oncology-related death in US women. Of all invasive breast cancers, patients with tumors lacking expression of the estrogen and progesterone hormone receptors and overexpression of human epidermal growth factor receptor 2 have the poorest clinical prognosis. These referred to as triple-negative breast cancer (TNBC) represent an aggressive form of disease that is marked by early-onset metastasis, high tumor recurrence rate, and low overall survival during the first three years post-diagnosis. In this report, we discuss a novel model of early-onset TNBC metastasis to bone and lungs, derived from MDA-MB-231 cells. Breast cancer cells injected intravenously produced rapid, osteolytic metastases in long bones and spines of athymic nude mice, with concurrent metastasis to lungs, liver, and soft tissues. From the bone metastases, we developed a highly metastatic luciferase-tagged cell line variant named MDA-231-LUC Met. In this report, we demonstrate that the Akt/mTOR/S6K1 axis is hyperactivated in these cells, leading to a dramatic increase in phosphorylation of S6 ribosomal protein at Ser235/236. Lastly, we provide evidence that inhibition of the furthest downstream kinase in the mTOR pathway, S6K1, with a highly specific inhibitor PF-4708671 inhibits cell migration, and thus may provide a potent anti-metastatic adjuvant therapy approach. PMID:25075253

Khotskaya, Yekaterina B; Goverdhan, Aarthi; Shen, Jia; Ponz-Sarvise, Mariano; Chang, Shih-Shin; Hsu, Ming-Chuan; Wei, Yongkun; Xia, Weiya; Yu, Dihua; Hung, Mien-Chie

2014-01-01

154

?-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K\\/AKT\\/mTOR\\/S6K1 pathways and ROS-mediated MAPKs activation  

Microsoft Academic Search

Both PI3K\\/AKT\\/mTOR\\/S6K1 and mitogen activated protein kinase (MAPK) signaling cascades play an important role in cell proliferation, survival, angiogenesis, and metastasis of tumor cells. In the present report, we investigated the effects of ?-caryophyllene oxide (CPO), a sesquiterpene isolated from essential oils of medicinal plants such as guava (Psidium guajava), oregano (Origanum vulgare L.), cinnamon (Cinnamomum spp.) clove (Eugenia caryophyllata),

Kyung-Ran Park; Dongwoo Nam; Hyung-Mun Yun; Seok-Geun Lee; Hyeung-Jin Jang; Gautam Sethi; Somi K. Cho; Kwang Seok Ahn

2011-01-01

155

Auxin stimulates S6 ribosomal protein phosphorylation in maize thereby affecting protein synthesis regulation.  

PubMed

Auxin is known to stimulate protein synthesis in many plant tissues, but the mechanisms involved in this process are unknown. The present research inquires whether auxin might regulate selective translation of mRNAs by inducing S6 ribosomal protein phosphorylation on the 40S ribosomal subunit in maize (Zea mays L.). Maize embryonic axes auxin-stimulated by natural (IAA) or synthetic (Dicamba or 1-NAA) auxins, selectively increased ribosomal protein synthesis. This effect was not reproduced by auxin inactive analogue 2-NAA. Enhanced S6 ribosomal protein phosphorylation on the 40S ribosomal subunit was also observed after auxin stimulation, as measured by [32P] incorporation into this protein. This increment did not occur when stimulation was performed with the inactive auxin analogue. Further, increased recruitment into polysomes of two 5'TOP-like mRNAs, encoding for the initiation translation factor eIF-iso4E and the S6 ribosomal protein, was also found after auxin stimulation of maize axes. A positive correlation was established between the levels of S6 ribosomal protein phosphorylation and the S6 ribosomal protein transcript recruitment into polysomes by means of okadaic acid or heat shock application to maize axes. These data indicate that auxin stimulates S6 ribosomal protein phosphorylation on maize ribosomes, concomitant to the recruitment of specific mRNAs (5'TOP-like mRNAs) into polysomes for translation. It is proposed that by this mechanism auxin regulate the synthesis of specific proteins in maize tissues. PMID:12060248

Beltrán-Peña, Elda; Aguilar, Raúl; Ortíz-López, Adriana; Dinkova, Tzvetanka D; De Jiménez, Estela Sánchez

2002-06-01

156

Two Kinase Family Dramas  

PubMed Central

In this issue, Lietha and colleagues (2007) report the structure of focal adhesion kinase (FAK) and reveal how FAK maintains an autoinhibited state. Together with the structure of another tyrosine kinase, ZAP-70 (Deindl et al., 2007), this work highlights the diversity of mechanisms that nature has evolved within the kinase superfamily to regulate their activity through autoinhibition. PMID:17574014

Leonard, Thomas A.; Hurley, James H.

2007-01-01

157

CCL2 Protects Prostate Cancer PC3 Cells from Autophagic Death via Phosphatidylinositol 3-Kinase/AKT-dependent Survivin Up-regulation*  

PubMed Central

Resistance to cell death is a hallmark of cancer. Autophagy is a survival mechanism activated in response to nutrient deprivation; however, excessive autophagy will ultimately induce cell death in a nonapoptotic manner. The present study demonstrates that CCL2 protects prostate cancer PC3 cells from autophagic death, allowing prolonged survival in serum-free conditions. Upon serum starvation, CCL2 induced survivin up-regulation in PC3, DU 145, and C4-2B prostate cancer cells. Both cell survival and survivin expression were stunted in CCL2-stimulated PC3 cells when treated either with the phosphatidylinositol 3-kinase inhibitor LY294002 (2 ?m) or the Akt-specific inhibitor-X (Akti-X; 2.5 ?m). Furthermore, CCL2 significantly reduced light chain 3-II (LC3-II) in serum-starved PC3; in contrast, treatment with LY294002 or Akti-X reversed the effect of CCL2 on LC3-II levels, suggesting that CCL2 signaling limits autophagy in these cells. Upon serum deprivation, the analysis of LC3 localization by immunofluorescence revealed a remarkable reduction in LC3 punctate after CCL2 stimulation. CCL2 treatment also resulted in a higher sustained mTORC1 activity as measured by an increase in phospho-p70S6 kinase (Thr389). Rapamycin, an inducer of autophagy, both down-regulated survivin and decreased PC3 cell viability in serum-deprived conditions. Treatment with CCL2, however, allowed cells to partially resist rapamycin-induced death, which correlated with survivin protein levels. In two stable transfectants expressing survivin-specific short hairpin RNA, generated from PC3, survivin protein levels controlled both cell viability and LC3 localization in response to CCL2 treatment. Altogether, these findings indicate that CCL2 protects prostate cancer PC3 cells from autophagic death via the phosphatidylinositol 3-kinase/Akt/survivin pathway and reveal survivin as a critical molecule in this survival mechanism. PMID:18611860

Roca, Hernan; Varsos, Zachary; Pienta, Kenneth J.

2008-01-01

158

Phosphorylation of ribosomal protein S6 confers PARP inhibitor resistance in BRCA1-deficient cancers  

PubMed Central

Inhibition of poly(ADP-ribose) polymerase (PARP) is a promising therapeutic strategy for BRCA1 deficient cancers, however, the development of drug resistance limits clinical efficacy. Previously we found that the BRCA1-AKT1 pathway contributes to tumorigenesis and that the AKT1/mTOR is a novel therapeutic target for BRCA1-deficient cancers. Here, we report that phosphorylation of ribosomal protein S6, a mTOR downstream effector, is greatly increased in BRCA1 deficient cells resistant to PARP inhibition. Phosphorylation of S6 is associated with DNA damage and repair signaling during PARP inhibitor treatment. In BRCA1 deficient cells, expression of S6 lacking all five phosphorylatable sites renders the cells sensitive to PARP inhibitor and increases DNA damage signals. In addition, the S6 mutations reduce tumor formation induced by Brca1-deficiency in mice. Inhibition of S6 phosphorylation by rapamycin restores PARP sensitivity to resistant cells. Combined treatment with rapamycin and PARP inhibitor effectively suppresses BRCA1-deficient tumor growth in mice. These results provide evidence for a novel mechanism by which BRCA1 deficient cancers acquire drug resistance and suggest a new therapeutic strategy to circumvent resistance. PMID:24831086

Xiang, Tao; Chen, Qianming; Pandita, Tej K.; Huang, Yuping; Hu, Mickey C.T.; Yang, Qin

2014-01-01

159

Augmentation of antitumor immunity by fusions of ethanol-treated tumor cells and dendritic cells stimulated via dual TLRs through TGF-?1 blockade and IL-12p70 production.  

PubMed

The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-?1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed "eat-me" signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90? and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90? and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-?1 and up-regulated the production of IL-12p70 and HSP90?. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-?, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy. PMID:23717436

Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Takakura, Kazuki; Takahara, Akitaka; Odahara, Shunichi; Tsukinaga, Shintaro; Yukawa, Toyokazu; Mitobe, Jimi; Matsudaira, Hiroshi; Nagatsuma, Keisuke; Kajihara, Mikio; Uchiyama, Kan; Arihiro, Seiji; Imazu, Hiroo; Arakawa, Hiroshi; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Hara, Eiichi; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

2013-01-01

160

Augmentation of Antitumor Immunity by Fusions of Ethanol-Treated Tumor Cells and Dendritic Cells Stimulated via Dual TLRs through TGF-?1 Blockade and IL-12p70 Production  

PubMed Central

The therapeutic efficacy of fusion cell (FC)-based cancer vaccine generated with whole tumor cells and dendritic cells (DCs) requires the improved immunogenicity of both cells. Treatment of whole tumor cells with ethanol resulted in blockade of immune-suppressive soluble factors such as transforming growth factor (TGF)-?1, vascular endothelial growth factor, and IL-10 without decreased expression of major histocompatibility complex (MHC) class I and the MUC1 tumor-associated antigen. Moreover, the ethanol-treated tumor cells expressed “eat-me” signals such as calreticulin (CRT) on the cell surface and released immunostimulatory factors such as heat shock protein (HSP)90? and high-mobility group box 1 (HMGB1). A dual stimulation of protein-bound polysaccharides isolated from Coriolus versicolor (TLR2 agonist) and penicillin-inactivated Streptococcus pyogenes (TLR4 agonist) led human monocyte-derived DCs to produce HSP90? and multiple cytokines such as IL-12p70 and IL-10. Interestingly, incorporating ethanol-treated tumor cells and TLRs-stimulated DCs during the fusion process promoted fusion efficiency and up-regulated MHC class II molecules on a per fusion basis. Moreover, fusions of ethanol-treated tumor cells and dual TLRs-stimulated DCs (E-tumor/FCs) inhibited the production of multiple immune-suppressive soluble factors including TGF-?1 and up-regulated the production of IL-12p70 and HSP90?. Most importantly, E-tumor/FCs activated T cells capable of producing high levels of IFN-?, resulting in augmented MUC1-specific CTL induction. Collectively, our results illustrate the synergy between ethanol-treated whole tumor cells and dual TLRs-stimulated DCs in inducing augmented CTL responses in vitro by FC preparations. The alternative system is simple and may provide a platform for adoptive immunotherapy. PMID:23717436

Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Takakura, Kazuki; Takahara, Akitaka; Odahara, Shunichi; Tsukinaga, Shintaro; Yukawa, Toyokazu; Mitobe, Jimi; Matsudaira, Hiroshi; Nagatsuma, Keisuke; Kajihara, Mikio; Uchiyama, Kan; Arihiro, Seiji; Imazu, Hiroo; Arakawa, Hiroshi; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Hara, Eiichi; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

2013-01-01

161

Antinociceptive activity of (-)-(2S,6S)-(6-ethyl-tetrahydropyran-2-yl)-formic acid on acute pain in mice.  

PubMed

Pain is a major cause of distress, both physical and psychological. There is a continuous search for new pharmacologically active analgesic agents with minor adverse effects. Recently, the synthesis of (-)-(2S,6S)-(6-ethyl-tetrahydropyran-2-yl)-formic acid [tetrahydropyran derivative (TD)] was described. The objective of this study was to investigate antinociceptive effects of TD. Its activity was compared with the activity of morphine. The effects of TD and morphine were evaluated in models of inflammatory and noninflammatory pain. TD (6-1200 ?mol/kg, intraperitoneally) significantly reduced the nociceptive effects induced by acetic acid or formalin in mice. TD also demonstrated an antinociceptive effect in the tail-flick and hot-plate model. The opioid receptor antagonist, naloxone (at 15 ?mol/kg, intraperitoneally), reversed the antinociceptive activity of TD in all the models evaluated. Morphine and TD induced tolerance in mice. However, the onset of tolerance to TD was delayed compared with that induced by morphine. These results indicate that TD develops significant antinociceptive activity and, at least part of its effects seems to be mediated by the opioid system. PMID:21562408

Marinho, Bruno Guimarães; Miranda, Leandro S M; Meireles, Bruno A; Vasconcellos, Mário L A A; Matheus, Maria E; Pereira, Vera L P; Fernandes, Patricia D

2011-09-01

162

Highly efficient acoustooptic diffraction in Sn2P2S6 crystals  

E-print Network

We have studied the acoustooptic (AO) diffraction in Sn2P2S6 crystals and found that they manifest high values of AO figure of merit. The above crystals may therefore be used as highly efficient materials in different AO applications.

I. Yu. Martynyuk-Lototska; O. G. Mys; A. A. Grabar; I. M. Stoika; Yu. M. Vysochanskii; R. O. Vlokh

2007-06-17

163

AQ 3140-8888 University Drive Burnaby, BC Canada V5A 1S6  

E-print Network

AQ 3140-8888 University Drive Burnaby, BC Canada V5A 1S6 TEL: 778.782.8924 FAX: 778.782.8926 wlindsay@sfu.ca www.sfu.ca To Whom It May Concern Fall 2011 William G. Lindsay, Director 1/3 Elders Protocol Document for Simon Fraser University Elders Program: An Introduction The Aboriginal Strategic Plan

164

Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2. Identification of two threonines phosphorylated during activation by mitogen-activated protein kinase.  

PubMed

An improved procedure has been developed for the isolation of insulin-stimulated protein kinase-1 (ISPK-1), an S6 kinase-II homologue, by which 0.5 mg highly purified enzyme can be obtained within four days. The sequences of tryptic peptides from ISPK-1 (100 residues) revealed 100% identity with the predicted protein product of rskmo-2, a cDNA clone isolated from a mouse F2 cell line library [Alcorta, D. A., Crews, C. M., Sweet, L. J., Bankston, L., Jones, S. W. and Erikson, R. L. (1989) Mol. Cell. Biol. 9, 3850-3859], demonstrating that rskmo-2 encodes an S6 kinase-II. Two isoforms of mitogen-activated protein (MAP) kinase (p42mapk and p44mapk) were the only ISPK-1-reactivating enzymes detected after Mono Q chromatography of extracts prepared from rabbit skeletal muscle or phaeochromocytoma 12 cells stimulated by nerve or epidermal growth factors. One of the residues on ISPK-1 phosphorylated by p42mapk was a threonine located nine residues N-terminal to the conserved Ala-Pro-Glu motif in the C-terminal protein kinase domain, an analogous location to phosphorylation sites essential for the activity of cAMP-dependent protein kinase, MAP kinase and p34cdc2. A further threonine located five residues N-terminal to the same Ala-Pro-Glu motif was also phosphorylated, probably via autophosphorylation catalysed by ISPK-1 itself. PMID:8444194

Sutherland, C; Campbell, D G; Cohen, P

1993-03-01

165

A Novel (S)-6-Hydroxynicotine Oxidase Gene from Shinella sp. Strain HZN7.  

PubMed

Nicotine is an important environmental toxicant in tobacco waste. Shinella sp. strain HZN7 can metabolize nicotine into nontoxic compounds via variations of the pyridine and pyrrolidine pathways. However, the catabolic mechanism of this variant pathway at the gene or enzyme level is still unknown. In this study, two 6-hydroxynicotine degradation-deficient mutants, N7-M9 and N7-W3, were generated by transposon mutagenesis. The corresponding mutant genes, designated nctB and tnp2, were cloned and analyzed. The nctB gene encodes a novel flavin adenine dinucleotide-containing (S)-6-hydroxynicotine oxidase that converts (S)-6-hydroxynicotine into 6-hydroxy-N-methylmyosmine and then spontaneously hydrolyzes into 6-hydroxypseudooxynicotine. The deletion and complementation of the nctB gene showed that this enzyme is essential for nicotine or (S)-6-hydroxynicotine degradation. Purified NctB could also convert (S)-nicotine into N-methylmyosmine, which spontaneously hydrolyzed into pseudooxynicotine. The kinetic constants of NctB toward (S)-6-hydroxynicotine (Km = 0.019 mM, kcat = 7.3 s(-1)) and nicotine (Km = 2.03 mM, kcat = 0.396 s(-1)) indicated that (S)-6-hydroxynicotine is the preferred substrate in vivo. NctB showed no activities toward the R enantiomer of nicotine or 6-hydroxynicotine. Strain HZN7 could degrade (R)-nicotine into (R)-6-hydroxynicotine without any further degradation. The tnp2 gene from mutant N7-W3 encodes a putative transposase, and its deletion did not abolish the nicotine degradation activity. This study advances the understanding of the microbial diversity of nicotine biodegradation. PMID:25002425

Qiu, Jiguo; Wei, Yin; Ma, Yun; Wen, Rongti; Wen, Yuezhong; Liu, Weiping

2014-09-15

166

Acoustic attenuation in ferroelectric Sn2P2S6 crystals  

NASA Astrophysics Data System (ADS)

The temperature and frequency dependencies of sound attenuation for the proper uniaxial ferroelectric Sn2P2S6, which has a strong nonlinear interaction of the polar soft optic and fully symmetrical optic modes that is related to the triple well potential, were studied by Brillouin spectroscopy. It was found that the sound velocity anomaly is described in the Landau-Khalatnikov approximation with one relaxation time. For explanation of the observed temperature and frequency dependencies of the sound attenuation in the ferroelectrric phase, the accounting of several relaxation times is needed and, for quantitative calculations, the mode Gruneisen coefficients are more appropriate as interacting parameters than are the electrostrictive coefficients. Relaxational sound attenuation by domain walls also appears in the ferroelectric phase of Sn2P2S6 crystals.

Kohutych, Anton A.; Yevych, Ruslan M.; Perechinskii, Sergij I.; Vysochanskii, Yulian M.

2010-12-01

167

TOTALLY REAL SUBMANIFOLDS IN S6(1) SATISFYING CHEN'S EQUALITY  

Microsoft Academic Search

In this paper, we study 3-dimensional totally real submanifolds of S6(1). If this submanifold is contained in some 5-dimensional totally geodesic S5(1), then we classify such submanifolds in terms of complex curves inCP 2(4) lifted via the Hopf brationS5(1)!CP 2(4). We also show that such submani- folds always satisfy Chen's equality, i.e. M =2 , whereM ( p )= (

FRANKI DILLEN; LUC VRANCKEN

168

S6 ribosomal protein phosphorylation and translation of stored mRNA in maize.  

PubMed

This article focuses on the effect that S6 ribosomal protein phosphorylation might have in regulating mRNA translation. Maize axes of either 4 or 14 h of germination were pulse-labelled for 1 h with [32P]-orthophosphate. Analysis of their ribosomal proteins by gel electrophoresis and autoradiography showed distinctive levels of S6 ribosomal protein phosphorylation for both ribosomal sets. Axes at these two stages of germination were treated with alpha-amanitin to ensure transcription inhibition and pulse-labelling with [35S]-methionine. The [35S]-proteins, resulting from stored mRNA translation, when analysed by 2-D-gel electrophoresis and fluorography revealed distinctive [35S]-protein patterns. In vitro translation of stored mRNA on ribosomes from either 4 or 14 h germinated-maize axes produced different [35S]-protein patterns. Further, addition of 7methyl-GTP-Sepharose to the translation system showed differential cap-dependent protein synthesis inhibition depending on the set of ribosomes tested. It is concluded that translation of stored mRNA in germinating maize axes is at least partially regulated by a mechanism that involves S6 ribosomal protein phosphorylation. PMID:9242983

Sánchez-de-Jiménez, E; Aguilar, R; Dinkova, T

1997-04-01

169

Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors  

PubMed Central

Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

2014-01-01

170

Combination of pharmacophore hypothesis, genetic function approximation model, and molecular docking to identify novel inhibitors of S6K1.  

PubMed

S6K1 has emerged as a potential target for the treatment for obesity, type II diabetes and cancer diseases. Discovery of S6K1 inhibitors has thus attracted much attention in recent years. In this investigation, a hybrid virtual screening method that involves pharmacophore hypothesis, genetic function approximation (GFA) model, and molecular docking technology has been used to discover S6K1 inhibitors especially with novel scaffolds. The common feature pharmacophore hypothesis and GFA regression model of S6K1 inhibitors were first developed and applied in a virtual screen of the Specs database for retrieving S6K1 inhibitors. Then, the molecular docking method was carried out to re-filter these screened compounds. Finally, 60 compounds with promising S6K1 inhibitory activity were carefully selected and have been handed over to the other group to complete the follow-up compound synthesis (or purchase) and activity test. PMID:23982212

Zhang, Hui; Xiang, Ming-Li; Liang, Jun-Yu; Zeng, Tao; Zhang, Xiao-Nuo; Zhang, Ji; Yang, Sheng-Yong

2013-11-01

171

Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle.  

PubMed Central

Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. We tested the hypothesis that a single bout of exercise activates the MAPK signaling pathway. Needle biopsies of vastus lateralis muscle were taken from nine subjects at rest and after 60 min of cycle ergometer exercise. In all subjects, exercise increased MAPK phosphorylation, and the activity of its downstream substrate, the p90 ribosomal S6 kinase 2. Furthermore, exercise increased the activities of the upstream regulators of MAPK, MAP kinase kinase, and Raf-1. When two additional subjects were studied using a one-legged exercise protocol, MAPK phosphorylation and p90 ribosomal S6 kinase 2, MAP kinase kinase 1, and Raf-1 activities were increased only in the exercising leg. These studies demonstrate that exercise activates the MAPK cascade in human skeletal muscle and that this stimulation is primarily a local, tissue-specific phenomenon, rather than a systemic response to exercise. These findings suggest that the MAPK pathway may modulate cellular processes that occur in skeletal muscle in response to exercise. PMID:9077533

Aronson, D; Violan, M A; Dufresne, S D; Zangen, D; Fielding, R A; Goodyear, L J

1997-01-01

172

CONSTANTE DE STRUCTURE HYPERFINE DE L'LECTRON s DANS LA CONFIGURATION 6s 6d DU MERCURE  

E-print Network

693 CONSTANTE DE STRUCTURE HYPERFINE DE L'�LECTRON s DANS LA CONFIGURATION 6s 6d DU MERCURE M. HUET monoélectronique a6s de l'électron s dans la configura- tion 6s 6d du mercure en utilisant les mesures antérieures résultats des mesures de fac- teurs de Landé des niveaux de la configuration 6s 6d du mercure. Compte tenu

Boyer, Edmond

173

Obesity-Induced CerS6-Dependent C16:0 Ceramide Production Promotes Weight Gain and Glucose Intolerance.  

PubMed

Ceramides increase during obesity and promote insulin resistance. Ceramides vary in acyl-chain lengths from C14:0 to C30:0 and are synthesized by six ceramide synthase enzymes (CerS1-6). It remains unresolved whether obesity-associated alterations of specific CerSs and their defined acyl-chain length ceramides contribute to the manifestation of metabolic diseases. Here we reveal that CERS6 mRNA expression and C16:0 ceramides are elevated in adipose tissue of obese humans, and increased CERS6 expression correlates with insulin resistance. Conversely, CerS6-deficient (CerS6(?/?)) mice exhibit reduced C16:0 ceramides and are protected from high-fat-diet-induced obesity and glucose intolerance. CerS6 deletion increases energy expenditure and improves glucose tolerance, not only in CerS6(?/?) mice, but also in brown adipose tissue- (CerS6(?BAT)) and liver-specific (CerS6(?LIVER)) CerS6 knockout mice. CerS6 deficiency increases lipid utilization in BAT and liver. These experiments highlight CerS6 inhibition as a specific approach for the treatment of obesity and type 2 diabetes mellitus, circumventing the side effects of global ceramide synthesis inhibition. PMID:25295788

Turpin, Sarah M; Nicholls, Hayley T; Willmes, Diana M; Mourier, Arnaud; Brodesser, Susanne; Wunderlich, Claudia M; Mauer, Jan; Xu, Elaine; Hammerschmidt, Philipp; Brönneke, Hella S; Trifunovic, Aleksandra; LoSasso, Giuseppe; Wunderlich, F Thomas; Kornfeld, Jan-Wilhelm; Blüher, Matthias; Krönke, Martin; Brüning, Jens C

2014-10-01

174

Photonic crystal kinase biosensor.  

PubMed

We have developed a novel biosensor for kinases that is based on a kinase-responsive polymer hydrogel, which enables label-free screening of kinase activity via changes in optical properties. The hydrogel is specifically designed to swell reversibly upon phosphorylation of a target peptide, triggering a change in optical diffraction from a crystalline colloidal array of particles impregnated into the hydrogel. Diffraction measurements, and charge staining, confirmed the responsive nature of the hydrogel. Moreover, the change in diffraction of the hydrogel upon treatment with kinase exhibited a time- and dose-dependent response. A theoretical model for ionic polymer networks describes the observed optical response well and can be used to quantify the extent of phosphorylation. PMID:24761969

MacConaghy, Kelsey I; Geary, Christopher I; Kaar, Joel L; Stoykovich, Mark P

2014-05-14

175

Neurotransmitter and Growth Factor-Induced cAMP Response Element Binding Protein Phosphorylation in Glial Cell Progenitors: Role of Calcium Ions, Protein Kinase C, and Mitogen-Activated Protein Kinase\\/Ribosomal S6 Kinase Pathway  

Microsoft Academic Search

To understand how extracellular signals may produce long- term effects in neural cells, we have analyzed the mechanism by which neurotransmitters and growth factors induce phos- phorylation of the transcription factor cAMP response element binding protein (CREB) in cortical oligodendrocyte progenitor (OP) cells. Activation of glutamate receptor channels by kai- nate, as well as stimulation of G-protein-coupled cholinergic receptors by

Mario Pende; Tracey L. Fisher; Peter B. Simpson; James T. Russell; John Blenis; Vittorio Gallo

176

Nerve Growth Factor Activates Extracellular Signal-Regulated Kinase and p38 Mitogen-Activated Protein Kinase Pathways To Stimulate CREB Serine 133 Phosphorylation  

PubMed Central

The mechanisms by which growth factor-induced signals are propagated to the nucleus, leading to the activation of the transcription factor CREB, have been characterized. Nerve growth factor (NGF) was found to activate multiple signaling pathways that mediate the phosphorylation of CREB at the critical regulatory site, serine 133 (Ser-133). NGF activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs), which in turn activate the pp90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases, all three members of which were found to catalyze CREB Ser-133 phosphorylation in vitro and in vivo. In addition to the ERK/RSK pathway, we found that NGF activated the p38 MAPK and its downstream effector, MAPK-activated protein kinase 2 (MAPKAP kinase 2), resulting in phosphorylation of CREB at Ser-133. Inhibition of either the ERK/RSK or the p38/MAPKAP kinase 2 pathway only partially blocked NGF-induced CREB Ser-133 phosphorylation, suggesting that either pathway alone is sufficient for coupling the NGF signal to CREB activation. However, inhibition of both the ERK/RSK and the p38/MAPKAP kinase 2 pathways completely abolished NGF-induced CREB Ser-133 phosphorylation. These findings indicate that NGF activates two distinct MAPK pathways, both of which contribute to the phosphorylation of the transcription factor CREB and the activation of immediate-early genes. PMID:9528766

Xing, Jun; Kornhauser, Jon M.; Xia, Zhengui; Thiele, Elizabeth A.; Greenberg, Michael E.

1998-01-01

177

Mouse Erk-1 gene product is a serine/threonine protein kinase that has the potential to phosphorylate tyrosine.  

PubMed Central

Bacterial expression of mouse gene Erk-1 yielded an active kinase with the same substrate specificity shown for ERK1 protein purified from rat cells. Although rat gene ERK1 is believed to encode a serine/threonine kinase based on sequence data and known ERK1 substrate phosphorylation sites, bacterially-produced mouse Erk-1 (bt-Erk-1) autophosphorylated on tyrosine in addition to serine and threonine residues. The bt-Erk-1 protein also had the capacity to reactivate the ribosomal protein S6 kinase (S6KII). Furthermore, treatment of bt-Erk-1 with either serine/threonine-specific phosphatase 2A or tyrosine-specific phosphatase 1B significantly decreased its kinase activity. These findings predict that autophosphorylation may play an important role in Erk-1/ERK1 regulation. Images PMID:1717989

Crews, C M; Alessandrini, A A; Erikson, R L

1991-01-01

178

Fine and hyperfine structure for 4f 115d6s6p in Er I  

NASA Astrophysics Data System (ADS)

Hyperfine structure (hfs) constants in neutral erbium of 22 levels of the configuration 4f115d6s6p with four open electron shells have been determined for the only stable odd isotope 167Er, using Doppler reduced saturation spectroscopy in form of intermodulated optogalvanic and saturated absorption spectroscopy. From the experimental data for altogether 29 levels we evaluated the hfs-parameters in the effective tensor operator formalism. For this purpose we performed a fine structure analysis of the sub-configuration 4f11(4I)5d6s6p in LS-coupling, confirming and extending the preliminary classification of even parity Er I levels. The relativistic magnetic and electric one-electron parameters were fitted to the experimental data by a least squares fit procedure: a4f01 = -156.6 (1.7) MHz, a5d01 = -30 (10) MHz, a6p01 = -114 (24) MHz, a6s10 = -1630 (35) MHz, b4f02 = -7960 (200) MHz, b5d02 = 3460 (180) MHz, b6p02 = 5440 (270) MHz, gave the best results in the case where all parameters of one electron shell were held in a fixed ratio. The corresponding langr-3rang nlkskl values are compared with those known for other lanthanide elements, extending the present systematic hyperfine studies. Finally, effective nuclear quadrupole moments have been determined and will be discussed.

Kronfeldt, H.-D.; Ashkenasi, D.; Kröger, S.; Wyart, J.-F.

1993-12-01

179

Immunotoxins and Other Conjugates Containing Saporin-S6 for Cancer Therapy  

PubMed Central

Ribosome-inactivating proteins (RIPs) are a family of plant toxins that permanently damage ribosomes and possibly other cellular substrates, thus causing cell death. RIPs are mostly divided in two types: Type 1 RIPs that are single-chain enzymatic proteins, and type 2 RIPs that consist of an active A chain (similar to a type 1 RIP) linked to a B chain with lectin properties. RIP-containing conjugates have been used in many experimental strategies against cancer cells, often showing great efficacy in clinical trials. Saporin-S6, a type 1 RIP extracted from Saponaria officinalis L. seeds, has been extensively utilized to construct anti-cancer conjugates because of its high enzymatic activity, stability and resistance to conjugation procedures, resulting in the efficient killing of target cells. This review summarizes saporin-S6-containing conjugates and their application in cancer therapy, considering in-vitro and in-vivo studies both in animal models and in clinical trials. The review is structured on the basis of the targeting of hematological versus solid tumors and on the antigen recognized on the cell surface. PMID:22069735

Polito, Letizia; Bortolotti, Massimo; Pedrazzi, Manuela; Bolognesi, Andrea

2011-01-01

180

Immunotoxins and other conjugates containing saporin-s6 for cancer therapy.  

PubMed

Ribosome-inactivating proteins (RIPs) are a family of plant toxins that permanently damage ribosomes and possibly other cellular substrates, thus causing cell death. RIPs are mostly divided in two types: Type 1 RIPs that are single-chain enzymatic proteins, and type 2 RIPs that consist of an active A chain (similar to a type 1 RIP) linked to a B chain with lectin properties. RIP-containing conjugates have been used in many experimental strategies against cancer cells, often showing great efficacy in clinical trials. Saporin-S6, a type 1 RIP extracted from Saponaria officinalis L. seeds, has been extensively utilized to construct anti-cancer conjugates because of its high enzymatic activity, stability and resistance to conjugation procedures, resulting in the efficient killing of target cells. This review summarizes saporin-S6-containing conjugates and their application in cancer therapy, considering in-vitro and in-vivo studies both in animal models and in clinical trials. The review is structured on the basis of the targeting of hematological versus solid tumors and on the antigen recognized on the cell surface. PMID:22069735

Polito, Letizia; Bortolotti, Massimo; Pedrazzi, Manuela; Bolognesi, Andrea

2011-06-01

181

Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases  

PubMed Central

Summary: The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (?, ?, ?, and ?), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries. PMID:21372320

Cargnello, Marie; Roux, Philippe P.

2011-01-01

182

Experimental Investigation of 126-Gb/s 6PolSK-QPSK signals.  

PubMed

We experimentally generate 28-GBd 6-ary polarization-shift keying quadrature phase-shift keying (6PolSK-QPSK) signals by utilizing a high-speed 4-channel digital-to-analog converter and an integrated dual-polarization I/Q modulator. In WDM transmission experiments over up to 4800 km standard single-mode fiber, we compare the performance of 126-Gb/s 6PolSK-QPSK and 112-Gb/s polarization-division multiplexing (PDM) QPSK signals. Furthermore, we discuss the implications of applying an inner Reed-Solomon RS(511,455) forward error correction code in order to correct burst errors due to the anti-Gray mapping of 6PolSK-QPSK. PMID:23262856

Fischer, Johannes Karl; Alreesh, Saleem; Elschner, Robert; Frey, Felix; Meuer, Christian; Molle, Lutz; Schmidt-Langhorst, Carsten; Tanimura, Takahito; Schubert, Colja

2012-12-10

183

A SiPM-based ZnS:$^6$LiF scintillation neutron detector  

E-print Network

In the work presented here we built and evaluated a single-channel neutron detection unit consisting of a ZnS:$^6$LiF scintillator with embedded WLS fibers readout by a SiPM. The unit has a sensitive volume of 2.4 x 2.8 x 50 mm$^3$; 12 WLS fibers of diameter 0.25 mm are uniformly distributed over this volume and are coupled to a 1 x 1 mm$^2$ active area SiPM. We report the following performance parameters: neutron detection efficiency $\\sim 65\\,$% at $1.2\\,\\AA$, background count rate $detection unit as an elementary building block for realization of one-dimensional multichannel detectors for applications in the neutron scattering experimental technique. The dimensions of the unit and the number of embedded fibers can be varied to meet the specific application requirements. The upp...

Stoykov, A; Greuter, U; Hildebrandt, M; Schlumpf, N

2014-01-01

184

Stress value in 2003 Dayao M S6.1 earthquake source region  

NASA Astrophysics Data System (ADS)

The M S6.2 Dayao, Yunnan, earthquake occurred on July 21, 2003, followed by a major M S6.1 earthquake about 88 days later in the same region. Hypocenters of the two earthquakes are almost in the same place. Based on the P wave first motion polarities of the two aftershock sequences recorded by temporary stations, we have studied the stress field in the aftershock zone and obtained the two stress field directions in Dayao region using the new version of PKU Grid Test Software provided by Chunquan Yu. Assuming that the rotation of the stress field is caused by the second main shock, we estimated the crustal stress value in the focal region by using the stress value calculation method proposed by Yongge Wan. The estimated maximum, intermediate and minimum principal stresses are 166.3 MPa, 158.7 MPa and 151 MPa, respectively, before the second main shock. The normal and shear stresses projected on the fault plane of the second main shock before it occurred are 157.3 MPa, 7.4 MPa, and are 158.8 MPa, 0.2 MPa after it occurred, respectively. The perturbed input parameters experiments attest the stability of the solution. The result shows that the preseismic shear stress is larger than the post-seismic one, and their difference corresponds to the stress drop approximately. The estimated compressive stress level is very high, but the differential stress is low. The result is helpful for friction coefficient estimation, plate motion simulation and related studies.

Xu, Xiaofeng; Wan, Yongge; Wang, Huilin

2011-08-01

185

Saquinavir-NO inhibits S6 kinase activity, impairs secretion of the encephalytogenic cytokines interleukin-17 and interferon-gamma and ameliorates experimental autoimmune encephalomyelitis.  

PubMed

NO-hybridization of the HIV protease inhibitor Saquinavir generates a new chemical entity named Saq-NO, that retains the anti-viral activity and exerts lower toxicity. We show that Saq-NO inhibited the generation of various cytokines in ConA-stimulated unfractionated murine spleen cells and rat lymph nodes stimulated with ConA as well as in purified CD4(+) T cells in vitro and reduced the circulating levels of cytokines in mice challenged with anti-CD3 antibody. Furthermore, Saq-NO reduced IL-17 and IFN-? production in myelin basic protein (MBP)-specific cells isolated from rats immunized with MBP. These findings translated well into the in vivo setting as Saq-NO ameliorated the course of the disease in two preclinical models of multiple sclerosis. Our results demonstrate that Saq-NO exerts immunomodulatory effects that warrant studies on its application in autoimmune diseases. PMID:23602714

Petkovi?, Filip; Blaževski, Jana; Mom?ilovi?, Miljana; Timotijevi?, Gordana; Zocca, Mai-Britt; Mijatovi?, Sanja; Maksimovi?-Ivani?, Danijela; Mangano, Katia; Fagone, Paolo; Stoši?-Gruji?i?, Stanislava; Nicoletti, Ferdinando; Miljkovi?, Djordje

2013-06-15

186

Regulation of protein kinase C  

Microsoft Academic Search

Protein kinase C has been in the spotlight since the discovery two decades ago that is activated by the lipid second messenger diacylglycerol. Despite protein kinase C's enduring stage presence, the regulation and specific roles of its isozymes in defined cellular processes are still under intense investigation. Elucidation of the structures of protein kinase C's regulatory modules, the discovery that

Alexandra C Newton

1997-01-01

187

Oncoprotein protein kinase  

DOEpatents

An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK.

Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Linn, Anning (La Jolla, CA)

1996-01-01

188

Solution structures and backbone dynamics of the ribosomal protein S6 and its permutant P54-55  

PubMed Central

The ribosomal protein S6 from Thermus thermophilus has served as a model system for the study of protein folding, especially for understanding the effects of circular permutations of secondary structure elements. This study presents the structure of a permutant protein, the 96-residue P54-55, and the structure of its 101-residue parent protein S6wt in solution. The data also characterizes the effects of circular permutation on the backbone dynamics of S6. Consistent with crystallographic data on S6wt, the overall solution structures of both P54-55 and S6wt show a ?-sheet of four antiparallel ?-strands with two ?-helices packed on one side of the sheet. In clear contrast to the crystal data, however, the solution structure of S6wt reveals a disordered loop in the region between ?-strands 2 and 3 (Leu43-Phe60) instead of a well-ordered stretch and associated hydrophobic mini-core observed in the crystal structure. Moreover, the data for P54-55 show that the joined wild-type N- and C-terminals form a dynamically robust stretch with a hairpin structure that complies with the in silico design. Taken together, the results explain why the loop region of the S6wt structure is relatively insensitive to mutational perturbations, and why P54-55 is more stable than S6wt: the permutant incision at Lys54-Asp55 is energetically neutral by being located in an already disordered loop whereas the new hairpin between the wild-type N- and C-termini is stabilizing. PMID:19937661

Ohman, Anders; Oman, Tommy; Oliveberg, Mikael

2010-01-01

189

The anti-tumor activator sMEK1 and paclitaxel additively decrease expression of HIF-1? and VEGF via mTORC1-S6K/4E-BP-dependent signaling pathways  

PubMed Central

Recently, we found that sMEK1 effectively regulates pro-apoptotic activity when combined with a traditional chemotherapeutic drug. Therefore, combinational therapeutic strategies targeting critical molecular and cellular mechanisms are urgently required. In this present work, we evaluated whether sMEK1 enhanced the pro-apoptotic activity of chemotherapeutic drugs in ovarian carcinoma cells. Combined with a chemotherapeutic drug, sMEK1 showed an additive effect on the suppression of ovarian cancer cell growth by inducing cell cycle arrest and apoptosis and regulating related gene expression levels or protein activities. In addition, the phosphoinositide-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was strongly inhibited by the combined treatment, showing de-repression of the tuberous sclerosis complex (TSC) and suppression of ras homolog enriched in the brain (Rheb) and mTOR and raptor in aggressive ovarian carcinoma cells and mouse xenograft models. Treatment with sMEK1 and paclitaxel reduced phosphorylation of ribosomal S6 kinase (S6K) and 4E-binding protein (4E-BP), two critical downstream targets of the mTOR-signaling pathway. Furthermore, both sMEK1 and paclitaxel significantly inhibited the expression of signaling components downstream of S6K/4E-BP, such as hypoxia-inducible factor-1? (HIF-1?) and vascular endothelial growth factor (VEGF), both in vitro and in vivo. Therefore, our data suggest that the combination of sMEK1 and paclitaxel is a promising and effective targeted therapy for chemotherapy-resistant or recurrent ovarian cancers. PMID:25153728

Byun, Hyun-Jung; Seo, Seung Hee; Lee, Seung-Hoon; Rho, Seung Bae

2014-01-01

190

Rho-dependent Termination of ssrS (6S RNA) Transcription in Escherichia coli  

PubMed Central

It is well known that 6S RNA, a global regulatory noncoding RNA that modulates gene expression in response to the cellular stresses in Escherichia coli, is generated by processing from primary ssrS (6S RNA) transcripts derived from two different promoters. The 5? processing of 6S RNA from primary transcripts has been well studied; however, it remains unclear how the 3?-end of this RNA is generated although previous studies have suggested that exoribonucleolytic trimming is necessary for 3? processing. Here, we describe several Rho-dependent termination sites located ?90 bases downstream of the mature 3?-end of 6S RNA. Our data suggest that the 3?-end of 6S RNA is generated via exoribonucleolytic trimming, rather than endoribonucleolytic cleavage, following the transcription termination events. The termination sites identified in this study are within the open reading frame of the downstream ygfA (putative 5-formyl-tetrahydrofolate cyclo-ligase) gene, a part of the highly conserved bacterial operon ssrS-ygfA, which is up-regulated during the biofilm formation. Our findings reveal that ygfA expression, which also aids the formation of multidrug-tolerant persister cells, could be regulated by Rho-dependent termination activity in the cell. PMID:21036909

Chae, Huiseok; Han, Kook; Kim, Kwang-sun; Park, Hongmarn; Lee, Jungmin; Lee, Younghoon

2011-01-01

191

Mechanoenzymatics of titin kinase  

Microsoft Academic Search

Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in

Elias M. Puchner; Alexander Alexandrovich; Ay Lin Kho; Ulf Hensen; Lars V. Schäfer; Birgit Brandmeier; Frauke Gräter; Helmut Grubmüller; Hermann E. Gaub; Mathias Gautel

2008-01-01

192

Oncoprotein protein kinase  

DOEpatents

An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

Karin, Michael (2565 Chalcedony, San Diego, CA 92122); Hibi, Masahiko (7528 Charmant Dr., No. 418, San Diego, CA 92122); Lin, Anning (8655 Via Mallorca Dr., Apt. 93, La Jolla, CA 92093)

1997-01-01

193

Oncoprotein protein kinase  

DOEpatents

An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA); Davis, Roger (Princeton, MA); Derijard, Benoit (Shrewsbury, MA)

2003-02-04

194

Oncoprotein protein kinase  

DOEpatents

An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA)

1999-01-01

195

Oncoprotein protein kinase  

DOEpatents

An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA)

1997-01-01

196

Oncoprotein protein kinase  

DOEpatents

An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA)

1998-01-01

197

Oncoprotein protein kinase  

DOEpatents

An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

Karin, M.; Hibi, M.; Lin, A.

1997-02-25

198

Oncoprotein protein kinase  

DOEpatents

An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

Karin, Michael (San Diego, CA); Lin, Anning (La Jolla, CA)

1999-11-30

199

Tau-tubulin kinase  

PubMed Central

Tau-tubulin kinase (TTBK) belongs to casein kinase superfamily and phosphorylates microtubule-associated protein tau and tubulin. TTBK has two isoforms, TTBK1 and TTBK2, which contain highly homologous catalytic domains but their non-catalytic domains are distinctly different. TTBK1 is expressed specifically in the central nervous system and is involved in phosphorylation and aggregation of tau. TTBK2 is ubiquitously expressed in multiple tissues and genetically linked to spinocerebellar ataxia type 11. TTBK1 directly phosphorylates tau protein, especially at Ser422, and also activates cycline-dependent kinase 5 in a unique mechanism. TTBK1 protein expression is significantly elevated in Alzheimer’s disease (AD) brains, and genetic variations of the TTBK1 gene are associated with late-onset Alzheimer’s disease in two cohorts of Chinese and Spanish populations. TTBK1 transgenic mice harboring the entire 55-kilobase genomic sequence of human TTBK1 show progression of tau accumulation, neuroinflammation, and neurodegeneration when crossed with tau mutant mice. Our recent study shows that there is a striking switch in mononuclear phagocyte and activation phenotypes in the anterior horn of the spinal cord from alternatively activated (M2-skewed) microglia in P301L tau mutant mice to pro-inflammatory (M1-skewed) infiltrating peripheral monocytes by crossing the tau mice with TTBK1 transgenic mice. TTBK1 is responsible for mediating M1-activated microglia-induced neurotoxicity, and its overexpression induces axonal degeneration in vitro. These studies suggest that TTBK1 is an important molecule for the inflammatory axonal degeneration, which may be relevant to the pathobiology of tauopathy including AD. PMID:24808823

Ikezu, Seiko; Ikezu, Tsuneya

2014-01-01

200

Plant Phosphatidylinositol 3Kinase  

Microsoft Academic Search

\\u000a Phosphatidylinositol 3-kinase (PI3K) phosphorylates the D-3 position of phosphoinositides. In Arabidopsis, only one PI3K exists,\\u000a which belongs to the class-III PI3K subfamily which makes phosphatidylinositol 3-phosphate (PtdIns3P). The single AtPI3K gene is essential for survival, since loss of its expression results in lethality. Although not much is known about the molecular\\u000a mechanism of its function, recent studies show that plant

Yuree Lee; Teun Munnik; Youngsook Lee

2010-01-01

201

Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism.  

PubMed Central

Nucleoside diphosphate (NDP) kinase is a ubiquitous nonspecific enzyme that evidently is designed to catalyze in vivo ATP-dependent synthesis of ribo- and deoxyribonucleoside triphosphates from the corresponding diphosphates. Because Escherichia coli contains only one copy of ndk, the structural gene for this enzyme, we were surprised to find that ndk disruption yields bacteria that are still viable. These mutant cells contain a protein with a small amount NDP kinase activity. The protein responsible for this activity was purified and identified as adenylate kinase. This enzyme, also called myokinase, catalyzes the reversible ATP-dependent synthesis of ADP from AMP. We found that this enzyme from E. coli as well as from higher eukaryotes has a broad substrate specificity displaying dual enzymatic functions. Among the nucleoside monophosphate kinases tested, only adenylate kinase was found to have NDP kinase activity. To our knowledge, this is the first report of NDP kinase activity associated with adenylate kinase. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8650159

Lu, Q; Inouye, M

1996-01-01

202

Ribosomal Protein S6-Ps240 Is Expressed in Lesional Skin from Patients with Autoimmune Skin Blistering Diseases  

PubMed Central

Background: The in situ signaling transduction within skin biopsies from patients affected by autoimmune skin blistering diseases is not well-characterized. Aim: In autoimmune skin blistering diseases, autoantibodies seem to trigger several intracellular signaling pathways and we investigated the presence of the phosphorylated form of ribosomal protein S6-pS240 within autoimmune skin blistering diseases biopsies. Materials and Methods: We utilized immunohistochemistry to evaluate the presence of S6-pS240 in lesional skin biopsies of patients affected by autoimmune skin blistering diseases including patients with an endemic and nonendemic pemphigus foliaceus (non EPF), with bullous pemphigoid (BP), pemphigus vulgaris (PV), dermatitis herpetiformis (DH), and the respective controls. Results: Most autoimmune bullous skin diseases biopsies stained positive for S6-pS240 around lesional blisters, including adjacent areas of the epidermis; and within upper dermal inflammatory infiltrates, and/or mesenchymal-endothelial cell junctions within the dermis. Conclusions: We document that S6-pS240 is expressed in lesional areas of skin biopsies from patients with autoimmune skin blistering diseases, as well as on eccrine glands and piloerector muscles. Thus, the role of this molecule in autoimmune skin blistering diseases warrants further study. PMID:24350073

Abreu-Velez, Ana Maria; Googe, Paul B; Howard, Michael S

2013-01-01

203

rpS6 Regulates Blood-Testis Barrier Dynamics By Affecting F-Actin Organization and Protein Recruitment  

PubMed Central

During spermatogenesis, preleptotene spermatocytes residing near the basement membrane of the seminiferous tubule must traverse the blood-testis barrier (BTB) at stage VIII–IX of the epithelial cycle to continue their development in the adluminal compartment. Unlike other blood-tissue barriers (e.g. the blood-brain barrier) that are created by the endothelial tight junction (TJ) barrier of capillaries, the BTB is created by specialized junctions between Sertoli cells in which TJ coexists with basal ectoplasmic specialization (basal ES, a testis-specific adherens junction). The basal ES is typified by the presence of tightly packed actin filament bundles sandwiched between cisternae of endoplasmic reticulum and the apposing plasma membranes of Sertoli cells. These actin filament bundles also confer unusual adhesive strength to the BTB. Yet the mechanisms by which these filamentous actin (F-actin) networks are regulated from the bundled to the debundled state to facilitate the transit of spermatocytes remain elusive. Herein, we provide evidence that ribosomal protein S6 (rpS6), the downstream signaling molecule of the mammalian target of rapamycin complex 1 (mTORC1) pathway, is a major regulator of F-actin organization and adhesion protein recruitment at the BTB. rpS6 is restrictively and spatiotemporally activated at the BTB during the epithelial cycle. An activation of rpS6 led to a disruption of the Sertoli cell TJ barrier and BTB integrity. Its silencing in vitro or in vivo by using small interfering RNA duplexes or short hairpin RNA was found to promote the Sertoli cell TJ permeability barrier by the recruitment of adhesion proteins (e.g. claudin-11 and occludin) to the BTB. Thus, rpS6 in the mTORC1 pathway regulates BTB restructuring via its effects on the F-actin organization and protein recruitment at the BTB. PMID:22948214

Mok, Ka-Wai; Mruk, Dolores D.; Silvestrini, Bruno

2012-01-01

204

Downregulation of ribosomal protein S6 inhibits the growth of non-small cell lung cancer by inducing cell cycle arrest, rather than apoptosis.  

PubMed

Ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit, has been found to be associated with multiple physiological and pathophysiological functions. However, its effects and mechanisms in non-small cell lung cancer (NSCLC) still remain unknown. Here, we showed that expressions of total rpS6 and phosphorylation rpS6 (p-rpS6) were both significantly overexpressed in NSCLC. Further survival analysis revealed the shortened overall survival (OS) and relapse-free survival (RFS) in p-rpS6 overexpressed patients and confirmed it as an independent adverse predictor. Stable downregulation of rpS6 in lung adenocarcinoma A549 and squamous cell carcinoma H520 cell lines was then achieved by two specific small hairpin RNA (shRNA) lentiviruses separately. Subsequent experiments showed that downregulation of rpS6 dramatically inhibited cell proliferation in vitro and tumorigenicity in vivo. Moreover, loss of rpS6 promoted cells arrested in G0-G1 phase and reduced in G2-M phase, along with the expression alterations of relative proteins. However, no notable change in apoptosis was observed. Collectively, these results suggested that rpS6 is overactivated in NSCLC and its downregulation suppresses the growth of NSCLC mainly by inducing G0-G1 cell cycle arrest rather than apoptosis. PMID:25199762

Chen, Bojiang; Zhang, Wen; Gao, Jun; Chen, Hong; Jiang, Li; Liu, Dan; Cao, Yidan; Zhao, Shuang; Qiu, Zhixin; Zeng, Jing; Zhang, Shangfu; Li, Weimin

2014-11-28

205

Acetylcorynoline Impairs the Maturation of Mouse Bone Marrow-Derived Dendritic Cells via Suppression of I?B Kinase and Mitogen-Activated Protein Kinase Activities  

PubMed Central

Background Dendritic cells (DCs) are major modulators in the immune system. One active field of research is the manipulation of DCs as pharmacological targets to screen novel biological modifiers for the treatment of inflammatory and autoimmune disorders. Acetylcorynoline is the major alkaloid component derived from Corydalis bungeana herbs. We assessed the capability of acetylcorynoline to regulate lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs. Methodology/Principal Findings Our experimental data showed that treatment with up to 20 µM acetylcorynoline does not cause cytotoxicity in cells. Acetylcorynoline significantly inhibited the secretion of tumor necrosis factor-?, interleukin-6, and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility complex class II, CD40, and CD86 on DCs was also decreased by acetylcorynoline, and the endocytic capacity of LPS-stimulated DCs was restored by acetylcorynoline. In addition, LPS-stimulated DC-elicited allogeneic T-cell proliferation was blocked by acetylcorynoline, and the migratory ability of LPS-stimulated DCs was reduced by acetylcorynoline. Moreover, acetylcorynoline significantly inhibits LPS-induced activation of I?B kinase and mitogen-activated protein kinase. Importantly, administration of acetylcorynoline significantly attenuates 2,4-dinitro-1-fluorobenzene-induced delayed-type hypersensitivity. Conclusions/Significance Acetylcorynoline may be one of the potent immunosuppressive agents through the blockage of DC maturation and function. PMID:23472193

Fu, Ru-Huei; Wang, Yu-Chi; Liu, Shih-Ping; Chu, Ching-Liang; Tsai, Rong-Tzong; Ho, Yu-Chen; Chang, Wen-Lin; Chiu, Shao-Chih; Harn, Horng-Jyh; Shyu, Woei-Cherng; Lin, Shinn-Zong

2013-01-01

206

DPOLARISATION MAGNTIQUE DES NIVEAUX DE CONFIGURATION 6s6d DE L'ATOME DE MERCURE EXCIT OPTIQUEMENT PAR CHELONS  

E-print Network

671. D�POLARISATION MAGN�TIQUE DES NIVEAUX DE CONFIGURATION 6s6d DE L'ATOME DE MERCURE EXCIT� Atomique (associé au C.N.R.S.). Résumé. 2014 A l'aide de lampes à vapeur de mercure très brillantes, on a pu induire de la cohérence dans divers niveaux du mercure excités optiquement. On a pu ainsi

Paris-Sud XI, Université de

207

TRANSFERTS DE POPULATIONS ENTRE LES NIVEAUX DE LA CONFIGURATION (6s, 6d) DE L'ATOME DE MERCURE  

E-print Network

953 TRANSFERTS DE POPULATIONS ENTRE LES NIVEAUX DE LA CONFIGURATION (6s, 6d) DE L'ATOME DE MERCURE) Résumé. 2014 Des mesures de l'intensité des raies de fluorescence émises par des atomes de mercure collisions avec des molécules d'azote. Nous avons repris cette étude avec l'atome de mercure dans le cas de

Paris-Sud XI, Université de

208

Peptides Targeting Protein Kinases: Strategies and Implications  

NSDL National Science Digital Library

Protein kinases are important key regulators in most, if not all, biological processes and are linked with many human diseases. Protein kinases thus became attractive targets for drug design. Intracellularly active peptides that selectively interfere with kinase function and or kinase-mediated signaling pathways are potential drug compounds with therapeutic implications.

2006-12-01

209

A small molecule–kinase interaction map for clinical kinase inhibitors  

Microsoft Academic Search

Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that

Miles A Fabian; William H Biggs III; Daniel K Treiber; Corey E Atteridge; Mihai D Azimioara; Michael G Benedetti; Todd A Carter; Pietro Ciceri; Philip T Edeen; Mark Floyd; Julia M Ford; Margaret Galvin; Jay L Gerlach; Robert M Grotzfeld; Sanna Herrgard; Darren E Insko; Michael A Insko; Andiliy G Lai; Jean-Michel Lélias; Shamal A Mehta; Zdravko V Milanov; Anne Marie Velasco; Lisa M Wodicka; Hitesh K Patel; Patrick P Zarrinkar; David J Lockhart

2005-01-01

210

Tyrosine kinase gene rearrangements in epithelial malignancies  

PubMed Central

Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as ‘druggable’ targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours. PMID:24132104

Shaw, Alice T.; Hsu, Peggy P.; Awad, Mark M.; Engelman, Jeffrey A.

2014-01-01

211

The immunosuppressant tributyltin oxide blocks the mTOR pathway, like rapamycin, albeit by a different mechanism.  

PubMed

We treated the thymoma cell line (EL4) with two model immunosuppressants, rapamycin and tributyltin oxide (TBTO), and compared their effects on the expression levels of proteins that are downstream targets of mTOR kinase 1 (mammalian target of rapamycin, known also as mechanistic target of rapamycin): p70 ribosomal S6 kinase1 and 4E-binding protein 1, a repressor of the cap-binding protein eIF4E. In addition, we evaluated the levels of ribosomal protein S6, p-eIF4B, substrates of p70S6 kinase1, matrin 3 and ribonucleotide reductase, subunit RRM2. The levels of these proteins were evaluated in cell lysates by immunoblot. We found that both compounds inhibited the phosphorylation state of p70S6 kinase 1 and its substrates; however, TBTO, in contrast to rapamycin, reduced the level of the total p70S6k1. Besides, we detected a band with a molecular weight of c. 32?kDa only in the TBTO-treated lysates. This band was detected with a monoclonal antibody specific for S6k1, suggesting that this band might be a degradation product of the kinase. Further, TBTO and rapamycin differentially affected 4E-binding protein 1; the former compound stimulated its phosphorylation state whereas the latter inhibited it. The two immunosuppressants did not affect the level of ribonucleotide reductase, but TBTO downregulated matrin3, in agreement with a previous report, whereas rapamycin had no effect on the expression level of this latter protein. We conclude that TBTO inhibits, like rapamycin, the p70 S6 kinase 1 pathway, but with a different mechanism. However, in contrast to rapamycin, which inhibits the cap-dependent translation, TBTO increases the phosphorylation of 4E-binding protein1. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24375594

Osman, Ahmed M; van Loveren, Henk

2014-12-01

212

Isolation of chloroplastic phosphoglycerate kinase  

SciTech Connect

We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts. Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.

Macioszek, J.; Anderson, L.E. (Univ. of Illinois, Chicago (USA)); Anderson, J.B. (Pennsylvania State Univ., University Park (USA))

1990-09-01

213

Leishmania mexicana lipophosphoglycan activates ERK and p38 MAP kinase and induces production of proinflammatory cytokines in human macrophages through TLR2 and TLR4.  

PubMed

Protozoan parasites of genus Leishmania are the causative agents of leishmaniasis. Leishmania promastigotes primarily infect macrophages in the host, where they transform into amastigotes and multiply. Lipophosphoglycan (LPG), the most abundant surface molecule of the parasite, is a virulence determinant that regulates the host immune response. Promastigotes are able to modulate this effect through LPG, creating a favourable environment for parasite survival, although the mechanisms underlying this modulation remain unknown. We analysed the participation of TLR2 and TLR4 in the production of cytokines and explored the possible phosphorylation of ERK and/or p38 MAP kinase signalling cascades in human macrophages stimulated with Leishmania mexicana LPG. The results show that LPG induced the production of TNF-?, IL-1?, IL-12p40, IL-12p70 and IL-10 and led to phosphorylation of ERK and p38 MAP kinase. Specific inhibitors of ERK or p38 MAP kinases and mAbs against TLR2 and TLR4 reduced cytokine production and phosphorylation of both kinases. Our results suggest that L. mexicana LPG binds TLR2 and TLR4 receptors in human macrophages, leading to ERK and MAP kinase phosphorylation and production of pro-inflammatory cytokines. PMID:24512642

Rojas-Bernabé, A; Garcia-Hernández, O; Maldonado-Bernal, C; Delegado-Dominguez, J; Ortega, E; Gutiérrez-Kobeh, L; Becker, I; Aguirre-Garcia, M

2014-05-01

214

Two Mammalian Mitotic Aurora Kinases: Who's Who?  

NSDL National Science Digital Library

Several serine-threonine kinases related to the Ipl1p kinase in budding yeast, termed aurora kinases, have been cloned recently. Their characterization revealed them to be important regulators of mitotic functions, including (i) the separation of the centrosome, (ii) assembly of the spindles, and (iii) segregation of the chromosomes. The Perspective by Descamps and Prigent delves into the latest observations on aurora kinases in humans and the specific roles of each kinase within the process of mitosis.

Simon Descamps (Universite de Rennes I;Groupe Cycle Cellulaire and Genetique et Developpement REV); Claude Prigent (Universite de Rennes I;Groupe Cycle Cellulaire and Genetique et Developpement REV)

2001-03-13

215

Mechanoenzymatics of titin kinase  

PubMed Central

Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover. PMID:18765796

Puchner, Elias M.; Alexandrovich, Alexander; Kho, Ay Lin; Hensen, Ulf; Schafer, Lars V.; Brandmeier, Birgit; Grater, Frauke; Grubmuller, Helmut; Gaub, Hermann E.; Gautel, Mathias

2008-01-01

216

Dietary Resveratrol prevents development of high-grade prostatic intraepithelial neoplastic lesions: Involvement of SIRT1/S6K axis  

PubMed Central

SIRT1 (mammalian ortholog of the yeast silent information regulator 2) is a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase belonging to the multigene family of sirtuins. Anecdotal and epidemiological observations provide evidence for beneficial effects of the calorie restriction mimetic resveratrol (RES), a SIRT1 activator in preventing cardiovascular diseases and cancer. Although SIRT1 possesses both tumorigenic and anti-tumorigenic potential, the molecular mechanisms underlying SIRT1-mediated tumor progression or inhibition are poorly understood. In this study, we investigated the role of SIRT1 in multiple human prostate cancer cell lines and prostate-specific PTEN knockout mouse model using RES. Androgen-independent prostate cancer cell lines (C42B, PC3, and DU145) express higher levels of SIRT1 than androgen-responsive (LNCaP) and non-tumorigenic prostate cells (RWPE-1). RES enhanced this expression without any significant effect on SIRT1 enzymatic activity. Inhibition of SIRT1 expression using shRNA enhanced cell proliferation and inhibited autophagy by repressing phosphorylation of S6K and 4E-BP1. These biological correlates were reversed in the presence of RES. Analysis of prostates from dietary intervention with RES showed a significant reduction in prostate weight and reduction in the incidence of high grade prostatic intraepithelial neoplastic (HGPIN) lesions by ~54% with no significant change in body weight. Consistent with the in vitro findings RES intervention in the PTEN knockout mouse model was associated with reduction in the prostatic levels of mTOR Complex 1 (mTORC1) activity and increased expression of SIRT1. These data suggest that SIRT1/S6K-mediated inhibition of autophagy drives prostate tumorigenesis. Therefore, modulation of SIRT1/S6K signaling represents an effective strategy for prostate cancer prevention. PMID:23248098

Li, Guiming; Rivas, Paul; Bedolla, Roble; Thapa, Dinesh; Reddick, Robert L; Ghosh, Rita; Kumar, Addanki P

2012-01-01

217

(S)-6-Bromo-BINOL-based phosphoramidite ligand with C(1) symmetry for enantioselective hydrogenation and allylic substitution.  

PubMed

(S)-6-Br-BINOL-derived phosphoramidite, a simple monodentate ligand with a stereogenic center at the phosphorus atom, was synthesized for the first time. This stereoselector generated a high level of enantioselectivity (80-95% ee) in the rhodium-catalyzed hydrogenation of alpha-dehydrocarboxylic acid esters and was also successfully employed in the asymmetric palladium-catalyzed allylic substitution of (E)-1,3-diphenylallyl acetate. The optical yield also showed significant dependence with reaction type: up to 70% ee for allylic amination, up to 75% ee for allylic sulfonylation, and up to 90% ee for allylic alkylation. PMID:20803749

Gavrilov, Konstantin N; Benetsky, Eduard B; Boyko, Vladimir E; Rastorguev, Eugenie A; Davankov, Vadim A; Schäffner, Benjamin; Börner, Armin

2010-10-01

218

Partial purification and characterization of a Ca(2+)-dependent protein kinase from pea nuclei  

NASA Technical Reports Server (NTRS)

Almost all the Ca(2+)-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 x 10(-7) molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca(2+)-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca(2+)-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.

Li, H.; Dauwalder, M.; Roux, S. J.

1991-01-01

219

Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system  

PubMed Central

The PI 3-kinase (PI 3-K) signaling pathway is essential for Schwann cell myelination. Here we have characterized PI 3-K effectors activated during myelination by probing myelinating cultures and developing nerves with an antibody that recognizes phosphorylated substrates for this pathway. We identified a discrete number of phospho-proteins including the S6 ribosomal protein (S6rp), which is down-regulated at the onset of myelination, and N-myc downstream-regulated gene-1 (NDRG1), which is up-regulated strikingly with myelination. We show that type III Neuregulin1 on the axon is the primary activator of S6rp, an effector of mTORC1. In contrast, laminin-2 in the extracellular matrix (ECM), signaling through the ?6?4 integrin and Sgk1 (serum and glucocorticoid-induced kinase 1), drives phosphorylation of NDRG1 in the Cajal bands of the abaxonal compartment. Unexpectedly, mice deficient in ?6?4 integrin signaling or Sgk1 exhibit hypermyelination during development. These results identify functionally and spatially distinct PI 3-K pathways: an early, pro-myelinating pathway driven by axonal Neuregulin1 and a later-acting, laminin–integrin-dependent pathway that negatively regulates myelination. PMID:24687281

Heller, Bradley A.; Ghidinelli, Monica; Voelkl, Jakob; Einheber, Steven; Smith, Ryan; Grund, Ethan; Morahan, Grant; Chandler, David; Kalaydjieva, Luba; Giancotti, Filippo; King, Rosalind H.; Fejes-Toth, Aniko Naray; Fejes-Toth, Gerard; Feltri, Maria Laura; Lang, Florian

2014-01-01

220

Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system.  

PubMed

The PI 3-kinase (PI 3-K) signaling pathway is essential for Schwann cell myelination. Here we have characterized PI 3-K effectors activated during myelination by probing myelinating cultures and developing nerves with an antibody that recognizes phosphorylated substrates for this pathway. We identified a discrete number of phospho-proteins including the S6 ribosomal protein (S6rp), which is down-regulated at the onset of myelination, and N-myc downstream-regulated gene-1 (NDRG1), which is up-regulated strikingly with myelination. We show that type III Neuregulin1 on the axon is the primary activator of S6rp, an effector of mTORC1. In contrast, laminin-2 in the extracellular matrix (ECM), signaling through the ?6?4 integrin and Sgk1 (serum and glucocorticoid-induced kinase 1), drives phosphorylation of NDRG1 in the Cajal bands of the abaxonal compartment. Unexpectedly, mice deficient in ?6?4 integrin signaling or Sgk1 exhibit hypermyelination during development. These results identify functionally and spatially distinct PI 3-K pathways: an early, pro-myelinating pathway driven by axonal Neuregulin1 and a later-acting, laminin-integrin-dependent pathway that negatively regulates myelination. PMID:24687281

Heller, Bradley A; Ghidinelli, Monica; Voelkl, Jakob; Einheber, Steven; Smith, Ryan; Grund, Ethan; Morahan, Grant; Chandler, David; Kalaydjieva, Luba; Giancotti, Filippo; King, Rosalind H; Fejes-Toth, Aniko Naray; Fejes-Toth, Gerard; Feltri, Maria Laura; Lang, Florian; Salzer, James L

2014-03-31

221

Akt mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes  

Microsoft Academic Search

Insulin acutely stimulated glucose uptake in rat primary brown adipocytes in a PI3-kinase-dependent but p70S6-kinase-independent manner. Since Akt represents an intermediate step between these kinases, this study investigated the contribution of Akt to insulin-induced glucose uptake by the use of a chemical compound, ML-9, as well as by transfection with a dominant-negative form of Akt (?Akt). Pretreatment with ML-9 for

Rosario Hernandez; Teresa Teruel; Margarita Lorenzo

2001-01-01

222

A dihydroselenoquinazoline inhibits S6 ribosomal protein signalling, induces apoptosis and inhibits autophagy in MCF-7 cells.  

PubMed

The PI3K/Akt/mTOR/S6 ribosomal protein signalling pathway is a key potential target in breast cancer therapy, playing a central role in proliferation and cell survival. In this study, we found that the seleno-compound 2,4-dihydroselenoquinazoline (3a) generally inhibited this signalling axis in MCF-7 breast cancer cells and caused downregulation of S6 ribosomal protein phosphorylation in a dose- and time-dependent manner. Furthermore, 3a caused a dose- and time-dependent decrease in MCF-7 cell viability as well as cell cycle arrest in G2/M. Interestingly 3a also induced apoptosis, as evidenced by cleavage of PARP and caspase-7, and inhibited autophagy, as demonstrated by accumulation of LC3-II and p62/SQSTM1. Given that induction of autophagy has been previously described as a mechanism by which some breast cancer cells counteract proapoptotic signalling and develop resistance to anti-hormone therapy, this suggests that this derivative, which both triggers apoptosis and inhibits autophagy, may be beneficial in preventing and overcoming resistance in breast cancer cells. The data also show the complexity of this signalling axis which is far from being understood. PMID:25008115

Moreno, Esther; Doughty-Shenton, Dahlia; Plano, Daniel; Font, María; Encío, Ignacio; Palop, Juan Antonio; Sanmartín, Carmen

2014-10-15

223

The HD-exchange motions of ribosomal protein S6 are insensitive to reversal of the protein-folding pathway  

PubMed Central

An increasing number of protein structures are found to encompass multiple folding nuclei, allowing their structures to be formed by several competing pathways. A typical example is the ribosomal protein S6, which comprises two folding nuclei (?1 and ?2) defining two competing pathways in the folding energy landscape: ?1 ? ?2 and ?2 ? ?1. The balance between the two pathways, and thus the order of folding events, is easily controlled by circular permutation. In this study, we make use of this ability to manipulate the folding pathway to demonstrate that the dynamic motions of the S6 structure are independent of how the protein folds. The HD-exchange protection factors remain the same upon complete reversal of the folding order. The phenomenon arises because the HD-exchange motions and the high-energy excitations controlling the folding pathway occur at separated free-energy levels: the Boltzmann distribution of unproductive unfolding attempts samples all unfolding channels in parallel, even those that end up in excessively high barriers. Accordingly, the findings provide a simple rationale for how to interpret native-state dynamics without the need to invoke fluctuations off the normal unfolding reaction coordinate. PMID:19966220

Haglund, Ellinor; Lind, Jesper; Oman, Tommy; Ohman, Anders; Maler, Lena; Oliveberg, Mikael

2009-01-01

224

Self-incompatibility (S) locus region of the mutated S6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele.  

PubMed

This study characterizes the S6m-haplotype, a mutated S6-haplotype with an altered HindIII cut site, of sour cherry (Prunus cerasus). Inheritance and pollination studies of S-haplotypes from reciprocal crosses between 'Erdi Botermo' (EB; S4S6mSa) and 'Rheinische Schattenmorelle' (RS; S6SaSbSc) revealed that the S6m-haplotype conferred unilateral incompatibility with a non-functional pistil component and a functional pollen component. Expression analyses of S6-RNase and SFB6, a candidate gene for pollen-S, in the S6m-haplotype showed that SFB6 was transcribed in EB pollen, but S6-RNase was not transcribed in EB styles. These results were consistent with data from the inheritance and pollination studies. Inverse PCR for the flanking regions of S6-RNase in the S6- and S6m-haplotypes revealed an approximately 2600 bp insertion present at approximately 800 bp upstream of the S6-RNase in the S6m-haplotype, which is responsible for the alternation of the HindIII cut site and a possible cause of inhibition of the transcription of S6-RNase. SFB6 was present downstream of S6-RNase in both the S6- and S6m-haplotypes and expressed in the same way, supporting the idea that SFB is a good candidate for pollen-S in Prunus. PMID:14512382

Yamane, Hisayo; Ikeda, Kazuo; Hauck, Nathanael R; Iezzoni, Amy F; Tao, Ryutaro

2003-11-01

225

Redox regulation of Janus kinase  

PubMed Central

The redox regulation of Janus kinases (JAKs) is a complex subject. Due to other redox-sensitive kinases in the kinome, redox-sensitive phosphatases, and cellular antioxidant systems and reactive oxygen species (ROS) production systems, the net biological outcomes of oxidative stress on JAK-dependent signal transduction vary according to the specific biological system examined. This review begins with a discussion of the biochemical evidence for a cysteine-based redox switch in the catalytic domain of JAKs, proceeds to consider direct and indirect regulatory mechanisms involved in biological experiments, and ends with a discussion of the role(s) of redox regulation of JAKs in various diseases. PMID:24416654

Duhe, Roy J

2013-01-01

226

SIGNAL TRANSDUCTION: Capturing Polo Kinase  

NSDL National Science Digital Library

Access to the article is free, however registration and sign-in are required. The interactions of kinases in signaling cascades and cell cycle pathways are so complex that it can be difficult to identify the protein binding domains that mediate these interactions. In a Perspective, Silljé and Nigg discuss a new proteomic screen (Elia et al.) that identifies the Polo-box binding domain of the mitotic kinase Plk1 as the domain that binds to phosphorylated sites in docking proteins such as Cdc25.

Herman H. W. Silljé (Max Planck Institute of Biochemistry;Department of Cell Biology); Erich A. Nigg (Max Planck Institute of Biochemistry;Department of Cell Biology)

2003-02-21

227

Reciprocal Regulation of Protein Kinase and Pyruvate Kinase Activities of Pyruvate Kinase M2 by Growth Signals*  

PubMed Central

Pyruvate kinase isoform M2 (PKM2) is an enzyme-catalyzing conversion of phosphoenolpyruvate to pyruvate in the glycolysis pathway. It was demonstrated that PKM2 interacts with tyrosine phosphopeptide, and the interaction with the tyrosine phosphopeptide affects the pyruvate kinase activity of PKM2. Our experiments suggest that PKM2 is also an active protein kinase (Gao, X., Wang, H., Yang, J. J., Liu, X., and Liu, Z. R. (2012) Mol. Cell 45, 598–609). We report here that growth signals reciprocally regulate the pyruvate kinase and protein kinase activities of PKM2 by different mechanisms. On the one hand, growth signals induce protein tyrosine phosphorylations. The tyrosine-phosphorylated protein(s) regulates the conversion of pyruvate kinase and protein kinase of PKM2 by directly interacting with PKM2. Binding of the tyrosyl-phosphorylated proteins at the fructose 1,6-bisphosphate-binding site converts the tetrameric PKM2 to a dimer. On the other hand, growth stimulations also lead to PKM2 phosphorylation, which consequently regulates the conversion of protein kinase and pyruvate kinase activities. Growth factor stimulations significantly increase the dimer/tetramer PKM2 ratio in cells and consequently activate the protein kinase activity of PKM2. Our study suggests that the conversion between the pyruvate kinase and protein kinase activities of PKM2 may be an important mechanism mediating the effects of growth signals in promoting cell proliferation. PMID:23576436

Gao, Xueliang; Wang, Haizhen; Yang, Jenny J.; Chen, Jing; Jie, Jiang; Li, Liangwei; Zhang, Yinwei; Liu, Zhi-Ren

2013-01-01

228

Role of KSR-Associated Kinases in Breast Cancer Signaling.  

National Technical Information Service (NTIS)

Increased levels of ERK MAP kinases and increased MAP kinase activity have been demonstrated in malignant breast carcinomas. Therefore, regulators of MAP kinase activity are attractive targets for breast cancer therapeutic intervention. Kinase Suppressor ...

P. Beumr

2002-01-01

229

Anticancer Alkaloid Lamellarins Inhibit Protein Kinases  

PubMed Central

Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dual-specificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors. PMID:19172192

Baunbaek, Dianne; Trinkler, Nolwenn; Ferandin, Yoan; Lozach, Olivier; Ploypradith, Poonsakdi; Rucirawat, Somsak; Ishibashi, Fumito; Iwao, Masatomo; Meijer, Laurent

2008-01-01

230

Pore Helix-S6 Interactions Are Critical in Governing Current Amplitudes of KCNQ3 K+ Channels  

PubMed Central

Two mechanisms have been postulated to underlie KCNQ3 homomeric current amplitudes, which are small compared with those of KCNQ4 homomers and KCNQ2/Q3 heteromers. The first involves differential channel expression governed by the D-helix within the C-terminus. The second suggests similar channel surface expression but an intrinsically unstable KCNQ3 pore. Here, we find H2O2-enhanced oligomerization of KCNQ4 subunits, as reported by nondenaturing polyacrylamide gel electrophoresis, at C643 at the end of the D-helix, where KCNQ3 possesses a histidine. However, H2O2-mediated enhancement of KCNQ4 currents was identical in the C643A mutant, and KCNQ3 H646C produced homomeric or heteromeric (with KCNQ2) currents similar to those of wild-type KCNQ3, ruling out this divergent residue as underlying the small KCNQ3 amplitudes. In KcsA, F103 in S6 is critical for pore-mediated destabilization of the conductive pathway. We found that mutations at the analogous F344 in KCNQ3 dramatically decreased the KCNQ3 currents. Total internal reflection fluorescence imaging revealed only minor differential surface expression among the wild-type and mutant channels. Homology modeling suggests that the effects of the F344 mutants arise from the disruption of the interaction between F344 and A315 in the pore helix. These data support a secondary role of the C-terminus, compared with pore helix-S6 interactions, in governing KCNQ3 current amplitudes. PMID:22713565

Choveau, Frank S.; Bierbower, Sonya M.; Shapiro, Mark S.

2012-01-01

231

Saquinavir-NO-targeted S6 protein mediates sensitivity of androgen-dependent prostate cancer cells to TRAIL.  

PubMed

We previously reported that the NO-modified form of HIV protease inhibitor Saquinavir (Saq) is a potent antitumoral agent efficient against numerous tumor cell lines in vitro and in vivo. In acute toxicity studies, doses of Saq-NO equivalent to DL100 of the parental drug were completely nontoxic. Beside direct effect on malignant cell growth, Saq-NO sensitizes certain type of cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cell death. In this study, we evaluated the effects of Saq-NO on androgen-dependent prostate cancer LNCaP. Saq-NO inhibited both the growth of LNCaP cells in vitro and in xenograft models. Suppression of tumor growth was accompanied with cell cycle arrest in G 0/G 1 phase and established a persistent inhibition of proliferation. Furthermore, Saq-NO reverted sensitivity of LNCaP cells to TRAIL but not to TNF. Treatment of cells with Saq-NO induced transient upregulation of Akt and ERK1/2. This, however, did not represent the primary mode of action of Saq-NO, as elimination with specific inhibitors did not compromise the chemotherapic efficacy of the drug. However, permanent abrogation of phosphorylation of the S6 protein, which is the downstream target of both signaling pathways, was observed. Diminished S6 phosphorylation was associated with re-established sensitivity to TRAIL and reduction of X-linked inhibitor of apoptosis protein (XIAP). In summary, NO modification of Saq led to a new chemical entity with stronger and more pleiotropic antitumor activity than the parental drug. PMID:22370480

Mojic, Marija; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Dinic, Svetlana; Grdovic, Nevena; Miljkovic, Djordje; Stosic-Grujicic, Stanislava; Tumino, Salvatore; Fagone, Paolo; Mangano, Katia; Zocca, Mai-Britt; Al-Abed, Yousef; McCubrey, James A; Nicoletti, Ferdinando

2012-03-15

232

Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity  

Microsoft Academic Search

Small-molecule protein kinase inhibitors are widely used to elucidate cellular signaling pathways and are promising therapeutic agents. Owing to evolutionary conservation of the ATP-binding site, most kinase inhibitors that target this site promiscuously inhibit multiple kinases. Interpretation of experiments that use these compounds is confounded by a lack of data on the comprehensive kinase selectivity of most inhibitors. Here we

Theonie Anastassiadis; Sean W Deacon; Karthik Devarajan; Haiching Ma; Jeffrey R Peterson

2011-01-01

233

Degradation of Activated Protein Kinases by Ubiquitination  

PubMed Central

Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases. PMID:19489726

Lu, Zhimin; Hunter, Tony

2009-01-01

234

The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases  

Microsoft Academic Search

The CDPK-SnRK superfamily consists of seven types of serine-threonine protein kinases: calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent protein kinases (CCaMKs), and SnRKs. Within this superfamily, individual isoforms and subfamilies contain distinct regulatory domains, subcellular targeting information, and substrate specificities. Our analysis of the

Estelle M. Hrabak; Catherine W. M. Chan; Michael Gribskov; Jeffrey F. Harper; Jung H. Choi; Nigel Halford; Jorg Kudla; Sheng Luan; Hugh G. Nimmo; Michael R. Sussman; Martine Thomas; Kay Walker-Simmons; Jian-Kang Zhu; Alice C. Harmon

2003-01-01

235

Latest progress in tyrosine kinase inhibitors  

PubMed Central

Here we discuss the latest progress in development of some kinase inhibitors such as inhibitors of c-MET, LIM and Bcr-Abl kinases. Importantly, many oncogenic kinases signal via the mTOR pathway, suggesting a common target for drug combinations. PMID:24727648

Pospelova, Tatiana V.; Pospelov, Valery A.

2014-01-01

236

Targeting cancer with small molecule kinase inhibitors  

Microsoft Academic Search

Deregulation of kinase activity has emerged as a major mechanism by which cancer cells evade normal physiological constraints on growth and survival. To date, 11 kinase inhibitors have received US Food and Drug Administration approval as cancer treatments, and there are considerable efforts to develop selective small molecule inhibitors for a host of other kinases that are implicated in cancer

Jianming Zhang; Priscilla L. Yang; Nathanael S. Gray

2009-01-01

237

Comprehensive analysis of kinase inhibitor selectivity  

Microsoft Academic Search

We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases

Mindy I Davis; Jeremy P Hunt; Sanna Herrgard; Pietro Ciceri; Lisa M Wodicka; Gabriel Pallares; Michael Hocker; Daniel K Treiber; Patrick P Zarrinkar

2011-01-01

238

Protein Kinases (PowerPoint Slides)  

NSDL National Science Digital Library

The lecture begins with a discussion of the genomics and evolutionary relationships among kinases and then proceeds to describe the structure-function relationships of specific kinases, the molecular mechanisms underlying substrate specificity, and selected issues in regulation of kinase activity.

Avrom Caplan (Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine;)

2005-02-22

239

Kinase signalling in Huntington's disease.  

PubMed

Alterations in numerous signal transduction pathways and aberrant activity of specific kinases have been identified in multiple cell and mouse models of Huntington's disease (HD), as well as in human HD brain. The balance and integration of a network of kinase signalling pathways is paramount for the regulation of a wide range of cellular and physiological processes, such as proliferation, differentiation, inflammation, neuronal plasticity and apoptosis. Unbalanced activity within these pathways provides a potential mechanism for many of the pathological phenotypes associated with HD, such as transcriptional dysregulation, inflammation and ultimately neurodegeneration. The characterisation of aberrant kinase signalling regulation in HD has been inconsistent and may be a result of failure to consider integration between multiple signalling pathways, as well as alterations that may occur over time with both age and disease progression. Collating the information about the effect of mHTT on signalling pathways demonstrates that it has wide ranging effects on multiple pro- and anti-apoptotic kinases, resulting in the dysregulation of numerous complex interactions within a dynamic network. PMID:25062854

Bowles, Kathryn R; Jones, Lesley

2014-01-01

240

Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity  

PubMed Central

Small-molecule protein kinase inhibitors are central tools for elucidating cellular signaling pathways and are promising therapeutic agents. Due to evolutionary conservation of the ATP-binding site, most kinase inhibitors that target this site promiscuously inhibit multiple kinases. Interpretation of experiments utilizing these compounds is confounded by a lack of data on the comprehensive kinase selectivity of most inhibitors. Here we profiled the activity of 178 commercially available kinase inhibitors against a panel of 300 recombinant protein kinases using a functional assay. Quantitative analysis revealed complex and often unexpected kinase-inhibitor interactions, with a wide spectrum of promiscuity. Many off-target interactions occur with seemingly unrelated kinases, revealing how large-scale profiling can be used to identify multi-targeted inhibitors of specific, diverse kinases. The results have significant implications for drug development and provide a resource for selecting compounds to elucidate kinase function and for interpreting the results of experiments that use them. PMID:22037377

Anastassiadis, Theonie; Deacon, Sean W.; Devarajan, Karthik; Ma, Haiching; Peterson, Jeffrey R.

2011-01-01

241

A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis.  

PubMed

Mitogen-activated protein kinase kinase kinases (MAPKKKs) play key roles in intra- and extracellular signaling in eukaryotes. Here we report that the MAPKKK MEKK1 regulates redox homeostasis in Arabidopsis. We show that MEKK1-deficient plants are misregulated in the expression of a number of genes involved in cellular redox control and accumulate reactive oxygen species (ROS). Most strikingly, homozygous mekk1 mutant plants exhibit a lethal phenotype when developing true leaves. MEKK1 kinase activity and protein stability was regulated by H(2)O(2) in a proteasome-dependent manner and mekk1 plants were compromised in ROS-induced MAPK MPK4 activation. Whereas mpk3 and mpk6 knock out plants showed no defects in development or changes in redox control genes, mpk4 null mutant shared several phenotypic and transcript profile features with mekk1 plants. In agreement with the concept that ROS negatively regulates auxin responses in plants, mekk1 and mpk4 mutants show reduced expression of several auxin-inducible marker genes. Overall, our data defines MPK4 as downstream target of MEKK1 and show that MEKK1 functions in integrating ROS homeostasis with plant development and hormone signaling. PMID:17043356

Nakagami, Hirofumi; Soukupová, Hanka; Schikora, Adam; Zárský, Viktor; Hirt, Heribert

2006-12-15

242

DTERMINATION DES SECTIONS EFFICACES DE COLLISION DES GAZ RARES POUR LES NIVEAUX DE CONFIGURATION 6s6d DE L'ATOME DE MERCURE  

E-print Network

CONFIGURATION 6s6d DE L'ATOME DE MERCURE Par YVES L�CLUSE (1), Faculté des Sciences de Caen, Laboratoire de de vie radiatives des niveaux de configuration 6s6d du mercure a été utilisé pour faire l'étude des collisions entre atomes de mercure excités dans ces niveaux et molécules ou atomes de divers gaz étrangers

Paris-Sud XI, Université de

243

The origin and evolution of G protein-coupled receptor kinases.  

PubMed

G protein-coupled receptor (GPCR) kinases (GRKs) play key role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors, promoting high affinity binding of arrestins, which precludes G protein coupling. Direct binding to active GPCRs activates GRKs, so that they selectively phosphorylate only the activated form of the receptor regardless of the accessibility of the substrate peptides within it and their Ser/Thr-containing sequence. Mammalian GRKs were classified into three main lineages, but earlier GRK evolution has not been studied. Here we show that GRKs emerged at the early stages of eukaryotic evolution via an insertion of a kinase similar to ribosomal protein S6 kinase into a loop in RGS domain. GRKs in Metazoa fall into two clades, one including GRK2 and GRK3, and the other consisting of all remaining GRKs, split into GRK1-GRK7 lineage and GRK4-GRK5-GRK6 lineage in vertebrates. One representative of each of the two ancient clades is found as early as placozoan Trichoplax adhaerens. Several protists, two oomycetes and unicellular brown algae have one GRK-like protein, suggesting that the insertion of a kinase domain into the RGS domain preceded the origin of Metazoa. The two GRK families acquired distinct structural units in the N- and C-termini responsible for membrane recruitment and receptor association. Thus, GRKs apparently emerged before animals and rapidly expanded in true Metazoa, most likely due to the need for rapid signalling adjustments in fast-moving animals. PMID:22442725

Mushegian, Arcady; Gurevich, Vsevolod V; Gurevich, Eugenia V

2012-01-01

244

Intersection of selenoproteins and kinase signalling.  

PubMed

The small, obscure group of selenoprotein oxidoreductases and the huge clan of kinases, the workhorses of cellular signalling, are rarely discussed together. Focusing on selenoproteins of unknown structures, we predict a thioredoxin-like fold for the Selenoprotein N (SelN) family and use the structure to rationalise effects of the muscular myopathy-linked mutations in the gene coding SelN. Discussing the recent prediction of a protein kinase-like domain in the Selenoprotein O (SelO), we reiterate evidence for an oxidoreductase function alongside the predicted kinase domain. Thus, we propose that SelO, the strongly conserved kinase-cum-tentative-oxidoreductase may reflect oxidoreductase regulation of kinase networks. Also, we use bibliometric and systems biology approach to explore the kinase-selenoprotein relationships that begin to emerge from the literature. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012). PMID:23541531

Lenart, Anna; Paw?owski, Krzysztof

2013-07-01

245

Magnetically stabilized Fe8(?4-S)6S8 clusters in Ba6Fe25S27.  

PubMed

We have prepared Ba6Fe25S27, and studied its magnetic properties and electronic structure. Single crystal diffraction revealed a cubic phase (Pm3[combining macron]m) with a = 10.2057(9) Å and Z = 1. Within the large cubic cell, tetrahedrally coordinated Fe atoms arrange into octonuclear Fe8(?4-S)6(S8) clusters, which can be described as a cube of Fe atoms with six face-capping and eight terminal S atoms. SQUID magnetometry measurements reveal an antiferromagnetic transition at 25 K and anomalous high-temperature dependence of magnetic susceptibility that is non-Curie like-two magnetic signatures which mimic behavior seen in the parent phases of Fe-based superconductors. Using a combined DFT and molecular orbital based approach, we provide an interpretation of the bonding and stability within Ba6M25S27 (M = Fe, Co, Ni) and related M9S8 phases. Through a ?-bonding molecular orbital model of the transition metal coordination environments, we illustrate how the local stability can be enhanced through addition of Ba. In addition, we perform spin-polarized DFT calculations on Ba6Fe25S27 to determine the effect of adopting an antiferromagnetic spin state on its electronic structure. By studying the magnetic properties from an empirical and computational perspective, we hope to elucidate what aspects of the magnetic structure are significant to bonding. PMID:25140897

Stacey, Timothy E; Borg, Christopher K H; Zavalij, Peter J; Rodriguez, Efrain E

2014-09-16

246

Bioinformatic mining of kinase inhibitors that regulate autophagy through kinase signaling pathways.  

PubMed

The aim of this study was to predict the kinase inhibitors that may regulate autophagy. A total of 62 kinases were obtained through text mining by importing the keyword 'autophagy' and a 'protein kinase' Excel file to PubMed. Subsequently, 146 kinases were derivated through screening in the PubMed database by importing the 'autophagy?associated gene' and 'protein kinase' files. Following intersection of the above two methods, 54 candidate autophagy?associated kinases were obtained. Enrichment analysis indicated that these candidate autophagy?associated kinases were mainly enriched in pathways such as the calcium, Wnt, HIF?1 and mTOR signaling pathways. Among the 54 kinases, 24 were identified through text mining to have specific kinase inhibitors that regulate the corresponding functions; a total of 56 kinase inhibitors were found to be involved in the regulation of these 24 kinases. In total, nine of these 56 kinase inhibitors identified had been widely reported in autophagy regulation studies, 23 kinase inhibitors had been seldom reported and 24 had never been reported. Therefore, introducing these kinases into autophagy regulation analysis in subsequent studies may produce important results. PMID:25323421

Yang, Yang; Ma, Biao; Jin, Ye; Ben, Wei; Zhang, Dandan; Jiang, Keping; Feng, Shujun; Huang, Lu; Zheng, Jianhua

2014-12-01

247

Structure of mitochondrial creatine kinase  

Microsoft Academic Search

CREATINE kinase (CK; EC 2.7.3.2), an enzyme important for energy metabolism in cells of high and fluctuating energy requirements, catalyses the reversible transfer of a phosphoryl goup from phosphocreatine to ADP1-3. We have solved the structure of the octameric mitochondrial isoform, Mib-CK, which is located in the intermembrane compartment and along the cristae membranes. Mib-CK consumes ATP produced in the

Karin Fritz-Wolf; Thomas Schnyder; Theo Wallimann; Wolfgang Kabsch

1996-01-01

248

Oncoprotein protein kinase antibody kit  

DOEpatents

An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA)

2008-12-23

249

Attenuation of Proinflammatory Responses by S-[6]-Gingerol via Inhibition of ROS/NF-Kappa B/COX2 Activation in HuH7 Cells  

PubMed Central

Introduction. Hepatic inflammation underlies the pathogenesis of chronic diseases such as insulin resistance and type 2 diabetes mellitus. S-[6]-Gingerol has been shown to have anti-inflammatory properties. Important inflammatory mediators of interleukins include nuclear factor ?B (NF?B) and cyclooxygenase 2 (COX2). We now explore the mechanism of anti-inflammatory effects of S-[6]-gingerol in liver cells. Methods. HuH7 cells were stimulated with IL1? to establish an in vitro hepatic inflammatory model. Results. S-[6]-Gingerol attenuated IL1?-induced inflammation and oxidative stress in HuH7 cells, as evidenced by decreasing mRNA levels of inflammatory factor IL6, IL8, and SAA1, suppression of ROS generation, and increasing mRNA levels of DHCR24. In addition, S-[6]-gingerol reduced IL1?-induced COX2 upregulation as well as NF?B activity. Similar to the protective effects of S-[6]-gingerol, both NS-398 (a selective COX2 inhibitor) and PDTC (a selective NF?B inhibitor) suppressed mRNA levels of IL6, IL8, and SAA1. Importantly, PDTC attenuated IL1?-induced overexpression of COX2. Of particular note, the protective effect of S-[6]-gingerol against the IL1?-induced inflammatory response was similar to that of BHT, an ROS scavenger. Conclusions. The findings of this study demonstrate that S-[6]-gingerol protects HuH7 cells against IL1?-induced inflammatory insults through inhibition of the ROS/NF?B/COX2 pathway. PMID:23843863

McGrath, Kristine C. Y.; Tran, Van H.; Li, Yi-Ming; Duke, Colin C.; Roufogalis, Basil D.; Heather, Alison K.

2013-01-01

250

Self-incompatibility (S) locus region of the mutated S6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele  

Microsoft Academic Search

This study characterizes the S6m-haplotype, a mutated S6-haplotype with an altered HindIII cut site, of sour cherry (Prunus cerasus). Inheritance and pollination studies of S-haplotypes from reciprocal crosses between 'Erdi Botermo' (EB; S4S6mSa) and 'Rheinische Schattenmorelle' (RS; S6SaSbSc) revealed that the S6m-haplotype conferred unilateral incompati- bility with a non-functional pistil component and a functional pollen component. Expression analyses of S6-RNase

Hisayo Yamane; Kazuo Ikeda; Nathanael R. Hauck; Amy F. Iezzoni; Ryutaro Tao

2003-01-01

251

Mitogen-activated Protein Kinase Kinase Kinase 1 Protects against Nickel-induced Acute Lung Injury  

PubMed Central

Nickel compounds are environmental and occupational hazards that pose serious health problems and are causative factors of acute lung injury. The c-jun N-terminal kinases (JNKs) are regulated through a mitogen-activated protein (MAP) 3 kinase-MAP2 kinase cascade and have been implicated in nickel toxicity. In this study, we used genetically modified cells and mice to investigate the involvement of two upstream MAP3Ks, MAP3K1 and 2, in nickel-induced JNK activation and acute lung injury. In mouse embryonic fibroblasts, levels of JNK activation and cytotoxicity induced by nickel were similar in the Map3k2-null and wild-type cells but were much lower in the Map3k1/Map3k2 double-null cells. Conversely, the levels of JNK activation and cytotoxicity were unexpectedly much higher in the Map3k1-null cells. In adult mouse tissue, MAP3K1 was widely distributed but was abundantly expressed in the bronchiole epithelium of the lung. Accordingly, MAP3K1 ablation in mice resulted in severe nickel-induced acute lung injury and reduced survival. Based on these findings, we propose a role for MAP3K1 in reducing JNK activation and protecting the mice from nickel-induced acute lung injury. PMID:18467339

Mongan, Maureen; Tan, Zongqing; Chen, Liang; Peng, Zhimin; Dietsch, Maggie; Su, Bing; Leikauf, George; Xia, Ying

2008-01-01

252

Multiple phosphorylation of ribosomal protein S6 during transition of quiescent 3T3 cells into early G1, and cellular compartmentalization of the phosphate donor.  

PubMed Central

At 5 min after quiescent cells are induced to enter G1 there is a large increase in the amount of 32P incorporated into 40S ribosomal protein S6. Here we show that changes in the specific activities of 32Pi and [gamma-32P]ATP in stimulated as compared to quiescent cultures do not account for this large increase. Instead, we demonstrate by decreased electrophoretic mobility on two-dimensional polyacrylamide gels that this increase is due to a quantitative increase in the total amount of phosphate incorporated into S6. Furthermore, pulse-chase experiments show that the phosphate that is incorporated into S6 is metabolically stable during at least the first 60 min of induction and that the incorporation of 32P into S6 responds immediately to the replacement of 32Pi by Pi in the medium, in contrast to [gamma-32P]ATP which changes very slowly. Thus, the S6 phosphate donor must be a compartment separate from that of the total cellular ATP. Images PMID:291054

Thomas, G; Siegmann, M; Gordon, J

1979-01-01

253

The diphosphoinositide kinase of rat brain  

PubMed Central

1. The supernatant fraction of adult rat brain contains a diphosphoinositide kinase. 2. Formation of triphosphoinositide by the enzyme in the presence of ATP and Mg2+ ions was shown with labelled ATP or labelled diphosphoinositide. 3. The kinase was also activated by Ca2+, Mn2+ and Co2+ ions, but to a smaller extent than by Mg2+ ions. 4. In the presence of optimum Mg2+ ion concentration the enzyme was inhibited by Ca2+ ions. 5. Activity did not depend on thiol groups and the pH optimum was 7·3. 6. The dialysed supernatant fraction had no diglyceride kinase activity and negligible phosphatidylinositol kinase activity. 7. Triphosphoinositide phosphomonoesterase was present but showed little activity under the conditions used to assay the kinase. 8. Diphosphoinositide kinase was purified by ammonium sulphate fractionation, ethanol treatment and chromatography on Sephadex G-200. 9. This purification removed much of the triphosphoinositide phosphomonoesterase. PMID:4295336

Kai, M.; Salway, J. G.; Hawthorne, J. N.

1968-01-01

254

EGFR-dependent and independent activation of Akt\\/mTOR cascade in bone and soft tissue tumors  

Microsoft Academic Search

To gain the insight into the involvement of signaling mediated by the mammalian target of rapamycin (mTOR) in the phenotype and biological profiles of tumors and tumor-like lesions of the bone and soft tissue, we analyzed the expression and phosphorylation (activation) of mTOR and its correlation with the status of upstream and downstream modulator proteins Akt, p70S6-kinase (S6K), and eukaryotic

Yoh Dobashi; Shioto Suzuki; Eiichi Sato; Yoshiki Hamada; Takashi Yanagawa; Akishi Ooi

2009-01-01

255

Roles for motifs of cell cycle regulating kinases beyond substrate selection of individual kinases  

E-print Network

Errors in the cell cycle, particularly during mitosis, have recently been implicated in tumorigenesis and cancer formation. Several protein kinases, including the major mitotic kinases Cdkl, Aurora A, Aurora B, Nek2, and ...

Alexander, Jes

2008-01-01

256

p21-activated kinases in cancer  

Microsoft Academic Search

The pivotal role of kinases in signal transduction and cellular regulation has lent them considerable appeal as pharmacological targets across a broad spectrum of cancers. p21-activated kinases (Paks) are serine\\/threonine kinases that function as downstream nodes for various oncogenic signalling pathways. Paks are well-known regulators of cytoskeletal remodelling and cell motility, but have recently also been shown to promote cell

Anupama E. Gururaj; Christopher J. Barnes; Rakesh Kumar

2006-01-01

257

Differential Regulation of Ikappa B Kinase alpha and beta by Two Upstream Kinases, NF-kappa B-inducing Kinase and Mitogen-Activated Protein Kinase\\/ERK Kinase Kinase1  

Microsoft Academic Search

NF-kappa B is activated by various stimuli including inflammatory cytokines and stresses. A key step in the activation of NF-kappa B is the phosphorylation of its inhibitors, Ikappa Bs, by an Ikappa B kinase (IKK) complex. Recently, two closely related kinases, designated IKKalpha and IKKbeta , have been identified to be the components of the IKK complex that phosphorylate critical

Hiroyasu Nakano; Masahisa Shindo; Sachiko Sakon; Shigeyuki Nishinaka; Motoyuki Mihara; Hideo Yagita; Ko Okumura

1998-01-01

258

Regulation of Mitogen-Activated Protein Kinases by a Calcium\\/Calmodulin-Dependent Protein Kinase Cascade  

Microsoft Academic Search

Membrane depolarization of NG108 cells gives rapid (<5 min) activation of Ca2+\\/calmodulin-dependent protein kinase IV (CaM-KIV), as well as activation of c-Jun N-terminal kinase (JNK). To investigate whether the Ca2+-dependent activation of mitogen-activated protein kinases (ERK, JNK, and p38) might be mediated by the CaM kinase cascade, we have transfected PC12 cells, which lack CaM-KIV, with constitutively active mutants of

Herve Enslen; Hiroshi Tokumitsu; Philip J. S. Stork; Roger J. Davis; Thomas R. Soderling

1996-01-01

259

Caspases and Kinases in a Death Grip  

PubMed Central

The complex process of apoptosis is orchestrated by caspases, a family of cysteine proteases with unique substrate specificities. Accumulating evidence suggests that cell death pathways are finely tuned by multiple signaling events, including direct phosphorylation of caspases, whereas kinases are often substrates of active caspases. Importantly, caspase-mediated cleavage of kinases can terminate prosurvival signaling or generate proapoptotic peptide fragments that help to execute the death program and facilitate packaging of the dying cells. Here, we review caspases as kinase substrates and kinases as caspase substrates and discuss how the balance between cell survival and cell death can be shifted through crosstalk between these two enzyme families. PMID:19737514

Kurokawa, Manabu; Kornbluth, Sally

2011-01-01

260

Crystal structure of the protein kinase domain of yeast AMP-activated protein kinase Snf1  

E-print Network

Crystal structure of the protein kinase domain of yeast AMP-activated protein kinase Snf1 Michael J of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD by phosphatases. AMPK is found in all eukaryotes. Yeast AMPK is more commonly known as SNF1 [1,6,7]. SNF1 has

Tong, Liang

261

Identification of a Kinase Profile that Predicts Chromosome Damage Induced by Small Molecule Kinase Inhibitors  

Microsoft Academic Search

Kinases are heavily pursued pharmaceutical targets because of their mechanistic role in many diseases. Small molecule kinase inhibitors (SMKIs) are a compound class that includes marketed drugs and compounds in various stages of drug development. While effective, many SMKIs have been associated with toxicity including chromosomal damage. Screening for kinase-mediated toxicity as early as possible is crucial, as is a

Andrew J. Olaharski; Nina Gonzaludo; Hans Bitter; David Goldstein; Stephan Kirchner; Hirdesh Uppal; Kyle Kolaja

2009-01-01

262

21 CFR 862.1650 - Pyruvate kinase test system.  

Code of Federal Regulations, 2012 CFR

...kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells). Measurements obtained by this device are used in the...

2012-04-01

263

Original article Serum creatine kinase activity as a selection  

E-print Network

Original article Serum creatine kinase activity as a selection criterion for stress susceptibility July 1991) Summary ― Estimation of serum creatine kinase isoenzyme activity was used sensitivity. creatine kinase isoenzymes / pig / standardized stress / halothane anaesthesia / ACTH / syn

Paris-Sud XI, Université de

264

Casein kinase I transduces Wnt signals  

Microsoft Academic Search

The Wnt signalling cascade is essential for the development of both invertebrates and vertebrates, and is altered during tumorigenesis. Although a general framework for Wnt signalling has been elucidated, not all of the components have been identified. Here we describe a serine kinase, casein kinase I (CKI), which was isolated by expression cloning in Xenopus embryos. CKI reproduces several properties

John M. Peters; Renée M. McKay; James P. McKay; Jonathan M. Graff

1999-01-01

265

Modulating noncatalytic function with kinase inhibitors.  

PubMed

In this issue of Chemistry & Biology, Hari and colleagues show that conformation-selective ATP-competitive kinase inhibitors have distinct noncatalytic effects on Erk2, including the ability to modulate protein-protein interactions outside the ATP-binding site. These findings enhance our knowledge about the diverse array of activities in which kinase inhibitors can target signaling pathways. PMID:24856138

Agius, Michael P; Soellner, Matthew B

2014-05-22

266

Kinases and pseudokinases: lessons from RAF.  

PubMed

Protein kinases are thought to mediate their biological effects through their catalytic activity. The large number of pseudokinases in the kinome and an increasing appreciation that they have critical roles in signaling pathways, however, suggest that catalyzing protein phosphorylation may not be the only function of protein kinases. Using the principle of hydrophobic spine assembly, we interpret how kinases are capable of performing a dual function in signaling. Its first role is that of a signaling enzyme (classical kinases; canonical), while its second role is that of an allosteric activator of other kinases or as a scaffold protein for signaling in a manner that is independent of phosphoryl transfer (classical pseudokinases; noncanonical). As the hydrophobic spines are a conserved feature of the kinase domain itself, all kinases carry an inherent potential to play both roles in signaling. This review focuses on the recent lessons from the RAF kinases that effectively toggle between these roles and can be "frozen" by introducing mutations at their hydrophobic spines. PMID:24567368

Shaw, Andrey S; Kornev, Alexandr P; Hu, Jiancheng; Ahuja, Lalima G; Taylor, Susan S

2014-05-01

267

The highest-nuclearity manganese/oximate complex: an unusual Mn(II/III)15 cluster with an S = 6 ground state.  

PubMed

The synthesis, structure, and magnetochemical characterization of the largest manganese oxime cluster are reported. The Mn(15)/2-pyridinealdoxime compound is mixed-valence (II/III) and possesses an irregular structural motif with a novel Mn/O core. The oximato-bridged cluster exhibits an S = 6 ground state and a negative magnetoanisotropy. PMID:20377194

Alexandropoulos, Dimitris I; Papatriantafyllopoulou, Constantina; Aromí, Guillem; Roubeau, Olivier; Teat, Simon J; Perlepes, Spyros P; Christou, George; Stamatatos, Theocharis C

2010-05-01

268

8/22/13 8:48 AMRPPR -Preview Report Page 1 of 9https://reporting.research.gov/rppr-web/rppr?execution=e1s6  

E-print Network

8/22/13 8:48 AMRPPR - Preview Report Page 1 of 9https://reporting.research.gov/rppr-web of 9https://reporting.research.gov/rppr-web/rppr?execution=e1s6 Major Activities: Specific Objectives of leader-follower formation control to deep fades in the communication network. 3) Selection and initial

Lemmon, Michael

269

Interaction of the S6 Proline Hinge with N-Type and C-Type Inactivation in Kv1.4 Channels  

PubMed Central

Several voltage-gated channels share a proline-valine-proline (proline hinge) sequence motif at the intracellular side of S6. We studied the proline hinge in Kv1.4 channels, which inactivate via two mechanisms: N- and C-type. We mutated the second proline to glycine or alanine: P558A, P558G. These mutations were studied in the presence/absence of the N-terminal to separate the effects of the interaction between the proline hinge and N- and C-type inactivation. Both S6 mutations slowed or removed N- and C-type inactivation, and altered recovery from inactivation. P558G slowed activation and N- and C-type inactivation by nearly an order of magnitude. Sensitivity to extracellular acidosis and intracellular quinidine binding remained, suggesting that transmembrane communication in N- and C-type inactivation was preserved, consistent with our previous findings of major structural rearrangements involving S6 during C-type inactivation. P558A was very disruptive: activation was slowed by more than an order of magnitude, and no inactivation was observed. These results are consistent with our hypothesis that the proline hinge and intracellular S6 movement play a significant role in inactivation and recovery. Computer modeling suggests that both P558G and P558A mutations modify early voltage-dependent steps and make a final voltage-insensitive step that is rate limiting at positive potentials. PMID:23062336

Bett, Glenna C.L.; Lis, Agnieszka; Guo, Hong; Liu, MiMi; Zhou, Qinlian; Rasmusson, Randall L.

2012-01-01

270

Structural Transformation in Some Chevrel Phase Compounds: ZnMo5S6, ZnMo5Se6 and CuO.7Mo3Se4.  

National Technical Information Service (NTIS)

Low temperature x-ray powder diffraction and electrical resistivity experiments show that the Chevrel phase compounds ZnMo5S6, ZnMo5Se6 and CuO.7Mo3Se4 are structurally unstable near or below room temperature. The binary compounds Mo3S4, Mo3Se4 and Mo3Te4...

A. C. Lawson, R. N. Shelton

1977-01-01

271

Crystal structure of the Golgi casein kinase  

PubMed Central

The family with sequence similarity 20 (Fam20) kinases phosphorylate extracellular substrates and play important roles in biomineralization. Fam20C is the Golgi casein kinase that phosphorylates secretory pathway proteins within Ser-x-Glu/pSer motifs. Mutations in Fam20C cause Raine syndrome, an osteosclerotic bone dysplasia. Here we report the crystal structure of the Fam20C ortholog from Caenorhabditis elegans. The nucleotide-free and Mn/ADP-bound structures unveil an atypical protein kinase-like fold and highlight residues critical for activity. The position of the regulatory ?C helix and the lack of an activation loop indicate an architecture primed for efficient catalysis. Furthermore, several distinct elements, including the presence of disulfide bonds, suggest that the Fam20 family diverged early in the evolution of the protein kinase superfamily. Our results reinforce the structural diversity of protein kinases and have important implications for patients with disorders of biomineralization. PMID:23754375

Xiao, Junyu; Tagliabracci, Vincent S.; Wen, Jianzhong; Kim, Soo-A; Dixon, Jack E.

2013-01-01

272

Semisynthetic and biotransformation studies of (1S,2E,4S,6R,7E,11E)-2,7,11-cembratriene-4,6-diol.  

PubMed

Tobacco-derived (1 S,2 E,4 S,6 R,7 E,11 E)-2,7,11-cembratriene-4,6-diol (1) and (1 S,2 E,4 R,6 R,7 E,11 E)-2,7,11-cembratriene-4,6-diol (2) were first shown to display potential antitumor-promoting activity in the mid-1980s. However, very little is currently understood regarding the structural activity relationships of tobacco cembranoids. The aim of this present study was to explore antiproliferative activity of various derivatives of (1 S,2 E,4 S,6 R,7 E,11 E)-2,7,11-cembratriene-4,6-diol (1) using semisynthetic and biotransformation approaches. Derivatives of 1 include esterified, oxidized, halogenated, and nitrogen- and sulfur-containing compounds (3-17). Biotransformation of 1 using Mucor ramannianus ATCC 9628 and Cunninghamella elegans ATCC 7929 afforded the known 10 S,11 S-epoxy analogue of 1 (4) as the main metabolite. Biotransformation of the 6-O-acetyl analogue (3) using the marine symbiotic Bacillus megaterium strain MO31 afforded (1 S,2 E,4 S,6 R,7 E,11 E,10 R)-2,7,11-cembratriene-4,6,10-triol (18). (1 S,2 E,4 S,6 R,7 E,11 E,13 R)-2,7,11-Cembratriene-4,6,13-triol-6-O-acetate (6), (1 S,2 E,4 S,6 R,7 E,11 E,13 S)-2,7,11-cembratriene-4,6,13-triol-6-O-acetate (7), the rearranged alpha-ketol (1 S,2 E,4 S,7 Z,11 E)-2,7,11-cembratrien-4-ol-6-one (11), and the secocembranoid 12 showed antiproliferative activity against highly malignant +SA mammary epithelial cells with an IC50 range of 15-30 microM. PMID:18177013

El Sayed, Khalid A; Laphookhieo, Surat; Yousaf, Muhammad; Prestridge, Justin A; Shirode, Amit B; Wali, Vikram B; Sylvester, Paul W

2008-01-01

273

Substrate capacity considerations in developing kinase assays.  

PubMed

In developing a screening assay for a serine/threonine kinase, we evaluated various formats of an in-plate enzyme-linked immunosorbent assay (ELISA), as well as solution-phase kinase assays using either ELISA or AlphaScreen detection. Substrate was available both as a biotinylated 15-residue peptide and as a 25-residue peptide containing the same sequence expressed as a glutathione S-transferase fusion protein. When increasing concentrations of either of these substrates were coated directly onto ELISA plates, the rates of the kinase reactions progressively increased. In contrast, when the biotin-peptide was captured onto NeutrAvidin-coated plates, the finite peptide binding capacity of the plates limited the amount of substrate that could be incorporated into the assay system and thereby limited the rate of the reaction at a given kinase concentration. Solution-phase kinase reactions can tolerate high substrate concentrations; however, analysis of kinase reaction samples containing biotin-peptide concentrations higher than the binding capacity of NeutrAvidin-coated plates resulted in an inability to detect differences between reactions run at different substrate concentrations. For AlphaScreen detection following solution-phase kinase reactions, limitations in the binding capacity of the donor and acceptor beads caused loss of signal for substrate concentrations above the maximum binding capacity. Overall, the solution-phase assays required significantly more kinase than the in-plate assays (1-4 microg/ml versus <100 ng/ml, respectively). These studies demonstrate that the amount of substrate that can be incorporated into an assay system substantially affects the rate of the kinase reaction and therefore the amount of kinase required for the assay. PMID:15165509

DeForge, Laura E; Cochran, Andrea G; Yeh, Sherry H; Robinson, Brian S; Billeci, Karen L; Wong, Wai Lee T

2004-04-01

274

BRCA1 Interacts with and Is Required for Paclitaxel-Induced Activation of Mitogen-Activated Protein Kinase Kinase Kinase 3  

Microsoft Academic Search

BRCA1 has been implicated in a number of cellular processes, includ- ing transcriptional regulation, DNA damage repair, cell cycle arrest, and apoptosis. We identified mitogen-activated protein kinase (MAPK) kinase kinase 3 (MEKK3), an upstream regulator of the c-Jun NH2-terminal kinase\\/stress-activated protein kinase and p38\\/MAPK pathways, as a novel BRCA1-interacting protein in a yeast two-hybrid screen and con- firmed the interaction

Paula M. Gilmore; Nuala McCabe; Jennifer E. Quinn; Richard D. Kennedy; Julia J. Gorski; Heather N. Andrews; Stewart McWilliams; Michael Carty; Paul B. Mullan; W. Paul Duprex; Edison T. Liu; Patrick G. Johnston; D. Paul Harkin

2004-01-01

275

A secreted Plasmodium falciparum kinase reveals a signature motif for classification of tyrosine kinase-like kinases.  

PubMed

Thorough bioinformatic and phylogenetic analyses of Plasmodium falciparum tyrosine kinase-like kinase (TKL) sequences revealed a clear evolutionary relationship of PF3D7_1121300 (thereafter called PfTKL2) to the IL-1 receptor-associated kinase (IRAK)/receptor-like kinase (RLK)/Pelle protein family. We identified a novel conserved motif that is unique to this family, as well as an insertion whose length allows distribution of its members into two distinct subfamilies, in a way that matches exactly the dichotomy between 'Tube/Tube-like kinases' (TTLKs) and 'Pelle-like kinases' (PLKs) distinguished previously on the basis of features in accessory domains. The PfTKL2 protein is expressed ubiquitously in asexual blood stages and in gametocytes, and the recombinant enzyme displays kinase activity in vitro. The protein is exported to the host erythrocyte; furthermore, in accordance with data from a previous study of the extracellular proteome of Plasmodium-infected erythrocytes, we show that PfTKL2 is secreted into the culture medium. Considering the functions of other members of the RLK/Pelle family in immunity, and its secretion to the extracellular medium, we speculate that PfTKL2 functions may include an immunomodulatory role promoting parasite survival in the human host. PMID:24045796

Abdi, Abdirahman I; Carvalho, Teresa G; Wilkes, Jonathan M; Doerig, Christian

2013-12-01

276

Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism.  

PubMed

The serine threonine kinase protein kinase B regulates cellular activities as diverse as glycogen metabolism and apoptosis. Full activation of protein kinase B requires 3-phosphoinositides and dual phosphorylation on threonine-308 and serine-473. CaM-K kinase and 3-phosphoinositide dependent-kinase-1 phosphorylate threonine-308. Integrin-linked kinase reportedly phophorylates serine-473. Consistent with this, in a model COS cell system we show that expression of wild-type integrin-linked kinase promotes the wortmannin sensitive phosphorylation of serine-473 of protein kinase B and its downstream substrates, and inhibits C2-ceramide induced apoptosis. In contrast, integrin-linked kinase mutated in a lysine residue critical for function in protein kinases is inactive in these experiments, and furthermore, acts dominantly to block serine-473 phosphorylation induced by ErbB4. However, alignment of analogous sequences from different species demonstrates that integrin-linked kinase is not a typical protein kinase and identifies a conserved serine residue which potentially regulates kinase activity in a phosphorylation dependent manner. Mutation of this serine to aspartate or glutamate, but not alanine, in combination with the inactivating lysine mutation restores integrin-linked kinase dependent phosphorylation of serine-473 of protein kinase B. These data strongly suggest that integrin-linked kinase does not possess serine-473 kinase activity but functions as an adaptor to recruit a serine-473 kinase or phosphatase. PMID:10637513

Lynch, D K; Ellis, C A; Edwards, P A; Hiles, I D

1999-12-23

277

Tyrosine Kinase Inhibitors and Pregnancy  

PubMed Central

The management of patients with chronic myeloid leukemia (CML) during pregnancy has become recently a matter of continuous debate. The introduction of the Tyrosine Kinase Inhibitors (TKIs) in clinical practice has dramatically changed the prognosis of CML patients; in fact, patients diagnosed in chronic phase can reasonably expect many years of excellent disease control and good quality of life, as well as a normal life expectancy, including the necessity to address issues relating to fertility and pregnancy. Physicians are frequently being asked for advice regarding the need for, and/or the appropriateness of, stopping treatment in order to conceive. In this report, we will review the data published in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for TKI treated CML patients, as well as how to manage a planned and/or unplanned pregnancy. PMID:24804001

Abruzzese, Elisabetta; Trawinska, Malgorzata Monika; Perrotti, Alessio Pio; De Fabritiis, Paolo

2014-01-01

278

Tyrosine Kinase Inhibitors and Interferon  

PubMed Central

The use of interferon-a (INF) in chronic myeloid leukemia, when it started in the 80s, was considered as a breakthrough in the therapy of this disease; INF administered alone or in combination with aracytin was the standard choice for treatment for Chronic Myeloid Leukemia (CML) patients unfit for bone marrow transplantation. With the appearance of the first Tyrosine Kinase Inhibitor (TKI) (imatinib) and based on the results of the pivotal IRIS trial, imatinib monotherapy was the new treatment of choice for CML, according to the ELN recommendations. The possibility of combining INF with imatinib, for obtaining better therapeutic responses in CML patients has been already tested and reported. The current challenge is the combined use of second generation TKIs with pegylated –IFN, in order to minimize failures to therapy and increase the number of CML patients with deep molecular responses, who may be able to discontinue lifelong treatment. PMID:24455115

Dimou, Maria; Panayiotidis, Panagiotis

2014-01-01

279

MAP Kinases and Prostate Cancer  

PubMed Central

The three major mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK are signal transducers involved in a broad range of cell functions including survival, apoptosis, and cell differentiation. Whereas JNK and p38 have been generally linked to cell death and tumor suppression, ERK plays a prominent role in cell survival and tumor promotion, in response to a broad range of stimuli such as cytokines, growth factors, ultraviolet radiation, hypoxia, or pharmacological compounds. However, there is a growing body of evidence supporting that JNK and p38 also contribute to the development of a number of malignances. In this paper we focus on the involvement of the MAPK pathways in prostate cancer, including the less-known ERK5 pathway, as pro- or antitumor mediators, through their effects on apoptosis, survival, metastatic potential, and androgen-independent growth. PMID:22046506

Rodriguez-Berriguete, Gonzalo; Fraile, Benito; Martinez-Onsurbe, Pilar; Olmedilla, Gabriel; Paniagua, Ricardo; Royuela, Mar

2012-01-01

280

Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase  

PubMed Central

Mitogen-activated protein kinases (MAPKs) are a family of proteins that constitute signaling pathways involved in processes that control gene expression, cell division, cell survival, apoptosis, metabolism, differentiation and motility. The MAPK pathways can be divided into conventional and atypical MAPK pathways. The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases, MAPK kinase, and MAPK. Atypical MAPK pathways are not organized into this three-tiered cascade. MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases. The latter are referred to as MAPK-activated protein kinases. This review focuses on one such MAPK-activated protein kinase, MAPK-activated protein kinase 5 (MK5) or p38-regulated/activated protein kinase (PRAK). This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways. Recent findings on the regulation of the activity and subcellular localization, bona fide interaction partners and physiological roles of MK5/PRAK are discussed. PMID:21666810

Kostenko, Sergiy; Dumitriu, Gianina; Laegreid, Kari Jenssen; Moens, Ugo

2011-01-01

281

Tyrosine Kinase Inhibition: An Approach to Drug Development  

Microsoft Academic Search

Protein tyrosine kinases (PTKs) regulate cell proliferation, cell differentiation, and signaling processes in the cells of the immune system. Uncontrolled signaling from receptor tyrosine kinases and intracellular tyrosine kinases can lead to inflammatory responses and to diseases such as cancer, atherosclerosis, and psoriasis. Thus, inhibitors that block the activity of tyrosine kinases and the signaling pathways they activate may provide

Alexander Levitzki; Aviv Gazit

1995-01-01

282

Evolution of protein kinase signaling from yeast to man  

Microsoft Academic Search

Protein phosphorylation controls many cellular processes, especially those involved in intercellular communication and coordination of complex functions. To explore the evolution of protein phosphorylation, we compared the protein kinase complements (‘kinomes’) of budding yeast, worm and fly, with known human kinases. We classify kinases into putative orthologous groups with conserved functions and discuss kinase families and pathways that are unique,

Gerard Manning; Gregory D Plowman; Tony Hunter; Sucha Sudarsanam

2002-01-01

283

The specificity of Av3 sea anemone toxin for arthropods is determined at linker DI/SS2-S6 in the pore module of target sodium channels.  

PubMed

Av3 is a peptide neurotoxin from the sea anemone Anemonia viridis that shows specificity for arthropod voltage-gated sodium channels (Navs). Interestingly, Av3 competes with a scorpion ?-toxin on binding to insect Navs and similarly inhibits the inactivation process, and thus has been classified as 'receptor site-3 toxin', although the two peptides are structurally unrelated. This raises questions as to commonalities and differences in the way both toxins interact with Navs. Recently, site-3 was partly resolved for scorpion ?-toxins highlighting S1-S2 and S3-S4 external linkers at the DIV voltage-sensor module and the juxtaposed external linkers at the DI pore module. To uncover channel determinants involved in Av3 specificity for arthropods, the toxin was examined on channel chimaeras constructed with the external linkers of the mammalian brain Nav1.2a, which is insensitive to Av3, in the background of the Drosophila DmNav1. This approach highlighted the role of linker DI/SS2-S6, adjacent to the channel pore, in determining Av3 specificity. Point mutagenesis at DI/SS2-S6 accompanied by functional assays highlighted Trp404 and His405 as a putative point of Av3 interaction with DmNav1. His405 conservation in arthropod Navs compared with tyrosine in vertebrate Navs may represent an ancient substitution that explains the contemporary selectivity of Av3. Trp404 and His405 localization near the membrane surface and the hydrophobic bioactive surface of Av3 suggest that the toxin possibly binds at a cleft by DI/S6. A partial overlap in receptor site-3 of both toxins nearby DI/S6 may explain their binding competition capabilities. PMID:25055135

Gur Barzilai, Maya; Kahn, Roy; Regev, Noa; Gordon, Dalia; Moran, Yehu; Gurevitz, Michael

2014-10-15

284

Frank Masci (1)IRAC D/L Review (S6), August 24, 2001 InSb (3.6 & 4.5m) Linearization  

E-print Network

Frank Masci (1)IRAC D/L Review (S6), August 24, 2001 InSb (3.6 & 4.5µm) Linearization Frank Masci module ("Fowlinearize") that will correct InSb (Channels 1 and 2) array data for non-linearity using range for the InSb flight array only. l The coefficients of the above model are computed by the LINCAL

Masci, Frank

285

A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in Gram-positive and Gram-negative species  

Microsoft Academic Search

Biofilm formation is a critical problem in nosocomial infections and in the aquaculture industries and biofilms show high resistance to antibiotics. The aim of the present study was to reveal a novel anti-biofilm compound from marine bacteria against antibiotic resistant Gram-positive and Gram-negative biofilms. The bacterial extract (50 ?g ml) of S6-01 (Bacillus indicus = MTCC 5559) showed 80–90% biofilm inhibition against Escherichia

Chari Nithya; Muthu Gokila Devi; Shunmugiah Karutha Pandian

2011-01-01

286

The conjugate Rituximab\\/saporin-S6 completely inhibits clonogenic growth of CD20-expressing cells and produces a synergistic toxic effect with Fludarabine  

Microsoft Academic Search

Immunotoxins are chimeric proteins consisting of a toxin coupled to an antibody. To date, several clinical trials have been conducted, and some are still ongoing, to evaluate their anti-tumor efficacy. In this view, we chemically constructed an anti-CD20 immunotoxin with the mAb Rituximab and the type 1 ribosome-inactivating protein (RIP) saporin-S6, designed for B cells non-Hodgkin's lymphoma (NHL) therapy. This

L Polito; A Bolognesi; P L Tazzari; V Farini; C Lubelli; P L Zinzani; F Ricci; F Stirpe

2004-01-01

287

mTORC1 Phosphorylates the ULK1-mAtg13-FIP200 Autophagy Regulatory Complex  

NSDL National Science Digital Library

High nutrient availability stimulates the mammalian target of rapamycin complex 1 (mTORC1) to coordinately activate anabolic processes, such as protein synthesis, while inhibiting the cellular catabolism of autophagy. Positive regulation of protein synthesis through the mTORC1 substrates p70 ribosomal S6 kinase (p70S6K) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1) has been well characterized. The complementary inhibitory mechanism in which mTORC1 phosphorylates the autophagy regulatory complex containing unc-51-like kinase 1 (ULK1), the mammalian Atg13 protein, and focal adhesion kinase interacting protein of 200 kD (FIP200) has also been elucidated.

Edmond Y. Chan (University of Strathclyde;Strathclyde Institute of Pharmacy and Biomedical Sciences REV)

2009-08-18

288

Protein Kinase A Is Central for Forward Transport of Two-pore Domain Potassium Channels K2P3.1 and K2P9.1*  

PubMed Central

Acid-sensitive two-pore domain potassium channels (K2P3.1 and K2P9.1) play key roles in both physiological and pathophysiological mechanisms, the most fundamental of which is control of resting membrane potential of cells in which they are expressed. These background “leak” channels are constitutively active once expressed at the plasma membrane, and hence tight control of their targeting and surface expression is fundamental to the regulation of K+ flux and cell excitability. The chaperone protein, 14-3-3, binds to a critical phosphorylated serine in the channel C termini of K2P3.1 and K2P9.1 (Ser393 and Ser373, respectively) and overcomes retention in the endoplasmic reticulum by ?COP. We sought to identify the kinase responsible for phosphorylation of the terminal serine in human and rat variants of K2P3.1 and K2P9.1. Adopting a bioinformatic approach, three candidate protein kinases were identified: cAMP-dependent protein kinase, ribosomal S6 kinase, and protein kinase C. In vitro phosphorylation assays were utilized to determine the ability of the candidate kinases to phosphorylate the channel C termini. Electrophysiological measurements of human K2P3.1 transiently expressed in HEK293 cells and cell surface assays of GFP-tagged K2P3.1 and K2P9.1 enabled the determination of the functional implications of phosphorylation by specific kinases. All of our findings support the conclusion that cAMP-dependent protein kinase is responsible for the phosphorylation of the terminal serine in both K2P3.1 and K2P9.1. PMID:21357689

Mant, Alexandra; Elliott, David; Eyers, Patrick A.; O'Kelly, Ita M.

2011-01-01

289

Protein kinase A is central for forward transport of two-pore domain potassium channels K2P3.1 and K2P9.1.  

PubMed

Acid-sensitive two-pore domain potassium channels (K2P3.1 and K2P9.1) play key roles in both physiological and pathophysiological mechanisms, the most fundamental of which is control of resting membrane potential of cells in which they are expressed. These background "leak" channels are constitutively active once expressed at the plasma membrane, and hence tight control of their targeting and surface expression is fundamental to the regulation of K(+) flux and cell excitability. The chaperone protein, 14-3-3, binds to a critical phosphorylated serine in the channel C termini of K2P3.1 and K2P9.1 (Ser(393) and Ser(373), respectively) and overcomes retention in the endoplasmic reticulum by ?COP. We sought to identify the kinase responsible for phosphorylation of the terminal serine in human and rat variants of K2P3.1 and K2P9.1. Adopting a bioinformatic approach, three candidate protein kinases were identified: cAMP-dependent protein kinase, ribosomal S6 kinase, and protein kinase C. In vitro phosphorylation assays were utilized to determine the ability of the candidate kinases to phosphorylate the channel C termini. Electrophysiological measurements of human K2P3.1 transiently expressed in HEK293 cells and cell surface assays of GFP-tagged K2P3.1 and K2P9.1 enabled the determination of the functional implications of phosphorylation by specific kinases. All of our findings support the conclusion that cAMP-dependent protein kinase is responsible for the phosphorylation of the terminal serine in both K2P3.1 and K2P9.1. PMID:21357689

Mant, Alexandra; Elliott, David; Eyers, Patrick A; O'Kelly, Ita M

2011-04-22

290

Development and comparison of nonradioactive in vitro kinase assays for NIMA-related kinase 2  

Microsoft Academic Search

NIMA (never in mitosis arrest)-related kinase 2 (Nek2) is a serine\\/threonine kinase required for centrosome splitting and bipolar spindle formation during mitosis. Currently, two in vitro kinase assays are commercially available: (i) a radioactive assay from Upstate Biotechnology and (ii) a nonradioactive fluorescence resonance energy transfer (FRET) assay from Invitrogen. However, due to several limitations such as radioactive waste management

Guixian Jin; Ann Aulabaugh; Jennifer Pocas; Hao Liu; Ron Kriz; Deepak Sampath

2006-01-01

291

Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase  

Microsoft Academic Search

Background  Haspin kinases are mitotic kinases that are well-conserved from yeast to human. Human Haspin is a histone H3 Thr3 kinase that\\u000a has important roles in chromosome cohesion during mitosis. Moreover, phosphorylation of histone H3 at Thr3 by Haspin in fission\\u000a yeast, Xenopus, and human is required for accumulation of Aurora B on the centromere, and the subsequent activation of Aurora

Daisuke Kurihara; Sachihiro Matsunaga; Tomohiro Omura; Tetsuya Higashiyama; Kiichi Fukui

2011-01-01

292

Kinase requirements in human cells: I. Comparing kinase requirements across various cell types  

Microsoft Academic Search

shRNA loss-of-function screens were used to identify kinases that were rate-limiting for promoting cell proliferation and survival. Here, we study the differences in kinase requirements among various human cells, including freshly prepared primary cells, isogenic cells, immortalized cells, and cancer cell lines. Closely related patterns of kinase requirements among the various cell types were observed in three cases: (i) in

Dorre A. Grueneberg; Sebastien Degot; Joseph Pearlberg; Wenliang Li; Joan E. Davies; Amy Baldwin; Wilson Endege; John Doench; Jacqueline Sawyer; Yanhui Hu; Frederick Boyce; Jun Xian; Karl Munger; Ed Harlow

2008-01-01

293

Dynamically reconfigurable characteristics of a double phase conjugate mirror using Sn2P2S6 crystals and their application to optical inter-satellite communication  

NASA Astrophysics Data System (ADS)

A double phase conjugate mirror (DPCM), created by two mutually incoherent beams entering photorefractive nonlinear materials, can generate a phase conjugate beam whose reflectivity may be greater than 100%. Even though the conditions of the incident beams are changed, the DPCM can be dynamically reconfigured by using a Sn2P2S6 crystal with a high response speed. These features of the DPCM are advantageous, particularly in an optical inter-satellite communication system. In particular, use of the phase conjugate beam from the DPCM offers wavefront compensation and amplification in satellite communication. In addition, the dynamically reconfigurable DPCM using a Sn2P2S6 crystal relaxes the acquisition accuracy of the signal beam in the system. In this study, the temporal and spatial operating characteristics of the DPCM using a Sn2P2S6 crystal were first clarified. Next, an inter-satellite system based on the DPCM was proposed, and it was demonstrated that our system significantly improves the tolerance of the acquisition accuracy and tracking time.

Nishimaki, Kaori; Okamoto, Atsushi; Shibukawa, Atsushi; Takabayashi, Masanori; Tomita, Akihisa; Takayama, Yoshihisa

2014-05-01

294

How versatile are inositol phosphate kinases?  

PubMed Central

This review assesses the extent and the significance of catalytic versatility shown by several inositol phosphate kinases: the inositol phosphate multikinase, the reversible Ins(1,3,4) P (3)/Ins(3,4,5,6) P (4) kinase, and the kinases that synthesize diphosphoinositol polyphosphates. Particular emphasis is placed upon data that are relevant to the situation in vivo. It will be shown that catalytic promiscuity towards different inositol phosphates is not typically an evolutionary compromise, but instead is sometimes exploited to facilitate tight regulation of physiological processes. This multifunctionality can add to the complexity with which inositol signalling pathways interact. This review also assesses some proposed additional functions for the catalytic domains, including transcriptional regulation, protein kinase activity and control by molecular 'switching', all in the context of growing interest in 'moonlighting' (gene-sharing) proteins. PMID:14567754

Shears, Stephen B

2004-01-01

295

Genetics Home Reference: Phosphoglycerate kinase deficiency  

MedlinePLUS

... gene. This gene provides instructions for making an enzyme called phosphoglycerate kinase, which is involved in a critical energy-producing process in cells known as glycolysis. During glycolysis, the simple sugar glucose is broken ...

296

Isolation of Chloroplastic Phosphoglycerate Kinase 1  

PubMed Central

We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts (J Macioszek, LE Anderson [1987] Biochim Biophys Acta 892: 185-190). Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast. PMID:16667700

Macioszek, Jerzy; Anderson, James B.; Anderson, Louise E.

1990-01-01

297

Genetics Home Reference: Pyruvate kinase deficiency  

MedlinePLUS

... infancy, and such affected individuals may require regular blood transfusions to survive. The symptoms of this disorder may get worse during an infection or pregnancy. How common is pyruvate kinase deficiency? ...

298

Systems Biology of AGC Kinases in Fungi  

NSDL National Science Digital Library

This STKE Review discusses the evidence that Sch9 is the yeast Saccharomyces cerevesiae homolog of mammalian protein kinase B. Protein kinase B and Sch9 are members of the AGC family of protein kinases, which are involved in diverse cellular functions, including nutrient-sensitive signaling that affects cell survival, cell size, cell cycle progression, and cellular response to stress. With 3 figures, 1 table, and 55 citations, this review provides a discussion of the methods for investigating AGC kinase function, with special emphasis on the challenges presented by the essential nature of these enzymes and their functional redundancy. There is also a discussion of how yeast cells can be used to study aging and longevity, with a description of the evidence for a role for Sch9 in aging and nutrient-sensitive processes.

Alex Sobko (Ontario;Iogen Corporation, Ottawa REV)

2006-09-12

299

G PROTEIN–COUPLED RECEPTOR KINASES  

Microsoft Academic Search

G protein-coupled receptor kinases (GRKs) constitute a family of six mammalian serine\\/threonine protein kinases that phosphorylate agonist-bound, or activated, G protein-coupled receptors (GPCRs) as their primary substrates. GRK-mediated receptor phosphorylation rapidly initiates profound impairment of receptor sig- naling, or desensitization. This review focuses on the regulation of GRK ac- tivity by a variety of allosteric and other factors: agonist-stimulated GPCRs,

Julie A. Pitcher; Neil J. Freedman; Robert J. Lefkowitz

1998-01-01

300

Protein Kinase C and Lung Cancer  

Microsoft Academic Search

\\u000a The protein kinase C (PKC) family of serine\\/threonine kinases has been linked to the carcinogenic process of many types of\\u000a human cancers including lung cancer. Lung carcinogenesis is a multistep process involving both genetic and epigenetic alterations\\u000a in oncogenes and tumor suppressor genes, and changes in activation of signal transduction pathways, resulting in progressive\\u000a deregulation of cell proliferation and survival

Lei Xiao

301

Emerging roles for WNK kinases in cancer  

Microsoft Academic Search

The subfamily of WNK protein kinases is composed of four human genes and is characterised by a typical sequence variation\\u000a within the conserved catalytic domain. Although most research has focussed on the role of WNK1, WNK3 and WNK4 in regulating\\u000a different ion transporters in both the kidney and extrarenal tissues, there is growing evidence for additional roles of WNK\\u000a kinases

Sónia Moniz; Peter Jordan

2010-01-01

302

Characterization of ScMAP4K1, a MAP kinase kinase kinase kinase involved in ovule, seed and fruit development in Solanum chacoense Bitt  

Microsoft Academic Search

In order to gain information about protein kinases acting during plant fertilization and embryogenesis, we used a reverse genetic approach to determine the role of protein kinases expressed in reproductive tissues in the wild potato species Solanum chacoense. Out of an EST library normalized for weakly expressed genes in fertilized ovaries, we isolated a cDNA clone named ScMAP4K1 that showed

Geneviève Major; Caroline Daigle; Théo Stafford-Richard; Faiza Tebbji; Édith Lafleur; Sébastien Caron; Daniel P. Matton

2009-01-01

303

Meriolins, a New Class of Cell Death-Inducing Kinase Inhibitors with Enhanced Selectivity for Cyclin-Dependent Kinases  

Microsoft Academic Search

Protein kinases represent promising anticancer drug targets. We describe here the meriolins, a new family of inhibitors of cyclin-dependent kinases (CDK). Meriolins represent a chem- ical structural hybrid between meridianins and variolins, two families of kinase inhibitors extracted from various marine invertebrates. Variolin B is currently in preclinical evaluation as an antitumor agent. A selectivity study done on 32 kinases

Karima Bettayeb; Oscar M. Tirado; Severine Marionneau-Lambot; Olivier Lozach; Jonathan C. Morris; Silvia Mateo-Lozano; Peter Drueckes; Christoph Schachtele; Francois Liger; Bernard Marquet; Benoit Joseph; Aude Echalier; Jane A. Endicott; Vicente Notario; Laurent Meijer

2007-01-01

304

Functional analysis of domains in the Byr2 kinase  

Microsoft Academic Search

The activation of mitogen-activated protein (MAP) kinase cascades by the Ras GTPase is an evolutionarily conserved signal transduction mechanism. To better understand the interaction between Ras and its target kinase, we study the yeast Schizosaccharomyces pombe where the Ras1 GTPase activates the Byr2 kinase. The Byr2 kinase contains an N-terminal regulatory region and a C-terminal kinase region. The regulatory region

Patricia Bauman; Charles F. Albright

1998-01-01

305

Leucine-rich repeat kinase 2: Relevance to Parkinson's disease  

Microsoft Academic Search

Human leucine-rich repeat kinase 2 (LRRK2) is a novel kinase belonging to the ROCO protein superfamily (Ras of complex proteins (Roc) with a C-terminal of Roc domain). This large complex protein of 280kDa contains several functional domains including leucine-rich repeats, Ras-related GTPase, mitogen-activated protein kinase kinase kinase (MAPKKK), and WD40 repeats. While definitive functions of LRRK2 have yet to be

Luxuan Guo; Wen Wang; Shu G. Chen

2006-01-01

306

Diacylglycerol Kinase Delta Promotes Lipogenesis†  

PubMed Central

We have studied the relationship between diacylglycerol kinase delta (DGK?) and lipogenesis. There is a marked increase in the expression of DGK? during the differentiation of 3T3-L1 cells to adipocytes, as well as in the synthesis of neutral and polar lipids. When 3T3-L1 undifferentiated fibroblasts are transfected to express DGK? there is increased triglyceride synthesis without differentiation to adipocytes. Hence, expression of DGK? promotes lipogenesis. Lipid synthesis is decreased in DGK? knockout mouse embryo fibroblasts, especially for lipids with shorter acyl chains and limited unsaturation. This reduction occurs for both neutral and polar lipids. These findings suggest reduced de novo lipid synthesis. This is confirmed by measuring the incorporation of glycerol into polar and neutral lipids that is higher in the wild type cells than in the DGK? knockouts. In comparison, there was no change in lipid synthesis in DGK? knockout mouse embryo fibroblasts. We also demonstrate that the DGK? knockout cells had a lower expression of acetyl-CoA carboxylase and fatty acid synthase as well as a lower degree of activation by phosphorylation of ATP citrate lyase. These three enzymes are involved in the synthesis of long chain fatty acids. Our results demonstrate that DGK? markedly increases lipid synthesis, at least in part as a result of promoting the de novo synthesis of fatty acids. PMID:24090246

Shulga, Yulia V.; Loukov, Dessi; Ivanova, Pavlina T.; Milne, Stephen B.; Myers, David S.; Hatch, Grant M.; Umeh, G.; Jalan, Divyanshi; Fullerton, Morgan D.; Steinberg, Gregory R.; Topham, Matthew K.; Brown, H. Alex; Epand, Richard M.

2013-01-01

307

Kinase Activity Profiling of Pneumococcal Pneumonia  

PubMed Central

Background Pneumonia represents a major health burden. Previous work demonstrated that although the induction of inflammation is important for adequate host defense against pneumonia, an inability to regulate the host's inflammatory response within the lung later during infection can be detrimental. Intracellular signaling pathways commonly rely on activation of kinases, and kinases play an essential role in the regulation of the inflammatory response of immune cells. Methodology/Principal Findings Pneumonia was induced in mice via intranasal instillation of Streptococcus (S.) pneumoniae. Kinomics peptide arrays, exhibiting 1024 specific consensus sequences for protein kinases, were used to produce a systems biology analysis of cellular kinase activity during the course of pneumonia. Several differences in kinase activity revealed by the arrays were validated in lung homogenates of individual mice using western blot. We identified cascades of activated kinases showing that chemotoxic stress and a T helper 1 response were induced during the course of pneumococcal pneumonia. In addition, our data point to a reduction in WNT activity in lungs of S. pneumoniae infected mice. Moreover, this study demonstrated a reduction in overall CDK activity implying alterations in cell cycle biology. Conclusions/Significance This study utilizes systems biology to provide insight into the signaling events occurring during lung infection with the common cause of community acquired pneumonia, and may assist in identifying novel therapeutic targets in the treatment of bacterial pneumonia. PMID:21483672

Hoogendijk, Arie J.; Diks, Sander H.; van der Poll, Tom; Peppelenbosch, Maikel P.; Wieland, Catharina W.

2011-01-01

308

Protein Kinase Activity of Phosphoinositide 3-Kinase Regulates Cytokine-Dependent Cell Survival  

PubMed Central

The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110? by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting such pathways in cancer. PMID:23526884

Green, Benjamin D.; Barry, Emma F.; Ma, Yuefang; Woodcock, Joanna; Fitter, Stephen; Zannettino, Andrew C. W.; Pitson, Stuart M.; Hughes, Timothy P.; Lopez, Angel F.; Shepherd, Peter R.; Wei, Andrew H.; Ekert, Paul G.; Guthridge, Mark A.

2013-01-01

309

Mixed-Lineage Kinase 3 Delivers CD3\\/CD28Derived Signals into the Ikappa B Kinase Complex  

Microsoft Academic Search

The phosphorylation of IkB by the multiprotein IkB kinase complex (IKC) precedes the activation of tran- scription factor NF-kB, a key regulator of the inflammatory response. Here we identified the mixed-lineage group kinase 3 (MLK3) as an activator of NF-kB. Expression of the wild-type form of this mitogen-activated protein kinase kinase kinase (MAPKKK) induced nuclear immigration, DNA binding, and transcriptional

STEFFEN P. HEHNER; THOMAS G. HOFMANN; ALEXEJ USHMOROV; OLIVER DIENZ; IRENE WING-LAN LEUNG; NORMAN LASSAM; CLAUS SCHEIDEREIT; WULF DROGE; M. LIENHARD SCHMITZ

2000-01-01

310

Leucine-rich repeat kinase 2 induces ?-synuclein expression via the extracellular signal-regulated kinase pathway  

Microsoft Academic Search

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of autosomal-dominant Parkinson's disease (PD). The second known autosomal-dominant PD gene (SNCA) encodes ?-synuclein, which is deposited in Lewy bodies, the neuropathological hallmark of PD. LRRK2 contains a kinase domain with homology to mitogen-activated protein kinase kinase kinases (MAPKKKs) and its activity has been suggested to be a

Iria Carballo-Carbajal; Susanne Weber-Endress; Giorgio Rovelli; Diane Chan; Benjamin Wolozin; Christian L. Klein; Nadja Patenge; Thomas Gasser; Philipp J. Kahle

2010-01-01

311

Vascular Endothelial Growth Factor Receptor-3 Directly Interacts with Phosphatidylinositol 3-Kinase to Regulate Lymphangiogenesis  

PubMed Central

Background Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF) family is a major regulator of lymphatic endothelial cell (LEC) function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. Methods and Results Here we delineate the VEGF-C/VEGF receptor (VEGFR)-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLC?1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. Conclusions Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis. PMID:22745786

Coso, Sanja; Zeng, Yiping; Opeskin, Kenneth; Williams, Elizabeth D.

2012-01-01

312

Interaction of the GTP-binding protein Gi2 with a protein kinase A-like kinase in mouse fibroblasts.  

PubMed

We have previously shown that the GTP-binding protein, Gi2 of mouse Balb/c3T3 cells is linked to a serine kinase which phosphorylates the alpha-subunit of Gi itself. In this report we show that Gi is coupled to a second protein kinase. This kinase does not phosphorylate G but phosphorylates another protein bound non-covalently to G. Phosphorylation of the Gi-linked protein induces its release from Gi. Kinase activity is slightly enhanced by GTPyS, suggesting that this kinase may be physiologically regulated by Gi. In an attempt to identify the kinase we have examined the effect of peptide substrates and inhibitors on kinase activity. We found that the protein kinase A inhibitory peptide, PK1 5-24, inhibited the kinase activity, but at concentrations above those usually required to block protein kinase A. The protein kinase A substrate peptide, kemptide, acted as a substrate of the kinase, and was an inhibitor of the phosphorylation of the Gi-linked protein. However, a protein kinase A, catalytic subunit antibody failed to react with any proteins linked to Gi., A protein kinase C inhibitory peptide had no effect on phosphorylation of the Gi-linked protein. Thus, the identity of this kinase has not been resolved, but it may form part of the signalling system of activated Gi in fibroblasts. PMID:8770360

Crouch, M F; Jans, D A; Simson, L; Hendry, I A

1995-12-01

313

Compartmentalization of Mammalian Pantothenate Kinases  

PubMed Central

The pantothenate kinases (PanK) catalyze the first and the rate-limiting step in coenzyme A (CoA) biosynthesis and regulate the amount of CoA in tissues by differential isoform expression and allosteric interaction with metabolic ligands. The four human and mouse PanK proteins share a homologous carboxy-terminal catalytic domain, but differ in their amino-termini. These unique termini direct the isoforms to different subcellular compartments. PanK1? isoforms were exclusively nuclear, with preferential association with the granular component of the nucleolus during interphase. PanK1? also associated with the perichromosomal region in condensing chromosomes during mitosis. The PanK1? and PanK3 isoforms were cytosolic, with a portion of PanK1? associated with clathrin-associated vesicles and recycling endosomes. Human PanK2, known to associate with mitochondria, was specifically localized to the intermembrane space. Human PanK2 was also detected in the nucleus, and functional nuclear localization and export signals were identified and experimentally confirmed. Nuclear PanK2 trafficked from the nucleus to the mitochondria, but not in the other direction, and was absent from the nucleus during G2 phase of the cell cycle. The localization of human PanK2 in these two compartments was in sharp contrast to mouse PanK2, which was exclusively cytosolic. These data demonstrate that PanK isoforms are differentially compartmentalized allowing them to sense CoA homeostasis in different cellular compartments and enable interaction with regulatory ligands produced in these same locations. PMID:23152917

Alfonso-Pecchio, Adolfo; Garcia, Matthew; Leonardi, Roberta; Jackowski, Suzanne

2012-01-01

314

Diacylglycerol kinase ?: Regulation and stability  

PubMed Central

Given the well-established roles of diacylglycerol (DAG) and phosphatidic acid (PtdOH) in a variety of signaling cascades, it is not surprising that there is an increasing interest in understanding their physiological roles and mechanisms that regulate their cellular levels. One class of enzymes capable of coordinately regulating the levels of these two lipids is the diacylglycerol kinases (DGKs). These enzymes catalyze the transfer of the ?-phosphate of ATP to the hydroxyl group of DAG, which generates PtdOH while reducing DAG. As these enzymes reciprocally modulate the relative levels of these two signaling lipids, it is essential to understand the regulation and roles of these enzymes in various tissues. One system where these enzymes play important roles is the nervous system. Of the ten mammalian DGKs, eight of them are readily detected in the mammalian central nervous system (CNS): DGK-?, DGK-?, DGK-?, DGK-?, DGK-?, DGK-?, DGK-?, and DGK-?. Despite the increasing interest in DGKs, little is known about their regulation. We have focused some attention on understanding the enzymology and regulation of one of these DGK isoforms, DGK-?. We recently showed that DGK-? is regulated by an accessory protein containing polybasic regions. We now report that this accessory protein is required for the previously reported broadening of the pH profile observed in cell lysates in response to phosphatidylserine (PtdSer). Our data further reveal DGK-? is regulated by magnesium and zinc, and sensitive to the known DGK inhibitor R599022. These data outline new parameters involved in regulating DGK-?. PMID:23266086

Tu-Sekine, Becky; Goldschmidt, Hana; Petro, Elizabeth; Raben, Daniel M.

2014-01-01

315

The kinase-inhibitory domain of p21-activated kinase 1 (PAK1) inhibits cell cycle progression independent of PAK1 kinase activity  

Microsoft Academic Search

p21-activated kinase 1 (PAK1) is a mediator of downstream signaling from the small GTPases Rac and Cdc42. In its inactive state, PAK1 forms a homodimer where two kinases inhibit each other in trans. The kinase inhibitory domain (KID) of one molecule of PAK1 binds to the kinase domain of its counterpart and keeps it inactive. Therefore, the isolated KID of

M Thullberg; A Gad; A Beeser; J Chernoff; S Strömblad

2007-01-01

316

Phosphorylation of dGMP analogs by vaccinia virus TMP kinase and human GMP kinase.  

PubMed

Vaccinia virus thymidylate kinase, although similar in sequence to human TMP kinase, has broader substrate specificity and phosphorylates (E)-5-(2-bromovinyl)-dUMP and dGMP. Modified guanines such as glyoxal-dG, 8-oxo-dG, O(6)-methyl-dG, N(2)-ethyl-dG and N(7)-methyl-dG were found present in cancer cell DNA. Alkylated and oxidized dGMP analogs were examined as potential substrates for vaccinia TMP kinase and also for human TMP and GMP kinases. Molecular models obtained from structure-based docking rationalized the enzymatic data. All tested nucleotides are found surprisingly substrates of vaccinia TMP kinase and also of human GMP kinase. Interestingly, O(6)-methyl-dGMP is the only analog specific for the vaccinia enzyme. Thus, O(6)-Me-dGMP could be useful for designing new compounds of medical interest either in antipoxvirus therapy or in experimental combined gene/chemotherapy of cancer. These results also provide new insights regarding dGMP analog reaction with human GMP kinase and their slow recycling by salvage pathway nucleotide kinases. PMID:19631609

Auvynet, Constance; Topalis, Dimitri; Caillat, Christophe; Munier-Lehmann, Hélène; Seclaman, Edward; Balzarini, Jan; Agrofoglio, Luigi André; Kaminski, Pierre Alexandre; Meyer, Philippe; Deville-Bonne, Dominique; El Amri, Chahrazade

2009-10-01

317

The ErbB Kinase Domain: Structural Perspectives into Kinase Activation and Inhibition  

PubMed Central

Epidermal growth factor receptor (EGFR) and its family members, ErbB2, ErB3 and ErB4, are receptor tyrosine kinases which send signals into the cell to regulate many critical processes including development, tissue homeostasis, and tumorigenesis. Central to the signaling of these receptors is their intracellular kinase domain, which is activated by ligand-induced dimerization of the receptor and phosphorylates several tyrosine residues in the C-terminal tail. The phosphorylated tail then recruits other signaling molecules and relays the signal to downstream pathways. A model of the autoinhibition, activation and feedback inhibition mechanisms for the ErbB kinase domain has emerged from a number of recent structural studies. Meanwhile, recent clinical studies have revealed the relationship between specific ErbB kinase mutations and the responsiveness to kinase inhibitor drugs. We will review these regulation mechanisms of the ErbB kinase domain, and discuss the binding specificity of kinase inhibitors and the effects of kinase domain mutations found in cancer patients from a structural perspective. PMID:18761339

Bose, Ron; Zhang, Xuewu

2009-01-01

318

Spinal Phosphinositide 3-Kinase-Akt-mTOR Signaling Cascades in Inflammation-Induced Hyperalgesia  

PubMed Central

Phosphinositide 3-kinase (PI3K), Akt and their downstream kinase, mammalian target of rapamycin (mTOR) are implicated in neural plasticity. The functional linkages of this signaling cascade in spinal dorsal horn and their role in inflammatory hyperalgesia have not been elucidated. In the present work we identified the following characteristics of this cascade. i) Local inflammation led to increase in rat dorsal horn phosphorylation (activation) of Akt (pAkt) and mTOR (pmTOR), as assessed by Western blotting and immunocytochemistry. ii) Increased pAkt and pmTOR were prominent in neurons in lamina I, III and IV, while pmTOR and its downstream targets (pS6, p4EBP) were also observed in glial cells. iii) Intrathecal (IT) treatment with inhibitors to PI3K or Akt attenuated formalin-induced second phase flinching behavior, as well as carrageenan-induced thermal hyperalgesia and tactile allodynia. iv) IT rapamycin (an mTORC1 inhibitor) displayed anti-hyperalgesic effect in both inflammatory pain models. Importantly, IT wortmannin at anti-hyperalgesic doses reversed the evoked increase not only in Akt but also in mTORC1 signaling (pS6/p4EBP). v) pAkt and pmTOR are expressed in neurokinin 1 receptor (NK1R)-positive neurons in Lam I-III after peripheral inflammation. Intrathecal injection of Substance P (SP) activated this cascade (increased phosphorylation) and resulted in hyperalgesia, both of which effects were blocked by IT wortmannin and rapamycin. Together, these findings reveal that afferent inputs trigged by peripheral inflammation initiate spinal activation of PI3K-Akt-mTOR signaling pathway, a component of which participates in neuronal circuits of facilitated pain processing. PMID:21307248

Xu, Qinghao; Fitzsimmons, Bethany; Steinauer, Joanne; Neill, Audrey O'; Newton, Alexandra C.; Hua, Xiao-Ying; Yaksh, Tony L.

2011-01-01

319

Mirk kinase inhibition targets ovarian cancer ascites  

PubMed Central

The Mirk/dyrk1B gene is commonly amplified or upregulated in ovarian cancers, and Mirk is an active kinase in these cancers. Mirk mediates cancer cell survival by decreasing toxic ROS levels through maintaining expression of a series of antioxidant genes, possibly through its transcriptional activator functions. Mirk has the unusual property of being most active in quiescent cancer cells because of marked transcriptional downregulation by Akt/mTOR signaling and by MEK/erk signaling in cycling cells. Metastatic ovarian cancer cells form ascites, non-adherent multicellular aggregates floating within the peritoneal fluid. Most ascites cancer cells are in a reversible quiescent, dormant state, suggesting that Mirk might be expressed in these quiescent cells and thus a therapeutic target. The current studies show that ovarian cancer cell line spheroids that mimic ascites cancer spheroids were largely quiescent in G0/G1, and enriched in Mirk and the quiescence proteins, p130/Rb2 and the CDKI p27. Mirk kinase inhibition in spheroids made from established cell lines and in patient-derived ascites cancer cell spheroids reduced spheroid volume, disrupted spheroid structure to single cells, increased apoptosis, and decreased cell numbers. Earlier studies had shown that the mTOR inhibitor RAD001 increased transcription of the Mirk/dyrk1B gene, so treatments combined RAD001 with the most active Mirk kinase inhibitor. The number of ascites cells from 9 patients was reduced a similar amount by cisplatin, Mirk kinase inhibition or RAD001, but reduced substantially more, about 90%, by concurrent treatment with both the Mirk kinase inhibitor EHT5372 and RAD001. Addition of RAD001 increased the amount of toxic ROS induced by Mirk kinase inhibition. Two ascites samples taken one month apart gave similar drug responses, showing reproducibility of the techniques. Thus Mirk/dyrk1B kinase may be a therapeutic target in ovarian cancer ascites. PMID:25061503

Deng, Xiaobing; Hu, Jing; Cunningham, Mary J.; Friedman, Eileen

2014-01-01

320

Protein Kinase D Regulates Cofilin Activity through p21-activated Kinase 4*  

PubMed Central

Dynamic reorganization of the actin cytoskeleton at the leading edge is required for directed cell migration. Cofilin, a small actin-binding protein with F-actin severing activities, is a key enzyme initiating such actin remodeling processes. Cofilin activity is tightly regulated by phosphorylation and dephosphorylation events that are mediated by LIM kinase (LIMK) and the phosphatase slingshot (SSH), respectively. Protein kinase D (PKD) is a serine/threonine kinase that inhibits actin-driven directed cell migration by phosphorylation and inactivation of SSH. Here, we show that PKD can also regulate LIMK through direct phosphorylation and activation of its upstream kinase p21-activated kinase 4 (PAK4). Therefore, active PKD increases the net amount of phosphorylated inactive cofilin in cells through both pathways. The regulation of cofilin activity at multiple levels may explain the inhibitory effects of PKD on barbed end formation as well as on directed cell migration. PMID:21832093

Spratley, Samantha J.; Bastea, Ligia I.; Doppler, Heike; Mizuno, Kensaku; Storz, Peter

2011-01-01

321

Localization of translational components at the ultramicroscopic level at postsynaptic sites of the rat brain  

Microsoft Academic Search

We investigated the localization of components of translational machinery and their regulators in the postsynaptic region. We examined several components, especially those involved in translational regulation: components of (1) MAPK-Mnk-eIF4E, (2) PI3-kinase-PDK-Akt\\/PKB-FRAP\\/mTOR-PHAS\\/4EBP, (3) p70S6K-S6 ribosomal protein and (4) eEF2 kinase\\/CaMKIII-eEF2 pathways. Western blotting detected all the components examined in the synaptic fractions, and their differential localization to the synaptic subcompartments:

Chie Asaki; Nobuteru Usuda; Ayami Nakazawa; Kiyokazu Kametani; Tatsuo Suzuki

2003-01-01

322

The emerging role of mammalian target of rapamycin inhibitors in the treatment of sarcomas  

Microsoft Academic Search

The mammalian target of rapamycin (mTOR) is a protein kinase that functions as a key regulator of cell growth, proliferation\\u000a and differentiation, cell-cycle progression, angiogenesis, protein degradation, and apoptosis. Following activation by a number\\u000a of oncogenic signals such as growth factors, energy and nutrients, mTOR stimulates several downstream effectors including\\u000a the 40S ribosomal protein S6 kinase (p70s6k) and the eukaryotic

Sushma Vemulapalli; Alain Mita; Yesid Alvarado; Kamalesh Sankhala; Monica Mita

2011-01-01

323

Functional characterization of peanut serine/threonine/tyrosine protein kinase: molecular docking and inhibition kinetics with tyrosine kinase inhibitors.  

PubMed

Serine/threonine/tyrosine (STY) protein kinase from peanut is developmentally regulated and is induced by abiotic stresses. In addition, STY protein kinase activity is regulated by tyrosine phosphorylation. Kinetic mechanism of plant dual specificity protein kinases is not studied so far. Recombinant STY protein kinase occurs as a monomer in solution as shown by gel filtration chromatography. The relative phosphorylation rate of kinase against increasing enzyme concentrations follows a first-order kinetics indicating an intramolecular phosphorylation mechanism. Moreover, the active recombinant STY protein kinase could not transphosphorylate a kinase-deficient mutant of STY protein kinase. Molecular docking studies revealed that the tyrosine kinase inhibitors bind the protein kinase at the same region as ATP. STY protein kinase activity was inhibited by the tyrosine kinase inhibitors, and the inhibitor potency series against the recombinant STY protein kinase was tyrphostin > genistein > staurosporine. The inhibition constant (K(i)), and the IC(50) value of STY protein kinase for tyrosine kinase inhibitors with ATP and histone are discussed. All the inhibitors competed with ATP. Genistein was an uncompetitive inhibitor with histone, whereas staurosporine and tyrphostin were linear mixed type noncompetitive inhibitors with histone. Molecular docking and kinetic analysis revealed that Y148F mutant of the "ATP-binding loop" and Y297F mutant of the "activation loop" showed a dramatic increase in K(i) values for genistein and tyrphostin with respect to wild-type STY protein kinase. Data presented here provide the direct evidence on the mechanism of inhibition of plant protein kinases by tyrosine kinase inhibitors. This study also suggests that tyrosine kinase inhibitors may be useful in unraveling the plant tyrosine phosphorylation signaling cascades. PMID:15379551

Rudrabhatla, Parvathi; Rajasekharan, Ram

2004-09-28

324

Syntheses, structure, magnetism, and optical properties of the partially ordered quaternary interlanthanide sulfides PrLnYb2S6 (Ln=Tb, Dy)  

Microsoft Academic Search

Dark red single crystals of PrLnYb2S6 (Ln=Pr\\/Yb, Tb, Dy) have been synthesized through the reactions of elemental rare earth metals and S using a Sb2S3 flux at 1000 °C. These isotypic compounds adopt the F-Ln2S3 three-dimensional open-channel structure type. Eight-coordinate Pr3+ ions sit in the channels that are constructed from three different edge-shared double chains running down the b-axis that

Geng Bang Jin; Eun Sang Choi; Robert P. Guertin; James S. Brooks; Corwin H. Booth; Thomas E. Albrecht-Schmitt

2007-01-01

325

Syntheses, structure, magnetism, and optical properties of the partially ordered quaternary interlanthanide sulfides Pr LnYb 2S 6 ( Ln=Tb, Dy)  

Microsoft Academic Search

Dark red single crystals of PrLnYb2S6 (Ln=Pr\\/Yb, Tb, Dy) have been synthesized through the reactions of elemental rare earth metals and S using a Sb2S3 flux at 1000°C. These isotypic compounds adopt the F-Ln2S3 three-dimensional open-channel structure type. Eight-coordinate Pr3+ ions sit in the channels that are constructed from three different edge-shared double chains running down the b-axis that contain

Geng Bang Jin; Eun Sang Choi; Robert P. Guertin; James S. Brooks; Corwin H. Booth; Thomas E. Albrecht-Schmitt

2007-01-01

326

Use of Silicon Photomultipliers in ZnS:6LiF scintillation neutron detectors: signal extraction in presence of high dark count rates  

NASA Astrophysics Data System (ADS)

We report on the possibility of using Silicon Photomultipliers (SiPMs) to detect the scintillation light from neutron conversion in ZnS:6LiF scintillators. The light is collected by wavelength-shifting fibers embedded into the scintillator. The difficulty of extracting neutron signals in the presence of high dark count rates of the SiPMs is addressed by applying a dedicated processing algorithm to analyze the temporal distribution of the SiPM pulses. With a single-channel prototype detection unit we demonstrate a very good neutron signal extraction at SiPM dark count rates of about 1 MHz.

Stoykov, A.; Mosset, J.-B.; Greuter, U.; Hildebrandt, M.; Schlumpf, N.

2014-06-01

327

Use of Silicon Photomultipliers in ZnS:6LiF scintillation neutron detectors: signal extraction in presence of high dark count rates  

E-print Network

We report on the possibility of using Silicon Photomultipliers (SiPMs) to detect the scintillation light from neutron conversion in ZnS:6LiF scintillators. The light is collected by wavelength-shifting fibers and adapted to the sensitivity range of the SiPMs. The difficulty of extracting neutron signals in presence of high dark count rates of the SiPMs is addressed by applying a dedicated processing algorithm to analyze the temporal distribution of the SiPM pulses. With a single-channel prototype detection unit we demonstrate a very good neutron signal extraction at SiPM dark count rates of about 1 MHz.

Stoykov, A; Greuter, U; Hildebrandt, M; Schlumpf, N

2014-01-01

328

Regulation of heart muscle pyruvate dehydrogenase kinase  

PubMed Central

1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [32P]phosphate from [?-32P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100?m) and cyclic 3?:5?-nucleotides (at 10?m) had no significant effect on kinase activity. 3. The Km for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76?m. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The Km for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9–25.4?m. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The Km for pyruvate in the pyruvate dehydrogenase reaction was 35.5?m. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25–500?m. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10?m) the kinase activity was enhanced by low concentrations of pyruvate (25–100?m) and inhibited by a high concentration (500?m). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms 14CO2 from [1-14C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg2+ (15mm) and by Ca2+ (10nm–10?m) at low Mg2+ (0.15mm) but not at high Mg2+ (15mm). PMID:4462746

Cooper, Ronald H.; Randle, Philip J.; Denton, Richard M.

1974-01-01

329

Protein kinase activators alter glial cholesterol esterification  

SciTech Connect

Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

1986-05-01

330

Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells: Characterization of a Selective Allosteric Kinase Inhibitor  

SciTech Connect

Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.

Nagashima, Kumiko; Shumway, Stuart D.; Sathyanarayanan, Sriram; Chen, Albert H.; Dolinski, Brian; Xu, Youyuan; Keilhack, Heike; Nguyen, Thi; Wiznerowicz, Maciej; Li, Lixia; Lutterbach, Bart A.; Chi, An; Paweletz, Cloud; Allison, Timothy; Yan, Youwei; Munshi, Sanjeev K.; Klippel, Anke; Kraus, Manfred; Bobkova, Ekaterina V.; Deshmukh, Sujal; Xu, Zangwei; Mueller, Uwe; Szewczak, Alexander A.; Pan, Bo-Sheng; Richon, Victoria; Pollock, Roy; Blume-Jensen, Peter; Northrup, Alan; Andersen, Jannik N. (Merck) [Merck

2013-11-20

331

The survival kinases Akt and Pim as potential pharmacological targets  

PubMed Central

The Akt and Pim kinases are cytoplasmic serine/threonine kinases that control programmed cell death by phosphorylating substrates that regulate both apoptosis and cellular metabolism. The PI3K-dependent activation of the Akt kinases and the JAK/STAT–dependent induction of the Pim kinases are examples of partially overlapping survival kinase pathways. Pharmacological manipulation of such kinases could have a major impact on the treatment of a wide variety of human diseases including cancer, inflammatory disorders, and ischemic diseases. PMID:16200194

Amaravadi, Ravi; Thompson, Craig B.

2005-01-01

332

PAS Kinase: A Nutrient Sensing Regulator of Glucose Homeostasis  

PubMed Central

Per-Arnt-Sim (PAS) kinase (PASK, PASKIN, and PSK) is a member of the group of nutrient sensing protein kinases. These protein kinases sense the energy or nutrient status of the cell and regulate cellular metabolism appropriately. PAS kinase responds to glucose availability and regulates glucose homeostasis in yeast, mice, and man. Despite this pivotal role, the molecular mechanisms of PAS kinase regulation and function are largely unknown. This review focuses on what is known about PAS kinase, including its conservation from yeast to man, identified substrates, associated phenotypes and role in metabolic disease. PMID:24265199

DeMille, Desiree; Grose, Julianne H.

2014-01-01

333

X-Ray Crystal Structure of Bone Marrow Kinase in the X Chromosome: A Tec Family Kinase  

SciTech Connect

Bone marrow kinase in the X chromosome, a member of the Tec family of tyrosine kinases, plays a role in both monocyte/macrophage trafficking as well as cytokine secretion. Although the structures of Tec family kinases Bruton's tyrosine kinase and IL-2-inducible T-cell kinase are known, the crystal structures of other Tec family kinases have remained elusive. We report the X-ray crystal structures of bone marrow kinase in the X chromosome in complex with dasatinib at 2.4 {angstrom} resolution and PP2 at 1.9 {angstrom} resolution. The bone marrow kinase in the X chromosome structures reveal a typical kinase protein fold; with well-ordered protein conformation that includes an open/extended activation loop and a stabilized DFG-motif rendering the kinase in an inactive conformation. Dasatinib and PP2 bind to bone marrow kinase in the X chromosome in the ATP binding pocket and display similar binding modes to that observed in other Tec and Src protein kinases. The bone marrow kinase in the X chromosome structures identify conformational elements of the DFG-motif that could potentially be utilized to design potent and/or selective bone marrow kinase in the X chromosome inhibitors.

Muckelbauer, Jodi; Sack, John S.; Ahmed, Nazia; Burke, James; Chang, ChiehYing Y.; Gao, Mian; Tino, Joseph; Xie, Dianlin; Tebben, Andrew J. (BMS)

2012-06-27

334

Crystal Structure of Human Nicotinamide Riboside Kinase  

SciTech Connect

Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

Khan,J.; Xiang, S.; Tong, L.

2007-01-01

335

Kinase packing defects as drug targets  

PubMed Central

Protein packing defects constitute structural singularities arising from backbone overexposure to water. Such features may be targeted in kinase-inhibitor design to achieve specificity, to control cross reactivity and to overcome drug resistant mutations. Protein kinases constitute major targets in molecular cancer therapy. The structural conservation of kinases causes specificity problems in most drug inhibitors, often resulting in dangerous side effects. Here we survey recent approaches in drug design that exploit a molecular marker for specificity: the pattern of packing defects. These packing defects are solvent-exposed intramolecular hydrogen bonds that may be protected by drugs upon association. In this light, we review design strategies to achieve paralog discrimination, to control cross reactivity and to overcome drug resistance induced by target mutations. Introduction PMID:17993409

Crespo, Alejandro; Fernandez, Ariel

2007-01-01

336

MAP kinase pathways: The first twenty years  

PubMed Central

The MAP kinases, discovered approximately twenty years ago, together with their immediate upstream regulators, are among the most highly studied signal transduction molecules. This body of work has shaped many aspects of our present views of signal transduction by protein kinases. The effort expended in this area reflects the extensive participation of these regulatory modules in the control of cell fate decisions, i.e., proliferation, differentiation and death, across all eukaryotic phylla and in all tissues of metazoans. The discovery of these kinases is reviewed, followed by a discussion of some of the features of this signaling module that account for its broad impact on cell function and its enormous interest to many investigators. PMID:17229475

Avruch, Joseph

2007-01-01

337

IR Li2Ga2GeS6 nanocrystallized GeS2-Ga2S3-Li2S electroconductive chalcogenide glass with good nonlinearity  

PubMed Central

GeS2-Ga2S3-Li2S electroconductive glasses were prepared by the conventional melt-quenching method through carefully controlling the heating rate. Comparing with the reference of glass-forming region, our investigated GeS2-Ga2S3-Li2S system was extended to the cation ratio of 0–20% Li with around 40% Ga. GeS2-Ga2S3-Li2S glass-ceramics containing IR Li2Ga2GeS6 nonlinear nanocrystals were obtained by the more carefully controlled heating rate. Its optical nonlinearity was investigated by the Maker fringe measurements, the maximum second harmonic intensity was observed to be 0.35 of the reference Z-cut quartz. IR Li2Ga2GeS6 nonlinear crystals were directly obtained at the composition of 40GeS2-30GaS1.5-30LiS0.5. PMID:25030713

Liu, Qiming; Zhang, Peng

2014-01-01

338

Central activating transcription factor 4 (ATF4) regulates hepatic insulin resistance in mice via S6K1 signaling and the vagus nerve.  

PubMed

Recent studies have revealed that the central nervous system, particularly the hypothalamus, is critical for regulating insulin sensitivity in peripheral tissues. The aim of our current study is to investigate the possible involvement of hypothalamic activating transcription factor 4 (ATF4) in the regulation of insulin sensitivity in the liver. Here, we show that overexpression of ATF4 in the hypothalamus resulting from intracerebroventricular injection of adenovirus expressing ATF4 induces hepatic insulin resistance in mice and that inhibition of hypothalamic ATF4 by intracerebroventricular adenovirus expressing a dominant-negative ATF4 variant has the opposite effect. We also show that hypothalamic ATF4-induced insulin resistance is significantly blocked by selective hepatic vagotomy or by inhibiting activity of the mammalian target of rapamycin (mTOR) downstream target S6K1. Finally, we show that inhibition of hypothalamic ATF4 reverses hepatic insulin resistance induced by acute brain endoplasmic reticulum (ER) stress. Taken together, our study describes a novel central pathway regulating hepatic insulin sensitivity that is mediated by hypothalamic ATF4/mTOR/S6K1 signaling and the vagus nerve and demonstrates an important role for hypothalamic ATF4 in brain ER stress-induced hepatic insulin resistance. These results may lead to the identification of novel therapeutic targets for treating insulin resistance and associated metabolic diseases. PMID:23454693

Zhang, Qian; Yu, Junjie; Liu, Bin; Lv, Ziquan; Xia, Tingting; Xiao, Fei; Chen, Shanghai; Guo, Feifan

2013-07-01

339

The mTORC1/S6K1 Pathway Regulates Glutamine Metabolism through the eIF4B-Dependent Control of c-Myc Translation.  

PubMed

Growth-promoting signaling molecules, including the mammalian target of rapamycin complex 1 (mTORC1), drive the metabolic reprogramming of cancer cells required to support their biosynthetic needs for rapid growth and proliferation [1]. Glutamine is catabolyzed to ?-ketoglutarate (?KG), a tricarboxylic acid (TCA) cycle intermediate, through two deamination reactions, the first requiring glutaminase (GLS) to generate glutamate and the second occurring via glutamate dehydrogenase (GDH) or transaminases [2]. Activation of the mTORC1 pathway has been shown previously to promote the anaplerotic entry of glutamine to the TCA cycle via GDH. Moreover, mTORC1 activation also stimulates the uptake of glutamine, but the mechanism is unknown [3]. It is generally thought that rates of glutamine utilization are limited by mitochondrial uptake via GLS, suggesting that, in addition to GDH, mTORC1 could regulate GLS. Here we demonstrate that mTORC1 positively regulates GLS and glutamine flux through this enzyme. We show that mTORC1 controls GLS levels through the S6K1-dependent regulation of c-Myc (Myc). Molecularly, S6K1 enhances Myc translation efficiency by modulating the phosphorylation of eukaryotic initiation factor eIF4B, which is critical to unwind its structured 5' untranslated region (5'UTR). Finally, our data show that the pharmacological inhibition of GLS is a promising target in pancreatic cancers expressing low levels of PTEN. PMID:25220053

Csibi, Alfredo; Lee, Gina; Yoon, Sang-Oh; Tong, Haoxuan; Ilter, Didem; Elia, Ilaria; Fendt, Sarah-Maria; Roberts, Thomas M; Blenis, John

2014-10-01

340

Myosin light chain kinase phosphorylation in tracheal smooth muscle  

SciTech Connect

Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in {sup 32}P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+.

Stull, J.T.; Hsu, L.C.; Tansey, M.G.; Kamm, K.E. (Univ. of Texas Southwestern Medical Center, Dallas (USA))

1990-09-25

341

Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei  

NASA Technical Reports Server (NTRS)

Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

Li, H.; Roux, S. J.

1992-01-01

342

SIGNAL TRANSDUCTION: Routing MAP Kinase Cascades  

NSDL National Science Digital Library

Access to the article is free, however registration and sign-in are required. Cells need to convey information from signals on their surface to a variety of intracellular targets, including transcription factors, contractile proteins, and enzymes. To do so efficiently, they construct information pathways with enzymes called kinases, using the same enzymes over and over. But what prevents cross talk between pathways? In her Perspective, Elion discusses new results in this issue by Whitmarsh et al. and Schaeffer et al., who identify proteins that act as scaffolds in mouse cells, binding certain kinases to make a pathway for a specific function that is insulated from the rest of the cell.

Elaine A. Elion (Harvard Medical School;Department of Biological Chemistry)

1998-09-11

343

Protein kinase activity of the insulin receptor.  

PubMed Central

The insulin receptor is an integral membrane glycoprotein (Mr approximately 300,000) composed of two alpha-subunits (Mr approximately 130,000) and two beta-subunits (Mr approximately 95,000) linked by disulphide bonds. This oligomeric structure divides the receptor into two functional domains such that alpha-subunits bind insulin and beta-subunits possess tyrosine kinase activity. The amino acid sequence deduced from cDNA of the single polypeptide chain precursor of human placental insulin receptor revealed that alpha- and beta-subunits consist of 735 and 620 residues, respectively. The alpha-subunit is hydrophilic, disulphide-bonded, glycosylated and probably extracellular. The beta-subunit consists of a short extracellular region which links the alpha-subunit through disulphide bridges, a hydrophobic transmembrane region and a longer cytoplasmic region which is structurally homologous with other tyrosine kinases like the src oncogene product and EGF receptor kinases. The cellular function of insulin receptors is dual: transmembrane signalling and endocytosis of hormone. The binding of insulin to its receptor on the cell membrane induces transfer of signal from extracellular to cytoplasmic receptor domains leading to activation of cell metabolism and growth. In addition, hormone-receptor complexes are internalized leading to intracellular proteolysis of insulin, whereas receptors are recycled to the membrane. These phenomena are kinetically well-characterized, but their molecular mechanisms remain obscure. Insulin receptor in different tissues and animal species are homologous in their structure and function, but show also significant differences regarding size of alpha-subunits, binding kinetics, insulin specificity and receptor-mediated degradation. We suggest that this heterogeneity of receptors may be linked to the diversity in insulin effects on metabolism and growth in various cell types. The purified insulin receptor phosphorylates its own beta-subunit and exogenous protein and peptide substrates on tyrosine residues, a reaction which is insulin-sensitive, Mn2+-dependent and specific for ATP. Tyrosine phosphorylation of the beta-subunit activates receptor kinase activity, and dephosphorylation with alkaline phosphatase deactivates the kinase. In intact cells or impure receptor preparations, a serine kinase is also activated by insulin. The cellular role of two kinase activities associated with the insulin receptor is not known, but we propose that the tyrosine- and serine-specific kinases mediate insulin actions on metabolism and growth either through dual-signalling or sequential pathways.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 3. Fig. 5. PMID:3017297

Gammeltoft, S; Van Obberghen, E

1986-01-01

344

The landscape of kinase fusions in cancer  

PubMed Central

Human cancer genomes harbour a variety of alterations leading to the deregulation of key pathways in tumour cells. The genomic characterization of tumours has uncovered numerous genes recurrently mutated, deleted or amplified, but gene fusions have not been characterized as extensively. Here we develop heuristics for reliably detecting gene fusion events in RNA-seq data and apply them to nearly 7,000 samples from The Cancer Genome Atlas. We thereby are able to discover several novel and recurrent fusions involving kinases. These findings have immediate clinical implications and expand the therapeutic options for cancer patients, as approved or exploratory drugs exist for many of these kinases. PMID:25204415

Stransky, Nicolas; Cerami, Ethan; Schalm, Stefanie; Kim, Joseph L.; Lengauer, Christoph

2014-01-01

345

The stress-activated protein kinase subfamily of c-Jun kinases  

Microsoft Academic Search

THE mitogen-activated protein (MAP) kinases Erk-1 and Erk-2 are proline-directed kinases that are themselves activated through concomitant phosphorylation of tyrosine and threonine residues1-4. The kinase p54 (Mr 54,000), which was first isolated from cycloheximide-treated rats, is proline-directed like Erks-1\\/2, and requires both Tyr and Ser\\/Thr phosphorylation3,5,6 for activity. p54 is, however, distinct from Erks-1\\/2 in its substrate specificity, being unable

John M. Kyriakis; Papia Banerjee; Eleni Nikolakaki; Tianang Dai; Elizabeth A. Rubie; Mir F. Ahmad; Joseph Avruch; James R. Woodgett

1994-01-01

346

Contribution of Casein Kinase 2 and Spleen Tyrosine Kinase to CFTR Trafficking and Protein Kinase A-Induced Activity ? ‡  

PubMed Central

Previously, the pleiotropic “master kinase” casein kinase 2 (CK2) was shown to interact with CFTR, the protein responsible for cystic fibrosis (CF). Moreover, CK2 inhibition abolished CFTR conductance in cell-attached membrane patches, native epithelial ducts, and Xenopus oocytes. CFTR possesses two CK2 phosphorylation sites (S422 and T1471), with unclear impact on its processing and trafficking. Here, we investigated the effects of mutating these CK2 sites on CFTR abundance, maturation, and degradation coupled to effects on ion channel activity and surface expression. We report that CK2 inhibition significantly decreased processing of wild-type (wt) CFTR, with no effect on F508del CFTR. Eliminating phosphorylation at S422 and T1471 revealed antagonistic roles in CFTR trafficking: S422 activation versus T1471 inhibition, as evidenced by a severe trafficking defect for the T1471D mutant. Notably, mutation of Y512, a consensus sequence for the spleen tyrosine kinase (SYK) possibly acting in a CK2 context adjacent to the common CF-causing defect F508del, had a strong effect on both maturation and CFTR currents, allowing the identification of this kinase as a novel regulator of CFTR. These results reinforce the importance of CK2 and the S422 and T1471 residues for regulation of CFTR and uncover a novel regulation of CFTR by SYK, a recognized controller of inflammation. PMID:21930781

Luz, Simao; Kongsuphol, Patthara; Mendes, Ana Isabel; Romeiras, Francisco; Sousa, Marisa; Schreiber, Rainer; Matos, Paulo; Jordan, Peter; Mehta, Anil; Amaral, Margarida D.; Kunzelmann, Karl; Farinha, Carlos M.

2011-01-01

347

Genetics Home Reference: Pantothenate kinase-associated neurodegeneration  

MedlinePLUS

... pantothenate kinase 2. This enzyme is active in mitochondria, the energy-producing centers within cells, where it ... associated neurodegeneration. Because pantothenate kinase 2 functions in mitochondria, the signs and symptoms of this condition may ...

348

Microfluidic bead-based sensing platform for monitoring kinase activity.  

PubMed

Protein kinases control cellular functions by regulating protein phosphorylation. Monitoring protein kinase activity is essential for medical diagnosis and drug screening. Here, we present a novel microfluidic device for performing simple and versatile protein kinase assays, which utilizes a microbead-based chemosensor. An automatic mix-and-measure technique was achieved using integrated pneumatic valves. After mixing each reagent for the kinase assay, the mixture was transferred to the sensing chamber. Then, phosphorylated and fluorescence-labeled peptides were captured and detected by the chemosensor. A fluorescence signal was observed depending on the presence of the kinase. Furthermore, activities of various kinases in the cell lysate and the inhibitory effect of specific chemicals on the kinases were monitored. These results indicate that chemosensor-based microfluidic chips can be developed as a versatile kinase assay system. PMID:24534574

Lee, Seung Hwan; Rhee, Hyun-Woo; van Noort, Danny; Lee, Hong Jai; Park, Hee Ho; Shin, Ik-Soo; Hong, Jong-In; Park, Tai Hyun

2014-07-15

349

The Energy Landscape Analysis of Cancer Mutations in Protein Kinases  

E-print Network

The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined...

Dixit, Anshuman; Verkhivker, Gennady M.

2011-10-06

350

Elongation Factor2 Kinase Regulates Autophagy in Human Glioblastoma Cells  

Microsoft Academic Search

Elongation factor-2 kinase (eEF-2 kinase), also known as Ca2+\\/ calmodulin-dependent kinase III, regulates protein synthesis by controlling the rate of peptide chain elongation. The activity of eEF-2 kinase is increased in glioblastoma and other malignancies, yet its role in neoplasia is uncertain. Recent evidence suggests that autophagy plays an important role in oncogenesis and that this can be regulated by

Hao Wu; Jin-Ming Yang; Shengkan Jin; Haiyan Zhang; William N. Hait

351

Determinants of Substrate Recognition in Nonreceptor Tyrosine Kinases  

PubMed Central

Cytoplasmic tyrosine kinases do not occur as isolated catalytic domains. Instead, each kinase family possesses a characteristic array of additional domains that are appended to the catalytic domain. The combination and the arrangement of these modular domains are important in kinase regulation and function. This Account describes how the noncatalytic regions of Src family tyrosine kinases are involved in enzyme regulation, substrate selection, and multisite phosphorylation. PMID:12809525

Miller, W. Todd

2008-01-01

352

The discovery of receptor tyrosine kinases: targets for cancer therapy  

Microsoft Academic Search

Receptor tyrosine kinases are a subclass of cell-surface growth-factor receptors with an intrinsic, ligand-controlled tyrosine-kinase activity. They regulate diverse functions in normal cells and have a crucial role in oncogenesis. Twenty years ago, the first primary structure of a receptor tyrosine kinase, the epidermal growth factor receptor, was elucidated. The characterization of both the molecular architecture of receptor tyrosine kinases

Andreas Gschwind; Oliver M. Fischer; Axel Ullrich

2004-01-01

353

Lung cancer: Intragenic ERBB2 kinase mutations in tumours  

Microsoft Academic Search

The protein-kinase family is the most frequently mutated gene family found in human cancer and faulty kinase enzymes are being investigated as promising targets for the design of antitumour therapies. We have sequenced the gene encoding the transmembrane protein tyrosine kinase ERBB2 (also known as HER2 or Neu) from 120 primary lung tumours and identified 4% that have mutations within

Philip Stephens; Chris Hunter; Graham Bignell; Sarah Edkins; Helen Davies; Jon Teague; Claire Stevens; Sarah O'Meara; Raffaella Smith; Adrian Parker; Andy Barthorpe; Matthew Blow; Lisa Brackenbury; Adam Butler; Oliver Clarke; Jennifer Cole; Ed Dicks; Angus Dike; Anja Drozd; Ken Edwards; Simon Forbes; Rebecca Foster; Kristian Gray; Chris Greenman; Kelly Halliday; Katy Hills; Vivienne Kosmidou; Richard Lugg; Andy Menzies; Janet Perry; Robert Petty; Keiran Raine; Lewis Ratford; Rebecca Shepherd; Alexandra Small; Yvonne Stephens; Calli Tofts; Jennifer Varian; Sofie West; Sara Widaa; Andrew Yates; Francis Brasseur; Colin S. Cooper; Adrienne M. Flanagan; Margaret Knowles; Suet Y. Leung; David N. Louis; Leendert H. J. Looijenga; Bruce Malkowicz; Marco A. Pierotti; Bin Teh; Georgia Chenevix-Trench; Barbara L. Weber; Siu T. Yuen; Grace Harris; Peter Goldstraw; Andrew G. Nicholson; P. Andrew Futreal; Richard Wooster; Michael R. Stratton

2004-01-01

354

An integrated pharmacokineticpharmacodynamic model for an Aurora kinase inhibitor  

E-print Network

An integrated pharmacokinetic­pharmacodynamic model for an Aurora kinase inhibitor Hiroko Kamei of chromosomes prior to cell division at mitosis. Aurora kinases play critical roles in mitotic progression and hence small-molecule inhibitors of Aurora kinases have been developed as a new class of potential anti

Davidson, Fordyce A.

355

Cell Cycle . Author manuscript Aurora B kinase, an immobile passenger!  

E-print Network

Cell Cycle . Author manuscript Page /1 2 Aurora B kinase, an immobile passenger! Marl ne Delacour Keywords Chromosomal passenger complex ; Aurora kinase ; Survivin ; INCENP ; Borealin ; FRAP ; Microtubule composed of Aurora B kinase, Survivin, Borealin and INCENP. The centromeric complex is involved

Boyer, Edmond

356

A-kinase-anchoring Lorene K. Langeberg and John  

E-print Network

A-kinase-anchoring proteins Lorene K. Langeberg and John D. Scott* Howard Hughes Medical Institute of proteins known as A-kinase- anchoring proteins (AKAPs). AKAPs provide a framework for the coordination of phosphorylation and dephosphorylation events by sequestering enzymes such as protein kinases and phosphatases

Scott, John D.

357

Kinase\\/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology  

Microsoft Academic Search

Development and regeneration of the nervous system requires the precise formation of axons and dendrites. Kinases and phosphatases are pervasive regulators of cellular function and have been implicated in controlling axodendritic development and regeneration. We undertook a gain-of-function analysis to determine the functions of kinases and phosphatases in the regulation of neuron morphology. Over 300 kinases and 124 esterases and

William J Buchser; Tatiana I Slepak; Omar Gutierrez-Arenas; John L Bixby; Vance P Lemmon

2010-01-01

358

Article original Biodisponibilit de la cratine kinase musculaire  

E-print Network

of skeletal muscle creatine kinase in sheep. Application to the assessment of local tolerance to veterinary by vacutainer and hemolysis may in fact have con- siderable effects on the measurement of creatine kinase administration (123 38 Ulkg) of creatine kinase, was fitted by a biexponential model. The mean volume

Boyer, Edmond

359

Mnk kinase pathway: Cellular functions and biological outcomes  

PubMed Central

The mitogen-activated protein kinase (MAPK) interacting protein kinases 1 and 2 (Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs (p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E (eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4E. The role of Mnk kinases in inflammation and inflammation-induced malignancies is also discussed.

Joshi, Sonali; Platanias, Leonidas C

2014-01-01

360

The notion of plant receptor kinases working with nonreceptor kinases in het-  

E-print Network

with plasma membrane­local- ized RLCKs. Perhaps this will become a common theme in plant receptor kinase with their friend's terrible fate and the incomprehen- sible violence they have just witnessed-- and will shortly

361

Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase.  

PubMed

Polo-like kinases (PLKs) play critical roles throughout mitosis. Here, we report that wortmannin, which was previously thought to be a highly selective inhibitor of phosphoinositide (PI) 3-kinases, is a potent inhibitor of mammalian PLK1. Observation of the wortmannin-PLK1 interaction was enabled by a tetramethylrhodamine-wortmannin conjugate (AX7503) that permits rapid detection of PLK1 activity and expression in complex proteomes. Importantly, we show that wortmannin inhibits PLK1 activity in an in vitro kinase assay with an IC(50) of 24 nM and when incubated with intact cells. Taken together, our results indicate that, at the concentrations of wortmannin commonly used to inhibit PI 3-kinases, PLK1 is also significantly inhibited. PMID:15664519

Liu, Yongsheng; Shreder, Kevin R; Gai, Wenzhi; Corral, Sergio; Ferris, Douglas K; Rosenblum, Jonathan S

2005-01-01

362

ABC1K atypical kinases in plants; filling the organellar kinase void  

PubMed Central

Surprisingly few protein kinases have been demonstrated in chloroplasts or mitochondria. Here we discuss the “activity of bc1 complex kinase” (ABC1K) protein family which we suggest locate in mitochondria and plastids, thus filling the kinase void. The ABC1Ks are atypical protein kinases and their ancestral function is the regulation of quinone synthesis. ABC1Ks have proliferated from 1–2 members in non-photosynthetic organisms to more than 16 members in algae and higher plants. In this review we reconstruct the evolutionary history of the ABC1K family, provide a functional domain analysis for angiosperms and a nomenclature for ABC1Ks in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and maize (Zea mays). Finally, we hypothesize that targets of ABC1Ks include enzymes of prenyl-lipid metabolism as well as components of the organellar gene expression machineries. PMID:22694836

Lundquist, Peter K.; Davis, Jerrold I.; van Wijk, Klaas J.

2014-01-01

363

Classification of Nonenzymatic Homologues of Protein Kinases  

PubMed Central

Protein Kinase-Like Non-kinases (PKLNKs), which are closely related to protein kinases, lack the crucial catalytic aspartate in the catalytic loop, and hence cannot function as protein kinase, have been analysed. Using various sensitive sequence analysis methods, we have recognized 82 PKLNKs from four higher eukaryotic organisms, namely, Homo sapiens, Mus musculus, Rattus norvegicus, and Drosophila melanogaster. On the basis of their domain combination and function, PKLNKs have been classified mainly into four categories: (1) Ligand binding PKLNKs, (2) PKLNKs with extracellular protein-protein interaction domain, (3) PKLNKs involved in dimerization, and (4) PKLNKs with cytoplasmic protein-protein interaction module. While members of the first two classes of PKLNKs have transmembrane domain tethered to the PKLNK domain, members of the other two classes of PKLNKs are cytoplasmic in nature. The current classification scheme hopes to provide a convenient framework to classify the PKLNKs from other eukaryotes which would be helpful in deciphering their roles in cellular processes. PMID:19809514

Anamika, K.; Abhinandan, K. R.; Deshmukh, K.; Srinivasan, N.

2009-01-01

364

Src kinases as therapeutic targets for cancer  

Microsoft Academic Search

Src family kinases (SFKs) have a critical role in cell adhesion, invasion, proliferation, survival, and angiogenesis during tumor development. SFKs comprise nine family members that share similar structure and function. Overexpression or high activation of SFKs occurs frequently in tumor tissues and they are central mediators in multiple signaling pathways that are important in oncogenesis. SFKs can interact with tyrosine

Lori C. Kim; Lanxi Song; Eric B. Haura

2009-01-01

365

Aurora-kinase inhibitors as anticancer agents  

Microsoft Academic Search

Errors in mitosis can provide a source of the genomic instability that is typically associated with tumorigenesis. Many mitotic regulators are aberrantly expressed in tumour cells. These proteins could therefore make useful therapeutic targets. The kinases Aurora-A, -B and -C represent a family of such targets and several small-molecule inhibitors have been shown to block their function. Not only have

Stephen Taylor; Nicholas Keen

2004-01-01

366

Designing novel kinases using evolutionary sequence analysis  

NASA Astrophysics Data System (ADS)

Cellular pathways with new functions are thought to arise from the duplication and divergence of proteins in existing pathways. The MAP kinase pathways in eukaryotes provide one example of this. These pathways consist of the MAP kinase proteins which are responsible for evoking the correct response to external stimuli. In the yeast Saccharomyces cerevisiae these pathways detect pheromones, osmolar stresses and nutrient levels, leading the cell into dramatic changes of morphology. Despite being homologous to each other, the MAP kinase proteins show specificity of function. We investigate the nature of the amino acid sequences conferring this specificity. To this end, we i) search the sequences of similar proteins in other Eukaryote species, ii) make a study of simple theoretical models exploring the constraints felt by these protein segments and iii) experimentally construct, a large suite of hybrid proteins made of segments taken from the homologous proteins. These are then expressed in Yeast cells to see what function they are able to perform. Particularly we also ask whether it is possible to design a new kinase protein possessing new function and specificity.

Mody, Areez; Weiner, Joan; Iyer, Lakshman; Ramanathan, Sharad

2006-03-01

367

Inhibiting Janus kinases to treat alopecia areata.  

PubMed

Alopecia areata is an immune-mediated, nonscarring form of hair loss. A new study using human clinical samples and a mouse model demonstrates that CD8???NKG2D? T effector memory cells mediate alopecia areata in part through Janus kinase (JAK) signaling and that alopecia areata might be treated with JAK inhibitors. PMID:25198048

Divito, Sherrie J; Kupper, Thomas S

2014-09-01

368

p21-activated kinases in human cancer  

Microsoft Academic Search

A balance between proliferation, differentiation, migration and death of cells is critical for the normal development of an organism. Perturbations of this balance can contribute to cancer development. The p21-activated serine\\/threonine kinases (Paks) play an important role in a variety of cellular functions including cell morphogenesis, motility, survival, angiogenesis, and mitosis. Paks were initially identified as an effector molecules of

Ratna K. Vadlamudi; Rakesh Kumar

2003-01-01

369

Monoclonal Antibodies Against Xenopus Greatwall Kinase  

PubMed Central

Mitosis is known to be regulated by protein kinases, including MPF, Plk1, Aurora kinases, and so on, which become active in M-phase and phosphorylate a wide range of substrates to control multiple aspects of mitotic entry, progression, and exit. Mechanistic investigations of these kinases not only provide key insights into cell cycle regulation, but also hold great promise for cancer therapy. Recent studies, largely in Xenopus, characterized a new mitotic kinase named Greatwall (Gwl) that plays essential roles in both mitotic entry and maintenance. In this study, we generated a panel of mouse monoclonal antibodies (MAbs) specific for Xenopus Gwl and characterized these antibodies for their utility in immunoblotting, immunoprecipitation, and immunodepletion in Xenopus egg extracts. Importantly, we generated an MAb that is capable of neutralizing endogenous Gwl. The addition of this antibody into M-phase extracts results in loss of mitotic phosphorylation of Gwl, Plk1, and Cdk1 substrates. These results illustrate a new tool to study loss-of-function of Gwl, and support its essential role in mitosis. Finally, we demonstrated the usefulness of the MAb against human Gwl/MASTL. PMID:22008075

Wang, Ling; Fisher, Laura A.; Wahl, James K.

2011-01-01

370

Monoclonal antibodies against Xenopus greatwall kinase.  

PubMed

Mitosis is known to be regulated by protein kinases, including MPF, Plk1, Aurora kinases, and so on, which become active in M-phase and phosphorylate a wide range of substrates to control multiple aspects of mitotic entry, progression, and exit. Mechanistic investigations of these kinases not only provide key insights into cell cycle regulation, but also hold great promise for cancer therapy. Recent studies, largely in Xenopus, characterized a new mitotic kinase named Greatwall (Gwl) that plays essential roles in both mitotic entry and maintenance. In this study, we generated a panel of mouse monoclonal antibodies (MAbs) specific for Xenopus Gwl and characterized these antibodies for their utility in immunoblotting, immunoprecipitation, and immunodepletion in Xenopus egg extracts. Importantly, we generated an MAb that is capable of neutralizing endogenous Gwl. The addition of this antibody into M-phase extracts results in loss of mitotic phosphorylation of Gwl, Plk1, and Cdk1 substrates. These results illustrate a new tool to study loss-of-function of Gwl, and support its essential role in mitosis. Finally, we demonstrated the usefulness of the MAb against human Gwl/MASTL. PMID:22008075

Wang, Ling; Fisher, Laura A; Wahl, James K; Peng, Aimin

2011-10-01

371

Growth Factor and Receptor Tyrosine Kinases  

NSDL National Science Digital Library

This Teaching Resource provides lecture notes and slides for a graduate-level class on ligand regulation of signaling by receptor tyrosine kinases and receptors involved in the Wnt canonical pathway. It is part of a series of lectures that constitute the Cell Signaling Systems course. A description of the lecture, along with a set of slides used to present this information, is provided.

Stuart Aaronson (Mount Sinai School of Medicine;Department of Oncological Sciences REV)

2005-02-22

372

Kinases as therapeutic targets for heart failure  

Microsoft Academic Search

Cardiac cells respond to external stimuli by activating signal-transduction cascades involving protein and lipid kinases. These enzymes are attractive therapeutic targets as they are responsible for the direct or indirect control of most signalling pathways in cells. Existing therapies for heart failure are directed against the renin-angiotensin system and the ?-adrenoceptor, and prevent the initiation of signalling cascades. However, as

Susan A. McDowell; Angela Clerk; Chris J. Vlahos

2003-01-01

373

The Protein Kinase Complementof the Human Genome  

Microsoft Academic Search

We have catalogued the protein kinase complement of the human genome (the ``kinome'') using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on

G. Manning; D. B. Whyte; R. Martinez; T. Hunter; S. Sudarsanam

2002-01-01

374

Mycobacterium tuberculosis Serine/Threonine Protein Kinases  

PubMed Central

The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis.

PRISIC, SLADJANA; HUSSON, ROBERT N.

2014-01-01

375

Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements.  

PubMed

Relativistic basis sets of double-zeta, triple-zeta, and quadruple-zeta quality have been optimized in Dirac-Hartree-Fock calculations for the 4s, 5s, 6s, and 7s elements: K, Ca, Rb, Sr, Cs, Ba, Fr, and Ra. The basis sets include SCF exponents for the occupied spinors and for the np shell, exponents of correlating and polarizing functions for the (n - 1) shell and correlating functions for the (n - 2) shell. For the group 2 elements, correlating functions are given for the ns and np shells, whereas for the group 1 elements, functions for polarization of the ns shell are provided. A finite nuclear size was used in all optimizations. Prescriptions are given for constructing contracted basis sets by addition of primitives to the SCF occupied functions. PMID:19670829

Dyall, Kenneth G

2009-11-12

376

Peroxovanadate induces tyrosine phosphorylation of phosphoinositide-dependent protein kinase-1 potential involvement of src kinase.  

PubMed

Phosphoinositide-dependent protein kinase-1 (PDK1) is a recently identified kinase that phosphorylates and activates protein kinase B (PKB). Activation of PKB by insulin is linked to its translocation from the cytosol to the plasma membrane. However, no data are available yet concerning the localization of PDK1 in insulin-sensitive tissue. Using isolated adipocytes, we studied the effect of insulin and of an insulin-mimicking agent peroxovanadate on the subcellular localization of