Science.gov

Sample records for pacientes na fase

  1. The Moon Phases in a Paper Box. (Spanish Title: Las Fases de la Luna en Una Caja de Cartón.) As Fases da Lua Numa Caixa de Papelão

    NASA Astrophysics Data System (ADS)

    de Fátima O. Saraiva, Maria; Amador, Cláudio B.; Kemper, Érico; Goulart, Paulo; Muller, Angela

    2007-12-01

    We present a very simple concrete model to demonstrate the concept of phases of an illuminated body. The main objective of our model is to help the understanding of the Moon phases as viewed from the perspective of an observer on Earth. The material allows the visualization of two important effects: (1st) even though all the time half Moon is illuminated by the Sun, we see different fractions of the illuminated Moon surface, depending on our angle of sight; (2nd) the orientation of the convex part of the Moon in the crescent and waning phases on the sky also depends on our perspective from Earth. The use of a closed box allows one to see the contrast among the different phases with no need of a dark room. We also present a text on the Moon phases, emphasizing the dependence of the aspect of the bright part on the angle of sight. En este trabajo proponemos la construcción de material didáctico de bajo costo para demostración del concepto de fases de un cuerpo iluminado. El principal objetivo de nuestro material es facilitar la comprensión de las fases de la Luna desde la perspectiva de un observador en la Tierra. El material ayuda la visualización de dos efectos importantes: (1º) a pesar de tener siempre la mitad de la Luna (representada por una bolita de espuma plástica o de ping-pong), iluminada por el Sol ( representado por una fuente de luz natural o artificial), vemos diferentes fracciones de su superficie iluminada, dependiendo del ángulo por el cual la vemos; (2º) la orientación del borde convexo de la Luna en las fases Creciente y Menguante también depende de la perspectiva por la cual la miramos desde la Tierra. El uso de una caja cerrada permite observar el contraste entre las diferentes fases sin necesidad de estar en un recinto oscuro. Presentamos también un texto explicativo sobre las fases de la Luna, enfatizando la dependencia de la apariencia de la parte iluminada con el ángulo de visión. Neste trabalho propomos a construção de material didático de baixo custo para demonstração do conceito de fases de um corpo iluminado. O principal objetivo de nosso material é facilitar a compreensão das fases da Lua da perspectiva de um observador na Terra. O material ajuda na visualização de dois efeitos importantes: (1º) mesmo tendo sempre a metade da "Lua" (representada por uma bolinha de isopor ou de ping-pong) iluminada pelo "Sol" (representado por uma fonte de luz natural ou artificial), nós vemos diferentes frações de sua superfície iluminada, dependendo do ângulo pelo qual a olhamos; (2º) a orientação da borda convexa da Lua nas fases Crescente e Minguante também depende da perspectiva pela qual a olhamos da Terra. O uso de uma caixa fechada permite observar o contraste entre as diferentes fases sem necessidade de estar em uma sala escurecida. Apresentamos também um texto explicativo sobre fases da Lua, enfatizando a dependência da aparência da parte iluminada com o ângulo de visada.

  2. Lunar Phases and Earthly Events: Beliefs from Different Education Levels. (Spanish Title: Fases de la Luna y Acontecimientos Terrestres: Creencia de Distintos Niveles de Instrucción.) As Fases da Lua e os Acontecimentos Terrestres: a Crença de Diferentes Níveis de Instrução

    NASA Astrophysics Data System (ADS)

    Darroz, Luiz Marcelo; da Rosa, Cleci Teresinha Werner; Alves Vizzotto, Patrick; Becker da Rosa, Álvaro

    2013-12-01

    This article presents the result of a research carried out in the first semester of 2013 with a group of 80 subjects from different education levels. In this research, we sought to investigate the earthly events that this group of people attributes to the phenomenon of lunar phases. For data collection we used semi-structured interviews guided by questions that aimed to keep the focus on subjects of the investigation. Interviews were recorded and transcribed, and the results were compared to scientific studies in the area after being quantitatively and qualitatively analyzed. Research data showed that the Moon and the phenomenon of lunar phases still fascinate and raise the interest of people. However, the lack of knowledge to find correct explanations to the phenomena involving the moon ends up originating a series of beliefs about its influence on earthly events. En este artículo se presenta el resultado de una investigación realizada en el primer semestre de 2013 con a un grupo de 80 individuos de distintos niveles de instrucción. En esta investigación, tratamos de averiguar cuáles son los acontecimientos terrestres que este grupo de personas atribuye al fenómeno las fases lunares. Como instrumento de colecta de datos, se emplearon entrevistas semiestructuradas guiadas por preguntas que trataban de mantener la atención de los entrevistados en el objeto investigado. Las entrevistas fueron grabadas y transcriptas, y los resultados, después de ser analizados cuantitatativa y cualitativamente, fueron confrontados con estudios científicos del área. Los datos de la investigación demuestran que la Luna y de sus fases continúan fascinando y despertando el interés de la población. Sin embargo, la falta de conocimientos para encontrar explicaciones correctas relacionadas a los fenómenos que ocurren con el astro acaba originando una serie de creencias en la población sobre su influencia en los sucesos terrestres. Apresenta-se neste artigo o resultado de uma pesquisa realizada no primeiro semestre de 2013 junto a um grupo de 80 sujeitos de diferentes níveis de instrução. Nesta pesquisa, buscou-se averiguar os acontecimentos terrestres que esse grupo de pessoas atribui ao fenômeno das fases lunares. Como instrumento de coleta de dados, foram empregadas entrevistas semiestruturadas guiadas por questões que buscavam manter a atenção dos entrevistados no objeto de investigação. As entrevistas foram gravadas e transcritas, e os resultados, após serem analisados quanti e qualitativamente, foram confrontados com estudos científicos da área. Os dados da pesquisa demonstram que a Lua e suas fases continuam fascinando e despertando o interesse da população. No entanto, a falta de conhecimentos para proferir explicações corretas relativas aos fenômenos que ocorrem com o astro acaba originando uma série de crenças na população sobre sua influência nos acontecimentos terrestres.

  3. The FASES instrument development and experiment preparation for the ISS

    NASA Astrophysics Data System (ADS)

    Picker, Gerold; Gollinger, Klaus; Greger, Ralf; Dettmann, Jan; Winter, Josef; Dewandre, Thierry; Castiglione, Luigi; Vincent-Bonnieu, Sebastien; Liggieri, Libero; Clausse, Daniele; Antoni, Mickael

    The FASES experiments target the investigation of the stability of emulsions. The main objec-tives are the study of the surfactant adsorption at the liquid / liquid interfaces, the interaction of the droplets as well as the behaviour of the liquid film between nearby drops. Particular focus is given to the dynamic droplet evolution during emulsion destabilisation. The results of the experiments shall support development of methods for the modelling of droplet size distri-butions, which are important to many industries using stable emulsions like food production, cosmetics and pharmaceutics or unstable emulsions as required for applications in waste water treatment or crude oil recovery. The development of the experimental instrumentation was initiated in 2002. The flight instru-ment hardware development was started in 2004 and finally the flight unit was completed in 2009. Currently the final flight preparation is proceeding targeting a launch to the International Space Station (ISS) with Progress 39P in September 2010. The experiment setup of the instrument is accommodated in a box type insert called Experiment Container (EC), which will be installed in the Fluid Science Laboratory part of the European Columbus module of the ISS. The EC is composed of two diagnostics instruments for the investigation of transparent and opaque liquid emulsion. The transparent emulsions will be subject to the experiment called "Investigations on drop/drop interactions in Transparent Emulsions" (ITEM). The opaque emulsion samples will be studied in the experiment called "Investigations on concentrated or opaque Emulsions and on Phase Inversions" (EMPI). The thermal conditioning unit (TCU) allows performing homogeneous thermalization, tem-perature sweeps, emulsion preparation by stirrer, and optical diagnostics with a scanning mi-croscope. The objective of the instrument is the 3D reconstruction of the emulsion droplet distribution in the liquid matrix in terms of the droplet sizes, location and their time depen-dent evolution. The TCU will be used for the stability experiment ITEM-S and the droplet freezing experiment ITEM-F. The Differential Scanning Calorimeter (DSC) will give an information about the evolution of the emulsion through the droplet size distribution and the dispersion state of the droplets within the emulsion during a controlled temperature sweep by measuring the latent heat of droplet freezing and melting during the EMPI experiments. For this purpose the calorimeter is equipped with a reference sample filled with a pure liquid matrix and a similar measurement sample filled with the specific emulsion under investigation. The differential heat flux between measurement sample and reference sample is measured with a sensitive heat flux sensor. Each instrument is serviced by a robotic sample stowage system, which accommodates in total 44 different ITEM and EMPI emulsion samples each filled with a specific composition of the emulsion. Currently the flight preparation is ongoing with particular focus on the preparation of the emulsion flight sample set and the instrument's operating parameters. The FASES flight instrument was developed by ASTRIUM Space Transportation Germany with support of RUAG Aerospace Wallisellen under ESA / ESTEC contract. The science team of FASES is supported by ESA/ESTEC (Microgravity Application Programme, AO99-052).

  4. University Students' Conceptions about the Moon Phases. (Spanish Title: Concepciones de Estudiantes Universitários sobre Las Fases de la Luna.) Concepções de Estudantes Universitários sobre as Fases da Lua

    NASA Astrophysics Data System (ADS)

    de Fátima Oliveira Saraiva, Maria; da Silveira, Fernando Lang; Steffani, Maria Helena

    2011-07-01

    In this article we describe the development of a multiple choice test about lunar phases and analyze the results of its application to ten groups of Physics students at the UFRGS. During the improvement of the test, we noticed that the percentage of right answers about some concepts increased significantly when associated with the reformulation of the question, emphasizing the importance of being careful to avoid incorrect answers generated by unclear questions, and not by ignorance on the matter. We confirm the results of other studies that show that students have great difficulty to relate the Moon's phase with its position in the sky at given time. On the other hand, our results suggest that, in general, students of Physics understand the phenomenon of lunar phases better than the average of university students. En estese artículo se describe la elaboración de una prueba de opción múltiple sobre las fases de la Luna y se analizan los resultados de su aplicación en diez grupos de estudiantes de Física de UFRGS. Durante el mejoramiento de la prueba observamos que el porcentaje de aciertos creció considerablemente cuando considerada una nueva redacción de la pregunta, destacando el cuidado que se debe tomar a fin de evitar respuestas incorrectas generadas por preguntas poco claras y no a causa de la ignorancia de los estudiantes sobre el tema. Confirmamos los resultados de otros estudios que las mayores dificultades de los alumnos sobre el tema fases de la Luna están en relacionar la fase de la Luna con su posición en el cielo en determinado momento. Por otra parte, nuestros resultados sugieren que, en general, los estudiantes de la Física comprenden mejor el fenómeno de las fases lunares que el promedio de los estudiantes universitarios. Neste artigo descrevemos a elaboração de um teste de múltipla escolha sobre as fases da Lua e analisamos os resultados de sua aplicação em dez grupos de estudantes de Física da UFRGS. Durante o aprimoramento do teste notamos que a porcentagem de acertos a respeito de alguns conceitos teve um aumento significativo associado à reformulação da pergunta, ressaltando a importância de tomar cuidado para evitar respostas erradas geradas por perguntas pouco claras e não por ignorância do respondente sobre o assunto. Confirmamos os resultados de outros estudos de que as maiores dificuldades dos alunos sobre o tema Fases da Lua dizem respeito a relacionar a fase que a Lua apresenta com a sua posição no céu em determinada hora. Por outro lado, nossos resultados sugerem que, em geral, os estudantes de Física entendem melhor o fenômeno das fases lunares do que a média dos estudantes universitários.

  5. A Proposed Activity for a Meaningful Learning about the Moon Phases. (Breton Title: Uma Proposta de Atividade Para a Aprendizagem Significativa sobre as Fases da Lua.) Una Actividad Propuesta Para EL Aprendizaje Significativo Acerca de Las Fases de la Luna

    NASA Astrophysics Data System (ADS)

    Martins, Bruno Andrade; Langhi, Rodolfo

    2012-12-01

    This paper presents one of the concepts of Astronomy and its consequent failure in teaching this topic in high school, even when the official documents point out the necessity of Astronomy teaching at this school level. Among the spontaneous conceptions in Astronomy that high school students carry with them, even after the end of the school, we emphasized in this research the Moon phases. The development of different strategies in relation to traditional methods, aimed to teaching-learning process on this topic was considered in this study. These strategies were devised based on the reference frame of the Meaningful Learning, as elaborated by Ausubel. The proposals presented here include the active participation of students in experimental activities and other didactic activities, for their continuous evaluation during the process. These activities finished with a Comics elaboration about the Moon phases. Therefore, the objective of this paper is to present a proposal for differentiated teaching activity about Moon phases supported by the theoretical principles of Meaningful Learning at Physics classes. Este texto foca um dos conteúdos de Astronomia e a consequente falha no ensino deste tema no ensino médio, apesar de os documentos oficiais apresentarem a necessidade de se trabalhar a Astronomia neste nível de ensino. Dentre as concepções alternativas em Astronomia que os alunos do ensino médio carregam consigo, mesmo após o término dos estudos, destacamos, nesta pesquisa, o fenômeno das fases da Lua. O desenvolvimento de estratégias diferenciadas em relação ao ensino tradicional, visando o processo de ensino-aprendizagem sobre este tema, foi contemplado neste trabalho como um dos resultados obtidos sob a luz dos referenciais da aprendizagem significativa, fundamentados em Ausubel. Segundo a proposta aqui apresentada, a participação ativa dos alunos na execução de uma atividade experimental e outras atividades didáticas, que visam sua contínua avaliação durante o processo, culmina com a elaboração de uma história em quadrinhos envolvendo as fases da Lua. Portanto, o objetivo deste trabalho é apresentar uma proposta de atividade didática diferenciada sustentada pelos princípios teóricos da aprendizagem significativa aplicada ao ensino das fases da Lua durante as aulas de Física no ensino médio. En este trabajo se presenta uno de los contenidos de la Astronomía y el evidente fracaso en la enseñanza del tema en la escuela secundaria, a pesar del hecho que los documentos oficiales apuntan para la necesidad de trabajar contenidos de Astronomía en este nivel. Entre los conceptos alternativos en Astronomía que los alumnos secundarios llevan consigo, aún después de terminados los estudios, destacamos aquí el fenómeno de las fases de la Luna. El desarrollo de diferentes estrategias en relación con los métodos tradicionales, dirigidas al proceso de enseñanza-aprendizaje en este tema fue considerado en este trabajo como uno de los resultados obtenidos a la luz de los referenciales del aprendizaje significativo, tal como fueron fundamentados por Ausubel. Según la propuesta que aquí se presenta, la participación activa de los estudiantes en la ejecución de una actividad experimental y otras actividades educativas destinadas a la evaluación continua durante el proceso culminó en la elaboración de una historieta respecto de las fases de la Luna. Por lo tanto, el objetivo de este trabajo es presentar una propuesta de actividad de enseñanza diferenciada con el apoyo de los principios teóricos del aprendizaje significativo aplicado a la enseñanza de las fases de la luna durante las clases de física del ciclo secundario.

  6. Demonstrating the Practical Advantages of the Scalable and Interoperable Astronomical Framework FASE: Applications to EUCLID Simulations and LUCIFER Data Reduction

    NASA Astrophysics Data System (ADS)

    Paioro, L.; Garilli, B.; Franzetti, P.; Fumana, M.; Scodeggio, M.; Grosbøl, P.; Tody, D.; Surace, C.

    2012-09-01

    The European OPTICON Networks 3.6 and 9.2 in collaboration with the Virtual Observatory, during the last years have produced a detailed document, designing the requirements and the architecture of a future scalable and interoperable desktop framework for the astronomical software (FASE). A first reference implementation of the FASE framework has been developed at INAF-IASF Milano and applied to different projects we are involved in: a) the simulation software developed to study the performance of the EUCLID NISP instrument; b) the LBT LUCIFER instrument reduction pipeline used by the Italian community. An application involving graphical capabilities is also being developed exploiting FASE facilities. We show how the main architectural concepts of the FASE framework have been successfully applied to the software mentioned above, providing easy to use and install interoperable software, equipped with distributed and scalable capabilities. See also Grosbøl et al. (2012).

  7. Detecção da fase impulsiva de uma explosão solar gigante até 405 GHz

    NASA Astrophysics Data System (ADS)

    Raulin, J.-P.; Makhmutov, V.; Kaufmann, P.; Pacini, A. A.; Luethi, T.; Hudson, H. S.; Gary, D. E.; Yoshimori, M.

    2003-08-01

    A explosão ocorrida no dia 25/08/2001 foi uma das mais intensas do presente ciclo solar em ondas de rádio de altas frequências. Foram medidas em ondas milimétricas e submilimétricas, aproximadamente, 105 e vários milhares de unidades de fluxo solar, respectivamente. Apresentamos um estudo deste evento em múltiplas frequências, desde microondas (1GHz), até ondas submilimétricas (405 GHz) detectadas pelo Telescópio Solar para ondas Submilimétricas (SST). Esta base de dados foi complementada utilizando-se o experimento Yohkoh, incluindo a emissão em raios-X duros e raios-g (até 100 MeV), e imagens em raios-X moles da região ativa envolvida. Enfocamos e discutimos principalmente os seguintes aspectos da fase impulsiva do evento: (i) as implicações deduzidas do espectro eletromagnético, obtido pela primeira vez até 405 GHz; (ii) a dinâmica da região ativa. Os resultados mostram que para explicar o espectro rádio observado, são necessários entre 3.5×1037 e 1.5×1039 elétrons acelerados acima de 20 keV em uma região de campo magnético entre 300 e 800 Gauss. A estimativa do fluxo de fótons que seria produzido por estes elétrons, mostra que grande parte deles não precipitou na baixa atmosfera. A evolução temporal da emissão em raios-X moles revela que a configuração magnética da região ativa foi muito dinâmica durante a fase impulsiva da explosão. Em particular, mostramos que a produção dos elétrons altamente energéticos foi iniciada junto com a aparição, na baixa coroa solar, de um novo sistema compacto de estruturas magnéticas. Este fato sugere que os locais de aceleração estão localizados na baixa atmosfera do Sol, como resultado da interação entre o novo sistema compacto e o campo magnético ambiente da região ativa.

  8. Providing Meaningful Learning for Students of the Sixth Grade of Middle School: a Study on the Moon Phases. (Breton Title: Propiciando Aprendizagem Significativa Para Alunos do Sexto Ano do Ensino Fundamental: um Estudo sobre as Fases da Lua.) Propiciando el Aprendizaje Significativo Para Alumnos del Sexto Nivel de la Educación General Básica: un Estudio sobre Las Fases de la Luna

    NASA Astrophysics Data System (ADS)

    Darroz, Luiz Marcelo; Samudio Pérez, Carlos Ariel; da Rosa, Cleci Werner; Heineck, Renato

    2012-07-01

    We relate in this article a didactic experience studying the moon phases with a group of middle school students of a private school of the municipality of Passo Fundo, RS. Based on David Ausubel's Meaningful Learning Theory, we have sought to develop a proposal following a didactic model which simulates the phases of the Moon, as based on the previous conceptions of the students. The signs of learning were evidenced by means of memory registries of the activity. From the obtained results we believe that the proposal achieved its goals, since the students were able to identify, differentiate and transfer the phenomenon of the moon phases to new contexts. Thus, it is concluded that a methodology focused on a meaningful content for the students is fundamental to the construction and genuine grasping of what is being learned. Neste artigo, relata-se uma experiência didática de estudo das fases da Lua com uma turma do 6° ano do Ensino Fundamental, de uma escola privada do município de Passo Fundo, RS. Tendo como fundamentação teórica a Teoria da Aprendizagem Significativa de David Ausubel, buscou-se desenvolver a proposta a partir de um modelo didático que simula as fases da Lua e com base nas concepções prévias dos estudantes. Os indícios da aprendizagem foram constatados através de registros de memórias da atividade. Pelos resultados apresentados, acredita-se que a proposta alcançou seus objetivos, uma vez que os estudantes conseguiram identificar, diferenciar e transferir o fenômeno das fases da Lua para novos contextos. Assim, conclui-se que uma metodologia com enfoque em um conteúdo significativo ao estudante é fundamental para a construção e compreensão genuína do que está sendo aprendido. En este artículo se relata una experiencia didáctica de estudio de las fases de la Luna con una clase de 6º año de la educación general básica de una escuela privada del municipio de Passo Fundo, RS. Teniendo como fundamentación teórica la Teoría del Aprendizaje Significativo de David Ausubel, se buscó desenvolver la propuesta a partir de un modelo didáctico que simula las Fases de la Luna, usando como base las concepciones previas de los estudiantes. Los indicios del aprendizaje fueron verificados a través de registros de memorias de la actividad. Por los resultados obtenidos creemos que la propuesta alcanzó sus objetivos, una vez que los estudiantes consiguieron identificar y transferir el fenómeno de las fases de la Luna para nuevos contextos. Así, se concluye que una metodología con enfoque en un contenido significativo para el estudiante es fundamental para la construcción y comprensión genuina de lo que está siendo aprendido.

  9. NaF Documentation

    Cancer.gov

    The NaF documentation files are presented in Adobe Acrobat or Word files. PDF Generic Documentation for NaF PDF file Word Generic Documentation for NaF Word file Contact G. Craig Hill, Ph.D. for information. Email: hillgc@mail.nih.gov, Phone: 240-276-5913 Print

  10. Familiares a cargo de pacientes de cáncer (PDQ)—Versión para pacientes

    Cancer.gov

    Sumario informativo revisado por expertos acerca de los desafíos que enfrentan los familiares a cargo de los pacientes con cáncer. Este resumen se centra en las funciones típicas y las inquietudes de las personas a cargo del paciente y en las intervenciones útiles para esas personas.

  11. On efeito do achatamento nos pontos de equilíbrio e na dinâmica de sistemas coorbitais

    NASA Astrophysics Data System (ADS)

    Mourão, D. C.; Winter, O. C.; Yokoyama, T.

    2003-08-01

    Neste trabalho analisamos o efeito do achatamento do corpo principal nos pontos de equilíbrio lagrangianos e na configuração de órbitas girino-ferradura. Enfatizamos os sistemas coorbitais de satélites de Saturno, pois se encontram em relativa proximidade com o planeta, em que o efeito do achatamento se torna mais evidente. O estudo é dividido em três etapas independentes. Na primeira fase analisamos as equações de movimento do problema restrito de três corpos considerando o efeito do achatamento, e através do balanceamento de forças buscamos a nova configuração dos pontos de equilíbrio lagrangianos. Concluímos, nesta etapa, que os pontos de equilíbrio estáveis apresentam um pequeno deslocamento definido pelo parâmetro de achatamento, não podendo ser mais representados por triângulos eqüiláteros. Aplicamos este resultado aos satélites coorbitais de Tetis e Dione, encontrando as posições de equilíbrio levemente deslocadas em relação ao caso sem achatamento. Na segunda fase visamos o sistema Saturno-Jano-Epimeteu, que por se tratar de um sistema de massas comparáveis, optamos por desenvolver as equações de Yoder et al (Icarus 53, pág 431-443, 1983), que permitem determinar os pontos de equilíbrio e a amplitude de oscilação angular das órbitas girino-ferradura para o problema não-restrito de três corpos, porém, no nosso estudo consideramos o efeito do achatamento do corpo principal nestas equações. Encontramos que a distância angular entre satélites, quando em posição de equilíbrio estável, diminui quanto maior for o parâmetro de achatamento do corpo principal. Além disso, a órbita de transição girino-ferradura possui largura angular menor em relação ao caso sem achatamento. Por fim, realizamos integrações numéricas para os casos reais de coorbitais de Saturno comparando com os resultados analíticos. Nestas integrações simulamos diversas órbitas girino-ferradura com diferentes parâmetros de achatamento, utilizando condições iniciais corrigidas para a presença do achatamento.

  12. Na+ movement in a single turnover of the Na pump.

    PubMed Central

    Forbush, B

    1984-01-01

    Ouabain-sensitive 22Na efflux from right-side-out membrane vesicles prepared from dog kidney has been examined with a time resolution of 30 msec. The vesicles are preloaded with 22Na and caged ATP [P3-1-(2-nitro)phenylethyl adenosine triphosphate], so that transport by the Na pump can be initiated by light. After a brief illumination, which releases less ATP than the number of catalytic sites, a burst of 22Na extrusion is observed corresponding to a single turnover of the Na pump. By the use of a rapid filtration apparatus, with which a continuous record of the rate of efflux is obtained, it has been possible to resolve the efflux burst in the time range of 20-1500 msec. The rate of efflux rises rapidly, but not instantaneously, to a peak and then decays, with a time constant of approximately equal to 6 sec-1 at 15 degrees C. The time course of Na efflux is unaffected by extracellular K+, as predicted by models of the Na pump in which Na is released early in the cycle. Unphotolyzed caged ATP is found to bind to the catalytic site of Na,K-ATPase, in competition with ATP that is produced in the flash, and the possibility has not been excluded that dissociation of unphotolyzed caged ATP and binding of ATP are involved in the Na efflux time course. It seems most likely that binding of ATP and translocation of 22Na are involved in the increase in the 22Na efflux rate in the single turnover and that the release of transported 22Na from extracellular pump sites limits the slow decay. PMID:6089192

  13. Na Cauda do Cometa

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.

    2009-01-01

    Quando viam um cometa, os antigos gregos imaginavam uma estrela com uma vasta cabeleira. Não à toa, a palavra deriva do termo koma, que significa cabelo. Constituídos por fragmentos de gelo e gases, os cometas possuem um núcleo sólido, que pode ter vários quilômetros de diâmetro, e uma cauda que sempre aponta na direção contrária ao Sol, devido aos ventos solares. Graças à aparência de pontos luminosos em movimento (ao contrário de outros astros, que parecem estáticos), esses corpos celestes foram interpretados por diferentes povos com muito misticismo, inspirando mitos tanto de boas-novas como de maus presságios. Conheça algumas dessas histórias:

  14. Na Deposition on MnO(100)

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Cox, David F.

    2016-03-01

    Na deposition on the MnO(100) surface was investigated by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Na TPD and XPS results indicate that adsorbed Na interacts strongly with the MnO substrate to form an irreversibly-adsorbed, oxidic Na compound on the surface for coverages up to 1 monolayer (ML). This strongly-bound Na diffuses into the MnO subsurface and bulk at elevated temperatures above 500 K. For Na coverages above 1 ML, metallic Na is present and desorbs from the surface below 500 K. The deposition of Na on MnO(100) follows a Stranski-Krastanov (SK) growth mode, with the formation of metallic Na islands following completion of the first Na monolayer. After Na deposition, the surface exhibits a diffuse (1 × 1) LEED pattern, suggesting the formation of disordered Na overlayers. After heating to 1000 K, the surface presents a (2 × 2) LEED pattern indicating that a surface reconstruction is induced by the diffusion of Na into the near surface region. CO2 can be used as a probe molecule in TPD to distinguish between metallic Na islands and oxidic Na in the first ML, and to indicate when Na that is still observable by XPS goes subsurface.

  15. Drugs preventing Na+ and Ca2+ overload.

    PubMed

    Ravens, U; Himmel, H M

    1999-03-01

    Cardiac intracellular Na+and Ca2+homeostasis is regulated by the concerted action of ion channels, pumps and exchangers. The Na+, K+-ATPase produces the electrochemical concentration gradient for Na+, which is the driving force for Ca2+removal from the cytosol via the Na+/Ca2+exchange. Reduction of this gradient by increased intracellular Na+concentration leads to cellular Ca2+overload resulting in arrhythmias and contractile dysfunction. Na+and Ca2+overload-associated arrhythmias can be produced experimentally by inhibition of Na+efflux (digitalis-induced intoxication) and by abnormal Na+influx via modulated Na+channels (veratridine, DPI 201-106; hypoxia) or via the Na+, H+exchanger. Theoretically, blockers of Na+and Ca2+channels, inhibitors of abnormal oscillatory release of Ca2+from internal stores or modulators of the Na+, Ca2+and Na+, H+exchanger activities could protect against cellular Na+and Ca2+overload. Three exemplary drugs that prevent Na+and Ca2+overload, i.e. the benzothiazolamine R56865, the methylenephenoxydioxy-derivative CP-060S, and the benzoyl-guanidine Hoe 642, a Na+, H+exchange blocker, are briefly reviewed with respect to their efficacy on digitalis-, veratridine- and ischaemia/reperfusion-induced arrhythmias. PMID:10094840

  16. Photoelectron imaging spectroscopy of the small sodium cluster anions Na3(-), Na5(-), and Na7(-).

    PubMed

    Bartels, Christof; Hock, Christian; Kuhnen, Raphael; Issendorff, Bernd v

    2014-09-18

    We present a photoelectron imaging study of the small sodium cluster anions Na3(-), Na5(-), and Na7(-) at photon energies in the visible and near UV range (hv = 1.64-4.28 eV). The resulting angular distributions are remarkably diverse and exhibit a strong dependence on photon energy; only for hv > 3.5 eV do they evolve into more uniform distributions peaked in the direction of the laser polarization. We show that different energy dependencies of the distributions are related to different angular-momentum characters of the bound states. The jellium s-like character of the lowest single-particle states results in photoelectron emission parallel to the laser polarization at all photon energies, whereas the p-like character of the higher states leads to essentially isotropic distributions at threshold and a strong variation with photon energy. Close to the detachment threshold, the asymptotic angular distributions are attributed to the approximate validity of Wigner's law, which states that the spectrum is dominated by the partial wave with the smallest angular momentum. For the planar cluster Na5(-), we observe characteristically different behavior for electrons detached from the two in-plane p-like states, and we show how this correlates with the molecular symmetry. Our results indicate that a simple jellium-like description of the molecular orbitals is appropriate for the three-dimensional cluster Na7(-), despite the energetic splitting of the normally triply degenerate 1p level. PMID:24617832

  17. The NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Krivda, M.; NA62 Collaboration

    2013-08-01

    The main aim of the NA62 experiment (NA62 Technical Design Report, na62.web.cern.ch/NA62/Documents/TD_Full_doc_v1.pdf> [1]) is to study ultra-rare Kaon decays. In order to select rare events over the overwhelming background, central systems with high-performance, high bandwidth, flexibility and configurability are necessary, that minimize dead time while maximizing data collection reliability. The NA62 experiment consists of 12 sub-detector systems and several trigger and control systems, for a total channel count of less than 100,000. The GigaTracKer (GTK) has the largest number of channels (54,000), and the Liquid Krypton (LKr) calorimeter shares with it the largest raw data rate (19 GB/s). The NA62 trigger system works with 3 trigger levels. The first trigger level is based on a hardware central trigger unit, so-called L0 Trigger Processor (L0TP), and Local Trigger Units (LTU), which are all located in the experimental cavern. Other two trigger levels are based on software, and done with a computer farm located on surface. The L0TP receives information from triggering sub-detectors asynchronously via Ethernet; it processes the information, and then transmits a final trigger decision synchronously to each sub-detector through the Trigger and Timing Control (TTC) system. The interface between L0TP and the TTC system, which is used for trigger and clock distribution, is provided by the Local Trigger Unit board (LTU). The LTU can work in two modes: global and stand-alone. In the global mode, the LTU provides an interface between L0TP and TTC system. In the stand-alone mode, the LTU can fully emulate L0TP and so provides an independent way for each sub-detector for testing or calibration purposes. In addition to the emulation functionality, a further functionality is implemented that allows to synchronize the clock of the LTU with the L0TP and the TTC system. For testing and debugging purposes, a Snap Shot Memory (SSM) interface is implemented, that can work both in an input or an output mode. The trigger rates will be permanently monitored by reading counters at regular intervals. This paper describes the overall NA62 trigger system focusing on the setup for the dry and technical runs in 2012.

  18. Europlanet NA2 Science Networking

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Szego, Karoly; Genzer, Maria; Schmidt, Walter; Krupp, Norbert; Lammer, Helmut; Kallio, Esa; Haukka, Harri

    2013-04-01

    Europlanet RI / NA2 Science Networking [1] focused on determining the major goals of current and future European planetary science, relating them to the Research Infrastructure that the Europlanet RI project [2] developed, and placing them in a more global context. NA2 also enhanced the ability of European planetary scientists to participate on the global scene with their own agenda-setting projects and ideas. The Networking Activity NA2 included five working groups, aimed at identifying key science issues and producing reference books on major science themes that will bridge the gap between the results of present and past missions and the scientific preparation of the future ones. Within the Europlanet RI project (2009-2012) the NA2 and NA2-WGs organized thematic workshops, an expert exchange program and training groups to improve the scientific impact of this Infrastructure. The principal tasks addressed by NA2 were: • Science activities in support to the optimal use of data from past and present space missions, involving the broad planetary science community beyond the "space club" • Science activities in support to the preparation of future planetary missions: Earth-based preparatory observations, laboratory studies, R&D on advanced instrumentation and exploration technologies for the future, theory and modeling etc. • Develop scientific activities, joint publications, dedicated meetings, tools and services, education activities, engaging the public and industries • Update science themes and addressing the two main scientific objectives • Prepare and support workshops of the International Space Science Institute (ISSI) in Bern and • Support Trans National Activities (TNAs), Joined Research Activities (JRAs) and the Integrated and Distributed Information Service (IDIS) of the Europlanet project These tasks were achieved by WG workshops organized by the NA2 working groups, by ISSI workshops and by an Expert Exchange Program. There were 17 official WG workshops and in addition there were numerous smaller NA2 WG meetings during the conferences (EPSC, EGU, etc.) and other events. The total number of NA2 meetings and workshops was 37. There were three NA2 supported ISSI workshops within the Europlanet project. The first ISSI workshop "Comparison of the plasma-spheres of Mars, Venus, and Titan" organized by K. Szego was held in December 2009. The second workshop "Quantifying the Martian Geochemical Reservoirs" by M. Toplis was held in April 2011. The third one, themed "Giant Planet Magnetodiscs and Aurorae" by N. Krupp, N. Achilleos and C. Arridge, was in November 2012. All three ISSI workshops were selected by the ISSI scientific committee to be organized within the frame of ISSI/Europlanet agreement and held in Bern. The main objective of the Expert Exchange Program was to support the activities of Europlanet RI with experts whenever needed. The programme provided funding for short visits (up to one week) of expert with the goal of improving infrastructure facilities and services offered to the scientific community by the Europlanet RI participant (contractor) laboratories or institutes. Between July 2009 and September 2012 26 applications were selected. Acknowledgement: Europlanet RI was funded by the European Commission under the 7th Framework Program, grant 228319 "Capacities Specific Programme" - Research Infrastructures Action. References: [1] http://www.europlanet-ri.eu/ [2] https://europlanet-scinet.fi/

  19. NA61/SHINE ion program

    NASA Astrophysics Data System (ADS)

    Mackowiak, Maja; NA61 Collaboration

    2011-01-01

    The Super Proton Synchrotron (SPS) at CERN covers one of the most interesting regions of the phase diagram (T - ?B) of strongly interacting matter. The study of central Pb+Pb collisions by NA49 indicate that the threshold for deconfinement is reached already at the low SPS energies. Theoretical considerations predict a critical point of strongly interacting matter at energies accessible at the SPS. The NA61/SHINE experiment, a successor of the NA49 project, will study hadron production in p+p, p+A, h+A, and A+A reactions at various energies. The broad physics program includes the investigation of the properties of strongly interacting matter, as well as precision measurements of hadron spectra for the T2K neutrino experiment and for the Pierre Auger Observatory and KASCADE cosmic-ray projects. The main physics goals of the NA61/SHINE ion program are to study the properties of the onset of deconfinement at low SPS energies and to find signatures of the critical point of strongly interacting matter. To achieve these goals a broad range in the (T - ?B) phase diagram will be covered by performing an energy (10A-158A GeV/c) and system size (p+p, B+C, Ar+Ca, Xe+La) scan. The first data for this 2-D scan were taken in 2009, i.e. p+p interactions at 20, 30, 40, 80, 158 GeV/c beam energy. This contribution will summarize physics arguments for the NA61/SHINE ion program, show the detector performance and present the current status of the experiment and plans for the next years.

  20. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    SciTech Connect

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  1. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGESBeta

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  2. Melting of the Na Layers in Solid Na0.8CoO2

    NASA Astrophysics Data System (ADS)

    Weller, M.; Sacchetti, A.; Ott, H. R.; Mattenberger, K.; Batlogg, B.

    2009-02-01

    Data of Na23 NMR spectra and relaxation measurements are interpreted as suggesting that, upon increasing temperature, the Na layers in Na0.8CoO2 adopt a 2D liquid state at T=291K. The corresponding first order phase transition is preceded by a rapidly increasing mobility and diffusion of Na ions above 200 K. Above 291 K, the Na23 NMR response is similar to that previously observed in superionic conductors with planar Na layers.

  3. Ionic regulation of Na absorption in proximal colon: cation inhibition of electroneutral Na absorption

    SciTech Connect

    Sellin, J.H.; De Soignie, R.

    1987-01-01

    Active Na absorption (J/sub net//sup NA/) in rabbit proximal colon in vitro is paradoxically stimulated as (Na) in the bathing media is lowered with constant osmolarity. J/sub m..-->..s//sup Na/ increases almost linearly from 0 to 50 mM (Na)/sub 0/ but then plateaus and actually decreases from 50 to 140 mM (Na)/sub 0/, consistent with inhibition of an active transport process. Both lithium and Na are equally effective inhibitors of J/sub net//sup Na/, whereas choline and mannitol do not block the high rate of J/sub net//sup Na/ observed in decreased (Na)/sub 0/. Either gluconate or proprionate replacement of Cl inhibits J/sub net//sup Na/. J/sub net//sup Na/ at lowered (Na)/sub 0/ is electrically silent and is accompanied by increased Cl absorption; it is inhibited by 10/sup -3/ M amiloride and 10/sup -3/ theophylline but not by 10/sup -4/ M bumetanide. Epinephrine is equally effective at stimulating Na absorption at 50 and 140 mM (Na). Na gradient experiments are consistent with a predominantly serosal effect of the decreased (Na)/sub 0/. These results suggest that 1) Na absorption in rabbit proximal colon in vitro is stimulated by decreased (Na); 2) the effect is cation specific, both Na and Li blocking the stimulatory effect; 3) the transport is mediated by Na-H exchange and is Cl dependent but 4) is under different regulatory mechanisms than the epinephrine-sensitive Na-Cl cotransport previously described in proximal colon. Under the appropriate conditions, proximal colon absorbs Na extremely efficiently. Na-H exchange in this epithelium is cation inhibitable, either directly or by a secondary regulatory process.

  4. Etapa final de la vida (PDQ)—Versión para pacientes

    Cancer.gov

    Sumario informativo revisado por expertos sobre el tratamiento y la atención del paciente de cáncer desde los últimos días hasta las últimas horas de vida; esto incluye los síntomas comunes, los dilemas éticos que pueden surgir y la función que desempeña el oncólogo en proveer cuidados al paciente y su familia durante este período.

  5. Na+ Tolerance and Na+ Transport in Higher Plants

    PubMed Central

    TESTER, MARK; DAVENPORT, ROMOLA

    2003-01-01

    Tolerance to high soil [Na+] involves processes in many different parts of the plant, and is manifested in a wide range of specializations at disparate levels of organization, such as gross morphology, membrane transport, biochemistry and gene transcription. Multiple adaptations to high [Na+] operate concurrently within a particular plant, and mechanisms of tolerance show large taxonomic variation. These mechanisms can occur in all cells within the plant, or can occur in specific cell types, reflecting adaptations at two major levels of organization: those that confer tolerance to individual cells, and those that contribute to tolerance not of cells per se, but of the whole plant. Salt?tolerant cells can contribute to salt tolerance of plants; but we suggest that equally important in a wide range of conditions are processes involving the management of Na+ movements within the plant. These require specific cell types in specific locations within the plant catalysing transport in a coordinated manner. For further understanding of whole plant tolerance, we require more knowledge of cell?specific transport processes and the consequences of manipulation of transporters and signalling elements in specific cell types. PMID:12646496

  6. High School Student's Alternative Conceptions About the Phenomenon of the Formation of the Moon Phases. (Spanish Title: Concepciones Alternativas de Alumnos de Educación Media Sobre el Fenómeno de Formación de las Fases de La Luna.) Concepções Alternativas de Alunos do Ensino Médio Sobre o Fenômeno de Formação das Fases da Lua

    NASA Astrophysics Data System (ADS)

    Iachel, Gustavo; Langhi, Rodolfo; Fernandes Scalvi, Rosa Maria

    2008-07-01

    Forty students, at ages between 14 and 18 years old, from three schools in Bauru city, were questioned about their alternative conceptions concerning the phenomenon of formation of the Moon Phases. It was observed that some of the pupils confound the phenomenon of the formation of the Moon Phases with the phenomenon of the formation of the lunar eclipses, others are unaware of the reason of the phenomenon, they present incoherent alternative conceptions of the reality or incomplete conceptions. The results found here are aimed at the teachers of Elementary Education and can be used as a subsidy for future development of new pedagogical methods. Cuarenta estudiantes, con edad entre 14 y 18 años, pertenecientes a tres escuelas de la ciudad de Bauru, fueron cuestionados sobre sus concepciones alternativas acerca del fenómeno de la formación de las fases de la Luna. Fue observado que algunos alumnos confunden el fenómeno de formación de las fases de la Luna con el fenómeno de formación de los eclipses lunares, otros desconocen el motivo delfenómeno, presentan concepciones alternativas incoherentes con la realidad o bien presentan concepciones incompletas. Los resultados aquí encontrados son destinados a los profesores de la Enseñanza Básica y podrán ser usados como ayuda para el futuro desarrollo de nuevos métodos pedagógicos. Quarenta estudantes, com idades entre 14 e 18 anos, pertencentes a três escolas da cidade de Bauru, foram questionados sobre suas concepções alternativas acerca do fenômeno de formação das fases da Lua. Foi observado que alguns dos alunos confundem o fenômeno da formação das fases da Lua com o fenômeno da formação dos eclipses lunares, outros desconhecem o motivo do fenômeno, apresentam concepções alternativas incoerentes com a realidade ou então concepções incompletas. Os resultados aqui encontrados são destinados aos professores do Ensino Básico e poderão ser usados como subsídio parafuturo desenvolvimento de novos métodos pedagógicos.

  7. Compensatory regulation of Na+ absorption by Na+/H+ exchanger and Na+-Cl- cotransporter in zebrafish (Danio rerio)

    PubMed Central

    2013-01-01

    Introduction In mammals, internal Na+ homeostasis is maintained through Na+ reabsorption via a variety of Na+ transport proteins with mutually compensating functions, which are expressed in different segments of the nephrons. In zebrafish, Na+ homeostasis is achieved mainly through the skin/gill ionocytes, namely Na+/H+ exchanger (NHE3b)-expressing H+-ATPase rich (HR) cells and Na+-Cl- cotransporter (NCC)-expressing NCC cells, which are functionally homologous to mammalian proximal and distal convoluted tubular cells, respectively. The present study aimed to investigate whether or not the functions of HR and NCC ionocytes are differentially regulated to compensate for disruptions of internal Na+ homeostasis and if the cell differentiation of the ionocytes is involved in this regulation pathway. Results Translational knockdown of ncc caused an increase in HR cell number and a resulting augmentation of Na+ uptake in zebrafish larvae, while NHE3b loss-of-function caused an increase in NCC cell number with a concomitant recovery of Na+ absorption. Environmental acid stress suppressed nhe3b expression in HR cells and decreased Na+ content, which was followed by up-regulation of NCC cells accompanied by recovery of Na+ content. Moreover, knockdown of ncc resulted in a significant decrease of Na+ content in acid-acclimated zebrafish. Conclusions These results provide evidence that HR and NCC cells exhibit functional redundancy in Na+ absorption, similar to the regulatory mechanisms in mammalian kidney, and suggest this functional redundancy is a critical strategy used by zebrafish to survive in a harsh environment that disturbs body fluid Na+ homeostasis. PMID:23924428

  8. Intermitência alfvênica gerada por caos na atmosfera solar e no vento solar

    NASA Astrophysics Data System (ADS)

    Rempel, E. L.; Chian, A. C.-L.; Macau, E. E. N.; Rosa, R. R.

    2003-08-01

    Dados medidos no vento solar rápido proveniente dos buracos coronais revelam que os plasmas no meio interplanetário são dominados por flutuações Alfvênicas, caracterizadas por uma alta correlação entre as variações do campo magnético e da velocidade do plasma. As flutuações exibem muitas características esperadas em turbulência magneto-hidrodinâmica totalmente desenvolvida, tais como intermitência e espectros contínuos. Contudo, os mecanismos responsáveis pela evolução de turbulência Alfvênica intermitente não são completamente compreendidos. Neste trabalho a teoria de caos é usada para explicar como sistemas Alfvênicos, modelados pela equação Schrödinger não-linear derivativa e pela equação Kuramoto-Sivashinsky, podem se tornar fortemente caóticos à medida em que parâmetros do plasma são variados. Pequenas perturbações no parâmetro de dissipação podem fazer com que o sistema mude bruscamente de um regime periódico, ou fracamente caótico, para um regime fortemente caótico. As séries temporais das flutuações do campo magnético nos regimes fortemente caóticos exibem comportamento intermitente, em que fases laminares ou fracamente caóticas são interrompidas por fortes estouros caóticos. É mostrado que o regime fortemente caótico é atingido quando as soluções periódicas ou fracamente caóticas globalmente estáveis interagem com soluções do sistema que são fortemente caóticas, mas globalmente instáveis. Estas soluções globalmente instáveis são conjuntos caóticos não-atrativos conhecidos como selas caóticas, e são responsáveis pelos fortes estouros nos regimes intermitentes. Selas caóticas têm sido detectadas experimentalmente em uma grande variedade de sistemas, sendo provável que elas desempenhem um papel importante na turbulência intermitente observada em plasmas espaciais.

  9. Intracellular Na+ Concentration ([Na+]i) Is Elevated in Diabetic Hearts Due to Enhanced Na+–Glucose Cotransport

    PubMed Central

    Lambert, Rebekah; Srodulski, Sarah; Peng, Xiaoli; Margulies, Kenneth B; Despa, Florin; Despa, Sanda

    2015-01-01

    Background Intracellular Na+ concentration ([Na+]i) regulates Ca2+ cycling, contractility, metabolism, and electrical stability of the heart. [Na+]i is elevated in heart failure, leading to arrhythmias and oxidative stress. We hypothesized that myocyte [Na+]i is also increased in type 2 diabetes (T2D) due to enhanced activity of the Na+–glucose cotransporter. Methods and Results To test this hypothesis, we used myocardial tissue from humans with T2D and a rat model of late-onset T2D (HIP rat). Western blot analysis showed increased Na+–glucose cotransporter expression in failing hearts from T2D patients compared with nondiabetic persons (by 73±13%) and in HIP rat hearts versus wild-type (WT) littermates (by 61±8%). [Na+]i was elevated in HIP rat myocytes both at rest (14.7±0.9 versus 11.4±0.7 mmol/L in WT) and during electrical stimulation (17.3±0.8 versus 15.0±0.7 mmol/L); however, the Na+/K+-pump function was similar in HIP and WT cells, suggesting that higher [Na+]i is due to enhanced Na+ entry in diabetic hearts. Indeed, Na+ influx was significantly larger in myocytes from HIP versus WT rats (1.77±0.11 versus 1.29±0.06 mmol/L per minute). Na+–glucose cotransporter inhibition with phlorizin or glucose-free solution greatly reduced Na+ influx in HIP myocytes (to 1.20±0.16 mmol/L per minute), whereas it had no effect in WT cells. Phlorizin also significantly decreased glucose uptake in HIP myocytes (by 33±9%) but not in WT, indicating an increased reliance on the Na+–glucose cotransporter for glucose uptake in T2D hearts. Conclusions Myocyte Na+–glucose cotransport is enhanced in T2D, which increases Na+ influx and causes Na+ overload. Higher [Na+]i may contribute to arrhythmogenesis and oxidative stress in diabetic hearts. PMID:26316524

  10. Kinetic Analysis of H(+)-Na(+) Selectivity in a Light-Driven Na(+)-Pumping Rhodopsin.

    PubMed

    Kato, Yoshitaka; Inoue, Keiichi; Kandori, Hideki

    2015-12-17

    Krokinobacter eikastus rhodopsin 2 (KR2) is a recently identified light-driven Na(+) pump from a marine bacterium. KR2 pumps Na(+) in NaCl solution but pumps H(+) in the absence of Na(+) and Li(+). The Na(+) transport mechanism in KR2 has been extensively studied, whereas understanding of the H(+) transport mechanism is very limited. Here we studied ion uptake mechanisms and H(+)-Na(+) selectivity using flash photolysis. The results show that decay of the blue-shifted M intermediate is dependent on both [Na(+)] and [H(+)], indicating that KR2 competitively uptakes Na(+) or H(+) upon M decay. Comprehensive concentration dependence of Na(+) and H(+) revealed that the rate constant of H(+) uptake (kH) was much larger than that of Na(+) uptake (kNa) with a ratio (kH/kNa) of >10(3). Therefore, KR2 pumps only H(+) when Na(+) and H(+) concentrations are similar. On the contrary, KR2 pumps Na(+) exclusively under physiological conditions in which [Na(+)] is much greater than [H(+)]. PMID:26673197

  11. Redetermination of NaGdS2, NaLuS2 and NaYS2.

    PubMed

    Fábry, Jan; Havlák, Lubomír; Ku?eráková, Monika; Dušek, Michal

    2014-06-01

    The title structures NaGdS2 (sodium gadolinium sulfide), NaLuS2 (sodium lutetium sulfide) and NaYS2 (sodium yttrium sulfide) were redetermined in order to improve the structural information available for the family of group 1 and thallium rare earth sulfides, which are isostructural with the rhombohedral ?-NaFeO2 structure type. In particular, the present investigation has been directed at the rhombohedral sodium rare earth sulfides. The observed dependence of the fractional coordinate z(S(2-)) on the identity of the rare earth element in the newly determined structures is in agreement with the known structures of the potassium and rubidium analogues. Crystals of NaGdS2 and NaLuS2 display obverse-reverse twinning. PMID:24898952

  12. The effect of Na vapor on the Na content of chondrules

    NASA Technical Reports Server (NTRS)

    Lewis, R. Dean; Lofgren, Gary E.; Franzen, Hugo F.; Windom, Kenneth E.

    1993-01-01

    Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasibility. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325 +/- 5 C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 C - 1350 C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the P(sub Na) for these experimental conditions to be in the 10(exp -6) atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable of producing chondrules are sufficient to volatile Na. Sodium volatilization reaction rates will be reduced to varying degrees from melt droplets, depending on the magnitude of the P(sub Na) generated. A combination of Na vapor during, and Na diffusion back into chondrules after, formation could maintain and/or enrich Na concentrations in chondrules.

  13. Serum stimulates the Na+,K+ pump in quiescent fibroblasts by increasing Na+ entry.

    PubMed

    Smith, J B; Rozengurt, E

    1978-11-01

    Two ionophores (monensin and gramicidin) that carry Na+ into 3T3 cells markedly enhance the rate of 86Rb+ uptake. Ouabain prevents both ionophores from increasing 86Rb+ uptake, indicating that the ionophores activate the Na+,K+ pump. Measurements of 86Rb+ uptake and cell Na+ and K+ over a range of monensin concentrations show that the activity of the Na+,K+ pump in 3T3 cells is limited by the supply of internal Na+ and is extremely sensitive to small changes in internal Na+. Serum rapidly enhances the rate of 22Na+ uptake and net Na+ entry when Na+ exit is inhibited by ouabain. At 0.3 microgram/ml, monensin increases the rate of net Na+ entry and activates the Na+,K+ pump by the same degree as serum. The stimulation of 86Rb+ uptake by serum or the ionophores has an absolute requirement for external Na+. Thus, serum appears to stimulate the Na+,K+ pump in quiescent 3T3 cells by increasing its supply of Na+. PMID:82969

  14. Extracellular Na+ inhibits Na+/H+ exchange: cell shrinkage reduces the inhibition.

    PubMed

    Dunham, Philip B; Kelley, Scott J; Logue, Paul J

    2004-08-01

    Na+/H+ exchangers (NHE) are ubiquitous transporters participating in regulation of cell volume and pH. Cell shrinkage, acidification, and growth factors activate NHE by increasing its sensitivity to intracellular H+ concentration. In this study, the kinetics were studied in dog red blood cells of Na+ influx through NHE as a function of external Na+ concentration ([Na+](o)). In cells in isotonic media, [Na+](o) inhibited Na+ influx >40 mM. Osmotic shrinkage activated NHE by reducing this inhibition. In cells in isotonic media + 120 mM sucrose, there was no inhibition, and influx was a hyperbolic function of [Na+](o). The kinetics of Na+-inhibited Na+ influx were analyzed at various extents of osmotic shrinkage. The curves for inhibited Na+ fluxes were sigmoid, indicating more than one Na+ inhibitory site associated with each transporter. Shrinkage significantly increased the Na+ concentration at half-maximal velocity of Na+-inhibited Na+ influx, the mechanism by which shrinkage activates NHE. PMID:15070809

  15. Growth of binary organic NLO crystals: m.NA-p.NA and m.NA-CNA system

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.

    1993-01-01

    Experiments were carried out to grow 3.Nitroaniline (m.NA) crystals doped with 4.Nitroaniline (p.NA) and 2.chloro 4.Nitroaniline (CNA). The measured undercooling for m.NA, p.NA, and CNA were 0.21 tm K, 0.23 tm K, and 0.35 tm K respectively, where tm represents the melting temperature of the pure component. Because of the crystals' large heat of fusion and large undercooling, it was not possible to grow good quality crystals with low thermal gradients. In the conventional two-zone Bridgman furnace we had to raise the temperature of the hot zone above the decomposition temperature of CNA, p.NA, and m.NA to achieve the desired thermal gradient. To avoid decomposition, we used an unconventional Bridgman furnace. Two immiscible liquids, silicone oil and ethylene glycol, were used to build a special two-zone Bridgman furnace. A temperature gradient of 18 K/cm was achieved without exceeding the decomposition temperature of the crystal. The binary crystals, m.NA-p.NA and m.NA-CNA, were grown in centimeter size in this furnace. X-ray and optical characterization showed good optical quality.

  16. Evaluation of Fc?RIIIB-NA1/NA2 Polymorphism in Visceral Leishmaniasis

    PubMed Central

    Abasi, Mohammad; Lotfi, Pegah; Bazmani, Ahad; Matini, Mohamad; Hajilooi, Mehrdad

    2014-01-01

    Background: Several lines of evidence demonstrating that innate and adaptive immunity play important roles in the defense against visceral leishmaniasis (VL). A polymorphism within the Fc?RIIIB gene can lead to the expression of three variants of NA1, NA2, and the combined one (NA1/NA2) which alters affinity of IgG to its receptor. Objectives: The main aim of this study was to evaluate the Fc?RIIIB-NA1/NA2 polymorphism in the Fc?RIIIB gene of VL patients in comparison to healthy controls. Patients and Methods: In this cross-sectional study, three groups; 54 seropositive patients with clinical presentation of VL (group 1), 104 seropositive patients without clinical presentation (group 2), and 104 healthy controls (group 3) were evaluated with respect to the Fc?RIIIB-NA1/NA2 polymorphism using a PCR-SSP method. The titration of anti-leishmania antibodies was analyzed using an immunoflorescence technique. Results: Our results indicated that polymorphisms within the Fc?RIIIB gene (that lead to the expression of the NA1/NA2 isoforms) are significantly associated with VL. The results demonstrated that the genotype heterozygotic for Fc?RIIIB-NA1/NA2 expression was significantly increased in VL patients, group 1 when compared to groups 2 and 3. Conversely, there is a decrease in homozygous NA1 and NA2 genotypes in VL patients; however, the overall frequency of NA1 and NA2 alleles appear similar across the three cohorts examined. Conclusions: According to our results, it is likely that the increased frequency of the Fc?RIIIB-NA1/NA2 genotype is associated with impaired immune responses against VL and its subsequent clearance from the patient. PMID:24910789

  17. Deliquescence of NaCl–NaNO3, KNO3–NaNO3, and NaCl–KNO3 salt mixtures from 90 to 120°C

    PubMed Central

    Carroll, Susan; Craig, Laura; Wolery, Thomas J

    2005-01-01

    We conducted reversed deliquescence experiments in saturated NaCl–NaNO3–H2O, KNO3–NaNO3–H2O, and NaCl–KNO3–H2O systems from 90 to 120°C as a function of relative humidity and solution composition. NaCl, NaNO3, and KNO3 represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV. Discrepancy between model prediction and experiment can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25°C models for Cl–NO3 and K–NO3 ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the nonideal behavior of these highly concentrated solutions.

  18. Maintaining the Na atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Morgan, Thomas H.

    1993-01-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  19. NA62 Low Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Palladino, V.

    2014-06-01

    The NA62 experiment at CERN aims at a precision measurement of the ultra-rare decay K^+ rightarrow ?^+?bar?. A low mass (˜ 1.8%X0) spectrometer, whose construction is ongoing, has been designed to track charged kaon decays products. The system operates in vacuum, and will be operative in October 2014, when the first physics run is scheduled. The straw detector is made of 4 stations, each equipped with 1792 straws, arranged in 4 views (X, Y, U and V). A high aperture magnet (MNP33), placed between the second and the third chamber, provides a 0.36T dipole vertical B-field, required to measure the momentum of the charged particles. A 64-straws prototype was constructed in 2010. It was used as test bench for electronics commissioning and detector characterization. Time resolution and space-time relation were measured. A first test with a full chamber and final beam setup was performed in November 2012.

  20. Photodissociation of NaH

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anindita; Dastidar, Krishna Rai

    2002-02-01

    We have calculated the photodissociation cross section of NaH through the B 1? state. We have solved the time-dependent Schrödinger equation by using the Chebyshev-polynomial scheme and Fourier grid Hamiltonian method. We have used four different sets of potential-energy curves for X 1?+ and B 1? states [E. S. Sachs, J. Hinze, and N. H. Sabelli, J. Chem. Phys. 62, 3367 (1975); R. E. Olson and B. Liu, J. Chem. Phys. 73, 2817 (1980); W. C. Stwalley, W. T. Zemke, and S. C. Yang, J. Phys. Chem. Ref. Data 20, 156 (1991)]. We have found that the values of maximum photodissociation cross section and the corresponding photon energy depend on the choice of the potential-energy curves. But all these results differ significantly from an earlier calculation [K. Kirby and A. Dalgarno, Astrophys. J. 224, 444 (1978)]. We have also found that the photodissociation occurs mainly due to the Franck-Condon transitions.

  1. Painful Na-channelopathies: an expanding universe.

    PubMed

    Waxman, Stephen G

    2013-07-01

    The universe of painful Na-channelopathies--human disorders caused by mutations in voltage-gated sodium channels--has recently expanded in three dimensions. We now know that mutations of sodium channels cause not only rare genetic 'model disorders' such as inherited erythromelalgia and channelopathy-associated insensitivity to pain but also common painful neuropathies. We have learned that mutations of NaV1.8, as well as mutations of NaV1.7, can cause painful Na-channelopathies. Moreover, recent studies combining atomic level structural models and pharmacogenomics suggest that the goal of genomically guided pain therapy may not be unrealistic. PMID:23664154

  2. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. . Dept. of Computer Science Oak Ridge National Lab., TN ); Rosener, B. . Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  3. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. |; Rosener, B.

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  4. Familiares a cargo de pacientes de cáncer: funciones y desafíos (PDQ)—Versión para profesionales de salud

    Cancer.gov

    Sumario informativo revisado por expertos acerca de los desafíos que enfrentan los familiares a cargo de los pacientes con cáncer. Este resumen se centra en las funciones típicas y las inquietudes de las personas a cargo del paciente y en las intervenciones útiles para esas personas.

  5. Intracellular levels of Na(+) and TTX-sensitive Na(+) channel current in diabetic rat ventricular cardiomyocytes.

    PubMed

    Bilginoglu, Ayca; Kandilci, Hilmi Burak; Turan, Belma

    2013-06-01

    Intracellular Na(+) ([Na(+)](i)) is an important modulator of excitation-contraction coupling via regulating Ca(2+) efflux/influx, and no investigation has been so far performed in diabetic rat heart. Here, we examined whether any change of [Na(+)](i) in paced cardiomyocytes could contribute to functional alterations during diabetes. Slowing down in depolarization phase of the action potential, small but significant decrease in its amplitude with a slight depolarized resting membrane potential was traced in live cardiomyocytes from diabetic rat, being parallel with a decreased TTX-sensitive Na(+) channel current (I(Na)) density. We recorded either [Na(+)](i) or [Ca(2+)](i) by using a fluorescent Na(+) indicator (SBFI-AM or Na-Green) or a Ca(2+) indicator (Fura 2-AM) in freshly isolated cardiomyocytes. We examined both [Na(+)](i) and [Ca(2+)](i) at rest, and also [Na(+)](i) during pacing with electrical field stimulation in a range of 0.2-2.0 Hz stimulation frequency. In order to test the possible contribution of Na(+)/H(+) exchanger (NHE) to [Na(+)](i), we examined the free cytoplasmic [H(+)](i) changes from time course of [H(+)](i) recovery in cardiomyocytes loaded with SNARF1-AM by using ammonium prepulse method. Our data showed that [Na(+)](i) in resting cells from either diabetic or control group was not significantly different, whereas the increase in [Na(+)](i) was significantly smaller in paced diabetic cardiomyocytes compared to that of the controls. However, resting [Ca(2+)](i) in diabetic cardiomyocytes was significantly higher than that of the controls. Here, a lower basal pH(i) in diabetics compared with the controls correlates also with a slightly higher but not significantly different NHE activity and consequently a similar Na(+) loading rate at resting state with a leftward shift in pH sensitivity of NHE-dependent H(+)-flux. NHE protein level remained unchanged, while protein levels of Na(+)/K(+) ATPase and Na(+)/Ca(2+) exchanger were decreased in the diabetic cardiomyocytes. Taken together, the present data indicate that depressed I(Na) plays an important role in altered electrical activity with less Na(+) influx during contraction, and an increased [Ca(2+)](i) load in these cells seems to be independent of [Na(+)](i). The data with insulin treatment suggest further a recent balance between Na(+) influx and efflux proteins associated with the [Na(+)](i), particularly during diabetes. PMID:23225150

  6. Epithelial Na(+) channels are regulated by flow.

    PubMed

    Satlin, L M; Sheng, S; Woda, C B; Kleyman, T R

    2001-06-01

    Na(+) absorption in the renal cortical collecting duct (CCD) is mediated by apical epithelial Na(+) channels (ENaCs). The CCD is subject to continuous variations in intraluminal flow rate that we speculate alters hydrostatic pressure, membrane stretch, and shear stress. Although ENaCs share limited sequence homology with putative mechanosensitive ion channels in Caenorhabditis elegans, controversy exists as to whether ENaCs are regulated by biomechanical forces. We examined the effect of varying the rate of fluid flow on whole cell Na(+) currents (I(Na)) in oocytes expressing mouse alpha,beta,gamma-ENaC (mENaC) and on net Na(+) absorption in microperfused rabbit CCDs. Oocytes injected with mENaC but not water responded to the initiation of superfusate flow (to 4-6 ml/min) with a reversible threefold stimulation of I(Na) without a change in reversal potential. The increase in I(Na) was variable among oocytes. CCDs responded to a threefold increase in rate of luminal flow with a twofold increase in the rate of net Na(+) absorption. An increase in luminal viscosity achieved by addition of 5% dextran to the luminal perfusate did not alter the rate of net Na(+) absorption, suggesting that shear stress does not influence Na(+) transport in the CCD. In sum, our data suggest that flow stimulation of ENaC activity and Na(+) absorption is mediated by an increase in hydrostatic pressure and/or membrane stretch. We propose that intraluminal flow rate may be an important regulator of channel activity in the CCD. PMID:11352841

  7. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart

    PubMed Central

    Shattock, Michael J; Ottolia, Michela; Bers, Donald M; Blaustein, Mordecai P; Boguslavskyi, Andrii; Bossuyt, Julie; Bridge, John H B; Chen-Izu, Ye; Clancy, Colleen E; Edwards, Andrew; Goldhaber, Joshua; Kaplan, Jack; Lingrel, Jerry B; Pavlovic, Davor; Philipson, Kenneth; Sipido, Karin R; Xie, Zi-Jian

    2015-01-01

    This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field. PMID:25772291

  8. Complicaciones orales de la quimioterapia y la radioterapia (PDQ)—Versión para pacientes

    Cancer.gov

    Resumen de información revisada por expertos acerca de las complicaciones orales, como la mucositis y la disfunción de la glándula salival, que se presentan en pacientes de cáncer tratados con quimioterapia y radioterapia dirigida a la cabeza y el cuello.

  9. Capacitación del personal y de los pacientes en torno a los cuidados terminales

    Cancer.gov

    Artículo sobre programas innovadores de base científica para ayudar a médicos y pacientes a hablar sobre la transición de un tratamiento activo para el cáncer a los cuidados en la etapa final de la vida.

  10. Inelastic processes in Na+-Ne, Na+-Ar, Ne+-Na, and Ar+-Na collisions in the energy range 0.5-14 keV

    NASA Astrophysics Data System (ADS)

    Lomsadze, R. A.; Gochitashvili, M. R.; Kezerashvili, R. Ya.

    2015-12-01

    Absolute cross sections for charge-exchange, ionization, and excitation in Na+-Ne and Na+-Ar collisions were measured in the ion energy range 0.5 -10 keV using a refined version of a capacitor method and collision and optical spectroscopy methods simultaneously in the same experimental setup. Ionization cross sections for Ne+-Na and Ar+-Na collisions are measured at energies of 2 -14 keV using a crossed-beam spectroscopy method. The experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. For the charge-exchange process in Na+-Ar collisions two nonadiabatic regions are revealed and mechanisms responsible for these regions are explained. Structural peculiarity on the excitation function for the resonance lines of argon atoms in Na+-Ar collisions are observed and the possible mechanisms of this phenomenon are explored. The measured ionization cross sections for Na+-Ne and Ne+-Na collisions in conjunction with the Landau-Zener formula are used to determine the coupling matrix element and transition probability in a region of pseudocrossing of the potential curves.

  11. Genome Sequence of Salmonella Phage 9NA.

    PubMed

    Casjens, Sherwood R; Leavitt, Justin C; Hatfull, Graham F; Hendrix, Roger W

    2014-01-01

    The virulent double-stranded DNA (dsDNA) bacteriophage 9NA infects Salmonella enterica serovar Typhimurium and has a long noncontractile tail. We report its complete 52,869-bp genome sequence. Phage 9NA and two closely related S. enterica serovar Newport phages represent a tailed phage type whose molecular lifestyle has not yet been studied in detail. PMID:25146133

  12. Genome Sequence of Salmonella Phage 9NA

    PubMed Central

    Leavitt, Justin C.; Hatfull, Graham F.; Hendrix, Roger W.

    2014-01-01

    The virulent double-stranded DNA (dsDNA) bacteriophage 9NA infects Salmonella enterica serovar Typhimurium and has a long noncontractile tail. We report its complete 52,869-bp genome sequence. Phage 9NA and two closely related S. enterica serovar Newport phages represent a tailed phage type whose molecular lifestyle has not yet been studied in detail. PMID:25146133

  13. Regulation of Na+ fluxes in plants

    PubMed Central

    Maathuis, Frans J. M.; Ahmad, Izhar; Patishtan, Juan

    2014-01-01

    When exposed to salt, every plant takes up Na+ from the environment. Once in the symplast, Na+ is distributed within cells and between different tissues and organs. There it can help to lower the cellular water potential but also exert potentially toxic effects. Control of Na+ fluxes is therefore crucial and indeed, research shows that the divergence between salt tolerant and salt sensitive plants is not due to a variation in transporter types but rather originates in the control of uptake and internal Na+ fluxes. A number of regulatory mechanisms has been identified based on signaling of Ca2+, cyclic nucleotides, reactive oxygen species, hormones, or on transcriptional and post translational changes of gene and protein expression. This review will give an overview of intra- and intercellular movement of Na+ in plants and will summarize our current ideas of how these fluxes are controlled and regulated in the early stages of salt stress. PMID:25278946

  14. Na-doped optical Germanium bulk crystals

    NASA Astrophysics Data System (ADS)

    Pekar, G. S.; Singaevsky, A. F.

    2012-09-01

    In an effort to develop a material for infrared (IR) optics with improved parameters, bulk crystals of optical germanium doped with Na have been first grown and studied. Single-crystalline and coarse-crystalline Ge:Na boules of different shapes and dimensions, up to 10 kg by weight, have been grown. Sodium was incorporated into the Ge crystal during the crystal growing from the melt. Despite the fact that Na contamination in the source material was not strictly controlled, the density of Na in the grown crystals determined by the neutron activation analysis as well as by the glow discharge mass spectrometry did not exceed 1015 cm-3. Just this value may be supposed to be close to the solubility limit of Na incorporated in Ge in the course of bulk crystal growth. A first demonstration of donor behavior of Na in bulk Ge crystals is made by means of a thermoelectric type of testing. An interstitial location of Na impurity has been verified by experiments on donor drift in the dc electric field. The crystals are grown with free electron density in the range from 5?1013 to 4?1014 cm-3 which is optimal for using Ge crystals as an optical material for fabricating passive elements of the IR technique. A comparison between the properties of Ge:Na crystals and Ge crystals doped with Sb, a conventional impurity in optical germanium, grown under the same technological conditions and from the same intrinsic Ge as a source material, revealed a number of advantages of Ge:Na crystals; among them, the higher transparency in the IR region, smaller radiation scattering and higher regular optical transmission, lower dislocation density, more uniform distribution of electrical and optical characteristics over the crystal volume, the identity of optical parameters in the single-crystalline, and coarse-crystalline boules. No degradation of optical elements fabricated from Ge:Na crystals was detected in the course of their commercial application, starting from 1998.

  15. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-? -S, pertussis toxin, and antibodies against the ? -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  16. Na and K Dependence of the Na/K Pump in Cystic Fibrosis Fibroblasts

    NASA Astrophysics Data System (ADS)

    Reznik, Vivian M.; Schneider, Jerry A.; Mendoza, Stanley A.

    1981-11-01

    The Na and K dependence of the Na/K pump was measured in skin fibroblasts from patients with cystic fibrosis and age/sex-matched controls. Under basal conditions, there was no difference between control and cystic fibrosis cells in protein per cell, intracellular Na and K content, or Na/K pump activity (measured as ouabain-sensitive 86Rb uptake). There was no difference in the Na dependence of the Na/K pump between cystic fibrosis cells and control cells. In cells from patients with cystic fibrosis, the Na/K pump had a significantly lower affinity for K (Km = 1.6 mM) when compared to normals (Km = 0.9 mM). This difference was demonstrated by using two independent experimental designs.

  17. Na-site substitution effects on the thermoelectric properties of NaCo2O4

    NASA Astrophysics Data System (ADS)

    Kawata, T.; Iguchi, Y.; Itoh, T.; Takahata, K.; Terasaki, I.

    1999-10-01

    The resistivity and thermopower of Na1+xCo2O4 and Na1.1-xCaxCo2O4 are measured and analyzed. In Na1+xCo2O4, whereas the resistivity increases with x, the thermopower is nearly independent of x. This suggests that the excess Na is unlikely to supply carriers, and decreases effective conduction paths in the sample. In Na1.1-xCaxCo2O4, the resistivity and the thermopower increase with x, and the Ca2+ substitution for Na+ reduces the majority carriers in NaCo2O4. This means that they are holes, which is consistent with the positive sign of the thermopower. Strong correlation in this compound is evidenced by the peculiar temperature dependence of the resistivity.

  18. Extracellular Na+ levels regulate formation and activity of the NaX/alpha1-Na+/K+-ATPase complex in neuronal cells

    PubMed Central

    Berret, Emmanuelle; Smith, Pascal Y.; Henry, Mélaine; Soulet, Denis; Hébert, Sébastien S.; Toth, Katalin; Mouginot, Didier; Drolet, Guy

    2014-01-01

    MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na+]out). The mechanism underlying Na+-sensing involves Na+-flow through the NaX channel, directly regulated by the Na+/K+-ATPase α1-isoform which controls Na+-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na+]in). Here we aim to determine whether environmental changes in Na+ could actively modulate the NaX/Na+/K+-ATPase complex activity. We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na+] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na+] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na+/K+-ATPase remained unaltered. This unbalance between NaX and Na+/K+-ATPase pump proportion would induce a bigger portion of Na+/K+-ATPase-control-free NaX channel. Thus, we suggest that hypernatremic environment increases NaX/Na+/K+-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump. PMID:25538563

  19. Myocardial Na,K-ATPase: Clinical aspects

    PubMed Central

    Kjeldsen, Keld

    2003-01-01

    The specific binding of digitalis glycosides to Na,K-ATPase is used as a tool for Na,K-ATPase quantification with high accuracy and precision. In myocardial biopsies from patients with heart failure, total Na,K-ATPase concentration is decreased by around 40%; a correlation exists between a decrease in heart function and a decrease in Na,K-ATPase concentration. During digitalization, around 30% of remaining pumps are occupied by digoxin. Myocardial Na,K-ATPase is also influenced by other drugs used for the treatment of heart failure. Thus, potassium loss during diuretic therapy has been found to reduce myocardial Na,K-ATPase, whereas angiotensin-converting enzyme inhibitors may stimulate Na,K pump activity. Furthermore, hyperaldosteronism induced by heart failure has been found to decrease Na,K-ATPase activity. Accordingly, treatment with the aldosterone antagonist, spironolactone, may also influence Na,K-ATPase activity. The importance of Na,K pump modulation with heart disease, inhibition in digitalization and other effects of medication should be considered in the context of sodium, potassium and calcium regulation. It is recommended that digoxin be administered to heart failure patients who, after institution of mortality-reducing therapy, still have heart failure symptoms, and that the therapy be continued if symptoms are revealed or reduced. Digitalis glycosides are the only safe inotropic drugs for oral use that improve hemodynamics in heart failure. An important aspect of myocardial Na,K pump affection in heart disease is its influence on extracellular potassium (Ke) homeostasis. Two important aspects should be considered: potassium handling among myocytes, and effects of potassium entering the extracellular space of the heart via the bloodstream. It should be noted that both of these aspects of Ke homeostasis are affected by regulatory aspects, eg, regulation of the Na,K pump by physiological and pathophysiological conditions, as well as by medical treatments. Digitalization has been shown to affect both parameters. Furthermore, in experimental animals, potassium loading and depletion are found to significantly affect Ke handling. The effects of potassium depletion are of special interest because this condition often occurs in patients treated with diuretics. In human congenital long QT syndrome caused by mutations in genes coding for potassium channels, exercise and potassium depletion are well known for their potential to elicit arrhythmias and sudden death. There is a need for further evaluation of the dynamic aspects of potassium handling in the heart, as well as in the periphery. It is recommended that resting plasma potassium be maintained at around 4 mmol/L. PMID:19641704

  20. Na+ channels as targets for neuroprotective drugs.

    PubMed

    Taylor, C P; Meldrum, B S

    1995-09-01

    Drugs that block voltage-dependent Na+ channels are well known as local anaesthetics, antiarrhythmics and anticonvulsants. Recent studies show that these compounds also provide a powerful mechanism of cytoprotection in animal models of cerebral ischaemia, hypoxia or head trauma. In this article Charles Taylor and Brian Meldrum review evidence indicating that Na+ channel modulators are neuroprotective and describe recent ideas for the molecular sites of action of voltage-dependent Na+ channel blockers. Clinical trials with several compounds are now in progress for stroke and traumatic head injury, and the therapeutic potential for this group of compounds is discussed. PMID:7482996

  1. NMR studies on Na+ transport in Synechococcus PCC 6311

    NASA Technical Reports Server (NTRS)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  2. Response of rainbow trout gill Na+-ATPpase to T(3) and NaCl administration.

    PubMed

    Ventrella, V; Pagliarani, A; Trombetti, F; Pirini, M; Trigari, G; Borgatti, A R

    2001-01-01

    The effect of the administration of commercial diets supplemented with 9 mg kg(-1) 3,5,3'-triiodo-l-thyronine (T(3)) or 10% (w/w) NaCl was evaluated on the ouabain-insensitive Na+-ATPase activity in rainbow trout gill microsomes. The trial, carried out following the seasonal trend from March to mid-May, included a treatment phase in freshwater and a subsequent transfer to brackish water (22 per thousand salinity) where trout were not treated. pH dependence, apparent Km values for Mg(2+) and Na+, and Hill coefficients evaluated throughout the trial for Na+-ATPase were generally not affected by the treatments and habitat change. In comparison with the control group, in both treated groups, Na+-ATPase activity was lower during the freshwater phase and higher after brackish-water transfer. As compared with untreated trout, gill (Na++K+)-ATPase activity during the freshwater phase was stimulated by NaCl treatment and also by T(3) treatment after transfer to brackish water. The results indicate that NaCl and T(3) administration act differently on the two ATPase activities involved in Na+ regulation and suggest a prevalent role of Na+-ATPase activity in hypoosmotic conditions. PMID:11517454

  3. Catalysis of Na+ permeation in the bacterial sodium channel Na(V)Ab.

    PubMed

    Chakrabarti, Nilmadhab; Ing, Christopher; Payandeh, Jian; Zheng, Ning; Catterall, William A; Pomès, Régis

    2013-07-01

    Determination of a high-resolution 3D structure of voltage-gated sodium channel Na(V)Ab opens the way to elucidating the mechanism of ion conductance and selectivity. To examine permeation of Na(+) through the selectivity filter of the channel, we performed large-scale molecular dynamics simulations of Na(V)Ab in an explicit, hydrated lipid bilayer at 0 mV in 150 mM NaCl, for a total simulation time of 21.6 μs. Although the cytoplasmic end of the pore is closed, reversible influx and efflux of Na(+) through the selectivity filter occurred spontaneously during simulations, leading to equilibrium movement of Na(+) between the extracellular medium and the central cavity of the channel. Analysis of Na(+) dynamics reveals a knock-on mechanism of ion permeation characterized by alternating occupancy of the channel by 2 and 3 Na(+) ions, with a computed rate of translocation of (6 ± 1) × 10(6) ions⋅s(-1) that is consistent with expectations from electrophysiological studies. The binding of Na(+) is intimately coupled to conformational isomerization of the four E177 side chains lining the extracellular end of the selectivity filter. The reciprocal coordination of variable numbers of Na(+) ions and carboxylate groups leads to their condensation into ionic clusters of variable charge and spatial arrangement. Structural fluctuations of these ionic clusters result in a myriad of ion binding modes and foster a highly degenerate, liquid-like energy landscape propitious to Na(+) diffusion. By stabilizing multiple ionic occupancy states while helping Na(+) ions diffuse within the selectivity filter, the conformational flexibility of E177 side chains underpins the knock-on mechanism of Na(+) permeation. PMID:23803856

  4. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

    PubMed

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2016-03-01

    The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the ?1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the ?1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent ?1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+). PMID:26958887

  5. Triplet state photoassociation of LiNa

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur; Jamison, Alan; Jing, Li; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2015-05-01

    Ultracold molecules have promise to become a useful tool for studies in quantum simulation and ultracold chemistry. We aim to produce ultracold fermionic 6Li23Na molecules in the triplet ground state. Due to the small mass, small spin-orbit coupling, and fermionic character of LiNa, the triplet ground state is expected to be long lived. We report on photoassociation spectra of LiNa to its triplet excited states from an ultracold mixture. This is the first observation of these excited triplet potentials, which have been previously difficult to observe in heat-pipe experiments due to the small spin-orbit coupling in the system. Determining the excited state potentials is a key milestone towards forming triplet ground state LiNa via two-photon STIRAP. Work supported by the NSF, AFOSR-MURI, ARO-MURI, and NSERC.

  6. Anamorphic high-NA EUV lithography optics

    NASA Astrophysics Data System (ADS)

    Migura, Sascha; Kneer, Bernhard; Neumann, Jens Timo; Kaiser, Winfried; van Schoot, Jan

    2015-09-01

    EUV lithography (EUVL) for a limit resolution below 8 nm requires the numerical aperture (NA) of the projection optics to be larger than 0.50. For such a high-NA optics a configuration of 4x magnification, full field size of 26 x 33 mm² and 6'' mask is not feasible anymore. The increased chief ray angle and higher NA at reticle lead to non-acceptable mask shadowing effects. These shadowing effects can only be controlled by increasing the magnification, hence reducing the system productivity or demanding larger mask sizes. We demonstrate that the best compromise in imaging, productivity and field split is a so-called anamorphic magnification and a half field of 26 x 16.5 mm² but utilizing existing 6'' mask infrastructure. We discuss the optical solutions for such anamorphic high-NA EUVL.

  7. Hydrogen-fluorine exchange in NaBH4-NaBF4.

    PubMed

    Rude, L H; Filsø, U; D'Anna, V; Spyratou, A; Richter, B; Hino, S; Zavorotynska, O; Baricco, M; Sørby, M H; Hauback, B C; Hagemann, H; Besenbacher, F; Skibsted, J; Jensen, T R

    2013-11-01

    Hydrogen-fluorine exchange in the NaBH4-NaBF4 system is investigated using a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed using in situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF2H2 in the temperature range T = 200 to 215 °C. Combined use of solid-state (19)F MAS NMR, FT-IR and DFT calculations supports the formation of a BF2H2(-) complex ion, reproducing the observation of a (19)F chemical shift at -144.2 ppm, which is different from that of NaBF4 at -159.2 ppm, along with the new absorption bands observed in the IR spectra. After further heating, the fluorine substituted compound becomes X-ray amorphous and decomposes to NaF at ~310 °C. This work shows that fluorine-substituted borohydrides tend to decompose to more stable compounds, e.g. NaF and BF3 or amorphous products such as closo-boranes, e.g. Na2B12H12. The NaBH4-NaBF4 composite decomposes at lower temperatures (300 °C) compared to NaBH4 (476 °C), as observed by thermogravimetric analysis. NaBH4-NaBF4 (1:0.5) preserves 30% of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 8% for NaBH4 as measured using Sievert's method under identical conditions, but more than 50% using prolonged hydrogen absorption time. The reversible hydrogen storage capacity tends to decrease possibly due to the formation of NaF and Na2B12H12. On the other hand, the additive sodium fluoride appears to facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material from the sample container for samples of NaBH4-NaF. PMID:24071912

  8. The mitochondrial Na(+)/Ca(2+) exchanger.

    PubMed

    Palty, Raz; Sekler, Israel

    2012-07-01

    Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification. PMID:22430014

  9. RELACIÓN MÉDICO PACIENTE: DERECHOS DEL ADULTO MAYOR

    PubMed Central

    Barrantes-Monge, Melba; Rodríguez, Eduardo; Lama, Alexis

    2009-01-01

    Existen prejuicios en relación con la vejez, incluso entre los profesionales que se dedican a la gerontología. Uno común y peligroso es considerar que los viejos son todos enfermos o discapacitados. La relación médico-paciente es la piedra angular de la práctica y ética médicas. Para alcanzar el respeto por los adultos mayores es necesaria una medicina prudente, basada en una práctica en la cual la reflexión ética y clínica pueda contribuir. Esto último es posible si se hacen valer los derechos del adulto mayor, en particular como paciente para la toma de decisiones. PMID:20379380

  10. Deliquescence of NaCl-NaNO3, KNO3-NaNO3, and NaCl-KNO3 Salt Mixtures From 90 to 120?C

    SciTech Connect

    Carroll, S A; Craig, L; Wolery, T J

    2004-10-20

    We conducted reversed deliquescence experiments in saturated NaCl-NaNO{sub 3}-H{sub 2}O, KNO{sub 3}-NaNO{sub 3}-H{sub 2}O, and NaCl-KNO{sub 3}-H{sub 2}O systems from 90 to 120 C as a function of relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Discrepancy between model prediction and experimental code can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25 C models for Cl-NO{sub 3} and K-NO{sub 3} ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the non-ideal behavior of these highly concentrated solutions.

  11. Onset of deconfinement and critical point: NA49 and NA61/SHINE at the CERN SPS

    NASA Astrophysics Data System (ADS)

    Ga?dzicki, M.

    2008-03-01

    This paper is dedicated to the memory of József Zimányi one of the founders of the experiment NA49 at the CERN SPS. Firstly, the paper summarizes the main results of NA49 concerning observation of the onset of deconfinement in central Pb+Pb collisions at the low SPS energies. Secondly, it sketches the physics program of NA61 at the CERN SPS, the successor of NA49, which in particular aims to discover the critical point of strongly interacting matter. Finaly, a brief review of the future experimental programs in the CERN SPS energy range is given.

  12. Modulation of apical Na permeability of the toad urinary bladder by intracellular Na, Ca, and H.

    PubMed

    Palmer, L G

    1985-01-01

    The Na conductance of the apical membrane of the toad urinary bladder was measured at different concentrations of Na both in the external medium and in the cell. Bladders were bathed in high K-sucrose medium to reduce basal-lateral resistance and voltage, and the transepithelial currents measured under voltage-clamp conditions. Amiloride was used as a specific blocker of the apical Na channel. At constant external Na, the internal Na concentration was increased by blocking the basal-lateral Na pump with ouabain. With high Na activity in the mucosal medium (86 mM), increases in intracellular Na activity from 10 to over 40 mM increased the amiloride-sensitive slope conductance at zero voltage while apical Na permeability, estimated from current-voltage plots using the constant field equation, decreased by less than 20%. Lowering the serosal Ca concentration from 1 to 0.1 mM had no effect on the change in PNa with increasing Nac, but increasing serosal Ca to 5 mM enhanced the reduction in PNa with increasing Nac, presumably by increasing Ca influx into the cell. PNa was also reduced by serosal vanadate (0.5 mM), a putative blocker of ATP-dependent Ca extrusion from the cell, and by acute exposure to CO2, which presumably acidifies the cytoplasm. Current-voltage relationships of the amiloride-sensitive transport pathway were also measured in the absence of a Na gradient across the apical membrane. These plots show that outward current passes through the channels somewhat less easily than does inward current. The shape of the I-V relationships was not significantly altered by changes in cellular Na, Ca or H, indicating that the effects of these ions on PNa are voltage independent. PMID:3923198

  13. Na clusters on metal supported Ar layers

    NASA Astrophysics Data System (ADS)

    Faber, B.; Dinh, P. M.; Reinhard, P. G.; Suraud, E.

    2012-07-01

    We investigate from a theoretical perspective structure and dynamics of Na clusters on a surface built from Ar layers grown on a metal support. The system is modeled by a hierarchical quantum-mechanical/molecular-mechanical (QM/MM) approach treating the cluster electrons with time-dependent density-functional theory, the Ar atoms classically, and the metal support as a continuous dielectric medium. Caution has been taken to describe properly the dynamical polarizability of the Ar substrate. We study the effect of the Ar substrate and particularly of the metal support on the cluster structure and dynamics. The binding of Na6 and Na8 to the Ar surface is found to by very weak and the effect of the dielectric response of the metal (DRM) turns out to be negligible. The global properties of the optical response of the Na clusters are slightly changed by the Ar substrate and the DRM while the detailed spectral fragmentation depends sensitively on any change of the environment. The deposition dynamics of small Na clusters is crucially influenced by the mechanical hardness of the metal support while the DRM makes little effect. We also study the dependence on the number of Ar layers. For the first few layers (from two to four), the deposition dynamics changes dramatically with the number of layers. The results stabilize from six layers on upwards.

  14. Opposing effects of Na+ and K+ on the thermal stability of Na+,K(+)-ATPase.

    PubMed

    Kaufman, Sergio B; González-Flecha, F Luis; González-Lebrero, Rodolfo M

    2012-03-15

    Folding and structural stability are key factors for the proper biological function of proteins. Na(+),K(+)-ATPase is an integral membrane protein involved in the active transport of Na(+) and K(+) across the plasma membrane. In this work we characterized the effects of K(+) and Na(+) on the thermal inactivation of Na(+),K(+)-ATPase, evaluating both catalytic and transport capacities of the pump. Both activities of the enzyme decrease with the preincubation time as first-order kinetics. The thermal inactivation of Na(+),K(+)-ATPase is simultaneous with a conformational change detected by tryptophan and 1-aniline-8-naphtalenesulfonate (ANS) fluorescence. The kinetic coefficient of thermal inactivation was affected by the presence of Na(+) and K(+) (or Rb(+)) and the temperature of the preincuabtion media. Our results show that K(+) or Rb(+) stabilize the enzyme, while Na(+) decreases the stability of Na(+),K(+)-ATPase. Both effects are exerted by the specific binding of these cations to the pump. Also, we provided strong evidence that the Rb(+) (or K(+)) stabilization effect is due to the occlusion of these cations into the enzyme. Here, we proposed a minimal kinetic model that explains the behavior observed in the experimental results and allows a better understanding of the results presented by other researchers. The thermal inactivation process was also analyzed according to Kramer's theory. PMID:22283598

  15. Na-ion dynamics in Quasi-1D compound NaV2O4

    NASA Astrophysics Data System (ADS)

    MÃ¥nsson, M.; Umegaki, I.; Nozaki, H.; Higuchi, Y.; Kawasaki, I.; Watanabe, I.; Sakurai, H.; Sugiyama, J.

    2014-12-01

    We have used the pulsed muon source at ISIS to study high-temperature Na-ion dynamics in the quasi-one-dimensional (Q1D) metallic antiferromagnet NaV2O4. By performing systematic zero-field and longitudinal-field measurements as a function of temperature we clearly distinguish that the hopping rate increases exponentially above Tdiff ≈ 250 K. The data is well fitted to an Arrhenius type equation typical for a diffusion process, showing that the Na-ions starts to be mobile above Tdiff. Such results make this compound very interesting for the tuning of Q1D magnetism using atomic-scale ion-texturing through the periodic potential from ordered Na-vacancies. Further, it also opens the door to possible use of NaV2O4 and related compounds in energy related applications.

  16. Long-Range Effects of Na(+) Binding in Na,K-ATPase Reported by ATP.

    PubMed

    Middleton, David A; Fedosova, Natalya U; Esmann, Mikael

    2015-12-01

    This paper addresses the question of long-range interactions between the intramembranous cation binding sites and the cytoplasmic nucleotide binding site of the ubiquitous ion-transporting Na,K-ATPase using (13)C cross-polarization magic-angle spinning (CP-MAS) solid-state nuclear magnetic resonance. High-affinity ATP binding is induced by the presence of Na(+) as well as of Na-like substances such as Tris(+), and these ions are equally efficient promoters of nucleotide binding. CP-MAS analysis of bound ATP with Na,K-ATPase purified from pig kidney membranes reveals subtle differences in the nucleotide interactions within the nucleotide site depending on whether Na(+) or Tris(+) is used to induce binding. Differences in chemical shifts for ATP atoms C1' and C5' observed in the presence of Na(+) or Tris(+) suggest alterations in the residues surrounding the bound nucleotide, hydrogen bonding, and/or conformation of the ribose ring. This is taken as evidence of a long-distance communication between the Na(+)-filled ion sites in the membrane interior and the nucleotide binding site in the cytoplasmic domain and reflects the first conformational change ultimately leading to phosphorylation of the enzyme. Stopped-flow fluorescence measurements with the nucleotide analogue eosin show that the dissociation rate constant for eosin is larger in Tris(+) than in Na(+), giving kinetic evidence of the difference in structural effects of Na(+) and Tris(+). According to the recent crystal structure of the E1·AlF4(-)·ADP·3Na(+) form, the coupling between the ion binding sites and the nucleotide side is mediated by, among others, the M5 helix. PMID:26538123

  17. Possible pathway of Na(+) flux into mitochondria in ischemic heart.

    PubMed

    Tanonaka, Kouichi; Motegi, Kanataka; Arino, Toru; Marunouchi, Tetsuro; Takagi, Norio; Takeo, Satoshi

    2012-01-01

    Previous studies showed that myocardial Na(+) overload during ischemia directly induced mitochondrial damage. The pathway for Na(+) flux into mitochondria remains unclear. We examined possible routes for Na(+) flux into mitochondria in the ischemic heart. Isolated perfused rat hearts were subjected to 15- to 35-min ischemia followed by 60-min reperfusion and then Na(+) content and respiratory function in mitochondria of the ischemic heart were determined. The mitochondrial Na(+) content of the ischemic heart was ischemic duration-dependently increased, associated with a reduction in mitochondrial respiratory function. To mimic induction of mitochondrial Na(+) overload in vitro, isolated mitochondria were incubated with 6.25 to 50 mM NaCl or sodium lactate, a metabolite of anaerobic glycolysis, in the presence and absence of a mitochondrial Na(+)/Ca(2+) exchanger inhibitor CGP37157 and a monocarboxylate transporter (MCT) inhibitor α-cyano-4-hydroxy cinnamic acid (CHCA). Incubation of mitochondria with NaCl or sodium lactate increased the mitochondrial Na(+) concentration. This increase in mitochondrial Na(+) was partially attenuated by the presence of either inhibitor. Combined treatment of mitochondria with both inhibitors attenuated sodium lactate-induced increase in Na(+) content to a greater degree than that treated with either agent. These results suggest that mitochondrial Na(+)/Ca(2+) exchanger and MCT inhibitor-sensitive Na(+) transporter are possible pathways for the mitochondrial Na(+) overload in the ischemic myocardium. PMID:23037156

  18. Ondas gravitatorias de transiciones de fase cosmológicas

    NASA Astrophysics Data System (ADS)

    Leitao, L.

    There are several projects to build Gravitational Waves (GWs) spaceborne detectors as NGO/eLISA, which could be launched before 2022. A frequency signal in the detection range (0.1 mHz - 1 Hz) would be generated in the electroweak scale. This talk focuses on GWs generation from the electroweak phase transition. FULL TEXT IN SPANISH

  19. Peripheral effects of thyroid hormones: alteration of intracellular Na-concentration, ouabain-sensitive Na-transport, and Na-Li countertransport in human red blood cells.

    PubMed

    Sütterlin, U; Gless, K H; Schaz, K; Hüfner, M; Schütz, V; Hunstein, W

    1984-06-15

    To investigate the effect of thyroid hormones on erythrocyte cation transport systems and intracellular electrolyte content we have measured the activity of Na-K ATPase, Na-Li countertransport, as well as red cell sodium and potassium contents in patients with hyperthyroidism and in euthyroid controls. Intracellular Na- and K-concentrations were determined in erythrocytes washed three times in isotonic MgCl2 solution. Ouabain-sensitive Na-transport was estimated as the increase of Na before and after addition of ouabain in an erythrocyte suspension in isotonic Na-free medium. Na-Li countertransport was measured according to the method described by Canessa et al. [2]. The patients with hyperthyroidism exhibited a significantly elevated intracellular sodium content as well as a highly increased Na-K ATPase activity. Intracellular potassium content was not altered in the hyperthyroid subjects, but Na-Li countertransport was markedly decreased as compared to the controls. The results indicate that different ion transport systems of the erythrocyte membrane are influenced by thyroid hormones. We suggest that the elevation of Na-K ATPase activity might be due to the increased intracellular sodium concentration which is caused by the diminished countertransport pathway. Furthermore, the activity of Na-K ATPase, Na-Li countertransport, and intracellular sodium content in erythrocytes might be a useful peripheral indicator of thyroid hormone excess. PMID:6090760

  20. Na+ Inhibits the Epithelial Na+ Channel by Binding to a Site in an Extracellular Acidic Cleft*

    PubMed Central

    Kashlan, Ossama B.; Blobner, Brandon M.; Zuzek, Zachary; Tolino, Michael; Kleyman, Thomas R.

    2015-01-01

    The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl?, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC ? subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family. PMID:25389295

  1. Na+ inhibits the epithelial Na+ channel by binding to a site in an extracellular acidic cleft.

    PubMed

    Kashlan, Ossama B; Blobner, Brandon M; Zuzek, Zachary; Tolino, Michael; Kleyman, Thomas R

    2015-01-01

    The epithelial Na(+) channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na(+), Cl(-), protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na(+) concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC ? subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na(+) binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na(+). Mutations at selected sites altered the cation inhibitory preference to favor Li(+) or K(+) rather than Na(+). Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na(+). Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family. PMID:25389295

  2. Role of the Na(+)-translocating NADH:quinone oxidoreductase in voltage generation and Na(+) extrusion in Vibrio cholerae.

    PubMed

    Vorburger, Thomas; Nedielkov, Ruslan; Brosig, Alexander; Bok, Eva; Schunke, Emina; Steffen, Wojtek; Mayer, Sonja; Götz, Friedrich; Möller, Heiko M; Steuber, Julia

    2016-04-01

    For Vibrio cholerae, the coordinated import and export of Na(+) is crucial for adaptation to habitats with different osmolarities. We investigated the Na(+)-extruding branch of the sodium cycle in this human pathogen by in vivo (23)Na-NMR spectroscopy. The Na(+) extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). In a V. cholerae deletion mutant devoid of the Na(+)-NQR encoding genes (nqrA-F), rates of respiratory Na(+) extrusion were decreased by a factor of four, but the cytoplasmic Na(+) concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (ΔΨ, inside negative) and did not grow under hypoosmotic conditions at pH8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na(+)/H(+) antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na(+) concentrations, the Na(+)-NQR is crucial for generation of a transmembrane voltage to drive the import of H(+) by electrogenic Na(+)/H(+) antiporters. Our study provides the basis to understand the role of the Na(+)-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na(+) pump for respiration. PMID:26721205

  3. Intracellular Na(+) and metabolic modulation of Na/K pump and excitability in the rat suprachiasmatic nucleus neurons.

    PubMed

    Wang, Yi-Chi; Yang, Jyh-Jeen; Huang, Rong-Chi

    2012-10-01

    Na/K pump activity and metabolic rate are both higher during the day in the suprachiasmatic nucleus (SCN) that houses the circadian clock. Here we investigated the role of intracellular Na(+) and energy metabolism in regulating Na/K pump activity and neuronal excitability. Removal of extracellular K(+) to block the Na/K pump excited SCN neurons to fire at higher rates and return to normal K(+) to reactivate the pump produced rebound hyperpolarization to inhibit firing. In the presence of tetrodotoxin to block the action potentials, both zero K(+)-induced depolarization and rebound hyperpolarization were blocked by the cardiac glycoside strophanthidin. Ratiometric Na(+) imaging with a Na(+)-sensitive fluorescent dye indicated saturating accumulation of intracellular Na(+) in response to pump blockade with zero K(+). The Na(+) ionophore monensin also induced Na(+) loading and hyperpolarized the membrane potential, with the hyperpolarizing effect of monensin abolished in zero Na(+) or by pump blockade. Conversely, Na(+) depletion with Na(+)-free pipette solution depolarized membrane potential but retained residual Na/K pump activity. Cyanide inhibition of oxidative phosphorylation blocked the Na/K pump to depolarize resting potential and increase spontaneous firing in most cells, and to raise intracellular Na(+) levels in all cells. Nonetheless, the Na/K pump was incompletely blocked by cyanide but completely blocked by iodoacetate to inhibit glycolysis, indicating the involvement of both oxidative phosphorylation and glycolysis in fueling the Na/K pump. Together, the results indicate the importance of intracellular Na(+) and energy metabolism in regulating Na/K pump activity as well as neuronal excitability in the SCN neurons. PMID:22773774

  4. OSR1-sensitive small intestinal Na+ transport.

    PubMed

    Pasham, Venkanna; Pathare, Ganesh; Fajol, Abul; Rexhepaj, Rexhep; Michael, Diana; Pakladok, Tatsiana; Alesutan, Ioana; Rotte, Anand; Föller, Michael; Lang, Florian

    2012-12-01

    The oxidative stress responsive kinase 1 (OSR1) contributes to WNK (with no K)-dependent regulation of renal tubular salt transport, renal salt excretion, and blood pressure. Little is known, however, about a role of OSR1 in the regulation of intestinal salt transport. The present study thus explored whether OSR1 is expressed in intestinal tissue and whether small intestinal Na(+)/H(+) exchanger (NHE), small intestinal Na(+)-glucose cotransport (SGLT1), and/or colonic epithelium Na(+) channel (ENaC) differ between knockin mice carrying one allele of WNK-resistant OSR1 (osr1(+/KI)) and wild-type mice (osr1(+/+)). OSR1 protein abundance was determined by Western blotting, cytosolic pH from BCECF fluorescence, NHE activity from Na(+)-dependent realkalinization following an ammonium pulse, SGLT1 activity from glucose-induced current, and colonic ENaC activity from amiloride-sensitive transepithelial current in Ussing chamber experiments. As a result, OSR1 protein was expressed in small intestine of both osr1(+/KI) mice and osr1(+/+) mice. Daily fecal Na(+), K(+), and H(2)O excretion and jejunal SGLT1 activity were lower, whereas small intestinal NHE activity and colonic ENaC activity were higher in osr1(+/KI) mice than in osr1(+/+) mice. NHE3 inhibitor S-3226 significantly reduced NHE activity in both genotypes but did not abrogate the difference between the genotypes. Plasma osmolarity, serum antidiuretic hormone, plasma aldosterone, and plasma corticosterone concentrations were similar in both genotypes. Small intestinal NHE3 and colonic α-ENaC protein abundance were not significantly different between genotypes, but colonic phospho-β-ENaC (ser633) was significantly higher in osr1(+/KI) mice. In conclusion, OSR1 is expressed in intestine and partial WNK insensitivity of OSR1 increases intestinal NHE activity and colonic ENaC activity. PMID:23019198

  5. Laser trapping of {sup 21}Na atoms

    SciTech Connect

    Lu, Zheng-Tian

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  6. [Indices of intragastric pNa-graphy in dogs].

    PubMed

    Kienia, A I

    1976-01-01

    The dynamics of intragastric pNa was looked into in 6 dogs with fistulas in the gastric fundus by employing the method of its automatic registration on an empty stomach and after feeding the animals on a nutritional stimulant. The pNa parameters and the types of intragastric pNa-grams before feeding the animals, pNa changes during and after feeding them on a nutritional stimulant and with histamin stimulated secretion, as well as the time of the progressively increasing activity of the Na+ ions and the pNa curve stabilization level were determined. PMID:1030900

  7. The solubility of Cr(OH){sub 3}(am) in concentrated NaOH and NaOH-NaNO{sub 3} solutions

    SciTech Connect

    Felmy, A.R.; Rai, D.; Fulton, R.W.

    1994-08-01

    Chromium is a major component of the Hanford waste tank sludges, and the presence of Cr in the sludges is a significant concern in the disposal of these sludges because Cr can interfere with the formation of waste glasses. One of the current pretreatment strategies for removing constituents that can interfere with glass formation, such as P and Cr, is to wash/dissolve the sludges in basic NaOH solutions. The solubility of Cr(OH){sub 3}(am) was measured in concentrated NaOH ranging in concentration from 0.1M to 6.0M and in NaOH-NaNO{sub 3} solutions with fixed NaOH concentration and variable NaNO{sub 3} concentration at room temperature (22--23 C). Equilibrium between solids and solutions was approached relatively slowly and required approximately 60--70 days before steady-state concentrations were reached. A thermodynamic model, based upon the Pitzer equations, was developed from the solubility data in NaOH, which includes only two aqueous Cr species (Cr(OH){sub 4}{sup {minus}} and NaCr(OH){sub 4}(aq)) and ion-interaction parameters for Na{sup +} with Cr(OH){sub 4}{sup {minus}}. This model was then tested in the mixed NaOH-NaNO{sub 3} solutions and found to be reliable.

  8. Decomposition Kinetics of Titania Slag in Eutectic NaOH-NaNO3 System

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Wang, Zhi; Qi, Tao; Wang, Lina; Xue, Tianyan

    2015-11-01

    The decomposition kinetics and mechanism of titania slag in eutectic NaOH-NaNO3 system were studied in the temperature range 623 K to 723 K (350 °C to 450 °C). Decomposed products were examined using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. It has been identified that the main product is Na2TiO3 and the decomposition kinetics of titania slag followed a shrinking unreacted core model. It is proposed that the chemical reaction process was the rate determining step with apparent activation energy of 62.4 kJ/mol. NaNO3 was mainly acted as oxygen carrier and mass transport agent to lower the viscosity of the system. The purity of TiO2 obtained in the product was up to 99.3 pct. A flow diagram to produce TiO2 and to recycle the media was proposed.

  9. 24Mg( p, α)21Na reaction study for spectroscopy of 21Na

    NASA Astrophysics Data System (ADS)

    Cha, S. M.; Chae, K. Y.; Kim, A.; Lee, E. J.; Ahn, S.; Bardayan, D. W.; Chipps, K. A.; Cizewski, J. A.; Howard, M. E.; Manning, B.; O'Malley, P. D.; Ratkiewicz, A.; Strauss, S.; Kozub, R. L.; Matos, M.; Pain, S. D.; Pittman, S. T.; Smith, M. S.; Peters, W. A.

    2015-10-01

    The 24Mg( p, α)21Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain the spins and parities of the energy levels in 21Na for the astrophysically important 17F( α, p)20Ne reaction rate calculation. 31-MeV proton beams from the 25-MV tandem accelerator and enriched 24Mg solid targets were used. Recoiling 4He particles from the 24Mg( p, α)21Na reaction were detected by a highly segmented silicon detector array which measured the yields of 4He particles over a range of angles simultaneously. A new level at 6661 ± 5 keV was observed in the present work. The extracted angular distributions for the first four levels of 21Na and the results from distorted wave Born approximation (DWBA) calculations were compared to verify and extract the angular momentum transfer.

  10. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton

    PubMed Central

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A. Egrinya

    2012-01-01

    A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100?mM) or non-uniform NaCl concentrations (0/200 and 50/150?mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na+ concentrations in leaves. The [Na+] in the ‘0’ side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the ‘0’ side phloem was girdled, suggesting that the increased [Na+] in the ‘0’ side roots was possibly due to transportation of foliar Na+ to roots through phloem. Plants under non-uniform salinity extruded more Na+ from the root than those under uniform salinity. Root Na+ efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na+ efflux and H+ influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na+ extrusion was probably due to active Na+/H+ antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na+ concentration, transport of excessive foliar Na+ to the low salinity side, and enhanced Na+ efflux from the low salinity root. PMID:22200663

  11. Volume regulation in Mycoplasma gallisepticum: evidence that Na+ is extruded via a primary Na+ pump.

    PubMed

    Shirvan, M H; Schuldiner, S; Rottem, S

    1989-08-01

    The primary extrusion of Na+ from Mycoplasma gallisepticum cells was demonstrated by showing that when Na+-loaded cells were incubated with both glucose (10 mM) and the uncoupler SF6847 (0.4 microM), rapid acidification of the cell interior occurred, resulting in the quenching of acridine orange fluorescence. No acidification was obtained with Na+-depleted cells or with cells loaded with either KCl, RbCl, LiCl, or CsCl. Acidification was inhibited by dicyclohexylcarbodiimide (50 microM) and diethylstilbesterol (50 microM), but not by vanadate (100 microM). By collapsing delta chi with tetraphenylphosphonium (200 microM) or KCl (25 mM), the fluorescence was dequenched. The results are consistent with a delta chi-driven uncoupler-dependent proton gradient generated by an electrogenic ion pump specific for Na+. The ATPase activity of M. gallisepticum membranes was found to be Mg2+ dependent over the entire pH range tested (5.5 to 9.5). Na+ (greater than 10 mM) caused a threefold increase in the ATPase activity at pH 8.5, but had only a small effect at pH 5.5. In an Na+-free medium, the enzyme exhibited a pH optimum of 7.0 to 7.5, with a specific activity of 30 +/- 5 mumol of phosphate released per h per mg of membrane protein. In the presence of Na+, the optimum pH was between 8.5 and 9.0, with a specific activity of 52 +/- 6 mumol. The Na+-stimulated ATPase activity at pH 8.5 was much more stable to prolonged storage than the Na+-independent activity. Further evidence that two distinct ATPases exist was obtained by showing that M. gallisepticum membranes possess a 52-kilodalton (kDa) protein that reacts with antibodies raised against the beta-subunit of Escherichia coli ATPase as well as a 68-kDa protein that reacts with the anti-yeast plasma membrane ATPases antibodies. It is postulated that the Na+ -stimulated ATPases functions as the electrogenic Na+ pump. PMID:2526806

  12. Chiral Perturbation Theory tests at NA48/2 and NA62 experiments at CERN

    NASA Astrophysics Data System (ADS)

    Lenti, Massimo

    2015-07-01

    Final results from an analysis of about 400 K± ? ?±?? rare decay candidates collected by the NA48/2 and NA62 experiments at CERN during low intensity runs with minimum bias trigger configurations are presented. The results include a model-independent decay rate measurement and fits to Chiral Perturbation Theory (ChPT) descriptions. The data support the ChPT prediction for a cusp in the di-photon invariant mass spectrum at the two pions threshold.

  13. K+ Congeners That Do Not Compromise Na+ Activation of the Na+,K+-ATPase

    PubMed Central

    Mahmmoud, Yasser A.; Kopec, Wojciech; Khandelia, Himanshu

    2015-01-01

    The Na+,K+-ATPase is essential for ionic homeostasis in animal cells. The dephosphoenzyme contains Na+ selective inward facing sites, whereas the phosphoenzyme contains K+ selective outward facing sites. Under normal physiological conditions, K+ inhibits cytoplasmic Na+ activation of the enzyme. Acetamidinium (Acet+) and formamidinium (Form+) have been shown to permeate the pump through the outward facing sites. Here, we show that these cations, unlike K+, are unable to enter the inward facing sites in the dephosphorylated enzyme. Consistently, the organic cations exhibited little to no antagonism to cytoplasmic Na+ activation. Na+,K+-ATPase structures revealed a previously undescribed rotamer transition of the hydroxymethyl side chain of the absolutely conserved Thr772 of the α-subunit. The side chain contributes its hydroxyl to Na+ in site I in the E1 form and rotates to contribute its methyl group toward K+ in the E2 form. Molecular dynamics simulations to the E1·AlF4−·ADP·3Na+ structure indicated that 1) bound organic cations differentially distorted the ion binding sites, 2) the hydroxymethyl of Thr772 rotates to stabilize bound Form+ through water molecules, and 3) the rotamer transition is mediated by water traffic into the ion binding cavity. Accordingly, dehydration induced by osmotic stress enhanced the interaction of the congeners with the outward facing sites and profoundly modified the organization of membrane domains of the α-subunit. These results assign a catalytic role for water in pump function, and shed light on a backbone-independent but a conformation-dependent switch between H-bond and dispersion contact as part of the catalytic mechanism of the Na+,K+-ATPase. PMID:25533461

  14. Cold activation of Na influx through the Na-H exchange pathway in guinea pig red cells.

    PubMed

    Zhao, Z; Willis, J S

    1993-01-01

    Previous work showed that amiloride partially inhibits the net gain of Na in cold-stored red cells of guinea pig and that the proportion of unidirectional Na influx sensitive to amiloride increases dramatically with cooling. This study shows that at 37 degrees C amiloride-sensitive (AS) Na influx in guinea pig red blood cells is activated by cytoplasmic H+, hypertonic incubation, phorbol ester in the presence of extracellular Ca2+ and is correlated with cation-dependent H+ loss from acidified cells. Cytoplasmic acidification increases AS Na efflux into Na-free medium. These properties are consistent with the presence of a Na-H exchanger with a H+ regulatory site. Elevation of cytoplasmic free Mg2+ above 3 mM greatly increases AS Na influx: this correlates with a Na-dependent loss of Mg2+, indicating the presence of a Na-Mg exchanger. At 20 degrees C activators of Na-H exchange have little or no further stimulatory effect on the already elevated AS Na influx. AS Na influx is much larger than either Na-dependent H+ loss or AS Na efflux at 20 degrees C. The affinity of the AS Na influx for cytoplasmic H+ is greater at 20 degrees C than at 37 degrees C. Depletion of cytoplasmic Mg2+ does not abolish the high AS Na influx at 20 degrees C. Thus, elevation of AS Na influx with cooling appears to be due to increased activity of a Na-H exchanger (operating in a "slippage" mode) caused by greater sensitivity to H+ at a regulatory site. PMID:8381873

  15. Na/beta-alumina/NaAlCl4, Cl2/C circulating cell

    NASA Technical Reports Server (NTRS)

    Cherng, Jing-Yih; Bennion, Douglas N.

    1987-01-01

    A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design.

  16. Hydrogen sulfide inhibits Na+ uptake in larval zebrafish, Danio rerio.

    PubMed

    Kumai, Yusuke; Porteus, Cosima S; Kwong, Raymond W M; Perry, Steve F

    2015-04-01

    The present study investigated the role of hydrogen sulfide (H2S) in regulating Na(+) uptake in larval zebrafish, Danio rerio. Waterborne treatment of larvae at 4 days post-fertilization (dpf) with Na2S or GYY-4137 (chemicals known to generate H2S) significantly reduced Na(+) uptake. Exposure of larvae to water enriched with NaCl (1 mM NaCl) caused a pronounced reduction in Na(+) uptake which was prevented by pharmacological inhibition of cystathionine ?-synthase (CBS) or cystathionine ?-lyase (CSE), two key enzymes involved in the endogenous synthesis of H2S. Furthermore, translational gene knockdown of CSE and CBSb significantly increased the basal rate of Na(+) uptake. Waterborne treatment with Na2S significantly decreased whole-body acid excretion and reduced Na(+) uptake in larval zebrafish preexposed to acidic (pH 4.0) water (a condition shown to promote Na(+) uptake via Na(+)-H(+)-exchanger 3b, NHE3b). However, Na2S did not affect Na(+) uptake in larvae depleted of NHE3b-containing ionocytes (HR cells) after knockdown of transcription factor glial cell missing 2 (gcm2) in which Na(+) uptake occurs predominantly via Na(+)-Cl(-) co-transporter (NCC)-containing cells. These observations suggest that Na(+) uptake via NHE3b, but not NCC, is regulated by H2S. Whole-mount immunohistochemistry demonstrated that ionocytes expressing NHE3b also express CSE. These data suggests a physiologically relevant role of H2S as a mechanism to lower Na(+) uptake in zebrafish larvae, probably through its inhibitory action on NHE3b. PMID:24939700

  17. Bimodal gating of the Na+ channel.

    PubMed

    Keynes, R D

    1994-02-01

    Inactivation of voltage-gated ion channels, whether they are selective for Na+, K+ or Ca2+, probably never involves their total closure, and some flow of ion current persists if large enough test pulses are applied. Incomplete inactivation was first reported for the Na+ channels of the squid giant axon, but has since been observed in other types of peripheral nerve and, more recently, in muscle fibres and the neurons of mammalian brain. The phenomenon is therefore widespread and has important implications for the functioning of voltage-gated channels in a variety of situations. It is best described in terms of a gating mechanism that switches the channel from an initial mode in which it has a high probability of opening to one in which the probability is greatly lowered, but not reduced to zero. PMID:7512769

  18. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis. PMID:2687262

  19. An enhancement to the NA4 gear vibration diagnostic parameter

    NASA Technical Reports Server (NTRS)

    Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.

    1994-01-01

    A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.

  20. Na(+) mobility in sodium strontium silicate fast ion conductors.

    PubMed

    Peet, Joseph R; Widdifield, Cory M; Apperley, David C; Hodgkinson, Paul; Johnson, Mark R; Evans, Ivana Radosavljevi?

    2015-12-14

    We present the first direct evidence of Na-ion mobility in sodium strontium silicate fast ion conductors, based on variable temperature (23)Na solid state NMR spectroscopy and spin-lattice relaxation measurements. PMID:26455837

  1. The complex lightcurve of 1992 NA

    NASA Technical Reports Server (NTRS)

    Wisniewski, Wieslaw Z.; Harris, A. W.

    1994-01-01

    Amor asteroid 1992 NA was monitored during three nights at a large phase angle of -65 deg. The lightcurves obtained did not reveal a repeatable curve with two maxima and two minima. However, some features suggested a periodicity with three maxima and three minima. A satisfactory composite lightcurve of this form was obtained by means of an 'eyeball' fit and by Fourier analysis. Individual and composite lightcurves are presented. The observed colors are consistent with the C class.

  2. The Rapid-onset Dystonia Parkinsonism Mutation D923N of the Na+,K+-ATPase ?3 Isoform Disrupts Na+ Interaction at the Third Na+ Site*

    PubMed Central

    Einholm, Anja Pernille; Toustrup-Jensen, Mads S.; Holm, Rikke; Andersen, Jens Peter; Vilsen, Bente

    2010-01-01

    Rapid-onset dystonia parkinsonism (RDP), a rare neurological disorder, is caused by mutation of the neuron-specific ?3-isoform of Na+,K+-ATPase. Here, we present the functional consequences of RDP mutation D923N. Relative to the wild type, the mutant exhibits a remarkable ?200-fold reduction of Na+ affinity for activation of phosphorylation from ATP, reflecting a defective interaction of the E1 form with intracellular Na+. This is the largest effect on Na+ affinity reported so far for any Na+,K+-ATPase mutant. D923N also affects the interaction with extracellular Na+ normally driving the E1P to E2P conformational transition backward. However, no impairment of K+ binding was observed for D923N, leading to the conclusion that Asp923 is specifically associated with the third Na+ site that is selective toward Na+. The crystal structure of the Na+,K+-ATPase in E2 form shows that Asp923 is located in the cytoplasmic half of transmembrane helix M8 inside a putative transport channel, which is lined by residues from the transmembrane helices M5, M7, M8, and M10 and capped by the C terminus, recently found involved in recognition of the third Na+ ion. Structural modeling of the E1 form of Na+,K+-ATPase based on the Ca2+-ATPase crystal structure is consistent with the hypothesis that Asp923 contributes to a site binding the third Na+ ion. These results in conjunction with our previous findings with other RDP mutants suggest that a selective defect in the handling of Na+ may be a general feature of the RDP disorder. PMID:20576601

  3. Electrical properties of Na{sub 2}US{sub 3}, NaGdS{sub 2} and NaLaS{sub 2}

    SciTech Connect

    Masuda, Hidetoshi; Fujino, Takeo; Sato, Nobuaki; Yamada, Kohta

    1999-06-01

    The electrical properties of ternary mixed sulfides Na{sub 2}US{sub 3}, NaGdS{sub 2}, and NaLaS{sub 2} were studied by measuring the electrical conductivity and Hall coefficient by the van der Pauw method in a temperature range of 17--300 K. These compounds have closely related crystal structures with nearly the same atom separations, but uranium is in a U{sup 4+} state in Na{sub 2}US{sub 3} in contrast to Ln{sup 3+} ions in NaGdS{sub 2} and NaLaS{sub 2}. The electrical conductivity was the highest for NaGdS{sub 2} (7.75 x 10{sup 2} and 11.2 x 10{sup 2} Sm{sup {minus}1} at 17 and 300 K, respectively) and the lowest for Na{sub 2}US{sub 3} (0.98 x 10{sup 2} and 1.14 x 10{sup 2} Sm{sup {minus}1} at 17 and 300 K, respectively). They showed semiconductive behavior from the temperature dependence of the electrical conductivity. The Hall coefficient showed the dominant carriers to be electrons for NaGdS{sub 2} and holes for NaLaS{sub 2} and Na{sub 2}US{sub 3}. The carrier densities were not so apart in these compounds, i.e., 0.2--0.3 x 10{sup 25} m{sup {minus}3} for NaGdS{sub 2} and {approximately}0.1 x 10{sup 25} m{sup {minus}3} for Na{sub 2}Us{sub 3}. The activation energies of conduction were very low for all three compounds, especially at low temperatures below 200 K.

  4. Situação da Mulher na Astronomia Brasileira

    NASA Astrophysics Data System (ADS)

    Silva, Adriana V. R.

    2007-07-01

    O conteúdo desse texto surgiu de uma apresentação de mesmo título que fiz na XXXI Reunião Anual da Sociedade Astronômica Brasileira (SAB) em 2005. Esse tema foi inspirado originalmente pela minha participação no "2nd UIPAP International Conference on Women in Physics" realizado entre 23 e 25 de maio de 2005 no Rio de Janeiro. Essa é uma conferência internacional que acontece de três em três anos, sendo que a primeira ocorreu em 2002 na cidade de Paris, França. Participei dessa conferência como membro da delegação da Sociedade Brasileira de Física e um dos trabalhos que apresentei versava sobre a situação das mulheres na Astronomia brasileira, cujos resultados principais discorro a seguir. A situação das astrônomas, baseada nos dados dos sócios da SAB coletados no final de 2004, é comparada com a das físicas brasileiras e também com as nossas colegas americanas. Os dados identificam ainda uma maior evasão da carreira por parte das mulheres do que os homens. Alguns dos possíveis motivos da evasão são discutidos, como o desejo de constituir família e/ou isolamento. Resultados um tanto preocupantes com relação à distribuição de bolsas de produtividade do CNPq também são apresentados. As principais discussões e estratégias recomendadas nesse congresso são mencionadas de forma resumida ao final.

  5. Familiares a cargo de pacientes de cáncer: funciones y desafíos (PDQ)—Versión para profesionales de salud

    Cancer.gov

    Sumario informativo revisado por expertos acerca de los desafíos que enfrentan los familiares a cargo de los pacientes con cáncer. Este resumen se centra en las funciones típicas y las inquietudes de las personas a cargo del paciente y en las intervenciones útiles para esas personas.

  6. Advanced Intermediate-Temperature Na-S Battery

    SciTech Connect

    Lu, Xiaochuan; Kirby, Brent W.; Xu, Wu; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2013-01-01

    In this study, we reported an intermediate-temperature (~150°C) sodium-sulfur (Na-S) battery. With a reduced operating temperature, this novel battery can potentially reduce the cost and safety issues associated with the conventional high-temperature (300~350°C) Na-S battery. A dense β"-Al2O3 solid membrane and tetraglyme were utilized as the electrolyte separator and catholyte solvent in this battery. Solubility tests indicated that cathode mixture of Na2S4 and S exhibited extremely high solubility in tetraglyme (e.g., > 4.1 M for Na2S4 + 4 S). CV scans of Na2S4 in tetraglyme revealed two pairs of redox couples with peaks at around 2.22 and 1.75 V, corresponding to the redox reactions of polysulfide species. The discharge/charge profiles of the Na-S battery showed a slope region and a plateau, indicating multiple steps and cell reactions. In-situ Raman measurements during battery operation suggested that polysulfide species were formed in the sequence of Na2S5 + S  Na2S5 + Na2S4 Na2S4 + Na2S2 during discharge and in a reverse order during charge. This battery showed dramatic improvement in rate capacity and cycling stability over room-temperature Na-S batteries, which makes it attractive for renewable energy integration and other grid related applications.

  7. Dependence of intracellular Na/sup +/ concentration on apical and basolateral membrane Na/sup +/ influx in frog skin

    SciTech Connect

    Stoddard, J.S.; Helman, S.I.

    1985-11-01

    An isotopic method was developed to measure the intracellular Na/sup +/ content of the transepithelial Na/sup +/ transport pool of frog skin. Isolated epithelia (no corium) were labeled with /sup 24/Na either asymmetrically, from apical (Aa) or basolateral (Ab) solutions, or symmetrically (Aab). Transport pool Na/sup +/ could be identified from the kinetics of washout of /sup 24/Na carried out in the presence of 1 mM ouabain, 100 microM amiloride, and 1 mM furosemide that served to trap cold Na/sup +/ and /sup 24/Na within the transport pool. In control epithelia, Aab averaged 64.1 neq/cm/sup 2/ (13.9 mM), and maximal inhibition of apical membrane Na/sup +/ entry with 100 microM amiloride caused Aab to decrease to 24.3 neq/cm/sup 2/ (5.3 mM). Ouabain caused Aab to increase markedly to 303 neq/cm/sup 2/ in 30 min, whereas amiloride inhibition of apical membrane Na/sup +/ entry reduced markedly the rate of increase of Aab caused by ouabain. These data, in part, confirmed the existence of an important basolateral membrane permeability to Na/sup +/ that was measured in separate studies of the bidirectional /sup 24/Na fluxes at the basolateral membranes of the cells. Both sets of data were supportive of the idea that a significant Na/sup +/ recycling exists at the basolateral membranes of the cells that contributes to the Na/sup +/ load on the pump and Na/sup +/ recycling participates in the regulation of the Na/sup +/ concentration of the Na/sup +/ transport pool of these epithelial cells.

  8. Thermochemistry of binary Na-NaH and ternary Na-O-H systems and the kinetics of reaction of hydrogen/water with liquid sodium - a review

    NASA Astrophysics Data System (ADS)

    Gnanasekaran, T.

    A review of the literature data on the binary Na-H and ternary Na-O-H systems has been carried out. Influence of dissolved oxygen on Sieverts' constant for hydrogen in sodium is analysed and an expression for the variation of Sieverts' constant with oxygen concentration is derived. Data on equilibrium hydrogen partial pressures over Na(l)-NaH(s) phase mixtures are assessed and an expression for variation of Gibbs energy of formation of NaH(s) with temperature is obtained. Analysis of the phase diagram and thermochemical information on the ternary Na-O-H system has been carried out. Kinetics of the reaction of water/steam and gaseous hydrogen with liquid sodium are also presented and the need to resolve the disagreement among the literature data is brought out.

  9. pNaKtide inhibits Na/K-ATPase reactive oxygen species amplification and attenuates adipogenesis

    PubMed Central

    Sodhi, Komal; Maxwell, Kyle; Yan, Yanling; Liu, Jiang; Chaudhry, Muhammad A.; Getty, Morghan; Xie, Zijian; Abraham, Nader G.; Shapiro, Joseph I.

    2015-01-01

    Obesity has become a worldwide epidemic and is a major risk factor for metabolic syndrome. Oxidative stress is known to play a role in the generation and maintenance of an obesity phenotype in both isolated adipocytes and intact animals. Because we had identified that the Na/K-ATPase can amplify oxidant signaling, we speculated that a peptide designed to inhibit this pathway, pNaKtide, might ameliorate an obesity phenotype. To test this hypothesis, we first performed studies in isolated murine preadipocytes (3T3L1 cells) and found that pNaKtide attenuated oxidant stress and lipid accumulation in a dose-dependent manner. Complementary experiments in C57Bl6 mice fed a high-fat diet corroborated our in vitro observations. Administration of pNaKtide in these mice reduced body weight gain, restored systemic redox and inflammatory milieu, and, crucially, improved insulin sensitivity. Thus, we propose that inhibition of Na/K-ATPase amplification of oxidative stress may ultimately be a novel way to combat obesity, insulin resistance, and metabolic syndrome. PMID:26601314

  10. Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Allen, F. G.; Yu, J. G.

    1976-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, were produced in space and on earth. The production of continuous fibers in a eutectic mixture is attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It is shown that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis. A new concept is advanced to explain the phenomenon of transmittance versus far infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelengths is known. Experimental data are in agreement with the theoretical prediction.

  11. pNaKtide inhibits Na/K-ATPase reactive oxygen species amplification and attenuates adipogenesis.

    PubMed

    Sodhi, Komal; Maxwell, Kyle; Yan, Yanling; Liu, Jiang; Chaudhry, Muhammad A; Getty, Morghan; Xie, Zijian; Abraham, Nader G; Shapiro, Joseph I

    2015-10-01

    Obesity has become a worldwide epidemic and is a major risk factor for metabolic syndrome. Oxidative stress is known to play a role in the generation and maintenance of an obesity phenotype in both isolated adipocytes and intact animals. Because we had identified that the Na/K-ATPase can amplify oxidant signaling, we speculated that a peptide designed to inhibit this pathway, pNaKtide, might ameliorate an obesity phenotype. To test this hypothesis, we first performed studies in isolated murine preadipocytes (3T3L1 cells) and found that pNaKtide attenuated oxidant stress and lipid accumulation in a dose-dependent manner. Complementary experiments in C57Bl6 mice fed a high-fat diet corroborated our in vitro observations. Administration of pNaKtide in these mice reduced body weight gain, restored systemic redox and inflammatory milieu, and, crucially, improved insulin sensitivity. Thus, we propose that inhibition of Na/K-ATPase amplification of oxidative stress may ultimately be a novel way to combat obesity, insulin resistance, and metabolic syndrome. PMID:26601314

  12. A new low-voltage plateau of Na?V?(PO?)? as an anode for Na-ion batteries

    SciTech Connect

    Jian, Zelang; Sun, Yang; Ji, Xiulei

    2015-04-04

    A low-voltage plateau at ~0.3 V is discovered during the deep sodiation of Na?V?(PO?)? by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na?V?(PO?)?, turning it into a promising anode for Na-ion batteries.

  13. Formation of Na-Rich Chondrules by Melting of Na-Rich and Condensed (Ultra)-Refractory Precursors

    NASA Astrophysics Data System (ADS)

    Ebert, S.; Bischoff, A.

    2015-07-01

    We analyzed 33 Na-rich chondrules (Na2O >4.0 wt%) from 15 different chondrites. These chondrules must have formed by melting of precursors including Na-rich materials (like nepheline) as well as condensed (ultra)-refractory components.

  14. Adaptación al cáncer: ansiedad y sufrimiento (PDQ)—Versión para pacientes

    Cancer.gov

    Resumen de información revisada por expertos acerca de las difíciles respuestas emocionales que se presentan en muchos de los pacientes con cáncer. Este sumario se enfoca en asuntos de la adaptación normal, alteración psicosocial y trastornos de adaptación.

  15. Na+ channel function, regulation, structure, trafficking and sequestration.

    PubMed

    Chen-Izu, Ye; Shaw, Robin M; Pitt, Geoffrey S; Yarov-Yarovoy, Vladimir; Sack, Jon T; Abriel, Hugues; Aldrich, Richard W; Belardinelli, Luiz; Cannell, Mark B; Catterall, William A; Chazin, Walter J; Chiamvimonvat, Nipavan; Deschenes, Isabelle; Grandi, Eleonora; Hund, Thomas J; Izu, Leighton T; Maier, Lars S; Maltsev, Victor A; Marionneau, Celine; Mohler, Peter J; Rajamani, Sridharan; Rasmusson, Randall L; Sobie, Eric A; Clancy, Colleen E; Bers, Donald M

    2015-03-15

    This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation-contraction coupling and arrhythmias: Na(+) channel and Na(+) transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na(+) channel function and regulation, Na(+) channel structure and function, and Na(+) channel trafficking, sequestration and complexing. PMID:25772290

  16. Irreversible block of cardiac mutant Na+ channels by batrachotoxin.

    PubMed

    Wang, Sho-Ya; Tikhonov, Denis B; Mitchell, Jane; Zhorov, Boris S; Wang, Ging Kuo

    2007-01-01

    Batrachotoxin (BTX) not only keeps the voltage-gated Na(+) channel open persistently but also reduces its single-channel conductance. Although a BTX receptor has been delimited within the inner cavity of Na(+) channels, how Na(+) ions flow through the BTX-bound permeation pathway remains unclear. In this report we tested a hypothesis that Na(+) ions traverse a narrow gap between bound BTX and residue N927 at D2S6 of cardiac hNa(v)1.5 Na(+) channels. We found that BTX at 5 microM indeed elicited a strong block of hNa(v)1.5-N927K currents (approximately 70%) after 1000 repetitive pulses (+50 mV/20 ms at 2 Hz) without any effects on Na(+) channel gating. Once occurred, this unique use-dependent block of hNa(v)1.5-N927K Na(+) channels recovered little at holding potential (-140 mV), demonstrating that BTX block is irreversible under our experimental conditions. Such an irreversible effect likewise developed in fast inactivation-deficient hNa(v)1.5-N927K Na(+) channels albeit with a faster on-rate; approximately 90% of peak Na(+) currents were abolished by BTX after 200 repetitive pulses (+50 mV/20 ms). This use-dependent block of fast inactivation-deficient hNa(v)1.5-N927K Na(+) channels by BTX was duration dependent. The longer the pulse duration the larger the block developed. Among N927K/W/R/H/D/S/Q/G/E substitutions in fast inactivation-deficient hNa(v)1.5 Na(+) channels, only N927K/R Na(+) currents were highly sensitive to BTX block. We conclude that (a) BTX binds within the inner cavity and partly occludes the permeation pathway and (b) residue hNa(v)1.5-N927 is critical for ion permeation between bound BTX and D2S6, probably because the side-chain of N927 helps coordinate permeating Na(+) ions. PMID:18690024

  17. Effect of Na+ on surface fractal dimension of compacted bentonite

    NASA Astrophysics Data System (ADS)

    Xiang, G. S.; Xu, Y. F.; Jiang, H.

    2015-05-01

    Compacted Tsukinuno bentonite was immersed into NaCl solutions of different concentrations in oedometers, and the surface fractal dimension of bentonite-saline association was measured by nitrogen adsorption isotherms. The application of the Frenkel-Halsey-Hill equation and the Neimark thermodynamic method to nitrogen adsorption isotherms indicated that the surface roughness was greater for the bentonite-saline association. The surface fractal dimension of bentonite increased in the NaCl solution with low Na+ concentration, but decreased at high Na+ concentration. This process was accompanied by the same tendency in specific surface area and microporosity with the presence of Na+ coating in the clay particles.

  18. Na+ channel function, regulation, structure, trafficking and sequestration

    PubMed Central

    Chen-Izu, Ye; Shaw, Robin M; Pitt, Geoffrey S; Yarov-Yarovoy, Vladimir; Sack, Jon T; Abriel, Hugues; Aldrich, Richard W; Belardinelli, Luiz; Cannell, Mark B; Catterall, William A; Chazin, Walter J; Chiamvimonvat, Nipavan; Deschenes, Isabelle; Grandi, Eleonora; Hund, Thomas J; Izu, Leighton T; Maier, Lars S; Maltsev, Victor A; Marionneau, Celine; Mohler, Peter J; Rajamani, Sridharan; Rasmusson, Randall L; Sobie, Eric A; Clancy, Colleen E; Bers, Donald M

    2015-01-01

    This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na+ channel function and regulation, Na+ channel structure and function, and Na+ channel trafficking, sequestration and complexing. PMID:25772290

  19. Erythrocyte Na+/K+ ATPase activity measured with sup 23 Na NMR

    SciTech Connect

    Ouwerkerk, R.; van Echteld, C.J.; Staal, G.E.; Rijksen, G. )

    1989-11-01

    A {sup 23}Na NMR assay for measurement of erythrocyte Na+/K+ ATPase activity is presented. Using the nonpermeant shift reagent dysprosium tripolyphosphate the signals of intra- and extracellular sodium are separated, enabling measurement of sodium fluxes nondestructively, without the need to physically separate the cells from their environment. By increasing membrane permeability with nystatin we have shown that the assay allows the detection of differences in membrane permeability. With low doses of nystatin the ouabain-sensitive sodium flux increased more than twofold. With high doses of nystatin the Na+/K+ pump could not prevent an almost total equilibration of intra- and extracellular sodium. All sodium that entered the cells remained NMR visible, proving that sodium influx can be measured quantitatively. {sup 31}P NMR spectra taken before and after the assay revealed a slight acidification of the cells and no significant change in ATP concentration. No evidence of Dy3+ entering the cell was observed.

  20. Study of Na+ Ion Conduction in PVA-NaSCN Solid Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Brahmanandhan, G. M.; Malathi, J.; Hema, M.; Hirankumar, G.; Khanna, D.; Arun Kumar, D.; Selvasekarapandian, S.

    2006-06-01

    In the present study, PVA based solid polymer electrolyte films complexed with NaSCN at different salt concentration have been prepared by the solution cast technique. This PVA-NaSCN polymer electrolyte has been characterized by FTIR and ac impedance spectroscopy techniques. The FTIR study confirms the polymer-salt complex formation. The temperature dependant conductivity of the polymer electrolyte follows the Arrhenius relationship. It has been observed that the conductivity increases with increasing salt concentration for all temperatures. The maximum conductivity has been found to be 3.28×10-3 Scm-1 at 303K for 20 mol% of NaSCN doped electrolyte. The dielectric spectra, modulus spectra and dielectric loss tangent have also been analyzed.

  1. Initial Results of Na Density and Temperature Measurements by a STAR Na Lidar at Boulder

    NASA Astrophysics Data System (ADS)

    Fong, W.; Dahlke, I.; Roberts, B.; Smith, J. A.; Yu, Z.; Huang, W.; Chu, X.

    2010-12-01

    A new Na resonance fluorescence Doppler lidar, Student Atmospheric Resonance Lidar (STAR Lidar), has been deployed at the Table Mountain Lidar Observatory in Boulder (40°N) in the summer of 2010. With the implementation of the acoustic-optic modulators in this August, the two additional shifted frequencies of the output lidar pulses enable the capability of temperature and wind measurement in the mesosphere and lower thermosphere (MLT) region. Several nights of Na density and temperature observation results will be presented and discussed, as well as sporadic Na layers at high altitude. Except to serve as a powerful tool for scientific study of temperature and wind structures, the STAR Lidar is also expected to support lidar education in Boulder providing students with hands-on experience by operating the lidar system in the future.

  2. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    SciTech Connect

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-15

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO{sub 2} and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 deg. C for 2-6 h by changing the SiO{sub 2}/Al{sub 2}O{sub 3}, H{sub 2}O/Na{sub 2}O and Na{sub 2}O/SiO{sub 2} molar ratios of precursors in the two-step process. The surface area and NH{sub 4}{sup +}-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m{sup 2}/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m{sup 2}/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of {approx}3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously. - Graphical Abstract: Novel Na-X zeolite/porous carbon composite.

  3. Deliquescence, efflorescence and ice nucleating ability of NaCl/hydrated NaCl particles under upper tropospheric conditions

    NASA Astrophysics Data System (ADS)

    Wise, M. E.; Baustian, K. J.; Freedman, M. A.; Koop, T.; Tolbert, M. A.

    2010-12-01

    Sea-salt aerosol particles (SSA) are ubiquitous in marine boundary layer and over coastal areas. Therefore SSA have ability to directly and indirectly affect the Earth’s radiation balance. The influence SSA have on the Earth’s radiation balance is related to their water uptake and ice nucleation characteristics. In this study, optical microscopy coupled with Raman spectroscopy was used to determine the deliquescence and efflorescence phase transitions of NaCl particles (a proxy for SSA particles) at temperatures ranging from 233 to 258 K. It was found that NaCl (s) particles deliquesced at 75.7±2.5 % RH and NaCl (aq) particles effloresced at 42.7 ±6.9 % RH. When the temperature of NaCl (aq) particles was held between 236 and 252 K, a mixture of hydrated and non-hydrated particles effloresced. Thus the water uptake characteristics of hydrated NaCl (s) particles were studied. The deliquescence relative humidities (DRH) of hydrated NaCl (s) particles ranged from 75.6 to 94.5 % RH. The DRH values for hydrated NaCl (s) do not agree with the theoretical DRH for the dihydrate form of NaCl (s) particles (the predicted phase using a bulk phase diagram). Additionally, the ice nucleating abilities of NaCl (s) and hydrated NaCl (s) were determined at temperatures ranging from 221 to 230 K. NaCl (s) particles depositionally nucleated ice at an average Sice value of 1.11±0.07. Hydrated NaCl (s) particles depositionally nucleated ice at an average Sice value of 1.01±0.03. When a mixture of hydrated and anhydrous NaCl (s) particles was present in the same sample, ice preferentially nucleated on the hydrated particles 100% of the time. Thus hydrated NaCl (s) particles are better ice nuclei than NaCl (s) particles.

  4. Design and implementation of the NaI(Tl)/CsI(Na) detectors output signal generator

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Cong-Zhan; Zhao, Jian-Ling; Zhang, Fei; Zhang, Yi-Fei; Li, Zheng-Wei; Zhang, Shuo; Li, Xu-Fang; Lu, Xue-Feng; Xu, Zhen-Ling; Lu, Fang-Jun

    2014-02-01

    We designed and implemented a signal generator that can simulate the output of the NaI(Tl)/CsI(Na) detectors' pre-amplifier onboard the Hard X-ray Modulation Telescope (HXMT). Using the development of the FPGA (Field Programmable Gate Array) with VHDL language and adding a random constituent, we have finally produced the double exponential random pulse signal generator. The statistical distribution of the signal amplitude is programmable. The occurrence time intervals of the adjacent signals contain negative exponential distribution statistically.

  5. The NA62 spectrometer acquisition system

    NASA Astrophysics Data System (ADS)

    Azorskiy, N.; Ceccucci, A.; Bendotti, J.; Danielsson, H.; Degrange, J.; Dixon, N.; Elsha, V.; Enik, T.; Glonti, L.; Gusakov, Y.; Kakurin, S.; Kekelidze, V.; Kislov, E.; Kolesnikov, A.; Koval, M.; Lichard, P.; Madigozhin, D.; Morant, J.; Movchan, S.; Perez Gomez, F.; Palladino, V.; Polenkevich, I.; Potrebenikov, Y.; Ruggiero, G.; Samsonov, V.; Shkarovskiy, S.; Sotnikov, A.

    2016-02-01

    The NA62 low mass spectrometer consists of 7000 straw tubes operating in vacuum. The front-end electronics is directly mounted on the detector and connected by a flexible PCB. The front-end board provides the amplification, shaping, discrimination and time measurements of the analogue signals from 16 channels. After digitisation the data is sent to a VME 9U read-out board. The data, once matched with the trigger, is sent to the next step and used by the trigger level 1 algorithm. The front-end and read-out systems of the detector will be presented along with the first results of the detector performances.

  6. Subnitride chemistry: A first-principles study of the NaBa 3N, Na 5Ba 3N, and Na 16Ba 6N phases

    NASA Astrophysics Data System (ADS)

    Oliva, Josep M.

    2005-04-01

    An ab initio study on the electronic structure of the subnitrides NaBa 3N, Na 5Ba 3N, and Na 16Ba 6N is performed for the first time. The NaBa 3N and Na 5Ba 3N phases consist of infinite 1?[NBa 6/2] strands composed of face-sharing NBa 6 octahedra surrounded by a "sea" of sodium atoms. The Na 16Ba 6N phase consist of discrete [NBa 6] octahedra arranged in a body-cubic fashion, surrounded by a "sea" of sodium atoms. Our calculations suggest that the title subnitrides are metals. Analysis of the electronic structure shows partial interaction of N(2s) with Ba(5 p) electrons in the lower energy region for NaBa 3N and Na 5Ba 3N. However, no dispersion is observed for the N(2s) and Ba(5 p) bands in the cubic phase Na 16Ba 6N. The metallic band below the Fermi level shows a strong mixing of N(2p), Ba(6 s), Ba(5 d), Ba(6 p), Na(3 s) and Na(3 p) orbitals. The metallic character in these nitrides stems from delocalized electrons corresponding to hybridized 5dl6sm6pn barium orbitals which interact with hybridized 3sn3pm sodium orbitals. Analysis of the electron density and electronic structure in these nitrides shows two different regions: a metallic matrix corresponding to the sodium atoms and the regions around them and heteropolar bonding between nitrogen and barium within the infinite 1?[NBa 6/2] strands of the NaBa 3N and Na 5Ba 3N phases, and within the isolated [NBa 6] octahedra of the Na 16Ba 6N phase. The nitrogen atoms inside the strands and octahedra are negatively charged, the anionic character of nitrogens being larger in the isolated octahedra of the cubic phase Na 16Ba 6N, due to the lack of electron delocalization along one direction as opposed to the other phases. The sodium and barium atoms appear to be slightly negatively and positively charged, the latter to a larger extent. From the computed Ba-N overlap populations as well as the analysis of the contour maps of differences between total density and superposition of atomic densities, we suggest partial covalent bonding between nitrogen and barium atoms along the infinite 1?[NBa 6/2] strands and within isolated [NBa 6] octahedra.

  7. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase.

    PubMed

    Reinhard, Linda; Tidow, Henning; Clausen, Michael J; Nissen, Poul

    2013-01-01

    The Na(+),K(+)-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na(+) ions out of the cell and of K(+) ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na(+),K(+)-ATPase, recent work has suggested additional roles for Na(+),K(+)-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na(+),K(+)-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na(+),K(+)-ATPase as a signal transducer, but also briefly discuss other Na(+),K(+)-ATPase protein-protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme. PMID:22695678

  8. 23Na Nuclear Spin-Lattice Relaxation Studies of Na2Ni2TeO6

    NASA Astrophysics Data System (ADS)

    Itoh, Yutaka

    2015-06-01

    We report on 23Na NMR studies of the honeycomb lattice antiferromagnet Na2Ni2TeO6 by 23Na nuclear spin-echo techniques. The 23Na nuclear spin-lattice relaxation rate 1/23T1 exhibits critical divergence near the Néel temperature TN = 26 K, a narrow critical region, and the critical exponent w = 0.34 in 1/23T1 ? (T/TN - 1)-w for Na2Ni2TeO6, and TN = 18 K for Na2(Ni0.5Cu0.5)2TeO6. Although the uniform magnetic susceptibility of Na2Ni2TeO6 exhibits a broad maximum at 35 K, which is the characteristic of low-dimensional spin systems, the NMR results indicate a three-dimensional criticalphenomenon near the Néel temperature.

  9. Na-K-Interdiffusion in Alkali Feldspars

    NASA Astrophysics Data System (ADS)

    Schaeffer, A.-K.; Petrishcheva, E.; Rhede, D.; Abart, R.

    2012-04-01

    Exchange experiments between crystallographically oriented plates of gem-quality alkali feldspar (XOr 0.85) with NaCl/KCl melts have been conducted at 850° and 920° C. The melt composition was varied systematically between XKCl 0.6 and 1 to induce a shift of the feldspar composition towards more Na-rich as well as K-rich compositions (XOr 0.74 to 1). We applied 40-times molar excess of cations in the melt to ensure constant concentration boundary conditions for cation exchange. Depending on the direction of the composition shift diffusion profiles with different geometries develop. After a shift towards more K-rich compositions the diffusion profile shows two plateaus representing the unexchanged core and the exchanged rim in equilibrium with the melt, respectively. The exchange front between the two plateaus has an inflection point and propagates through the crystal with t1/2. Its width depends on the composition difference between the exchanged and unexchanged domains of the grain as well as crystallographic direction. The profiles that develop during a shift towards more Na-rich compositions lack an inflection point. If XOr is shifted by more than 10 mole-% crack systems begin to develop due to composition strain associated with the substitution of K+ by the smaller Na+ion. While the propagation rate of the fronts is roughly equal in all crystallographic directions, the profiles measured in the direction normal to (001) are always narrower than those normal to (010). This indicates a marked anisotropy in interdiffusion which appears fastest in the direction perpendicular to (001), i.e. c*. The observed geometry of the diffusion fronts can be explained by a composition dependence of the interdiffusion coefficient. This dependence was first described by Christoffersen et al. (1983) but these authors used a different experimental setup and only had reliable data for intermediate compositions. From our data we could extract the interdiffusion coefficient for high XOr with help of the Boltzmann Transformation. The Na-K interdiffusion coefficient increases with a gentle slope from 0.3 to 0.8 x 10-15m2s-1 for the composition interval between XOr 0.80 and 0.97 and then rises steeply to values of 2.2 x 10-15m2s-1. In the composition interval between XOr 0.74 and 0.80 the interdiffusion coefficient decreases slightly from 0.4 to 0.3 x 10-15m2s-1. On the whole this results in a "bowl shaped" composition dependence of the interdiffusion coefficient in the composition range XOr 0.74 to 1. This deviates from what is expected from theoretical calculations using the Manning relation for interdiffusion (Christoffersen et al., 1983). The strong direction dependence of the diffusion profiles may indicate that interdiffusion is influenced by the coherency stress across the diffusion front. ___

  10. Minimizing Load Effects on NA4 Gear Vibration Diagnostic Parameter

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Zakrajsek, James J.

    2001-01-01

    NA4 is a vibration diagnostic parameter, developed by researchers at NASA Glenn Research Center, for health monitoring of gears in helicopter transmissions. The NA4 reacts to the onset of gear pitting damage and continues to react to the damage as it spreads. This research also indicates NA4 reacts similarly to load variations. The sensitivity of NA4 to load changes will substantially affect its performance on a helicopter gearbox that experiences continuously changing load throughout its flight regimes. The parameter NA4 has been used to monitor gear fatigue tests at constant load. At constant load, NA4 effectively detects the onset of pitting damage and tracks damage severity. Previous research also shows that NA4 reacts to changes in load applied to the gears in the same way it reacts to the onset of pitting damage. The method used to calculate NA4 was modified to minimize these load effects. The modified NA4 parameter was applied to four sets of experimental data. Results indicate the modified NA4 is no longer sensitive to load changes, but remains sensitive to pitting damage.

  11. Hydrogen Sulfide Induced Disruption of Na+ Homeostasis in the Cortex

    PubMed Central

    Chao, Dongman; He, Xiaozhou; Yang, Yilin; Balboni, Gianfranco; Salvadori, Severo; Kim, Dong H.; Xia, Ying

    2012-01-01

    Maintenance of ionic balance is essential for neuronal functioning. Hydrogen sulfide (H2S), a known toxic environmental gaseous pollutant, has been recently recognized as a gasotransmitter involved in numerous biological processes and is believed to play an important role in the neural activities under both physiological and pathological conditions. However, it is unclear if it plays any role in maintenance of ionic homeostasis in the brain under physiological/pathophysiological conditions. Here, we report by directly measuring Na+ activity using Na+ selective electrodes in mouse cortical slices that H2S donor sodium hydrosulfide (NaHS) increased Na+ influx in a concentration-dependent manner. This effect could be partially blocked by either Na+ channel blocker or N-methyl-D-aspartate receptor (NMDAR) blocker alone or almost completely abolished by coapplication of both blockers but not by non-NMDAR blocker. These data suggest that increased H2S in pathophysiological conditions, e.g., hypoxia/ischemia, potentially causes a disruption of ionic homeostasis by massive Na+ influx through Na+ channels and NMDARs, thus injuring neural functions. Activation of delta-opioid receptors (DOR), which reduces Na+ currents/influx in normoxia, had no effect on H2S-induced Na+ influx, suggesting that H2S-induced disruption of Na+ homeostasis is resistant to DOR regulation and may play a major role in neuronal injury in pathophysiological conditions, e.g., hypoxia/ischemia. PMID:22474073

  12. Decomposition Kinetics of Titania Slag in Eutectic NaOH-NaNO3 System

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Wang, Zhi; Qi, Tao; Wang, Lina; Xue, Tianyan

    2016-02-01

    The decomposition kinetics and mechanism of titania slag in eutectic NaOH-NaNO3 system were studied in the temperature range 623 K to 723 K (350 °C to 450 °C). Decomposed products were examined using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. It has been identified that the main product is Na2TiO3 and the decomposition kinetics of titania slag followed a shrinking unreacted core model. It is proposed that the chemical reaction process was the rate determining step with apparent activation energy of 62.4 kJ/mol. NaNO3 was mainly acted as oxygen carrier and mass transport agent to lower the viscosity of the system. The purity of TiO2 obtained in the product was up to 99.3 pct. A flow diagram to produce TiO2 and to recycle the media was proposed.

  13. Apical Na+ permeability of frog skin during serosal Cl- replacement.

    PubMed

    Leibowich, S; DeLong, J; Civan, M M

    1988-05-01

    Gluconate substitution for serosal Cl- reduces the transepithelial short-circuit current (Isc) and depolarizes short-circuited frog skins. These effects could result either from inhibition of basolateral K+ conductance, or from two actions to inhibit both apical Na+ permeability (PapNa) and basolateral pump activity. We have addressed this question by studying whole-and split-thickness frog skins. Intracellular Na+ concentration (CcNa) and PapNa have been monitored by measuring the current-voltage relationship for apical Na+ entry. This analysis was conducted by applying trains of voltage pulses, with pulse durations of 16 to 32 msec. Estimates of PapNa and CcNa were not detectably dependent on pulse duration over the range 16 to 80 msec. Serosal Cl- replacement uniformly depolarized short-circuited tissues. The depolarization was associated with inhibition of Isc across each split skin, but only occasionally across the whole-thickness preparations. This difference may reflect the better ionic exchange between the bulk medium and the extracellular fluid in contact with the basolateral membranes, following removal of the underlying dermis in the split-skin preparations. PapNa was either unchanged or increased, and CcNa either unchanged or reduced after the anionic replacement. These data are incompatible with the concept that serosal Cl- replacement inhibits PapNa and Na,K-pump activity. Gluconate substitution likely reduces cell volume, triggering inhibition of the basolateral K+ channels, consistent with the data and conclusions of S.A. Lewis, A.G. Butt, M.J. Bowler, J.P. Leader and A.D.C. Macknight (J. Membrane Biol. 83:119-137, 1985) for toad bladder. The resulting depolarization reduces the electrical force favoring apical Na+ entry. The volume-conductance coupling serves to conserve volume by reducing K+ solute loss. Its molecular basis remains to be identified. PMID:2458472

  14. Regulation of persistent Na current by interactions between ? subunits of voltage-gated Na channels

    PubMed Central

    Aman, Teresa K.; Grieco-Calub, Tina M.; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A.; Isom, Lori L.; Raman, Indira M.

    2009-01-01

    The ? subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming ? subunits, as well as their trafficking and localization. In heterologous expression systems, ?1, ?2, and ?3 subunits influence inactivation and persistent current in different ways. To test how the ?4 protein regulates Na channel gating, we transfected ?4 into HEK cells stably expressing NaV1.1. Unlike a free peptide with a sequence from the ?4 cytoplasmic domain, the full-length ?4 protein did not block open channels. Instead, ?4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of non-inactivating current. Consequently, persistent current tripled in amplitude. Expression of ?1 or chimeric subunits including the ?1 extracellular domain, however, favored inactivation. Co-expressing NaV1.1 and ?4 with ?1 produced tiny persistent currents, indicating that ?1 overcomes the effects of ?4 in heterotrimeric channels. In contrast, ?1C121W, which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by ?4, and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with ?4, persistent current was slightly but significantly increased. Moreover, in ?4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that ?1 and ?4 have antagonistic roles, the former favoring inactivation and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted ?1 subunits. PMID:19228957

  15. Structural Fold and Binding Sites of the Human Na+-Phosphate Cotransporter NaPi-II

    PubMed Central

    Fenollar-Ferrer, Cristina; Patti, Monica; Knöpfel, Thomas; Werner, Andreas; Forster, Ian C.; Forrest, Lucy R.

    2014-01-01

    Phosphate plays essential biological roles and its plasma level in humans requires tight control to avoid bone loss (insufficiency) or vascular calcification (excess). Intestinal absorption and renal reabsorption of phosphate are mediated by members of the SLC34 family of sodium-coupled transporters (NaPi-IIa,b,c) whose membrane expression is regulated by various hormones, circulating proteins, and phosphate itself. Consequently, NaPi-II proteins are also potentially important pharmaceutical targets for controlling phosphate levels. Their crucial role in Pi homeostasis is underscored by pathologies resulting from naturally occurring SLC34 mutations and SLC34 knockout animals. SLC34 isoforms have been extensively studied with respect to transport mechanism and structure-function relationships; however, the three-dimensional structure is unknown. All SLC34 transporters share a duplicated motif comprising a glutamine followed by a stretch of threonine or serine residues, suggesting the presence of structural repeats as found in other transporter families. Nevertheless, standard bioinformatic approaches fail to clearly identify a suitable template for molecular modeling. Here, we used hydrophobicity profiles and hidden Markov models to define a structural repeat common to all SLC34 isoforms. Similar approaches identify a relationship with the core regions in a crystal structure of Vibrio cholerae Na+-dicarboxylate transporter VcINDY, from which we generated a homology model of human NaPi-IIa. The aforementioned SLC34 motifs in each repeat localize to the center of the model, and were predicted to form Na+ and Pi coordination sites. Functional relevance of key amino acids was confirmed by biochemical and electrophysiological analysis of expressed, mutated transporters. Moreover, the validity of the predicted architecture is corroborated by extensive published structure-function studies. The model provides key information for elucidating the transport mechanism and predicts candidate substrate binding sites. PMID:24655502

  16. Na?La?(CO?)? and CsNa?Ca?(CO?)?: two new carbonates as UV nonlinear optical materials.

    PubMed

    Luo, Min; Wang, GenXiang; Lin, Chensheng; Ye, Ning; Zhou, Yuqiao; Cheng, Wendan

    2014-08-01

    Two nonlinear optical crystal carbonates (Na4La2(CO3)5 and CsNa5Ca5(CO3)8 were successfully synthesized by hydrothermal method, and both of them crystallized in the same noncentrosymmetric hexagonal space group P63mc (No. 186). The structure of Na4La2(CO3)5 consists of a three-dimensional network made up of [CO3] triangles as well as irregular [Na(0.67)La(0.33)O10] and [NaO8] polyhedra. The structure of CsNa5Ca5(CO3)8 can be described as the standing-on-edge [CO3] groups connect the adjacent infinite [CaCO3]? layers in the ab plane to construct a framework with four types of channels running parallel to [010]. The Na, Cs, and [Na(0.67)Ca(0.33)] atoms reside in these channels. The measurement of second harmonic generation (SHG) by the method adapted from Kurtz and Perry indicated that Na4La2(CO3)5 and CsNa5Ca5(CO3)8 were phase-matchable in the visible region and exhibited SHG responses of approximately 3 and 1 × KH2PO4 (KDP). Meanwhile, they exhibited wide transparent region with short UV cutoff edge at about 235 and 210 nm, respectively, suggesting that these crystals as NLO materials may have potential applications in the UV region. PMID:25027762

  17. Simulation of Na D emission near Europa during eclipse

    USGS Publications Warehouse

    Cassidy, T.A.; Johnson, R.E.; Geissler, P.E.; Leblanc, F.

    2008-01-01

    The Cassini imaging science subsystem observed Europa in eclipse during Cassini's Jupiter flyby. The disk-resolved observations revealed a spatially nonuniform emission in the wavelength range of 200-1050 nm (clear filters). By building on observations and simulations of Europa's Na atmosphere and torus we find that electron-excited Na in Europa's tenuous atmosphere can account for the observed emission if the Na is ejected preferentially from Europa's dark terrain. Copyright 2008 by the American Geophysical Union.

  18. Magnesium correction to the NaKCa chemical geothermometer

    USGS Publications Warehouse

    Fournier, R.O.; Potter, R.W., II

    1979-01-01

    Equations and graphs have been devised to correct for the adverse effects of magnesium upon the Na-K-Ca chemical geothermometer. Either the equations or graphs can be used to determine appropriate temperature corrections for given waters with calculated NaKCa temperatures > 70??C and R 50 are probably derived from relatively cool aquifers with temperatures approximately equal to the measured spring temperature, irrespective of much higher calculated Na-K-Ca temperatures. ?? 1979.

  19. CaMKII-dependent regulation of cardiac Na+ homeostasis

    PubMed Central

    Grandi, Eleonora; Herren, Anthony W.

    2014-01-01

    Na+ homeostasis is a key regulator of cardiac excitation and contraction. The cardiac voltage-gated Na+ channel, NaV1.5, critically controls cell excitability, and altered channel gating has been implicated in both inherited and acquired arrhythmias. Ca2+/calmodulin-dependent protein kinase II (CaMKII), a serine/threonine kinase important in cardiac physiology and disease, phosphorylates NaV1.5 at multiple sites within the first intracellular linker loop to regulate channel gating. Although CaMKII sites on the channel have been identified (S516, T594, S571), the relative role of each of these phospho-sites in channel gating properties remains unclear, whereby both loss-of-function (reduced availability) and gain-of-function (late Na+ current, INaL) effects have been reported. Our review highlights investigating the complex multi-site phospho-regulation of NaV1.5 gating is crucial to understanding the genesis of acquired arrhythmias in heart failure (HF) and CaMKII activated conditions. In addition, the increased Na+ influx accompanying INaL may also indirectly contribute to arrhythmia by promoting Ca2+ overload. While the precise mechanisms of Na+ loading during HF remain unclear, and quantitative analyses of the contribution of INaL are lacking, disrupted Na+ homeostasis is a consistent feature of HF. Computational and experimental observations suggest that both increased diastolic Na+ influx and action potential prolongation due to systolic INaL contribute to disruption of Ca2+ handling in failing hearts. Furthermore, simulations reveal a synergistic interaction between perturbed Na+ fluxes and CaMKII, and confirm recent experimental findings of an arrhythmogenic feedback loop, whereby CaMKII activation is at once a cause and a consequence of Na+ loading. PMID:24653702

  20. Glutamate transporter coupling to Na,K-ATPase.

    PubMed

    Rose, Erin M; Koo, Joseph C P; Antflick, Jordan E; Ahmed, Syed M; Angers, Stephane; Hampson, David R

    2009-06-24

    Deactivation of glutamatergic signaling in the brain is mediated by glutamate uptake into glia and neurons by glutamate transporters. Glutamate transporters are sodium-dependent proteins that putatively rely indirectly on Na,K-ATPases to generate ion gradients that drive transmitter uptake. Based on anatomical colocalization, mutual sodium dependency, and the inhibitory effects of the Na,K-ATPase inhibitor ouabain on glutamate transporter activity, we postulated that glutamate transporters are directly coupled to Na,K-ATPase and that Na,K-ATPase is an essential modulator of glutamate uptake. Na,K-ATPase was purified from rat cerebellum by tandem anion exchange and ouabain affinity chromatography, and the cohort of associated proteins was characterized by mass spectrometry. The alpha1-alpha 3 subunits of Na,K-ATPase were detected, as were the glutamate transporters GLAST and GLT-1, demonstrating that glutamate transporters copurify with Na,K-ATPases. The link between glutamate transporters and Na,K-ATPase was further established by coimmunoprecipitation and colocalization. Analysis of the regulation of glutamate transporter and Na,K-ATPase activities was assessed using [(3)H]D-aspartate, [(3)H]L-glutamate, and rubidium-86 uptake into synaptosomes and cultured astrocytes. In synaptosomes, ouabain produced a dose-dependent inhibition of glutamate transporter and Na,K-ATPase activities, whereas in astrocytes, ouabain showed a bimodal effect whereby glutamate transporter activity was stimulated at 1 microm ouabain and inhibited at higher concentrations. The effects of protein kinase inhibitors on [(3)H]D-aspartate uptake indicated the selective involvement of Src kinases, which are probably a component of the Na,K-ATPase/glutamate transporter complex. These findings demonstrate that glutamate transporters and Na,K-ATPases are part of the same macromolecular complexes and operate as a functional unit to regulate glutamatergic neurotransmission. PMID:19553454

  1. Pion and kaon freezeout in NA44

    SciTech Connect

    NA44 Collaboration

    1994-12-01

    The NA44 spectrometer is optimized for the study of single and two-particle particle spectra near mid-rapidity for transverse momenta below {approx} 1 GeV/c. A large fraction of all pairs in the spectrometer`s acceptance are at low relative momenta, resulting in small statistical uncertainties on the extracted size parameters. In addition, the spectrometer`s clean particle identification allows the authors to measure correlation functions for pions, kaons, and protons. This contribution will concentrate on the source size parameters determined from pion and kaon correlation functions. These size parameters will be compared to calculations from the RQMD event generator and also interpreted in the context of a hydrodynamic model. Finally, the measured single particle spectra will be examined from the viewpoint of hydrodynamics.

  2. Colorimetric Assays of Na,K-ATPase.

    PubMed

    Sweadner, Kathleen J

    2016-01-01

    The Na,K-ATPase is a plasma membrane enzyme that catalyzes active ion transport by the hydrolysis of ATP. Its activity in vivo is determined by many factors, particularly the concentration of intracellular sodium ions. It is the target of the cardiac glycoside class of drugs and of endogenous regulators. Its assay is often an endpoint in the investigation of physiological processes, and it is a promising drug target. As described in this unit, its enzymatic activity can be determined in extracts from tissues by test tube assay using a spectrophotometer or (32)P-ATP. The protocols in this chapter measure inorganic phosphate as the end product of hydrolysis of ATP. PMID:26695025

  3. Mercury's Na Exosphere from MESSENGER Data

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. El; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-01-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UWS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft :0 infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The portion of the hot/cold source appears to be highly variable.

  4. Kaolin-based geopolymers with various NaOH concentrations

    NASA Astrophysics Data System (ADS)

    Heah, C. Y.; Kamarudin, H.; Mustafa Al Bakri, A. M.; Bnhussain, M.; Luqman, M.; Khairul Nizar, I.; Ruzaidi, C. M.; Liew, Y. M.

    2013-03-01

    Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80°C for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na2O decreased. The increased Na2O content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.

  5. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  6. Study of OSL in NaF: Ca,Cu

    NASA Astrophysics Data System (ADS)

    More, Y. K.; Wankhede, S. P.; Moharil, S. V.

    2013-06-01

    Sodium Fluoride containing Cu+ ions was prepared by R.A.P. followed by melt-quenching technique. Results on photo, thermo and optically stimulated luminescence in NaF:Ca,Cu are reported. OSL sensitivity of NaF:Ca,Cu is approximately 2 times than that of standard phosphor LMP. The rate of OSL depletion for 90% decay for NaF:Ca,Cu is 0.3 times as that of OSL phosphor LMP. NaF:Ca,Cu thus deserves much more attention than it has received up till now.

  7. Integrated Control of Na Transport along the Nephron

    PubMed Central

    Schnermann, Jürgen

    2015-01-01

    The kidney filters vast quantities of Na at the glomerulus but excretes a very small fraction of this Na in the final urine. Although almost every nephron segment participates in the reabsorption of Na in the normal kidney, the proximal segments (from the glomerulus to the macula densa) and the distal segments (past the macula densa) play different roles. The proximal tubule and the thick ascending limb of the loop of Henle interact with the filtration apparatus to deliver Na to the distal nephron at a rather constant rate. This involves regulation of both filtration and reabsorption through the processes of glomerulotubular balance and tubuloglomerular feedback. The more distal segments, including the distal convoluted tubule (DCT), connecting tubule, and collecting duct, regulate Na reabsorption to match the excretion with dietary intake. The relative amounts of Na reabsorbed in the DCT, which mainly reabsorbs NaCl, and by more downstream segments that exchange Na for K are variable, allowing the simultaneous regulation of both Na and K excretion. PMID:25098598

  8. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  9. Electrode potential studies of liquid-solid equilibrium in Na{sub 3}Bi-saturated Na-Bi melts

    SciTech Connect

    Yan, X.Y.; Langberg, D.E.; Rankin, W.J.

    2000-04-01

    Liquid binary Na-Bi alloys have been studied extensively because of the interest in possible uses as electrochemically active couples in regenerative electrochemical cells, in high-energy batteries, and as potential heat-transfer media in nuclear reaction processes. Techniques used previously for thermodynamic measurements on the system have included the transpiration method, quasi-static and boiling point methods, the electromotive force (emf) method using molten salt mixtures and various solid electrolytes, and thermal analysis. Most of the thermodynamic data on Bi-Na alloys were recently assessed by Sangster and Pelton. However, no experimental thermodynamic data for liquid-solid equilibrium in liquid Na-Bi alloys saturated with solid Na{sub 3}Bi have been reported in the literature. The aim of the present work was to investigate experimentally the equilibrium between Na-Bi melts and solid Na{sub 3}Bi by the emf method in the range 638 to 973 K.

  10. Cardioprotective actions of KC 12291. I. Inhibition of voltage-gated Na+ channels in ischemia delays myocardial Na+ overload.

    PubMed

    Decking, U K; Hartmann, M; Rose, H; Brückner, R; Meil, J; Schrader, J

    1998-11-01

    To characterize KC 12291 (1-(5-phenyl-1,2, 4-thiadiazol-3-yl-oxypropyl)-3-[N-methyl-N-[2-(3,4-dimethoxy phenyl) ethyl] amino] propane hydrochloride), a newly synthezised inhibitor of voltage-gated Na+ channels, the effects of the agent on Na+ current and ischemia-induced Na+ overload were investigated in isolated cardiomyocytes, atria and saline-perfused hearts. As measured by the patch clamp technique, KC 12291 (1 microM) significantly reduced peak Na+ current after activation of voltage-gated Na+ channels in rat cardiomyocytes. Partial depolarization enhanced the inhibitory effects during steady state conditions of the channel. In isolated guinea pig atria, 1 microM KC 12291 had no effect on contractility under basal conditions but effectively delayed the onset and reduced the extent of anoxic contracture. The concentration-response curve was clearly shifted to the left when atria were partially depolarized by increased extracellular K+. As measured by 23Na NMR spectroscopy in isolated perfused guinea pig hearts, intracellular Na+ rose more than four-fold in a linear fashion during 60 min of low-flow ischemia. KC 12291 (1 microM) prevented Na+ overload within the initial 12 min of ischemia; thereafter the slope of Na+ accumulation was identical to controls. Electrical excitability of hearts, evaluated by intracardial ECG, completely ceased within 15 min after the onset of ischemia. KC 12291 (1 microM) accelerated this process by more than 6 min. The data provide first evidence that KC 12291 reduces Na+ influx through voltage-gated Na+ channels during ischemia and thus delays Na+ overload by enhancing the inexcitability of the heart. PMID:9840423

  11. RNA adducts with Na 2SeO 4 and Na 2SeO 3 - Stability and structural features

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Manouchehri, Firouzeh; Montazeri, Maryam

    2011-12-01

    Selenium compounds are widely available in dietary supplements and have been extensively studied for their antioxidant and anticancer properties. Low blood Se levels were found to be associated with an increased incidence and mortality from various types of cancers. Although many in vivo and clinical trials have been conducted using these compounds, their biochemical and chemical mechanisms of efficacy are the focus of much current research. This study was designed to examine the interaction of Na 2SeO 4 and Na 2SeO 3 with RNA in aqueous solution at physiological conditions, using a constant RNA concentration (6.25 mM) and various sodium selenate and sodium selenite/polynucleotide (phosphate) ratios of 1/80, 1/40, 1/20, 1/10, 1/5, 1/2 and 1/1. Fourier transform infrared, UV-Visible spectroscopic methods were used to determine the drug binding modes, the binding constants, and the stability of Na 2SeO 4 and Na 2SeO 3-RNA complexes in aqueous solution. Spectroscopic evidence showed that Na 2SeO 4 and Na 2SeO 3 bind to the major and minor grooves of RNA ( via G, A and U bases) with some degree of the Se-phosphate (PO 2) interaction for both compounds with overall binding constants of K(Na 2SeO 4-RNA) = 8.34 × 10 3 and K(Na 2SeO 3-RNA) = 4.57 × 10 3 M -1. The order of selenium salts-biopolymer stability was Na 2SeO 4-RNA > Na 2SeO 3-RNA. RNA aggregations occurred at higher selenium concentrations. No biopolymer conformational changes were observed upon Na 2SeO 4 and Na 2SeO 3 interactions, while RNA remains in the A-family structure.

  12. Complete Bromide Surface Segregation in Mixed NaCl /NaBr Aerosols Grown from Droplets

    NASA Astrophysics Data System (ADS)

    Antonsson, Egill; Patanen, Minna; Nicolas, Christophe; Neville, John J.; Benkoula, Safia; Goel, Alok; Miron, Catalin

    2015-01-01

    Sea-salt aerosols are a source of atmospheric bromine responsible for ozone depletion. The availability of bromine from sea-salt aerosols to heterogeneous phase chemical reactions is determined by its local concentration at the aerosol surface. We report here complete surface segregation of bromine in mixed NaCl /NaBr aerosols grown by drying droplets, thus mimicking the atmospheric process by which solid sea-salt aerosols are generated. For d =70 nm solid aerosols, complete surface segregation is observed for solution Br /Cl ratios below 2%. These findings set a size-dependent upper limit on the bromine surface enrichment that can be reached in solid salt aerosols grown from sea-water droplets in the atmosphere.

  13. Expression of diverse Na+ channel messenger RNAs in rat myocardium. Evidence for a cardiac-specific Na+ channel.

    PubMed Central

    Sills, M N; Xu, Y C; Baracchini, E; Goodman, R H; Cooperman, S S; Mandel, G; Chien, K R

    1989-01-01

    This study examined the diversity of Na+ channel gene expression in intact cardiac tissue and purified myocardial cells. The screening of neonatal rat myocardial cell cDNA libraries with a conserved rat brain Na+ channel cDNA probe, resulted in the isolation and characterization of a putative rat cardiac Na+ channel cDNA probe (pCSC-1). The deduced amino acid sequence of pCSC-1 displayed a striking degree of homology with the eel, rat brain-1, and rat brain-2 Na+ channel, thereby identifying pCSC-1 as a related member of the family of Na+ channel genes. Northern blot analysis revealed the expression of a 7-kb CSC-1 transcript in rat cardiac tissue and purified myocardial cells, but little or no detectable expression of CSC-1 in rat brain, skeletal muscle, denervated skeletal muscle, or liver. Using RNase protection and Northern blot hybridization with specific rat brain Na+ channel gene probes, expression of the rat brain-1 Na+ channel was observed in rat myocardium, but no detectable expression of the rat brain-2 gene was found. This study provides evidence for the expression of diverse Na+ channel mRNAs in rat myocardium and presents the initial characterization of a new, related member of the family of Na+ channel genes, which appears to be expressed in a cardiac-specific manner. Images PMID:2544627

  14. Synthesis of NaYF4 and NaLuF4 Based Upconversion Nanocrystals and Comparison of Their Properties.

    PubMed

    Ouyang, Juan; Yin, Dongguang; Song, Kailin; Wang, Chengcheng; Liu, Bing; Wu, Minghong

    2015-04-01

    In this study, four kinds of upconversion nanocrystals (UCNs) have been successfully synthesized by a facile solvothermal method. The morphology, crystalline phase, composition, grain size, upconversion luminescence and cell image of the UCNs were investigated. The properties of the NaLuF4-based UCNs were compared with the counterparts of NaYF4-based UCNs. It is found that the NaLuF4-based UCNs are apt to form hexagonal phase structures, while NaYF4-based UCNs of NaYF4:Yb, Er and NaYF4:Gd, Yb, Er are cubic and hexagonal phases respectively. The upconversion emission intensities of the NaLuF4-based UCNs are higher than that of NaYF4-based UCNs, and Gd3+ presented UCNs are higher than that of Gd3+ absented UCNs. The bioimaging application of NaLuF4:Gd, Yb, Er shows that bright upconversion luminescence can be observed when UCNs-labeled HeLa cells are excited with 980 nm light. PMID:26353495

  15. Aldosterone regulation of intestinal Na absorption involves SGK-mediated changes in NHE3 and Na+ pump activity.

    PubMed

    Musch, Mark W; Lucioni, Alvaro; Chang, Eugene B

    2008-11-01

    Aldosterone-induced intestinal Na(+) absorption is mediated by increased activities of apical membrane Na(+)/H(+) exchange (aNHE3) and basolateral membrane Na(+)-K(+)-ATPase (BLM-Na(+)-K(+)-ATPase) activities. Because the processes coordinating these events were not well understood, we investigated human intestinal Caco-2BBE cells where aldosterone increases within 2-4 h of aNHE3 and alpha-subunit of BLM-Na(+)-K(+)-ATPase, but not total abundance of these proteins. Although aldosterone activated Akt2 and serum glucorticoid kinase-1 (SGK-1), the latter through stimulation of phosphatidylinositol 3-kinase (PI3K), only the SGK-1 pathway mediated its effects on Na(+)-K(+)-ATPase. Ouabain inhibition of the early increase in aldosterone-induced Na(+)-K(+)-ATPase activation blocked most of the apical NHE3 insertion, possibly by inhibiting Na(+)-K(+)-ATPase-induced changes in intracellular sodium concentration ([Na](i)). Over the next 6-48 h, further increases in aNHE3 and BLM-Na(+)-K(+)-ATPase activity and total protein expression were observed to be largely mediated by aldosterone-activated SGK-1 pathway. Aldosterone-induced increases in NHE3 mRNA, for instance, could be inhibited by RNA silencing of SGK-1, but not Akt2. Additionally, aldosterone-induced increases in NHE3 promoter activity were blocked by silencing SGK-1 as well as pharmacological inhibition of PI3K. In conclusion, aldosterone-stimulated intestinal Na(+) absorption involves two phases. The first phase involves stimulation of PI3K, which increases SGK-dependent insertion and function of BLM-Na(+)-K(+)-ATPase and subsequent increased membrane insertion of aNHE3. The latter may be caused by Na(+)-K(+)-ATPase-induced changes in [Na] or transcellular Na flux. The second phase involves SGK-dependent increases in total NHE3 and Na(+)-K(+)-ATPase protein expression and activities. The coordination of apical and BLM transporters after aldosterone stimulation is therefore a complex process that requires multiple time- and interdependent cellular processes. PMID:18801914

  16. The process of GaN single crystal growth by the Na flux method with Na vapor

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Yamane, Hisanori; Iwata, Hirokazu; Sarayama, Seiji

    2006-01-01

    Ga melts were heated in a boron nitride crucible at 800 °C and 5 MPa of N 2 for 8-200 h with Na vapor. Colorless and transparent prismatic GaN single crystals grew from a Na-Ga melt which was formed by dissolution of Na from the gas phase. Nitrogen was probably introduced into the melt with Na. The time dependence of the Na fraction ( rNa=Na/(Na+Ga)) in the melts and the yields of GaN were investigated. rNa increased to 0.39-0.43 within 100 h, and then became almost constant at this value. The yield of GaN was less than 2% at 50 h. The yield increased linearly with heating time after 75 h, and reached 57% at 200 h. GaN single crystals with a size of 1.5 mm long were obtained on the bottom of the crucible wall. The largest crystals (3.0 mm-long and 1.2 mm-wide) grew at the edges of the melt and of the GaN crystal formation area near the bottom wall of the crucible.

  17. Estimating the hydrogen ion concentration in concentrated NaCl and Na{sub 2}SO{sub 4} electrolytes

    SciTech Connect

    Rai, D.; Felmy, A.R.; Juracich, S.P.; Rao, F.

    1995-06-01

    Combination glass electrodes were tested for determining H{sup +} concentrations in concentrated pure and mixed NaCl and Na{sub 2}SO{sub 4} solutions, as well as natural brine systems. NaCl, Na{sub 2}SO{sub 4}, and mixtures of NaCl and Na{sub 2}SO{sub 4} solutions were analyzed. Correction factors for estimating pC{sub H}{sup +} (negative logarithm of H{sup +} concentration) were determined from measured/observed pH values. Required Gran-type titrations were done with HCl and/or NaOH. The titration method is described and a step-by-step procedure provided; it has been used previously for determining pC{sub H}{sup +} values of synthetic chloride-dominated brines. Precautions are required to determine correction factors for electrolytes that react with H{sup +} or OH{sup {minus}} [sulfate brines for titration with acid; magnesium brines for titration with base because of precipitation of Mg(OH)2]. Correction factors A (pC{sub H}{sup +} = pH{sub ob} + A) from HCl titrations were similar to those from NaOH titrations where the concentration of free H{sup +} was calculated using a thermodynamic model. These values should be applicable to solns with a very large range in measured pH values (2 to 12). Because a large number of solns were titrated with HCl and the A values are similar for HCl and NaOH titrations, the A values for NaCl and Na2SO4 solns were fit as a function of molality to allow extrapolation. For NaCl solns 0 to 6.0 M, A can be obtained by multiplying the molality by 0.159. For Na2SO4 solns 0 to 2.0 M, the values of A can be obtained from (0.221 {minus} 0.549X + 0.201X{sup 2}), where X is the molality of Na{sub 2}SO{sub 4}. Orion-Ross electrode evaluations indicated that the A values did not differ significantly for different electrodes. Results suggest that the data in this report can be used to estimate A values for different NaCl and Na{sub 2}SO{sub 4} solns even for noncalibrated electrodes.

  18. Alternative cycling modes of the Na(+)/K(+)-ATPase in the presence of either Na(+) or Rb(+).

    PubMed

    Monti, José L E; Montes, Mónica R; Rossi, Rolando C

    2013-05-01

    A comprehensive study of the interaction between Na(+) and K(+) with the Na(+)/K(+)-ATPase requires dissecting the incidence of alternative cycling modes on activity measurements in which one or both of these cations are absent. With this aim, we used membrane fragments containing pig-kidney Na(+)/K(+)-ATPase to perform measurements, at 25°C and pH=7.4, of ATPase activity and steady-state levels of (i) intermediates containing occluded Rb(+) at different [Rb(+)] in media lacking Na(+), and (ii) phosphorylated intermediates at different [Na(+)] in media lacking Rb(+). Most relevant results are: (1) Rb(+) can be occluded through an ATPasic cycling mode that takes place in the absence of Na(+) ions, (2) the kinetic behavior of the phosphoenzyme formed by ATP in the absence of Na(+) is different from the one that is formed with Na(+), and (3) binding of Na(+) to transport sites during catalysis is not at random unless rapid equilibrium holds. PMID:23357355

  19. Transient diffusion, desorption, and reaction studies of cyclopropane and propylene with NaX and Eu/NaX zeolites

    SciTech Connect

    Efstathiou, A.M.; Suib, S.L.; Bennett, C.O. )

    1992-05-01

    The exchange of Eu[sup 3+] for Na[sup +] cations into the sodalite cages of X zeolite (Eu[sub 25]Na[sub 11]X) leads selectively to the isomerization reaction of cyclopropane to propylene. The latter reaction is catalyzed by Broensted acid sites with an apparent activation energy of 10.6 kcal/mol. Sorption measurements of cyclopropane and propylene with Eu/NaX and NaX zeolites at 40 C support the view that Na[sup +] cations might be considered as sites for sorption of these molecules. Force fields created by Eu[sub 4]O[sup 10+] present in Eu/NaX zeolite may affect sorption. On the other hand, Broensted acid sites in Eu/NaX enhance sorption of cyclopropane and propylene at 40 C. Chemisorption of propylene on the Broensted acid sites of Eu/NaX is reversible and may occur via a propylene carbenium cation intermediate. Small amounts of hexene are formed during this sorption. The amount of Broensted acid sites in the present Eu/NaX is at least 0.6 mmol/g cat.

  20. Comunicación en la atención del cáncer (PDQ)—Versión para pacientes

    Cancer.gov

    Resumen de la información revisada por expertos acerca de la comunicación con el paciente de cáncer y sus familiares, que incluye los aspectos distintivos de la comunicación con pacientes de cáncer, los factores que afectan la comunicación y la capacitación en aptitudes para la comunicación.

  1. Tratamiento Quirúrgico de los Meningiomas del Foramen Óptico, Técnicay Resultados de una Serie de 18 Pacientes

    PubMed Central

    Goldschmidt, Ezequiel; Ajler, Pablo; Campero, Álvaro; Landriel, Federico; Sposito, Maximiliano; Carrizo, Antonio

    2014-01-01

    Introducción: los meningiomas del foramen óptico producen un rápido deterioro de la función visual aún cuando su tamaño es pequeño, por eso su diagnóstico y manejo difiere del resto de los meningiomas clinoideos. El propósito de este estudio es presentar la técnica y los resultados de nuestro manejo quirúrgico de meningiomas foraminales (MF). Pacientes y Métodos: se llevó a cabo una revisión de las historias clínicas de 47 pacientes con meningiomas primarios intraorbitarios. Se realizaron 52 cirugías en los pacientes con MF. Se empleó una craneotomía fronto-orbitaria, seguida de una descompresión extradural del canal óptico, resección del componente intraorbitario y exploración intradural del nervio óptico. Resultados: de los 12 pacientes con MF que presentaban la visión conservada, la agudeza visual fue preservada en 7 casos, mejoró en 2, y empeoró en 3. En 18 pacientes, el principal síntoma fue exoftalmos y en 35 pacientes ceguera unilateral. Ocurrieron 6 recurrencias, 2 a 10 años después de la resección quirúrgica. Cinco de ellos fueron reoperados. Se indicó radioterapia después de la recurrencia en 3 pacientes. Conclusión: el manejo de los MF continúa siendo controvertido y frecuentemente se propone un tratamiento conservador. Basados en nuestros hallazgos de frecuente extensión intracraneal, proponemos realizar una resección total o subtotal del tumor, preservando el nervio óptico en pacientes con visión prequirúrgica conservada. PMID:25165616

  2. Point mutations in alpha-subunit of human cardiac Na+ channels alter Na+ current kinetics.

    PubMed

    Xiao, Y F; Ke, Q; Wang, S Y; Yang, Y; Wang, G K; Morgan, J P; Leaf, A

    2001-02-16

    Dietary polyunsaturated fatty acids (PUFAs) prevent ischemia-induced fatal cardiac arrhythmias in animals and probably in humans. This action results from inhibition of ion currents for Na+, Ca2+, and possibly other ions. To extend understanding of this protection we are seeking a possible binding site for the PUFAs on the alpha-subunit of the human cardiac Na+ channel, hH1alpha, transiently expressed in HEK293t cells. Three mutated single amino acid substitutions with lysine were made in the alpha-subunit at Domain 4-Segment 6 (D4-S6) for F1760, Y1767 and at D1-S6 for N406. These are in the putative sites of binding of local anesthetics and batrachotoxin, respectively. The mutants F1760K, Y1767K, and N406K, separately and to different extents, affected the current density, the steady-state inactivation potential, accelerated inactivation, delayed recovery from inactivation, and affected voltage-dependent block, but did not affect activation of the hH1alpha. It is essential to learn that single point mutations in D1-S6 and D4-S6 alone significantly modify the kinetics of human cardiac hH1alpha Na+ currents. The effects of PUFAs on these mutant channels will be the subject of subsequent reports. PMID:11178958

  3. Direct Measurement of {sup 21}Na+{alpha} Stellar Reaction

    SciTech Connect

    Binh, D. N.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Hashimoto, T.; Kahl, D.; Teranishi, T.; Iwasa, N.; Kume, N.; Kato, S.; Khiem, L. H.; Tho, N. T.; Wakabayashi, Y.

    2010-08-12

    The measurement of the resonant alpha scattering and the {sup 21}Na({alpha}, p) reaction were performed for the first time in inverse kinematics with the thick target method using a {sup 21}Na radioisotope (RI) beam. This paper reports the current result of alpha scattering measurement and its astrophysics implication.

  4. Transepithelial Na+ transport and the intracellular fluids: a computer study.

    PubMed

    Civan, M M; Bookman, R J

    1982-01-01

    Computer simulations of tight epithelia under three experimental conditions have been carried out, using the rheogenic nonlinear model of Lew, Ferreira and Moura (Proc. Roy. Soc. London. B 206:53-83, 1979) based largely on the formulation of Koefoed-Johnsen and Ussing (Acta Physiol. Scand. 42: 298-308. 1958). First, analysis of the transition between the short-circuited and open-circuited states has indicated that (i) apical Cl- permeability is a critical parameter requiring experimental definition in order to analyze cell volume regulation, and (ii) contrary to certain experimental reports, intracellular Na+ concentration (ccNa) is expected to be a strong function of transepithelial clamping voltage. Second, analysis of the effects of lowering serosal K+ concentration (csK) indicates that the basic model cannot simulate several well-documented observations; these defects can be overcome, at least qualitatively, by modifying the model to take account of the negative feedback interaction likely to exist between the apical Na+ permeability and ccNa. Third, analysis of the strongly supports the concept that osmotically induced permeability changes in the apical intercellular junctions play a physiological role in conserving the body's stores of NaCl. The analyses also demonstrate that the importance of Na+ entry across the basolateral membrane is strongly dependent upon transepithelial potential, cmNa and csK; under certain conditions, net Na+ entry could be appreciably greater across the basolateral than across the apical membrane. PMID:7057462

  5. Moderate temperature rechargeable NaNiS2 cells

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.

    1983-01-01

    A rechargeable sodium battery of the configuration, liquid Na/beta double prime -Al2O3/molten NaAlCl4, NiS2, operating in the temperature range of 170 to 190 C, is described. This battery is capable of delivering or = to 50 W-hr/1b and 1000 deep discharge/charge cycles.

  6. Identification of Hydroxyxanthones as Na/K-ATPase Ligands

    PubMed Central

    Zhang, Zhongbing; Li, Zhichuan; Tian, Jiang; Jiang, Wei; Wang, Yin; Zhang, Xiaojin; Li, Zhuorong; You, Qidong; Shapiro, Joseph I.; Si, Shuyi

    2010-01-01

    We have screened a chemical library and identified several novel structures of Na/K-ATPase inhibitors. One group of these inhibitors belongs to polyphenolic xanthone derivatives. Functional characterization reveals the following properties of this group of inhibitors. First, like ouabain, they are potent inhibitors of the purified Na/K-ATPase. Second, their effects on the Na/K-ATPase depend on the number and position of phenolic groups. Methylation of these phenolic groups reduces the inhibitory effect. Third, further characterization of the most potent xanthone derivative, MB7 (3,4,5,6-tetrahydroxyxanthone), reveals that it does not change either Na+ or ATP affinity of the enzyme. Finally, unlike that of ouabain, the inhibitory effect of MB7 on Na/K-ATPase is not antagonized by K+. Moreover, MB7 does not activate the receptor Na/K-ATPase/Src complex and fails to stimulate protein kinase cascades in cultured cells. Thus, we have identified a group of novel Na/K-ATPase ligands that can inhibit the pumping function without stimulating the signaling function of Na/K-ATPase. PMID:20335388

  7. 33 CFR 147.833 - Na Kika FDS safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Na Kika FDS safety zone. 147.833 Section 147.833 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.833 Na Kika FDS safety zone. (a) Description....

  8. 33 CFR 147.833 - Na Kika FDS safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Na Kika FDS safety zone. 147.833 Section 147.833 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.833 Na Kika FDS safety zone. (a) Description....

  9. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    SciTech Connect

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.; Ackerman, J.J.; Karl, I.E. )

    1990-01-01

    The effects of sepsis on intracellular Na+ concentration ((Na+)i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosed as septic were also examined for (Na+)i. Five rat RBC specimens had (Na+)i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing (6,6-2H2)glucose and examined by 2H-NMR. No significant differences in (Na+)i or glucose utilization were found in RBCs from control or septic rats. There were no differences in (Na+)i in the two groups of patients. The (Na+)i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the (Na+)i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism.

  10. Feasibility study for a secondary Na/S battery

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Schiff, R.; Brummer, S. B.

    1979-01-01

    The feasibility of a moderate temperature Na battery was studied. This battery is to operate at a temperature in the range of 100-150 C. Two kinds of cathode were investigated: (1) a soluble S cathode consisting of a solution of Na2Sn in an organic solvent and (2) an insoluble S cathode consisting of a transition metal dichalcogenide in contact with a Na(+)ion conducting electrolyte. Four amide solvents, dimethyl acetamide, diethyl acetamide, N-methyl acetamide and acetamide, were investigated as possible solvents for the soluble S cathode. Results of stability and electrochemical studies using these solvents are presented. The dialkyl substituted amides were found to be superior. Although the alcohol 1,3-cyclohexanediol was found to be stable in the presence of Na2Sn at 130 C, its Na2Sn solutions did not appear to have suitable electrochemical properties.

  11. LiNa5Mo9O30

    PubMed Central

    Hamza, Hamadi; Ennajeh, Ines; Zid, Mohamed Faouzi; Driss, Ahmed

    2012-01-01

    The tite compound, lithium penta­sodium nona­molybdate, LiNa5Mo9O30, was synthesized by solid-state reaction. The three-dimensional [Mo9O30]6? framework is built up from MoO6 octa­hedra and MoO5 bipyramids, linked together by edges and corners. The framework delimits two types of inter­secting tunnels running along [100] and [010] in which the Na+ and Li+ ions are located. The asymmetric unit contains one Mo, one Na and one Li site located on a twofold rotation axis. The crystal studied was a racemic twin with site a twin ratio of 0.51?(10):0.49?(10). Relationships between the structures of K2Mo3O10, K2Mo4O13, Cs2Mo7O22, Na6Mo10O33 and Na6Mo11O36 compounds are discussed. PMID:23284311

  12. Endurance testing with Li/Na electrolyte

    SciTech Connect

    Ong, E.T.; Remick, R.J.; Sishtla, C.I.

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  13. Persistent human cardiac Na+ currents in stably transfected mammalian cells

    PubMed Central

    Wang, Ging Kuo; Russell, Gabriella; Wang, Sho-Ya

    2013-01-01

    Miniature persistent late Na+ currents in cardiomyocytes have been linked to arrhythmias and sudden death. The goals of this study are to establish a stable cell line expressing robust persistent cardiac Na+ currents and to test Class 1 antiarrhythmic drugs for selective action against resting and open states. After transient transfection of an inactivation-deficient human cardiac Na+ channel clone (hNav1.5-CW with L409C/A410W double mutations), transfected mammalian HEK293 cells were treated with 1 mg/ml G-418. Individual G-418-resistant colonies were isolated using glass cylinders. One colony with high expression of persistent Na+ currents was subjected to a second colony selection. Cells from this colony remained stable in expressing robust peak Na+ currents of 996 ± 173 pA/pF at +50 mV (n = 20). Persistent late Na+ currents in these cells were clearly visible during a 4-second depolarizing pulse albeit decayed slowly. This slow decay is likely due to slow inactivation of Na+ channels and could be largely eliminated by 5 ?M batrachotoxin. Peak cardiac hNav1.5-CW Na+ currents were blocked by tetrodotoxin with an IC50 value of 2.27 ± 0.08 ?M (n = 6). At clinic relevant concentrations, Class 1 antiarrhythmics are much more selective in blocking persistent late Na+ currents than their peak counterparts, with a selectivity ratio ranging from 80.6 (flecainide) to 3 (disopyramide). We conclude that (1) Class 1 antiarrhythmics differ widely in their resting- vs. open-channel selectivity, and (2) stably transfected HEK293 cells expressing large persistent hNav1.5-CW Na+ currents are suitable for studying as well as screening potent open-channel blockers. PMID:23695971

  14. Studies of rotationally inelastic collisions of NaK and NaCs with Ar and He perturbers

    NASA Astrophysics Data System (ADS)

    Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Ashman, S.; Malenda, R. F.; Weiser, P.; Carlus, S.; Fragale, A.; Hickman, A. P.; Huennekens, J.

    2013-05-01

    We report studies of rotationally inelastic collisions of Ar and He atoms with the molecules NaK and NaCs prepared in various ro-vibrational levels of the A1Σ+ electronic state. We use laser induced fluorescence (LIF) and polarization labeling (PL) spectroscopy in a pump-probe, two step excitation process. The pump excites the molecule to a ro-vibrational level (v , J) in the A state. The probe laser is scanned over transitions to the 31 Π state in NaK or the 53 Π state in NaCs. In addition to strong direct lines, we observe weak satellite lines that arise from collision-induced transitions of the A state level (v , J) to (v , J + ΔJ) . The ratio of intensities of the satellite line to the direct line in LIF and PL yields information about population and orientation transfer. Preliminary results show a strong propensity for collisions with ΔJ =even for NaK; the propensity is larger for He than for Ar. Collisions of NaCs with He show a similar propensity, but collisions of NaCs with Ar do not. Theoretical calculations are also underway. For He-NaK, we have completed potential surface calculations using GAMESS and coupled channel scattering calculations of rotational energy transfer and transfer of orientation. Work supported by NSF and XSEDE.

  15. A semiclassical study of laser-induced atomic fluorescence from Na2, K2 and NaK

    NASA Technical Reports Server (NTRS)

    Yuan, J.-M.; Bhattacharyya, D. K.; George, T. F.

    1982-01-01

    A semiclassical treatment of laser-induced atomic fluorescence for the alkali-dimer systems Na2, K2 and NaK is presented. The variation of the fluorescence intensity with the frequency of the exciting laser photon is studied and a comparison of theoretical results with a set of experimental data is presented.

  16. Genome Sequences of Cupriavidus metallidurans Strains NA1, NA4, and NE12, Isolated from Space Equipment.

    PubMed

    Monsieurs, Pieter; Mijnendonckx, Kristel; Provoost, Ann; Venkateswaran, Kasthuri; Ott, C Mark; Leys, Natalie; Van Houdt, Rob

    2014-01-01

    Cupriavidus metallidurans NA1, NA4, and NE12 were isolated from space and spacecraft-associated environments. Here, we report their draft genome sequences with the aim of gaining insight into their potential to adapt to these environments. PMID:25059868

  17. Genome Sequences of Cupriavidus metallidurans Strains NA1, NA4, and NE12, Isolated from Space Equipment

    PubMed Central

    Monsieurs, Pieter; Mijnendonckx, Kristel; Provoost, Ann; Venkateswaran, Kasthuri; Ott, C. Mark; Leys, Natalie

    2014-01-01

    Cupriavidus metallidurans NA1, NA4, and NE12 were isolated from space and spacecraft-associated environments. Here, we report their draft genome sequences with the aim of gaining insight into their potential to adapt to these environments. PMID:25059868

  18. Raman spectroscopic study of synthesized Na-bearing majoritic garnets

    NASA Astrophysics Data System (ADS)

    Okamoto, K.

    2003-12-01

    Majoritic garnets in diamond have been considered as the sample from mantle transition zone (e.g. Moore and Gurney, 1985). For non-destructive, in-situ Raman analysis, Gillet et al. (2002) systematically checked chemistry and Raman peak of various majoritic garnets in diamond. They treated majoritic component as number of excess-silica than 3.0 per formula unit. However, in the basaltic system, majorite garnets also have significant amounts of Na. Na substitution is coupled with Si and Ti as follows; Na +Ti = Ca +Al (Ringwood and Lovering, 1970), Na +Si = Ca + Al (Sobolev and Labrentav, 1971; Ringwood and Major, 1971) or Na + Si = Mg + Al (Gasparik, 1989). Each component in garnet is defined as follows; Mj (majorite) component = ((Si-3)-Na)/2), NaSi (Na2MSi5O12 where M= Ca, Mg, Fe2+) component = (Na-T)/2, and NaTi component = Ti/2. Okamoto and Maruyama (2003) conducted UHP experiments in the MORB + H2O system (KNCFMATSH) at 10-19 GPa. They show that 1) Mj and NaTi component are constant and lower than 0.1 at T = 900 \\deg C, and 2) NaSi component increases drastically above 15 GPa although it is neglibly small at P<15 GPa. Raman spectra was newly analyzed using Okamoto and Maruyama (2003)'s run charges. Above 15 GPa, there is a characteristic sharp peak at 910 cm-1 and broad shoulder between 800 and 900 cm-1 as well as broad band near 960 cm-1. Gillet et at (2002) concluded that the former peak at 910cm-1 is the only reliable signature for the majoritic garnet (Si>3). They also implied that the latter two broad peaks are diagnostic feature for Ti rich garnet (> 1wt% of TiO2) as well as peak at 1030 cm-1. However, in all P range (10-19 GPa) of the present study, TiO2 is higher than 1wt%, and there is a peak at 1030 cm-1. Additional Ti-free experiment at 16 GPa, 1200 \\deg C clearly revealed that Na-bearing majoritic garnet has a significant shoulder at 800-900 cm-1. Ref; Gasparik (1989) CMP, 102,389, Gillet et al. (2002) Am.Min., 87, 312, Moore and Gurney (1985)Nature, 318, 553, Okamoto and Maruyama (2003)PEPI, in press, Ringwood and Lovering (1970) EPSL, 7, 371, Ringwood and Major (1971)EPSL, 12, 411, Sobolev and Labrentav (1971)CMP, 31, 1.

  19. Preparation of Al-La Master Alloy by Thermite Reaction in NaF-NaCl-KCl Molten Salt

    NASA Astrophysics Data System (ADS)

    Jang, Poknam; Li, Hyonmo; Kim, Wenjae; Wang, Zhaowen; Liu, Fengguo

    2015-05-01

    A NaF-NaCl-KCl ternary system containing La2O3 was investigated for the preparation of Al-La master alloy by the thermite reaction method. The solubility of La2O3 in NaF-NaCl-KCl molten salt was determined by the method of isothermal solution saturation. Inductively coupled plasma-optical emission spectroscopy and x-ray diffraction (XRD) analyses were used to consider the content of La2O3 in molten salt and the supernatant composition of molten salt after dissolution of La2O3, respectively. The results showed that the content of NaF had a positive influence on the solubility of La2O3 in NaF-NaCl-KCl molten salts, and the solubility of La2O3 could reach 8.71 wt.% in molten salts of 50 wt.%NaF-50 wt.% (44 wt.%NaCl + 56 wt.%KCl). The XRD pattern of cooling molten salt indicated the formation of LaOF in molten salt, which was probably obtained by the reaction between NaF and La2O3. The kinetic study showed that the thermite reaction was in accord with a first-order reaction model. The main influence factors on La content in the Al-La master alloy product, including molten salt composition, amount of Al, concentration of La2O3, stirring, reduction time and temperature, were investigated by single-factor experimentation. The content of La in the Al-La master alloy could be reached to 10.1 wt.%.

  20. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    SciTech Connect

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  1. Intracellular Na+ activates a K+ channel in mammalian cardiac cells

    NASA Astrophysics Data System (ADS)

    Kameyama, M.; Kakei, M.; Sato, R.; Shibasaki, T.; Matsuda, H.; Irisawa, H.

    1984-05-01

    In a wide variety of cells, various intracellular agents, such as Ca2+ (refs 1,2), ATP3,4 and cyclic nucleotides5,6, regulate ionic conductances of the membrane. In cardiac cells, the intracellular Na+ concentration ([Na+]i) frequently increases when a disturbance occurs in the electrogenic Na-K pump activity or the Na-Ca exchange mechanism. We have investigated a possible role of [Na+]i in controlling ion channels by using a patch-clamp method7, and have found a K+ channel that is gated by [Na+]i >20mM, but not by the intracellular Ca2+ concentration (~10-4M). We report here that the channel has a unitary conductance of 207 +/- 19 pS(n = 16) with K+ concentrations of 150 mM outside and 49 mM inside, and shows no detectable voltage-dependent kinetics. The Na+-activated K+ channel represents a novel class of ionic channel.

  2. 23Na NMR Study of NASICON-type Compounds, Na1+xScxTi2-x(PO4)3

    NASA Astrophysics Data System (ADS)

    Masui, Hirotsugu; Ueda, Takahiro; Miyakubo, Keisuke; Eguchi, Taro; Nakamura, Nobuo

    2000-02-01

    The structure of NASICON-type compounds, Na1+xScxTi2-x(PO4)3 (O ≤ x ≤ 2), and the dynamics of Na+ have been investigated by 23Na NMR spectroscopy. It was found that the 23Na 1D and 2D MQMAS spectra depend on the Na concentration, suggesting strongly that the Na+ ions are distributed between two crystallographically nonequivalent sites, one is a special position with axial symmetry, and the other a position of low symmetry. The chemical exchange between these different sites in the crystal takes place at room temperature, which may cause the high Na ion conduction of this material

  3. Targeting Na?/K? -translocating adenosine triphosphatase in cancer treatment.

    PubMed

    Durlacher, Cameron T; Chow, Kevin; Chen, Xiao-Wu; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Zhou, Shu-Feng

    2015-05-01

    The Na(+) /K(+) -translocating adenosine triphosphatase (ATPase) transports sodium and potassium across the plasma membrane and represents a potential target in cancer chemotherapy. Na(+) /K(+) -ATPase belongs to the P-type ATPase family (also known as E1-E2 ATPase), which is involved in transporting certain ions, metals, and lipids across the plasma membrane of mammalian cells. In humans, the Na(+) /K(+) -ATPase is a binary complex of an ?-subunit that has four isoforms (?1 -?4 ) and a ?-subunit that has three isoforms (?1 -?3 ). This review aims to update our knowledge on the role of Na(+) /K(+) -ATPase in cancer development and metastasis, as well as on how Na(+) /K(+) -ATPase inhibitors kill tumour cells. The Na(+) /K(+) -ATPase has been found to be associated with cancer initiation, growth, development, and metastasis. Cardiac glycosides have exhibited anticancer effects in cell-based and mouse studies via inhibition of the Na(+) /K(+) -ATPase and other mechanisms. Na(+) /K(+) -ATPase inhibitors may kill cancer cells via induction of apoptosis and autophagy, radical oxygen species production, and cell cycle arrest. They also modulate multiple signalling pathways that regulate cancer cell survival and death, which contributes to their antiproliferative activities in cancer cells. The clinical evidence supporting the use of Na(+) /K(+) -ATPase inhibitors as anticancer drugs is weak. Several phase I and phase II clinical trials with digoxin, Anvirzel, and huachansu (an intravenous formulated extract of the venom of the wild toad), either alone or more often in combination with other anticancer agents, have shown acceptable safety profiles but limited efficacy in cancer patients. Well-designed randomized clinical trials with reasonable sample sizes are certainly warranted to confirm the efficacy and safety of cardiac glycosides for the treatment of cancer. PMID:25739707

  4. Electron scattering in graphene with adsorbed NaCl nanoparticles

    NASA Astrophysics Data System (ADS)

    Drabi?ska, Aneta; Ka?mierczak, Piotr; Bo?ek, Rafa?; Karpierz, Ewelina; Wo?o?, Agnieszka; Wysmo?ek, Andrzej; Kami?ska, Maria; Pasternak, Iwona; Krajewska, Aleksandra; Strupi?ski, W?odek

    2015-01-01

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D' bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D', and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.

  5. Electron scattering in graphene with adsorbed NaCl nanoparticles

    SciTech Connect

    Drabińska, Aneta Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria; Wołoś, Agnieszka; Krajewska, Aleksandra

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.

  6. Na+/H+ and Na+/NH4+ exchange activities of zebrafish NHE3b expressed in Xenopus oocytes

    PubMed Central

    Ito, Yusuke; Kato, Akira; Hirata, Taku; Hirose, Shigehisa

    2014-01-01

    Zebrafish Na+/H+ exchanger 3b (zNHE3b) is highly expressed in the apical membrane of ionocytes where Na+ is absorbed from ion-poor fresh water against a concentration gradient. Much in vivo data indicated that zNHE3b is involved in Na+ absorption but not leakage. However, zNHE3b-mediated Na+ absorption has not been thermodynamically explained, and zNHE3b activity has not been measured. To address this issue, we overexpressed zNHE3b in Xenopus oocytes and characterized its activity by electrophysiology. Exposure of zNHE3b oocytes to Na+-free media resulted in significant decrease in intracellular pH (pHi) and intracellular Na+ activity (aNai). aNai increased significantly when the cytoplasm was acidified by media containing CO2-HCO3− or butyrate. Activity of zNHE3b was inhibited by amiloride or 5-ethylisopropyl amiloride (EIPA). Although the activity was accompanied by a large hyperpolarization of ∼50 mV, voltage-clamp experiments showed that Na+/H+ exchange activity of zNHE3b is electroneutral. Exposure of zNHE3b oocytes to medium containing NH3/NH4+ resulted in significant decreases in pHi and aNai and significant increase in intracellular NH4+ activity, indicating that zNHE3b mediates the Na+/NH4+ exchange. In low-Na+ (0.5 mM) media, zNHE3b oocytes maintained aNai of 1.3 mM, and Na+-influx was observed when pHi was decreased by media containing CO2-HCO3− or butyrate. These results provide thermodynamic evidence that zNHE3b mediates Na+ absorption from ion-poor fresh water by its Na+/H+ and Na+/NH4+ exchange activities. PMID:24401990

  7. NaFe(TeO3)2

    PubMed Central

    Weil, Matthias; Stöger, Berthold

    2008-01-01

    The hydro­thermally prepared title compound, sodium iron(III) bis­[trioxotellurate(IV)], is isotypic with its GaIII analogue and consists of corrugated layers with an overall composition of [FeTe2O6]? together with Na+ cations. The layers extend parallel to (001) and are made up of [Fe2O10] edge-shared octa­hedral dimers and TeO3 trigonal pyramids sharing vertices. The Na+ cations are located in the cavities of this arrangement and link adjacent [FeTe2O6]? layers via distorted [NaO8] polyhedra. PMID:21200453

  8. Sonoluminescence of Na atom from NaCl solutions doped with ethanol.

    PubMed

    Choi, Pak-Kon; Abe, Shogo; Hayashi, Yuichi

    2008-01-24

    Sonoluminescence spectra from argon-saturated NaCl solution were measured in the concentration range of 0.5-4 M at the frequency of 138 kHz. The line broadening of sodium atom emission was observed at various acoustic powers in the range from 1.8 to 16.2 W. The sodium D line showed a maximum intensity at a NaCl concentration of 2 M, which corresponded to the maximum production of OH radicals estimated by KI dosimetry. The effects of the addition of a small amount of ethanol on the line width and intensity were closely investigated at various acoustic powers. The sodium line width increases with ethanol concentration and also with power, whereas the line intensity is strongly quenched with increasing ethanol concentration. The results conclusively show that the sodium emission occurs in the gas phase within bubbles. The line broadening is due to interactions with high-pressure argon, and the maximum relative density of gas at bubble collapse was estimated to be 59.5 from the comparison with spectroscopic data. Further line broadening and quenching upon the addition of ethanol arise from collisions with gaseous products obtained from the decomposition of ethanol. The mechanism of sodium excitation is inferred to be as follows. Sodium ions enter bubbles as droplets, and salts are formed because of the high temperature within bubbles. Sodium atoms are generated by the dissociation of salts and then undergo electronic excitation by OH and H radicals. PMID:18161961

  9. 23 Na and 17O NMR studies of hyperkagome Na4Ir3O8

    NASA Astrophysics Data System (ADS)

    Shockley, Abigail; Bert, Fabrice; Orain, Jean-Christophe; Okamoto, Yoshihiko; Mendels, Philippe

    2015-03-01

    Na4Ir3O8 is a unique case of a 3D corner sharing triangular lattice which can be decorated with quantum spins. It has spurred a lot of theoretical interest as a spin liquid candidate of a new kind where the Hamiltonian might not be thought in terms of a simple Heisenberg case because of spin orbit coupling on the Ir 5d element. We present a comprehensive set of NMR data taken on both the 23Na and 17O sites. We have found that magnetic freezing of all Ir sites sets in below Tf ~ 7.5K ~ 0 . 019 J with a clear hyperfine field transferred from Ir moments and a drastic decrease of 1 /T1 . Above Tf, physical properties are expected to be a landmark of frustration in this exotic geometry. We will discuss our shift and relaxation data in the temperature range of 300K to 7.5 K in the light of published thermodynamic measurements (Y. Okamotoa et al, PRL 99 137207, 2007 and Y. Singh et al, PRB 88 220413(R), 2013) and comment on their implications for the already existing large body of theoretical work.

  10. ?-synuclein assemblies sequester neuronal ?3-Na+/K+-ATPase and impair Na+ gradient.

    PubMed

    Shrivastava, Amulya Nidhi; Redeker, Virginie; Fritz, Nicolas; Pieri, Laura; Almeida, Leandro G; Spolidoro, Maria; Liebmann, Thomas; Bousset, Luc; Renner, Marianne; Léna, Clément; Aperia, Anita; Melki, Ronald; Triller, Antoine

    2015-10-01

    Extracellular ?-synuclein (?-syn) assemblies can be up-taken by neurons; however, their interaction with the plasma membrane and proteins has not been studied specifically. Here we demonstrate that ?-syn assemblies form clusters within the plasma membrane of neurons. Using a proteomic-based approach, we identify the ?3-subunit of Na+/K+-ATPase (NKA) as a cell surface partner of ?-syn assemblies. The interaction strength depended on the state of ?-syn, fibrils being the strongest, oligomers weak, and monomers none. Mutations within the neuron-specific ?3-subunit are linked to rapid-onset dystonia Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). We show that freely diffusing ?3-NKA are trapped within ?-syn clusters resulting in ?3-NKA redistribution and formation of larger nanoclusters. This creates regions within the plasma membrane with reduced local densities of ?3-NKA, thereby decreasing the efficiency of Na+ extrusion following stimulus. Thus, interactions of ?3-NKA with extracellular ?-syn assemblies reduce its pumping activity as its mutations in RDP/AHC. PMID:26323479

  11. Phyla- and Subtype-Selectivity of CgNa, a Na+ Channel Toxin from the Venom of the Giant Caribbean Sea Anemone Condylactis Gigantea

    PubMed Central

    Billen, Bert; Debaveye, Sarah; Béress, Lászlo; Tytgat, Jan

    2010-01-01

    Because of their prominent role in electro-excitability, voltage-gated sodium (NaV) channels have become the foremost important target of animal toxins. These toxins have developed the ability to discriminate between closely related NaV subtypes, making them powerful tools to study NaV channel function and structure. CgNa is a 47-amino acid residue type I toxin isolated from the venom of the Giant Caribbean Sea Anemone Condylactis gigantea. Previous studies showed that this toxin slows the fast inactivation of tetrodotoxin-sensitive NaV currents in rat dorsal root ganglion neurons. To illuminate the underlying NaV subtype-selectivity pattern, we have assayed the effects of CgNa on a broad range of mammalian isoforms (NaV1.2–NaV1.8) expressed in Xenopus oocytes. This study demonstrates that CgNa selectively slows the fast inactivation of rNaV1.3/?1, mNaV1.6/?1 and, to a lesser extent, hNaV1.5/?1, while the other mammalian isoforms remain unaffected. Importantly, CgNa was also examined on the insect sodium channel DmNaV1/tipE, revealing a clear phyla-selectivity in the efficacious actions of the toxin. CgNa strongly inhibits the inactivation of the insect NaV channel, resulting in a dramatic increase in peak current amplitude and complete removal of fast and steady-state inactivation. Together with the previously determined solution structure, the subtype-selective effects revealed in this study make of CgNa an interesting pharmacological probe to investigate the functional role of specific NaV channel subtypes. Moreover, further structural studies could provide important information on the molecular mechanism of NaV channel inactivation. PMID:21833172

  12. The incommensurately modulated structures of the perovskites NaCeMnWO6 and NaPrMnWO6.

    PubMed

    García-Martín, Susana; King, Graham; Nénert, Gwilherm; Ritter, C; Woodward, Patrick M

    2012-04-01

    The structures of the doubly ordered perovskites NaCeMnWO(6) and NaPrMnWO(6), with rock salt ordering of the Mn(2+) and W(6+)B-site cations and layered ordering of the Na(+) and (Ce(3+)/Pr(3+)) A-site cations, have been studied by transmission electron microscopy, electron diffraction, neutron and synchrotron X-ray powder diffraction. Both compounds possess incommensurately modulated crystal structures. In NaCeMnWO(6) the modulation vector (with reference to the ideal ABX(3) perovskite subcell) is q ≈ 0.067a* (∼58.7 Å) and in NaPrMnWO(6)q ≈ 0.046a* (∼85.3 Å). In both compounds the superstructures are primarily the two-dimensional chessboard type, although some crystals of NaCeMnWO(6) were found with one-dimensional stripes. In some crystals of NaPrMnWO(6) there is a coexistence of chessboards and stripes. Modeling of neutron diffraction data shows that octahedral tilting plays an important role in the structural modulation. PMID:22385521

  13. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3.

    PubMed

    Schlessinger, Avner; Sun, Nina N; Colas, Claire; Pajor, Ana M

    2014-06-13

    Metabolic intermediates, such as succinate and citrate, regulate important processes ranging from energy metabolism to fatty acid synthesis. Cytosolic concentrations of these metabolites are controlled, in part, by members of the SLC13 gene family. The molecular mechanism underlying Na(+)-coupled di- and tricarboxylate transport by this family is understood poorly. The human Na(+)/dicarboxylate cotransporter NaDC3 (SLC13A3) is found in various tissues, including the kidney, liver, and brain. In addition to citric acid cycle intermediates such as α-ketoglutarate and succinate, NaDC3 transports other compounds into cells, including N-acetyl aspartate, mercaptosuccinate, and glutathione, in keeping with its dual roles in cell nutrition and detoxification. In this study, we construct a homology structural model of NaDC3 on the basis of the structure of the Vibrio cholerae homolog vcINDY. Our computations are followed by experimental testing of the predicted NaDC3 structure and mode of interaction with various substrates. The results of this study show that the substrate and cation binding domains of NaDC3 are composed of residues in the opposing hairpin loops and unwound portions of adjacent helices. Furthermore, these results provide a possible explanation for the differential substrate specificity among dicarboxylate transporters that underpin their diverse biological roles in metabolism and detoxification. The structural model of NaDC3 provides a framework for understanding substrate selectivity and the Na(+)-coupled anion transport mechanism by the human SLC13 family and other key solute carrier transporters. PMID:24808185

  14. Determinants of Substrate and Cation Transport in the Human Na+/Dicarboxylate Cotransporter NaDC3*

    PubMed Central

    Schlessinger, Avner; Sun, Nina N.; Colas, Claire; Pajor, Ana M.

    2014-01-01

    Metabolic intermediates, such as succinate and citrate, regulate important processes ranging from energy metabolism to fatty acid synthesis. Cytosolic concentrations of these metabolites are controlled, in part, by members of the SLC13 gene family. The molecular mechanism underlying Na+-coupled di- and tricarboxylate transport by this family is understood poorly. The human Na+/dicarboxylate cotransporter NaDC3 (SLC13A3) is found in various tissues, including the kidney, liver, and brain. In addition to citric acid cycle intermediates such as ?-ketoglutarate and succinate, NaDC3 transports other compounds into cells, including N-acetyl aspartate, mercaptosuccinate, and glutathione, in keeping with its dual roles in cell nutrition and detoxification. In this study, we construct a homology structural model of NaDC3 on the basis of the structure of the Vibrio cholerae homolog vcINDY. Our computations are followed by experimental testing of the predicted NaDC3 structure and mode of interaction with various substrates. The results of this study show that the substrate and cation binding domains of NaDC3 are composed of residues in the opposing hairpin loops and unwound portions of adjacent helices. Furthermore, these results provide a possible explanation for the differential substrate specificity among dicarboxylate transporters that underpin their diverse biological roles in metabolism and detoxification. The structural model of NaDC3 provides a framework for understanding substrate selectivity and the Na+-coupled anion transport mechanism by the human SLC13 family and other key solute carrier transporters. PMID:24808185

  15. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    PubMed

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. PMID:26652350

  16. Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere.

    PubMed

    Huang, Wentao; Chu, Xinzhao; Williams, B P; Harrell, S D; Wiig, Johannes; She, C-Y

    2009-01-15

    A Na double-edge magneto-optic filter is proposed for incorporation into the receiver of a three-frequency Na Doppler lidar to extend its wind and temperature measurements into the lower atmosphere. Two prototypes based on cold- and hot-cell designs were constructed and tested with laser scanning and quantum mechanics modeling. The hot-cell filter exhibits superior performances over the cold-cell filter containing buffer gas. Lidar simulations, metrics, and error analyses show that simultaneous wind and temperature measurements are feasible in the altitude range of 20-50 km using the hot-cell filter and reasonable Na lidar parameters. PMID:19148254

  17. The Practice of Research of a Basic Education Teacher Involving Mental Models of the Phases of the Moon and Eclipses. (Spanish Title: La Práctica de Investigación de un Maestro de Educación BÁsica con El Uso de los Modelos Mentales de Las Fases de la Luna Y Eclipses.) A Prática de Pesquisa de um Professor do Ensino Fundamental Envolvendo Modelos Mentais de Fases da Lua e Eclipses

    NASA Astrophysics Data System (ADS)

    Pessôa Queiroz, Glória; Jubitipan Borges de Sousa, Carlos; Auxiliadora Delgado Machado, Maria

    2009-12-01

    The inclusion of basic education teachers in the survey domain is a controversial issue and fully debated in the academy. The opportunity for a collective work that incorporated school teachers from a public school to a university's group of physics teaching at university allowed us to glimpse the redefinition of the function of a science teacher (a coauthor of this paper) by himself, such that now he includes research on the knowledge construction by students in his teacher practice. The formation of inter-institutional groups for action planning and research in these areas has proved productive for the task of knowledge construction to support educational processes in school, while the university enriches its collection of experiences critically validated, and can consider the results in teachers initial and continued education. The active participation of the teacher in a research group at the university led him to reflect on the possible didactical ways to be described, analyzed and communicated to other teachers. The construction of a pedagogy that took into account the mental models of students on the basic topics of astronomy, and the changes developed resulting from the lessons taught, led to far-reaching consequences on the pedagogy adopted by the teacher, who incorporates now a new vision of science and alternative forms to dialogue with students, essential components for a researcher in Science Education. La inclusión de los maestros de la escuela básica en el universo de la investigación es polémica y está en amplio debate en el mundo académico. La oportunidad de trabajo colectivo de los maestros de una escuela pública en Río de Janeiro con un grupo universitario de enseñanza de la física nos ha permitido vislumbrar la redefinición de la función de un maestro de ciencias (uno de los coautores de este documento) por él mismo, ahora para incluir la investigación sobre la construcción del conocimiento por los alumnos en su práctica como docente. La formación de grupos interinstitucionales para la planificación de la acción y la investigación ha resultado productiva para el trabajo de construcción de conocimiento de apoyo a los procesos educativos en la escuela, mientras que la universidad enriquece su colección de experiencias validadas, considerando los resultados de la educación inicial y continua de maestros. La participación activa del maestro en un grupo de investigación en la universidad lo llevó a reflexiones sobre los posibles caminos didácticos que pueden ser descriptos, analizados y comunicados a los demás docentes. La construcción de una pedagogía propia, que tuvo en cuenta los modelos mentales de los estudiantes sobre los temas básicos de astronomía, y los cambios desarrollados a partir de las lecciones que enseñó, trajeron consecuencias de largo alcance sobre la pedagogía adoptada por el maestro, que ahora incorpora una nueva visión de la ciencia y formas alternativas al diálogo con los estudiantes, los componentes esenciales para un investigador en Educaciónen Ciencias. A inclusão do professor da escola básica no universo da pesquisa é questão controvertida e em pleno debate no meio acadêmico. A oportunidade de trabalho coletivo que incorporou professores de uma escola municipal no Rio de Janeiro a um grupo de ensino de Física da universidade nos possibilitou vislumbrar a ressignificação da função de um professor de Ciências (co-autor deste trabalho) por ele próprio, agora passando a incluir a pesquisa sobre a construção de conhecimento pelos alunos em sua prática como docente. A formação de grupos interinstitucionais para o planejamento de ações e de pesquisas tem-se mostrado produtiva para um trabalho de construção de conhecimentos a fim de subsidiar processos educativos na escola, ao mesmo tempo em que a universidade enriquece seu acervo de experiências validadas criticamente, podendo considerar seus resultados na formação inicial e continuada de professores. A participação ativa do professor num grupo de pesquisa na universidade o levou à reflexão sobre caminhos didáticos possíveis de serem descritos, analisados e comunicados a outros professores. A construção de uma pedagogia própria, levando em conta os modelos mentais dos alunos sobre temas básicos de Astronomia, e as mudanças promovidas a partir das aulas dadas, trouxeram amplas conseqüências sobre a pedagogia adotada pelo professor. Hoje a prática desse professor incorpora uma nova visão de ciência e formas alternativas de dialogar com os alunos, elementos indispensáveis a um pesquisador em Educação em Ciências.

  18. Mg and Na clusters in a helium matrix

    NASA Astrophysics Data System (ADS)

    Höller, Johannes; Krotscheck, Eckhard; Zillich, Robert E.

    2015-08-01

    We have studied the adsorption properties of liquid 4He on small Mg and Na clusters. The calculation requires three components: a calculation of the cluster structure, a path-integral Monte Carlo calculation of the structure of the surrounding helium, and the determination of the cluster-helium interaction. The two types of clusters are examples for two physically very different situations: small Mg clusters are insulating and their interaction with the surrounding helium is relatively strong. We find for all cases considered here that these clusters are submersed in the helium droplet and reside basically at its center. Na clusters, on the other hand, are conducting down to very small particle numbers. More important, however, is the fact that the Na-He interaction is much weaker than the He-He attraction which causes small Na clusters to reside at the cluster surface.

  19. ?-delayed ? spectroscopy of neutron rich Na27,28,29

    NASA Astrophysics Data System (ADS)

    Tripathi, Vandana; Tabor, S. L.; Hoffman, C. R.; Wiedeking, M.; Volya, A.; Mantica, P. F.; Davies, A. D.; Liddick, S. N.; Mueller, W. F.; Stolz, A.; Tomlin, B. E.; Otsuka, T.; Utsuno, Y.

    2006-05-01

    The low-energy level structure of the exotic Na isotopes Na27,28,29 has been investigated through ?-delayed ? spectroscopy. Detailed level structure of Na28,29 has been obtained through ?? and ??? coincidence measurements. The low-lying levels populated in Na27 by ? decay were found to corroborate well with the in-beam data from the literature. Half-lives of the parent nuclides, Ne27,28,29, were measured using ? fragment as well as fragment ?? coincidences and compared to previous measurements. The ?-delayed one- and two-neutron emission branching probabilities have been obtained from the ? activities of the grand daughter nuclei. A comparison of the level schemes and the ?-decay branching ratios is made with shell-model predictions, both with and without intruder configurations, to understand the transition from normal-dominant to intruder-dominant excitations in these neutron-rich nuclei approaching the island of inversion.

  20. Multiple functions of Na,K-ATPase in epithelial cells.

    PubMed

    Rajasekaran, Sigrid A; Barwe, Sonali P; Rajasekaran, Ayyappan K

    2005-09-01

    The Na,K-adenosine triphosphatase (ATPase), or sodium pump, has been well studied for its role in the regulation of ion homeostasis in mammalian cells. Recent studies suggest that Na,K-ATPase might have multiple functions such as a role in the regulation of tight junction structure and function, induction of polarity, regulation of actin dynamics, control of cell movement, and cell signaling. These functions appear to be modulated by Na,K-ATPase enzyme activity as well as protein-protein interactions of the alpha and beta subunits. In this review we attempt to differentiate functions associated with enzyme activity and subunit interactions. In addition, the consequence of impaired Na,K-ATPase function or reduced subunit expression levels in kidney diseases such as cancer, tubulointerstitial fibrosis, and ischemic nephropathy are discussed. PMID:16139688

  1. Degradation Of Carbon/Phenolic Composites By NaOH

    NASA Technical Reports Server (NTRS)

    King, H. M.; Semmel, M. L.; Goldberg, B. E.; Clinton, Raymond G., Jr.

    1989-01-01

    Effects of sodium hydroxide contamination level on physical and chemical properties of phenolic resin and carbon/phenolic composites described in report. NaOH degrades both carbon and phenolic components of carbon/phenolic laminates.

  2. Tb/Na tobermorite: Thermal behaviour and high temperature products

    SciTech Connect

    Garra, Walter; Marchetti, Fabio; Merlino, Stefano

    2009-06-15

    By heating a sample of Tb/Na tobermorite we obtained a phase which was identified through its X-ray diffraction (XRD) pattern, as terbium silicate apatite. Subsequently this compound has been directly prepared by solid state reaction and we carried out a structural refinement from XRD data in space group P6{sub 3}/m obtaining cell parameters a=9.39199(4) A and c=6.84041(5) A. Terbium silicate apatite heated in melted NaF led to Tb{sub 4}O{sub 7} crystals. - Graphical Abstract: By heating over 900 deg. C Tb/Na tobermorite a terbium silicate apatite was obtained. The same product has been independently prepared and structurally characterized from powder diffraction data. Attempts of crystallizing terbium silicate apatite from melted NaF led to Tb{sub 4}O{sub 7} crystals.

  3. Signaling pathways in induced naïve pluripotency.

    PubMed

    Ye, Shoudong; Liu, Dahai; Ying, Qi-Long

    2014-10-01

    Pluripotent stem cells have become powerful tools for both research and regenerative medicine. To date, however, only mouse and rat embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) have the ability to contribute to the formation of germline-competent chimeras. These stem cells are thus considered as 'naïve' pluripotent stem cells. Several signaling pathways have been identified to play a critical role in the induction and maintenance of this naïve pluripotent state. Understanding how these pathways induce and maintain naïve pluripotency will likely lead to the generation of germline-competent naïve ESCs/iPSCs from humans and animals phylogenetically close to humans. PMID:25173148

  4. Na(+) diffusion kinetics in nanoporous metal-hexacyanoferrates.

    PubMed

    Takachi, Masamitsu; Fukuzumi, Yuya; Moritomo, Yutaka

    2015-12-22

    Metal-hexacyanoferrates (metal-HCFs) are promising candidates for cathode materials of sodium-ion secondary batteries (SIBs). Here, we systematically investigated Na(+) diffusion constants (D) and the activation energies (Ea) of metal-HCFs against the framework size (= a/2). We found that the magnitude of D (Ea) systematically increases (decreases) with increases in a, indicating that steric hindrance plays a dominant role in Na(+) diffusion. PMID:26415909

  5. An empirical NaKCa geothermometer for natural waters

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1973-01-01

    An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340??C. The data for most geothermal waters cluster near a straight line when plotted as the function log ( Na K) + ?? log [ ??? (Ca) Na] vs reciprocal of absolute temperature, where ?? is either 1 3 or 4 3 depending upon whether the water equilibrated above or below 100??C. For most waters tested, the method gives better results than the Na K methods suggested by other workers. The ratio Na K should not be used to estimate temperature if ??? ( MCa) MNa is greater than 1. The Na K values of such waters generally yield calculated temperatures much higher than the actual temperature at which water interacted with the rock. A comparison of the composition of boiling hot-spring water with that obtained from a nearby well (170??C) in Yellowstone Park shows that continued water-rock reactions may occur during ascent of water even though that ascent is so rapid that little or no heat is lost to the country rock, i.e. the water cools adiabatically. As a result of such continued reaction, waters which dissolve additional Ca as they ascend from the aquifer to the surface will yield estimated aquifer temperatures that are too low. On the other hand, waters initially having enough Ca to deposit calcium carbonate during ascent may yield estimated aquifer temperatures that are too high if aqueous Na and K are prevented from further reaction with country rock owing to armoring by calcite or silica minerals. The Na-K-Ca geothermometer is of particular interest to those prospecting for geothermal energy. The method also may be of use in interpreting compositions of fluid inclusions. ?? 1973.

  6. Na+-glycine cotransport in canalicular liver plasma membrane vesicles.

    PubMed

    Moseley, R H; Ballatori, N; Murphy, S M

    1988-08-01

    By use of purified rat canalicular liver plasma membrane (cLPM) vesicles, the present study determined the driving forces for glycine transport across this membrane domain. Initial rates of [3H]glycine uptake (10 microM) in cLPM vesicles were stimulated by an inwardly directed Na+ gradient but not by a K+ gradient. Na+ gradient-dependent uptake of glycine demonstrated cation specificity for Na+, dependence on extravesicular Cl-, stimulation by an intravesicular-negative membrane potential, and inhibition by dissipation of the Na+ gradient with gramicidin D. Na+ gradient-dependent glycine cotransport also demonstrated greater sensitivity to inhibition by sarcosine than 2-(methylamino)-isobutyric acid. Accelerated exchange diffusion of [3H]glycine was demonstrated in the presence of Na+ when cLPM vesicles were preloaded with glycine but not with L-alanine or L-proline. Substrate velocity analysis of net Na+-dependent [3H]glycine uptake over the range of amino acid concentrations from 5 microM to 5 mM demonstrated two saturable transport systems, one of high capacity (2.2 +/- 0.2 nmol.mg protein-1.15 s-1) and low affinity (11.2 +/- 1.7 mM) and one of low capacity (51 +/- 14 pmol.mg protein.15 s-1) and comparatively high affinity (66 +/- 12 microM). These results indicate that, in addition to previously described neutral and anionic amino acid transport systems, Na+ gradient-dependent glycine transport mechanisms are present on the canalicular domain of the liver plasma membrane. These canalicular reabsorptive mechanisms may serve to reclaim some of the glycine generated within the canalicular lumen from the intrabiliary hydrolysis of glutathione. PMID:3407780

  7. Neutral Phospholipids Stimulate Na,K-ATPase Activity

    PubMed Central

    Haviv, Haim; Habeck, Michael; Kanai, Ryuta; Toyoshima, Chikashi; Karlish, Steven J. D.

    2013-01-01

    Membrane proteins interact with phospholipids either via an annular layer surrounding the transmembrane segments or by specific lipid-protein interactions. Although specifically bound phospholipids are observed in many crystal structures of membrane proteins, their roles are not well understood. Na,K-ATPase is highly dependent on acid phospholipids, especially phosphatidylserine, and previous work on purified detergent-soluble recombinant Na,K-ATPase showed that phosphatidylserine stabilizes and specifically interacts with the protein. Most recently the phosphatidylserine binding site has been located between transmembrane segments of αTM8–10 and the FXYD protein. This paper describes stimulation of Na,K-ATPase activity of the purified human α1β1 or α1β1FXYD1 complexes by neutral phospholipids, phosphatidylcholine, or phosphatidylethanolamine. In the presence of phosphatidylserine, soy phosphatidylcholine increases the Na,K-ATPase turnover rate from 5483 ± 144 to 7552 ± 105 (p < 0.0001). Analysis of α1β1FXYD1 complexes prepared with native or synthetic phospholipids shows that the stimulatory effect is structurally selective for neutral phospholipids with polyunsaturated fatty acyl chains, especially dilinoleoyl phosphatidylcholine or phosphatidylethanolamine. By contrast to phosphatidylserine, phosphatidylcholine or phosphatidylethanolamine destabilizes the Na,K-ATPase. Structural selectivity for stimulation of Na,K-ATPase activity and destabilization by neutral phospholipids distinguish these effects from the stabilizing effects of phosphatidylserine and imply that the phospholipids bind at distinct sites. A re-examination of electron densities of shark Na,K-ATPase is consistent with two bound phospholipids located between transmembrane segments αTM8–10 and TMFXYD (site A) and between TM2, -4, -6, -and 9 (site B). Comparison of the phospholipid binding pockets in E2 and E1 conformations suggests a possible mechanism of stimulation of Na,K-ATPase activity by the neutral phospholipid. PMID:23430748

  8. High Capacity Na+/H+ Exchange Activity in Mineralizing Osteoblasts

    PubMed Central

    Liu, Li; Schlesinger, Paul H.; Slack, Nicole M.; Friedman, Peter A.; Blair, Harry C.

    2015-01-01

    Osteoblasts synthesize bone in polarized groups of cells sealed by tight junctions. Large amounts of acid are produced as bone mineral is precipitated. We addressed the mechanism by which cells manage this acid load by measuring intracellular pH (pHi) in non-transformed osteoblasts in response to weak acid or bicarbonate loading. Basal pHi in mineralizing osteoblasts was ∼7.3 and decreased by ∼ 1.4 units upon replacing extracellular Na+ with N-methyl-d-glucamine. Loading with 40 mM acetic or propionic acids, in normal extracellular Na+, caused only mild cytosolic acidification. In contrast, in Na+-free solutions, weak acids reduced pHi dramatically. After Na+ reintroduction, pHi recovered rapidly, in keeping with Na+/H+exchanger (NHE) activity. Sodium-dependent pHi recovery from weak acid loading was inhibited by amiloride with the Ki consistent with NHEs. NHE1 and NHE6 were expressed strongly, and expression was upregulated highly, by mineralization, in human osteoblasts. Antibody labeling of mouse bone showed NHE1 on basolateral surfaces of all osteoblasts. NHE6 occurred on basolateral surfaces of osteoblasts mainly in areas of mineralization. Conversely, elevated HCO3- alkalinized osteoblasts, and pH recovered in medium containing CI-, with or without Na+, in keeping with Na+-independent CI-/HCO3- exchange. The exchanger AE2 also occurred on the basolateral surface of osteoblasts, consistent with CI-/HCO3- exchange for elimination of metabolic carbonate. Overexpression of NHE6 or knockdown of NHE1 in MG63 human osteosarcoma cells confirmed roles of NHE1 and NHE6 in maintaining pHi. We conclude that in mineralizing osteoblasts, slightly basic basal pHi is maintained, and external acid load is dissipated, by high-capacity Na+/H+ exchange via NHE1 and NHE6. PMID:21413028

  9. Reactions of NaCl with Gaseous SO3, SO2, and O2

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Stearns, C. A.; Kohl, F. J.

    1983-01-01

    Hot corrosion of gas turbine engine components involves deposits of Na2SO4 which are produced by reactions between NaCl and oxides of sulfur. For the present investigation, NaCl single crystals were exposed at 100 to 850 C to gaseous mixtures of SO3, SO2, and O2. The products formed during this exposure depend, primarily, on the temperatures. The four product films were: NaCl-SO3; Na2S2O7; Na2SO4; and NaCl-Na2SO4. The kinetics of the reactions were measured.

  10. Monoclonal antibody to phosphatidylserine inhibits Na+/K(+)-ATPase activity.

    PubMed

    Stekhoven, F M; Tijmes, J; Umeda, M; Inoue, K; De Pont, J J

    1994-08-24

    A monoclonal IgG, directed to phosphatidylserine (PS1G3), partially (40-50%) inhibited Na+/K(+)-ATPase activity (forward running reaction cycle) without affecting the K0.5 values for Na+,K+ and MgATP. The Hill or interaction coefficients (nH) for Na+ and K+ for this reaction were reduced from 3.0 to 1.6 and from 1.6 to 0.8, respectively. The K(+)-stimulated p-nitrophenylphosphatase activity (p-NPPase), which is a partial reaction sequence of the Na+/K(+)-ATPase system (but in the backward running mode), was inhibited more strongly (about 70%) due to an increase in K+/substrate antagonism. In this system K0.5 and nH values for both p-nitrophenyl phosphate (p-NPP) and K+ were increased by the mAb. At the maximally inhibitory concentration of PS1G3 the Vmax of the p-NPPase was also reduced. Partial reactions, which were inhibited by PS1G3, are: (1) the Na(+)-activated phosphorylation (non-competitive vs. Na+), (2) the Rb+ occlusion (competitive vs. Rb+). Partial reactions not harmed by PS1G3 are: (3) the K(+)-dependent dephosphorylation, (4) the K(+)-dependent E1 + K+<-->E2K transition. We conclude that PtdSer is involved in cation occlusion, possibly by forming part of the access gate. PMID:8075130

  11. NaChBac: the long lost sodium channel ancestor.

    PubMed

    Charalambous, Kalypso; Wallace, B A

    2011-08-16

    In excitable cells, the main mediators of sodium conductance across membranes are voltage-gated sodium channels (Na(V)s). Eukaryotic Na(V)s are essential elements in neuronal signaling and muscular contraction and in humans have been causally related to a variety of neurological and cardiovascular channelopathies. They are complex heavily glycosylated intrinsic membrane proteins present in only trace quantities that have proven to be challenging objects of study. However, in recent years, a number of simpler prokaryotic sodium channels have been identified, with NaChBac from Bacillus halodurans being the most well-characterized to date. The availability of a bacterial Na(V) that is amenable to heterologous expression and functional characterization in both bacterial and mammalian systems has provided new opportunities for structure--function studies. This review describes features of NaChBac as an exemplar of this class of bacterial channels, compares prokaryotic and eukaryotic Na(V)s with respect to their structural organization, pharmacological profiling, and functional kinetics, and discusses how voltage-gated ion channels may have evolved to deal with the complex functional demands of higher organisms. PMID:21770445

  12. Interactions of local anesthetics with voltage-gated Na+ channels.

    PubMed

    Nau, C; Wang, G K

    2004-09-01

    Voltage-gated Na+ channels are dynamic transmembrane proteins responsible for the rising phase of the action potential in excitable membranes. Local anesthetics (LAs) and structurally related antiarrhythmic and anticonvulsant compounds target specific sites in voltage-gated Na+ channels to block Na+ currents, thus reducing excitability in neuronal, cardiac, or central nervous tissue. A high-affinity LA block is produced by binding to open and inactivated states of Na+ channels rather than to resting states and suggests a binding site that converts from a low- to a high-affinity conformation during gating. Recent findings using site-directed mutagenesis suggest that multiple S6 segments together form an LA binding site within the Na+ channel. While the selectivity filter may form the more extracellular-located part of this binding site, the role of the fast inactivation gate in LA binding has not yet been resolved. The receptor of the neurotoxin batrachotoxin (BTX) is adjacent to or even overlaps with the LA binding site. The close proximity of the LA and BTX binding sites to residues critical for inactivation, together with gating transitions through S6 segments, might explain the strong impact of LAs and BTX on inactivation of voltage-gated Na+ channels and might help elucidate the mechanisms underlying voltage- and frequency-dependent LA block. PMID:15635807

  13. Band gap engineering for graphene by using Na+ ions

    NASA Astrophysics Data System (ADS)

    Sung, S. J.; Lee, P. R.; Kim, J. G.; Ryu, M. T.; Park, H. M.; Chung, J. W.

    2014-08-01

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (Eg) at DP in a controlled way by depositing positively charged Na+ ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na+ ions is found to deplete the ?* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of Eg. The band gap increases with increasing Na+ coverage with a maximum E g ? 0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na+ ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na+ ions, which may play a vital role in utilizing graphene in future nano-electronic devices.

  14. thin films grown with additional NaF layers

    NASA Astrophysics Data System (ADS)

    Kim, Gee Yeong; Kim, Juran; Jo, William; Son, Dae-Ho; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-10-01

    CZTS precursors [SLG/Mo (300 nm)/ZnS (460 nm)/SnS (480 nm)/Cu (240 nm)] were deposited by RF/DC sputtering, and then NaF layers (0, 15, and 30 nm) were grown by electron beam evaporation. The precursors were annealed in a furnace with Se metals at 590°C for 20 minutes. The final composition of the CZTSSe thin-films was of Cu/(Zn + Sn) ~ 0.88 and Zn/Sn ~ 1.05, with a metal S/Se ratio estimated at ~0.05. The CZTSSe thin-films have different NaF layer thicknesses in the range from 0 to 30 nm, achieving a ~3% conversion efficiency, and the CZTSSe thin-films contain ~3% of Na. Kelvin probe force microscopy was used to identify the local potential difference that varied according to the thickness of the NaF layer on the CZTSSe thin-films. The potential values at the grain boundaries were observed to increase as the NaF thickness increased. Moreover, the ratio of the positively charged GBs in the CZTSSe thin-films with an NaF layer was higher than that of pure CZTSSe thin-films. A positively charged potential was observed around the grain boundaries of the CZTSSe thin-films, which is a beneficial characteristic that can improve the performance of a device.

  15. Excitation mechanisms in moderate-energy Na+-Ar collisions

    NASA Astrophysics Data System (ADS)

    Kita, S.; Hasegawa, T.; Tanuma, H.; Shimakura, N.

    1995-09-01

    By means of differential energy-transfer measurements, excitation mechanisms in Na+-Ar collisions have been studied at laboratory collision energies of 50<=Elab<=1500 eV. In these experiments, doubly differential cross sections have been measured over nearly the whole angular range in the center-of-mass system by simultaneously detecting both scattered and recoiled particles (Na+, Na, Ar+, and Ar) at laboratory angles of 2°<=θ<=92°. The Na+ ions and Na atoms scattered inelastically were observed at reduced angles of τ>3.5 keV deg and collision energies of Elab>500 eV. For energies of 5001000 eV, two-electron excitation as well as one-electron excitation were observed. The electronic transitions in the Na+-Ar collisions are classified into two types of excitation mechanisms. One type is the one-electron transition that takes place at internuclear distances of R

  16. Reverse energy pooling in a K-Na mixture

    SciTech Connect

    De Filippo, G.; Guldberg-Kjaer, S.; Milosevic, S.; Pedersen, J.O.

    1998-01-01

    We report experimental rate coefficients for the reverse heteronuclear energy-pooling collisions K(5D)+Na(3S){r_arrow}K(4P)+Na(3P) and K(7S)+Na(3S){r_arrow}K(4P)+Na(3P) at thermal energies. Both reactions are exothermic and very high rates were observed showing that reverse exothermic energy-pooling is an order of magnitude more efficient than the corresponding forward endothermic energy-pooling reactions. This is in accordance with the general behavior of the exothermic and endothermic energy-pooling rate coefficients in alkali-metal atoms. In the experiment the potassium atoms were excited in two steps to either the 5D or 7S state via the 4P level using two broadband cw dye lasers. A double-modulation technique has been used to select the fluorescence contributions at the Na(3P{sub J}) exit channels due only to the above reactions. The ground-state sodium and potassium atom densities were measured by the absorption of lines from a K-Na hollow-cathode lamp. The measured densities and fluorescence intensities have been used to obtain absolute reverse energy-pooling rate coefficients. The contribution to the rate coefficients from other processes are discussed. {copyright} {ital 1998} {ital The American Physical Society}

  17. Na(+)-translocating cytochrome bo terminal oxidase from Vitreoscilla: some parameters of its Na+ pumping and orientation in synthetic vesicles.

    PubMed

    Park, C; Moon, J Y; Cokic, P; Webster, D A

    1996-09-10

    Vitreoscilla cytochrome bo ubiquinol oxidase is similar in some properties to the Escherichia coli enzyme, but unlike the latter, the Vitreoscilla oxidase functions as a primary Na+ pump. When purified Vitreoscilla cytochrome bo is incorporated into liposomes made from Vitreoscilla phospholipids and energized with a quinol substrate, it translocates Na+, not H+, across the vesicle membrane. Since protonophores CCCP (carbonyl cyanide m-chlorophenylhydrazone) and DTHB (3,5-di-tert-butyl-4-hydroxybenzaldehyde) stimulated the Na+ pumping, it is unlikely that it is a secondary effect due to the presence of Na+/H+ antiporter activity in the preparations. The efficiency of the Na+ pumping was 3.93 Na+ pumped per O2 consumed when ascorbate/TMPD was used as the substrate. The cytochrome has a K(m) and Kcat for Na+ of 2.9 mM and 277 s-1, respectively. When ferricytochrome c was entrapped within liposomes prepared from Vitreoscilla phospholipids, it was reduced by Q1H2 (ubiquinol-1) but not by ascorbate/TMPD (N,N,N',N'-tetramethyl-1,4-phenylenediamine). Although Q1H2 was oxidized by cytochrome bo in solution at a rate approximately 14 times that of the latter substrate, the rate of accumulation of Na+ within cytochrome bo vesicles driven by the membrane impermeable ascorbate/TMPD was 1.23 times that of the membrane permeable ubiquinol. These data allowed a calculation that in these synthetic proteoliposomes the cytochrome bo molecules are only 51% directed inward; a value of 61% inward-directed was estimated by measuring the ascorbate/TMPD oxidase activity of the proteoliposomes before and after disrupting them with Triton X-100. A random orientation of the E. coli cytochrome bo oxidase in proteoliposomes has also been reported. PMID:8794772

  18. Probabilistic Models to Predict Listeria monocytogenes Growth at Low Concentrations of NaNO2 and NaCl in Frankfurters

    PubMed Central

    Gwak, Eunji; Oh, Mi-Hwa; Park, Beom-Young; Lee, Heeyoung; Lee, Soomin; Ha, Jimyeong; Lee, Jeeyeon; Kim, Sejeong; Choi, Kyoung-Hee; Yoon, Yohan

    2015-01-01

    This study developed probabilistic models to describe Listeria monocytogenes growth responses in meat products with low concentrations of NaNO2 and NaCl. A five-strain mixture of L. monocytogenes was inoculated in NBYE (nutrient broth plus 0.6% yeast extract) supplemented with NaNO2 (0-141 ppm) and NaCl (0-1.75%). The inoculated samples were then stored under aerobic and anaerobic conditions at 4, 7, 10, 12, and 15℃ for up to 60 d. Growth response data [growth (1) or no growth (0)] for each combination were determined by turbidity. The growth response data were analyzed using logistic regression to predict the growth probability of L. monocytogenes as a function of NaNO2 and NaCl. The model performance was validated with the observed growth responses. The effect of an obvious NaNO2 and NaCl combination was not observed under aerobic storage condition, but the antimicrobial effect of NaNO2 on the inhibition of L. monocytogenes growth generally increased as NaCl concentration increased under anaerobic condition, especially at 7-10℃. A single application of NaNO2 or NaCl significantly (p<0.05) inhibited L. monocytogenes growth at 4-15℃, but the combination of NaNO2 or NaCl more effectively (p<0.05) inhibited L. monocytogenes growth than single application of either compound under anaerobic condition. Validation results showed 92% agreement between predicted and observed growth response data. These results indicate that the developed model is useful in predicting L. monocytogenes growth response at low concentrations of NaNO2 and NaCl, and the antilisterial effect of NaNO2 increased by NaCl under anaerobic condition. PMID:26877642

  19. Na?Ca?Cl relations in basinal fluids

    NASA Astrophysics Data System (ADS)

    Davisson, M. Lee; Criss, Robert E.

    1996-08-01

    A new mathematical transformation of Na, Ca, and Cl concentrations in numerous basinal fluids around the world produces a linear slope of unity between the mill iequivalencies of Na and Ca cations. The transformation entails a simple milliequivalent comparison between the excess Ca and the Na deficit relative to seawater reference ratios. The relevant parameters are: Caexcess = [ Cameans - ( Ca/Cl) swClmeans] 2/40.08, Nadeficit = [( Na/Cl) swClmeans - Nameans] 1/22.99, where the concentrations (in mg/L) of the ions measured (meas) in a sample are referred to those in seawater (sw), and the numerical constants convert the results to meq/L. For >800 samples from numerous fluid reservoirs, with Cl concentrations that range from approximately 1-300 g/L and host lithologies from carbonates to granites, a highly correlated regression termed the Basinal Fluid Line (BFL) is found: Ca excess = 0.967 (Na deficit) + 140.3 R = 0.981. The unit slope of the BFL indicates a net cation exchange ratio of 2 Na for 1 Ca. The excess-deficit parameters show no correlation to Mg or K. If a single predominating reaction is presumed to control the BFL, only albitization of plagioclase by 2 Na for 1 Ca exchange is plausible. The BFL offers no support for a predominating reaction involving the 1:1 exchange of Na for Ca that has also been proposed for albitization reactions, nor for the hypothesis that dolomitization produces the elevated Ca contents of basinal fluids. The BFL may incorporate the effects of other water-rock reactions provided that they involve a net exchange of 2 Na for 1 Ca in sedimentary basins. The small y-intercept of 140.3 of the BFL is generally consistent with an origination of the brines from seawater, which would plot at the origin of an excess-deficit graph. However, for regressions derived for fluids from individual basins, the y-intercepts increase with increasing salinity of their fluids, consistent with model predictions for dissolution of halite into either a seawater or freshwater parent, followed by 2 Na for 1 Ca exchange. Because the hydrosphere is dominated by seawater and the upper crust by feldspar minerals, the BFL arguably represents the overall product of cation exchange of high salinity fluids in deep continental environments.

  20. The dynamic relationships between the three events that release individual Na? ions from the Na?/K?-ATPase.

    PubMed

    Gadsby, David C; Bezanilla, Francisco; Rakowski, Robert F; De Weer, Paul; Holmgren, Miguel

    2012-01-01

    Na(+)/K(+) pumps move net charge through the cell membrane by mediating unequal exchange of intracellular Na(+) and extracellular K(+). Most charge moves during transitions that release Na(+) to the cell exterior. When pumps are constrained to bind and release only Na(+), a membrane voltage-step redistributes pumps among conformations with zero, one, two or three bound Na(+), thereby transiently generating current. By applying rapid voltage steps to squid giant axons, we previously identified three components in such transient currents, with distinct relaxation speeds: fast (which nearly parallels the voltage-jump time course), medium speed (?(m)=0.2-0.5?ms) and slow (?(s)=1-10?ms). Here we show that these three components are tightly correlated, both in their magnitudes and in the time courses of their changes. The correlations reveal the dynamics of the conformational rearrangements that release three Na(+) to the exterior (or sequester them into their binding sites) one at a time, in an obligatorily sequential manner. PMID:22334072

  1. Upconversion improvement by the reduction of Na?-vacancies in Mn²? doped hexagonal NaYbF?:Er³? nanoparticles.

    PubMed

    Tian, Dongping; Gao, Dangli; Chong, Bo; Liu, Xuanzuo

    2015-03-01

    Hexagonal-phase NaYbF4:Er(3+) upconversion nanoparticles (UCNPs) have been synthesized via a co-precipitation method in high-boiling-point solvents, and remarkably enhanced upconversion luminescence, particularly in red emission bands (650-670 nm) in NaYbF4:Er(3+) UCNPs, has been achieved by Mn(2+) doping. The underlying reason for luminescence enhancement by Mn(2+) doping is explored by a series of controlled experiments, and a mechanism of enhancement based on the decrease of Na(+)-vacancies and organic adsorption is proposed. The Mn(2+) substitution disturbs the equilibrium of the charge and crystal lattice in the hexagonal-phase NaYbF4:Er(3+) UCNPs, which makes the Na(+)-vacancies that quenched luminescence become filled with Na(+) or Mn(2+) to offset the imbalance of the charge and electron cloud distortion. In addition, the Mn(2+) doping at the surface of UCNPs could reduce the organic adsorption on the surface of the UCNPs by an extra F(-) ion on the grain surface resulting in luminescence enhancement. Therefore, the Mn(2+)-doping approach provides a facile strategy for improvement of luminescence, which will impact on the field of bioimaging based on UCNP nanoprobes. PMID:25622805

  2. High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111): dependence of water reactivity as a function of Na coverage.

    PubMed

    Politano, A; Agostino, R G; Colavita, E; Formoso, V; Chiarello, G

    2007-06-28

    Collective electronic excitations occurring in Na layers grown on Cu(111) and in H2O/Na/Cu(111) have been investigated at room temperature by high resolution electron energy loss spectroscopy. Loss spectra taken for a coverage between 0.55 and 0.70 ML of Na are characterized by a feature at 3.0 eV assigned to a Mie resonance. Further increasing the Na coverage leads to the appearance of the Na surface plasmon at 3.9 eV. Water molecules dissociate on Na layers as shown by the appearance of the OH-Na vibration. Upon water adsorption, relevant effects on both electronic excitations and vibrational modes were observed as a function of Na coverage. PMID:17614582

  3. A sodium calcium arsenate, NaCa(AsO(4)).

    PubMed

    Lin, Jinru; Sun, Wei; Mi, Jin-Xiao; Pan, Yuanming

    2011-12-01

    The title compound, NaCa(AsO(4)), was synthesized using a hydro-thermal method at 633-643 K. It has a dense structure composed of alternating layers of distorted [CaO(6)] octa-hedra and layers of [AsO(4)] tetra-hedra and distorted [NaO(6)] octa-hedra, stacked along the a axis. The As, Ca and two O atoms lie on the mirror plane at y = 1/4 (i.e. 4c), while the Na atom lies on an inversion centre (1/2, 1/2, 0) (i.e. 4b). Each distorted [CaO(6)] octa-hedron shares four equatorial common O vertices with four neighboring octa-hedra, forming a layer parallel to (100), whereas each distorted [NaO(6)] octa-hedron shares two opposite edges with two neighboring ones, forming a chain running along [010]. Each isolated [AsO(4)] tetra-hedron shares two edges with two different [NaO(6)] octa-hedra in one [NaO(6)] chain and a vertex with another chain. Simultaneously the above [AsO(4)] tetra-hedron located in a four-membered [CaO(6)] ring shares one edge of its base facet with one [CaO(6)] octa-hedron and three corners with three other [CaO(6)] octa-hedra of one [CaO(6)] layer, and the remaining apex is shared with another [CaO(6)] layer. [NaO(6)] octa-hedra and [CaO(6)] octa-hedra are linked to each other by sharing edges and vertices. PMID:22199467

  4. Na sup + uptake into colonic enterocyte membrane vesicles

    SciTech Connect

    Bridges, R.J.; Garty, H.; Benos, D.J.; Rummel, W. Weizmann Institute of Science, Rehovot Univ. of Alabama, Birmingham )

    1988-04-01

    Na{sup +} uptake was studied in colonic enterocyte membrane vesicles prepared from normal and dexamethasone-treated rats. Vesicles from rats treated with dexamethasone demonstrated a fivefold greater {sup 22}Na{sup +} uptake compared with vesicles from normal rats. Most of the tracer uptake in membranes derived from treated rats occurred through a conductive, amiloride-blockable pathway located in vesicles with low native K{sup +} permeability and high Cl{sup {minus}} permeability. Kinetic analysis of the amiloride inhibition curve revealed the presence of two amiloride-blockable pathways, one with a high affinity accounting for 85% of the uptake, and one with a low affinity accounting for only 12% of the uptake. Only the low-affinity pathway was detected with vesicles from normal rats. The high sensitivity to amiloride, the dependence on dexamethasone pretreatment, and the relative permeabilities to K{sup +} and Cl{sup {minus}} indicate that most of the {sup 22}Na{sup +} uptake in membranes derived from treated rats is through a Na{sup +}-specific channel located in apical membrane vesicles. Preincubation of the isolated cells from dexamethasone-treated rats at 37{degree}C in Ca{sup 2+}-free solutions before homogenization and membrane vesicle purification caused a 5- to 10-fold increase in amiloride-blockable {sup 22}Na{sup +} uptake compared with vesicles derived from cells maintained at 0{degree}C. The addition of Ca{sup 2+}, but not of Mg{sup 2+}, to the incubation solution markedly reduced this temperature-dependent enhancement in {sup 22}Na{sup +} uptake. These results suggest that Na{sup +} transport in colonic enterocytes from dexamethasone-treated rats is regulated by a Ca{sup 2+}-dependent, temperature-sensitive process which causes a sustained change in the apical membrane.

  5. The Expression Pattern of the Na(+) Sensor, Na(X) in the Hydromineral Homeostatic Network: A Comparative Study between the Rat and Mouse.

    PubMed

    Nehmé, Benjamin; Henry, Mélaine; Mouginot, Didier; Drolet, Guy

    2012-01-01

    The Scn7a gene encodes for the specific sodium channel Na(X), which is considered a primary determinant of sodium sensing in the brain. Only partial data exist describing the Na(X) distribution pattern and the cell types that express Na(X) in both the rat and mouse brain. To generate a global view of the sodium detection mechanisms in the two rodent brains, we combined Na(X) immunofluorescence with fluorescent cell markers to map and identify the Na(X)-expressing cell populations throughout the network involved in hydromineral homeostasis. Here, we designed an anti-Na(X) antibody targeting the interdomain 2-3 region of the Na(X) channel's α-subunit. In both the rat and mouse, Na(X) immunostaining was colocalized with vimentin positive cells in the median eminence and with magnocellular neurons immunopositive for neurophysin associated with oxytocin or vasopressin in both the supraoptic and paraventricular nuclei. Na(X) immunostaining was also detected in neurons of the area postrema. In addition to this common Na(X) expression pattern, several differences in Na(X) immunostaining for certain structures and cell types were found between the rat and mouse. Na(X) was present in both NeuN and vimentin positive cells in the subfornical organ and the vascular organ of the lamina terminalis of the rat whereas Na(X) was only colocalized with vimentin positive cells in the mouse circumventricular organs. In addition, Na(X) immunostaining was specifically observed in NeuN immunopositive cells in the median preoptic nucleus of the rat. Overall, this study characterized the Na(X)-expressing cell types in the network controlling hydromineral homeostasis of the rat and mouse. Na(X) expression pattern was clearly different in the nuclei of the lamina terminalis of the rat and mouse, indicating that the mechanisms involved in systemic and central Na(+) sensing are specific to each rodent species. PMID:22833716

  6. The Expression Pattern of the Na+ Sensor, NaX in the Hydromineral Homeostatic Network: A Comparative Study between the Rat and Mouse

    PubMed Central

    Nehmé, Benjamin; Henry, Mélaine; Mouginot, Didier; Drolet, Guy

    2012-01-01

    The Scn7a gene encodes for the specific sodium channel NaX, which is considered a primary determinant of sodium sensing in the brain. Only partial data exist describing the NaX distribution pattern and the cell types that express NaX in both the rat and mouse brain. To generate a global view of the sodium detection mechanisms in the two rodent brains, we combined NaX immunofluorescence with fluorescent cell markers to map and identify the NaX-expressing cell populations throughout the network involved in hydromineral homeostasis. Here, we designed an anti-NaX antibody targeting the interdomain 2–3 region of the NaX channel’s α-subunit. In both the rat and mouse, NaX immunostaining was colocalized with vimentin positive cells in the median eminence and with magnocellular neurons immunopositive for neurophysin associated with oxytocin or vasopressin in both the supraoptic and paraventricular nuclei. NaX immunostaining was also detected in neurons of the area postrema. In addition to this common NaX expression pattern, several differences in NaX immunostaining for certain structures and cell types were found between the rat and mouse. NaX was present in both NeuN and vimentin positive cells in the subfornical organ and the vascular organ of the lamina terminalis of the rat whereas NaX was only colocalized with vimentin positive cells in the mouse circumventricular organs. In addition, NaX immunostaining was specifically observed in NeuN immunopositive cells in the median preoptic nucleus of the rat. Overall, this study characterized the NaX-expressing cell types in the network controlling hydromineral homeostasis of the rat and mouse. NaX expression pattern was clearly different in the nuclei of the lamina terminalis of the rat and mouse, indicating that the mechanisms involved in systemic and central Na+ sensing are specific to each rodent species. PMID:22833716

  7. NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy

    PubMed Central

    Dib-Hajj, S. D.; Tyrrell, L.; Black, J. A.; Waxman, S. G.

    1998-01-01

    Although physiological and pharmacological evidence suggests the presence of multiple tetrodotoxin-resistant (TTX-R) Na channels in neurons of peripheral nervous system ganglia, only one, SNS/PN3, has been identified in these cells to date. We have identified and sequenced a novel Na channel ?-subunit (NaN), predicted to be TTX-R and voltage-gated, that is expressed preferentially in sensory neurons within dorsal root ganglia (DRG) and trigeminal ganglia. The predicted amino acid sequence of NaN can be aligned with the predicted structure of known Na channel ?-subunits; all relevant landmark sequences, including positively charged S4 and pore-lining SS1–SS2 segments, and the inactivation tripeptide IFM, are present at predicted positions. However, NaN exhibits only 42–53% similarity to other mammalian Na channels, including SNS/PN3, indicating that it is a novel channel, and suggesting that it may represent a third subfamily of Na channels. NaN transcript levels are reduced significantly 7 days post axotomy in DRG neurons, consistent with previous findings of a reduction in TTX-R Na currents. The preferential expression of NaN in DRG and trigeminal ganglia and the reduction of NaN mRNA levels in DRG after axonal injury suggest that NaN, together with SNS/PN3, may produce TTX-R currents in peripheral sensory neurons and may influence the generation of electrical activity in these cells. PMID:9671787

  8. NMR Evidence for Complexing of Na+ in Muscle, Kidney, and Brain, and by Actomyosin. The Relation of Cellular Complexing of Na+ to Water Structure and to Transport Kinetics

    PubMed Central

    Cope, Freeman W.

    1967-01-01

    The nuclear magnetic resonance (NMR) spectrum of Na+ is suitable for qualitative and quantitative analysis of Na+ in tissues. The width of the NMR spectrum is dependent upon the environment surrounding the individual Na+ ion. NMR spectra of fresh muscle compared with spectra of the same samples after ashing show that approximately 70% of total muscle Na+ gives no detectable NMR spectrum. This is probably due to complexation of Na+ with macromolecules, which causes the NMR spectrum to be broadened beyond detection. A similar effect has been observed when Na+ interacts with ion exchange resin. NMR also indicates that about 60% of Na+ of kidney and brain is complexed. Destruction of cell structure of muscle by homogenization little alters the per cent complexing of Na+. NMR studies show that Na+ is complexed by actomyosin, which may be the molecular site of complexation of some Na+ in muscle. The same studies indicate that the solubility of Na+ in the interstitial water of actomyosin gel is markedly reduced compared with its solubility in liquid water, which suggests that the water in the gel is organized into an icelike state by the nearby actomyosin molecules. If a major fraction of intracellular Na+ exists in a complexed state, then major revisions in most theoretical treatments of equilibria, diffusion, and transport of cellular Na+ become appropriate. PMID:6033590

  9. C-peptide, Na+,K(+)-ATPase, and diabetes.

    PubMed

    Vague, P; Coste, T C; Jannot, M F; Raccah, D; Tsimaratos, M

    2004-01-01

    Na+,K(+)-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K(+)-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K(+)-ATPase activity was strongly related to blood C-peptide levels in non-insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene. A polymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K(+)-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K(+)-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K(+)-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K(+)-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K(+)-ATPase activity. This impairment in Na+,K(+)-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetes-induced decrease in Na+,K(+)-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K(+)-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K(+)-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K(+)-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications. PMID:15198370

  10. EDITORIAL: TaCoNa-Photonics 2008 TaCoNa-Photonics 2008

    NASA Astrophysics Data System (ADS)

    Chigrin, Dmitry N.; Busch, Kurt; Lavrinenko, Andrei V.

    2009-11-01

    This special section on theoretical and computational nano-photonics features papers presented at the first International Workshop on Theoretical and Computational Nano-Photonics (TaCoNa-Photonics 2008) held in Bad Honnef, Germany, 3-5 December 2008. The workshop covered a broad range of topics related to current developments and achievements in this interdisciplinary area of research. Since the late 1960s, the word `photonics' has been understood as the science of generating, controlling, and detecting light. Nowadays, a routine fabrication of complex structures with micro- and nano-scale dimensions opens up many new and exciting possibilities in photonics. The science of generating, routing and detecting light in micro- and nano-structured matter, `nano-photonics', is becoming more important both in research and technology and offers many promising applications. The inherently sub-wavelength character of the structures that nano-photonics deals with challenges modern theoretical and computational physics and engineering with many nontrivial questions: Up to what length-scale can one use a macroscopic phenomenological description of matter? Where is the interface between the classical and quantum description of light in nano-scale structures? How can one combine different physical systems, different time- and length-scales in a single computational model? How can one engineer nano-structured materials in order to achieve the desired optical properties for particular applications? Any attempt at answering these kinds of questions is impossible without the joint efforts of physicists, engineers, applied mathematicians and programmers. This is the reason why the major goal of the TaCoNa-Photonics workshops is to provide a forum where theoreticians and specialists in numerical methods from all branches of physics, engineering sciences and mathematics can compare their results, report on novel results and breakthroughs, and discuss new challenges ahead. In order to intensify theoretical discussions and to put them on `solid' ground it was decided to invite world-leading experts in experimental photonics for plenary talks. Over three days, the workshop has brought together more than 70 specialists in theoretical and computational nano-photonics. The workshop took place in the historical `Physikzentrum Bad Honnef', whose unique atmosphere supported a multitude of highly interesting debates and discussions that often lasted until midnight and beyond. Different theoretical and numerical aspects of light generation, control and detection in general inhomogeneous media, photonic crystals, plasmonic structures, metamaterials and integrated optical systems were covered in 15 invited talks and 52 contributed oral and posters presentations. The plenary talks were given by Professor M Wegener (metamaterials) and Professor W Barnes (plasmonics). This special section is a cross-sectional selection of papers which were submitted by the authors of invited and contributed oral presentations. It also includes two papers of the winners of the Best Poster Awards. We hope that these papers will enhance the interest of the scientific community regarding nano-photonics in general and regarding the TaCoNa-Photonics workshop series in particular. It is our distinct pleasure to acknowledge the generous financial support of our sponsors: Karlsruhe School of Optics & Photonics (KSOP) (Germany), U.S. Army International Technology Center-Atlantic, Research Division (USA), and the Office of Naval Research Global (USA). Without the organizational assistance from the International Department of the Universität Karlsruhe GmbH (Germany) this event would simply have been impossible.

  11. Effects of Osmoprotectants upon NaCl Stress in Rice.

    PubMed Central

    Garcia, A. B.; Engler, JdA.; Iyer, S.; Gerats, T.; Van Montagu, M.; Caplan, A. B.

    1997-01-01

    Plants accumulate a number of osmoprotective substances in response to NaCl stress, one of them being proline (Pro). While characterizing some of the changes in solute accumulation in NaCl-stressed rice (Oryza sativa L.), we identified several other potential osmoprotectants. One such substance, trehalose, begins to accumulate in small amounts in roots after 3 d. We performed a series of experiments to compare the effects of Pro and trehalose on ion accumulation to determine whether the two chemicals protect the same physiological processes. We found that Pro either has no effect or, in some cases, exasperates the effect of NaCl on growth inhibition, chlorophyll loss, and induction of a highly sensitive marker for plant stress, the osmotically regulated salT gene. By contrast, low to moderate concentrations of trehalose reduce Na+ accumulation, salT expression, and growth inhibition. Somewhat higher concentrations (10 mM) prevent NaCl-induced loss of chlorophyll in blades, preserve root integrity, and enhance growth. The results of this study indicate that during osmotic stress trehalose or carbohydrates might be more important for rice than Pro. PMID:12223797

  12. Na7Mg13Nd(PO4)12

    PubMed Central

    Jerbi, Hasna; Hidouri, Mourad; Mongi, Ben Amara

    2012-01-01

    Investigations of the quasi-ternary system Na3PO4–Mg3(PO4)2–NdPO4 allowed us to obtain the new phosphate hepta­sodium trideca­magnesium neodymium dodeca­kis­phosphate, Na7Mg13Nd(PO4)12, by applying a flux method. The crystal structure is isotypic with that of the previously reported Na7Mg13 Ln(PO4)12 (Ln = Eu, La) compounds. It consists of a complex three-dimensional framework built up from an NdO8 polyhedron (m symmetry), an MO6 octa­hedron statistically occupied by M = Mg and Na, and eight MgOx (x = 5, 6) polyhedra (four with site symmetry m), linked either directely by sharing corners, edges and faces, or by one of the eight unique PO4 tetra­hedra through common corners. Two of the PO4 tetra­hedra are statisticaly disordered over a mirror plane. The whole structure can be described as resutling from an assembly of two types of structural units, viz [Mg4 MP4O22]? 2 layers extending parallel to (100) and stacked along [100], and [Mg4NdP4O36]? 1 undulating chains running along the [010] direction. The six different Na+ cations (five with site symmetry m and one with 0.5 occupancy) are situated in six distinct cavities delimited by the framework. The structure was refined from data of a racemic twin. PMID:22719275

  13. Estragole blocks neuronal excitability by direct inhibition of Na+ channels

    PubMed Central

    Silva-Alves, K.S.; Ferreira-da-Silva, F.W.; Peixoto-Neves, D.; Viana-Cardoso, K.V.; Moreira-Júnior, L.; Oquendo, M.B.; Oliveira-Abreu, K.; Albuquerque, A.A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H.

    2013-01-01

    Estragole is a volatile terpenoid, which occurs naturally as a constituent of the essential oils of many plants. It has several pharmacological and biological activities. The objective of the present study was to investigate the mechanism of action of estragole on neuronal excitability. Intact and dissociated dorsal root ganglion neurons of rats were used to record action potential and Na+ currents with intracellular and patch-clamp techniques, respectively. Estragole blocked the generation of action potentials in cells with or without inflexions on their descendant (repolarization) phase (Ninf and N0 neurons, respectively) in a concentration-dependent manner. The resting potentials and input resistances of Ninf and N0 cells were not altered by estragole (2, 4, and 6 mM). Estragole also inhibited total Na+ current and tetrodotoxin-resistant Na+ current in a concentration-dependent manner (IC50 of 3.2 and 3.6 mM, respectively). Kinetic analysis of Na+ current in the presence of 4 mM estragole showed a statistically significant reduction of fast and slow inactivation time constants, indicating an acceleration of the inactivation process. These data demonstrate that estragole blocks neuronal excitability by direct inhibition of Na+ channel conductance activation. This action of estragole is likely to be relevant to the understanding of the mechanisms of several pharmacological effects of this substance. PMID:24345915

  14. Na+/H+ Antiport Is Essential for Yersinia pestis Virulence

    PubMed Central

    Minato, Yusuke; Ghosh, Amit; Faulkner, Wyatt J.; Lind, Erin J.; Schesser Bartra, Sara; Plano, Gregory V.; Jarrett, Clayton O.; Hinnebusch, B. Joseph; Winogrodzki, Judith; Dibrov, Pavel

    2013-01-01

    Na+/H+ antiporters are ubiquitous membrane proteins that play a central role in the ion homeostasis of cells. In this study, we examined the possible role of Na+/H+ antiport in Yersinia pestis virulence and found that Y. pestis strains lacking the major Na+/H+ antiporters, NhaA and NhaB, are completely attenuated in an in vivo model of plague. The Y. pestis derivative strain lacking the nhaA and nhaB genes showed markedly decreased survival in blood and blood serum ex vivo. Complementation of either nhaA or nhaB in trans restored the survival of the Y. pestis nhaA nhaB double deletion mutant in blood. The nhaA nhaB double deletion mutant also showed inhibited growth in an artificial serum medium, Opti-MEM, and a rich LB-based medium with Na+ levels and pH values similar to those for blood. Taken together, these data strongly suggest that intact Na+/H+ antiport is indispensable for the survival of Y. pestis in the bloodstreams of infected animals and thus might be regarded as a promising noncanonical drug target for infections caused by Y. pestis and possibly for those caused by other blood-borne bacterial pathogens. PMID:23774602

  15. Magnetism in Na-filled Fe-based skutterudites

    DOE PAGESBeta

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J.

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material nearmore » an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.« less

  16. Magnetism in Na-filled Fe-based skutterudites

    SciTech Connect

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J.

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material near an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.

  17. Magnetism in Na-filled Fe-based skutterudites

    PubMed Central

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J.

    2015-01-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. Here we investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material near an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form. PMID:26027504

  18. NaI detector neutron activation spectra for PGNAA applications

    PubMed

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known. PMID:11003483

  19. The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat.

    PubMed

    Byrt, Caitlin Siobhan; Xu, Bo; Krishnan, Mahima; Lightfoot, Damien James; Athman, Asmini; Jacobs, Andrew Keith; Watson-Haigh, Nathan S; Plett, Darren; Munns, Rana; Tester, Mark; Gilliham, Matthew

    2014-11-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K(+) /Na(+) ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na(+) -selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na(+) concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na(+) from the xylem vessels in the root and has an important role in restricting the transport of Na(+) from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na(+) exclusion and is critical in maintaining a high K(+) /Na(+) ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes. PMID:25158883

  20. High-NA HPCS optical fibers for medical diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Skutnik, Bolesh J.

    2010-02-01

    Hard Plastic Clad Silica (HPCS) optical fibers with pure silica cores have been developed which are robust and have NA(Numerical Aperture)>0.50. Improved clad only HPCS fibers have been produced for both new 'standard' and 'high' NA versions. Based on new cladding formulations, the 'standard' NA fiber has an NA of 0.41, while the new ultrahigh NA fiber has an NA of 0.54. Mechanical strength and preliminary fatigue data are presented along with spectral characterization data. For the first time significant results were obtained for clad only high NA fibers, The fibers are useful for diagnostic and surgical applications. Short to medium length time to failure results, indicate that the static fatigue parameters of the new high numerical aperture (NA) optical fibers are at least as good as those for former standard NA (0.37) HPCS fibers, which is an advance from previous results on the older formulation high NA fibers.

  1. Na3Al(AsO4)2

    PubMed Central

    Fakhar Bourguiba, Noura; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-01-01

    The structure of the title compound tris­odium aluminium bis­(arsenate), Na3Al(AsO4)2, is built up from AlO4 and AsO4 corner-sharing tetra­hedra, forming an undulating two-dimensional framework parallel to (100). The layers are constituted of large Al6As6O36 rings made up from six AlO4 and AsO4 tetra­hedra in which two sodium cations are situated, the third sodium cation being located in the inter­layer space. The structural relationships between the title compound and Na3Fe(PO4)2, NaAlCo(PO4)2 and Al5Co3(PO4)8 are discussed. PMID:23424394

  2. HARP and NA61 (SHINE) hadron production experiments

    SciTech Connect

    Popov, Boris A.

    2009-11-25

    The hadroproduction experiments HARP and NA61 (SHINE) as well as their implications for neutrino physics are discussed. Recent HARP measurements have already been used for precise predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve the atmospheric neutrino flux predictions and to help in the optimization of neutrino factory and super-beam designs. First preliminary data from NA61 are of significant importance for a precise prediction of a new neutrino beam at J-PARC to be used for the first stage of the T2K experiment. Both HARP and NA61 provide a large amount of input for validation and tuning of hadroproduction models in Monte-Carlo generators.

  3. Sodium Chloride, NaCl/ϵ: New Force Field.

    PubMed

    Fuentes-Azcatl, Raúl; Barbosa, Marcia C

    2016-03-10

    A new computational model for sodium chloride, the NaCl/ϵ, is proposed. The force field employed for the description of the NaCl is based on a set of radial particle-particle pair potentials involving Lennard-Jones (LJ) and Coulombic forces. The parametrization is obtained by fitting the density of the crystal and the density and the dielectric constant of the mixture of the salt with water at a diluted solution. Our model shows good agreement with the experimental values for the density and for the surface tension of the pure system, and for the density, the viscosity, the diffusion, and the dielectric constant for the mixture with water at various molal concentrations. The NaCl/ϵ together with the water TIP4P/ϵ models provide a good approximation for studying electrolyte solutions. PMID:26890321

  4. Solvation of Na+, K+, and Their Dimers in Helium

    PubMed Central

    An der Lan, Lukas; Bartl, Peter; Leidlmair, Christian; Jochum, Roland; Denifl, Stephan; Echt, Olof; Scheier, Paul

    2012-01-01

    Helium atoms bind strongly to alkali cations which, when embedded in liquid helium, form so-called snowballs. Calculations suggest that helium atoms in the first solvation layer of these snowballs form rigid structures and that their number (n) is well defined, especially for the lighter alkalis. However, experiments have so far failed to accurately determine values of n. We present high-resolution mass spectra of Na+Hen, K+Hen, Na2+Hen and K2+Hen, formed by electron ionization of doped helium droplets; the data allow for a critical comparison with several theoretical studies. For sodium and potassium monomers the spectra indicate that the value of n is slightly smaller than calculated. Na2+Hen displays two distinct anomalies at n=2 and n=6, in agreement with theory; dissociation energies derived from experiment closely track theoretical values. K2+Hen distributions are fairly featureless, which also agrees with predictions. PMID:22374575

  5. Growth and electronic properties of NaCl on HOPG

    NASA Astrophysics Data System (ADS)

    Mahapatra, O.; Kowalczyk, P. J.; Brown, S. A.

    2014-02-01

    We report the growth of cross-shaped islands of NaCl on highly oriented pyrolytic graphite (HOPG) and discuss the mechanism of formation and growth kinetics within the framework of diffusion limited aggregation (DLA). These structures are investigated using scanning probe microscopy. The shape and structure of these islands can be finely controlled by the deposition conditions. The islands exhibit large atomically flat surfaces which are ideal supports for investigations of the fundamental properties of deposited atoms, molecules or clusters. Bismuth nanostructures were deposited on the NaCl islands and were investigated via scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). The tunneling spectra recorded for particles on NaCl are surprisingly similar to those measured for similar particles on HOPG. We suggest that this is due to a 'dead' layer commonly observed for Bi thin films.

  6. Binding energy and structure of e{sup +}Na

    SciTech Connect

    Shertzer, J.; Ward, S. J.

    2010-06-15

    We calculate the nonadiabatic binding energy and geometry of the weakly bound state of e{sup +}Na. We use the Peach model potential, which includes both the dipole and an effective quadrupole term in the polarization, to describe the interaction of the electron and positron with the ion core. The effective three-body Schroedinger equation is solved with the finite element method. Because the model potential gives rise to three spurious states, the true ground state of e{sup +}Na is embedded in a dense spectrum of spurious states. We develop a method for extracting the correct ground state for e{sup +}Na, even when the energy is nearly degenerate with a spurious level. The calculated value for the binding energy is consistent with other calculations.

  7. Binding energy and structure of e+Na

    NASA Astrophysics Data System (ADS)

    Shertzer, J.; Ward, S. J.

    2010-06-01

    We calculate the nonadiabatic binding energy and geometry of the weakly bound state of e+Na. We use the Peach model potential, which includes both the dipole and an effective quadrupole term in the polarization, to describe the interaction of the electron and positron with the ion core. The effective three-body Schrödinger equation is solved with the finite element method. Because the model potential gives rise to three spurious states, the true ground state of e+Na is embedded in a dense spectrum of spurious states. We develop a method for extracting the correct ground state for e+Na, even when the energy is nearly degenerate with a spurious level. The calculated value for the binding energy is consistent with other calculations.

  8. The stability of sodalite in the system NaAlSiO sub 4 -NaCl

    SciTech Connect

    Sharp, Z.D. ); Helffrich, G.R. ); Bohlen, S.R. ); Essene, E.J. )

    1989-08-01

    The reaction sodalite = {beta}-nepheline + NaCl (s) was reversed in solid-medium apparatus and the reaction sodalite = carnegieite + NaCl (l) was reversed at 1 bar (1,649-1,652 K). The experimental reversals between 923 K and 973 K can be fit with a dP/dT of {minus}11 bar/K, suggesting that the excess entropy for sodalite is present only above 923 K. A phase diagram for the NaAlSiO{sub 4}-NaCl system that is consistent with the measured thermochemical data and the experiments between 973 and 1,650 K can be generated if the 61.7 J/mol{center dot}K entropy contribution is included in the S{sup 0}{sub 298} of sodalite. This entropy contribution must be removed below 973 K for the experiments to fit with calculations. Previously unreported thermodynamic data estimated in this study are {Delta}G{sup 0}{sub 298} for sodalite ({minus}12,697 kJ/mol) and carnegieite (NaAlSiO{sub 4}) ({minus}1,958 kJ/mol), S{sup 0}{sub 298} of carnegieite (129.6 J/mol{center dot}K) and compressibility of NaCl{sub liquid} (V{sup P}{sub 298} (cm{sup 3}) = 31.6{center dot}(1 - 24.7{center dot}10{sup {minus}3}{center dot}P + 800{center dot}10{sup {minus}6}{center dot}P{sup 2}))(T in K; P in kbar). Sodalite is a high-temperature, low-pressure phase, stable well above the solidus in sodic silica-undersaturated magmas enriched in NaCl, and its presence constrains NaCl activities in magmas. Estimates of minimum NaCl (l) activities in the Mont St-Hilaire sodalite syenites are 0.05 at 1,073 K and 0.13 at 1,273 K. Density calculations are consistent with the field observations that sodalite phenocrysts will float in a nepheline syenite liquid. This explains the enrichment of sodalite in the upper levels of the sodalite syenites at Mont St.Hilaire and elsewhere.

  9. Accurate measurement of the 23 Na(d, p) 24 Na cross section in the 1.7-20 MeV energy range

    NASA Astrophysics Data System (ADS)

    Hirsh, T. Y.; Kreisel, Arik; Mrazek, J.; Weissman, L.; Eisen, Y.; Stefanik, M.; Simeckova, E.; Aviv, O.; Moscovici, S.; Yungrais, Z.; Berkovits, D.

    2015-11-01

    The 23 Na(d, p) 24 Na cross sections were measured in two complementary experiments using a cyclotron and a variant low-energy energy LINAC, effectively covering the 1.7-19.8 MeV energy range. The present results allow one to use the 23 Na(d, p) 24 Na process as a standard monitoring cross section in future measurements of deuteron reactions.

  10. Contractile abnormalities of mouse muscles expressing hyperkalemic periodic paralysis mutant NaV1.4 channels do not correlate with Na+ influx or channel content.

    PubMed

    Lucas, Brooke; Ammar, Tarek; Khogali, Shiemaa; DeJong, Danica; Barbalinardo, Michael; Nishi, Cameron; Hayward, Lawrence J; Renaud, Jean-Marc

    2014-06-01

    Hyperkalemic periodic paralysis (HyperKPP) is characterized by myotonic discharges that occur between episodic attacks of paralysis. Individuals with HyperKPP rarely suffer respiratory distress even though diaphragm muscle expresses the same defective Na(+) channel isoform (NaV1.4) that causes symptoms in limb muscles. We tested the hypothesis that the extent of the HyperKPP phenotype (low force generation and shift toward oxidative type I and IIA fibers) in muscle is a function of 1) the NaV1.4 channel content and 2) the Na(+) influx through the defective channels [i.e., the tetrodotoxin (TTX)-sensitive Na(+) influx]. We measured NaV1.4 channel protein content, TTX-sensitive Na(+) influx, force generation, and myosin isoform expression in four muscles from knock-in mice expressing a NaV1.4 isoform corresponding to the human M1592V mutant. The HyperKPP flexor digitorum brevis muscle showed no contractile abnormalities, which correlated well with its low NaV1.4 protein content and by far the lowest TTX-sensitive Na(+) influx. In contrast, diaphragm muscle expressing the HyperKPP mutant contained high levels of NaV1.4 protein and exhibited a TTX-sensitive Na(+) influx that was 22% higher compared with affected extensor digitorum longus (EDL) and soleus muscles. Surprisingly, despite this high burden of Na(+) influx, the contractility phenotype was very mild in mutant diaphragm compared with the robust abnormalities observed in EDL and soleus. This study provides evidence that HyperKPP phenotype does not depend solely on the NaV1.4 content or Na(+) influx and that the diaphragm does not depend solely on Na(+)-K(+) pumps to ameliorate the phenotype. PMID:24714718

  11. Measurement of the low-energy Na+-Na total collision rate in an ion-neutral hybrid trap

    NASA Astrophysics Data System (ADS)

    Goodman, D. S.; Wells, J. E.; Kwolek, J. M.; Blümel, R.; Narducci, F. A.; Smith, W. W.

    2015-01-01

    We present measurements of the total elastic and resonant charge-exchange ion-atom collision rate coefficient kia of cold sodium (Na) with optically dark low-energy Na+ ions in a hybrid ion-neutral trap. To determine kia, we measured the trap loading and loss rates from both a Na magneto-optical trap (MOT) and a linear radio-frequency quadrupole Paul trap. We found the total rate coefficient to be 7.4 ±1.9 ×10-8 cm3/s for the type-I Na MOT immersed within an ?140 -K ion cloud and 1.10 ±0.25 ×10-7 cm3/s for the type-II Na MOT within an ?1070 -K ion cloud. Our measurements show excellent agreement with previously reported theoretical fully quantal ab initio calculations. In the process of determining the total rate coefficient, we demonstrate that a MOT can be used to probe an optically dark ion cloud's spatial distribution within a hybrid trap.

  12. Do the naïve know best? The predictive power of naïve ratings of couple interactions.

    PubMed

    Baucom, Katherine J W; Baucom, Brian R; Christensen, Andrew

    2012-12-01

    We examined the utility of naïve ratings of communication patterns and relationship quality in a large sample of distressed couples. Untrained raters assessed 10-min videotaped interactions from 134 distressed couples who participated in both problem-solving and social support discussions at each of 3 time points (pre-therapy, post-therapy, and 2-year follow-up) during a randomized clinical trial of behavioral couple therapy. Teams of naïve raters observed a particular type of discussion from the 3 time points at a single sitting in a random order and rated dyadic interaction patterns (negative reciprocity, positive reciprocity, wife demand/husband withdraw, husband demand/wife withdraw, and mutual avoidance) and the overall relationship quality of couples. These naïve ratings were strongly and consistently associated with both levels of, and changes in, trained observational codes and self-reported relationship satisfaction. Naïve ratings of couples accounted for similar--and at times superior--amounts of variance in both concurrent relationship satisfaction and divorce at 5-year follow-up when compared with trained ratings. These findings offer compelling support for the use of naïve raters in research with couples and also suggest important future directions that are applicable to both research and practice with distressed couples. PMID:22708571

  13. Genetic Architecture of NaCl Tolerance in Arabidopsis1

    PubMed Central

    Quesada, Víctor; García-Martínez, Santiago; Piqueras, Pedro; Ponce, María Rosa; Micol, José Luis

    2002-01-01

    The little success of breeding approaches toward the improvement of salt tolerance in crop species is thought to be attributable to the quantitative nature of most, if not all the processes implicated. Hence, the identification of some of the quantitative trait loci (QTL) that contribute to natural variation in salt tolerance should be instrumental in eventually manipulating the perception of salinity and the corresponding responses. A good choice to reach this goal is the plant model system Arabidopsis, whose complete genome sequence is now available. Aiming to analyze natural variability in salt tolerance, we have compared the ability of 102 wild-type races (named ecotypes or accessions) of Arabidopsis to germinate on 250 mm NaCl, finding a wide range of variation among them. Accessions displaying extremely different responses to NaCl were intercrossed, and the phenotypes found in their F2 progenies suggested that natural variation in NaCl tolerance during germination was under polygenic controls. Genetic distances calculated on the basis of variations in repeat number at 22 microsatellites, were analyzed in a group of either extremely salt-tolerant or extremely salt-sensitive accessions. We found that most but not all accessions with similar responses to NaCl are phylogenetically related. NaCl tolerance was also studied in 100 recombinant inbred lines derived from a cross between the Columbia-4 and Landsberg erecta accessions. We detected 11 QTL harboring naturally occurring alleles that contribute to natural variation in NaCl tolerance in Arabidopsis, six at the germination and five at the vegetative growth stages, respectively. At least five of these QTL are likely to represent loci not yet described by their relationship with salt stress. PMID:12376659

  14. A new low-voltage plateau of Na3V2(PO4)(3) as an anode for Na-ion batteries

    SciTech Connect

    Jian, ZL; Sun, Y; Ji, XL

    2015-01-01

    A low-voltage plateau at similar to 0.3 V is discovered for the deep sodiation of Na3V2(PO4)(3) by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na3V2(PO4)(3), thus turning it into a promising anode for Na-ion batteries.

  15. Cooperative activation of action potential Na+ ionophore by neurotoxins.

    PubMed Central

    Catterall, W A

    1975-01-01

    Four neurotoxins that activate the action potential Na+ ionophore of electrically excitable neuroblastoma cells interact with two distinct classes of sites, one specific for the alkaloids veratridine, batrachotoxin, and aconitine, and the second specific for scorpion toxin. Positive heterotropic cooperativity is observed between toxins bound at these two classes of sites. Tetrodotoxin is a noncompetitive inhibitor of activation by each of these toxins (KI = 4-8 nM). These results suggest the existence of three functionally separable components of the action potential Na+ ionophore: two regulatroy components, which bind activating neurotoxins and interact allosterically in controlling the activity of a third ion-transport component, which binds tetrodotoxin. PMID:1057169

  16. Possible selective adsorption of enantiomers by Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Friebele, E.; Shimoyama, A.; Ponnamperuma, C.

    1981-01-01

    Racemic amino acids including (D,L) alpha-alamine, (D,L) alpha-aminobutyric acid, (D,L) valine, and (D,L) norvaline were incubated with Na-montmorillonite at 100% CEC at three hydrogen ion concentrations, and amino acid adsorption was determined by ion exchange chromatography. Enantiomers were analyzed by gas chromatography. Differences in the quantities of D and L enantiomers in any of the fractions was no larger than a few percent. Although a large difference in the adsorption of the amino acid enantiomers was not observed, the analysis may indicate a small preferential adsorption (0.5-2%) of L-amino acids by Na-montmorillonite.

  17. Structural Integrity and Microstructure of NA^+ Conducting Ceramics

    NASA Astrophysics Data System (ADS)

    Lipinska, Kristina; Kalita, Patricia; Hemmers, Oliver; Sinogeikin, Stanislav; Shebanova, Olga; Yang, Wenge; Mariotto, Gino

    2010-03-01

    Oxides with the general formula of Na1+x Zr2 Six P3-x O12 , known as Nasicon, are fast Na+ ion-conducting materials with important electrochemical applications and many functional properties, often attributed to their unique structural features. Comparative, in situ studies of the limits of structural integrity were performed for selected Nasicon materials, using synchrotron x-ray diffraction and diamond anvil cell technology. We show how different processing conditions produce crystalline structures with specific morphology. We discuss the bulk modulus, the compressibility and the influence of the volume fraction of primary and secondary crystalline phases on the overall Nasicon structural integrity.

  18. Efficiency of the Modular Neutron Array (MoNA)

    SciTech Connect

    Peters, W. A.; Baumann, T.; Christian, G. A.; Strongman, M. J.; Denby, D.; DeYoung, P. A.; Hall, C. C.; Finck, J. E.; Frank, N.; Hinnefeld, J.; Schiller, A.; Thoennessen, M.

    2009-03-10

    The efficiency of the Modular Neutron Array (MoNA), located at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University, was measured and compared to simulations. The Coulomb dissociation of a 90 MeV/u beam of {sup 11}Be in a gold target was used to produce neutrons. The expected neutron production rate was calculated using the virtual photon method. The measured efficiency agrees with the efficiency calculated with GEANT simulations. The current configuration of MoNA has a 73% intrinsic detection efficiency for 90 MeV neutrons.

  19. Toward Triplet Ground State LiNa Molecules

    NASA Astrophysics Data System (ADS)

    Jamison, Alan; Rvachov, Timur; Jing, Li; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2015-05-01

    We present progress toward creation of ultracold ground-state triplet LiNa molecules. This molecule is expected to have a long lifetime in the triplet ground state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. Our progress includes the first observation of triplet excited states in this molecule, achieved through photoassociation of ultracold mixtures of 6-Li and Na. We compare experimental results to a variety of near-dissociation expansions as well as ab initio potentials.

  20. Brain Na+, K+-ATPase Activity In Aging and Disease

    PubMed Central

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways, enzyme changes in diverse neurological diseases as well as during aging, have been summarized. Issues refer mainly to Na+, K+-ATPase studies in ischemia, brain injury, depression and mood disorders, mania, stress, Alzheimer´s disease, learning and memory, and neuronal hyperexcitability and epilepsy. PMID:25018677

  1. Olivine-type NaCd(AsO4)

    PubMed Central

    Weil, Matthias

    2013-01-01

    The title compound, sodium cadmium orthoarsenate, adopts the olivine [Mg2(SiO4)] structure type in space group Pnma, with Na (site symmetry -1) and Cd (.m.) replacing the two Mg positions, and the AsO4 tetra­hedron (.m.) the SiO4 tetra­hedron. The crystal structure is made up of a nearly hexa­gonal closed-packed arrangement of O atoms stacked along [001]. The Na and Cd atoms occupy one half of the octa­hedral voids in alternate layers stacked along [100], and one eighth of the tetra­hedral voids are occupied by As atoms. PMID:24454011

  2. Na,K-ATPase and epithelial tight junctions.

    PubMed

    Rajasekaran, Sigrid A; Rajasekaran, Ayyappan K

    2009-01-01

    Tight junctions are unique organelles in polarized epithelial and endothelial cells that regulate the flow of solutes and ions across the epithelial barrier. The structure and functions of tight junctions are regulated by a wide variety of signaling and molecular mechanisms. Several recent studies in mammals, drosophila, and zebrafish reported a new role for Na,K-ATPase, a well-studied ion transporter, in the modulation of tight junction development, permeability, and polarity. In this review, we have attempted to compile these new reports and suggest a model for a conserved role of Na,K-ATPase in the regulation of tight junction structure and functions. PMID:19273189

  3. Upper stratospheric photolysis of NaCl and KCl

    PubMed Central

    Rowland, F. Sherwood; Rogers, Patricia J.

    1982-01-01

    Sodium chloride has been postulated to be formed in the stratosphere by the reaction of NaOH with HCl, and an analogous reaction should occur also for KOH, with the formation of KCl. Photodissociation rates have been calculated for both NaCl and KCl using the published ultraviolet absorption cross sections below 300 nm. Both molecules absorb strongly and have photodissociation lifetimes of only a few minutes in the upper stratosphere. Neither molecule is an effective sink for chlorine above an altitude of about 35 km. PMID:16593182

  4. Two Na+ Sites Control Conformational Change in a Neurotransmitter Transporter Homolog.

    PubMed

    Tavoulari, Sotiria; Margheritis, Eleonora; Nagarajan, Anu; DeWitt, David C; Zhang, Yuan-Wei; Rosado, Edwin; Ravera, Silvia; Rhoades, Elizabeth; Forrest, Lucy R; Rudnick, Gary

    2016-01-15

    In LeuT, a prokaryotic homolog of neurotransmitter transporters, Na(+) stabilizes outward-open conformational states. We examined how each of the two LeuT Na(+) binding sites contributes to Na(+)-dependent closure of the cytoplasmic pathway using biochemical and biophysical assays of conformation. Mutating either of two residues that contribute to the Na2 site completely prevented cytoplasmic closure in response to Na(+), suggesting that Na2 is essential for this conformational change, whereas Na1 mutants retained Na(+) responsiveness. However, mutation of Na1 residues also influenced the Na(+)-dependent conformational change in ways that varied depending on the position mutated. Computational analyses suggest those mutants influence the ability of Na1 binding to hydrate the substrate pathway and perturb an interaction network leading to the extracellular gate. Overall, the results demonstrate that occupation of Na2 stabilizes outward-facing conformations presumably through a direct interaction between Na(+) and transmembrane helices 1 and 8, whereas Na(+) binding at Na1 influences conformational change through a network of intermediary interactions. The results also provide evidence that N-terminal release and helix motions represent distinct steps in cytoplasmic pathway opening. PMID:26582198

  5. [Effects of NaCl stress on cation contents in different pumpkin cultivars' seedlings].

    PubMed

    Li, Wei-Xin; Chen, Gui-Lin; Ren, Liang-Yu; Wang, Peng

    2008-03-01

    With the seedlings of 19 pumpkin cultivars as test materials, this paper studied the variations of Na+, K+, Ca2+, Na+/K+, Na+/Ca2+, SN+, K+ and SNa+, ca2+ in their shoots and roots under the stress of 300 mmol NaCl x L(-1). The results showed that after an 8-day exposure to 300 mmol NaCl x L(-1), the Na+ content in the seedlings increased significantly while the K+ content decreased, resulting in the brokenness of ion balance. The root Na+ content, shoot Na+/K+ and Na+/Ca2+ ratios, and SNa+, K+ and SNa+, Ca2+ of Cucurbita moschata (Q1) were significantly higher than those of C. maxima (H2) and C. ficifolia (H3). The variation tendency of these parameters of different pumpkin cultivars' seedlings were nearly consistent with the salt injury index of the seedlings under NaCl stress, which further proved that the strong salt-tolerance of Q1 was related to the lower values of shoot Na+/K+, Na+/Ca2+, SNa+, K+ and SNa+, Ca2+, and the high contents of K+ and Ca2+, while the salt-sensitivity of H2 and H3 was related to the higher values of shoot Na+/K+, Na+/Ca2+, SNa+, K+ and SNa+, Ca2+, and low contents of K+ and Ca2+ under NaCl stress. PMID:18533527

  6. Planificar la transición a la etapa final de la vida (PDQ)—Versión para pacientes

    Cancer.gov

    Resumen de información revisada por expertos sobre la preparación necesaria por parte de los proveedores de atención de la salud, los pacientes y sus familias para la transición a la atención del cáncer avanzado en la etapa final de la vida.

  7. Tensión postraumática relacionada con el cáncer (PDQ)—Versión para pacientes

    Cancer.gov

    Resumen de información revisada por expertos acerca de la tensión postraumática y los síntomas relacionados en los pacientes con cáncer, sobrevivientes del cáncer y miembros de la familia. Se discuten la evaluación y el tratamiento de estos síntomas.

  8. Personal de enfermería asume diversas funciones con expansión de programas de gestión para pacientes

    Cancer.gov

    Artículo sobre los profesionales de enfermería oncológica que ayudan a los pacientes durante todas las etapas de la atención oncológica, desde los exámenes de detección y el diagnóstico, hasta el tratamiento y la supervivencia.

  9. Na+-dependent and Na+-independent betaine transport across the apical membrane of rat renal epithelium.

    PubMed

    Cano, Mercedes; Calonge, María L; Ilundáin, Anunciación A

    2015-10-01

    The low renal excretion of betaine indicates that the kidney efficiently reabsorbs the betaine filtered by the glomeruli but the mechanisms involved in such a process have been scarcely investigated. We have detected concentrative and non-concentrative betaine transport activity in brush-border membrane vesicles (BBMV) from rat renal cortex and medulla. The concentrative system is the Sodium/Imino-acid Transporter 1 (SIT1) because it is Na+- and Cl--dependent, electrogenic and is inhibited by an anti-SIT1 antibody. Its apparent affinity constant for betaine, Kt, is 1.1±0.5 mM and its maximal transport velocity, Vmax, 0.5±0.1 nmol betaine/mg protein/s. Inhibitors of the Na+/Cl-/betaine uptake are L-proline (75%) and cold betaine, L-carnitine and choline (40-60%). Neither creatine, TEA, taurine, ?-alanine, GABA nor glycine significantly inhibited Na+/Cl-/betaine uptake. The non-concentrative betaine transport system is Na+- and H+-independent, electroneutral, with a Kt for betaine of 47±7 ?M and a Vmax of 7.8±1 pmol betaine/mg protein/s. Its transport activity is nearly abolished by betaine, followed by L-carnitine (70-80%) and proline (40-50%), but a difference from the Na+/Cl-/betaine transport is that it is inhibited by TEA (approx. 50%) and unaffected by choline. The underlying carrier functions as an antiporter linking betaine entry into the BBMV with the efflux of either L-carnitine or betaine, an exchange unaffected by the anti-SIT1 antibody. As far as we know this is the first work reporting that betaine crosses the apical membrane of rat renal epithelium by SIT1 and by a Na+- and H+-independent transport system. PMID:26028423

  10. In Situ SAXS/WAXS of Zeolite Microwave Synthesis: NaY, NaA, and Beta Zeolites

    SciTech Connect

    Panzarella,B.; Tompsett, G.; Conner, W.; Jones, K.

    2007-01-01

    A custom waveguide apparatus is constructed to study the microwave synthesis of zeolites by in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The WR-284 waveguide is used to heat precursor solutions using microwaves at a frequency of 2.45 GHz. The reaction vessels are designed to include sections of thin-walled glass, which permit X-rays to pass through the precursor solutions with minimal attenuation. Slots were machined into the waveguide to provide windows for X-ray energy to enter and scatter from solutions during microwave heating. The synthesis of zeolites with conventional heating is also studied using X-ray scattering in the same reactor. SAXS studies show that the crystallization of beta zeolite and NaY zeolite is preceded by a reorganization of nanosized particles in their precursor solutions or gels. The evolution of these particles during the nucleation and crystallization stages of zeolite formation depends on the properties of the precursor solution. The synthesis of NaA and NaX zeolites and sodalite from a single zeolite precursor is studied by microwave and conventional heating. Microwave heating shifts the selectivity of this synthesis in favor of NaA and NaX over sodalite; conventional heating leads to the formation of sodalite for synthesis from the same precursor. The use of microwave heating also led to a more rapid onset of NaA zeolite product crystallization compared to conventional heating. Pulsed and continuous microwave heating are compared for zeolite synthesis. The resulting rates of formation of the zeolite products, and the relative amounts of the products determined from the WAXS spectra, are similar when either pulsed or continuous microwave heating is applied in the reactor while maintaining the same synthesis temperature. The consequences of these results in terms of zeolite synthesis are discussed.

  11. Synthesis and decomposition of Li3Na(NH2)4 and investigations of Li-Na-N-H based systems for hydrogen storage.

    PubMed

    Jepsen, Lars H; Wang, Peikun; Wu, Guotao; Xiong, Zhitao; Besenbacher, Flemming; Chen, Ping; Jensen, Torben R

    2016-01-21

    Previous studies have shown modified thermodynamics of amide-hydride composites by cation substitution, while this work systematically investigates lithium-sodium-amide, Li-Na-N-H, based systems. Li3Na(NH2)4 has been synthesized by combined ball milling and annealing of 3LiNH2-NaNH2 with LiNa2(NH2)3 as a minor by-product. Li3+xNa1-x(NH2)4 releases NaNH2 and forms non-stoichiometric Li3+xNa1-x(NH2)4 before it melts at 234 °C, as observed by in situ powder X-ray diffraction. Above 234 °C, Li3+xNa1-x(NH2)4 releases a mixture of NH3, N2 and H2 while a bi-metallic lithium sodium imide is not observed during decomposition. Hydrogen storage performances have been investigated for the composites Li3Na(NH2)4-4LiH, LiNH2-NaH and NaNH2-LiH. Li3Na(NH2)4-4LiH converts into 4LiNH2-NaH-3LiH during mechanochemical treatment and releases 4.2 wt% of H2 in multiple steps between 25 and 340 °C as revealed by Sievert's measurements. All three investigated composites have a lower peak temperature for H2 release as compared to LiNH2-LiH, possibly owing to modified kinetics and thermodynamics, due to the formation of Li3Na(NH2)4 and LiNa2(NH2)3. PMID:26672440

  12. Structure and electrochemistry of NaFePO{sub 4} and Na{sub 2}FePO{sub 4}F cathode materials prepared via mechanochemical route

    SciTech Connect

    Kosova, N.V.; Podugolnikov, V.R.; Devyatkina, E.T.; Slobodyuk, A.B.

    2014-12-15

    Highlights: • Na{sub 2}FePO{sub 4}F is prepared by mechanochemically assisted solid state synthesis. • The crystal and local structure are studied by XRPD, FTIR, Mössbauer, and NMR. • Na{sup +}/Li{sup +} ion exchange is completed with the formation of NaLiFePO{sub 4}F. • The average D{sub Li} (10{sup ?15} cm{sup 2} s{sup ?1}) is determined from GITT measurements. - Abstract: Nanostructured NaFePO{sub 4} (space group Pmnb) and Na{sub 2}FePO{sub 4}F (space group Pbcn) were prepared by a quick and facile mechanochemically assisted solid state synthesis. Low-crystalline Na{sub 2}FePO{sub 4}F was formed as a result of direct mechanochemical reaction of NaFePO{sub 4} with NaF. It crystallizes upon subsequent heating to 600 °C and decomposes at higher temperatures. Crystal and local structure were analyzed by XRD using Rietveld refinement, FTIR, Mössbauer, and NMR spectroscopy. Electrochemical properties were studied by galvanostatic cycling in lithium cells and GITT. Although NaFePO{sub 4} showed some electrochemical activity, neither electrochemical nor chemical Na{sup +}/Li{sup +} exchange was observed by XRD. On contrary, electrochemical and chemical Na{sup +}/Li{sup +} ion exchange occurred in the case of Na{sub 2}FePO{sub 4}F and accomplished with the NaLiFePO{sub 4}F formation. Li{sup +} diffusion coefficient in NaLiFePO{sub 4}F at different delithiated/lithiated states was determined from GITT. Carbon-coated Na{sub 2}FePO{sub 4}F shows discharge capacity of 116 mA h g{sup ?1} at 0.1 C rate within the 2.0–4.2 V voltage range and a good cyclability.

  13. Comparative evaluation of Na(+) uptake in Cyprinodon variegatus variegatus (Lacepede) and Cyprinodon variegatus hubbsi (Carr) (Cyprinodontiformes, Teleostei): Evaluation of NHE function in high and low Na(+) freshwater.

    PubMed

    Brix, Kevin V; Esbaugh, Andrew J; Mager, Edward M; Grosell, Martin

    2015-07-01

    The euryhaline pupfish, Cyprinodon variegatus variegatus (Cvv), can successfully osmoregulate in ?2 mM Na(+) and a freshwater population (Cyprinodon variegatus hubbsi; Cvh) osmoregulates at ?0.1mM Na(+). We previously demonstrated that Cvv relies on an apical NKCC and NHE in the gill for Na(+) uptake in high (7mM) and intermediate (2 mM) Na(+) concentrations, while Cvh relies only on NHE for Na(+) uptake. This study investigated whether differential NHE isoform use explains differences in Na(+) uptake kinetics between these two populations. We further studied whether Cvh uses a NHE-Rh metabolon or carbonic anhydrase (CA) to overcome thermodynamic challenges of NHE function in dilute freshwater. Transfer to more dilute freshwater resulted in upregulation of nhe-2 (Cvv only) and nhe-3 (Cvv and Cvh). Relative expression of nhe-3 compared to nhe-2 was 2-fold higher in Cvv, but 200-fold higher in Cvh suggesting that nhe-3 expression is an important freshwater adaptation for Cvh. Simultaneous measurement of Na(+) and Tamm flux under various conditions provided no support for a NHE-Rh metabolon in either population. Carbonic anhydrase activity in Cvv was comparable in 7 and 2 mM Na(+) acclimated fish. In Cvh, CA activity increased by 75% in 0.1 mM Na(+) acclimated fish compared to 7 mM Na(+) fish. Ethoxzolamide had variable effects, stimulating and reducing Na(+) uptake in Cvv acclimated to 7 and 2 mM Na(+), while reducing Na(+) uptake in 7 and 0.1mM Na(+) acclimated Cvh. This suggests that CA plays important, but different roles in regulating Na(+) uptake in Cvv and Cvh. PMID:25868437

  14. Spin assignments to excited states in 22Na through a 24Mg(p,3He)22Na reaction measurement

    SciTech Connect

    Chae, K. Y.; Bardayan, Daniel W; Blackmon, Jeff C; Chipps, K.; Hatarik, Robert; Jones, K. L.; Kozub, R. L.; Liang, J Felix; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Pain, S. D.; Pittman, S. T.; Smith, Michael Scott

    2010-10-01

    The level structure of 22Na has been studied at the Holifield Radioactive Ion Beam Facility in Oak Ridge National Laboratory using the 24Mg(p,3He)22Na reaction. 41 and 41.5 MeV proton beams were generated by 25 MV tandem accelerator and bombarded isotopically enriched 24Mg targets. Angular distributions of recoiling 3He particles were extracted by using a segmented annular silicon strip detector array. Spins and parities for ten levels were constrained through a distorted wave Born approximation analysis of angular distributions including three above the proton threshold at 6.739 MeV.

  15. Cell shrinkage activates Na+/H+ exchange in dog red cells by relieving inhibition of exchange by Na+ in isotonic medium.

    PubMed

    Dunham, Philip B

    2004-01-01

    Na+/H+ exchangers (NHE) are widely distributed transporters responsible for regulation of cell volume and pH. In isotonic medium, NHE is often low or negligible, and is strongly activated by osmotic cell shrinkage. It is reported here that extracellular Na+ inhibits NHE in isotonic medium, and cell shrinkage stimulates NHE by relieving this inhibition. There is more than one inhibitory Na+ site on each transporter. Shrinkage activates NHE by decreasing the apparent affinity for Na+ at the inhibitory sites. Shrinkage has no effect on the apparent affinity for Na+ at the substrate sites for activation of NHE. PMID:15121097

  16. The Na+-responsive ntp operon is indispensable for homeostatis of K+ and Na+ in Enterococcus hirae at limited proton potential.

    PubMed

    Kawano, M; Igarashi, K; Kakinuma, Y

    1998-09-01

    Enterococcus hirae ATCC 9790 grew well in Na+-deficient, low-K+ medium, but growth was inhibited by carbonylcyanide m-chlorophenylhydrazone (CCCP). Growth inhibition and decrease of cellular K+ levels in the presence of CCCP were relieved by the addition of Na+ and a high concentration of K+. In contrast, in the mutant defective in Na+-ATPase or the NtpJ component of the KtrII K+ uptake system, CCCP-induced growth inhibition was rescued by a high concentration of K+ but not of Na+. These transporters are thus indispensable for homeostatis of K+ and Na+ at low proton potential. PMID:9733699

  17. Infrared reflectance spectra of Na2S with contaminant Na2CO3 - Effects of adsorbed H2O and CO2 and relation to studies of Io

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.

    1988-01-01

    A previously reported laboratory determination of the IR spectrum of Na2S is presently noted to have been incorrectly interpreted, due to the inadvertent contamination of the sample with Na2CO3. New Na2S spectra are presented, and the Na2CO3 spectrum is examined in order to demonstrate that this phase is the primary sample contaminant. Na2S is a candidate surface component on the Jupiter satellite, Io, in view of its apparent high IR brightness and spectral neutrality in the 1-5 micron range.

  18. NaK release model for MASTER-2009

    NASA Astrophysics Data System (ADS)

    Wiedemann, Carsten; Flegel, Sven; Gelhaus, Johannes; Krag, Holger; Klinkrad, Heiner; Vörsmann, Peter

    2011-04-01

    Sodium-potassium droplets from the primary coolant loop of Russian orbital reactors have been released into space. These droplets are called NaK droplets. Sixteen nuclear powered satellites of the type RORSAT launched between 1980 and 1988 activated a reactor core ejection system, mostly between 900 and 950 km altitude. The core ejection causes an opening of the primary coolant loop. The liquid coolant consists of eutectic sodium-potassium alloy and has been released into space during these core ejections. The NaK coolant has been forming droplets up to a diameter of 5.5 cm. NaK droplets have been modeled before in ESA's MASTER Debris and Meteoroid Environment Model. The approach is currently revised for the MASTER-2009 upgrade. A mathematical improvement is introduced by substituting the current size distribution function by the modified Rosin-Rammler equation. A bimodal size distribution is derived which is based on the modified mass based Rosin-Rammler equation. The equation is modified by truncating the size range and normalizing over the finite range between the size limits of the smallest and the biggest droplet. The parameters of the model are introduced and discussed. For the validation of the NaK release model, sixteen release events are simulated. The resulting size distribution is compared with radar measurement data. The size distribution model fits well with revised published measurement data of radar observations. Results of orbit propagation simulation runs are presented in terms of spatial density.

  19. Luminescence and radiation resistance of undoped NaI crystals

    SciTech Connect

    Shiran, N. Boiaryntseva, I.; Gektin, A.; Gridin, S.; Shlyakhturov, V.; Vasuykov, S.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found that defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup ?3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.

  20. Pharmacologic characterization of the Na+ ionophores in L6 myotubes.

    PubMed Central

    Sastre, A; Podleski, T R

    1976-01-01

    We present a pharmacologic characterization of the Na+ ionophores present in L6 myotubes in vitro. Action potentials are abolished by replacement of the external Na+ by Tris. The amplitude of the action potential is generally resistant to high concentrations of tetrodotoxin (10(-5) M) and saxitoxin (10(-6 M), but the effect of these agents is highly variable. Veratridine (10(-4 M) consistently induces, as a short-term effect, a marked prolongation of the falling phase of the action potential. As a long-term effect, veratridine consistently induces a Na+-dependent reduction in the resting potential of the cell. The effects of veratridine on the action potential are not antagonized by tetrodotoxin or saxitoxin. However, the effects of veratridine on the resting potential are strongly antagonized by tetrodotoxin (10(-5) M) and fully inhibited by saxitoxin (10(-6) M). Significantly, under conditions where saxitoxin has fully inhibited the effects of veratridine on the resting potential, the myotubes are capable of generating overshooting action potentials. In contrast to their sensitivity to veratridine, L6 myotubes are insensitive to 10(-5) M alpha-dihydro-grayanotoxin-II. These results are discussed in the contexts of developmental significance and current views about Na+ ionophores. PMID:1063416

  1. Results from NA60 experiment at the CERN SPS

    SciTech Connect

    Usai, G.; Cicalo, C.; De Falco, A.; Floris, M.; Masoni, A.; Puddu, G.; Serci, S.; Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Averbeck, R.; Drees, A.; Banicz, K.; Castor, J.; Devaux, A.; Force, P.; Manso, F.; Chaurand, B.

    2006-07-11

    The NA60 experiment studies open charm and prompt dimuon production in proton-nucleus and nucleus-nucleus collisions at the CERN SPS. During 2003 the experiment collected data in Indium-Indium collisions at 158 GeV per nucleon. In this paper the first results on low mass dimuons, intermediate mass dimuons and J/{psi} suppression are presented.

  2. Project ELaNa and NASA's CubeSat Initiative

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2010-01-01

    This slide presentation reviews the NASA program to use expendable lift vehicles (ELVs) to launch nanosatellites for the purpose of enhancing educational research. The Education Launch of Nanosatellite (ELaNa) project, run out of the Launch Services Program is requesting proposals for CubeSat type payload to provide information that will aid or verify NASA Projects designs while providing higher educational research

  3. Lattice dynamics and melting features of Li and Na

    NASA Astrophysics Data System (ADS)

    Lepeshkin, S. V.; Magnitskaya, M. V.; Maksimov, E. G.

    2009-08-01

    The high-pressure melting of Li and Na has been studied using ab initio calculations of the lattice dynamics. It has been shown that the recently discovered anomalous melting of Na is adequately explained by the phonon spectrum behavior and, accordingly, the thermal vibration amplitudes under compression. In a simple approach using the Lindemann criterion, the nonmonotonic behavior of the melting curve T m( p) of Na has been quantitatively described within very wide pressure and temperature ranges, and, in particular, the melting temperature drop at p ˜ 1 Mbar down to values lower than those at normal pressure. This approach leads to a nonphysical discontinuity of the melting curve T m( p) of Li near the bcc-fcc-liquid triple point. This is due to the “softness” of the phonon spectrum of the bcc phase of Li that is the necessary condition for the existence of the high-temperature bcc phase. The melting of Na and Li is used as an example to determine why the Lindemann criterion is efficient in some situations and is inapplicable in the other cases.

  4. Altered erythrocyte Na-K pump in anorectic patients

    SciTech Connect

    Pasquali, R.; Strocchi, E.; Malini, P.; Casimirri, F.; Ambrosioni, E.; Melchionda, N.; Labo, G.

    1985-07-01

    The status of the erythrocyte sodium pump was evaluated in a group of patients suffering from anorexia nervosa and a group of healthy female control subjects. Anorectic patients showed significantly higher mean values of digoxin-binding sites/cell (ie, the number of Na-K-ATPase units) with respect to control subjects while no differences were found in the specific /sup 86/Rb uptake (which reflects the Na-K-ATPase activity) between the two groups. A significant correlation was found between relative weight and the number of Na-K-ATPase pump units (r = -0.66; P less than 0.0001). Anorectic patients showed lower serum T3 concentrations (71.3 +/- 53 ng/dL) with respect to control subjects (100.8 +/- 4.7 ng/dL; P less than 0.0005) and a significant negative correlation between T3 levels and the number of pump units (r = -0.52; P less than 0.003) was found. This study therefore shows that the erythrocyte Na-K pump may be altered in several anorectic patients. The authors suggest that this feature could be interrelated with the degree of underweight and/or malnutrition.

  5. Substituting KCl for NaCl in fresh Queso Fresco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing the sodium level in cheese is challenging when a signature salty flavor is expected, such as in high-moisture Queso Fresco (QF). Fresh starter-free QF was fine milled and dry salted at different levels of NaCl and KCl to obtain total salt levels of 1.5 to 2.0%. The treatments contained 1....

  6. Transcriptional Regulation of the Intestinal Luminal Na+ and Cl− Transporters

    PubMed Central

    Malakooti, Jaleh; Saksena, Seema; Gill, Ravinder K; Dudeja, Pradeep K.

    2012-01-01

    The epithelial apical membrane Na+/H+ exchangers (NHE2, NHE3) and Cl−/HCO3− exchangers (DRA and PAT-1) are key luminal membrane transporters involved in electroneutral NaCl absorption in the mammalian intestine. During the past decade, there has been a surge of studies focusing on short-term regulation of these electrolyte transporters particularly for NHE3 regulation. However, the long-term regulation of the electrolyte transporters involving transcriptional mechanisms and transcription factors that govern their basal regulation or dysregulation in diseased states has only now started to unfold with the cloning and characterization of their gene promoters. This review updates the readers with a detailed analysis of the core promoters of NHE2, NHE3, DRA and PAT-1 and outlines the transcription factors involved in their basal regulation as well as in response to both physiological (butyrate, protein kinases, probiotics) and pathophysioloical (cytokines and high levels of serotonin) stimuli. The available information on the transcriptional regulation of the recently identified NHE8 isoform is also highlighted. This review, therefore, bridges a gap in our knowledge of the transcriptional mechanisms underlying the alterations in the gene expression of intestinal epithelial luminal membrane Na+ and Cl− transporters involved in electroneutral NaCl absorption. An understanding of the mechanisms of modulation of gene expression of these transporters is important for a better assessment of the pathophysiology of diarrhea associated with inflammatory and infectious diseases and may aid in designing better management protocols. PMID:21726200

  7. Luminal Na+/H+ exchange in the proximal tubule

    PubMed Central

    Bobulescu, I. Alexandru

    2010-01-01

    The proximal tubule is critical for whole-organism volume and acid–base homeostasis by reabsorbing filtered water, NaCl, bicarbonate, and citrate, as well as by excreting acid in the form of hydrogen and ammonium ions and producing new bicarbonate in the process. Filtered organic solutes such as amino acids, oligopeptides, and proteins are also retrieved by the proximal tubule. Luminal membrane Na+/H+ exchangers either directly mediate or indirectly contribute to each of these processes. Na+/H+ exchangers are a family of secondary active transporters with diverse tissue and subcellular distributions. Two isoforms, NHE3 and NHE8, are expressed at the luminal membrane of the proximal tubule. NHE3 is the prevalent isoform in adults, is the most extensively studied, and is tightly regulated by a large number of agonists and physiological conditions acting via partially defined molecular mechanisms. Comparatively little is known about NHE8, which is highly expressed at the lumen of the neonatal proximal tubule and is mostly intracellular in adults. This article discusses the physiology of proximal Na+/H+ exchange, the multiple mechanisms of NHE3 regulation, and the reciprocal relationship between NHE3 and NHE8 at the lumen of the proximal tubule. PMID:18853182

  8. Physiological role and regulation of the Na+/H+ exchanger.

    PubMed

    Malo, Mackenzie E; Fliegel, Larry

    2006-11-01

    In mammalian eukaryotic cells, the Na+/H+ exchanger is a family of membrane proteins that regulates ions fluxes across membranes. Plasma membrane isoforms of this protein extrude 1 intracellular proton in exchange for 1 extracellular sodium. The family of Na+/H+ exchangers (NHEs) consists of 9 known isoforms, NHE1-NHE9. The NHE1 isoform was the first discovered, is the best characterized, and exists on the plasma membrane of all mammalian cells. It contains an N-terminal 500 amino acid membrane domain that transports ions, plus a 315 amino acid C-terminal, the intracellular regulatory domain. The Na+/H+ exchanger is regulated by both post-translational modifications including protein kinase-mediated phosphorylation, plus by a number of regulatory-binding proteins including phosphatidylinositol-4,5-bisphosphate, calcineurin homologous protein, ezrin, radixin and moesin, calmodulin, carbonic anhydrase II, and tescalcin. The Na+/H+ exchanger is involved in a variety of complex physiological and pathological events that include regulation of intracellular pH, cell movement, heart disease, and cancer. This review summarizes recent advances in the understanding of the physiological role and regulation of this protein. PMID:17218973

  9. Neutral Na in comets tails: a chemical story

    NASA Astrophysics Data System (ADS)

    Ellinger, Y.; Pauzat, F.; Mousis, O.; Guilbert-Lepoutre, A.; Leblanc, F.; Ali-Dib, M.; Doronin, M.; Zicler, E.; Doressoundiram, A.

    2015-10-01

    The origin of the neutral sodium comet tail discovered in comet Hale-Bopp in 1997 is still a matter of discussion. Here we propose a scenario which is based on chemical grounds. The starting point is the chemical trapping of the Na+ ion in the refractory material during the condensation phase of the protosolar nebula, followed by its incorporation in the building blocks of the comets parent bodies. In the next step, the Na+ ions are washed out of the refractory material by the water formed by the melting of the ice due to the heat released in the radioactive decay of short period elements. When the water freezes again, the Na+ ion looses its positive charge to evolve progressively toward a neutral atom when approaching the surface of the ice. As shown by high-level numerical simulations based on first principle periodic density functional theory (DFT) to describe the solid structure of the ice, it is a neutral Na that is ejected with the sublimation of the ice top layer.

  10. Mechanism of two types of Na emission observed in sonoluminescence

    NASA Astrophysics Data System (ADS)

    Nakajima, Ryota; Hayashi, Yuichi; Choi, Pak-Kon

    2015-07-01

    The sonoluminescence (SL) spectrum of Na atoms revealed that the Na line consists of two components, one of which is a broadened component (broad component) which is shifted from the original D lines, and the other is an unshifted narrow component (narrow component). We spatially separated the continuum, broad, and narrow components by capturing SL images using different optical filters. We also temporally separated these components by measuring SL pulses using respective band-pass filters. The SL image distribution and the timing of the SL pulses were different between the broad and narrow components. The results suggested that the broad and narrow components of Na emission are generated from different bubble populations. The dependences of SL spectra on ultrasonic frequency and dissolved rare gas (He, Ne, Ar, Kr, and Xe) were also investigated. It is concluded that the broad component and a blue satellite peak at 558 nm originate from van der Waals molecules composed of Na and rare-gas atoms. The narrow component was predicted to occur under temperature conditions at bubble collapse higher than that for the broad component.

  11. Stainless Steel NaK Circuit Integration and Fill Submission

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2006-01-01

    The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed to hold a eutectic mixture of sodium potassium (NaK), was redesigned to hold lithium; but due to a shift in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature loop include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This document summarizes the integration and fill of the pumped liquid metal NaK flow circuit.

  12. Na2TeS3, Na2TeSe3-mP24, and Na2TeSe3-mC48: Crystal Structures and Optical and Electrical Properties of Sodium Chalcogenidotellurates(IV).

    PubMed

    Pompe, Constantin; Preitschaft, Christian; Weihrich, Richard; Pfitzner, Arno

    2015-12-01

    Pure samples of Na2TeS3 and Na2TeSe3 were synthesized by the reactions of stoichiometric amounts of the elements Na, Te, and Q (Q = S, Se) in the ratio 2:1:3. Both compounds are highly air- and moisture-sensitive. The crystal structures were determined by single-crystal X-ray diffraction. Yellow Na2TeS3 crystallizes in the space group P21/c. Na2TeSe3 exists in a low-temperature modification (Na2TeSe3-mP24, space group P21/c) and a high-temperature modification (Na2TeSe3-mC48, space group C2/c); both modifications are red. Density functional theory calculations confirmed the coexistence of both modifications of Na2TeSe3 because they are very close in energy (ΔE = 0.18 kJ mol(-1)). To the contrary, hypothetic Na2TeS3-mC48 is significantly less favored (ΔE = 1.8 kJ mol(-1)) than the primitive modification. Na2TeS3 and Na2TeSe3-mP24 are isotypic to Li2TeS3, whereas Na2TeSe3-mC48 crystallizes in its own structure type, which was first described by Eisenmann and Zagler. The title compounds have two common structure motifs. Trigonal TeQ3 pyramids form layers, and the Na atoms are surrounded by a distorted octahedral environment of chalcogen atoms. Raman spectra are dominated by the vibration modes of the TeQ3 units. The activation energies of the total conductivity of the title compounds range between 0.68 eV (Na2TeS3) and 1.1 eV (Na2TeSe3). Direct principal band gaps of 1.20 and 1.72 eV were calculated for Na2TeSe3 and Na2TeS3, respectively. The optical band gaps are in the range from 1.38 eV for Li2TeSe3 to 2.35 eV for Na2TeS3. PMID:26600068

  13. Apical Na+ conductance in maturing rabbit principal cell.

    PubMed

    Satlin, L M; Palmer, L G

    1996-03-01

    Net Na+ absorption in microperfused rabbit cortical collecting ducts (CCDs) is low during the 1st wk of postnatal life, increasing substantially thereafter [L. M. Satlin. Am. J. Physiol. 266 (Renal Fluid Electrolyte Physiol. 35): F57-F65, 1994]. To establish whether the low rate of Na+ absorption observed immediately after birth is due to a low apical Na+ permeability of the neonatal principal cell, we used the patch-clamp technique in split-open CCDs isolated from maturing rabbits to estimate conductance, number (N), and open probability (Po) of apical Na+ channels in principal cells. With LiCl in the pipette and a NaCl or potassium gluconate solution, warmed to 37 degrees C, in the bath, inward currents with a conductance of approximately 11 pS (n = 23) were observed in 17% of cell-attached patches at 1 wk, 41% of patches at 2 wk, and 43% of patches at 5 wk. The mean N per patch in the 1st wk (0.22 +/- 0.09; n = 36) was significantly less than that observed in the 2nd (1.38 +/- 0.39; n = 34) and 5th (1.24 +/- 0.37; n = 21) wk of life. Po, studied at positive pipette voltages, was significantly lower in the 1st wk (0.085 +/- 0.035; n = 5) than in the 2nd wk (0.345 +/- 0.063; n = 9) and 5th wk (0.291 +/- 0.058; n = 4). To confirm that the 11-pS channel represented the amiloride-sensitive apical Na+ channel, cell-attached patches in CCDs isolated from 2-wk-old rabbits were studied with 0.5 microM amiloride added to the LiCl pipette solution. Amiloride led to > 90% reductions in mean open and closed times of the 11-pS conductance, consistent with blockade of the channel. These data indicate that N and Po of apical amiloride-sensitive Na+ channels in principal cells increase significantly after birth. PMID:8780239

  14. Intracellular and extracellular concentrations of Na+ modulate Mg2+ transport in rat ventricular myocytes.

    PubMed

    Tashiro, Michiko; Tursun, Pulat; Konishi, Masato

    2005-11-01

    Apparent free cytoplasmic concentrations of Mg2+ ([Mg2+]i) and Na+ ([Na+]i) were estimated in rat ventricular myocytes using fluorescent indicators, furaptra (mag-fura-2) for Mg2+ and sodium-binding benzofuran isophthalate for Na+, at 25 degrees C in Ca2+-free conditions. Analysis included corrections for the influence of Na+ on furaptra fluorescence found in vitro and in vivo. The myocytes were loaded with Mg2+ in a solution containing 24 mM Mg2+ either in the presence of 106 mM Na+ plus 1 mM ouabain (Na+ loading) or in the presence of only 1.6 mM Na+ to deplete the cells of Na+ (Na+ depletion). The initial rate of decrease in [Mg2+]i from the Mg2+-loaded cells was estimated in the presence of 140 mM Na+ and 1 mM Mg2+ as an index of the rate of extracellular Na+-dependent Mg2+ efflux. Average [Na+]i, when estimated from sodium-binding benzofuran isophthalate fluorescence in separate experiments, increased from 12 to 31 mM and 47 mM after Na+ loading for 1 and 3 h, respectively, and decreased to approximately 0 mM after 3 h of Na+ depletion. The intracellular Na+ loading significantly reduced the initial rate of decrease in [Mg2+]i, on average, by 40% at 1 h and by 64% at 3 h, suggesting that the Mg2+ efflux was inhibited by intracellular Na+ with 50% inhibition at approximately 40 mM. A reduction of the rate of Mg2+ efflux was also observed when Na+ was introduced into the cells through the amphotericin B-perforated cell membrane (perforated patch-clamp technique) via a patch pipette that contained 130 mM Na+. When the cells were heavily loaded with Na+ with ouabain in combination with intracellular perfusion from the patch pipette containing 130 mM Na+, removal of extracellular Na+ caused an increase in [Mg2+]i, albeit at a very limited rate, which could be interpreted as reversal of the Mg2+ transport, i.e., Mg2+ influx driven by reversed Na+ gradient. Extracellular Na+ dependence of the rate of Mg2+ efflux revealed that the Mg2+ efflux was activated by extracellular Na+ with half-maximal activation at 55 mM. These results contribute to a quantitative characterization of the Na+-Mg2+ exchange in cardiac myocytes. PMID:16085772

  15. Coincident detection of CSF Na+ and osmotic pressure in osmoregulatory neurons of the supraoptic nucleus.

    PubMed

    Voisin, D L; Chakfe, Y; Bourque, C W

    1999-10-01

    Behavioral and neuroendocrine responses underlying systemic osmoregulation are under the concerted control of centrally located osmoreceptors and cerebrospinal fluid (CSF) Na+ concentration ([Na+]) detectors. Although the process underlying osmoreception is understood, the mechanism by which [Na+] is detected and integrated with cellular information derived from osmoreceptors is unknown. Here, we show that shifts in extracellular [Na+] ([Na+]0) cause proportional changes in the relative Na+ permeability of mechanosensitive cation channels responsible for signal transduction in the osmosensory neurons of the supraoptic nucleus. This effect causes the generation of Na+ specific receptor potentials under isotonic conditions and modulates osmoreceptor potentials and electrical responsiveness during osmotic perturbation. These results provide a cellular basis for Na+-sensing and for the coordinated detection of CSF [Na+] and osmolality in central osmoregulatory neurons. PMID:10571238

  16. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  17. Regulation of renal Na+,K(+)-ATPase in rat thick ascending limb during K+ depletion: evidence for modulation of Na+ affinity.

    PubMed Central

    Buffin-Meyer, B; Marsy, S; Barlet-Bas, C; Cheval, L; Younes-Ibrahim, M; Rajerison, R; Doucet, A

    1996-01-01

    1. NaCl reabsorption along the loop of Henle is reduced in K(+)-depleted rats. Because Na+,K(+)-ATPase energizes this transport and because K+ depletion is known to induce an upregulation of Na+,K(+)-ATPase in most tissues, the regulation of this enzyme was investigated at the level of single thick ascending limbs of the loop of Henle freshly microdissected from rats fed either a normal (control rats) or a low-K+ diet (LK rats). 2. Within 2 weeks of K+ depletion, Na+,K(+)-ATPase activity and [3H]ouabain binding were increased by 30-50% in the medullary portion of the thick ascending limb (MTAL). 3. Despite this increase in the number of Na+,K(+)-ATPase units, the transport capacity of the Na+,K+ pump, determined by ouabain-sensitive Rb+ uptake in the presence of an extracellular concentration of Rb+ mimicking the kalaemia determined in control (4.0 mM Rb+) and LK rats (2.3 mM Rb+), was reduced in MTAL from LK rats. 4. Inhibition of the Na+,K+ pump was not accounted for by changes in either extracellular K+ or intracellular Na+ concentrations, but by a decrease in the pump affinity for Na+. 5. Because this change in the apparent affinity of the Na+,K+ pump for Na+ was detectable in intact but not in permeabilized MTAL cells, it is probably induced by a rapidly reversible cytosolic factor. PMID:8683462

  18. Multiple quantum filtered (23)Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i.

    PubMed

    Eykyn, Thomas R; Aksentijević, Dunja; Aughton, Karen L; Southworth, Richard; Fuller, William; Shattock, Michael J

    2015-09-01

    We investigate the potential of multiple quantum filtered (MQF) (23)Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32±6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the (23)Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM(3SA) mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered (23)Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  19. Bundle-like ?'-NaV2O5 mesocrystals: from synthesis, growth mechanism to analysis of Na-ion intercalation/deintercalation abilities.

    PubMed

    Liu, Pengcheng; Zhou, Dehua; Zhu, Kongjun; Wu, Qingliu; Wang, Yifeng; Tai, Guoan; Zhang, Wei; Gu, Qilin

    2016-01-21

    Bundle-like ?'-NaV2O5 mesocrystals were synthesized successfully by a two-step hydrothermal method. Observations using electron microscopy revealed that the obtained NaV2O5 mesocrystals were composed of nanobelts with the preferential growth direction of [010]. The precise crystal structure was further confirmed by Rietveld refinement and Raman spectroscopy. Based on analysis of crystal structure and microscopy, a reaction and growth mechanism, hydrolysis-condensation (oxolation and olation)-ion exchange-self-assembly, was proposed and described in detail. Furthermore, electrochemical measurements were used to analyze the Na-ions intercalation/deintercalation abilities in NaV2O5, and indicated that Na-ions were difficult to extract. Importantly, the DFT theoretical calculation results, which showed that the migration energy of Na-ions was so huge that migration of Na-ions was quite difficult, can explain and support well the results of the electrochemical measurements. PMID:26673118

  20. Stoichiometric relationship between Na(+) ions transported and glucose consumed in human erythrocytes: Bayesian analysis of (23)Na and (13)C NMR time course data.

    PubMed

    Puckeridge, Max; Chapman, Bogdan E; Conigrave, Arthur D; Grieve, Stuart M; Figtree, Gemma A; Kuchel, Philip W

    2013-04-16

    We examined the response of Na(+),K(+)-ATPase (NKA) to monensin, a Na(+) ionophore, with and without ouabain, an NKA inhibitor, in suspensions of human erythrocytes (red blood cells). A combination of (13)C and (23)Na NMR methods allowed the recording of intra- and extracellular Na(+), and (13)C-labeled glucose time courses. The net influx of Na(+) and the consumption of glucose were measured with and without NKA inhibited by ouabain. A Bayesian analysis was used to determine probability distributions of the parameter values of a minimalist mathematical model of the kinetics involved, and then used to infer the rates of Na(+) transported and glucose consumed. It was estimated that the numerical relationship between the number of Na(+) ions transported by NKA per molecule of glucose consumed by a red blood cell was close to the ratio 6.0:1.0, agreeing with theoretical prediction. PMID:23601315

  1. Effects of Na2MoO4 and Na2WO4 on molybdenum and tungsten electrodes for the alkali metal thermoelectric converter (AMTEC)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Wheeler, B. L.; Jeffries-Nakamura, B.; Loveland, M. E.; Bankston, C. P.

    1988-01-01

    The effects of adding Na2MoO4 and Na2WO4 to porous Mo and W electrodes, respectively, on the performance and impedance characteristics of the electrodes in an alkali metal thermoelectric converter (AMTEC) were investigated. It was found that corrosion of the porous electrode by Na2MoO4 or Na2WO4 to form Na2MO3O6 and WO2, respectively, and recrystallization of the Mo or W as the salt evaporates, result in major morphological changes including a loss of columnar structure and a significant increase in porosity. This effect is more pronounced in Na2MoO4/Mo electrodes, due to the lower stability of Na2MoO4.

  2. Na+ Interaction with the Pore of Shaker B K+ Channels

    PubMed Central

    Gómez-Lagunas, Froylán

    2001-01-01

    The Shaker B K+ conductance (GK) collapses (in a reversible manner) if the membrane is depolarized and then repolarized in, 0 K+, Na+-containing solutions (Gómez-Lagunas, F. 1997. J. Physiol. 499:3–15; Gómez-Lagunas, F. 1999. Biophys. J. 77:2988–2998). In this work, the role of Na+ ions in the collapse of GK in 0-K+ solutions, and in the behavior of the channels in low K+, was studied. The main findings are as follows. First, in 0-K+ solutions, the presence of Na+ ions is an important factor that speeds the collapse of GK. Second, external Na+ fosters the drop of GK by binding to a site with a Kd = 3.3 mM. External K+ competes, in a mutually exclusive manner, with Nao+ for binding to this site, with an estimated Kd = 80 ?M. Third, NMG and choline are relatively inert regarding the stability of GK; fourth, with [Ko+] = 0, the energy required to relieve Nai+ block of Shaker (French, R.J., and J.B. Wells. 1977. J. Gen. Physiol. 70:707–724; Starkus, J.G., L. Kuschel, M. Rayner, and S. Heinemann. 2000. J. Gen. Physiol. 110:539–550) decreases with the molar fraction of Nai+ (XNa,i), in an extent not accounted for by the change in ??Na. Finally, when XNa,i = 1, GK collapses by the binding of Nai+ to two sites, with apparent Kds of 2 and 14.3 mM. PMID:11723158

  3. Semi-volatiles at Mercury: Sodium (Na) and potassium (K)

    NASA Technical Reports Server (NTRS)

    Sprague, A.

    1994-01-01

    Several lines of evidence now suggest that Mercury is a planet rich in moderately-volatile elements such as Na and K. Recent mid-infrared spectral observations of Mercury's equatorial and mid-latitude region near 120 degrees mercurian longitude indicate the presence of plagioclase feldspar. Spectra of Mercury's surface exhibit spectral activity similar to labradorite (plagioclase feldspar with NaAlSi3O8: 30-50 percent) and bytownite (NaAlSi3O8: 10-30 percent). These surface studies were stimulated by the relatively large abundance of Na and K observed in Mercury's atmosphere. An enhanced column of K is observed at the longitudes of Caloris Basin and of the antipodal terrain. Extreme heating at these 'hot' longitudes and severe fracturing suffered from the large impact event could lead to enhanced outgassing from surface or subsurface materials. Alternatively, sputtering from a surface enriched in K could be the source of the observed enhancement. Recent microwave measurements of Mercury also give indirect evidence of a mercurian regolith less FeO-rich than the Moon. An anomalously high index of refraction derived from the whole-disk integrated phase curve of Danjon may also be indicative of surface sulfides contributing to a regolith that is moderately volatile-rich. The recent exciting observations of radar-bright spots at high latitudes also indicate that a substance of high volume scattering, like ice, is present in shadowed regions. Other radar-bright spots have been seen at locations of Na enhancements on the atmosphere. All combined, these pieces of evidence point to a planet that is not severely depleted in volatiles or semi-volatiles.

  4. Thermodynamics of the system NaCl-AlCl3

    NASA Astrophysics Data System (ADS)

    Dewing, E. W.

    1981-12-01

    Heat capacities of melts were measured in the range 400 to 1100 K and 0.48 < NAlCl3 < 0.62, the results being expressed by Cp = 40.96 0.0295 T + 2.01 × 10-5 T 2 J K-1 g·atom-1 i.e., AlCl3 contains 4 atoms, and so forth). This equation was used in interpreting literature vapor pressure data. Measurements were made of the emf of the concentration cell 11663_2007_Article_BF02654140_TeX2GIFE1.gif ALleft| {_{AlCl_3 }^{NACl(sat)} } right.left| {_{(Na^ + )}^{Pyrex} } right.left| {_{AlCl_3 }^{NACl(sat)} } right.left| {_{AlCl_3 }^{NACl} } right.left| {AL} right. at temperatures 473 to 623 K, and the results were correlated with the vapor pressure data to yield activities of NaCl and AlCl3. Measurements with a sodium electrode confirmed the accepted values for the free energy of formation of A1C13 within about 1.5 kJ mol-1. The activities were used to analyze the phase diagram. Direct measurement of the eutectic temperature with a concentration-cell technique (which avoids supercooling) gave 386 K; the eutectic composition is 60.0 mol pct A1C13. The standard entropy of NaAlCl4(s) is S{298.15/°} = 199.1 J K-1 mol-1. The free energy for NaAlCl4(l) = NaAlCl4(g) is ?G° = 82740 -63.66T J mol-1 at around 950 K.

  5. Functional identification and characterization of sodium binding sites in Na symporters

    PubMed Central

    Loo, Donald D. F.; Jiang, Xuan; Gorraitz, Edurne; Hirayama, Bruce A.; Wright, Ernest M.

    2013-01-01

    Sodium cotransporters from several different gene families belong to the leucine transporter (LeuT) structural family. Although the identification of Na+ in binding sites is beyond the resolution of the structures, two Na+ binding sites (Na1 and Na2) have been proposed in LeuT. Na2 is conserved in the LeuT family but Na1 is not. A biophysical method has been used to measure sodium dissociation constants (Kd) of wild-type and mutant human sodium glucose cotransport (hSGLT1) proteins to identify the Na+ binding sites in hSGLT1. The Na1 site is formed by residues in the sugar binding pocket, and their mutation influences sodium binding to Na1 but not to Na2. For the canonical Na2 site formed by two –OH side chains, S392 and S393, and three backbone carbonyls, mutation of S392 to cysteine increased the sodium Kd by sixfold. This was accompanied by a dramatic reduction in the apparent sugar and phlorizin affinities. We suggest that mutation of S392 in the Na2 site produces a structural rearrangement of the sugar binding pocket to disrupt both the binding of the second Na+ and the binding of sugar. In contrast, the S393 mutations produce no significant changes in sodium, sugar, and phlorizin affinities. We conclude that the Na2 site is conserved in hSGLT1, the side chain of S392 and the backbone carbonyl of S393 are important in the first Na+ binding, and that Na+ binding to Na2 promotes binding to Na1 and also sugar binding. PMID:24191006

  6. Light-Driven Na+ Pump from Gillisia limnaea: A High-Affinity Na+ Binding Site Is Formed Transiently in the Photocycle

    PubMed Central

    2015-01-01

    A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na+. The absorption spectrum of GLR is insensitive to Na+ at concentrations of ≤3 M. However, very low concentrations of Na+ cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a “Na+-independent” to a “Na+-dependent” photocycle (or photocycle branch) at ∼60 μM Na+. The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na+ concentration. This suggests that a high-affinity Na+ binding site is created transiently after photoexcitation, and entry of Na+ from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na+ is needed for switching the reaction path at lower pH. The data suggest therefore competition between H+ and Na+ to determine the two alternative pathways. The idea that a Na+ binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na+ binds without photoexcitation. Binding of Na+ to the mutant shifts the chromophore maximum to the red like that of H+, which occurs in the photocycle of the wild type. PMID:25375769

  7. Molecular dynamics simulation of aqueous NaF and NaI solutions near a hydrophobic surface.

    PubMed

    Pal, Sandeep; Müller-Plathe, Florian

    2005-04-01

    We present results from molecular dynamics simulation of aqueous solutions of alkali halide salts (NaI and NaF) at the interface with hydrophobic objects. The primary objective of this study is to investigate the structural properties of the salt solutions at the hydrophobic surface. An alkane crystal has been taken as the parent model for a hydrophobic surface. A hexagonal hole was created on it, which was half a nm deep and 2.5 nm wide. The density distributions of different species (water, anions, and cations) are studied as a function of distance from the surface. While iodide prefers the interface, the fluoride ions stay inside the bulk water region. The higher concentration of iodide ions at the interface drags sodium counterions to the interface. It also decreases the water density at the interface because of steric effects of the iodide ions. The number of contacts between the surface carbons and water decreases in the case of NaI solutions but is unchanged for NaF solutions. The orientation of the water-ion and the water-water hydrogen bond vector orientations near the interface is discussed in detail. PMID:16851713

  8. Framework structured Na4Mn4Ti5O18 as an electrode for Na-ion storage hybrid devices.

    PubMed

    Jayakumar, M; Hemalatha, K; Ramesha, K; Prakash, A S

    2015-08-28

    In this study, framework structured Na4Mn4Ti5O18 possessing S-shaped tunnels for sodium intercalation is reported as an electrode for hybrid sodium ion batteries. Galvanostatic cycling of Na4Mn4Ti5O18vs. Na in the voltage region from 1.5 V to 3.95 V exhibits a capacity of 102 mA h g(-1) at 0.1C rate corresponding to a specific capacitance of 149 F g(-1) with a capacity retention of 90% over 50 cycles. The electrochemical analysis using CV measurements revealed the charge storage involving intercalation and pseudocapacitance. For instance, total charge storage of 345 C g(-1) is observed at 0.01 mV s(-1), which is attributed to 63% intercalation and 37% capacitance. Na4Mn4Ti5O18 was also studied for sodium ion storage in an aqueous medium. It delivered a capacity of 36 mA h g(-1) (144 F g(-1)) in the voltage window of 0-0.8 V. PMID:26205120

  9. Interfacial electronic structure of Na deposited on rubrene thin film studied by synchrotron radiation photoemission

    NASA Astrophysics Data System (ADS)

    Wei, Ching-Hsuan; Cheng, Chiu-Ping; Lin, Hong-Cheu; Pi, Tun-Wen

    2015-12-01

    The electronic structure of rubrene doped with various concentrations of Na was studied by synchrotron-radiation photoemission. Three stages of development were found with increasing Na concentration; Na penetrating deep into the organic film, followed by development of gap states, and ended with a metallic Na film. The charge transfer from Na to rubrene resulted in a vacuum-level shift. By doping Na into rubrene, we could control the IP of the organic molecule, which is favorable for application in organic semiconductor devices.

  10. Genetic variation of the alpha subunit of the epithelial Na+ channel influences exhaled Na+ in healthy humans.

    PubMed

    Foxx-Lupo, William T; Wheatley, Courtney M; Baker, Sarah E; Cassuto, Nicholas A; Delamere, Nicholas A; Snyder, Eric M

    2011-12-15

    Epithelial Na(+) channels (ENaC) are located in alveolar cells and are important in ?(2)-adrenergic receptor-mediated lung fluid clearance through the removal of Na(+) from the alveolar airspace. Previous work has demonstrated that genetic variation of the alpha subunit of ENaC at amino acid 663 is important in channel function: cells with the genotype resulting in alanine at amino acid 663 (A663) demonstrate attenuated function when compared to genotypes with at least one allele encoding threonine (T663, AT/TT). We sought to determine the influence of genetic variation at position 663 of ENaC on exhaled Na(+) in healthy humans. Exhaled Na(+) was measured in 18 AA and 13 AT/TT subjects (age=27±8 years vs. 30±10 years; ht.=174±12 cm vs. 171±10 cm; wt.=68±12 kg vs. 73±14 kg; BMI=22±3 kg/m(2) vs. 25±4 kg/m(2), mean±SD, for AA and AT/TT, respectively). Measurements were made at baseline and at 30, 60 and 90 min following the administration of a nebulized ?(2)-agonist (albuterol sulfate, 2.5 mg diluted in 3 ml normal saline). The AA group had a higher baseline level of exhaled Na(+) and a greater response to ?(2)-agonist stimulation (baseline=3.1±1.8 mmol/l vs. 2.3±1.5 mmol/l; 30 min-post=2.1±0.7 mmol/l vs. 2.2±0.8 mmol/l; 60 min-post=2.0±0.5 mmol/l vs. 2.3±1.0 mmol/l; 90 min-post=1.8±0.8 mmol/l vs. 2.6±1.5 mmol/l, mean±SD, for AA and AT/TT, respectively, p<0.05). The results are consistent with the notion that genetic variation of ENaC influences ?(2)-adrenergic receptor stimulated Na(+) clearance in the lungs, as there was a significant reduction in exhaled Na(+) over time in the AA group. PMID:21889619

  11. INTEX-NA: Intercontinental Chemical Transport Experiment - North America

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Jacob, D.; Pfister, L.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    INTEX-NA is an integrated atmospheric chemistry field experiment to be performed over North America using the NASA DC-8 and P-3B aircraft as its primary platforms. It seeks to understand the exchange of chemicals and aerosols between continents and the global troposphere. The constituents of interest are ozone and its precursors (hydrocarbons, NOX and HOX), aerosols, and the major greenhouse gases (CO2, CH4, N2O). INTEX-NA will provide the observational database needed to quantify inflow, outflow, and transformations of chemicals over North America. INTEX-NA is to be performed in two phases. Phase A will take place during the period of May-August 2004 and Phase B during March-June 2006. Phase A is in summer when photochemistry is most intense and climatic issues involving aerosols and carbon cycle are most pressing, and Phase B is in spring when Asian transport to North America is at its peak. INTEX-NA will coordinate its activities with concurrent measurement programs including satellites (e. g. Terra, Aura, Envisat), field activities undertaken by the North American Carbon Program (NACP), and other U.S. and international partners. However, it is being designed as a 'stand alone' mission such that its successful execution is not contingent on other programs. Synthesis of the ensemble of observation from surface, airborne, and space platforms, with the help of global/regional models is an important It is anticipated that approximately 175 flight hours for each of the aircraft (DC-8 and P-3B) will be required for each Phase. Principal operational sites are tentatively selected to be Bangor, ME; Wallops Island, VA; Seattle, WA; Rhinelander, WI; Lancaster, CA; and New Orleans, LA. These coastal and continental sites can support large missions and are suitable for INTEX-NA objectives. The experiment will be supported by forecasts from meteorological and chemical models, satellite observations, surface networks, and enhanced O3,-sonde releases. In addition to characterizing Atlantic-outflow and Pacific-inflow, INTEX-NA will characterize air masses transported between the U.S., Canada, and Mexico. INTEX-NA will be the first continental scale inflow, outflow, and transformation experiment to be performed over North America. It will provide the most comprehensive observational data set to date to understand the O3/NOX/HOX/aerosol photochemical system and the carbon cycle. One of the critical needs of the carbon cycle research is to obtain large-scale vertical and horizontal concentration gradients of CO2, throughout the troposphere over continental source/sink regions. INTEX-NA is ideally suited to perform this role. Coastal and continental operational sites will allow us to develop a curtain profile of greenhouse gases (e. g. CO2,) and other key pollutants across North America. Such information is central to our quantitative understanding of chemical budgets on the continental scale. We expect to provide a number of satellite under-flights over land and water to test and validate observations from the appropriate satellite platform (e. g. Aura). We plan to develop strong collaborations with other national and international observational programs. Results from INTEX-NA should directly benefit the development of environmental policy for air quality and climate change.

  12. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2015-03-01

    NaCl in fresh sea-salt aerosol (SSA) particles can partially or fully react with atmospheric NOx/HNO3, so internally mixed NaCl and NaNO3 aerosol particles can co-exist over a wide range of mixing ratios. Laboratory-generated, micrometer-sized NaCl and NaNO3 mixture particles at 10 mixing ratios (mole fractions of NaCl (XNaCl) = 0.1 to 0.9) were examined systematically to observe their hygroscopic behavior, derive experimental phase diagrams for deliquescence and efflorescence, and understand the efflorescence mechanism. During the humidifying process, aerosol particles with the eutonic composition (XNaCl = 0.38) showed only one phase transition at their mutual deliquescence relative humidity (MDRH) of 67.9 (±0.5)% On the other hand, particles with other mixing ratios showed two distinct deliquescence transitions; i.e., the eutonic component dissolved at MDRH, and the remainder in the solid phase dissolved completely at their DRHs depending on the mixing ratios, resulting in a phase diagram composed of four different phases, as predicted thermodynamically. During the dehydration process, NaCl-rich particles (XNaCl > 0.38) showed a two stage efflorescence transition: the first stage was purely driven by the homogeneous nucleation of NaCl and the second stage at the mutual efflorescence RH (MERH) of the eutonic components, with values in the range of 30.0-35.5%. Interestingly, aerosol particles with the eutonic composition (XNaCl = 0.38) also showed two-stage efflorescence, with NaCl crystallizing first followed by heterogeneous nucleation of the remaining NaNO3 on the NaCl seeds. NaNO3-rich particles (XNaCl ? 0.3) underwent single-stage efflorescence transitions at ERHs progressively lower than the MERH because of the homogeneous nucleation of NaCl and the almost simultaneous heterogeneous nucleation of NaNO3 on the NaCl seeds. SEM/EDX elemental mapping indicated that the effloresced NaCl-NaNO3 particles at all mixing ratios were composed of a homogeneously crystallized NaCl moiety in the center, surrounded either by the eutonic component (for XNaCl > 0.38) or NaNO3 (for XNaCl ? 0.38). During the humidifying or dehydration process, the amount of eutonic composed part drives particle/droplet growth or shrinkage at the MDRH or MERH (second ERH), respectively, and the amount of pure salts (NaCl or NaNO3 in NaCl- or NaNO3-rich particles, respectively) drives the second DRHs or first ERHs, respectively. Therefore, their behavior can be a precursor to the optical properties and direct radiative forcing for these atmospherically relevant mixture particles representing the coarse, reacted inorganic SSAs. In addition, the NaCl-NaNO3 mixture aerosol particles can maintain an aqueous phase over a wider RH range than pure NaCl particles as SSA surrogate, making their heterogeneous chemistry more probable.

  13. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2014-12-01

    NaCl in fresh sea-salt aerosol (SSA) particles can partially or fully react with atmospheric NOx / HNO3, so internally mixed NaCl and NaNO3 aerosol particles can co-exist over a wide range of mixing ratios. Laboratory-generated, micrometer-sized NaCl and NaNO3 mixture particles at ten mixing ratios (mole fractions of NaCl (XNaCl) = 0.1 to 0.9) were examined systematically to observe their hygroscopic behavior, derive experimental phase diagrams for deliquescence and efflorescence, and understand the efflorescence mechanism. During the humidifying process, aerosol particles with the eutonic composition (XNaCl = 0.38) showed only one phase transition at their mutual deliquescence relative humidity (MDRH) of 67.9(± 0.5)%. On the other hand, particles with other mixing ratios showed two distinct deliquescence transitions, i.e., the eutonic component dissolved at MDRH and the remainder in the solid phase dissolved completely at their DRHs depending on the mixing ratios, resulting in a phase diagram composed of four different phases, as predicted thermodynamically. During the dehydration process, NaCl-rich particles (XNaCl > 0.38) showed two-stage efflorescence transitions: the first stage was purely driven by the homogeneous nucleation of NaCl and the second stage at the mutual efflorescence RH (MERH) of the eutonic components, with values in the range of 30.0-35.5%. Interestingly, aerosol particles with the eutonic composition (XNaCl = 0.38) also showed two-stage efflorescence with NaCl crystallizing first followed by heterogeneous nucleation of the remaining NaNO3 on the NaCl seeds. NaNO3-rich particles XNaCl ? 0.3) underwent single-stage efflorescence transitions at ERHs progressively lower than the MERH, because of the homogeneous nucleation of NaCl and the almost simultaneous heterogeneous nucleation of NaNO3 on the NaCl seeds. SEM/EDX elemental mapping indicated that the effloresced NaCl-NaNO3 particles at all mixing ratios were composed of a homogeneously crystallized NaCl moiety in the center, surrounded either by the eutonic component (for XNaCl > 0.38) or NaNO3 (for XNaCl ? 0.38). During the humidifying or dehydration process, the amount of eutonic composed part drives particle/droplet growth or shrinkage at the MDRH or MERH (second ERH), respectively, and the amount of remnant pure salts (NaCl or NaNO3 in NaCl- or NaNO3-rich particles, respectively) drives the second DRHs or first ERHs, respectively. Therefore, their behavior can be a precursor to the optical properties and direct radiative forcing for these atmospherically relevant mixture particles representing the coarse, reacted inorganic SSAs. In addition, the NaCl-NaNO3 mixture aerosol particles can maintain an aqueous phase over a wider RH range than the genuine SSA surrogate (i.e., pure NaCl particles), making their heterogeneous chemistry more probable.

  14. The Na(x) Channel: What It Is and What It Does.

    PubMed

    Noda, Masaharu; Hiyama, Takeshi Y

    2015-08-01

    Na(x), which is preferentially expressed in the glial cells of sensory circumventricular organs in the brain, is a sodium channel that is poorly homologous to voltage-gated sodium channels. We previously reported that Na(x) is a sodium concentration ([Na(+)])-sensitive, but not a voltage-sensitive channel that is critically involved in body-fluid homeostasis. Na(x)-knockout mice do not stop ingesting salt even when dehydrated and transiently develop hypernatremia. [Na(+)] in body fluids is strictly controlled at 135 to 145 mM in mammals. Although the set point must be within this range, Na(x) was shown to have a threshold value of ~150 mM for extracellular [Na(+)] ([Na(+)]o) for activation in vitro. Therefore, the [Na(+)]o dependency of Na(x) in vivo is presumably modified by an as yet unidentified mechanism. We recently demonstrated that the [Na(+)]o dependency of Na(x) in the subfornical organ was adjusted to the physiological range by endothelin-3. Pharmacological experiments revealed that endothelin receptor B signaling was involved in this modulation of Na(x) gating through protein kinase C and ERK1/2 activation. In addition, we identified a case of essential hypernatremia caused by autoimmunity to Na(x). Occurrence of a ganglioneuroma composed of Schwann-like cells that robustly expressed Na(x) was likely to induce the autoimmune response in this patient. An intravenous injection of the immunoglobulin fraction of the patient's serum, which contained anti-Na(x) antibodies, into mice reproduced the patient's symptoms. This review provides an overview of the physiological functions of Na(x) by summarizing our recent studies. PMID:24962095

  15. Heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(s)

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Timonen, Raimo S.; Keyser, Leon F.; Yung, Yuk L.

    1995-01-01

    The heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) (eq 1) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(S) (eq 2) were investigated over the temperature range 223-296 K in a flow-tube reactor coupled to a quadrupole mass spectrometer. Either a chemical ionization mass spectrometer (CIMS) or an electron-impact ionization mass spectrometer (EIMS) was used to provide suitable detection sensitivity and selectivity. In order to mimic atmospheric conditions, partial pressures of HNO3 and N2O5 in the range 6 x 10(exp -8) - 2 x 10(exp -6) Torr were used. Granule sizes and surface roughness of the solid NaCl substrates were determined by using a scanning electron microscope. For dry NaCl substrates, decay rates of HNO3 were used to obtain gamma(1) = 0.013 +/- 0.004 (1sigma) at 296 K and > 0.008 at 223 K, respectively. The error quoted is the statistical error. After all corrections were made, the overall error, including systematic error, was estimated to be about a factor of 2. HCl was found to be the sole gas-phase product of reaction 1. The mechanism changed from heterogeneous reaction to predominantly physical adsorption when the reactor was cooled from 296 to 223 K. For reaction 2 using dry salts, gamma(2) was found to be less than 1.0 x 10(exp -4) at both 223 and 296 K. The gas-phase reaction product was identified as ClNO2 in previous studies using an infrared spectrometer. An enhancement in reaction probability was observed if water was not completely removed from salt surfaces, probably due to the reaction of N2O5(g) + H2O(s) yields 2HNO3(g). Our results are compared with previous literature values obtained using different experimental techniques and conditions. The implications of the present results for the enhancement of the hydrogen chloride column density in the lower stratosphere after the El Chichon volcanic eruption and for the chemistry of HCl and HNO3 in the marine troposphere are discussed.

  16. Validation of estimating food intake in gray wolves by 22Na turnover

    USGS Publications Warehouse

    DelGiudice, G.D.; Duquette, L.S.; Seal, U.S.; Mech, L.D.

    1991-01-01

    We studied 22sodium (22Na) turnover as a means of estimating food intake in 6 captive, adult gray wolves (Canis lupus) (2 F, 4 M) over a 31-day feeding period. Wolves were fed white-tailed deer (Odocoileus virginianus) meat only. Mean mass-specific exchangeable Na pool was 44.8 .+-. 0.7 mEq/kg; there was no differeence between males and females. Total exchangeable Na was related (r2 = 0.85, P < 0.009) to body mass. Overall, 22Na turnover overestimated Na intake by 9.8 .+-. 2.4% after 32 days. Actual Na intake was similar in males and females; however, Na turnover (P < 0.05) and the discrepancy (P < 0.01) between turnover and actual Na intake were greater in females than males. From Day 8 to the end of the study, the absolute difference (mEq) between Na intake and Na turnover remained stable. Sodium turnover (mEq/kg/day) was a reliable (r2 = 0.91, P < 0.001) estimator of food consumption (g/kg/day) in wolves over a 32-day period. Sampling blood and weighing wolves every 1-4 days permitted identification of several potential sources of error, including changes in size of exchangeable Na pools, exchange of 22Na with gastrointestinal and bone Na, and rapid loss of the isotope by urinary excretion.

  17. [Effect of NaHCO3 stress on uptake and transportation of Na+, K+ and Ca2+ in three shrub species].

    PubMed

    Mao, Gui-Lian; Li, Guo-Qi; Xu, Xing; Zhang, Xin-Xue

    2014-03-01

    We detected absorption and transportation of ions in the leaves of Atriplex nummularia, Atriplex canescens and Lycium barbarum under NaHCO3 stress (300 mmol x L(-1)) by using atomic absorption spectrophotometry and non-invasive ion flux measurement. The results showed that leaves of the A. nummularia, A. canescens and L. barbarum exhibited a high capacity to induce the Na+ accumulation when compared with that of control. The higher the concentration of NaHCO3 treatment, the more Na+ accumulated in the leaves of the three plants under experimental condition. L. barbarum showed a higher Na+ efflux in the mesophyll cells, whereas A. nummularia and A. canescens showed a relative lower efflux. A lower K+ content and a higher Na+/K+ ratio were detected in leaves of A. nummularia and L. barbarum. However, a higher K+ content and a lower Na+/K+ ratio were seen in leaves of A. canescens. Due to induction of Ca2+ efflux under the NaHCO3 treatment, a lower Ca2+ content and a higher Na+/Ca2+ ratio were observed in L. barbarum. On the contrary, a higher Ca2+ influx was observed in A. nummularia and A. canescens. These results suggested that the three shrubs species had different Na+ segmentation strategies. The accumulation of Na+ inhibited Ca2+ absorption in leaves of L. barbarum, while in the A. nummularia and A. canescens, Ca2+ influx induced [Ca2+]cyt which preserved a less-depolarized PM and then inhibited K efflux. The maintaining of cellular K+/Na+ homeostasis in A. nummularia and A. canescens might be achieved by the induction of [Ca2+]cyt under the NaHCO3 treatment. PMID:24984488

  18. Phospholemman overexpression inhibits Na+-K+-ATPase in adult rat cardiac myocytes: relevance to decreased Na+ pump activity in postinfarction myocytes.

    PubMed

    Zhang, Xue-Qian; Moorman, J Randall; Ahlers, Belinda A; Carl, Lois L; Lake, Douglas E; Song, Jianliang; Mounsey, J Paul; Tucker, Amy L; Chan, Yiu-Mo; Rothblum, Lawrence I; Stahl, Richard C; Carey, David J; Cheung, Joseph Y

    2006-01-01

    Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postmyocardial infarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by two- and fourfold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared with control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P < 0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ ([K+]o) concentrations. From -70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased V(max) without appreciable changes in K(m) for Na+ and K+ in PLM-overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression because there were no changes in either protein or messenger RNA levels of either alpha1- or alpha2-isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM coimmunoprecipitated with alpha-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered V(max) but not K(m) of Na+-K+-ATPase in postinfarction rat myocytes. PMID:16195392

  19. Sequential growth of sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb core-shell-shell nanoparticles for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Peng, Huang-Yong; Ding, Bin-Bin; Ma, Yin-Chu; Sun, Shi-Qi; Tao, Wei; Guo, Yan-Chuan; Guo, Hui-Chen; Yang, Xian-Zhu; Qian, Hai-Sheng

    2015-12-01

    Upconversion (UC) nanostructures have attracted much interest for their extensive biological applications. In this work, we describe a sequential synthetic route to prepare sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb core-shell upconversion nanoparticles. The as-prepared products were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM, JEM 2100F), respectively. The as-prepared core-shell nanoparticles of NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb are composed of elliptical nanoparticles with a length of 80 nm and width of 42 nm, which show efficient upconversion fluorescence excited at 808 nm indicating the formation of core-shell-shell sandwiched nanostructures. In addition, the as-prepared sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb core-shell upconversion nanoparticles also show strong upconversion fluorescence excited at 980 nm. Amphiphilic mPEG2k-b-PEBEP6K copolymers (denoted as PPE) were chosen to transfer these hydrophobic UCNPs into the aqueous phase for biological application. In vitro photodynamic therapy of cancer cells show that the viability of cells incubated with the nanoparticles loaded with MC 540 was significantly lower as compared to the nanoparticles without photosensitizers exposed to NIR laser.

  20. Optically stimulated luminescence in doped NaF.

    PubMed

    Gaikwad, S U; Patil, R R; Kulkarni, M S; Bhatt, B C; Moharil, S V

    2016-05-01

    OSL in doped NaF is studied. Study shows that NaF:Mg,Cu,P phosphor possess good OSL properties having sensitivity comparable to that of commercially available Al2O3:C (Landauer Inc.). For the luminescence averaged over 3s the obtained OSL is 37% of that commercial available Al2O3:C. Of the several phosphors investigated, phosphor with impurities concentration Mg(0.01mol%), Cu(0.2mol%), P(1mol%) shows good OSL sensitivity good linearity in the 10mGy to 1Gy dose range and negligible fading. This sample shows a intense single TL peak around 350°C which gets depleted by 14% after the OSL readout. This imply that maximum OSL is coming from deep traps giving stability to the signal. The ease of preparation along with other good OSL properties will make this phosphor suitable for radiation dosimetry applications using OSL. PMID:26926379

  1. Cation Transport in Li+ and Na+ Rich Antiperovskites

    NASA Astrophysics Data System (ADS)

    Howard, John; Daemen, Luke; Zhao, Yusheng; LANL Team; UNLV Team

    2014-03-01

    A large number of compounds possessing the perovskite crystal structure demonstrate interesting properties such as ferroelectricity, magnetoresistance, and superconductivity. In this study, we present findings on a new class of materials, namely Li+ and Na+ rich antiperovskites, with emphasis on cation transport for solid state battery applications. The electrolytes have the general formula A3 BX where A is a Li+ or Na+ cation, B is an O2- or S2- anion, and X is a Cl- or Br- anion; mixed compositions were also studied. X-ray diffraction techniques were used for phase identification, sample purity, and unit cell refinement. In each case, the materials crystallize in a cubic unit cell with space group Pm 3 m . The ionic conductivity was determined for each material as a function of temperature using impedance spectroscopy methods. Activation energies for cation diffusion were determined by fitting the conductivity data to the Arrhenius equation ? = ?0/T e -Ea /kB T .

  2. First principles molecular dynamics of molten NaCl

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-03-01

    First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.

  3. Maui mesosphere and lower thermosphere (MALT) Na lidar enterprise

    NASA Astrophysics Data System (ADS)

    Carlson, Chad G.; Swenson, Gary R.; Dragic, Peter; Liu, Alan

    2005-10-01

    Na Wind/Temperature lidar offers a method to study the dynamics and thermal structure of the mesosphere and lower thermosphere (MALT) through Doppler methods. The University of Illinois system has been operated at both the USAF Starfire Optical Range in Albuquerque, NM (94, 98-00') and at the USAF AMOS Maui facilities with receiving mirrors that are 3.5 m in diameter. An autonomous receiving system is being developed which will provide unrestricted and continuous operational capabilities. The bi-static operational receivers will be coupled with multiple fibers so that Na (589 nm) returns from the MALT region and Rayleigh (355 nm) returns from the stratosphere and mesosphere can be received simultaneously. The system will be described with attention to increased efficiencies in the receiver.

  4. The NA62 liquid Krypton calorimeter's new readout system

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Fantechi, R.; Farthouat, P.; Lamanna, G.; Rouet, J.; Ryjov, V.; Venditti, S.

    2014-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the experiment photon-veto system; to cope with the new requirements, the back-end electronics of the LKr had to be completely renewed. Due to the huge number of the calorimeter readout channels ( ~ 14 K) and the maintenance requirement over 10 years of the experiment lifetime, the decision to sub-contract the development and production to industry was taken in 2011. This paper presents the primary test results of the Calorimeter REAdout Module (CREAM) [3] prototype delivered by the manufacturer in March 2013. All essential features, analog performance, data processing and readout, are covered.

  5. Robert K. Crane—Na+-glucose cotransporter to cure?

    PubMed Central

    Hamilton, Kirk L.

    2013-01-01

    Dr. Robert K. Crane made major contributions to our understanding of carbohydrate metabolism and transport of the intestine over a very long and productive career. This Perspective examines, briefly, his early life and academic positions, but more importantly, this Perspective highlights his contributions to the understanding of coupled Na+-glucose absorption by the small intestine. I discuss how his early hypothesis of a “cotransport” of sodium and glucose ushered in and provided the physiological explanation for the clinical treatment of acute diarrhea and cholera when using oral rehydration therapy (ORT). ORT saves millions of lives each year. Certainly, humankind is better off because of Crane's hypothesis of the Na+-glucose cotransporter that he put forth over 50 years ago? PMID:23525627

  6. Study of the K±??±?? decay by the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Lazzeroni, C.; Romano, A.; Ceccucci, A.; Danielsson, H.; Falaleev, V.; Gatignon, L.; Goy Lopez, S.; Hallgren, B.; Maier, A.; Peters, A.; Piccini, M.; Riedler, P.; Frabetti, P. L.; Gersabeck, E.; Kekelidze, V.; Madigozhin, D.; Misheva, M.; Molokanova, N.; Movchan, S.; Potrebenikov, Yu.; Shkarovskiy, S.; Zinchenko, A.; Rubin, P.; Baldini, W.; Cotta Ramusino, A.; Dalpiaz, P.; Fiorini, M.; Gianoli, A.; Norton, A.; Petrucci, F.; Savrié, M.; Wahl, H.; Bizzeti, A.; Bucci, F.; Iacopini, E.; Lenti, M.; Veltri, M.; Antonelli, A.; Moulson, M.; Raggi, M.; Spadaro, T.; Eppard, K.; Hita-Hochgesand, M.; Kleinknecht, K.; Renk, B.; Wanke, R.; Winhart, A.; Winston, R.; Bolotov, V.; Duk, V.; Gushchin, E.; Ambrosino, F.; Di Filippo, D.; Massarotti, P.; Napolitano, M.; Palladino, V.; Saracino, G.; Anzivino, G.; Imbergamo, E.; Piandani, R.; Sergi, A.; Cenci, P.; Pepe, M.; Costantini, F.; Doble, N.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.; Balev, S.; Collazuol, G.; DiLella, L.; Gallorini, S.; Goudzovski, E.; Lamanna, G.; Mannelli, I.; Ruggiero, G.; Cerri, C.; Fantechi, R.; Kholodenko, S.; Kurshetsov, V.; Obraztsov, V.; Semenov, V.; Yushchenko, O.; D'Agostini, G.; Leonardi, E.; Serra, M.; Valente, P.; Fucci, A.; Salamon, A.; Bloch-Devaux, B.; Peyaud, B.; Engelfried, J.; Coward, D.; Kozhuharov, V.; Litov, L.; Arcidiacono, R.; Bifani, S.; Biino, C.; Dellacasa, G.; Marchetto, F.; Numao, T.; Retière, F.

    2014-05-01

    A study of the dynamics of the rare decay K±??±?? has been performed on a sample of 232 decay candidates, with an estimated background of 17.4±1.1 events, collected by the NA62 experiment at CERN in 2007. The results are combined with those from a measurement conducted by the NA48/2 Collaboration at CERN. The combined model-independent branching ratio in the kinematic range z=(>0.2 is BMI(z>0.2)=(0.965±0.063)×10-6, and the combined branching ratio in the full kinematic range assuming a Chiral Perturbation Theory description is B(K)=(1.003±0.056)×10-6. A detailed comparison of the results with the previous measurements is performed.

  7. The NA62 Liquid Krypton calorimeter readout architecture

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Fantechi, R.; Farthouat, P.; Ryjov, V.; De Simone, N.; Venditti, S.

    2016-01-01

    The NA62 experiment [1] at the CERN SPS (Super Proton Synchrotron) accelerator studies the ultra-rare decays of charged kaons. The high-resolution Liquid Krypton (LKr) electromagnetic calorimeter of the former NA48 experiment [2] is a key component of the experiment photon-veto system. The new LKr readout system comprises 14,000 14-bit ADC acquisition channels, 432× 1 Gbit Ethernet data request and readout links routed by 28× 10 Gbit network switches to the experiment computer farm, and timing, trigger and control (TTC) distribution system. This paper presents the architecture of the LKr readout and TTC systems, the overall performance and the first successfully collected experiment physics data.

  8. Imaging performance of the EUV high NA anamorphic system

    NASA Astrophysics Data System (ADS)

    van Ingen Schenau, Koen; Bottiglieri, Gerardo; van Schoot, Jan; Neumann, Jens-Timo; Roesch, Matthias

    2015-09-01

    This paper presents the predicted imaging performance for an anamorphic EUV high NA (>0.5) exposure system with a 4x magnification in X orientation and a 8x magnification in Y orientation. It has a half field size with which the productivity requirements can be maintained. The main findings of the study are that horizontal and vertical features have very similar process window sizes despite magnification difference. A new definition of the Mask Error Factor (MEF) is introduced that is more relevant for anamorphic imaging; it shows that reticle CD errors have 2x larger impact for vertical compared to horizontal features. For dark field horizontal two-bar trenches relatively small mask induced focus shift was observed compared to the 0.33NA case, probably due to the relatively small Mask Angle of Incidence in the Y orientation with the 8x magnification. Finally a Ni type absorber has potential to further improve imaging performance.

  9. Na+ accumulation in root symplast of sunflower plants exposed to moderate salinity is transpiration-dependent.

    PubMed

    Quintero, José Manuel; Fournier, José María; Benlloch, Manuel; Rodríguez-Navarro, Alonso

    2008-08-25

    Twenty-day-old sunflower plants (Helianthus annuus L. cv Sun-Gro 380) grown hydroponically under controlled conditions were used to study the effect of transpiration on Na(+) compartmentalization in roots. The plants were exposed to low Na(+) concentrations (25 mM NaCl) and different environmental humidity conditions over a short time period (8.5 h). Under these conditions, Na(+) was accumulated primarily in the root, but only the Na(+) accumulated in the root symplast was dependent on transpiration, while the Na(+) accumulated in both the shoot and the root apoplast exhibited a low transpiration dependence. Moreover, Na(+) content in the root apoplast was reached quickly (0.25 h) and increased little with time. These results suggest that, in sunflower plants under moderate salinity conditions, Na(+) uptake in the root symplast is mediated by a transport system whose activity is enhanced by transpiration. PMID:18166246

  10. A New Na(+) -Dependent RNA-Cleaving DNAzyme with over 1000-fold Rate Acceleration by Ethanol.

    PubMed

    Zhou, Wenhu; Saran, Runjhun; Chen, Qingyun; Ding, Jinsong; Liu, Juewen

    2016-01-01

    Enzymes working in organic solvents are important for analytical chemistry, catalysis, and mechanistic studies. Although a few protein enzymes are highly active in organic solvents, little is known regarding nucleic acid-based enzymes. Herein, we report the first RNA-cleaving DNAzyme, named EtNa, that works optimally in concentrated organic solvents containing only monovalent Na(+) . The EtNa DNAzyme has a rate of 2.0?h(-1) in 54?% ethanol (with 120?mm NaCl and no divalent metal ions), and a Kd of 21?mm Na(+) . It retains activity even in 72?% ethanol as well as in DMSO. With 4?mm Na(+) , the rate in 54?% ethanol is >1000-fold higher than that in water. We also demonstrated the use of EtNa to measuring the ethanol content in alcoholic drinks. In total, this DNAzyme has three unique features: divalent metal independent activity, Na(+) selectivity among monovalent metals, and acceleration by organic solvents. PMID:26581341

  11. Preferential Interaction of Na+ over K+ to Carboxylate-functionalized Silver Nanoparticles

    EPA Science Inventory

    Elucidating mechanistic interactions between specific ions (Na+/ K+) and nanoparticle surfaces to alter particle stability in polar media has received little attention. We investigated relative preferential binding of Na+ and K+ to carboxylate-functionalized silver nanoparticles ...

  12. Synthesis of NaB5C bulk ceramics by reaction sintering

    NASA Astrophysics Data System (ADS)

    Morito, Haruhiko; Anzai, Jun; Kimura, Takuma; Yamane, Hisanori

    2015-09-01

    Bulk ceramics of NaB5C were prepared by heating compact bodies of amorphous boron (B) and carbon black (C) powders with Na at 1073 K. The obtained bulk ceramics retained the rectangular shape of their original compacts. The obtained samples had a density of 80.1 ± 0.6% of the theoretical density of NaB5C. NaB5C bulk ceramics were also prepared by heating compacts comprised of B and C powders and Na. The addition of Na to the starting compact bodies increased the relative bulk density to 83.5 ± 0.4%. A fracture bending strength of 195 MPa was measured for the NaB5C bulk sample prepared from the compact of Na, B, and C.

  13. A Versatile Low Temperature Synthetic Route to Zintl Phase Precursors: Na4Si4, Na4Ge4 and K4Ge4 as Examples

    PubMed Central

    Ma, Xuchu; Xu, Fen; Atkins, Tonya; Goforth, Andrea M.; Neiner, Doinita; Navrotsky, Alexandra; Kauzlarich, Susan M.

    2010-01-01

    Na4Si4 and Na4Ge4 are ideal chemical precursors for inorganic clathrate structures, clusters, and nanocrystals. The monoclinic Zintl phases, Na4Si4 and Na4Ge4, contain isolated homo-tetrahedranide [Si4]4? and [Ge4]4? clusters surrounded by alkali metal cations. In this study, a simple scalable route has been applied to prepare Zintl phases of composition Na4Si4 and Na4Ge4 using the reaction between NaH and Si or Ge at low temperature (420 °C for Na4Si4 and 270 °C for Na4Ge4). The method was also applied to K4Ge4, using KH and Ge as raw materials, to show the versatility of this approach. The influence of specific reaction conditions on the purity of these Zintl phases has been studied by controlling five factors: the method of reagent mixing (manual or ball milled), the stoichiometry between raw materials, the reaction temperature, the heating time and the gas flow rate. Moderate ball-milling and excess NaH or KH facilitate the formation of pure Na4Si4, Na4Ge4 or K4Ge4 at 420 °C (Na4Si4) or 270 °C (both M4Ge4 compounds, M = Na, K). TG/DSC analysis of the reaction of NaH and Ge indicates that ball milling reduces the temperature for reaction and confirms the formation temperature. This method provides large quantities of high quality Na4Si4 and Na4Ge4 without the need for specialized laboratory equipment, such as Schlenk lines, niobium/tantalum containers, or an arc welder, thereby expanding the accessibility and chemical utility of these phases by making them more convenient to prepare. This new synthetic method may also be extended to lithium-containing Zintl phases (LiH is commercially available) as well as to alkali metal-tetrel Zintl compounds of other compositions, e.g. K4Ge9. PMID:19921060

  14. Cosmogenic radionuclide production in NaI(Tl) crystals

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2015-02-01

    The production of long-lived radioactive isotopes in materials due to the exposure to cosmic rays on Earth surface can be an hazard for experiments demanding ultra-low background conditions, typically performed deep underground. Production rates of cosmogenic isotopes in all the materials present in the experimental set-up, as well as the corresponding cosmic rays exposure history, must be both well known in order to assess the relevance of this effect in the achievable sensitivity of a given experiment. Although NaI(Tl) scintillators are being used in experiments aiming at the direct detection of dark matter since the first nineties of the last century, very few data about cosmogenic isotopes production rates have been published up to date. In this work we present data from two 12.5 kg NaI(Tl) detectors, developed in the frame of the ANAIS project, which were installed inside a convenient shielding at the Canfranc Underground Laboratory just after finishing surface exposure to cosmic rays. The very fast start of data taking allowed to identify and quantify isotopes with half-lives of the order of tens of days. Initial activities underground have been measured and then production rates at sea level have been estimated following the history of detectors; values of about a few tens of nuclei per kg and day for Te isotopes and 22Na and of a few hundreds for I isotopes have been found. These are the first direct estimates of production rates of cosmogenic nuclides in NaI crystals. A comparison of the so deduced rates with calculations using typical cosmic neutron flux at sea level and a carefully selected description of excitation functions will be also presented together with an estimate of the corresponding contribution to the background at low and high energies, which can be relevant for experiments aiming at rare events searches.

  15. Meeting Specifications Of Antares NaCl Laser Windows

    NASA Astrophysics Data System (ADS)

    Straughan, V. E.; Krus, D. J.

    1981-09-01

    This is a review article describing some of the techniques employed in meeting certain specifications for the fabrication of Antares 18" diameter NaC1 laser windows. Specifically, a pressure test for strength and window stability is described as well as a method for non-contact measurement of wedge angle and wedge direction utilizing a Fizeau 18" interferometer. Also the procedure followed at Harshaw in the mounting of windows is outlined.

  16. Prospects for observation at CERN in NA62

    NASA Astrophysics Data System (ADS)

    Hahn, F.; the NA62 Collaboration; Aglieri Rinella, G.; Aliberti, R.; Ambrosino, F.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Azhinenko, I.; Balev, S.; Bendotti, J.; Biagioni, A.; Biino, C.; Bizzeti, A.; Blazek, T.; Blik, A.; Bloch-Devaux, B.; Bolotov, V.; Bonaiuto, V.; Bragadireanu, M.; Britton, D.; Britvich, G.; Brook, N.; Bucci, F.; Butin, F.; Capitolo, E.; Capoccia, C.; Capussela, T.; Carassiti, V.; Cartiglia, N.; Cassese, A.; Catinaccio, A.; Cecchetti, A.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Chikilev, O.; Ciaranfi, R.; Collazuol, G.; Cooke, P.; Cooper, P.; Corradi, G.; Cortina Gil, E.; Costantini, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; Degrange, J.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Dixon, N.; Doble, N.; Duk, V.; Elsha, V.; Engelfried, J.; Enik, T.; Falaleev, V.; Fantechi, R.; Federici, L.; Fiorini, M.; Fry, J.; Fucci, A.; Fulton, L.; Gallorini, S.; Gatignon, L.; Gianoli, A.; Giudici, S.; Glonti, L.; Goncalves Martins, A.; Gonnella, F.; Goudzovski, E.; Guida, R.; Gushchin, E.; Hahn, F.; Hallgren, B.; Heath, H.; Herman, F.; Hutchcroft, D.; Iacopini, E.; Jamet, O.; Jarron, P.; Kampf, K.; Kaplon, J.; Karjavin, V.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khudyakov, A.; Kiryushin, Yu; Kleinknecht, K.; Kluge, A.; Koval, M.; Kozhuharov, V.; Krivda, M.; Kudenko, Y.; Kunze, J.; Lamanna, G.; Lazzeroni, C.; Leitner, R.; Lenci, R.; Lenti, M.; Leonardi, E.; Lichard, P.; Lietava, R.; Litov, L.; Lomidze, D.; Lonardo, A.; Lurkin, N.; Madigozhin, D.; Maire, G.; Makarov, A.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Massarotti, P.; Massri, K.; Matak, P.; Mazza, G.; Menichetti, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Morant, J.; Morel, M.; Moulson, M.; Movchan, S.; Munday, D.; Napolitano, M.; Newson, F.; Norton, A.; Noy, M.; Nuessle, G.; Obraztsov, V.; Padolski, S.; Page, R.; Palladino, V.; Pardons, A.; Pedreschi, E.; Pepe, M.; Perez Gomez, F.; Perrin-Terrin, M.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pietreanu, D.; Pinzino, J.; Pivanti, M.; Polenkevich, I.; Popov, I.; Potrebenikov, Yu; Protopopescu, D.; Raffaelli, F.; Raggi, M.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Russo, V.; Ryjov, V.; Salamon, A.; Salina, G.; Samsonov, V.; Santovetti, E.; Saracino, G.; Sargeni, F.; Schifano, S.; Semenov, V.; Sergi, A.; Serra, M.; Shkarovskiy, S.; Sotnikov, A.; Sougonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Staley, R.; Statera, M.; Sutcliffe, P.; Szilasi, N.; Tagnani, D.; Valdata-Nappi, M.; Valente, P.; Vasile, M.; Vassilieva, V.; Velghe, B.; Veltri, M.; Venditti, S.; Vormstein, M.; Wahl, H.; Wanke, R.; Wertelaers, P.; Winhart, A.; Winston, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.

    2015-07-01

    The rare decays are excellent processes to probe the Standard Model and indirectly search for new physics complementary to the direct LHC searches. The NA62 experiment at CERN SPS aims to collect and analyse O(1013) kaon decays before the CERN long-shutdown 2 (in 2018). This will allow to measure the branching ratio to a level of 10% accuracy. The experimental apparatus has been commissioned during a first run in autumn 2014.

  17. The Offline Software Framework of the NA61/SHINE Experiment

    NASA Astrophysics Data System (ADS)

    Sipos, Roland; Laszlo, Andras; Marcinek, Antoni; Paul, Tom; Szuba, Marek; Unger, Michael; Veberic, Darko; Wyszynski, Oskar

    2012-12-01

    NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) is an experiment at the CERN SPS using the upgraded NA49 hadron spectrometer. Among its physics goals are precise hadron production measurements for improving calculations of the neutrino beam flux in the T2K neutrino oscillation experiment as well as for more reliable simulations of cosmic-ray air showers. Moreover, p+p, p+Pb and nucleus+nucleus collisions will be studied extensively to allow for a study of properties of the onset of deconfinement and search for the critical point of strongly interacting matter. Currently NA61/SHINE uses the old NA49 software framework for reconstruction, simulation and data analysis. The core of this legacy framework was developed in the early 1990s. It is written in different programming and scripting languages (C, pgi-Fortran, shell) and provides several concurrent data formats for the event data model, which includes also obsolete parts. In this contribution we will introduce the new software framework, called Shine, that is written in C++ and designed to comprise three principal parts: a collection of processing modules which can be assembled and sequenced by the user via XML files, an event data model which contains all simulation and reconstruction information based on STL and ROOT streaming, and a detector description which provides data on the configuration and state of the experiment. To assure a quick migration to the Shine framework, wrappers were introduced that allow to run legacy code parts as modules in the new framework and we will present first results on the cross validation of the two frameworks.

  18. Difusión en el espacio de fases

    NASA Astrophysics Data System (ADS)

    Giordano, C. M.; Cincotta, P. M.; Simó, C.

    In this paper we discuss the relevance of diffusive processes in multidimensional Hamiltonian systems. By means of a rather simple model, we give evidence that for moderate-to-strong chaotic systems the stochastic motion remains confined to disjoint domains on the energy surface, at least for mild motion times. We show that only for extremely large time-scales and for rather large perturbations, does the chaotic component appear almost fully connected through the relics of the resonance structure. The discussion whether diffusion over the energy surface could actually occur in asteroidal or galaxy dynamics is also included.

  19. Actinic EUV mask inspection beyond 0.25 NA

    SciTech Connect

    Goldberg, Kenneth A.; Mochi, Iacopo; Anderson, Erik H.; Rekawa, Seno. B.; Kemp, Charles D.; Huh, S.; Han, H.-S.; Naulleau, P.; Huh, S.

    2008-03-24

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is an EUV-wavelength mask inspection microscope designed for direct aerial image measurements, and pre-commercial EUV mask research. Operating on a synchrotron bending magnet beamline, the AIT uses an off-axis Fresnel zoneplate lens to project a high-magnification EUV image directly onto a CCD camera. We present the results of recent system upgrades that have improved the imaging resolution, illumination uniformity, and partial coherence. Benchmarking tests show image contrast above 75% for 100-nm mask features, and significant improvements and across the full range of measured sizes. The zoneplate lens has been replaced by an array of user-selectable zoneplates with higher magnification and NA values up to 0.0875, emulating the spatial resolution of a 0.35-NA 4x EUV stepper. Illumination uniformity is above 90% for mask areas 2-{micro}m-wide and smaller. An angle-scanning mirror reduces the high coherence of the synchrotron beamline light source giving measured {sigma} values of approximately 0.125 at 0.0875 NA.

  20. Benchmarking EUV mask inspection beyond 0.25 NA

    SciTech Connect

    Goldberg, Kenneth A.; Mochi, Iacopo; Anderson, Erik H.; Rekawa, Seno B.; Kemp, Charles D.; Huh, S.; Han, H.-S.; Naulleau, P.; Gunion, R.F.

    2008-09-18

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is an EUV-wavelength mask inspection microscope designed for direct aerial image measurements, and pre-commercial EUV mask research. Operating on a synchrotron bending magnet beamline, the AIT uses an off-axis Fresnel zoneplate lens to project a high-magnification EUV image directly onto a CCD camera. We present the results of recent system upgrades that have improved the imaging resolution, illumination uniformity, and partial coherence. Benchmarking tests show image contrast above 75% for 100-nm mask features, and significant improvements and across the full range of measured sizes. The zoneplate lens has been replaced by an array of user-selectable zoneplates with higher magnification and NA values up to 0.0875, emulating the spatial resolution of a 0.35-NA 4 x EUV stepper. Illumination uniformity is above 90% for mask areas 2-{micro}m-wide and smaller. An angle-scanning mirror reduces the high coherence of the synchrotron beamline light source giving measured {sigma} values of approximately 0.125 at 0.0875 NA.

  1. Electrophysiological comparison of insecticide and alkaloid agonists of Na channels

    PubMed Central

    1987-01-01

    Macroscopic currents in Na channels were recorded from adult frog skeletal muscle under voltage clamp as various toxins were added to the bathing medium. Veratridine, cevadine, and 3-(4-ethoxybenzoyl)- veracevine modified the Na channels in a use-dependent manner during depolarizations and held them open for 3, 2.4, and 1.2 s, respectively, at -90 mV. The three alkaloids modified channels in the same way. Activation gating was shifted about -100 mV by the modification, and reversible closing of the channels by strong hyperpolarizations slowed reversal of the modification. The synthetic insecticides deltamethrin, EDO, GH739, and GH414 also modified channels during depolarizations that opened channels. The modification lasted 3 s with deltamethrin, but only 3-5 ms with the others. Hyperpolarization speeded the shutting off of current in insecticide-modified channels, but no reversible activation gating could be demonstrated. The ionic selectivity, PNa/PNH4, of channels was decreased by all of the toxins. This ratio was 0.11 in normal channels, 0.26 in insecticide-modified channels, and 0.7-1.6 in veratrum-alkaloid-modified channels. During use-dependent modification, the veratrum alkaloids reduced the total Na current markedly, while deltamethrin did not. Thus, alkaloid and insecticide modifications share many features but differ in how much the conducting properties of the pore are changed and whether the channel can close reversibly while the toxin remains bound. PMID:2442297

  2. Factors dominating adhesion of NaCl onto potato chips.

    PubMed

    Buck, V E; Barringer, S A

    2007-10-01

    In this study, the adhesion factors examined were time between frying and coating, surface oil content, chip temperature, oil composition, NaCl size, NaCl shape, and electrostatic coating. Three different surface oil content potato chips, high, low, and no, were produced. Oils used were soybean, olive, corn, peanut, and coconut. After frying, chips were coated immediately, after 1 d, and after 1 mo. NaCl crystals of 5 different particle sizes (24.7, 123, 259, 291, and 388 microm) were coated both electrostatically and nonelectrostatically. Adhesion of cubic, dendritic, and flake crystals was examined. Chips were coated at different temperatures. Chips with high surface oil had the highest adhesion of salt, making surface oil content the most important factor. Decreasing chip temperature decreased surface oil and adhesion. Increasing time between frying and coating reduced adhesion for low surface oil chips, but did not affect high and no surface oil chips. Changing oil composition did not affect adhesion. Increasing salt size decreased adhesion. Salt size had a greater effect on chips with lower surface oil content. When there were significant differences, cubic crystals gave the best adhesion followed by flake crystals then dendritic crystals. For high and low surface oil chips, electrostatic coating did not change adhesion of small size crystals but decreased adhesion of large salts. For no surface oil content chips, electrostatic coating improved adhesion for small salt sizes but did not affect adhesion of large crystals. PMID:17995602

  3. Ion permeation through the Na+,K+-ATPase.

    PubMed

    Reyes, Nicolás; Gadsby, David C

    2006-09-28

    P-type ATPase pumps generate concentration gradients of cations across membranes in nearly all cells. They provide a polar transmembrane pathway, to which access is strictly controlled by coupled gates that are constrained to open alternately, thereby enabling thermodynamically uphill ion transport (for example, see ref. 1). Here we examine the ion pathway through the Na+,K+-ATPase, a representative P-type pump, after uncoupling its extra- and intracellular gates with the marine toxin palytoxin. We use small hydrophilic thiol-specific reagents as extracellular probes and we monitor their reactions, and the consequences, with cysteine residues introduced along the anticipated cation pathway through the pump. The distinct effects of differently charged reagents indicate that a wide outer vestibule penetrates deep into the Na+,K+-ATPase, where the pathway narrows and leads to a charge-selectivity filter. Acidic residues in this region, which are conserved to coordinate pumped ions, allow the approach of cations but exclude anions. Reversing the charge at just one of those positions converts the pathway from cation selective to anion selective. Close structural homology among the catalytic subunits of Ca2+-, Na+,K+- and H+,K+-ATPases argues that their extracytosolic cation exchange pathways all share these physical characteristics. PMID:17006516

  4. Role of epithelial Na+ channels in endothelial function.

    PubMed

    Guo, Dongqing; Liang, Shenghui; Wang, Su; Tang, Chengchun; Yao, Bin; Wan, Wenhui; Zhang, Hailing; Jiang, Hui; Ahmed, Asif; Zhang, Zhiren; Gu, Yuchun

    2016-01-15

    An increasing number of mechano-sensitive ion channels in endothelial cells have been identified in response to blood flow and hydrostatic pressure. However, how these channels respond to flow under different physiological and pathological conditions remains unknown. Our results show that epithelial Na(+) channels (ENaCs) colocalize with hemeoxygenase-1 (HO-1) and hemeoxygenase-2 (HO-2) within the caveolae on the apical membrane of endothelial cells and are sensitive to stretch pressure and shear stress. ENaCs exhibited low levels of activity until their physiological environment was changed; in this case, the upregulation of HO-1, which in turn facilitated heme degradation and hence increased the carbon monoxide (CO) generation. CO potently increased the bioactivity of ENaCs, releasing the channel from inhibition. Endothelial cells responded to shear stress by increasing the Na(+) influx rate. Elevation of intracellular Na(+) concentration hampered the transportation of l-arginine, resulting in impaired nitric oxide (NO) generation. Our data suggest that ENaCs that are endogenous to human endothelial cells are mechano-sensitive. Persistent activation of ENaCs could inevitably lead to endothelium dysfunction and even vascular diseases such as atherosclerosis. PMID:26621031

  5. Electrode polarization impedance in weak NaCl aqueous solutions.

    PubMed

    Mirtaheri, Peyman; Grimnes, Sverre; Martinsen, Orjan G

    2005-12-01

    In this paper, we characterize the polarization impedance behavior of several common metals in diluted NaCl solution operated at low current densities. The objective was to provide a useful reference for those wishing to calculate the electrode polarization impedance in diluted NaCl solutions. Serial equivalent resistance (R) and capacitance (C) for silver, aluminum, gold, platinum, and medical stainless-steel were measured as a function of frequency (10(-2)-10(3) Hz) and NaCl concentration (2.4-77.0 mmol/L). The ratio of electrode polarization impedance with respect to the bulk resistance was calculated and plotted against concentration for each metal. Such a ratio shows the effect of the electrode polarization contribution as a function of electrolyte concentration when the bulk resistance of the solution changes. All metals showed a decrease of serial resistance Rp and capacitance Cp as a function of frequency. The medical stainless-steel electrode showed largest impedance values at lower frequencies compared to the other electrodes, and was concentration independent at all frequencies. Aluminum had smallest polarization impedance at low frequencies. Pure gold and platinum behaved similar with the exception that the serial resistance for gold showed a lower value at higher frequencies. PMID:16366232

  6. Sonochemical synthesis of zeolite NaP from clinoptilolite.

    PubMed

    Behin, Jamshid; Kazemian, Hossein; Rohani, Sohrab

    2016-01-01

    In the present work, natural clinoptilolite was converted to zeolite NaP using ultrasonic energy, in which the transformation time shortened remarkably. The effect of post-synthesis treatment using conventional hydrothermal was also investigated. The synthesized powders were characterized by XRD, TGA/DTA, SEM, and PSD analysis. The results showed that, increasing the sonication time (energy) has no significant effect on the product's morphology. The crystallinity of the synthesized samples increased slightly with increasing sonication time, but their yield remained relatively unchanged. Furthermore, post-synthesis hydrothermal treatment showed very little influence on properties of the final product. Because the ultrasonic irradiation creates acoustic cavitation cracks on the surface structure of clinoptilolite particulates and increases the concentration of soluble alumino-silicate species, which favors the prevailing super-saturation, crystallization and crystal growth of zeolite NaP happen faster. The particles of zeolite NaP synthesized by ultrasonic irradiation consist of small crystallites of uniform size. PMID:26341462

  7. Sodium transport through the amiloride-sensitive Na-Mg pathway of hamster red cells.

    PubMed

    Xu, W; Willis, J S

    1994-09-01

    Previous work showed that in hamster red cells the amiloride-sensitive (AS) Na+ influx of 0.8 mmol/liter cells/hr is not mediated by Na-H exchange as in other red cells, but depends upon intracellular Mg2+ and can be increased by 40-fold by loading cells with Mg2+ to 10 mM. The purpose of this study was to verify the connection of AS Na+ influx with Na-dependent, amiloride-sensitive Mg2+ efflux and to utilize AS Na+ influx to explore that pathway. Determination of unidirectional influx of Na+ and net loss of Mg2+ in parallel sets of cells showed that activation by extracellular [Na+] follows a simple Michaelis-Menten relationship for both processes with a Km of 105-107 mM and that activation of both processes is sigmoidally dependent upon cytoplasmic [Mg2+] with a [Mg2+]0.5 of 2.1-2.3 mM and a Hill coefficient of 1.8. Comparison of Vmax for both sets of experiments indicated a stoichiometry of 2 Na:1 Mg. Amiloride inhibits Na+ influx and Mg2+ extrusion in parallel (Ki = 0.3 mM). Like Mg2+ extrusion, amiloride-sensitive Na+ influx shows an absolute requirement for cytoplasmic ATP and is increased by cell swelling. Hence, amiloride-sensitive Na+ influx in hamster red cells appears to be through the Na-Mg exchange pathway. There was no amiloride-sensitive Na+ efflux in hamster red cells loaded with Na+ and incubated with high [Mg2+] in the medium with or without external Na+, nor with ATP depletion. Hence, this is not a simple Na-Mg exchange carrier. PMID:7807526

  8. Short-range interactions in Na coadsorption with CO and O on Ni(111).

    PubMed

    Politano, Antonio; Agostino, Raffaele G; Formoso, Vincenzo; Chiarello, Gennaro

    2008-06-01

    The coadsorption of Na with CO and O on Ni(111) is studied by high-resolution electron energy loss spectroscopy. Experimental evidence for a very short-range interaction between Na and coadsorbates is reported, in contrast with recent theoretical predictions overestimating nonlocal alkali-induced effects. Loss spectra show distinct features, as a consequence of different local [CO]:[Na] and [O]:[Na] stoichiometries. PMID:18442033

  9. Caustic Recycle from Hanford Tank Waste Using Large Area NaSICON Structures (LANS)

    SciTech Connect

    Fountain, Matthew S.; Sevigny, Gary J.; Balagopal, S.; Bhavaraju, S.

    2009-03-31

    This report presents the results of a 5-day test of an electrochemical bench-scale apparatus using a proprietary (NAS-GY) material formulation of a (Na) Super Ion Conductor (NaSICON) membrane in a Large Area NaSICON Structures (LANS) configuration. The primary objectives of this work were to assess system performance, membrane seal integrity, and material degradation while removing Na from Group 5 and 6 tank waste from the Hanford Site.

  10. Density distributions of OH, Na, water vapor, and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi; Ishigame, Hiroaki; Nishiyama, Shusuke

    2015-07-01

    This paper reports the density distributions of OH, Na, water vapor and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution. The densities of OH, Na and H2O had different spatial distributions, while the Na density had a similar distribution to mist, suggesting that mist is the source of Na in the gas phase. When the flow rate of helium toward the electrolyte surface was increased, the distributions of all the species densities concentrated in the neighboring region to the electrolyte surface more significantly. The densities of all the species were sensitive to the electric polarity of the power supply. In particular, we never detected Na and mist when the electrolyte worked as the anode of the dc discharge. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  11. The tunnel manganese oxide Na4.32Mn9O18: a new Na+ site discovered by single-crystal X-ray diffraction.

    PubMed

    Chu, Qingxin; Wang, Xiaofeng; Li, Qiliang; Liu, Xiaoyang

    2011-02-01

    The title compound, tetrasodium nonamanganese octadecaoxide, Na(4.32)Mn(9)O(18), was synthesized by reacting Mn(2)O(3) with NaCl. One Mn atom occupies a site of 2/m symmetry, while all other atoms sit on mirror planes. The compound is isostructural with Na(4)Ti(4)Mn(5)O(18) and suggestive of Mn(3+)/Mn(4+) charge ordering. It has a double-tunnel structure built up from double and triple chains of MnO(6) octahedra and single chains of MnO(5) square pyramids by corner sharing. Disordered Na(+) cations occupy four crystallographic sites within the tunnels, including an unexpected new Na(+) site discovered inside the large S-shaped tunnel. A local-ordering model is used to show the possible Na(+) distribution, and the unit-cell evolution during charging/discharging is explained on the basis of this local-ordering model. PMID:21285490

  12. Mass spectrometric determination of partial pressures of ions in the saturated vapor over the NaF-Na3AlF6 system

    NASA Astrophysics Data System (ADS)

    Abramov, S. V.; Chilingarov, N. S.; Borshchevsky, A. Ya; Sidorov, L. N.

    2004-01-01

    Mass spectrometric determination of absolute partial pressures of basic charged species Na2F+ and AlF4- in the saturated vapor over the NaF-Na3AlF6 system (1:1 molar ratio) was carried out in the 974-1090 K temperature range. The ion pressures were 5-8 orders of magnitude lower than the pressures of basic molecular components NaAlF4 and NaF. Particular attention was given to the equality of device sensitivity constants for positive and negative ions. Absolute device calibration was carried out using the measured ion currents Na2F+ and AlF4- and the equilibrium constant of heterolytic dissociation available in the literature.

  13. Effect of cation substitution on structural transition: synthesis, characterization and theoretical studies of NaCa4B3O9, NaCaBO3, NaSrBO3 and Li4CaB2O6.

    PubMed

    Yang, Yun; Su, Xin; Pan, Shilie; Yang, Zhihua

    2015-10-21

    Single crystals of NaCa4B3O9, NaCaBO3, NaSrBO3 and Li4CaB2O6 have been successfully synthesized through conventional high-temperature solid-state reactions. They are structurally characterized by single crystal X-ray diffraction and exhibit three-dimensional crystal structures consisting of isolated planar BO3 as fundamental building blocks. Interestingly, for the centrosymmetric crystal structure of NaCaBO3 (Na3Ca3B3O9), as 2/3 of the Na(+) ions are substituted by Ca(2+) ions, NaCa4B3O9 is obtained and crystallizes in the noncentrosymmetric space group Ama2 (crystal class mm2). A second harmonic generation (SHG) test of the title compound by the Kurtz-Perry method shows that NaCa4B3O9 can be phase matchable with an effective SHG coefficient approximately one-half that of KH2PO4 (KDP). Studies of their optical properties as well as band structure calculations based on density functional theory methods have been also performed. NaCa4B3O9 possesses a moderate birefringence of about 0.05 at 1064 nm. To explain the difference in optical nonlinearity we compared the electronic structures of NaCa4B3O9, KCa4B3O9 and KSr4B3O9 crystals, in particular at the bottom of the conduction band (CB) and the top of the valence band (VB), since they are known to play a primary role in SHG. These electronic structures are responsible for the optical-nonlinearity of NaCa4B3O9, KCa4B3O9 and KSr4B3O9 crystals. PMID:26387438

  14. Na8Au9.8(4)Ga7.2 and Na17Au5.87(2)Ga46.63: The diversity of pseudo 5-fold symmetries in the Na-Au-Ga system

    NASA Astrophysics Data System (ADS)

    Smetana, Volodymyr; Corbett, John D.; Miller, Gordon J.

    2013-11-01

    The Na-rich part (~30% Na) of the Na-Au-Ga system between NaAu2, NaGa4, and Na22Ga39 has been found to contain the ternary phases Na8Au9.8(4)Ga7.2 (I) and Na17Au5.87(2)Ga46.63 (II), according to the results of single crystal X-ray diffraction measurements. I is orthorhombic, Cmcm, a=5.3040(1), b=24.519(5), c=14.573(3) Å, and contains a network of clusters with local 5-fold symmetry along the a-axis. Such clusters are frequent building units in decagonal quasicrystals and their approximants. II is rhombohedral, R3¯m, a=16.325(2), c=35.242(7) Å, and contains building blocks that are structurally identical to the Bergman-type clusters as well as fused icosahedral units known with active metals, triels and late transition elements. II also contains a polycationic network with elements of the clathrate V type structure. Tight-binding electronic structure calculations using linear muffin-tin-orbital (LMTO) methods on idealized models of I and II indicate that both compounds are metallic with evident pseudogaps at the corresponding Fermi levels. The overall Hamilton bond populations are generally dominated by Au-Ga and Au-Au bonds in I and by Ga-Ga bonds in II; moreover, the Na-Au and Na-Ga contributions in I are unexpectedly large, ~20% of the total. A similar involvement of sodium in covalent bonding has also been found in the electron-richer i-Na13Au12Ga15 quasicrystal approximant.

  15. Decreasing extracellular Na+ concentration triggers inositol polyphosphate production and Ca2+ mobilization

    SciTech Connect

    Smith, J.B.; Dwyer, S.D.; Smith, L.

    1989-01-15

    Removing extracellular Na+ (Na+o) evoked a large increase in cytosolic free Ca2+ concentration ((Ca2+)i in human skin fibroblasts. Decreasing (Na+)o from 120 to 14 mM caused the half-maximal peak increase in (Ca2+)i. Removing Na+o strongly stimulated /sup 45/Ca2+ efflux and decreased total cell Ca2+ by about 40%. Bradykinin caused changes in (Ca2+)i, total Ca2+, and /sup 45/Ca2+ fluxes similar to those evoked by removing Na+o. Prior stimulation of the cells with bradykinin prevented Na+o removal from increasing (Ca2+)i and vice versa. Na+o removal rapidly increased (/sup 3/H)inositol polyphosphate production. Loading the cells with Na+ had no effect on the increase in /sup 45/Ca2+ efflux produced by Na+o removal. Therefore, decreasing (Na+)o probably stimulates a receptor(s) which is sensitive to extracellular, not intracellular, Na+. Removing Na+o also mobilized intracellular Ca2+ in smooth muscle and endothelial cells cultured from human umbilical and dog coronary arteries, respectively.

  16. Potential curves for Na2/+/ and resonance charge transfer cross sections.

    NASA Technical Reports Server (NTRS)

    Bottcher, C.; Allison, A. C.; Dalgarno, A.

    1971-01-01

    A mode potential method, applied earlier to the positively charged diatomic lithium molecule Li2(+), is used to calculate the six lowest potential energy curves of Na2(+). Charge transfer cross sections are calculated for Li(+) on Li and for Na(+) on Na and found to be in reasonable agreement with experiment.

  17. Badania Ekologiczne Ryzyka Zachorowa? Na Kleszczowe Zapalenie Mózgu W Polsce-Omówienie Metody

    PubMed Central

    Stefanoff, Pawe?; Staszewska, Ewa; Ustrnul, Zbigniew; Rogalska, Justyna; ?ankiewicz, Aleksandra; Rosi?ska, Magdalena

    2009-01-01

    W pracy omówiono metodologi? aktualnie prowadzonych bada? ekologicznych kleszczowego zapalenia mózgu (kzm) na terenie Polski. W celu oceny wp?ywu zró?nicowanych czynników ?rodowiskowych, klimatycznych oraz spo?ecznych na wyst?powanie kzm w ró?nych regionach Polski zostanie przeprowadzona wieloczynnikoica analiza statystyczna na poziomie gmin dla lat 1999-2006. PMID:22320045

  18. 24 CFR 401.473 - HUD grants for rehabilitation under section 236(s) of NA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false HUD grants for rehabilitation under section 236(s) of NA. 401.473 Section 401.473 Housing and Urban Development Regulations Relating to... 236(s) of NA. HUD will consider a direct grant for rehabilitation under section 236(s) of the NA...

  19. 24 CFR 401.473 - HUD grants for rehabilitation under section 236(s) of NA.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false HUD grants for rehabilitation under section 236(s) of NA. 401.473 Section 401.473 Housing and Urban Development Regulations Relating to... 236(s) of NA. HUD will consider a direct grant for rehabilitation under section 236(s) of the NA...

  20. Characterization of butyrate-dependent electroneutral Na-Cl absorption in the rat distal colon.

    TOXLINE Toxicology Bibliographic Information

    Binder HJ; Mehta P

    1990-12-01

    Recent studies have established that mucosal butyrate stimulates electroneutral sodium-chloride (Na-Cl) absorption in the distal colon of the rat and a model in which Na-hydrogen (H) and Cl-butyrate exchanges are coupled has been proposed as the mechanism of butyrate-dependent electroneutral Na-Cl absorption. These studies were designed to examine butyrate-dependent electroneutral Na-Cl absorption in experimental conditions in which HCO3-dependent electroneutral Na-Cl absorption is inhibited: in Na-depleted (aldosterone-treated) animals and in the presence of increased mucosal cyclic adenosine monophosphate (AMP). Butyrate-dependent electroneutral Na-Cl absorption was markedly reduced in Na-depleted rats. In contrast, the inhibition of both net Na and net Cl absorption by 5 mM serosal theophylline was significantly less in butyrate-containing, HCO3-free Ringer solution than in butyrate-free- HCO3-containing Ringer solution. These studies indicate that cyclic AMP does not inhibit butyrate-dependent electroneutral Na-Cl absorption and we propose that the mechanism of cyclic AMP inhibition of HCO3-dependent electroneutral Na-Cl absorption may be a result of its inhibition of Cl-HCO3, not Na-H exchange.

  1. Characterization of butyrate-dependent electroneutral Na-Cl absorption in the rat distal colon.

    PubMed

    Binder, H J; Mehta, P

    1990-12-01

    Recent studies have established that mucosal butyrate stimulates electroneutral sodium-chloride (Na-Cl) absorption in the distal colon of the rat and a model in which Na-hydrogen (H) and Cl-butyrate exchanges are coupled has been proposed as the mechanism of butyrate-dependent electroneutral Na-Cl absorption. These studies were designed to examine butyrate-dependent electroneutral Na-Cl absorption in experimental conditions in which HCO3-dependent electroneutral Na-Cl absorption is inhibited: in Na-depleted (aldosterone-treated) animals and in the presence of increased mucosal cyclic adenosine monophosphate (AMP). Butyrate-dependent electroneutral Na-Cl absorption was markedly reduced in Na-depleted rats. In contrast, the inhibition of both net Na and net Cl absorption by 5 mM serosal theophylline was significantly less in butyrate-containing, HCO3-free Ringer solution than in butyrate-free- HCO3-containing Ringer solution. These studies indicate that cyclic AMP does not inhibit butyrate-dependent electroneutral Na-Cl absorption and we propose that the mechanism of cyclic AMP inhibition of HCO3-dependent electroneutral Na-Cl absorption may be a result of its inhibition of Cl-HCO3, not Na-H exchange. PMID:2080102

  2. Probabilistic Models to Predict the Growth Initiation Time for Pseudomonas spp. in Processed Meats Formulated with NaCl and NaNO2

    PubMed Central

    Park, Beomyoung; Oh, Mihwa

    2014-01-01

    This study developed probabilistic models to determine the initiation time of growth of Pseudomonas spp. in combinations with NaNO2 and NaCl concentrations during storage at different temperatures. The combination of 8 NaCl concentrations (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75%) and 9 NaNO2 concentrations (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm) were prepared in a nutrient broth. The medium was placed in the wells of 96-well microtiter plates, followed by inoculation of a five-strain mixture of Pseudomonas in each well. All microtiter plates were incubated at 4, 7, 10, 12, and 15℃ for 528, 504, 504, 360 and 144 h, respectively. Growth (growth initiation; GI) or no growth was then determined by turbidity every 24 h. These growth response data were analyzed by a logistic regression to produce growth/no growth interface of Pseudomonas spp. and to calculate GI time. NaCl and NaNO2 were significantly effective (p<0.05) on inhibiting Pseudomonas spp. growth when stored at 4-12℃. The developed model showed that at lower NaCl concentration, higher NaNO2 level was required to inhibit Pseudomonas growth at 4-12℃. However, at 15℃, there was no significant effect of NaCl and NaNO2. The model overestimated GI times by 58.2±17.5 to 79.4±11%. These results indicate that the probabilistic models developed in this study should be useful in calculating the GI times of Pseudomonas spp. in combination with NaCl and NaNO2 concentrations, considering the over-prediction percentage. PMID:26761668

  3. Na(+) but not Cl(-) or osmotic stress is involved in NaCl-induced expression of Glutathione reductase in roots of rice seedlings.

    PubMed

    Hong, Chwan-Yang; Chao, Yun-Yang; Yang, Min-Yu; Cho, Shih-Chueh; Huei Kao, Ching

    2009-10-15

    Glutathione reductase (GR, EC 1,6.4.2) is an important reactive oxygen species-scavenging enzyme. The present study examined the relative importance of Na(+), Cl(-), and the osmotic component in NaCl-induced expression of Oryza sativa glutathione reductase (OsGR) genes in rice roots. Semi-quantitative RT-PCR was used to quantify the mRNA levels for one cytosolic (OsGR2) and two chloroplastic (OsGR1 and OsGR3) isoforms of GR identified in the rice genome. The expression of OsGR2 and OsGR3 but not OsGR1 was increased in rice roots treated with NaCl. Treatment with 150 mM NaCl and 150 mM NaNO(3) affected OsGR2 and OsGR3 induction similarly, which suggests that Na(+) but not Cl(-) is required for the NaCl-induced expression of OsGR2 and OsGR3. We also show that Na(+) but not Cl(-) is required for NaCl-enhanced GR activity and hydrogen peroxide (H(2)O(2)) production in rice roots. In addition to its component of ion toxicity, salt concentration in soil results in an osmotic effect. Here, we show that OsGR2 and OsGR3 expression, GR activity, and H(2)O(2) content were not affected at a concentration of mannitol iso-osmotic with 150 mM NaCl. NaCl-induced OsGR2 and OsGR3 in rice roots could be associated with Na(+) but not an osmotic component. PMID:19423186

  4. Direct Trifluoromethylthiolation and Perfluoroalkylthiolation of C(sp(2) )?H Bonds with CF3 SO2 Na and Rf SO2 Na.

    PubMed

    Jiang, Lvqi; Qian, Jinlong; Yi, Wenbin; Lu, Guoping; Cai, Chun; Zhang, Wei

    2015-12-01

    A new method for CF3 SO2 Na-based direct trifluoromethylthiolation of C(sp(2) )?H bonds has been developed. CF3 SSCF3 is generated in situ from cheap and easy-to-handle CF3 SO2 Na, and in the presence of CuCl can be used for electrophilic trifluoromethylthiolation of indoles, pyrroles, and enamines. The method has been extended to perfluoroalkylthiolation reactions using Rf SO2 Na. PMID:26474170

  5. Evolution of magnetism in the Na3-?(Na1-xMgx)Ir2O6 series of honeycomb iridates

    NASA Astrophysics Data System (ADS)

    Wallace, David C.; Brown, Craig M.; McQueen, Tyrel M.

    2015-04-01

    The structural and magnetic properties of a new series of iridium-based honeycomb lattices with the formula Na3-?(Na1-xMgx)Ir2O6(0 ? x ? 1) are reported. As x and ? are increased, the honeycomb lattice contracts and the strength of the antiferromagnetic interactions decreases systematically due to a reduction in Ir-O-Ir bond angles. Samples with imperfect stoichiometry exhibit disordered magnetic freezing at temperatures Tf between 3.4 K and 5 K. This glassy magnetism likely arises due to the presence of non-magnetic Ir3+, which are distributed randomly throughout the lattice, with a possible additional contribution from stacking faults. Together, these results demonstrate that chemical defects and non-stoichiometry have a significant effect on the magnetism of compounds in the A2IrO3 materials family.

  6. Capacitive deionization of NaCl and NaNO{sub 3} solutions with carbon aerogel electrodes

    SciTech Connect

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1996-01-01

    A process for the capacitive deionization of water with a stack of carbon aerogelelectrodes has been developed by Lawrence Livermore National Laboratory. Unlike ion exchange, one of the more conventional deionization processes, no chemical are required for regeneration of the system. Electricity is used instead. Water with various anions and cations is pumped through the electrochemical cell. After polarization, ions are electrostatically removed from the water and held in the electric double layers formed at the surfaces of electrodes. The water leaving the cell is purified, as desired. The effects of cell voltage and cycling on the electrosorption capacities for NaCl and NaNO{sub 3} have been investigated and are reported here.

  7. Evidence of sympathetic cooling of Na+ ions by a Na magneto-optical trap in a hybrid trap

    NASA Astrophysics Data System (ADS)

    Sivarajah, I.; Goodman, D. S.; Wells, J. E.; Narducci, F. A.; Smith, W. W.

    2012-12-01

    A hybrid ion-neutral trap provides an ideal system to study collisional dynamics between ions and neutral atoms. This system provides a general cooling method that can be applied to species that do not have optically accessible transitions and can also potentially cool internal degrees of freedom. The long-range polarization potentials (V?-?/r4) between ions and neutrals result in large scattering cross sections at cold temperatures, making the hybrid trap a favorable system for efficient sympathetic cooling of ions by collisions with neutral atoms. We present experimental evidence of sympathetic cooling of trapped Na+ ions, which are closed shell and therefore do not have a laser-induced atomic transition from the ground state, by equal-mass cold Na atoms in a magneto-optical trap.

  8. Investigation of influence of NaOH and NaCl activating solutions on bentonite stabilization in suspension fertilizers

    NASA Astrophysics Data System (ADS)

    Hoffmann, Krystyna; Hoffmann, Józef; Mik?a, Daniel; Huculak-Mä Czka, Marta; Skut, Jakub

    2010-05-01

    1. INTRODUCTION Regular plants growth and their metabolic activity are determined by the macro- (C, H, O, N, P, S, K, Ca, Mg) and micronutrients (Fe, Mn, Zn, Cu, B, Mo, Cl, Ni). The role of these elements is very important, the excess as well as the deficiency have the negative influence on their development [1]. In order to increase yields and quality of crops a mineral, organic and mineral-organic fertilizers are applied. In the last years suspension fertilizers have been of great significance, taking the agricultural benefits into consideration. Suspension fertilizers are products of a new generation on account of higher nutrients concentrations than in the majority of other fertilizers, what makes them more efficient. Suspension fertilizers differ from solid fertilizers in more regular distribution on field. Nutrients are more concentrated what is economically relevant on account of the facilitated transportation. Examinations indicated, that nutrients from suspension fertilizers are more available than from solid fertilizers. The high concentration of nutrients in fertilizer is obtained by introducing a substance which holds them regularly in the suspension. Bentonites are the substances used for stabilization of suspension fertilizers most often [2,3]. Bentonites belong to ore of clay minerals, primarily made from minerals of smectite group, montmorillonite especially [4]. Bentonite loams were formulated as a result of Aluminium Silicate-bearing Rocks weathering and subsequent sedimentation in the aqueous environment. Characteristic features of rocks of the smectite group are their ability to absorb water (swelling), to form thixotrophic suspensions which aren't undergoing sedimentation process for a long time; as well as susceptibility to absorb cations and organic substances [4,5]. Therefore investigations have been carried out in order to evaluate the possibility of application of diverse loamy raw materials as suspension stabilizers for fertilizer purposes. In this paper research aimed at activating Jaroszów bentonite were presented. 2. MATERIALS AND METHODS The studies on activating clay minerals were carried out using the exchange of Ca2+, K+, Mg2+ ions to Na+ ions. For activation process the NaOH and NaCl solutions of concentrations 0,1M and 2,0M respectively were applied. For the purposes mentioned above 5g of weighed portion of mineral were introduced into four 250 ml conical flasks, two of them were filled with 100 ml of 0,1M and 2.0 M NaOH solution. Two remaining flasks were filled with 100 ml of 0,1M and 2.0 M NaCl solution. The samples preparred acoording to this instructions were shaken for 1 and 8 hours, and subsequently subjected to a vacuum filtration in order to separete solid fraction from filtrate. Mineral which remaied on the filter was dried in temperature of 110oC for 2 hours. 1g of dried mineral was collected for further examinations, mixed with 100 ml of distilled water and poured into the 25 ml measuring cylinder. Then every day for 14 days a change of the volume of deposit, suspension and pure solution above the suspension have been measured. 3. RESULTS DISCUSSION "Jaroszów" bentonite, activated with Na+ ions using 0,1M NaOH solution constitutes the most beneficial agent stabilizing the solid phase in the aqueous environment. The time factor didn't have considerable influence on bentonite activation. Results were similar for 1h as well as 8h. The addition of NaOH sustained suspension on respectively high level, about 80% vol., after 14 measurement days.

  9. Electrochemical Behavior of Silicon in the (NaCl-KCl-NaF-SiO2) Molten Salt

    NASA Astrophysics Data System (ADS)

    Cai, Zongying; Li, Yungang; He, Xiaofeng; Liang, Jinglong

    2010-10-01

    The electrochemical behavior of silicon was investigated in a molten salts system including saturation silicon dioxide. Silicon was electrodeposited and MoSi2 was formed on the employed molybdenum working electrode by the diffusivities of silicon and the substrate metals. Transient electrochemical techniques such as cyclic voltammetry and chronoamperometry were used to study the reaction mechanism at the molybdenum electrode. Cyclic voltammograms showed the possibility of electrodeposition of Si at -0.64 V versus Pt reference electrode in a NaCl-KCl-NaF-SiO2 system at 1073 K (800 °C). The electrodeposition of Si is single-step charge-transfer process and the cathode process is irreversible. Chronoamperometry studies indicated that electrocrystallization of Si is controlled by progressive nucleation with a three-dimensional growth mechanism.

  10. Na+-induced Ca2+ influx through reverse mode of Na+-Ca2+ exchanger in mouse ventricular cardiomyocyte

    PubMed Central

    Yan, Zhen-Yu; Ban, Tao; Fan, Yao; Chen, Wei-Ran; Sun, Hong-Li; Chen, Hanying; Qiao, Quo-Fen; Li, Bai-Yan

    2015-01-01

    Background Dobutamine is commonly used for clinical management of heart failure and its pharmacological effects have long been investigated as inotropics via ?–receptor activation. However, there is no electrophysiological evidence if dobutamine contributes inotropic action due at least partially to the reverse mode of Na+-Ca2+ exchanger (NCX) activation. Methods Action potential (AP), voltage-gated Na+ (INa), Ca2+ (ICa), and K+ (Ito and IK1) currents were observed using whole-cell patch technique before and after dobutamine in ventricular cardiomyocytes isolated from adult mouse hearts. Another sets of observation were also performed with Kb-r7943 or in the solution without [Ca2+]o. Results Dobutamine (0.1–1.0 ?M) significantly enhanced the AP depolarization with prolongation of AP duration (APD) in a concentration-dependent fashion. The density of INawas also increased concentration-dependently without alternation of voltage-dependent steady-status of activation and inactivation, reactivation as well. Whereas, the activities for ICa, Ito, and IK1 were not changed by dobutamine. Intriguingly, the dobutamine-mediated changes in AP repolarization were abolished by 3 ?M Kb-r7943 pretreatment or by simply removing [Ca2+]o without affecting accelerated depolarization. Additionally, the ratio of APD50/APD90 was not significantly altered in the presence of dobutamine, implying that effective refractory period was remain unchanged. Conclusion This novel finding provides evidence that dobutamine upregulates of voltage-gated Na+ channel function and Na+ influx-induced activation of the reverse mode of NCX, suggesting that dobutamine may not only accelerate ventricular contraction via fast depolarization but also cause Ca2+ influx, which contributes its positive inotropic effect synergistically with ?-receptor activation without increasing the arrhythmogenetic risk. PMID:26314851

  11. Bundle-like α'-NaV2O5 mesocrystals: from synthesis, growth mechanism to analysis of Na-ion intercalation/deintercalation abilities

    NASA Astrophysics Data System (ADS)

    Liu, Pengcheng; Zhou, Dehua; Zhu, Kongjun; Wu, Qingliu; Wang, Yifeng; Tai, Guoan; Zhang, Wei; Gu, Qilin

    2016-01-01

    Bundle-like α'-NaV2O5 mesocrystals were synthesized successfully by a two-step hydrothermal method. Observations using electron microscopy revealed that the obtained NaV2O5 mesocrystals were composed of nanobelts with the preferential growth direction of [010]. The precise crystal structure was further confirmed by Rietveld refinement and Raman spectroscopy. Based on analysis of crystal structure and microscopy, a reaction and growth mechanism, hydrolysis-condensation (oxolation and olation)-ion exchange-self-assembly, was proposed and described in detail. Furthermore, electrochemical measurements were used to analyze the Na-ions intercalation/deintercalation abilities in NaV2O5, and indicated that Na-ions were difficult to extract. Importantly, the DFT theoretical calculation results, which showed that the migration energy of Na-ions was so huge that migration of Na-ions was quite difficult, can explain and support well the results of the electrochemical measurements.Bundle-like α'-NaV2O5 mesocrystals were synthesized successfully by a two-step hydrothermal method. Observations using electron microscopy revealed that the obtained NaV2O5 mesocrystals were composed of nanobelts with the preferential growth direction of [010]. The precise crystal structure was further confirmed by Rietveld refinement and Raman spectroscopy. Based on analysis of crystal structure and microscopy, a reaction and growth mechanism, hydrolysis-condensation (oxolation and olation)-ion exchange-self-assembly, was proposed and described in detail. Furthermore, electrochemical measurements were used to analyze the Na-ions intercalation/deintercalation abilities in NaV2O5, and indicated that Na-ions were difficult to extract. Importantly, the DFT theoretical calculation results, which showed that the migration energy of Na-ions was so huge that migration of Na-ions was quite difficult, can explain and support well the results of the electrochemical measurements. Electronic supplementary information (ESI) available: Flow charts of hydrothermal methods utilized in this work; XRD pattern that reveals the influence of reaction time on products obtained in the one-step hydrothermal method; XRD and Raman patterns that suggest the influence of reaction temperature on products obtained in the two-step hydrothermal method; SEM images that show the influence of the second step time on the morphology of products obtained in the two-step hydrothermal method; energy spectra that show the atomic content change of products with increasing reaction time; detailed refined data of NaV2O5; Raman active modes of the NaV2O5 nanobelts. See DOI: 10.1039/c5nr05179g

  12. Complex transition metal hydrides incorporating ionic hydrogen: thermal decomposition pathway of Na2Mg2FeH8 and Na2Mg2RuH8.

    PubMed

    Humphries, Terry D; Matsuo, Motoaki; Li, Guanqiao; Orimo, Shin-Ichi

    2015-03-28

    Complex transition metal hydrides have potential technological application as hydrogen storage materials, smart windows and sensors. Recent exploration of these materials has revealed that the incorporation of anionic hydrogen into these systems expands the potential number of viable complexes, while varying the countercation allows for optimisation of their thermodynamic stability. In this study, the optimised synthesis of Na2Mg2TH8 (T = Fe, Ru) has been achieved and their thermal decomposition properties studied by ex situ Powder X-ray Diffraction, Gas Chromatography and Pressure-Composition Isotherm measurements. The temperature and pathway of decomposition of these isostructural compounds differs considerably, with Na2Mg2FeH8 proceeding via NaMgH3 in a three-step process, while Na2Mg2RuH8 decomposes via Mg2RuH4 in a two-step process. The first desorption maxima of Na2Mg2FeH8 occurs at ca. 400 °C, while Na2Mg2RuH8 has its first maxima at 420 °C. The enthalpy and entropy of desorption for Na2Mg2TH8 (T = Fe, Ru) has been established by PCI measurements, with the ?Hdes for Na2Mg2FeH8 being 94.5 kJ mol(-1) H2 and 125 kJ mol(-1) H2 for Na2Mg2RuH8. PMID:25732233

  13. Spectrophotometric Investigation of U(VI) Chloride Complexation in the NaCl/NaClO{sub 4} System

    SciTech Connect

    Paviet-Hartmann, P.; Lin, M.R.; Runde, W.H.

    1998-11-30

    Post closure radioactive release scenarios from geologic salt formation, such as the WIPP (Waste Isolation Pilot Plant)(USA) include hydrologic transport of radionuclides through a chloride saturated aquifer. Consequently, the understanding of actinide solution chemistry in brines is essential for modeling requiring accurate knowledge of the interaction between AnO{sub 2}{sup 2+} and chloride ions. Complexation constants of two U(VI) chloride species, UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}, have been intensively studied for about 40 years using different methods. However, large uncertainties reflect the general difficulty in determining accurate stability constants of weak complexes. In order to model the behavior of U(VI) in brines, we studied the formation of its chloride complexes by UV-Vis spectroscopy as a function of the NaCl concentration at 25 C. The experiments were performed at constant ionic strength by varying the concentration ratio of NaCl and NaClO{sub 4}. Deconvolution resulted in single component absorption spectra for UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}. The apparent stability constants of UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0} are at different ionic strengths and the experimental data are used to parameterize using the SIT approach.

  14. Conductivity of aqueous HCl, NaOH and NaCl solutions: Is water just a substrate?

    NASA Astrophysics Data System (ADS)

    Artemov, V. G.; Volkov, A. A.; Sysoev, N. N.; Volkov, A. A.

    2015-01-01

    According to the Arrhenius theory, the ionic conductivity of aqueous electrolytes is realized by the electrolyte ions. Water is considered to be a chemically inactive environmental media. Here, we succeeded in modeling the ionic dc conductivity and dielectric constant of aqueous HCl, NaOH and NaCl solutions without considering Na+ and Cl- ions. Instead, we assumed that i) water has a high concentration of the intrinsic H3O+ and OH- ions (much larger than it is implied by p\\text{H}=7 ), masked in the dc conductivity by the electrophoretic effect, i.e. by a strong ion-ion attraction, and ii) the chemical interaction between the electrolyte molecules and the water ions happens to break down the electrophoretic effect, thus “activating” the water ions for the dc conductivity. The hypothesis about the active role of water in the conductivity of electrolytes may look controversial, but nevertheless it consistently accounts for a set of basic empirical data and is therefore worth examining.

  15. Effects of Na{sup +} cations on PdY catalysts

    SciTech Connect

    Kim, S.Y.; Goodwin, J.G. Jr.

    1998-12-31

    The acidity of supports affects the catalytic activity of supported Pd catalysts for methanol synthesis. In previous studies focusing on the effects of zeolite acidity, the concentrations of the zeolitic protons were varied by back-exchanging the protons with Na{sup +} cations. However, there is a lack of understanding about the effects of Na{sup +} cations on the supported Pd catalysts and their catalytic activity. This paper focuses on this issue. CO chemisorption, N2 physisorption, ethane hydrogenolysis, and methanol synthesis were used to characterize three different catalysts with varying sodium contents (Pd/HY, Pd/NaHY, Pd/NaY). Pd/NaHY and Pd/HY were prepared from NaY and NH{sub 4}Y, respectively, by ion-exchange with [Pd(NH{sub 3}){sub 4}](NO{sub 3}){sub 2}. Pd/NaY was prepared from Pd/NaHY by back-exchange of H{sup +} with Na{sup +}. Steady-state isotopic transient kinetic analysis (SSITKA) was utilized in the study of methanol synthesis as well as N{sub 2} physisorption. The amount of CO adsorption and the overall catalytic activity for methanol synthesis increased in the following order: Pd/NaY < Pd/HY < Pd/NaHY. The results from ethane hydrogenolysis on the catalysts indicate that the Na{sup +} cations did not decorate the Pd surfaces. The SSITKA results from methanol synthesis indicate that the concentration of active sites for methanol synthesis on Pd/NaHY was larger than that of either Pd/NaY or Pd/HY. The reaction results suggest that the Na+ cations influence the interaction between CO and Pd by electronic rather than structural effects.

  16. Threshold processes of sodium ion emission from NaAu surface alloy

    NASA Astrophysics Data System (ADS)

    Knat'ko, M. V.; Lapushkin, M. N.

    2015-04-01

    We have studied threshold processes of Na+ ion emission from a semiconductor Na x Au y film formed on the surface of a gold substrate. In contrast to the classical notions of threshold processes involved in the surface ionization of alkali metal ions from heated metal surfaces, the diffusion exchange of atomic species between the surface and volume of the Na x Au y film ensures stable emission of Na+ ions from the substrate in the region of threshold temperatures. A diffusion mechanism of self-regulation of the surface coverage of alkali metal in the Na x Au y film is proposed.

  17. Calculation of the interspecies s-wave scattering length in an ultracold Na-Rb vapor

    SciTech Connect

    Weiss, S.B.; Bhattacharya, M.; Bigelow, N.P.

    2003-10-01

    We report the calculation of the interspecies scattering length for the sodium-rubidium (Na-Rb) system. We present improved hybrid potentials for the singlet X{sup 1}{sigma} {sup +} and triplet a{sup 3}{sigma}{sup +} ground states of the NaRb molecule, and calculate the singlet and triplet scattering lengths a{sub s} and a{sub t} for the isotopomers {sup 23}Na{sup 87}Rb and {sup 23}Na{sup 85}Rb. Using these values, we assess the prospects for producing a stable two-species Bose-Einstein condensate in the Na-Rb system.

  18. Effect of in vitro metabolic acidosis on luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport in rabbit kidney proximal tubules.

    PubMed Central

    Soleimani, M; Bizal, G L; McKinney, T D; Hattabaugh, Y J

    1992-01-01

    The aim of this study was to evaluate the role of the kidney in mediating the signals involved in adaptive changes in luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport systems in metabolic acidosis. Proximal tubular suspensions were prepared from rabbit kidney cortex and incubated in acidic (A) or control (C) media (pH 6.9 vs 7.4, 5% CO2) for 2 h. Brush border membrane (BBM) and basolateral membrane (BLM) vesicles were isolated from the tubular suspensions and studied for the activity of Na+/H+ exchange and Na+:HCO3- cotransport. Influx of 1 mM 22Na at 10 s (pH6 7.5, pH(i) 6.0) into BBM vesicles was 68% higher in group A compared to group C. The increment in Na+ influx in the group A was amiloride sensitive, suggesting that Na+/H+ exchange was responsible for the observed differences. Kinetic analysis of Na+ influx showed a Km of 8.1 mM in C vs 9.2 in A and Vmax of 31 nmol/mg protein per min in group C vs 57 in A. Influx of 1 mM 22Na at 10 s (pH0 7.5, pH(i) 6.0, 20% CO2, 80% N2) into BLM vesicles was 83% higher in the group A compared to C. The HCO3-dependent increment in 22Na uptake in group A was 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid sensitive, suggesting that Na+:HCO3- cotransport accounted for the observed differences. Kinetic analysis of Na+ influx showed a Km of 11.4 mM in C vs 13.6 in A and Vmax of 35 nmol/mg protein per min in C vs 64 in A. The presence of cyclohexamide during incubation in A medium had no effect on the increments in 22Na uptake in group A. We conclude that the adaptive increase in luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport systems in metabolic acidosis is acute and mediated via direct signal(s) at the level of renal tubule. Images PMID:1321842

  19. Synthesis of Na2Mg3X2 (X = Sn, Pb) and Na4Mg4Sn3 and their crystal structures and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Ishiyama, Ryo; Yamane, Hisanori

    2015-07-01

    Novel ternary stannides and a plumbide, Na2Mg3X2 (X = Sn, Pb) and Na4Mg4Sn3, were synthesized by heating the corresponding elements. The crystal structures were determined by single-crystal X-ray diffraction analysis, and the electrical conductivities and Seebeck coefficients were measured. The crystal structures of Na2Mg3X2 [orthorhombic, a = 7.3066(9) Å, b = 14.4559(13) Å, c = 6.6433(7) Å for X = Sn, a = 7.4272(11), b = 14.770(3), c = 6.6852(11) Å for X = Pb] are based on the Mg5Ga2-type structure (space group Ibam, Z = 4). Na4Mg4Sn3 crystallizes in an orthorhombic cell [a = 6.879(3) Å, b = 7.154(2) Å, c = 22.285(7) Å, space group Fmmm, Z = 4] with layers of disordered Na atom arrangement with defects. The electrical conductivities measured for the polycrystalline sintered samples of Na2Mg3Sn2, Na4Mg4Sn3, and Na2Mg3Pb2 were 1.9 × 105 S m-1 at 300 K, 1.6 × 105 S m-1 at 307 K and 3.3 × 105 S m-1 at 300 K, respectively. The Seebeck coefficients (S) of Na2Mg3Sn2, Na4Mg4Sn3, and Na2Mg3Pb2 were +47 to +72, +29 to +67, and +10 to +24 µV K-1, respectively, and increased with increasing temperature of 300-600 K.

  20. Na+ and Cl(-) ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice.

    PubMed

    Khare, Tushar; Kumar, Vinay; Kishor, P B Kavi

    2015-07-01

    Despite the fact that when subjected to salinity stress most plants accumulate high concentrations of sodium (Na(+)) and chloride (Cl(-)) ions in their tissues, major research has however been focused on the toxic effects of Na(+). Consequently, Cl(-) toxicity mechanisms in annual plants, particularly in inducing oxidative stress, are poorly understood. Here, the extent to which Na(+) and/or Cl(-) ions contribute in inducing oxidative stress and regulating the adaptive antioxidant defense is shown in two Indica rice genotypes differing in their salt tolerance. Equimolar (100 mM) concentrations of Na(+), Cl(-), and NaCl (EC???10 dS m(-1)) generated free-radical (O2 (•-), (•)OH) and non-radical (H2O2) forms of reactive oxygen species (ROS) and triggered cell death in leaves of 21-day-old hydroponically grown rice seedlings as evident by spectrophotometric quantifications and histochemical visualizations. The magnitude of ROS-mediated oxidative damage was higher in sensitive cultivar, whereas NaCl proved to be most toxic among the treatments. Salt treatments significantly increased activities of antioxidant enzymes and their isozymes including superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Na(+) and Cl(-) ions showed additive effects under NaCl in activating the antioxidant enzyme machinery, and responses were more pronounced in tolerant cultivar. The expression levels of SodCc2, CatA, and OsPRX1 genes were largely consistent with the activities of their corresponding enzymes. Salt treatments caused an imbalance in non-enzymatic antioxidants ascorbic acid, ?-tocopherol, and polyphenols, with greater impacts under NaCl than Na(+) and Cl(-) separately. Results revealed that though Cl(-) was relatively less toxic than its counter-cation, its effects cannot be totally ignored. Both the cultivars responded in the same manner, but the tolerant cultivar maintained lower Na(+)/K(+) and ROS levels coupled with better antioxidant defense under all three salt treatments. PMID:25547963

  1. Temperature-dependent solubility transition of Na?SO? in water and the effect of NaCl therein: solution structures and salt water dynamics.

    PubMed

    Bharmoria, Pankaj; Gehlot, Praveen Singh; Gupta, Hariom; Kumar, Arvind

    2014-11-01

    Dual, aqueous solubility behavior of Na2SO4 as a function of temperatures is still a natural enigma lying unresolved in the literature. The solubility of Na2SO4 increases up to 32.38 °C and decreases slightly thereafter at higher temperatures. We have thrown light on this phenomenon by analyzing the Na2SO4-water clusters (growth and stability) detected from temperature-dependent dynamic light scattering experiments, solution compressibility changes derived from the density and speed of sound measurements, and water structural changes/Na2SO4 (ion pair)-water interactions observed from the FT-IR and 2D DOSY (1)H NMR spectroscopic investigations. It has been observed that Na2SO4-water clusters grow with an increase in Na2SO4 concentration (until the solubility transition temperature) and then start decreasing afterward. An unusual decrease in cluster size and solution compressibility has been observed with the rise in temperature for the Na2SO4 saturated solutions below the solubility transition temperature, whereas an inverse pattern is followed thereafter. DOSY experiments have indicated different types of water cluster species in saturated solutions at different temperatures with varying self-diffusion coefficients. The effect of NaCl (5-15 wt %) on the solubility behavior of Na2SO4 at different temperatures has also been examined. The studies are important from both fundamental and industrial application points of view, for example, toward the clean separation of NaCl and Na2SO4 from the effluent streams of textile and tannery industries. PMID:25313635

  2. Nuclear Na+/K+-ATPase plays an active role in nucleoplasmic Ca2+ homeostasis

    PubMed Central

    Galva, Charitha; Artigas, Pablo; Gatto, Craig

    2012-01-01

    Summary Na+/K+-ATPase, an integral membrane protein, has been studied for over a half century with respect to its transporter function in the plasma membrane, where it expels three Na+ ions from the cell in exchange for two K+ ions. In this study, we demonstrate a functioning Na+/K+-ATPase within HEK293 cell nuclei. This subcellular localization was confirmed by western blotting, ouabain-sensitive ATPase activity of the nuclear membrane fraction, immunocytochemistry and delivery of fluorescently tagged Na+/K+-ATPase ?- and ?-subunits. In addition, we observed an overlap between nuclear Na+/K+-ATPase and Na/Ca-exchanger (NCX) when nuclei were immunostained with commercially available Na+/K+-ATPase and NCX antibodies, suggesting a concerted physiological coupling between these transporters. In keeping with this, we observed an ATP-dependent, strophanthidin-sensitive Na+ flux into the nuclear envelope (NE) lumen loaded with the Na-sensitive dye, CoroNa-Green. Analogous experiments using Fluo-5N, a low affinity Ca2+ indicator, demonstrated a similar ATP-dependent and strophanthidin-sensitive Ca2+ flux into the NE lumen. Our results reveal an intracellular physiological role for the coordinated efforts of the Na+/K+-ATPase and NCX to actively remove Ca2+ from the nucleoplasm into the NE lumen (i.e. the nucleoplasmic reticulum). PMID:23077175

  3. Nuclear Na+/K+-ATPase plays an active role in nucleoplasmic Ca2+ homeostasis.

    PubMed

    Galva, Charitha; Artigas, Pablo; Gatto, Craig

    2012-12-15

    Na(+)/K(+)-ATPase, an integral membrane protein, has been studied for over a half century with respect to its transporter function in the plasma membrane, where it expels three Na(+) ions from the cell in exchange for two K(+) ions. In this study, we demonstrate a functioning Na(+)/K(+)-ATPase within HEK293 cell nuclei. This subcellular localization was confirmed by western blotting, ouabain-sensitive ATPase activity of the nuclear membrane fraction, immunocytochemistry and delivery of fluorescently tagged Na(+)/K(+)-ATPase ?- and ?-subunits. In addition, we observed an overlap between nuclear Na(+)/K(+)-ATPase and Na/Ca-exchanger (NCX) when nuclei were immunostained with commercially available Na(+)/K(+)-ATPase and NCX antibodies, suggesting a concerted physiological coupling between these transporters. In keeping with this, we observed an ATP-dependent, strophanthidin-sensitive Na(+) flux into the nuclear envelope (NE) lumen loaded with the Na-sensitive dye, CoroNa-Green. Analogous experiments using Fluo-5N, a low affinity Ca(2+) indicator, demonstrated a similar ATP-dependent and strophanthidin-sensitive Ca(2+) flux into the NE lumen. Our results reveal an intracellular physiological role for the coordinated efforts of the Na(+)/K(+)-ATPase and NCX to actively remove Ca(2+) from the nucleoplasm into the NE lumen (i.e. the nucleoplasmic reticulum). PMID:23077175

  4. Dynamic NMR measurement of volume regulatory changes in Amphiuma RBC Na sup + content

    SciTech Connect

    Anderson, S.E.; Adorante, J.S.; Cala, P.M. )

    1988-03-01

    {sup 23}Na nuclear magnetic resonance (NMR) and conventional chemical methods were employed to measure Na{sup +} fluxes in Amphiuma red blood cells (RBC) during volume regulation. Paramagnetic shift reagent (dysprosium triethylenetetraminehexaacetic acid (DyTTHA) and dysprosium tripolyphosphate (Dy(TPP){sub 2})) were used to alter extracellular Na{sup +} magnetic resonance. Data are presented describing {sup 23}Na resonance dependence on shift reagent, sodium and calcium concentration. The authors confirmed that the shift reagents neither enter the cells nor alter intracellular Na{sup +}, K{sup +}, and Cl{sup {minus}} concentrations under control conditions when extracellular calcium was maintained >0.5 mM. They also confirmed that the shift reagent complexes chelate calcium (Dy(TPP){sub 2} much more so than DyTTHA) and that their toxic effects could be alleviated by adjusting calcium in the cell's suspension medium to control levels. In parallel experiments, where volume-activated Na{sup +} fluxes range from 0.3 to 3 mmol Na{sup +}/kg dry cell solid (DCS) {times} minute in cells containing from 30 to 150 mmol Na{sup +}/kg DCS, changes in intracellular sodium measured by {sup 32}Na NMR were within 4% of those measured by conventional destructive methods. Finally, they present data that are consistent with the interpretation that 6 mmol Na{sup +}/kg DCS plus 16% of intracellular Na{sup +} is NMR invisible.

  5. Phosphorene as an anode material for Na-ion batteries: a first-principles study.

    PubMed

    Kulish, Vadym V; Malyi, Oleksandr I; Persson, Clas; Wu, Ping

    2015-06-01

    We systematically investigate a novel two-dimensional nanomaterial, phosphorene, as an anode for Na-ion batteries. Using first-principles calculations, we determine the Na adsorption energy, specific capacity and Na diffusion barriers on monolayer phosphorene. We examine the main trends in the electronic structure and mechanical properties as a function of Na concentration. We find a favorable Na-phosphorene interaction with a high theoretical Na storage capacity. We find that Na-phosphorene undergoes semiconductor-metal transition at high Na concentration. Our results show that Na diffusion on phosphorene is fast and anisotropic with an energy barrier of only 0.04 eV. Owing to its high capacity, good stability, excellent electrical conductivity and high Na mobility, monolayer phosphorene is a very promising anode material for Na-ion batteries. The calculated performance in terms of specific capacity and diffusion barriers is compared to other layered 2D electrode materials, such as graphene, MoS2, and polysilane. PMID:25947542

  6. Flux growth and optical properties of Na 3La 9O 3(BO 3) 8 crystals

    NASA Astrophysics Data System (ADS)

    Li, Yunge; Wu, Yicheng; Zhang, Guochun; Fu, Peizhen; Bai, Xiaoyan

    2006-07-01

    Na 3La 9O 3(BO 3) 8 (NLBO) crystals were grown by the top-seeded solution growth (TSSG) method from three new fluxes: Na 2O-B 2O 3-Li 2O, Na 2O-B 2O 3-NaF-LiF and Na 2O-B 2O 3-NaF, respectively. The volatility was investigated. The results showed that the Na 2O-B 2O 3-NaF flux is more suitable than others for growing NLBO crystals. The suitable molar ratio for Na 3La 9O 3(BO 3) 8, Na 2CO 3, H 3BO 3 and NaF is 1.0:(7.5˜5.0):(6.5˜5.0):(8.8˜35.0) with the growth temperature at 920˜980 °C. NLBO crystal size was up to 35×22×10 mm 3. The shortest SHG wavelengths for type-I and type-II phase-matching (PM) are 288 nm and 395 nm, respectively.

  7. Structure and properties of ?-NaFeO2-type ternary sodium iridates

    NASA Astrophysics Data System (ADS)

    Baroudi, Kristen; Yim, Cindi; Wu, Hui; Huang, Qingzhen; Roudebush, John H.; Vavilova, Eugenia; Grafe, Hans-Joachim; Kataev, Vladislav; Buechner, Bernd; Ji, Huiwen; Kuo, Changyang; Hu, Zhiwei; Pi, Tun-Wen; Pao, Chiwen; Lee, Jyhfu; Mikhailova, Daria; Hao Tjeng, Liu; Cava, R. J.

    2014-02-01

    The synthesis, structure, and elementary magnetic and electronic properties are reported for layered compounds of the type Na3-xMIr2O6 and Na3-xM2IrO6, where M is a transition metal from the 3d series (M=Zn, Cu, Ni, Co, Fe and Mn). The rhombohedral structures, in space group R-3m, were determined by refinement of neutron and synchrotron powder diffraction data. No clear evidence for long range 2:1 or 1:2 honeycomb-like M/Ir ordering was found in the neutron powder diffraction patterns except in the case of M=Zn, and thus in general the compounds are best designated as sodium deficient ?-NaFeO2-type phases with formulas Na1-xM1/3Ir2/3O2 or Na1-xM2/3Ir1/3O2. Synchrotron powder diffraction patterns indicate that several of the compounds likely have honeycomb in-plane metal-iridium ordering with disordered stacking of the layers. All the compounds are sodium deficient under our synthetic conditions and are black and insulating. Weiss constants derived from magnetic susceptibility measurements indicate that Na0.62Mn0.61Ir0.39O2, Na0.80Fe2/3Ir1/3O2, Na0.92Ni1/3Ir2/3O2, Na0.86Cu1/3Ir2/3O2, and Na0.89Zn1/3Ir2/3O2 display dominant antiferromagnetic interactions. For Na0.90Co1/3Ir2/3O2 the dominant magnetic interactions at low temperature are ferromagnetic while at high temperatures they are antiferromagnetic; there is also a change in the effective moment. Low temperature specific heat measurements (to 2 K) on Na0.92Ni1/3Ir2/3O2 indicate the presence of a broad magnetic ordering transition. X-ray absorption spectroscopy shows that iridium is at or close to the 4+ oxidation state in all compounds. 23Na nuclear magnetic resonance measurements comparing Na2IrO3 to Na0.92Ni1/3Ir2/3O2 and Na0.89Zn1/3Ir2/3O2 provide strong indications that the electron spins are short-range ordered in the latter two materials. Na0.62Mn0.61Ir0.39O2, Na0.80Fe2/3Ir1/3O2, Na0.90Co1/3Ir2/3O2, Na0.92Ni1/3Ir2/3O2, Na0.86Cu1/3Ir2/3O2 and Na0.89Zn1/3Ir2/3O2 are spin glasses. (CSD-numbers: Na0.62Mn0.61Ir0.39O2: 426657, Na0.80Fe2/3Ir1/3O2: 426659, Na0.90Co1/3Ir2/3O2: 426658, Na0.92Ni1/3Ir2/3O2: 426656, Na0.86Cu1/3Ir2/3O2: 426655, and Na2.8ZnIr2O6: 426660.)

  8. Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways.

    PubMed

    Orlov, Sergei N; Hamet, Pavel

    2015-03-01

    Our review focuses on the recent data showing that gene transcription and translation are under the control of signaling pathways triggered by modulation of the intracellular sodium/potassium ratio ([Na+]i/[K+]i). Side-by-side with sensing of osmolality elevation by tonicity enhancer-binding protein (TonEBP, NFAT5), [Na+]i/[K+]i-mediated excitation-transcription coupling may contribute to the transcriptomic changes evoked by high salt consumption. This novel mechanism includes the sensing of heightened Na+ concentration in the plasma, interstitial, and cerebrospinal fluids via augmented Na+ influx in the endothelium, immune system cells, and the subfornical organ, respectively. In these cells, [Na+]i/[K+]i ratio elevation, triggered by augmented Na+ influx, is further potentiated by increased production of endogenous Na+,K+-ATPase inhibitors documented in salt-sensitive hypertension. PMID:25479826

  9. Preparation of zeolite NaA for CO2 capture from nickel laterite residue

    NASA Astrophysics Data System (ADS)

    Du, Tao; Liu, Li-ying; Xiao, Penny; Che, Shuai; Wang, He-ming

    2014-08-01

    Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.

  10. Excimer lasers for superhigh NA 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Paetzel, Rainer; Albrecht, Hans S.; Lokai, Peter; Zschocke, Wolfgang; Schmidt, Thomas; Bragin, Igor; Schroeder, Thomas; Reusch, Christian; Spratte, Stefan

    2003-06-01

    Excimer lasers are widely used as the light source for microlithography scanners. The volume shipment of scanner systems using 193nm is projected to begin in year 2003. Such tools will directly start with super high numerical aperture (NA) in order to take full advantage of the 193nm wavelength over the advanced 248nm systems. Reliable high repetition rate laser light sources enabling high illumination power and wafer throughput are one of the fundamental prerequisites. In addition these light sources must support a very high NA imaging lens of more than 0.8 which determines the output spectrum of the laser to be less than 0.30 pm FWHM. In this paper we report on our recent progress in the development of high repetition rate ultra-narrow band lasers for high NA 193nm microlithography scanners. The laser, NovaLine A4003, is based on a Single Oscillator Ultral Line-narrowed (SOUL) design which yields a bandwidth of less than 0.30pm FWHM. The SOUL laser enables superior optical performance without adding complexity or cost up to the 4 kHz maximum repetition rate. The A4003's high precision line-narrowing optics used in combination with the high repetition rate of 4 kHz yields an output power of 20 W at an extremely narrow spectral bandwidth of less than 0.30 pm FWHM and highest spectral purity of less than 0.75 pm for the 95% energy content. We present performance and reliability data and discuss the key laser parameters. Improvements in the laser-internal metrology and faster regulation control result in better energy stability and improved overall operation behavior. The design considerations for line narrowing and stable laser operation at high repetition rates are discussed.

  11. Kinetics of veratridine action on Na channels of skeletal muscle

    PubMed Central

    Sutro, JB

    1986-01-01

    Veratridine bath-applied to frog muscle makes inactivation of INa incomplete during a depolarizing voltage-clamp pulse and leads to a persistent veratridine-induced Na tail current. During repetitive depolarizations, the size of successive tail currents grows to a plateau and then gradually decreases. When pulsing is stopped, the tail current declines to zero with a time constant of approximately 3 s. Higher rates of stimulation result in a faster build-up of the tail current and a larger maximum value. I propose that veratridine binds only to open channels and, when bound, prevents normal fast inactivation and rapid shutting of the channel on return to rest. Veratridine-modified channels are also subject to a "slow" inactivation during long depolarizations or extended pulse trains. At rest, veratridine unbinds with a time constant of approximately 3 s. Three tests confirm these hypotheses: (a) the time course of the development of veratridine-induced tail currents parallels a running time integral of gNa during the pulse; (b) inactivating prepulses reduce the ability to evoke tails, and the voltage dependence of this reduction parallels the voltage dependence of h infinity; (c) chloramine-T, N-bromoacetamide, and scorpion toxin, agents that decrease inactivation in Na channels, each greatly enhance the tail currents and alter the time course of the appearance of the tails as predicted by the hypothesis. Veratridine-modified channels shut during hyperpolarizations from -90 mV and reopen on repolarization to -90 mV, a process that resembles normal activation gating. Veratridine appears to bind more rapidly during larger depolarizations. PMID:2419478

  12. Red blood cell Na pump: Insights from species differences.

    PubMed

    Gatto, Craig; Milanick, Mark

    2009-01-01

    The red blood cell membrane is specialized to exchange chloride and bicarbonate; usually the pH gradient, the chloride ratio, and the membrane potential are tightly coupled. We review the evidence that led to the ability to separately vary inside and outside pH in red cells. The effect of pH on Na pump activity and on the selectivity of the inside and the outside transport sites is reviewed. In red blood cells, at high pH, the outside site is not selective. An increase in protons leads to an increase in K(+) affinity, thus making the site more selective. The pK for this site is different in rats and humans; because of the high conservation of residues in these two species, there are only a few possible residues that can account for this difference. On the inside, work from unsided preparations suggests that, at high pH, the transport site is highly selective for Na(+). Once again, an increase in protons leads to an increase in K(+) affinity, but now the result is a less selective site. During their maturation, reticulocytes lose many membrane proteins. The type and fractional loss is species dependent. For example, most reticulocytes lose most of their Na pumps, retaining about 100 pumps per cell, but animals from the order Carnivora lose all their pumps. We review some of the evidence that PKC phosphorylation of N-terminus serines is responsible for endocytosis in other cell types and species variation in this region. PMID:19268612

  13. Rechargeable Na/Na[sub x]CoO[sub 2] and Na[sub 15]Pb[sub 4]/Na[sub x]CoO[sub 2] polymer electrolyte cells

    SciTech Connect

    Ma, Yanping; Doeff, M.M.; Visco, S.J.; Jonghe, L.C. De . Materials Sciences Div.)

    1993-10-01

    Cells using polyethylene oxide as a sodium ion conducting electrolyte, P2 phase Na[sub x]CoO[sub 2] as the positive electrode and either sodium or sodium/lead alloy as the negative electrode were assembled, discharged, and cycled. Na[sub x]CoO[sub 2] intercalates sodium over a range of x = 0.3--0.9, giving theoretical energy densities of 1,600 Wh/liter (for sodium) or 1,470 Wh/liter (for sodium/lead alloy). Cells could be discharged at rates up to 2.5 mA/cm[sup 2] corresponding to 25% depth of discharge and typically were discharged and charged at 0.5 mA/cm[sup 2] (100% depth of discharge) or approximately 1--2 C rate. Over one hundred cycles to 60% utilization or more, and two hundred shallower cycles at this rate have been obtained in this laboratory. Experimental evidence suggests that the cathode is the limiting factor in determining cycle life and not the Na/PEO interface as previously thought. Estimates of practical energy and power densities based on the cell performance and the following configuration are presented: 30--45 w/o electroactive material in the positive electrode, a twofold excess of sodium, 10 [mu]m separators, and 5 [mu]m current collectors composed of metal coated plastic. On the basis of these calculations, practical power densities of 335 W/liter for continuous discharge at 0.5 mA/cm[sup 2] and up to 2.7 kW/liter for short periods of time should be attainable. This level of performance approaches or exceeds that seen for some lithium/polymer systems under consideration for electric vehicle applications, but with a lower anticipated cost.

  14. Ubiquitination Participates in the Lysosomal Degradation of Na,K-ATPase in Steady-State Conditions

    PubMed Central

    Lecuona, Emilia; Sun, Haiying; Vohwinkel, Christine; Ciechanover, Aaron; Sznajder, Jacob I.

    2009-01-01

    The alveolar epithelial cell (AEC) Na,K-ATPase contributes to vectorial Na+ transport and plays an important role in keeping the lungs free of edema. We determined, by cell surface labeling with biotin and immunofluorescence, that approximately 30% of total Na,K-ATPase is at the plasma membrane of AEC in steady-state conditions. The half-life of the plasma membrane Na,K-ATPase was about 4 hours, and the incorporation of new Na,K-ATPase to the plasma membrane was Brefeldin A sensitive. Both protein kinase C (PKC) inhibition with bisindolylmaleimide (10 ?M) and infection with an adenovirus expressing dominant-negative PKC? prevented Na,K-ATPase degradation. In cells expressing the Na,K-ATPase ?1-subunit lacking the PKC phosphorylation sites, the plasma membrane Na,K-ATPase had a moderate increase in half-life. We also found that the Na,K-ATPase was ubiquitinated in steady-state conditions and that proteasomal inhibitors prevented its degradation. Interestingly, mutation of the four lysines described to be necessary for ubiquitination and endocytosis of the Na,K-ATPase in injurious conditions did not have an effect on its half-life in steady-state conditions. Lysosomal inhibitors prevented Na,K-ATPase degradation, and co-localization of Na,K-ATPase and lysosomes was found after labeling and chasing the plasma membrane Na,K-ATPase for 4 hours. Accordingly, we provide evidence suggesting that phosphorylation and ubiquitination are necessary for the steady-state degradation of the plasma membrane Na,K-ATPase in the lysosomes in alveolar epithelial cells. PMID:19286978

  15. Na+/Ca2+ exchange-mediated calcium entry in human lymphocytes.

    PubMed Central

    Balasubramanyam, M; Rohowsky-Kochan, C; Reeves, J P; Gardner, J P

    1994-01-01

    Regulation of cytosolic Ca2+ and cytosolic Na+ is critical for lymphocyte cation homeostasis and function. To examine the influence of cytosolic Na+ on Ca2+ regulation in human peripheral blood lymphocytes, Ca2+ entry and cytosolic Ca2+ (measured with fura-2) were monitored in cells in which cytosolic Na+ was increased and/or the Na+ gradient was decreased by reduction of external Na+ concentration. Ouabain-treated cells (0.1 mM for 30 min at 37 degrees C), suspended in Na(+)-free medium, showed a 30-65% increase in Ca2+ uptake compared to cells in 140 mM Na+ medium. Enhanced Ca2+ influx was entirely dependent on ouabain pretreatment and reversal of the Na+ gradient. Na pump inhibition or Na ionophore addition and subsequent exposure to Na(+)-free medium resulted in a sustained elevation of cytosolic Ca2+. As preincubation of cells in Ca(2+)-free medium further enhanced the ouabain-dependent increase in cytosolic Ca2+, the effects of the microsomal Ca(2+)-ATPase inhibitor thapsigargin on Ca2+ influx and cytosolic Ca2+ were studied. Thapsigargin stimulated Ca2+ entry following ouabain pretreatment and reversal of the Na+ gradient; the effects of thapsigargin were retained in the presence of LaCl3, a potent inhibitor of store-dependent calcium influx pathways. These results show lymphocytes demonstrate Na+/Ca2+ exchange activity and suggest the Na+/Ca2+ exchanger modulates cytosolic Ca2+ following intracellular Ca2+ store depletion. Images PMID:7962546

  16. Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle in vivo.

    PubMed

    Murphy, K T; Nielsen, O B; Clausen, T

    2008-12-01

    We aimed to quantify the Na(+)-K(+) exchange occurring during exercise in rat skeletal muscle in vivo. Intracellular Na(+) and K(+) content, Na(+) permeability ((22)Na(+) influx), Na(+)-K(+) pump activity (ouabain-sensitive (86)Rb(+) uptake) and Na(+)-K(+) pump alpha(2) subunit content ([(3)H]ouabain binding) were measured. Six-week-old rats rested (control animals) or performed intermittent running for 10-60 min and were then killed or were killed at 15 or 90 min following 60 min exercise. In the soleus muscle, intracellular Na(+) was 80% higher than in control rats after 60 min exercise, was still elevated (38%) after 15 min rest and returned to control levels after 90 min rest. Intracellular K(+) showed corresponding decreases after 15-60 min exercise, returning to control levels 90 min postexercise. Exercise induced little change in Na(+) and K(+) in the extensor digitorum longus muscle (EDL). In soleus, the exercise-induced rise in Na(+) and reduction in K(+) were augmented by pretreatment with ouabain or by reducing the content of muscular Na(+)-K(+) pumps by prior K(+) depletion of the animals. Fifteen minutes after 60 min exercise, ouabain-sensitive (86)Rb(+) uptake in the soleus was increased by 30% but was unchanged in EDL, and there was no effect of exercise on [(3)H]ouabain binding measured in vitro or in vivo in either muscle. In conclusion, in the soleus, in vivo exercise induces a rise in intracellular Na(+), which reflects the excitation-induced increase in Na(+) influx and leads to augmented Na(+)-K(+) pump activity without apparent change in Na(+)-K(+) pump capacity. PMID:18586859

  17. The gasotransmitter hydrogen sulphide decreases Na+ transport across pulmonary epithelial cells

    PubMed Central

    Althaus, M; Urness, KD; Clauss, WG; Baines, DL; Fronius, M

    2012-01-01

    BACKGROUND AND PURPOSE The transepithelial absorption of Na+ in the lungs is crucial for the maintenance of the volume and composition of epithelial lining fluid. The regulation of Na+ transport is essential, because hypo- or hyperabsorption of Na+ is associated with lung diseases such as pulmonary oedema or cystic fibrosis. This study investigated the effects of the gaseous signalling molecule hydrogen sulphide (H2S) on Na+ absorption across pulmonary epithelial cells. EXPERIMENTAL APPROACH Ion transport processes were electrophysiologically assessed in Ussing chambers on H441 cells grown on permeable supports at air/liquid interface and on native tracheal preparations of pigs and mice. The effects of H2S were further investigated on Na+ channels expressed in Xenopus oocytes and Na+/K+-ATPase activity in vitro. Membrane abundance of Na+/K+-ATPase was determined by surface biotinylation and Western blot. Cellular ATP concentrations were measured colorimetrically, and cytosolic Ca2+ concentrations were measured with Fura-2. KEY RESULTS H2S rapidly and reversibly inhibited Na+ transport in all the models employed. H2S had no effect on Na+ channels, whereas it decreased Na+/K+-ATPase currents. H2S did not affect the membrane abundance of Na+/K+-ATPase, its metabolic or calcium-dependent regulation, or its direct activity. However, H2S inhibited basolateral calcium-dependent K+ channels, which consequently decreased Na+ absorption by H441 monolayers. CONCLUSIONS AND IMPLICATIONS H2S impairs pulmonary transepithelial Na+ absorption, mainly by inhibiting basolateral Ca2+-dependent K+ channels. These data suggest that the H2S signalling system might represent a novel pharmacological target for modifying pulmonary transepithelial Na+ transport. PMID:22352810

  18. An in vitro investigation of gastrointestinal Na(+) uptake mechanisms in freshwater rainbow trout.

    PubMed

    Nadella, Sunita R; Patel, Dhanisha; Ng, Allen; Wood, Chris M

    2014-12-01

    In vitro gut-sac preparations of all four sections (stomach, anterior, mid, and posterior intestine) of the gastrointestinal tract (GIT) of freshwater rainbow trout, together with radiotracer ((22)Na) techniques, were used to study unidirectional Na(+) uptake rates (UR, mucosal ? blood space) and net absorptive fluid transport rates (FTR) under isosmotic conditions (mucosal = serosal osmolality). On an area-specific basis, unidirectional Na(+) UR was highest in the mid-intestine, but when total gut area was taken into account, the three intestinal sections contributed equally, with very low rates in the stomach. The theoretical capacity for Na(+) uptake across the whole GIT is sufficient to supply all of the animal's nutritive requirements for Na(+). Transport occurs by low affinity systems with apparent K m values 2-3 orders of magnitude higher than those in the gills, in accord with comparably higher Na(+) concentrations in chyme versus fresh water. Fluid transport appeared to be Na(+)-dependent, such that treatments which altered unidirectional Na(+) UR generally altered FTR in a comparable fashion. Pharmacological trials (amiloride, EIPA, phenamil, bafilomycin, furosemide, hydrochlorothiazide) conducted at a mucosal Na(+) concentration of 50 mmol L(-1) indicated that GIT Na(+) uptake occurs by a variety of apical mechanisms (NHE, Na(+) channel/H(+) ATPase, NCC, NKCC) with relative contributions varying among sections. However, at a mucosal Na(+) concentration of 10 mmol L(-1), EIPA, phenamil, bafilomycin, and hydrochlorothiazide were no longer effective in inhibiting unidirectional Na(+) UR or FTR, suggesting the contribution of unidentified mechanisms under low Na(+) conditions. A preliminary model is presented. PMID:25183198

  19. Na/sup +/-K/sup +/ pump in chronic renal failure

    SciTech Connect

    Deepak, K.; Kahn, T.

    1987-05-01

    This review summarizes the evidence for the defect in Na/sup +/-K/sup +/ pump in chronic renal failure, considers the role of various factors in causing this defect, and discusses the clinical implications thereof. Intracellular Na is elevated in erythrocytes, leukocytes, and muscle cells from some patients with chronic renal failure (CRF). Recent evidence suggest that this elevation of cell Na may be, in large part, a consequence of decreased number of Na/sup +/-K/sup +/ pump units per cell. Maintenance dialysis over a period of weeks ameliorates the defect in intracellular Na/sup +/, and this improvement is contemporaneous with an increase in the number of Na/sup +/-K/sup +/ pump sites per cell. In erythrocytes with normal cell Na/sup +/, acute hemodialysis increases the rate of /sup 22/Na/sup +/ and /sup 42/K/sup +/ transport. Many factors such as the presence of retained toxic metabolite or circulating inhibitor in the uremic plasma, or biochemical changes produced by acute hemodialysis, may explain this finding. In cells with high cell Na/sup +/, the pump-mediated /sup 42/K/sup +/ transport is normalized at the expense of a raised cell Na/sup +/. The decreased muscle membrane potential in uremic subjects has been attributed to a decreased activity of Na/sup +/-K/sup +/ pump. The authors discuss the role of hormonal abnormalities and circulating inhibitors, which may cause an acute inhibition of the pump and of other factors such as K/sup +/ depletion, which may cause more chronic alterations. The implications of alteration of Na/sup +/ and K/sup +/ pump transport and raised cell Na/sup +/ on other non-pump-mediated transport pathways are discussed. Raised cell Na/sup +/ may be a marker for the adequacy of maintenance dialysis in patients with end-stage renal failure.

  20. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution

    PubMed Central

    Zhou, Aifen; Baidoo, Edward; He, Zhili; Mukhopadhyay, Aindrila; Baumohl, Jason K; Benke, Peter; Joachimiak, Marcin P; Xie, Ming; Song, Rong; Arkin, Adam P; Hazen, Terry C; Keasling, Jay D; Wall, Judy D; Stahl, David A; Zhou, Jizhong

    2013-01-01

    Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na+ contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris. PMID:23575373

  1. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: Functional significance

    PubMed Central

    2013-01-01

    During excitation, muscle cells gain Na+ and lose K+, leading to a rise in extracellular K+ ([K+]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na+,K+-ATPase (also known as the Na+,K+ pump) is often essential for adequate clearance of extracellular K+. As a result of their electrogenic action, Na+,K+ pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na+,K+-pump function and the capacity of the Na+,K+ pumps to fill these needs require quantification of the total content of Na+,K+ pumps in skeletal muscle. Inhibition of Na+,K+-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na+,K+-pump transport rate or increasing the content of Na+,K+ pumps enhances muscle excitability and contractility. Measurements of [3H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na+,K+ pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na+,K+-ATPase may show inconsistent results. Measurements of Na+ and K+ fluxes in intact isolated muscles show that, after Na+ loading or intense excitation, all the Na+,K+ pumps are functional, allowing calculation of the maximum Na+,K+-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na+,K+ pumps are regulated by exercise, inactivity, K+ deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na+,K+-ATPase have detected a relative increase in their number in response to exercise and the glucocorticoid dexamethasone but have not involved their quantification in molar units. Determination of ATPase activity in homogenates and plasma membranes obtained from muscle has shown ouabain-suppressible stimulatory effects of Na+ and K+. PMID:24081980

  2. Digital pulse processing for NaI(Tl) detectors

    NASA Astrophysics Data System (ADS)

    Di Fulvio, A.; Shin, T. H.; Hamel, M. C.; Pozzi, S. A.

    2016-01-01

    We apply two different post-processing techniques to digital pulses induced by photons in a NaI(Tl) detector and compare the obtained energy resolution to the standard analog approach. Our digital acquisition approach is performed using a single-stage acquisition with a fast digitizer. Both the post-processing techniques we propose rely on signal integration. In the first, the pulse integral is calculated by directly numerically integrating the pulse digital samples, while in the second the pulse integral is estimated by a model-based fitting of the pulse. Our study used a 7.62 cm×7.62 cm cylindrical NaI(Tl) detector that gave a 7.60% energy resolution (at 662 keV), using the standard analog acquisition approach, based on a pulse shaping amplifier. The new direct numerical integration yielded a 6.52% energy resolution. The fitting approach yielded a 6.55% energy resolution, and, although computationally heavier than numerical integration, is preferable when only the early samples of the pulse are available. We also evaluated the timing performance of a fast-slow detection system, encompassing an EJ-309 and a NaI(Tl) scintillator. We use two techniques to determine the pulse start time: constant fraction discrimination (CFD) and adaptive noise threshold timing (ANT), for both the analog and digital acquisition approach. With the analog acquisition approach, we found a system time resolution of 5.8 ns and 7.3 ns, using the constant fraction discrimination and adaptive noise threshold timing, respectively. With the digital acquisition approach, a time resolution of 1.2 ns was achieved using the ANT method and 3.3 ns using CFD at 50% of the maximum, to select the pulse start time. The proposed direct digital readout and post-processing techniques can improve the application of NaI(Tl) detectors, traditionally considered 'slow', for fast counting and correlation measurements, while maintaining a good measurement of the energy resolution.

  3. Enhanced Infrared Surveillance Imaging Report for NA-22

    SciTech Connect

    Carrano, C J

    2005-10-04

    The purpose of this report is to describe our work on enhanced infrared (IR) surveillance using speckle imaging for NA-22. Speckle imaging in this context is an image post-processing algorithm that aims to solve the atmospheric blurring problem of imaging through horizontal or slant path turbulence. We will describe the IR imaging systems used in our data collections and show imagery before and after speckle processing. We will also compare IR imagery with visible wavelength imagery of the same target in the same conditions and demonstrate how going to longer wavelengths can be beneficial in the presence of strong turbulence.

  4. Project ELaNa and NASA's CubeSat Initiative

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2010-01-01

    This slide presentation reviews the NASA program to use expendable lift vehicles (ELVs) to launch nanosatellites for the purpose of enhancing educational research. The Education Launch of Nanosatellite (ELaNa) project, run out of the Launch Services Program is requesting proposals for CubeSat type payload to provide information that will aid or verify NASA Projects designs while providing opportunities for higher educational research. Some of the challenges involved with the program are discussed, and there is brief discussion about requirements for participation in the program, and the number of flight opportunities available for the launch of the Poly Picosatellite Orbital Deployer (PPOD).

  5. Analysis of Defects Induced Melting in NaCl Crystal

    NASA Astrophysics Data System (ADS)

    Chauhan, R. S.; Snehlata, K.; Singh, C. P.

    2011-07-01

    In the present work we study the pressure dependence of melting of NaCl crystal. Values of pressure derivatives of melting temperature have been calculated at elevated pressures to determine the rate of change of melting temperature with the increase in pressure using the data on vacancy formation energy aqnd effective volume of Schottky defects. The melting curves have also been obtained and found to compare well with the results based on the molecular dynamics simulation and experimental data reported in the recent literature.

  6. Geodetic satellite observations in North American (solution NA-9)

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Reilly, J. P.; Soler, T.

    1972-01-01

    A new detailed geoidal map with claimed accuracies of plus or minus 2 meters (on land), based on gravimetric and satellite data, was presented. With the new geoid and the orthometric heights given, more reliable height constraints were calculated and applied. The basic purpose of this experiment was to compute the new solution NA9 by defining the origin of the system, from the point of view of error propagation, in the most favorable position applying inner constraints and imposing new weighted height constraints to all of the stations. The major differences with respect to formerly published adjustments are presented.

  7. Analysis of Cl and Na in Hyperimmune Sera by NAA

    NASA Astrophysics Data System (ADS)

    Baptista, T. S.; Zamboni, C. B.; Marcelino, J. R.

    2011-08-01

    The Cl and Na concentration values in four types of hyperimmune sera (anti-Bothrops, anti-Diphtheria, anti-Rabies and anti-Tetanus) used for immunological therapy were determined using Neutron Activation Analysis (NAA). These data were compatible with the specifications established by the Word Health Organization (WHO-OMS) and with the Brazilian Official Pharmacopea (Pharmaceutical Code Official of the Country). These data are an important support for quality control of hyperimmune sera production at Butantan Institute (São Paulo city, Brazil), responsible for supplying the Brazilian market.

  8. Polarizabilities of Li and Na in Debye plasmas

    SciTech Connect

    Li, H. W.; Kar, Sabyasachi

    2012-07-15

    We have carried out calculations to investigate the effect of Debye plasmas on the dipole, quadrupole, octupole polarizabilities of lithium and sodium atoms using the symplectic algorithm in the framework of the pseudo-state summation technique. The polarizabilities of alkali-metal atoms for various Debye lengths are reported for the first time in the literature. The behavior of the transition energies and oscillator strengths for Li and Na in plasma environments is also presented. In free atomic cases, our calculated results are in good agreement with the reported theoretical and experimental results.

  9. Reconstitution of Na(+),K(+)-ATPase in Nanodiscs.

    PubMed

    Gregersen, Jonas Lindholt; Fedosova, Natalya U; Nissen, Poul; Boesen, Thomas

    2016-01-01

    Nanodiscs are disc-shaped self-assembled lipid bilayers encircled by membrane scaffolding proteins derived from Apolipoprotein A-1 (apo A-1). They constitute a versatile tool for studying membrane proteins since reconstitution into nanodiscs allows studies of the membrane proteins in detergent-free aqueous solutions in a lipid bilayer. Here, we apply the technique to the Na(+),K(+)-ATPase (NKA) from pig kidney using Membrane Scaffolding Protein 1 D1 (MSP1D1). Contrary to other reports, the nanodiscs obtained by our protocol are built up of the native lipids originally present in the detergent solubilized sample together with the NKA. PMID:26695051

  10. Purification of Na,K-ATPase from Pig Kidney.

    PubMed

    Fedosova, Natalya U

    2016-01-01

    The method of purification of Na,K-ATPase from pig kidney is based on a differential centrifugation and SDS-treatment of a microsomal preparation. The yield is 0.4 mg protein per 1 g tissue with the specific (ouabain-sensitive) activity of 25-28 μmol Pi/min per mg protein and nucleotide binding capacity of 3 nmol/mg. The protein/lipid ratio is 1/1 (mg/mg) with a protein purity of ~80 %. PMID:26695017

  11. Kinetics and peculiarities of thermal inactivation of volume-induced Na+/H+ exchange, Na+,K+,2Cl- cotransport and K+,Cl- cotransport in rat erythrocytes.

    PubMed

    Orlov, S N; Kolosova, I A; Cragoe, E J; Gurlo, T G; Mongin, A A; Aksentsev, S L; Konev, S V

    1993-09-19

    The kinetics of the volume-dependent activation of Na+/H+ exchange, Na+,K+,2Cl(-)-cotransport and K+,Cl(-)-cotransport in rat erythrocytes was studied. The significant increase in the rate of Na+/H+ exchange is observed within 15 min after hypertonic shrinkage while the maximum transport rate is reached by 20 min. A delay of about 5 min was found in activation of Na+,K+,2Cl(-)-cotransport, the maximum transport rate being reached 10 min after shrinkage. Activation of K+,Cl(-)-cotransport by hypotonic swelling was registered within 10 min after cell swelling, with a simultaneous achievement of the constant transport rate. Preincubation of cells at 49 degrees C has no effect on the basal Na+/H+ exchange and Na+,K+,2Cl(-)-cotransport but suppresses the activation of these systems by osmotic shrinkage. On the contrary, the rate of K+,Cl(-)-cotransport in isosmotic medium is raised 10-fold after preincubation at 49 degrees C. The thermal treatment at 49 degrees C blocks the activation of K+,Cl(-)-cotransport by swelling. On the basis of the data on thermal denaturation of spectrin at the same temperature it was suggested that the cytoskeleton of erythrocyte membrane is involved in volume regulation of the ion-transporting systems and that the molecular mechanisms which underlie the activation of Na+/H+ exchange, Na+,K+,2Cl(-)-cotransport and K+,Cl(-)-cotransport are essentially different. PMID:8396975

  12. Measurements of the liquidus surface and solidus transitions of the NaCl-UCl3 and NaCl-UCl3-CeCl3 phase diagrams

    NASA Astrophysics Data System (ADS)

    Sooby, E. S.; Nelson, A. T.; White, J. T.; McIntyre, P. M.

    2015-11-01

    NaCl-UCl3-PuCl3 is proposed as the fuel salt for a number of molten salt reactor concepts. No experimental data exists for the ternary system, and limited data is available for the binary compositions of this salt system. Differential scanning calorimetry is used in this study to examine the liquidus surface and solidus transition of a surrogate fuel-salt (NaCl-UCl3-CeCl3) and to reinvestigate the NaCl-UCl3 eutectic phase diagram. The results of this study show good agreement with previously reported data for the pure salt compounds used (NaCl, UCl3, and CeCl3) as well as for the eutectic points for the NaCl-UCl3 and NaCl-CeCl3 binary systems. The NaCl-UCl3 liquidus surface produced in this study predicts a 30-40 °C increase on the NaCl-rich side of the binary phase diagram. The increase in liquidus temperature could prove significant to molten salt reactor modeling.

  13. Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb,Er/NaGdF4 nanocomposites synthesized by a boiling water seed-mediated route

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Qing; Li, Ao-Ju; Guo, Wei; Tian, Peng-Hua; Yu, Xiao-Long; Liu, Zhong-Xin; Cao, Yang; Sun, Zhong-Liang

    2016-03-01

    In a route boiling water served as reaction medium, a stoichiometric amount of rare-earth compound and fluoride are put into this system to form α-NaYF4:Yb, Er nuclei. Then prepared sample is heated at elevated temperature to improve the fluorescence intensity, and next a NaGdF4 shell grows on the surface of NaYF4 nuclei. NaYF4:Yb,Er/NaGdF4 core-shell structured upconversion nanoparticles (CSUCNPs) have been successfully synthesized by above route. The use of boiling water decreases the cubic-to-hexagonal phase transition temperature of NaYF4:Yb,Er to 350°C and increases its upconversion (UC) luminescence intensity. A heterogeneous NaGdF4 epitaxially growing on the surface of Ln3+-doped NaYF4 not only improves UC luminescence, but also creates a paramagnetic shell, which can be used as contrast agents in magnetic resonance imaging (MRI). The solution of CSUCNPs shows bright green UC fluorescence under the excitation at 980 nm in a power density only about 50 mW·cm-2. A broad spectrum with a dominant resonance at g of about 2 is observed by the electron paramagnetic resonance (EPR) spectrum of CSUCNPs. Above properties suggest that the obtained CSUCNPs could be potential candidates for dual-mode optical/magnetic bioapplications.

  14. Probabilistic models to describe the effect of NaNO2 in combination with NaCl on the growth inhibition of Lactobacillus in frankfurters.

    PubMed

    Lee, Soomin; Lee, Heeyoung; Kim, Sejeong; Lee, Jeeyeon; Ha, Jimyeong; Gwak, Eunji; Oh, Mi-Hwa; Park, Beom-Young; Kim, Jin-Seok; Choi, Kyoung-Hee; Yoon, Yohan

    2015-12-01

    Probabilistic models were developed to describe the antimicrobial effect of NaNO2 (0-210ppm) in combination with NaCl (0-1.75%) on Lactobacillus growth under aerobic and anaerobic conditions. Growth (1) or no growth (0) was assessed every 24h as turbid or not turbid, respectively. The growth response data were analyzed by logistic regression to select significant variables (P<0.05) for Lactobacillus growth inhibition, and these variables were used to generate a probabilistic model. The model was then validated with observed data from frankfurters (a model system). NaNO2 and NaCl inhibited (P<0.05) Lactobacillus growth at all temperatures under aerobic and anaerobic conditions, and the antimicrobial effect of NaNO2 increased as the NaCl concentration increased. Validation showed that the performance of the developed model was appropriate. These results indicate that the models developed in this study should be useful for describing the antimicrobial effect of NaNO2 in combination with NaCl on Lactobacillus. PMID:26410421

  15. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis.

    PubMed

    Muñoz-Márquez, Miguel A; Zarrabeitia, Maider; Castillo-Martínez, Elizabeth; Eguía-Barrio, Aitor; Rojo, Teófilo; Casas-Cabanas, Montse

    2015-04-15

    Na2Ti3O7 is considered a promising negative electrode for Na-ion batteries; however, poor capacity retention has been reported and the stability of the solid-electrolyte interphase (SEI) could be one of the main actors of this underperformance. The composition and evolution of the SEI in Na2Ti3O7 electrodes is hereby studied by means of X-ray photoelectron spectroscopy (XPS). To overcome typical XPS limitations in the photoelectron energy assignments, the analysis of the Auger parameter is here proposed for the first time in battery materials characterization. We have found that the electrode/electrolyte interface formed upon discharge, mostly composed by carbonates and semicarbonates (Na2CO3, NaCO3R), fluorides (NaF), chlorides (NaCl) and poly(ethylene oxide)s, is unstable upon electrochemical cycling. Additionally, solid state nuclear magnetic resonance (NMR) studies prove the reaction of the polyvinylidene difluoride (PVdF) binder with sodium. The powerful approach used in this work, namely Auger parameter study, enables us to correctly determine the composition of the electrode surface layer without any interference from surface charging or absolute binding energy calibration effects. As a result, the suitability for Na-ion batteries of binders and electrolytes widely used for Li-ion batteries is questioned here. PMID:25811538

  16. NaBC1 is a ubiquitous electrogenic Na+ -coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation.

    PubMed

    Park, Meeyoung; Li, Qin; Shcheynikov, Nikolay; Zeng, Weizong; Muallem, Shmuel

    2004-11-01

    Boron is a vital micronutrient in plants and may be essential for animal growth and development. Whereas the role of boron in the life cycle of plants is well documented, nothing is known about boron homeostasis and function in animal cells. NaBC1, the mammalian homolog of AtBor1, is a borate transporter. In the absence of borate, NaBC1 conducts Na(+) and OH(-) (H(+)), while in the presence of borate, NaBC1 functions as an electrogenic, voltage-regulated, Na(+)-coupled B(OH)(4)(-) transporter. At low concentrations, borate activated the MAPK pathway to stimulate cell growth and proliferation, and at high concentrations, it was toxic. Accordingly, overexpression of NaBC1 shifted both effects of borate to the left, whereas knockdown of NaBC1 halted cell growth and proliferation. These findings may reveal a previously unrecognized role for NaBC1 in borate homeostasis and open the way to better understanding of the many presumed physiological roles of borate in animals. PMID:15525507

  17. PGE2 reduces net water and chloride absorption from the rat colon by targeting the Na+/H+ exchanger and the Na+ K+ 2Cl- cotransporter.

    PubMed

    Hodeify, Rawad F; Kreydiyyeh, Sawsan Ibrahim

    2007-05-01

    An effect of PGE2 on water and chloride absorption was already established in a previous work. This study is an attempt to find the mechanism of action of the prostaglandin by investigating the involvement of three major transporters namely the Na+ -K+ ATPase, the Na+/H+ exchanger and the Na+ K+ 2Cl- cotransporter. Rats were injected with PGE2 and 15 min later, the colon was perfused in situ with Krebs Ringer buffer, and net water and chloride absorption were determined. When the involvement of the cotransporter and/or the exchanger was investigated, animals were injected with, respectively, furosemide and amiloride 10 min before PGE2. Superficial and crypt colonocytes were then isolated and the protein expression of the Na+ -K+ ATPase and the Na+ K+ 2Cl- was determined by western blot analysis. The effect of PGE2 on the pump activity in presence or absence of the transporters' inhibitors was also studied. PGE2 decreased net water and chloride absorption from the colon, increased the Na+ -K+ ATPase activity in superficial cells and reduced it in crypt cells. The prostaglandin was found to stimulate secretion in superficial cells by targeting the Na+ K+ 2Cl- symporter, and reduce absorption in crypt cells by targeting the Na+/H+ antiporter. Changes in the activity of the pump are secondary to changes in the activity of the other transporters. PMID:17481876

  18. Impact of surface roughness on the electrical parameters of industrial high efficiency NaOH-NaOCl textured multicrystalline silicon solar cell

    SciTech Connect

    Basu, P.K.; Pujahari, R.M.; Kaur, Harpreet; Singh, Devi; Varandani, D.; Mehta, B.R.

    2010-09-15

    Sodium hydroxide (NaOH) and sodium hypochlorite (NaOCl) solution (1:1 ratio by volume) based texturization process at 80-82 C is an easy, low cost and comparatively new and convenient option for fabrication of any multicrystalline silicon (mC-Si) solar cell. In the present study atomic force microscope is used to observe the intragrain surface in a miniscule area (3 {mu}m x 3 {mu}m) of NaOH-NaOCl textured surface by two and three dimensional analysis, roughness analysis and section analysis. The r.m.s value of the surface parameter of 7.0 nm ascertains the smoothness of the textured surface and further the surface reflectivity is minimized to 4-6% in the 500-1000 nm wavelength range by a proper silicon nitride anti-reflection coating. Comparing with the standard HF-HNO{sub 3}-CH{sub 3}COOH acid textured cell, the NaOH-NaOCl textured cell shows a comparatively lower value of series resistance of 7.17 m{omega}, higher value of shunt resistance of 18.4 {omega} to yield a fill factor of 0.766 leading to more than 15% cell efficiency in the industrial cell processing line. This AFM study yields different surface roughness parameters for the NaOH-NaOCl textured wafers which can be used as a reference standard for optimized texturing. (author)

  19. Synthesis and crystal structure analysis of Li2NaBP2O8 and LiNa2B5P2O14

    NASA Astrophysics Data System (ADS)

    Hasegawa, Toru; Yamane, Hisanori

    2015-05-01

    Single crystals of Li2NaBP2O8 and LiNa2B5P2O14 were prepared at 873-883 K. The XRD reflections of Li2NaBP2O8 single crystal were indexed with triclinic unit-cell parameters of a=5.4344(3) Å, b=7.3793(4) Å, c=7.9840(4) Å, ?=103.243(3)°, ?=109.270(4)° and ?=87.391(2)°; (space group P 1 bar (No. 2)). Li2NaBP2O8 consists of one-dimensional 1?[BP2O8]3- chains of BO4 and PO4 tetrahedra in the direction of the c axis, and Li and Na atoms located around the chains. The XRD reflections of the LiNa2B5P2O14 single crystal were indexed with monoclinic unit-cell parameters of a=8.208(3) Å, b=9.151(3) Å, c=8.349(3) Å and ?=115.709(7)°; (space group P21/m (No. 11)). In the crystal structure of LiNa2B5P2O14, BO3 trigonal planer and BO4 and PO4 tetrahedra share O atoms and form two-dimensional sheets of 2?[B5P2O14]3-. One Li and two Na atoms are situated at a large triangular space in the sheets.

  20. Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb,Er/NaGdF4 nanocomposites synthesized by a boiling water seed-mediated route

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Qing; Li, Ao-Ju; Guo, Wei; Tian, Peng-Hua; Yu, Xiao-Long; Liu, Zhong-Xin; Cao, Yang; Sun, Zhong-Liang

    2015-12-01

    In a route boiling water served as reaction medium, a stoichiometric amount of rare-earth compound and fluoride are put into this system to form ?-NaYF4:Yb, Er nuclei. Then prepared sample is heated at elevated temperature to improve the fluorescence intensity, and next a NaGdF4 shell grows on the surface of NaYF4 nuclei. NaYF4:Yb,Er/NaGdF4 core-shell structured upconversion nanoparticles (CSUCNPs) have been successfully synthesized by above route. The use of boiling water decreases the cubic-to-hexagonal phase transition temperature of NaYF4:Yb,Er to 350°C and increases its upconversion (UC) luminescence intensity. A heterogeneous NaGdF4 epitaxially growing on the surface of Ln3+-doped NaYF4 not only improves UC luminescence, but also creates a paramagnetic shell, which can be used as contrast agents in magnetic resonance imaging (MRI). The solution of CSUCNPs shows bright green UC fluorescence under the excitation at 980 nm in a power density only about 50 mW·cm-2. A broad spectrum with a dominant resonance at g of about 2 is observed by the electron paramagnetic resonance (EPR) spectrum of CSUCNPs. Above properties suggest that the obtained CSUCNPs could be potential candidates for dual-mode optical/magnetic bioapplications.

  1. Na2EuAs2S5, NaEuAsS4, and Na4Eu(AsS4)2: controlling the valency of arsenic in polysulfide fluxes.

    PubMed

    Bera, Tarun K; Kanatzidis, Mercouri G

    2012-04-01

    The reactivity of europium with As species in Lewis basic alkali-metal polysulfide fluxes was investigated along with compound formation and the As(3+)/As(5+) interplay vis-à-vis changes in the flux basicity. The compound Na(2)EuAs(2)S(5) containing trivalent As(3+) is stabilized from an arsenic-rich polysulfide flux. It crystallizes in the monoclinic centrosymmetric space group P2(1)/c. Na(2)EuAs(2)S(5) has [As(2)S(5)](4-) units, built of corner sharing AsS(3) pyramids, which are coordinated to Eu(2+) ions to give a two-dimensional (2D) layered structure. A sodium polysulfide flux with comparatively less arsenic led to the As(5+) containing compounds NaEuAsS(4) (orthorhombic, Ama2) and Na(4)Eu(AsS(4))(2) (triclinic, P1) depending on Na(2)S/S ratio. The NaEuAsS(4) and Na(4)Eu(AsS(4))(2) have a three-dimensional (3D) structure built of [AsS(4)](3-) tetrahedra coordinated to Eu(2+) ions. All compounds are semiconductors with optical energy gaps of ?2 eV. PMID:22414216

  2. Impact of different Na-incorporating methods on Cu(In,Ga)Se2 thin film solar cells with a low-Na substrate.

    PubMed

    Ye, Shenglin; Tan, Xiaohui; Jiang, Minlin; Fan, Bin; Tang, Ken; Zhuang, Songlin

    2010-03-20

    As a kind of Na-incorporating control method, NaF co-evaporation or soda-lime glass thin films (SLGTFs) are useful to improve the photovoltaic performance of Cu(In,Ga)Se(2) (CIGS) cells fabricated on low-Na substrates. X-ray diffraction (XRD) patterns and scanning electron microscope pictures demonstrate that the grain size of CIGS thin film is reduced with the addition of Na. In addition, a variance of the preferred orientation is found by XRD patterns in terms of SLGTF samples. By a use of 100 nm thick SLGTF as a Na source, the best CIGS solar cell with an efficiency of 13.42% has been obtained. PMID:20300164

  3. Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Weifeng; Zhou, Jing; Li, Biao; Ma, Jin; Tao, Shi; Xia, Dingguo; Chu, Wangsheng; Wu, Ziyu

    2014-03-01

    Na-ion batteries are gaining an increased recognition as the next generation low cost energy storage devices. Here, we present a characterization of Na3FePO4CO3 nanoplates as a novel cathode material for sodium ion batteries. First-principles calculations reveal that there are two paths for Na ion migration along b and c axis. In-situ and ex-situ Fe K-edge X-ray absorption near edge structure (XANES) point out that in Na3FePO4CO3 both Fe2+/Fe3+ and Fe3+/Fe4+ redox couples are electrochemically active, suggesting also the existence of a two-electron intercalation reaction. Ex-situ X-ray powder diffraction data demonstrates that the crystalline structure of Na3FePO4CO3 remains stable during the charging/discharging process within the range 2.0-4.55 V.

  4. Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and electronic structures, and polaron-Na vacancy complex diffusion.

    PubMed

    Bui, Kieu My; Dinh, Van An; Okada, Susumu; Ohno, Takahisa

    2015-11-11

    The crystal and electronic structures, electrochemical properties and diffusion mechanism of NASICON-type Na3V2(PO4)3 have been investigated based on the hybrid density functional Heyd-Scuseria-Ernzerhof (HSE06). A polaron-Na vacancy complex model for revealing the diffusion mechanism is proposed for the first time in the field of Na-ion batteries. The bound polaron is found to favorably form at the first nearest V site to the Na vacancy. Consequently, the movement of the Na vacancy will be accompanied by the polaron. Three preferable diffusion pathways are revealed; these are two intra-layer diffusion pathways and one inter-layer pathway. The activation barriers for the intra-layer and inter-layer pathways are 353 meV and 513 meV, respectively. For further comparison, the generalized gradient approximation with an onsite Coulomb Hubbard U (GGA+U) is also employed. PMID:26509737

  5. Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries

    PubMed Central

    Huang, Weifeng; Zhou, Jing; Li, Biao; Ma, Jin; Tao, Shi; Xia, Dingguo; Chu, Wangsheng; Wu, Ziyu

    2014-01-01

    Na-ion batteries are gaining an increased recognition as the next generation low cost energy storage devices. Here, we present a characterization of Na3FePO4CO3 nanoplates as a novel cathode material for sodium ion batteries. First-principles calculations reveal that there are two paths for Na ion migration along b and c axis. In-situ and ex-situ Fe K-edge X-ray absorption near edge structure (XANES) point out that in Na3FePO4CO3 both Fe2+/Fe3+ and Fe3+/Fe4+ redox couples are electrochemically active, suggesting also the existence of a two-electron intercalation reaction. Ex-situ X-ray powder diffraction data demonstrates that the crystalline structure of Na3FePO4CO3 remains stable during the charging/discharging process within the range 2.0–4.55?V. PMID:24595232

  6. Uptake and Loss of Na+, Rb+, and Cs+ in Relation to an Active Mechanism for Extrusion of Na+ in Scenedesmus 1

    PubMed Central

    Kylin, Anders

    1966-01-01

    The mechanism for extrusion of Na+ from Scenedesmus cells is characterized physiologically. It is stimulated by phosphate but oxygen is not necessary. Rb+ and Cs+ may also be extruded, but in the presence of Na+ they cannot compete for the sites on the inside of the transport system. When Na+ is extruded, Rb+ and, by inference, K+ seems to be transported as counter ion from the outside, and sodium ions compete only weakly for this external site. The parallelism between these findings and the Na+-K+-activated adenosine triphosphatases known from animal tissues is pointed out. With low additions of phosphate, the extrusion mechanism can keep the cells practically free from Na+. Increasing the concentrations of external phosphate stimulates uptake more than extrusion, and a net uptake occurs. As for Rb+ and Cs+, they are taken up in the absence of external phosphate, but additions of P will greatly enhance the amounts absorbed. Two different ways of uptake are indicated. PMID:5932402

  7. Correction of the Caulobacter crescentus NA1000 Genome Annotation

    PubMed Central

    Ely, Bert; Scott, LaTia Etheredge

    2014-01-01

    Bacterial genome annotations are accumulating rapidly in the GenBank database and the use of automated annotation technologies to create these annotations has become the norm. However, these automated methods commonly result in a small, but significant percentage of genome annotation errors. To improve accuracy and reliability, we analyzed the Caulobacter crescentus NA1000 genome utilizing computer programs Artemis and MICheck to manually examine the third codon position GC content, alignment to a third codon position GC frame plot peak, and matches in the GenBank database. We identified 11 new genes, modified the start site of 113 genes, and changed the reading frame of 38 genes that had been incorrectly annotated. Furthermore, our manual method of identifying protein-coding genes allowed us to remove 112 non-coding regions that had been designated as coding regions. The improved NA1000 genome annotation resulted in a reduction in the use of rare codons since noncoding regions with atypical codon usage were removed from the annotation and 49 new coding regions were added to the annotation. Thus, a more accurate codon usage table was generated as well. These results demonstrate that a comparison of the location of peaks third codon position GC content to the location of protein coding regions could be used to verify the annotation of any genome that has a GC content that is greater than 60%. PMID:24621776

  8. Second Spectrum of Na I D1 Observed with THEMIS

    NASA Astrophysics Data System (ADS)

    Bommier, V.; Molodij, G.

    2006-12-01

    The second solar spectrum (spectrum of the linear polarization observed near the solar limb in a quiet region) of Na I D1 has always been found antisymmetrical when observed with THEMIS tep{b12 TB01,b12 BM02}. The same holds also for atlas of tet{b12 Ga00}. On the contrary, tet{b12 SK97} and tet{b12 St00} observed a differently shaped profile, showing a central peak. We investigated in depth our treatment of THEMIS data, in particular looking for possible beam misalignments, by observing other unpolarized lines, but we have failed to put in evidence any misalignment. We discuss these complementary observations. In addition, we present a structure in the V/I profile of Na I D1 and D2, which we have repeatedly observed, and which we suggest be due to the Kemp effect (the alignement-to-orientation transfer that occurs in the transition from the Zeeman effect to the Paschen-Back effect).

  9. Paleothermometry of NaCl as evidenced from thermoluminescence data

    NASA Astrophysics Data System (ADS)

    Gartia, R. K.

    2009-09-01

    The firing temperature of ancient ceramic artifacts, i.e. the paleothermometry of these materials has been estimated by various techniques including thermoluminescence (TL) and, more recently, Optically Stimulated Luminescence (OSL) where the OSL response of quartz to firing temperature is used. In this work we report the paleothermometry of sodium chloride (NaCl) by studying the TL response of the material as a function of annealing temperatures in the range of 100-500 °C. Annealing/measurement has been done in a commercial TL/OSL reader (Model No. Risø TL/OSL reader TL-DA-15) in a nitrogen atmosphere. Sodium chloride (NaCl) has been selected as the candidate to test the feasibility of the technique since in this system TL peaks are correlated with the thermal annealing of F-centers unlike the case of quartz where a one to one correlation with all the glow peaks and thermal annealing of defects has not been possible.

  10. Will Lanthanum Halide Scintillators Make NaI(Tl) Obsolete?

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian

    2006-05-01

    The commercial availability of lanthanum halide scintillators (LaCl3:Ce and LaBr3:Ce) has been much anticipated due to their significantly better resolution (3-4% at 662 keV) relative to NaI(Tl). Unfortunately, our initial investigation of these scintillators revealed significant alpha contamination quite apparent in background spectra. Using measurements of the detector in coincidence with a HPGe detector, we identified the alpha-contaminant as Ac-227. Since this time, the alpha contamination has been substantially reduced so that a second contaminant, La-138 (a beta, gamma, and x-ray source) has become the dominant contaminant in the material. Commercially-available sizes of lanthanum halide scintillators have now reached sizes suitable for handheld Radioactive Isotope Identification Devices (RIIDs). To study the potential of this new material for RIIDs we performed a series of measurements comparing a 1.5'' x 1.5'' LaBr3 detector with an Exploranium GR-135 RIID, which contains a 1.5'' x 2.2'' NaI(Tl) detector. Measurements were taken for short timeframes of seconds to minutes, as typifies RIID usage. Measurements included examples of naturally occurring radioactive material (NORM) typically found in cargo. Of particular interest was the extent to which interference between the La-138 contaminant and K-40, a radioisotope commonly found in NORM, compromise the lanthanum halide performance. Example spectra, detector comparisons and results will be shown.

  11. Dielectronic recombination resonances in Na{sup 8+}

    SciTech Connect

    Nikolic, D.; Lindroth, E.; Kieslich, S.; Brandau, C.; Schippers, S.; Shi, W.; Mueller, A.; Gwinner, G.; Schnell, M.; Wolf, A.

    2004-12-01

    The electron-ion recombination spectrum of the Li-like Na{sup 8+} ion in the energy range 0.0-0.5 eV is presented. Experimental results obtained by storage-ring techniques are compared with a calculated spectrum, based on a combination of relativistic many-body methods and complex rotation, and the agreement is found to be very good. The deviations between measured and calculated dielectronic recombination resonance energies are usually below about 2 meV with a maximum difference at 5.5 meV, while the theoretical cross sections deviate by at most 20% from the experiment. The recombination spectrum in the investigated energy region is determined by the 2p{sub j}7l{sub j{sup '}} Rydberg manifold of dielectronic recombination resonances, comprising 61 states within half an eV above the ground state of Na{sup 8+}. The theoretical resonance parameters of all contributing states are provided.

  12. MINOS Calibration and NA49 Hadronic Production Studies

    SciTech Connect

    Morse, Robert James

    2003-08-01

    An overview of the current status of the Main Injector Neutrino Oscillation Search (MINOS) is presented. MINOS is a long-baseline experiment with two detectors situated in North America. The near detector is based at the emission point of the NuMI beam at Fermilab, Chicago, the far detector is 735 km downstream in a disused iron mine in Soudan, Minnesota. A third detector, the calibration detector, is used to cross-calibrate these detectors by sampling different particle beams at CERN. A detailed description of the design and construction of the light-injection calibration system is included. Also presented are experimental investigations into proton-carbon collisions at 158 GeV/c carried out with the NA49 experiment at CERN. The NA49 experiment is a Time Projection Chamber (TPC) based experiment situated at CERN's North Area. It is a well established experiment with well known characteristics. The data gained from this investigation are to be used to parameterize various hadronic production processes in accelerator and atmospheric neutrino production. These hadronic production parameters will be used to improve the neutrino generation models used in calculating the neutrino oscillation parameters in MINOS.

  13. A new diabatic representation of the coupled potential energy surfaces for Na(3p P-2) + H2 yields Na(3s S-2) + H2 or NaH + H

    NASA Technical Reports Server (NTRS)

    Halvick, Philippe; Truhlar, Donald G.

    1992-01-01

    A diabatic representation is presented of the coupled potential-energy surfaces for Na(3p P-2) + H2 yields Na (3s S-2) + H2 or NaH + H. The representation is designed to yield, upon diagonalization, realistic values for the two lowest energy adiabatic states at both asymptotes of the chemical reaction as well as near the conical intersection in the three-body interaction region. It is economical to evaluate and portable. It is suitable for dynamics calculations on both the quenching process and the electronically nonadiabatic chemical reaction.

  14. Na-Ion Battery Anodes: Materials and Electrochemistry.

    PubMed

    Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing

    2016-02-16

    The intermittent nature of renewable energy sources, such as solar and wind, calls for sustainable electrical energy storage (EES) technologies for stationary applications. Li will be simply too rare for Li-ion batteries (LIBs) to be used for large-scale storage purposes. In contrast, Na-ion batteries (NIBs) are highly promising to meet the demand of grid-level storage because Na is truly earth abundant and ubiquitous around the globe. Furthermore, NIBs share a similar rocking-chair operation mechanism with LIBs, which potentially provides high reversibility and long cycling life. It would be most efficient to transfer knowledge learned on LIBs during the last three decades to the development of NIBs. Following this logic, rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results. On the anode side, pure graphite as the standard anode for LIBs can only form NaC64 in NIBs if solvent co-intercalation does not occur due to the unfavorable thermodynamics. In fact, it was the utilization of a carbon anode in LIBs that enabled the commercial successes. Anodes of metal-ion batteries determine key characteristics, such as safety and cycling life; thus, it is indispensable to identify suitable anode materials for NIBs. In this Account, we review recent development on anode materials for NIBs. Due to the limited space, we will mainly discuss carbon-based and alloy-based anodes and highlight progress made in our groups in this field. We first present what is known about the failure mechanism of graphite anode in NIBs. We then go on to discuss studies on hard carbon anodes, alloy-type anodes, and organic anodes. Especially, the multiple functions of natural cellulose that is used as a low-cost carbon precursor for mass production and as a soft substrate for tin anodes are highlighted. The strategies of minimizing the surface area of carbon anodes for improving the first-cycle Coulombic efficiency are also outlined, where graphene oxide was employed as dehydration agent and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was used to unzip wood fiber. Furthermore, surface modification by atomic layer deposition technology is introduced, where we discover that a thin layer of Al2O3 can function to encapsulate Sn nanoparticles, leading to a much enhanced cycling performance. We also highlight recent work about the phosphorene/graphene anode, which outperformed other anodes in terms of capacity. The aromatic organic anode is also studied as anode with very high initial sodiation capacity. Furthermore, electrochemical intercalation of Na ions into reduced graphene oxide is applied for fabricating transparent conductors, demonstrating the great feasibility of Na ion intercalation for optical applications. PMID:26783764

  15. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment

    SciTech Connect

    Huang Jiquan; Cao Yongge; Deng Zhonghua; Tong Hao

    2011-03-15

    The effects of the concentration of NaOH on the formation and transformation of various titanate nanostructures were studied. With increasing NaOH concentration, three different formation mechanisms were proposed. Nanotubes can only be obtained under moderate NaOH conditions, and should transform into nanowires with prolonged hydrothermal treatment, and their formation rate is accelerated by increasing NaOH concentration. Low concentration of NaOH results in the direct formation of nanowires, while extra high concentration of NaOH leads to the formation of amorphous nanoparticles. Adsorption and photocatalysis studies show that titanate nanowires and nanotubes might be potential adsorbents for the removal of both heavy metal ions and dyes and photocatalysts for the removal of dyes from wastewater. -- Graphical abstract: The morphologies of the titanates depend deeply on the concentration of NaOH. With increasing NaOH concentration, three different formation mechanisms were proposed. The application of these titanate nanostructures in the wastewater treatment was studied. Display Omitted Research highlights: {yields} Effect of NaOH concentration on the structures of various titanates was reported. {yields} Three different formation mechanisms were presented with increasing NaOH concentration. {yields} Various titanates were used as adsorbents/photocatalysts in wastewater treatment.

  16. Cell Degradation of a Na-NiCl2 (ZEBRA) Battery

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.

    2013-11-01

    In this work, the parameters influencing the degradation of a Na-NiCl2 (ZEBRA) battery were investigated. Planar Na-NiCl2 cells using ?”-alumina solid electrolyte (BASE) were tested with different C-rates, Ni/NaCl ratios, and capacity windows, in order to identify the key parameters for the degradation of Na-NiCl2 battery. The morphology of NaCl and Ni particles were extensively investigated after 60 cycles under various test conditions using a scanning electron microscope. A strong correlation between the particle size (NaCl and Ni) and battery degradation was observed in this work. Even though the growth of both Ni and NaCl can influence the cell degradation, our results indicate that the growth of NaCl is a dominant factor in cell degradation. The use of excess Ni seems to play a role in tolerating the negative effects of particle growth on degradation since the available active surface area of Ni particles can be still sufficient even after particle growth. For NaCl, a large cycling window was the most significant factor, of which effects were amplified with decrease in Ni/NaCl ratio.

  17. Structural changes induced by NaCl in companion and transfer cells of Medicago sativa blades.

    PubMed

    Boughanmi, N; Michonneau, P; Verdus, M-C; Piton, F; Ferjani, E; Bizid, E; Fleurat-Lessard, P

    2003-03-01

    Medicago sativa var. Gabes is a perennial glycophyte that develops new shoots even in high salinity (150 mM NaCl). In the upper exporting leaves, K(+) is high and Na(+) is low by comparison with the lower leaves, where Na(+) accumulation induces chlorosis after 4 weeks of NaCl treatment. By secondary ion mass spectroscopy, a low Na(+)/K(+) ratio was detected in the phloem complex of blade veins in these lower leaves. By transmission electron microscopy, the ultrastructural features were observed in the phloem complex. In the upper leaves of both control and NaCl-treated plants, companion cells in minor veins were found to be transfer cells. These cells may well be involved in the intravenous recycling of ions and in Na(+) flowing out of exporting leaves. Under the effect of NaCl, companion cells in the main veins develop transfer cell features, which may favor the rate of assimilate transport from exporting leaves toward meristems, allowing the positive balance necessary for the survival in salt conditions. These features no longer assist the lower leaves when transfer cells are necrotized in both minor and main veins of NaCl-treated plants. As transfer cells are the only degenerating phloem constituent, our observations emphasize their role in controlling nutrient (in particular, Na(+)) fluxes associated with the stress response. PMID:12664282

  18. Morphological, Physiological, and Structural Responses of Two Species of Artemisia to NaCl Stress

    PubMed Central

    Guan, Zhi-Yong; Su, Yi-Ji; Teng, Nian-Jun; Chen, Su-Mei; Sun, Hai-Nan; Li, Chu-Ling; Chen, Fa-Di

    2013-01-01

    Effects of salt stress on Artemisia scoparia and A. vulgaris “Variegate” were examined. A. scoparia leaves became withered under NaCl treatment, whereas A. vulgaris “Variegate” leaves were not remarkably affected. Chlorophyll content decreased in both species, with a higher reduction in A. scoparia. Contents of proline, MDA, soluble carbohydrate, and Na+ increased in both species under salt stress, but A. vulgaris “Variegate” had higher level of proline and soluble carbohydrate and lower level of MDA and Na+. The ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+ in A. vulgaris “Variegate” under NaCl stress were higher. Moreover, A. vulgaris “Variegate” had higher transport selectivity of K+/Na+ from root to stem, stem to middle mature leaves, and upper newly developed leaves than A. scoparia under NaCl stress. A. vulgaris “Variegate” chloroplast maintained its morphological integrity under NaCl stress, whereas A. scoparia chloroplast lost integrity. The results indicated that A. scoparia is more sensitive to salt stress than A. vulgaris “Variegate.” Salt tolerance is mainly related to the ability of regulating osmotic pressure through the accumulation of soluble carbohydrates and proline, and the gradient distribution of K+ between roots and leaves was also contributed to osmotic pressure adjustment and improvement of plant salt tolerance. PMID:24235883

  19. Na+ channel-mediated Ca2+ entry leads to glutamate secretion in mouse neocortical preplate

    PubMed Central

    Platel, J.-C.; Boisseau, S.; Dupuis, A.; Brocard, J.; Poupard, A.; Savasta, M.; Villaz, M.; Albrieux, M.

    2005-01-01

    Before synaptogenesis, early excitability implicating voltage-dependent and transmitter-activated channels is known to be crucial for neuronal development. We previously showed that preplate (PP) neurons of the mouse neocortex express functional Na+ channels as early as embryonic day 12. In this study, we investigated the role of these Na+ channels in signaling during early development. In the neocortex of embryonic-day-13 mice, activation of Na+ channels with veratridine induced a large Ca2+ response throughout the neocortex, even in cell populations that lack the Na+ channel. This Na+-dependent Ca2+ activity requires external Ca2+ and is completely blocked by inhibitors of Na+/Ca2+ exchangers. Moreover, veratridine-induced Ca2+ increase coincides with a burst of exocytosis in the PP. In parallel, we show that Na+ channel stimulation enhances glutamate secretion in the neocortical wall. Released glutamate triggers further Ca2+ response in PP and ventricular zone, as indicated by the decreased response to veratridine in the presence of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and NMDA-receptor inhibitors. Therefore, the combined activation of the Na+ channel and the Na+/Ca2+ exchanger triggers Ca2+ signaling in the PP neurons, leading to glutamate secretion, which amplifies the signal and serves as an autocrine/paracrine transmitter before functional synapses are formed in the neocortex. Membrane depolarization induced by glycine receptors activation could be one physiological activator of this Na+ channel-dependent pathway. PMID:16357207

  20. Crystal and electronic structures of nitridophosphate compounds as cathode materials for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Debbichi, M.; Lebègue, S.

    2015-08-01

    Using density-functional theory, we have studied the electronic and magnetic properties of two promising compounds that can be used as cathode materials, namely, Na2Fe2P3O9N and Na3TiP3O9N . When Na is extracted, we found the volume change to be quite small, with values of ˜-0.6 % for Na3TiP3O9N and -5 % for Na2Fe2P3O9N . Our calculated voltages with the Hubbard-type correction (GGA+U) approximation are 2.93 V for Na3TiP3O9N /Na2TiP3O9N and 2.68 V for Na2Fe2P3O9N /NaFe2P3O9N , in good agreement with the experimental data. Our results confirm that these compounds are very promising for rechargeable Na-ion batteries.

  1. Na+ channel-mediated Ca2+ entry leads to glutamate secretion in mouse neocortical preplate.

    PubMed

    Platel, J-C; Boisseau, S; Dupuis, A; Brocard, J; Poupard, A; Savasta, M; Villaz, M; Albrieux, M

    2005-12-27

    Before synaptogenesis, early excitability implicating voltage-dependent and transmitter-activated channels is known to be crucial for neuronal development. We previously showed that preplate (PP) neurons of the mouse neocortex express functional Na(+) channels as early as embryonic day 12. In this study, we investigated the role of these Na(+) channels in signaling during early development. In the neocortex of embryonic-day-13 mice, activation of Na(+) channels with veratridine induced a large Ca(2+) response throughout the neocortex, even in cell populations that lack the Na(+) channel. This Na(+)-dependent Ca(2+) activity requires external Ca(2+) and is completely blocked by inhibitors of Na(+)/Ca(2+) exchangers. Moreover, veratridine-induced Ca(2+) increase coincides with a burst of exocytosis in the PP. In parallel, we show that Na(+) channel stimulation enhances glutamate secretion in the neocortical wall. Released glutamate triggers further Ca(2+) response in PP and ventricular zone, as indicated by the decreased response to veratridine in the presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and NMDA-receptor inhibitors. Therefore, the combined activation of the Na(+) channel and the Na(+)/Ca(2+) exchanger triggers Ca(2+) signaling in the PP neurons, leading to glutamate secretion, which amplifies the signal and serves as an autocrine/paracrine transmitter before functional synapses are formed in the neocortex. Membrane depolarization induced by glycine receptors activation could be one physiological activator of this Na(+) channel-dependent pathway. PMID:16357207

  2. Sodium diffusion in metals observed by the 23Na(p,γ) reaction

    NASA Astrophysics Data System (ADS)

    Uhrmacher, M.; Lieb, K. P.

    1992-05-01

    Resonant nuclear reaction analysis (RNRA) provides a convenient and precise method of measuring concentration profiles of light elements in near surface regions. The 23Na(p,γ)24Mg resonance at 309 keV was used to study supersaturated Na-solutions in polycrystalline Al, Cr, Fe, Mo, Ni and Ta after Na+ implantation at 250 keV and thermal annealings. Outdiffusion of Na at high temperatures was observed for all hosts, and different stages during this process were identified. Na diffuses into the region of correlated radiation damage where precipitation occurs and finally Na migrates to the surface where it evaporates. In all metals the loss of Na was observed to occur within a small temperature interval around a critical temperature T1. It turned out that T1 essentially depends on the melting temperature Tm and the structure of the host lattice. Half of the implanted Na-content had left the matrix at 0.53(2)Tm for bcc-metals and at 0.70(2)Tm for fcc-metals. A possible influence of the analyzing proton beam and the role of implanted and dissolved hydrogen in the vicinity of the implanted Na profile was also studied. In fact, hydrogen from the bulk migrates to and is trapped at the Na precipitates.

  3. Strategies for maintaining Na? balance in zebrafish (Danio rerio) during prolonged exposure to acidic water.

    PubMed

    Kumai, Yusuke; Bahubeshi, Amin; Steele, Shelby; Perry, Steve F

    2011-09-01

    The objective of the present study was to characterize the capacity of zebrafish (Danio rerio) to regulate whole body Na? levels during exposure to acidic (pH 3.8-4.0) water. Exposure to acidic water significantly affected the mRNA levels of 14 claudin and two occludin isoforms, tight junction proteins thought to be involved in regulating paracellular efflux. Despite these changes, Na? efflux as well as uptake of polyethylene glycol (PEG), a marker for paracellular pathway, was persistently elevated during the 2-week period of acid exposure, although there was a transient recovery between 12- and 72-h. Pre-exposing fish to acidic water for 2 weeks failed to attenuate the increase in Na? efflux associated with acute exposure to acidic water of low [Ca²?]. However, during recovery in water of circumneutral pH following exposure to acidic water, normal rates of Na? efflux were restored within 5h. The rate of Na? uptake was significantly elevated between 4 and 7 days of exposure to acidic water; the increase was associated with significant increases in maximal Na? uptake capacity (J(MAX)Na?) and affinity constant (K(M)). These results demonstrate that in acidic water, zebrafish maintain their whole body Na? balance primarily by regulating Na? uptake, rather than Na? efflux. PMID:21600298

  4. Fabrication and formation studies on single-walled CA/NaCS-WSC microcapsules.

    PubMed

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2016-02-01

    The micron-sized calcium alginate/sodium cellulose sulfate-water soluble chitosan (CA/NaCS-WSC) microcapsules were prepared by membrane emulsification method using sodium alginate (NaAlg), NaCS and WSC as raw materials. The CA/NaCS microspheres prepared dispersed well and held spherical shape with an emulsifier volume ratio of 7:3 (Span 80:Tween 80) and a concentration of cross-linking agent of 1.5% (w/v) calcium chloride and 5% (w/v) sodium chloride. The CA/NaCS-WSC microcapsules had a spherical shape with average diameter of 62.36±13.87μm. A fluorescent ring could be seen obviously on the surface of CA/NaCS-WSC microcapsules under confocal microscope, when WSC was labeled by fluorescein isothiocyanate. The discussion on the formation studies implied that Ca(2+) could diffuse into the droplets of NaAlg/NaCS forming CA/NaCS microspheres, while NaCS could react with WSC forming a polyelectrolyte complexes film. The microcapsules prepared with typical wall-capsule/core structure could be used to develop micron-sized drug delivery carriers. PMID:26652447

  5. Alpha adrenergic modulation of the Na/sup +/ pump of canine vascular smooth muscle

    SciTech Connect

    Navran, S.S.; Adair, S.E.; Allen, J.C.; Seidel, C.L.

    1986-03-01

    Some vasoactive agents, eg. beta adrenergic agonists and forskolin, stimulate the Na/sup 7/ pump by a cAMP- dependent mechanism. The authors have now demonstrated that phenylephrine (PE) stimulates the Na/sup 7/ pump in intact blood vessels as quantitated by an increased ouabain-sensitive /sup 86/Rb uptake. The stimulation is dose-dependent (ED/sub 50/, 3 x 10/sup -6/M) and blocked by phentolamine (I/sub 50/, 10/sup -7/M), prazosin (I/sub 50/, 10/sup -8/M) yohimbine (I/sub 50/, 10/sup -6/M) or elevated intracellular Na/sup +/. These data suggest that the Na/sup +/ pump stimulation is mediated through alpha/sub 1/ receptors which produce an influx of extracellular Na/sup +/. In vascular smooth muscle cell cultures PE stimulates the Na/sup +/ pump, but only when cells have been deprived of fetal calf serum (FCS). Since FCS is known to stimulate Na/sup +/influx, in the continuous presence of FCS, these cells may already be Na/sup +/-loaded and therefore refractory to further stimulation by alpha-adrenergic agents. Unlike those vasorelaxants whose mechanism involves stimulation of the Na/sup +/ pump, alpha adrenergic agents are vasoconstrictors and therefore the role of Na/sup +/ pump stimulation in this case may be as a mechanism of feedback inhibition of contractility.

  6. ANG-2 for quantitative Na(+) determination in living cells by time-resolved fluorescence microscopy.

    PubMed

    Roder, Phillip; Hille, Carsten

    2014-12-01

    Sodium ions (Na(+)) play an important role in a plethora of cellular processes, which are complex and partly still unexplored. For the investigation of these processes and quantification of intracellular Na(+) concentrations ([Na(+)]i), two-photon coupled fluorescence lifetime imaging microscopy (2P-FLIM) was performed in the salivary glands of the cockroach Periplaneta americana. For this, the novel Na(+)-sensitive fluorescent dye Asante NaTRIUM Green-2 (ANG-2) was evaluated, both in vitro and in situ. In this context, absorption coefficients, fluorescence quantum yields and 2P action cross-sections were determined for the first time. ANG-2 was 2P-excitable over a broad spectral range and displayed fluorescence in the visible spectral range. Although the fluorescence decay behaviour of ANG-2 was triexponential in vitro, its analysis indicates a Na(+)-sensitivity appropriate for recordings in living cells. The Na(+)-sensitivity was reduced in situ, but the biexponential fluorescence decay behaviour could be successfully analysed in terms of quantitative [Na(+)]i recordings. Thus, physiological 2P-FLIM measurements revealed a dopamine-induced [Na(+)]i rise in cockroach salivary gland cells, which was dependent on a Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity. It was concluded that ANG-2 is a promising new sodium indicator applicable for diverse biological systems. PMID:25311309

  7. NaOH-modified ceramic honeycomb with enhanced formaldehyde adsorption and removal performance.

    PubMed

    Yu, Jiaguo; Li, Xinyang; Xu, Zhihua; Xiao, Wei

    2013-09-01

    NaOH-modified ceramic honeycombs (Na-CH) were simply prepared by impregnating ceramic honeycombs (CH) into NaOH aqueous solution. It was clearly shown that the surface modification incurs higher specific surface area and smaller grain sizes of the CH without destruction of their integrity. Moreover, the introduced surface NaOH can trigger Cannizzaro disproportionation of surface-absorbed formaldehyde (HCHO) on Na-CH, resulting in catalytic transformation of HCHO into less-toxic formate and methoxy salts. The NaOH concentration during impregnating treatment has a great influence on HCHO adsorption and removal efficiency, while the impregnation time and temperature have little influence on the efficiency. When the CH was impregnated in 1 M NaOH aqueous solution for 0.5 h at room temperature, the HCHO removal efficiency at ambient temperature can reach about 80% with an initial HCHO concentration of 250 ppm. Moreover, the used Na-CH can be facilely regenerated via 1 min blow using a common electric hair dryer, with the generation of less toxic HCOOH and CH3OH and recovery of NaOH. Using such a mild, fast, and practical regeneration method, the regenerated Na-CH showed slight degradation in adsorption and removal capability toward HCHO. The enhanced performance of Na-CH obtained was attributed to the presence of NaOH and increase of specific surface area and surface hydroxyl groups. Considering no demand of noble metal for HCHO removal at ambient temperature and practical reusable capability of Na-CH under mild conditions, this work may provide some new insights into the design and fabrication of advanced catalysts for indoor air purification. PMID:23895134

  8. Interactions between intracellular Na+ levels and saxitoxin production in Cylindrospermopsis raciborskii T3.

    PubMed

    Pomati, Francesco; Rossetti, Carlo; Manarolla, Gianluca; Burns, Brendan P; Neilan, Brett A

    2004-02-01

    Saxitoxin (STX) is the most potent representative among the paralytic shellfish poisoning (PSP) toxins, which are highly selective Na(+) channel-blocking alkaloids. This study investigated, in cultures of the cyanobacterium Cylindrospermopsis raciborskii T3, the effects of pH, salt, amiloride and lidocaine hydrochloride on total cellular levels of Na(+) and K(+) ions and STX accumulation. Both Na(+) levels and intracellular STX concentrations increased exponentially in response to rising alkalinity. NaCl inhibited cyanobacterial growth at a concentration of 10 mM. In comparison with osmotically stressed controls, however, NaCl promoted STX accumulation in a dose-dependent manner. A correlation was seen in the time-course of both total cellular Na(+) levels and intracellular STX for NaCl, amiloride and lidocaine exposure. The increase in cellular Na(+) induced by NaCl at 10 mM was coupled with a proportional accumulation of STX. The two Na(+) channel-blocking agents amiloride and lidocaine had opposing effects on both cellular Na(+) levels and STX accumulation. Amiloride at 1 mM reduced ion and toxin concentrations, while lidocaine at 1 micro M increased the total cellular Na(+) and STX levels. The effects of the channel-blockers were antagonistic and dependent on an alkaline pH. The results presented suggest that, in C. raciborskii T3, STX is responsive to cellular Na(+) levels. This may indicate that either STX metabolism or the toxin itself could be linked to the maintenance of cyanobacterial homeostasis. The results also enhance the understanding of STX production and the ecology of PSP toxin-producing cyanobacteria. PMID:14766924

  9. The role of cAMP-mediated intracellular signaling in regulating Na+ uptake in zebrafish larvae.

    PubMed

    Kumai, Yusuke; Kwong, Raymond W M; Perry, Steve F

    2014-01-01

    In the current study, the role of cAMP in stimulating Na(+) uptake in larval zebrafish was investigated. Treating larvae at 4 days postfertilization (dpf) with 10 ?M forskolin or 1 ?M 8-bromo cAMP significantly increased Na(+) uptake by three-fold and twofold, respectively. The cAMP-dependent stimulation of Na(+) uptake was probably unrelated to protein trafficking via microtubules because pretreatment with 200 ?M colchicine or 30 ?M nocodazole did not attenuate the magnitude of the response. Na(+) uptake was stimulated markedly following acute (2 h) exposure to acidic water. The acid-induced increase in Na(+) uptake was accompanied by a twofold elevation in whole body cAMP levels and attenuated by inhibiting PKA with 10 ?M H-89. Knockdown of Na(+)-H(+) exchanger 3b (NHE3b) attenuated, but did not abolish, the stimulation of Na(+) uptake during forskolin treatment. In glial cell missing 2 morphants, in which the role of NHE3b in Na(+) uptake is diminished and the Na(+)-Cl(-) cotransporter (NCC) becomes the predominant route of Na(+) entry, forskolin treatment continued to increase Na(+) uptake. These data suggest that at least NHE3b and NCC are targeted by cAMP in zebrafish larvae. Staining of larvae with fluorescent forskolin and propranolol revealed the presence of transmembrane adenylyl cyclase within multiple subtypes of ionocytes expressing ?-adrenergic receptors. Taken together, results of the present study demonstrate that cAMP-mediated intracellular signaling may regulate multiple Na(+) transporters and plays an important role in regulating Na(+) uptake in zebrafish larvae during acute exposure to an acidic environment. PMID:24259461

  10. Na 2O solubility in CaO-MgO-SiO 2 melts

    NASA Astrophysics Data System (ADS)

    Mathieu, R.; Libourel, G.; Deloule, E.; Tissandier, L.; Rapin, C.; Podor, R.

    2011-01-01

    The sodium solubility in silicate melts in the CaO-MgO-SiO 2 (CMS) system at 1400 °C has been measured by using a closed thermochemical reactor designed to control alkali metal activity. In this reactor, Na (g) evaporation from a Na 2O- xSiO 2 melt imposes an alkali metal vapor pressure in equilibrium with the molten silicate samples. Because of equilibrium conditions in the reactor, the activity of sodium-metal oxide in the molten samples is the same as that of the source, i.e., aNa 2O (sample) = aNa 2O (source). This design also allows to determine the sodium oxide activity coefficient in the samples. Thirty-three different CMS compositions were studied. The results show that the amount of sodium entering from the gas phase (i.e., Na 2O solubility) is strongly sensitive to silica content of the melt and, to a lesser extent, the relative amounts of CaO and MgO. Despite the large range of tested melt compositions (0 < CaO and MgO < 40; 40 < SiO 2 < 100; in wt%), we found that Na 2O solubility is conveniently modeled as a linear function of the optical basicity ( ?) calculated on a Na-free basis melt composition. In our experiments, ?Na 2O (sample) ranges from 7 × 10 -7 to 5 × 10 -6, indicating a strongly non-ideal behavior of Na 2O solubility in the studied CMS melts (?Na 2O (sample) ? 1). In addition to showing the effect of sodium on phase relationships in the CMS system, this Na 2O solubility study brings valuable new constraints on how melt structure controls the solubility of Na in the CMS silicate melts. Our results suggest that Na 2O addition causes depolymerization of the melt by preferential breaking of Si-O-Si bonds of the most polymerized tetrahedral sites, mainly Q 4.

  11. The role of cAMP-mediated intracellular signaling in regulating Na+ uptake in zebrafish larvae

    PubMed Central

    Kumai, Yusuke; Kwong, Raymond W. M.

    2013-01-01

    In the current study, the role of cAMP in stimulating Na+ uptake in larval zebrafish was investigated. Treating larvae at 4 days postfertilization (dpf) with 10 μM forskolin or 1 μM 8-bromo cAMP significantly increased Na+ uptake by three-fold and twofold, respectively. The cAMP-dependent stimulation of Na+ uptake was probably unrelated to protein trafficking via microtubules because pretreatment with 200 μM colchicine or 30 μM nocodazole did not attenuate the magnitude of the response. Na+ uptake was stimulated markedly following acute (2 h) exposure to acidic water. The acid-induced increase in Na+ uptake was accompanied by a twofold elevation in whole body cAMP levels and attenuated by inhibiting PKA with 10 μM H-89. Knockdown of Na+-H+ exchanger 3b (NHE3b) attenuated, but did not abolish, the stimulation of Na+ uptake during forskolin treatment. In glial cell missing 2 morphants, in which the role of NHE3b in Na+ uptake is diminished and the Na+-Cl− cotransporter (NCC) becomes the predominant route of Na+ entry, forskolin treatment continued to increase Na+ uptake. These data suggest that at least NHE3b and NCC are targeted by cAMP in zebrafish larvae. Staining of larvae with fluorescent forskolin and propranolol revealed the presence of transmembrane adenylyl cyclase within multiple subtypes of ionocytes expressing β-adrenergic receptors. Taken together, results of the present study demonstrate that cAMP-mediated intracellular signaling may regulate multiple Na+ transporters and plays an important role in regulating Na+ uptake in zebrafish larvae during acute exposure to an acidic environment. PMID:24259461

  12. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    PubMed Central

    Wu, Honghong; Shabala, Lana; Liu, Xiaohui; Azzarello, Elisa; Zhou, Meixue; Pandolfi, Camilla; Chen, Zhong-Hua; Bose, Jayakumar; Mancuso, Stefano; Shabala, Sergey

    2015-01-01

    Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive) were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-day old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: (1) salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; (2) contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the “salt sensor;” (3) no significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant groups in either transition or elongation zones; (4) the overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signaling, and sequestration in wheat roots. The implications of these findings for plant breeding for salinity stress tolerance are discussed. PMID:25750644

  13. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency.

    PubMed

    Breusegem, Sophia Y; Takahashi, Hideaki; Giral-Arnal, Hector; Wang, Xiaoxin; Jiang, Tao; Verlander, Jill W; Wilson, Paul; Miyazaki-Anzai, Shinobu; Sutherland, Eileen; Caldas, Yupanqui; Blaine, Judith T; Segawa, Hiroko; Miyamoto, Ken-ichi; Barry, Nicholas P; Levi, Moshe

    2009-08-01

    Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P(i)) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P(i) cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694-704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160-49171, 2004). Here we investigated the role of the renal Na-P(i) cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P(i) transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations. PMID:19493963

  14. Complexation of pectin with macro- and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes.

    PubMed

    Minzanova, S T; Mironov, V F; Vyshtakalyuk, A B; Tsepaeva, O V; Mironova, L G; Mindubaev, A Z; Nizameev, I R; Kholin, K V; Milyukov, V A

    2015-12-10

    New water-soluble pectin complexes with Ca(2+), Mg(2+), Co(2+), Cu(2+), Fe(2+), Mn(2+), Zn(2+) on the basis of pectin biopolymer have been synthesized and successfully tested on white rats. For a starting, we have obtained a sodium pectate to enhance solubility of target complexes as a whole. Shortly afterwards, running the reaction of ligand exchange of N?(+) ions with corresponding s-, d- metal cations we were able to synthesize new pectin complexes. The ranges of s-, d-metals salts concentrations were detected experimentally, in which the selective formation of water-soluble complexes occurred. Antianemic effect of new pectin complexes with Na, Fe and Na, Ca, Fe was investigated on white rats with posthemorrhagic anemia. Under the effect of complexes, the improvement of animals and prevention of erythropoiesis disorders were observed. Antianemic effect of the complexes manifested itself in the doses equivalent to 25% or 50% of the iron daily rate, recommended in the treatment of iron-deficiency anemia with the drugs based on iron sulphate. PMID:26428154

  15. Isolation and cloning of the K+-independent, ouabain-insensitive Na+-ATPase.

    PubMed

    Rocafull, Miguel A; Romero, Freddy J; Thomas, Luz E; del Castillo, Jesús R

    2011-06-01

    Primary Na+ transport has been essentially attributed to Na+/K+ pump. However, there are functional and biochemical evidences that suggest the existence of a K+-independent, ouabain-insensitive Na+ pump, associated to a Na+-ATPase with similar characteristics, located at basolateral plasma membrane of epithelial cells. Herein, membrane protein complex associated with this Na+-ATPase was identified. Basolateral membranes from guinea-pig enterocytes were solubilized with polyoxyethylene-9-lauryl ether and Na+-ATPase was purified by concanavalin A affinity and ion exchange chromatographies. Purified enzyme preserves its native biochemical characteristics: Mg2+ dependence, specific Na+ stimulation, K+ independence, ouabain insensitivity and inhibition by furosemide (IC50: 0.5 mM) and vanadate (IC50: 9.1 ?M). IgY antibodies against purified Na+-ATPase did not recognize Na+/K+-ATPase and vice versa. Analysis of purified Na+-ATPase by SDS-PAGE and 2D-electrophoresis showed that is constituted by two subunits: 90 (?) and 50 (?) kDa. Tandem mass spectrometry of ?-subunit identified three peptides, also present in most Na+/K+-ATPase isoforms, which were used to design primers for cloning both ATPases by PCR from guinea-pig intestinal epithelial cells. A cDNA fragment of 1148 bp (atna) was cloned, in addition to Na+/K+-ATPase ?1-isoform cDNA (1283 bp). In MDCK cells, which constitutively express Na+-ATPase, silencing of atna mRNA specifically suppressed Na+-ATPase ?-subunit and ouabain-insensitive Na+-ATPase activity, demonstrating that atna transcript is linked to this enzyme. Guinea-pig atna mRNA sequence (2787 bp) was completed using RLM-RACE. It encodes a protein of 811 amino acids (88.9 kDa) with the nine structural motifs of P-type ATPases. It has 64% identity and 72% homology with guinea-pig Na+/K+-ATPase ?1-isoform. These structural and biochemical evidences identify the K+-independent, ouabain-insensitive Na+-ATPase as a unique P-type ATPase. PMID:21334305

  16. SLC4A11 is an EIPA-sensitive Na+ permeable pHi regulator

    PubMed Central

    Ogando, Diego G.; Jalimarada, Supriya S.; Zhang, Wenlin; Vithana, Eranga N.

    2013-01-01

    Slc4a11, a member of the solute linked cotransporter 4 family that is comprised predominantly of bicarbonate transporters, was described as an electrogenic 2Na+-B(OH)4? (borate) cotransporter and a Na+-2OH? cotransporter. The goal of the current study was to confirm and/or clarify the function of SLC4A11. In HEK293 cells transfected with SLC4A11 we tested if SLC4A11 is a: 1) Na+-HCO3? cotransporter, 2) Na+-OH?(H+) transporter, and/or 3) Na+-B(OH)4? cotransporter. CO2/HCO3? perfusion yielded no significant differences in rate or extent of pHi changes or Na+ flux in SLC4A11-transfected compared with control cells. Similarly, in CO2/HCO3?, acidification on removal of Na+ and alkalinization on Na+ add back were not significantly different between control and transfected indicating that SLC4A11 does not have Na+-HCO3? cotransport activity. In the absence of CO2/HCO3?, SLC4A11-transfected cells showed higher resting intracelllular Na+ concentration ([Na+]i; 25 vs. 17 mM), increased NH4+-induced acidification and increased acid recovery rate (160%) after an NH4 pulse. Na+ efflux and influx were faster (80%) following Na+ removal and add back, respectively, indicative of Na+-OH?(H+) transport by SLC4A11. The increased alkalinization recovery was confirmed in NHE-deficient PS120 cells demonstrating that SLC4A11 is a bonafide Na+-OH?(H+) transporter and not an activator of NHEs. SLC4A11-mediated H+ efflux is inhibited by 5-(N-ethyl-N-isopropyl) amiloride (EIPA; EC50: 0.1 ?M). The presence of 10 mM borate did not alter dpHi/dt or ?pH during a Na+-free pulse in SLC4A11-transfected cells. In summary our results show that SLC4A11 is not a bicarbonate or borate-linked transporter but has significant EIPA-sensitive Na+-OH?(H+) and NH4+ permeability. PMID:23864606

  17. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na3OBr and Na4OI2

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wen, Ting; Park, Changyong; Kenney-Benson, Curtis; Pravica, Michael; Yang, Wenge; Zhao, Yusheng

    2016-01-01

    The structure stability under high pressure and thermal expansion behavior of Na3OBr and Na4OI2, two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na3OBr and Na4OI2, respectively. The cubic Na3OBr structure and tetragonal Na4OI2 with intergrowth K2NiF4 structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na4OI2 exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20-80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications.

  18. NaV3O8 nanosheet@polypyrrole core-shell composites with good electrochemical performance as cathodes for Na-ion batteries.

    PubMed

    Kang, Hongyan; Liu, Yongchang; Shang, Minghui; Lu, Tianyu; Wang, Yijing; Jiao, Lifang

    2015-05-28

    Novel NaV3O8 nanosheet@polypyrrole core-shell composites have been successfully prepared for the first time via a chemical oxidative polymerization method. Based on the morphological and microstructural characterization, it was found that polypyrrole (PPy) was uniformly wrapped on the surfaces of the NaV3O8 nanosheets. When used as a cathode for Na-ion batteries, the as-synthesized NaV3O8@10% PPy composite showed significantly improved cycling performance (with a discharge capacity of 99 mA h g(-1) after 60 cycles at 80 mA g(-1)) and better rate capacity (with a discharge capacity of 63 mA h g(-1) at a high current density of 640 mA g(-1)) than pristine NaV3O8 nanosheets. The greatly enhanced performance benefits from the unique core-shell structure, where the PPy coating not only prevents the pulverization and aggregation of the lamellar NaV3O8 nanosheets during cycling, which can improve the cycling stability, but also enhances the electrical conductivity of the composite, which can facilitate Na(+) ion diffusion. PMID:25939956

  19. Tuning Sodium Ion Conductivity in the Layered Honeycomb Oxide Na(3-x)Sn(2-x)Sb(x)NaO6.

    PubMed

    Smaha, Rebecca W; Roudebush, John H; Herb, Jake T; Seibel, Elizabeth M; Krizan, Jason W; Fox, Gary M; Huang, Qingzhen; Arnold, Craig B; Cava, Robert J

    2015-08-17

    A series of compounds with the composition Na(3-x)Sn(2-x)Sb(x)NaO6 (x = 0.0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, and 1.0) has been prepared by solid-state reaction and characterized by powder X-ray diffraction, neutron diffraction (for x = 0.0), and impedance spectroscopy. The compounds have a layered structure derived from that of ?-NaFeO2, with alternating Na3 planes and NaSn2O6 slabs with honeycomb in-plane ordering. The structure of the parent compound, Na2SnO3, has been determined as a two-layer honeycomb in monoclinic space group C2/c. Due to charge neutrality requirements, the substitution of Sb(5+) for Sn(4+) creates sodium site vacancies that facilitate high sodium ion mobility. A decrease in layer stacking disorder is also observed. The conductivity increases linearly with x and has a maximum at x = 0.8 (1.43 × 10(-3) S/cm at 500 °C with suboptimal sample densities). This material may be of interest as a solid Na ion electrolyte. PMID:26213363

  20. Magnetic and structural properties of NaLnMnWO{sub 6} and NaLnMgWO{sub 6} perovskites

    SciTech Connect

    King, Graham; Wayman, Lora M.; Woodward, Patrick M.

    2009-06-15

    We have prepared 14 new AA'BB'O{sub 6} perovskites which possess a rock salt ordering of the B-site cations and a layered ordering of the A-site cations. The compositions obtained are NaLnMnWO{sub 6} (Ln=Ce, Pr, Sm, Gd, Dy, and Ho) and NaLnMgWO{sub 6} (Ln=Ce, Pr, Sm, Eu, Gd, Tb, Dy, and Ho). The samples were structurally characterized by powder X-ray diffraction which has revealed metrically tetragonal lattice parameters for compositions with Ln=Ce, Pr and monoclinic symmetry for compositions with smaller lanthanides. Magnetic susceptibility vs. temperature measurements have found that all six NaLnMnWO{sub 6} compounds undergo antiferromagnetic ordering at temperatures between 10 and 13 K. Several compounds show signs of a second magnetic phase transition. One sample, NaPrMnWO{sub 6}, appears to pass through at least three magnetic phase transitions within a narrow temperature range. All eight NaLnMgWO{sub 6} compounds remain paramagnetic down to 2 K revealing that the ordering of the Ln{sup 3+} cations in the NaLnMnWO{sub 6} compounds is induced by the ordering of the Mn{sup 2+} sub-lattice. - Graphical abstract: Evidence for multiple magnetic phase transitions in the A and B-site ordered perovskite NaPrMnWO{sub 6}.

  1. Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Zongning; Wang, Tongmin; Zhao, Yufei; Zheng, Yuanping; Kang, Huijun

    2015-05-01

    NaBF4 + NaF were found to play three roles, i.e., Fe-eliminator, grain refiner, and eutectic modifier, in treating A356 alloy with a high Fe content. The joint effects led to significant improvement in both tensile and impact properties of thus treated alloy. The multiple reactions between the NaBF4 + NaF and Al-Si-Mg-Fe system are suggested to form Fe2B, AlB2, and Na in the melt, as per thermodynamic analysis. The three are responsible for Fe removal, grain refinement, and eutectic modification, respectively. When NaBF4 and NaF are mixed in weight ratio of 1:1, an optimum addition rate is in the range between 1.0 and 2.0 wt pct for treating AlSi7Mg0.3Fe0.65 alloy, based on the results of tensile and impact tests. Excessive addition of the salt may deteriorate the mechanical properties of the alloy, basically owing to overmodification of Si and contamination of salt inclusions.

  2. Growth responses and ion accumulation in the halophytic legume Prosopis strombulifera are determined by Na2SO4 and NaCl.

    PubMed

    Reginato, M; Sosa, L; Llanes, A; Hampp, E; Vettorazzi, N; Reinoso, H; Luna, V

    2014-01-01

    Halophytes are potential gene sources for genetic manipulation of economically important crop species. This study addresses the physiological responses of a widespread halophyte, Prosopis strombulifera (Lam.) Benth to salinity. We hypothesised that increasing concentrations of the two major salts present in soils of central Argentina (Na2SO4, NaCl, or their iso-osmotic mixture) would produce distinct physiological responses. We used hydroponically grown P. strombulifera to test this hypothesis, analysing growth parameters, water relations, photosynthetic pigments, cations and anions. These plants showed a halophytic response to NaCl, but strong general inhibition of growth in response to iso-osmotic solutions containing Na2SO4. The explanation for the adaptive success of P. strombulifera in high NaCl conditions seems to be related to a delicate balance between Na(+) accumulation (and its use for osmotic adjustment) and efficient compartmentalisation in vacuoles, the ability of the whole plant to ensure sufficient K(+) supply by maintaining high K(+)/Na(+) discrimination, and maintenance of normal Ca(2+) levels in leaves. The three salt treatments had different effects on the accumulation of ions. Findings in bi-saline-treated plants were of particular interest, where most of the physiological parameters studied showed partial alleviation of SO4(2-)-induced toxicity by Cl(-). Thus, discussions on physiological responses to salinity could be further expanded in a way that more closely mimics natural salt environments. PMID:23869994

  3. Collisional transfer of population and orientation in NaK

    NASA Astrophysics Data System (ADS)

    Wolfe, C. M.; Ashman, S.; Bai, J.; Beser, B.; Ahmed, E. H.; Lyyra, A. M.; Huennekens, J.

    2011-05-01

    Collisional satellite lines with |?J| ? 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb2 molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ?J that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)1?+(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ?J = even. Conversely, collisions with potassium atoms do not show this ?J = even propensity, but do show a propensity for ?J = positive compared to ?J = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 31? ? 2(A)1?+spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.

  4. Collisional transfer of population and orientation in NaK.

    PubMed

    Wolfe, C M; Ashman, S; Bai, J; Beser, B; Ahmed, E H; Lyyra, A M; Huennekens, J

    2011-05-01

    Collisional satellite lines with |?J| ? 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb(2) molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ?J that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)(1)?(+)(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ?J = even. Conversely, collisions with potassium atoms do not show this ?J = even propensity, but do show a propensity for ?J = positive compared to ?J = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 3(1)? ? 2(A)(1)?(+)spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed. PMID:21548681

  5. Actinic EUV mask inspection beyond 0.25 NA

    SciTech Connect

    Goldberg, Kenneth A.; Mochi, Iacopo; Anderson, Erik H.; Rekawa, Seno B.; Kemp, Charles D.; Huh, S.; Han, H.-S.

    2008-08-06

    Operating at EUV wavelengths, the SEMATECH Berkeley Actinic Inspection Tool (AIT) is a zoneplate microscope that provides high quality aerial image measurements in routine operations for SEMATECH member companies. We have upgraded the optical performance of the AIT to provide multiple image magnifications, and several inspection NA values up to 0.35 NA equivalent (0.0875 mask-side). We report on the improved imaging capabilities including resolution below 100-nm on the mask side (25 nm, 4x wafer equivalent). EUV reticles are intricate optical systems made from of several materials with wavelength-specific optical properties. The combined interactions of the substrate, multilayer-stack, buffer layer and absorber layer produce a reflected EUV optical field that is challenging to model accurately, and difficult to fully assess without actinic at-wavelength inspection. Understanding the aerial image from lithographic printing alone is complicated by photoresist properties. The AIT is now used to investigate mask issues such as amplitude and phase defect printability, pattern repair techniques, contamination, inspection damage, and mask architecture. The AIT has a 6{sup o} illumination angle, and high-resolution exposure times are typically 20 seconds per image. The AIT operates semi-automatically capturing through-focus imaging series with step sizes as small as 0.1 {micro}m (0.5-0.8 {micro}m are typical), and a step resolution of 0.05 {micro}m. We believe it is the most advanced EUV mask inspection tool in operation today. In the AIT, an EUV image of the mask is projected by a zoneplate lens with high magnification (680-910x) onto a CCD camera. The CCD over-samples the image, providing equivalent pixel sizes down to 15 nm in mask coordinates-several image pixels per resolution element. The original AIT zoneplate specifications were designed to emulate the resolution of a 0.25-NA 4x stepper, and thorough benchmarking analysis of the aberrations, flare, contrast-transfer function, and coherence was published in 2007 [1] (see Fig 1). Recent upgrades have also included changes to improve the illumination uniformity and increase the partial coherence {sigma} value. Five different zoneplate lenses are installed side-by-side to enable the AIT to emulate various stepper optical properties (see Fig. 2).

  6. Mechanism of potassium ion uptake by the Na+/K+-ATPase

    PubMed Central

    Castillo, Juan P.; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2015-01-01

    The Na+/K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion. PMID:26205423

  7. Preparation and characterization of Na-LTA zeolite from Tunisian sand and aluminum scrap

    NASA Astrophysics Data System (ADS)

    Tounsi, H.; Mseddi, S.; Djemel, S.

    2009-11-01

    Pure Na-A (LTA) zeolite has been prepared from aluminosilicate gel obtained by a mixture of metasilicate and aluminate solutions. Metasilicate sol; used as silica source; was prepared from an alkaline attack of Tunisian sand in an autoclave under agitation at 220 ?C and pressure of 27 bar. The aluminate solution was obtained by dissolution of aluminium scraps in NaOH solution. The crystallization of Na-LTA zeolite is controlled by the alkalinity of the mixture and the reaction time. At 90 ?C, well crystallized LTA have been obtained after 3h. The Zeolite LTA converts into the more stable HS after long reaction times according to Ostwald's law. The alkalinity of the reaction mixture changes the nature of the obtained zeolite. At lower NaOH concentration (0.1 M), Na-X zeolite was obtained; whereas the crystallization of LTA was promoted at higher NaOH concentration (3M).

  8. Mechanism of potassium ion uptake by the Na(+)/K(+)-ATPase.

    PubMed

    Castillo, Juan P; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2015-01-01

    The Na(+)/K(+)-ATPase restores sodium (Na(+)) and potassium (K(+)) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na(+) ions are released, followed by the binding and occlusion of two K(+) ions. While the mechanisms of Na(+) release have been well characterized by the study of transient Na(+) currents, smaller and faster transient currents mediated by external K(+) have been more difficult to study. Here we show that external K(+) ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K(+) gating different from that of Na(+) occlusion. PMID:26205423

  9. Formation of Frustrated Lewis Pairs in Ptx -Loaded Zeolite?NaY.

    PubMed

    Lee, Heeju; Choi, Yong Nam; Lim, Dae-Woon; Rahman, Md Mahbubur; Kim, Yong-Il; Cho, In Hwa; Kang, Hyun Wook; Seo, Jung-Hye; Jeon, Cheolho; Yoon, Kyung Byung

    2015-10-26

    The formation of a frustrated Lewis pair consisting of sodium hydride (Na(+) H(-) ) and a framework-bound hydroxy proton O(H(+) ) is reported upon H2 treatment of zeolite?NaY loaded with Pt nanoparticles (Ptx /NaY). Frustrated Lewis pair formation was confirmed using in?situ neutron diffraction and spectroscopic measurements. The activity of the intrazeolite NaH as a size-selective catalyst was verified by the efficient esterification of acetaldehyde (a small aldehyde) to form the corresponding ester ethyl acetate, whereas esterification of the larger molecule benzaldehyde was unsuccessful. The frustrated Lewis pair (consisting of Na(+) H(-) and O(H(+) )) generated within zeolite?NaY may be a useful catalyst for various catalytic reactions which require both H(-) and H(+) ions, such as catalytic hydrogenation or dehydrogenation of organic compounds and activation of small molecules. PMID:26480339

  10. Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries.

    PubMed

    Yu, Xingwen; Manthiram, Arumugam

    2015-03-01

    A unique sodium sulfide (Na2S) cathode is developed, which will allow the use of sodium-free anodes for room-temperature sodium-sulfur (Na-S) batteries. To overcome the "inert" nature of the Na2S, a special cathode structure is developed by spreading the multi-walled carbon nanotube (MWCNT)-wrapped Na2S particles onto MWCNT fabrics. Spectroscopic and electrochemical analyses reveal a series of polysulfide intermediates involved in the charge/discharge of the cell. The Na-S battery prepared in full discharge state with the Na2S/MWCNT cathode provides a remarkable capacity of 500?A?h?kg(-1) (based on sulfur mass) after 50?cycles. PMID:25640023

  11. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.

    PubMed

    Berry, C A; Rector, F C

    1991-03-01

    In the mammalian proximal tubule NaCl reabsorption occurs by both passive and active transport processes. Passive NaCl reabsorption occurs in the presence of a high luminal chloride and a low luminal bicarbonate concentration. These anion gradients provide the driving forces for diffusive Na and Cl movement. Na is driven by the lumen positive PD effected by the greater permeability of the tubular wall to Cl than to HCO3. Cl is driven by its high tubular concentration. Passive NaCl reabsorption accounts for only about 10% to 15% of total proximal NaCl transport. The remaining proximal NaCl is reabsorbed by active transport processes and occurs both in the presence or absence of anion gradients reabsorption. Two mechanisms of active NaCl reabsorption participate in active NaCl reabsorption along the proximal tubule. Firstly, active NaCl reabsorption is electrogenic. In the early proximal tubule Na enters to cell coupled to organic solute transport. This Na reabsorption generates a lumen negative PD and effects "coupled" electrogenic NaCl reabsorption. This mechanism is limited by the supply of organic solutes and is blunted by the greater Na than Cl permeability in the proximal tubule; it probably can account for no more than 10% of proximal NaCl reabsorption. In the terminal proximal tubule, the proximal straight tubule, the apical membrane appears to possess a channel for Na entry. This Na reabsorption also generates a lumen negative PD and effects "simple" electrogenic NaCl reabsorption. This mechanism is limited by the low transport capacity of this segment and probably accounts for no more than 5% to 10% of total proximal NaCl reabsorption. The great bulk of proximal NaCl reabsorption occurs along the entire proximal tubule by active, transcellular electroneutral NaCl reabsorption. The precise cellular transport mechanisms responsible for this process are only recently being defined. At the apical membrane parallel ion exchangers are responsible for NaCl entry into the cell. Na enters via the apical membrane Na-H antiporter. Cl most likely crosses the apical membrane by some combination of Cl-OH and Cl-HCO2 exchangers but not via a Cl-HCO3 exchanger. The relative contributions of Cl-OH and Cl-HCO2 exchange have not been defined. There are two important considerations in this question. First is the availbility of OH versus HCO2. Although there is an infinite supply of OH and a small equilibrium supply of HCO2, it is possible that the luminal concentration of HCO2 could be increased by an USL that raises the concentration of HCO2 to a degree sufficient to supply H2CO2 recycling for physiological transcellular Cl transport rates.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2034928

  12. Cu2Sb thin films as anode for Na-ion batteries

    SciTech Connect

    Baggetto, Loic; Allcorn, Eric; Manthiram, Arumugam; Veith, Gabriel M

    2013-01-01

    Cu2Sb thin films prepared by magnetron sputtering are evaluated as an anode material for Na-ion batteries. The starting material is composed of nanocrystallites with the desired tetragonal P4/nmm structure. The study of the reaction mechanism reveals the formation of an amorphous/nanocrystalline phase of composition close to Na3Sb as the final reaction product. The solid electrolyte interphase (SEI) material is mostly composed of carbonates (Na2CO3, NaCO3R). The Cu2Sb anode possesses moderate capacity retention with a reversible storage capacity (250 mAh/g) close to the theoretical value (323 mAh/g), an average reaction potential of around 0.55 V vs. Na/Na+, and a high rate performance (10 C-rate).

  13. Laser ablation of NaN3 and CsN3

    NASA Astrophysics Data System (ADS)

    Belau, Leonid; Gorodetsky, Jonathan; Haas, Yehuda

    2005-06-01

    Solid sodium azide and cesium azide crystals were irradiated by high power laser pulses; the ablation products were rapidly cooled by a supersonic expansion of helium and detected by a time of flight mass spectrometer. Neutral and positively charged species were separately recorded and analyzed using N15 isotopomers to help in their assignment. Cluster series of the sequences Na(NaN3)n [or Cs(CsN3)n] were observed, as well as clusters containing NaOH and NaCN; the origin of the C, H, and O atoms appears to be water and CO2 occluded in the salt. Addition of D2O increased the intensity of large clusters and added deuterated ones, whereas addition of chloroform leads to formation of clusters of a Na atom with (NaCl)n clusters. Possible mechanisms for the formation of these clusters are discussed.

  14. Laser ablation of NaN{sub 3} and CsN{sub 3}

    SciTech Connect

    Belau, Leonid; Gorodetsky, Jonathan; Haas, Yehuda

    2005-06-08

    Solid sodium azide and cesium azide crystals were irradiated by high power laser pulses; the ablation products were rapidly cooled by a supersonic expansion of helium and detected by a time of flight mass spectrometer. Neutral and positively charged species were separately recorded and analyzed using {sup 15}N isotopomers to help in their assignment. Cluster series of the sequences Na(NaN{sub 3}){sub n} [or Cs(CsN{sub 3}){sub n}] were observed, as well as clusters containing NaOH and NaCN; the origin of the C, H, and O atoms appears to be water and CO{sub 2} occluded in the salt. Addition of D{sub 2}O increased the intensity of large clusters and added deuterated ones, whereas addition of chloroform leads to formation of clusters of a Na atom with (NaCl){sub n} clusters. Possible mechanisms for the formation of these clusters are discussed.

  15. Mechanism of potassium ion uptake by the Na+/K+-ATPase

    NASA Astrophysics Data System (ADS)

    Castillo, Juan P.; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2015-07-01

    The Na+/K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion.

  16. Mechanisms of the Regulation of the Intestinal Na+/H+Exchanger NHE3

    PubMed Central

    He, Peijian; Yun, C. Chris

    2010-01-01

    A major of Na+ absorptive process in the proximal part of intestine and kidney is electroneutral exchange of Na+ and H+ by Na+/H+ exchanger type 3 (NHE3). During the past decade, significant advance has been achieved in the mechanisms of NHE3 regulation. A bulk of the current knowledge on Na+/H+ exchanger regulation is based on heterologous expression of mammalian Na+/H+ exchangers in Na+/H+ exchanger deficient fibroblasts, renal epithelial, and intestinal epithelial cells. Based on the reductionist's approach, an understanding of NHE3 regulation has been greatly advanced. More recently, confirmations of in vitro studies have been made using animals deficient in one or more proteins but in some cases unexpected findings have emerged. The purpose of this paper is to provide a brief overview of recent progress in the regulation and functions of NHE3 present in the luminal membrane of the intestinal tract. PMID:20011065

  17. Palytoxin effects through interaction with the Na,K-ATPase in Xenopus oocyte.

    PubMed

    Wang, X; Horisberger, J D

    1997-06-16

    Palytoxin (PTX) is known to bind to Na,K-ATPase, to inhibit its activity, and to induce cation conductance, but the mechanism of these effects is still poorly understood. In Xenopus oocytes, PTX induced a large cation conductance, an effect that could be prevented or reversed by ouabain for oocytes expressing Xenopus Na,K-pumps but not with those expressing Bufo Na,K-pumps. In both cases patch-clamp experiments demonstrated a 7-8 pS channel in the presence of PTX. A large PTX-induced conductance could be observed with minimal Na,K-pump inhibition. From the single PTX-induced channel and macroscopic whole oocyte conductance, and the number of Na,K-pumps, we can conclude that PTX-induced conductance occurs through a direct interaction of PTX with a small number of Na,K-pumps. PMID:9224696

  18. NaSrCo2F7, a Co(2+) pyrochlore antiferromagnet.

    PubMed

    Krizan, J W; Cava, R J

    2015-07-29

    We report the crystal growth, by the Bridgeman-Stockbarger method, and the basic magnetic properties of a new cobalt-based pyrochlore, NaSrCo2F7. Single-crystal structure determination shows that Na and Sr are completely disordered on the non-magnetic large atom A sites, while magnetic [Formula: see text] Co(2+) fully occupies the pyrochlore lattice B sites. NaSrCo2F7 displays strong antiferromagnetic interactions ([Formula: see text]), a large effective moment ([Formula: see text]), and no spin freezing until 3?K. Thus, NaSrCo2F7 is a geometrically frustrated antiferromagnet with a frustration index [Formula: see text]. Ac susceptibility, dc susceptibility, and heat capacity are utilized to characterize the spin freezing. We argue that NaSrCo2F7 and the related material NaCaCo2F7 are examples of frustrated pyrochlore antiferromagnets with weak bond disorder. PMID:26154596

  19. On the formation of Na nanoparticles in femtosecond-laser irradiated glasses

    SciTech Connect

    Jiang Nan; Su Dong; Spence, John C. H.; Qiu Jianrong

    2010-03-15

    This work discusses the response of Na to both high-energy electrons and femtosecond-laser (fs-laser) pulses in the soda-lime glass. The evidence for different responses of Na to high-energy electron irradiation between glasses with and without fs-laser irradiation suggests that the chemical and/or physical states of Na in the fs-laser irradiated glass are different from those in the original glass. Fs-laser pulses in the glass may be able to neutralize Na, which may form clusters. These results suggest that close attention should be paid to the defects associated with Na when optical or physical data are interpreted in fs-laser irradiated Na glasses.

  20. Phosphorylation and ubiquitination are necessary for Na,K-ATPase endocytosis during hypoxia

    PubMed Central

    Dada, Laura A.; Welch, Lynn C.; Zhou, Guofei; Ben-Saadon, Ronen; Ciechanover, Aaron; Sznajder, Jacob I.

    2007-01-01

    As a cellular adaptative response, hypoxia decreases Na,K-ATPase activity by triggering the endocytosis of its α1 subunit in alveolar epithelial cells. Here, we present evidence that the ubiquitin conjugating system is important in the Na,K-ATPase endocytosis during hypoxia and ubiquitination of Na,K-ATPase α1 subunit occurs at the basolateral membrane. Endocytosis and ubiquitination were prevented when the Ser 18 in the PKC phosphorylation motif of the Na,K-ATPase α1 subunit was mutated to an alanine, suggesting that phosphorylation at Ser-18 is required for ubiquitination. Mutation of the four lysines surrounding Ser 18 to arginine prevented Na,K-ATPase ubiquitination and endocytosis during hypoxia; however, only one of them was sufficient to restore hypoxia-induced endocytosis. We provide evidence that ubiquitination plays an important role in cellular adaptation to hypoxia by regulating Na,K-ATPase α1-subunit endocytosis. PMID:17532187

  1. Quaternary pnictides with complex, noncentrosymmetric structures. Synthesis and structural characterization of the new Zintl phases Na11Ca2Al3Sb8, Na4CaGaSb3, and Na15Ca3In5Sb12.

    PubMed

    Wang, Yi; Stoyko, Stanislav; Bobev, Svilen

    2015-02-16

    Three new Zintl phases, Na11Ca2Al3Sb8, Na4CaGaSb3, and Na15Ca3In5Sb12, have been synthesized by solid-state reactions, and their structures have been determined by single-crystal X-ray diffraction. Na11Ca2Al3Sb8 crystallizes with its own structure type (Pearson index oP48) with the primitive orthorhombic space group Pmn2(1) (No. 31). The structure is best viewed as [Al3Sb8](15-) units of fused AlSb4 tetrahedra, a novel type of Zintl ion, with Na(+) and Ca(2+) cations that solvate them. Na4CaGaSb3 also crystallizes in its own type with the primitive monoclinic space group Pc (No. 7; Pearson index mP36), and its structure boasts one-dimensional [GaSb3](6-) helical chains of corner-shared GaSb4 tetrahedra. The third new compound, Na15Ca3In5Sb12, crystallizes with the recently reported K2BaCdSb2 structure type (space group Pmc2(1); Pearson index oP12). The Na15Ca3In5Sb12 structure is based on polyanionic layers made of corner-shared InSb4 tetrahedra. Approximately one-sixth of the In sites are vacant in a statistical manner. All three structures exhibit similarities to the TiNiSi structure type, and the corresponding relationships are discussed. Electronic band structure calculations performed using the tight-binding linear muffin-tin orbital atomic sphere approximation method show small band gaps for all three compounds, which suggests intrinsic semiconducting behavior for these materials. PMID:25650866

  2. Na8Au9.8(4)Ga7.2 and Na17Au15.87(2)Ga46.63: The diversity of pseudo 5-fold 0 Cross Mark symmetries in the Na-Au-Ga system

    SciTech Connect

    Smetana, Volodymyr; Corbett, John D.; Miller, Gordon J.

    2013-08-29

    The Na-rich part (similar to 30% Na) of the Na-Au-Ga system between NaAu2, NaGa4, and Na(22)Ga39 has been found to contain the ternary phases NasAug(8)(4)Ga-7.2 (I) and NavAu(5.87(2))Ga46.63 (II), according to the results of single crystal X-ray diffraction measurements. I is orthorhombic, Cmcm, a= 5.3040(1), b=24.519(5), c=14.573(3) A, and contains a network of clusters with local 5-fold symmetry along the a-axis. Such clusters are frequent building units in decagonal quasicrystals and their approximants. II is rhombohedral, a =16.325(2), c=35.242(7) A, and contains building blocks that are structurally. identical to the Bergman-type clusters as well as fused icosahedral units known with active metals, triels and late transition elements. II also contains a polycationic network with elements of the clathrate V type structure. Tight-binding electronic structure calculations using linear muffin-tin-orbital (LMTO) methods on idealized models of I and II indicate that both compounds are metallic with evident pseudogaps at the corresponding Fermi levels. The overall Hamilton bond populations are generally dominated by Au-Ga and Au-Au bonds in I and by Ga-Ga bonds in II; moreover, the Na-Au and Na-Ga contributions in I are unexpectedly large, 20% of the total. A similar involvement of sodium in covalent bonding has also been found in the electron-richer i-Nai(3)Aui(2)Gai(5) quasicrystal approximant. (C) 2013 Elsevier Inc. All rights reserved.

  3. Comparative studies of CdS, CdS:Al, CdS:Na and CdS:(Al-Na) thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Y?lmaz, S.; Atasoy, Y.; Tomakin, M.; Bacaks?z, E.

    2015-12-01

    In the present study, the spray pyrolysis technique was used to prepare pure CdS, 4 at.% Al-doped CdS, 4 at.% Na-doped CdS and (4 at.% Al, 4 at.% Na)-co-doped CdS thin films. It was found from X-ray diffraction data that all the specimens showed hexagonal wurtzite structure with the preferred orientation of (101). Scanning electron microscopy results indicated that 4 at.% Al-doping caused a grain growth in the morphology of CdS thin films whereas the 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping led to porous structure with small grains. The band gap value of CdS thin films increased to 2.42 eV after 4 at.% Al-doping. However, it reduced to 2.30 eV and 2.08 eV for 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping, respectively. The room temperature photoluminescence measurements illustrated that the peak intensity of CdS thin films enhanced with 4 at.% Al-doping while 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping caused a decline in the intensity. The maximum carrier concentration and minimum resistivity were obtained for 4 at.% Al-doped CdS thin films, which is associated with the grain growth. Furthermore, (4 at.% Al, 4 at.% Na)-co-doping gave rise to a slight reduction in the carrier concentration and a slight increment in the resistivity. As a result, it can be said that 4 at.% Al-doped CdS thin films exhibited the best electrical and optical properties, which is important for the opto-electronic applications.

  4. Experimental and regional variations in Na+‐dependent and Na+‐independent phosphate transport along the rat small intestine and colon

    PubMed Central

    Marks, Joanne; Lee, Grace J.; Nadaraja, Sobiya P.; Debnam, Edward S.; Unwin, Robert J.

    2015-01-01

    Abstract Despite the importance of extracellular phosphate in many essential biological processes, the mechanisms of phosphate transport across the epithelium of different intestinal segments remain unclear. We have used an in vitro method to investigate phosphate transport at the brush border membrane (BBM) of intact intestinal segments and an in vivo method to study transepithelial phosphate absorption. We have used micromolar phosphate concentrations known to favor NaPi‐IIb‐mediated transport, and millimolar concentrations that are representative of the levels we have measured in luminal contents, to compare the extent of Na+‐dependent and Na+‐independent phosphate transport along the rat duodenum, jejunum, ileum, and proximal and distal colon. Our findings confirm that overall the jejunum is the main site of phosphate absorption; however, at millimolar concentrations, absorption shows ~30% Na+‐dependency, suggesting that transport is unlikely to be mediated exclusively by the Na+‐dependent NaPi‐IIb co‐transporter. In the ileum, studies in vitro confirmed that relatively low levels of phosphate transport occur at the BBM of this segment, although significant Na+‐dependent transport was detected using millimolar levels of phosphate in vivo. Since NaPi‐IIb protein is not detectable at the rat ileal BBM, our data suggest the presence of an as yet unidentified Na+‐dependent uptake pathway in this intestinal segment in vivo. In addition, we have confirmed that the colon has a significant capacity for phosphate absorption. Overall, this study highlights the complexities of intestinal phosphate absorption that can be revealed using different phosphate concentrations and experimental techniques. PMID:25626876

  5. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    PubMed Central

    Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  6. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer.

    PubMed

    Razak, Rafiza Abdul; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  7. Regulation of Na+-K+-ATPase activity in kidney proximal tubules: involvement of GTP binding proteins.

    PubMed

    Bertorello, A; Aperia, A

    1989-01-01

    This study evaluates the involvement of GTP-dependent regulatory proteins (G-proteins) in the regulation of Na+-K+-ATPase activity in proximal convoluted tubule (PCT) segments. Single PCT segments were dissected from rat kidney and permeabilized to allow nucleotides and medium free access to the interior of the cell. A GDP analogue that blocks GTP-dependent activation of the G-protein, GDP beta S (400 microM) significantly inhibited PCT Na+-K+-ATPase activity when Na in the medium (Nam) was greater than or equal to 70 mM. The inhibition was attenuated when Nam was 55 and 35 mM and was no longer significant when Nam was 25 mM. GDP beta S had no inhibitory effect on the activity of purified Na+-K+-ATPase. A nonhydrolyzable GTP analogue, GppNHp (50 microM) significantly increased Na+-K+-ATPase activity when Nam was 25 and 35 mM, but not when Nam was 55-140 mM. Dopamine (DA) and DA1 plus DA2 agonists significantly inhibit Na+-K+-ATPase activity. DA inhibition was competitively abolished by GppNHp. In PCT segments from rats pretreated with pertussis toxin, DA and DA1 plus DA2 agonist inhibition of Na+-K+-ATPase activity was abolished. In PCT segments from rats pretreated with cholera toxin, basal Na+-K+-ATPase activity was increased, but DA significantly inhibited Na+-K+-ATPase activity. Na+-K+-ATPase activity in PCT segments is regulated via a G-protein that stimulates Na+-K+-ATPase activity and a DA-activated pertussis toxin-sensitive G-protein that inhibits Na+-K+-ATPase activity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2563204

  8. Ion conduction in substates of the batrachotoxin-modified Na+ channel from toad skeletal muscle.

    PubMed Central

    Naranjo, D; Latorre, R

    1993-01-01

    Batrachotoxin-modified Na+ channels from toad muscle were inserted into planar lipid bilayers composed of neutral phospholipids. Single-channel conductances were measured for [Na+] ranging between 0.4 mM and 3 M. When membrane preparations were made in the absence of protease inhibitors, two open conductance states were identified: a fully open state (16.6 pS in 200 mM symmetrical NaCl) and a substate that was 71% of the full conductance. The substate was predominant at [Na+] > 65 mM, whereas the presence of the fully open state was predominant at [Na+] < 15 mM. Addition of protease inhibitors during membrane preparation stabilized the fully open state over the full range of [Na+] studied. In symmetrical Na+ solutions and in biionic conditions, the ratio of amplitudes remained constant and the two open states exhibited the same permeability ratios of PLi/PNa and PCs/PNa. The current-voltage relations for both states showed inward rectification only at [Na+] < 10 mM, suggesting the presence of asymmetric negative charge densities at both channel entrances, with higher charge density in the external side. An energy barrier profile that includes double ion occupancy and asymmetric charge densities at the channel entrances was required to fit the conductance-[Na+] relations and to account for the rectification seen at low [Na+]. Energy barrier profiles differing only in the energy peaks can give account of the differences between both conductance states. Estimation of the surface charge density at the channel entrances is very dependent on the ion occupancy used and the range of [Na+] tested. Independent evidence for the existence of a charged external vestibule was obtained at low external [Na+] by identical reduction of the outward current induced by micromolar additions of Mg2+ and Ba2+. PMID:8388264

  9. Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars.

    PubMed

    Jaarsma, Rinse; de Vries, Rozemarijn S M; de Boer, Albertus H

    2013-01-01

    Potato (Solanum tuberosum) is a major crop world-wide and the productivity of currently used cultivars is strongly reduced at high soil salt levels. We compared the response of six potato cultivars to increased root NaCl concentrations. Cuttings were grown hydroponically and treated with 0 mM, 60 mM and 180 mM NaCl for one week. Growth reduction on salt was strongest for the cultivars Mozart and Mona Lisa with a severe senescence response at 180 mM NaCl and Mozart barely survived the treatment. The cultivars Desiree and Russett Burbank were more tolerant showing no senescence after salt treatment. A clear difference in Na(+) homeostasis was observed between sensitive and tolerant cultivars. The salt sensitive cultivar Mozart combined low Na(+) levels in root and stem with the highest leaf Na(+) concentration of all cultivars, resulting in a high Na(+) shoot distribution index (SDI) for Mozart as compared to Desiree. Overall, a positive correlation between salt tolerance and stem Na(+) accumulation was found and the SDI for Na(+) points to a role of stem Na(+) accumulation in tolerance. In stem tissue, Mozart accumulated more H2O2 and less proline compared to the tolerant cultivars. Analysis of the expression of proline biosynthesis genes in Mozart and Desiree showed a clear reduction in proline dehydrogenase (PDH) expression in both cultivars and an increase in pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Desiree, but not in Mozart. Taken together, current day commercial cultivars show promising differences in salt tolerance and the results suggest that mechanisms of tolerance reside in the capacity of Na(+) accumulation in stem tissue, resulting in reduced Na(+) transport to the leaves. PMID:23533673

  10. First Steps Towards Dissolution of NaSO4- by Water

    SciTech Connect

    Wang, Xue B.; Woo, Hin-koon; Jagoda-Cwiklik, Barbra; Jungwirth, Pavel; Wang, Lai S.

    2006-10-07

    NaSO4-(H2O)n (n = 0–4) clusters have been generated in the gas phase as model systems to simulate the first dissolution steps of sulfate salts in water; photoelectron spectroscopy and theoretical calculations indicate that the first three water molecules strongly interact with both Na+ and SO4 2-, forming a threewater solvation ring to pry apart the Na+SO4 2- contact ion pair.

  11. Effects of Na on the electrical and structural properties of CuInSe2

    NASA Astrophysics Data System (ADS)

    Wei, Su-Huai; Zhang, S. B.; Zunger, Alex

    1999-05-01

    We found theoretically that Na has three effects on CuInSe2: (1) If available in stoichiometric quantities, Na will replace Cu, forming a more stable NaInSe2 compound having a larger band gap (higher open-circuit voltage) and a (112)tetra morphology. The ensuing alloy NaxCu1-xInSe2 has, however, a positive mixing enthalpy, so NaInSe2 will phase separate, forming precipitates. (2) When available in small quantities, Na will form defect on Cu site and In site. Na on Cu site does not create electric levels in the band gap, while Na on In site creates acceptor levels that are shallower than CuIn. The formation energy of Na(InCu) is very exothermic, therefore, the major effect of Na is the elimination of the InCu defects and the resulting increase of the effective hole densities. The quenching of InCu as well as VCu by