Science.gov

Sample records for pacific ocean woce

  1. Carbon dioxide, hydrographic, and chemical data obtained during the Thomas Washington Cruise TUNES-3 in the equatorial Pacific Ocean (WOCE Section P16C)

    SciTech Connect

    Goyet, C.; Guenther, P.R.; Keeling, C.D.; Talley, L.D.; Kozyr, A.

    1996-12-01

    This data documentation discusses the procedures and methods used to obtain total carbon dioxide (TCO{sub 2}), total alkalinity (TALK), hydrographic, and chemical data during the Research Vessel Thomas Washington Expedition TUNES-3 in the Equatorial Pacific Ocean (Section P16C). Conducted as a part of the World Ocean Circulation Experiment (WOCE), the cruise began in Papeete, Tahiti, on August 31, 1991, and finished in Honolulu, Hawaii, on October 1, 1991. WOCE Meridional Section P16C along 150{degree}W and between 18{degree}S and 19{degree}N was completed during the 31-day expedition. All 105 hydrographic and 8 large-volume stations were completed to the full water column depth. Station spacing was 30 nautical miles (nm), except between 3{degree}N and 3{degree}S where it was 10 nm. Twenty-five bio-optics stations were sampled for the Joint Global Ocean Flux Study, and at 21 stations carbon dioxide measurements were provided for the US Department of Energy`s CO{sub 2} program. Hydrographic and chemical measurements made along WOCE Section P16C included pressure, temperature, salinity, and oxygen measured by conductivity, temperature, and depth sensor; and bottle salinity, oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbon (CFC)-11, CFC-12, TCO{sub 2}, and TALK. In addition, potential temperatures were calculated from the measured variables.

  2. Carbon dioxide, hydrographic, and chemical data obtained during the R/V Thomas Washington TUNES-1 in the equatorial Pacific Ocean (WOCE Section P17C)

    SciTech Connect

    Goyet, C.; Key, R.M.; Sullivan, K.F.; Tsuchiya, M.; Kozyr, A. |

    1997-06-01

    This report discusses the procedures and methods used to obtain measurements of total carbon dioxide (TCO{sub 2}), total alkalinity (TALK), and radiocarbon ({Delta} {sup 14}C), as well as hydrographic and chemical data, during the Research Vessel Thomas Washington Expedition TUNES-1 in the Equatorial Pacific Ocean (Section P17C). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in San Diego, California, on May 31, 1991, and ended in Papeete, Tahiti, on July 11, 1991. WOCE Meridional Section P17C, along 135{degree}W and between {approximately}5{degree}S and 36{degree}N, was completed during the 42-day expedition. All 123 hydrographic stations (including 9 large-volume stations) were completed to the full water-column depth. Spacing between stations was 30 nautical miles, except between 3{degree}N and 3{degree}S, where it was 10 nautical miles. At 30 stations, CO{sub 2} measurements were provided for the US Department of Energy`s Carbon Dioxide Program. Hydrographic and chemical measurements made along WOCE Section P17C included pressure, temperature, salinity, and oxygen (measured by conductivity, temperature, and depth sensor), as well as bottle measurements of salinity, oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbon (CFC)-11, CFC-12, {Delta} {sup 14}C, TCO{sub 2}, and TALK. In addition, potential temperatures were calculated from the measured variables.

  3. Oceanic CO{sub 2} measurements for the WOCE hydrological survey in the Pacific Ocean; Shipboard alkalinity analyses during 1991 and 1992. Final technical report, February 1, 1992--July 31, 1994

    SciTech Connect

    Keeling, C.D.

    1998-07-01

    This research group contributed titration alkalinity analyses to transects of the WOCE Hydrological Survey during 1991 and 1992. The results have been transmitted to the Carbon Dioxide Information and Analysis Center (CDIAC) of the Department of Energy in a technical data report having two parts: Oceanic CO{sub 2} Measurements for the WOCE Hydrographic Survey of the Pacific Ocean, 1990--1991: Shipboard Analyses During 1991 and 1992, Part 1. Alkalinity Measurements on TUNES, Leg 3, 1991. Oceanic CO{sub 2} Measurements for the WOCE Hydrographic Survey of the Pacific Ocean, 1990--1991: Shipboard Analyses During 1991 and 1992, Part 2. Alkalinity Measurements on CGC92, Legs 1 and 2, 1992. This report contains a paper entitled, ``Total dissolved inorganic carbon measurements made on WOCE leg P13`` by Andrew G. Dickson. A brief description of how these measurements were made and calibrated has been provided along with a statement of the quality of the measurements. The data themselves have been sent to ORNL CDIAC for archival and distribution.

  4. Carbon dioxide, hydrographic, and chemical data obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr, October 1992--April 1993)

    SciTech Connect

    Rubin, S.; Goddard, J.G.; Chipman, D.W.; Takahashi, Taro; Sutherland, S.C.; Reid, J.L.; Swift, J.H.; Talley, L.D.

    1998-06-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide concentration (TCO{sub 2}) and partial pressure of CO{sub 2} (pCO{sub 2}) in discrete water samples collected during three expeditions of the Research Vessel (R/V) Knorr in the South Pacific Ocean. Conducted as part of the World Ocean Circulation Experiment (WOCE), the first cruise (WOCE Section P16A/P17A) began in Papeete, Tahiti, French Polynesia, on October 6, 1992, and returned to Papeete on November 25, 1992. The second cruise (WOCE Section P17E/P19S) began in Papeete on December 4, 1992, and finished in Punta Arenas, Chile, on January 22, 1993. The third expedition (WOCE Section P19C) started in Punta Arenas, on February 22 and finished in Panama City, Panama, on April 13, 1993. During the three expeditions, 422 hydrographic stations were occupied. Hydrographic and chemical measurements made along WOCE Sections P16A/P17A, P17E/P19S, and P19C included pressure, temperature, salinity, and oxygen [measured by conductivity, temperature, and depth (CTD) sensor], as well as discrete measurements of salinity, oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO{sub 2}, and pCO{sub 2} measured at 4 and 20 C. In addition, potential temperatures were calculated from the measured variables.

  5. Oceanic CO{sub 2} measurements for the WOCE hydrographic survey in the Pacific Ocean, 1990--1991: Shore based analyses. Technical data report

    SciTech Connect

    Guenther, P.R.; Keeling, C.D.; Emanuele, G. III

    1991-12-31

    The Office of Health and Environmental Research, of the US Department of Energy (DOE), actively supports global survey investigations of carbon dioxide in the oceans. This large scale study is in conjunction with the hydrographic program of the World Ocean Circulation Experiment (WOCE/HP). On ocean cruises operated by WOCE/HP, carbon dioxide analysis groups, from various oceanographic institutions, perform shipboard chemical measurements of the inorganic carbon system in the ocean. Measurements of total dissolved inorganic carbon (DIC) are of central importance to this carbon survey. Shipboard measurements of DIC were made by employing a coulometric technique. The majority of coulometric measurements were made on an integrated automatic device, the Single Operator Multi-Parameter Metabolic Analyzer (SOMMA). In addition to DIC determinations, shipboard analytical groups measured at least one additional parameter of sea water carbon chemistry. This was done to more fully characterize the inorganic carbon system of the sea water sample. This thechnical data report presents DIC and ALK measurements performed in the SIO laboratory on replicate samples collected on the five expedition legs of the WOCE/HP cruises.

  6. World Ocean Circulation Experiment (WOCE) Young Investigator Workshops

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2004-01-01

    The World Ocean Circulation Experiment (WOCE) Young Investigator Workshops goals and objectives are: a) to familiarize Young Investigators with WOCE models, datasets and estimation procedures; b) to offer intensive hands-on exposure to these models ard methods; c) to build collaborations among junior scientists and more senior WOCE investigators; and finally, d) to generate ideas and projects leading to fundable WOCE synthesis projects. To achieve these goals and objectives, the Workshop will offer a mixture of tutorial lectures on numerical models and estimation procedures, advanced seminars on current WOCE synthesis activities and related projects, and the opportunity to conduct small projects which put into practice the techniques advanced in the lectures.

  7. Measurements of the total CO[sub 2] concentration and partial pressure of CO[sub 2] in seawater during WOCE expeditions in the South Pacific Ocean

    SciTech Connect

    Takahashi, T.; Goddard, J.G.; Chipman, D.W.; Rubin, S.I.

    1993-06-29

    During the first year of the grant, we participated in three WOCE expeditions (a total of 152 days at sea) in the South Pacific Ocean, and the field phase of the proposed investigation has been successfully completed. The total CO[sub 2] concentration and pCO[sub 2] were determined at sea in 4419 water samples collected at 422 stations. On the basis of the shipboard analyses of SIO Reference Solutions for CO, and a comparison with the results of previous expeditions, the overall precision of our total CO[sub 2] determinations is estimated to be about [plus minus]2 uM/kg. The deep water data indicate that there is a CO[sub 2] maximum centered about 2600 meters deep. This appears to represent a southward return flow from the North Pacific. The magnitude and distribution of the CO, maximum observed along the 135.0[degrees]W meridian differ from those observed along the 150.5[degrees]W meridian due to Tuamotu Archipelago, a topographic high which interferes with the southward return flow. The surface water pCO[sub 2] data indicate that the South Pacific sub-tropical gyre water located between about 15[degrees]S and 50[degrees]S is a sink for atmospheric CO[sub 2].

  8. Carbon dioxide, hydrographic, and chemical data obtained during the R/V Akademik Ioffe cruise in the South Pacific Ocean (WOCE Section S4P, February--April 1992)

    SciTech Connect

    Chipman, D.W.; Takahashi, Taro; Rubin, S.; Sutherland, S.C.; Koshlyakov, M.H.; Kozyr, A. |

    1997-07-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and partial pressure of CO{sub 2} (pCO{sub 2}) in discrete water samples during the Research Vessel (R/V) Akademik Ioffe Expedition in the South Pacific Ocean. Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Montevideo, Uruguay, on February 14, 1992, and ended in Wellington, New Zealand, on April 6, 1992. WOCE Section S4P, located along {approximately}67{degree}S between 73{degree}W and 172{degree}E, was completed during the 51-day expedition. One hundred and thirteen hydrographic stations were occupied. Hydrographic and chemical measurements made along WOCE Section S4P included pressure, temperature, salinity, and oxygen measured by a conductivity, temperature, and depth sensor; bottle salinity; bottle oxygen, phosphate; nitrate; nitrite; silicate, TCO{sub 2}; and pCO{sub 2} measured at 4 C.

  9. Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE

    SciTech Connect

    Weiss, R.F.

    1998-10-15

    All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0{sub 2}) and nitrous oxide (N{sub 2}O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in the global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO{sub 2} and N{sub 2}O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N{sub 2}O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO{sub 2}, roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N{sub 2}O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone. (B204)

  10. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, August 4 - October 21, 1992)

    SciTech Connect

    Kozyr, A.

    2001-01-11

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and total alkalinity (TALK) at hydrographic stations during the R/V John V. Vickers oceanographic cruise in the Pacific Ocean (Section P13). Conducted as part of the World Ocean Circulation Experiment (WOCE) and the National Oceanic and Atmospheric Administration's Climate and Global Change Program, the cruise began in Los Angeles, California, on August 4, 1992, with a transit line (Leg 0) to Dutch Harbor, Alaska. On August 16, the ship departed Dutch Harbor on Leg 1 of WOCE section P13. On September 15, the R/V John V. Vickers arrived in Kwajalein, Marshall Islands, for emergency repairs, and after 11 days in port departed for Leg 2 of Section P13 on September 26. The cruise ended on October 21 in Noumea, New Caledonia. Measurements made along WOCE Section P13 included pressure, temperature, salinity [measured by a conductivity, temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO{sub 2} , and TALK. The TCO{sub 2} was measured by coulometry using a Single-Operator Multiparameter Metabolic Analyzer (SOMMA). The overall precision and accuracy of the analyses was {+-}2 {micro}mol/kg. Samples collected for TALK were measured by potentiometric titration; precision was {+-}2 {micro}mol/kg. The CO{sub 2} -related measurements aboard the R/V John V. Vickers were supported by the U.S. Department of Energy. The WOCE Section P13 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 90 data-retrieval routine files, a documentation file, and this printed report, which describes the contents and format of all files as well as the procedures and methods used to obtain the data. Instructions on how to access the data are provided.

  11. Final Technical Report: Ocean CO{sub 2} Measurements for the WOCE Hydrographic Survey in the Pacific Ocean, 1992-1995 Field Years: Shore Based Analysis of Dissolved Inorganic Carbon January 1, 1993-April 15, 1998

    SciTech Connect

    Keeling, Charles D.

    1998-04-15

    Participation in the hydrographic survey of the world ocean circulation experiment (WOCE) began in December 1990 with a two year grant from DOE for shore related analyses of inorganic carbon in sea water. These analyses were intended to assure that the measurements carried out under difficult laboratory conditions on board ships were consistent with measurements made under more carefully controlled shore laboratory conditions.

  12. Carbon dioxide, hydrographic, and chemical data obtained in the Central South Pacific Ocean (WOCE sections P17S and P16S) during the tunes-2-expedition of the R/V Thomas Washington, July--August 1991

    SciTech Connect

    1991-12-31

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}), discrete partial pressure of TCO{sub 2} (pCO{sub 2}), and total alkalinity (TALK), during the Research Vessel (R/V) Thomas Washington TUNES Leg 2 Expedition in the central South Pacific Ocean. Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Papeete, Tahiti, French Polynesia, on July 16, 1991, and returned to Papeete on August 25, 1991. WOCE Meridional Sections P17S along 135{degrees} W and P16S along 150{degrees} W were completed during the 40-day expedition. A total of 97 hydrographic stations were occupied. Hydrographic and chemical measurements made along WOCE Sections P17S and P16S included pressure, temperature, salinity, and oxygen measured by conductivity, temperature and depth sensor; bottle salinity; oxygen; phosphate; nitrate; nitrite; silicate; CFC-12; CFC- 11; TCO{sub 2}; TALK; and pCO{sub 2} measured at 20{degrees}C. The TCO{sub 2} concentration in 1000 seawater samples was determined with a coulometric analysis system, the pCO{sub 2} in 940 water samples was determined with an equilibrator/gas chromatograph system, while the TALK concentration in 139 samples was determined on shore at the laboratory of C. Goyet of Woods Hole Oceanographic Institution with an alkalinity titration system. In addition, 156 coulometric measurements for the Certified Reference Material (Batch {number_sign}6) were made and yielded a mean value of 2303.2 {plus_minus} 1.5 {mu}mol/kg. This mean value agrees within a standard deviation of the 2304.6 {plus_minus} 1.6 {mu}mol/kg (N=9) value determined with the manometer of C. D. Keeling at Scripps Institution of Oceanography (SIO). Replicate samples from 11 Niskin bottles at 4 stations were also collected for later shore-based reference analyses of TCO{sub 2} and TALK by vacuum extraction and manometry in the laboratory of C. D. Keeling of SIO.

  13. Oceanic CO sub 2 measurements for the WOCE hydrological survey in the Pacific Ocean; Shipboard alkalinity analyses during 1991 and 1992

    SciTech Connect

    Keeling, C.D.

    1992-01-01

    The DOE Carbon Dioxide Science Team is contributing measurements of the carbon system in sea water on transects of the WOCE Hydrological Survey sponsored by the United States. This project is to provide measurements of titration alkalinity of sea water, an effort that is in addition to our collecting samples of sea water brought back to our shore laboratory and analyzed for dissolved inorganic carbon (DIC) and alkalinity. Our original proposal called for approximately 1200 analyses at sea in 1991 and 4400 in 1992. In preparation for measurements at sea, the project budget called for the construction of a dual potentiometric sea-going titration system. The titration system is of novel design in order to achieve at sea as close as possible the same high precision that we have previously achieved in the laboratory using gravimetric procedures. Two motor driven precision syringes dispense sea water volumetrically to two titration cells, each separately connected to a Dosimat acid dispenser. Each system is driven by a notebook computer that analyzes the full titration curve of sea water and calculates the alkalinity.

  14. Measurements of the total CO{sub 2} concentration and partial pressure of CO{sub 2} in seawater during WOCE expeditions in the South Pacific Ocean. Progress report, [January 1, 1993--December 31, 1993

    SciTech Connect

    Takahashi, T.; Goddard, J.G.; Chipman, D.W.; Rubin, S.I.

    1993-06-29

    During the first year of the grant, we participated in three WOCE expeditions (a total of 152 days at sea) in the South Pacific Ocean, and the field phase of the proposed investigation has been successfully completed. The total CO{sub 2} concentration and pCO{sub 2} were determined at sea in 4419 water samples collected at 422 stations. On the basis of the shipboard analyses of SIO Reference Solutions for CO, and a comparison with the results of previous expeditions, the overall precision of our total CO{sub 2} determinations is estimated to be about {plus_minus}2 uM/kg. The deep water data indicate that there is a CO{sub 2} maximum centered about 2600 meters deep. This appears to represent a southward return flow from the North Pacific. The magnitude and distribution of the CO, maximum observed along the 135.0{degrees}W meridian differ from those observed along the 150.5{degrees}W meridian due to Tuamotu Archipelago, a topographic high which interferes with the southward return flow. The surface water pCO{sub 2} data indicate that the South Pacific sub-tropical gyre water located between about 15{degrees}S and 50{degrees}S is a sink for atmospheric CO{sub 2}.

  15. Measurements of carbon dioxide in the Southern Ocean along the WOCE S-4 section

    SciTech Connect

    Chipman, D.W.; Rubin, S.I.; Takahashi, T.

    1992-08-01

    During the fist year of this two-year grant, we have completed the data acquisition phase at sea along the WOCE-S4 section located along 67{degree}S between 73{degree}W and 172{degree}E in the Pacific sector of the Southern Ocean. The expedition was carried out aboard the Russian Research Ship Akademik IOFFE'' in the period February 14 through April 6, 1992. The total CO{sub 2} concentration and pCO{sub 2} in a total of about 1290 water samples were determined using a coulometer for total CO{sub 2} and an equilibrator/gas chromatograph system for pCO{sub 2}. Surface water samples were analyzed at all the 112 hydrographic stations occupied. Complete or partial profiles were obtained at 58 stations. In addition, a total of 172 determinations were made at sea for 62 bottles of the Standard Reference Solution.

  16. CO sub 2 measurements along WOCE P-16 and 19 sections in the South Pacific Ocean: A joint LDGO/WHOI program

    SciTech Connect

    Takahashi, Taro.

    1990-07-30

    This report covers the progress made since June 1, 1990, the beginning of this grant. The objective of the six-month period covered by this grant is to prepare for the field operations in the South Pacific Ocean. The coulometer and gas chromatograph systems, which will be used for the measurements of the total CO{sub 2} concentration and pCO{sub 2} aboard research ships, are being calibrated presently. Various spare parts needed for the expedition are being ordered, and the Pure-Air generators and hydrogen generators are being serviced. Our preparation is on schedule. We have participated in two meetings where the problems associated with instrumentation and calibration were actively discussed among the participants of the DOE CO{sub 2} program.

  17. The World Ocean Circulation Experiment (WOCE): An ocean climatology for the 1990s

    SciTech Connect

    Chapman, P.; Nowlin, W.D. Jr.

    1997-11-01

    During the last ten years, scientists have made remarkable progress in predicting seasonal and interannual climate variability, based on interactions between the atmosphere and the tropical ocean. The goals of the World Ocean Circulation Experiment (WOCE) are to develop models useful for predicting climate variability on longer time scales and to collect the data from the global ocean necessary to test them. Using a variety of instrument platforms, researchers in the US and other nations have been sampling a suite of ocean variables which will be used to build up a climatology of the oceans in the 1990s and from the basis for developing both new models of ocean circulation and coupled models of the ocean and atmosphere. This paper presents some recent results from WOCE research. It includes examples of advances in the fields of sea surface temperature measurements, sea level monitoring, current velocities, upper ocean heat content, and air-sea flux measurements. In addition, we discuss some of the recent advances in modeling and the link between WOCE research and future programs such as CLIVAR, GOOS and GCOS. 27 refs., 2 tabs.

  18. Measurements of carbon dioxide in the Southern Ocean along the WOCE S-4 section. Annual progress report

    SciTech Connect

    Chipman, D.W.; Rubin, S.I.; Takahashi, T.

    1992-08-01

    During the fist year of this two-year grant, we have completed the data acquisition phase at sea along the WOCE-S4 section located along 67{degree}S between 73{degree}W and 172{degree}E in the Pacific sector of the Southern Ocean. The expedition was carried out aboard the Russian Research Ship ``Akademik IOFFE`` in the period February 14 through April 6, 1992. The total CO{sub 2} concentration and pCO{sub 2} in a total of about 1290 water samples were determined using a coulometer for total CO{sub 2} and an equilibrator/gas chromatograph system for pCO{sub 2}. Surface water samples were analyzed at all the 112 hydrographic stations occupied. Complete or partial profiles were obtained at 58 stations. In addition, a total of 172 determinations were made at sea for 62 bottles of the Standard Reference Solution.

  19. Oceanic CO{sub 2} measurements for the WOCE hydrographic survey in the Pacific Ocean, 1990--1991: Shore based analyses during Legs 1--3. Technical progress report, 1 December 1990--28 January 1992

    SciTech Connect

    Keeling, C.D.

    1992-05-01

    During the winter and spring of 1991 we made preparations for sampling on three legs of the US World Ocean Circulation Experiment in the Pacific Ocean. These transects, postponed from an original start date early in 1991, took place between May 31 to October 1. For the project, 1400 0.5 liter Pyrex sampling bottles were used for the collection of sea water. A second major pre-expedition task was the construction of a dual titration cell system of new design, as described in the original proposal and our previous semi-annual report.

  20. Oceanic CO{sub 2} measurements for the WOCE hydrological survey in the Pacific Ocean; Shipboard alkalinity analyses during 1991 and 1992. Technical progress report, 1 February 1991--31 January 1992

    SciTech Connect

    Keeling, C.D.

    1992-02-01

    The DOE Carbon Dioxide Science Team is contributing measurements of the carbon system in sea water on transects of the WOCE Hydrological Survey sponsored by the United States. This project is to provide measurements of titration alkalinity of sea water, an effort that is in addition to our collecting samples of sea water brought back to our shore laboratory and analyzed for dissolved inorganic carbon (DIC) and alkalinity. Our original proposal called for approximately 1200 analyses at sea in 1991 and 4400 in 1992. In preparation for measurements at sea, the project budget called for the construction of a dual potentiometric sea-going titration system. The titration system is of novel design in order to achieve at sea as close as possible the same high precision that we have previously achieved in the laboratory using gravimetric procedures. Two motor driven precision syringes dispense sea water volumetrically to two titration cells, each separately connected to a Dosimat acid dispenser. Each system is driven by a notebook computer that analyzes the full titration curve of sea water and calculates the alkalinity.

  1. Investigation of carbon dioxide in the central South Pacific Ocean (WOCE Sections P-16C and P-17C) during the TUNES/2 expedition of the R/V Thomas Washington, July--August, 1991. Final technical report

    SciTech Connect

    Takahashi, T.; Goddard, J.G.; Rubin, S.; Chipman, D.W.; Sutherland, S.C.

    1993-12-01

    This report summarizes the results of carbon dioxide and associated hydrographic measurements made during the oceanographic expedition, TUNES/2, aboard the R/V Thomas Washington in the central South Pacific Ocean. During the 40 day expedition, the total carbon dioxide concentration in 1000 seawater samples were determined using a coulometer system and the pCO(sub 2) in 940 seawater samples were determined using an equilibrator/gas chromatograph system. The alkalinity values in 900 water samples were computed using these measurements. In addition, 156 coulometric measurements were made for the Certified Reference Solutions (Batch No. 6) and yielded a mean value of 2303.2 +or- 1.5umol/kg. The chemical characteristics for the major water masses have been determined.

  2. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 4 January - 21 March 1994)

    SciTech Connect

    Kozyr, Alex

    2005-06-30

    This documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and pH at hydrographic stations during the R/V Maurice Ewing cruise in the South Atlantic Ocean on the A17 WOCE section. Conducted as part of the World Ocean Circulation Experiment (WOCE), this cruise was also a part of the French WOCE program consisting of three expeditions (CITHER 1, 2, and 3) focused on the South Atlantic Ocean. The A17 section was occupied during the CITHER 2 expedition, which began in Montevideo, Uruguay, on January 4, 1994 and finished in Cayenne, French Guyana, on March 21, 1994. During this period the ship stopped in Salvador de Bahia and Recife, Brazil, to take on supplies and exchange personnel. Upon completion of the cruise the ship transited to Fort de France, Martinique. Instructions for accessing the data are provided.

  3. In situ calcium carbonate dissolution in the Pacific Ocean

    SciTech Connect

    Feely, R. A.; Sabine, Chris; Lee, K.; Millero, F. J.; Lamb, M. F.; Greeley, D.; Bullister, J.L.; Key, Robert; Peng, T.-H.; Kozyr, Alexander; Ono, Tsueno

    2002-01-01

    Over the past several years researchers have been working to synthesize the WOCE/ JGOFS global CO2 survey data to better understand carbon cycling processes in the oceans. The Pacific Ocean data set has over 35,000 sample locations with at least two carbon parameters, oxygen, nutrients, CFC tracers, and hydrographic parameters. In this paper we estimate the in situ CaCO3 dissolution rates in the Pacific Ocean water column. Calcium carbonate dissolution rates ranging from 0.01 1.1 mmol kg1 yr1 are observed in intermediate and deepwater beginning near the aragonite saturation horizon. In the North Pacific Intermediate Water between 400 and 800 m, CaCO3 dissolution rates are more than 7 times faster than observed in middle and deep water depths (average = 0.051 mmol kg1 yr1). The total amount of CaCO3 that is dissolved within the Pacific is determined by integrating excess alkalinity throughout the water column. The total inventory of CaCO3 added by particle dissolution in the Pacific Ocean, north of 40S, is 157 Pg C. This amounts to an average dissolution rate of approximately 0.31 Pg C yr1. This estimate is approximately 74% of the export production of CaCO3 estimated for the Pacific Ocean. These estimates should be considered to be upper limits for in situ carbonate dissolution in the Pacific Ocean, since a portion of the alkalinity increase results from inputs from sediments.

  4. Eastern Pacific Ocean Conference

    NASA Astrophysics Data System (ADS)

    The promotion of interaction among investigators of all oceanographic disciplines studying the eastern Pacific Ocean was the goal of the 1990 Eastern Pacific Ocean Conference (EPOC), held October 17-19 on the snow-covered slopes of Mt. Hood, Oreg. Thirty oceanographers representing all disciplines attended.Dick Barber, Duke University Marine Lab, Beaufort, N.C., chaired a session on the eastern equatorial Pacific Ocean, emphasizing issues related to biological activity. Steve Ramp of the Naval Postgraduate School in Montery, Calif., chaired a session on recent results from northern and central California experiments. On October 19, following an early morning earthquake, a business meeting and discussions regarding a collaboration in future experiments were held.

  5. Modeling the Pacific Ocean

    SciTech Connect

    Johnson, M.A.; O'Brien, J.J. )

    1990-01-01

    Two numerical models utilizing primitive equations (two momentum equations and a mass continuity equation) simulate the oceanography of the Pacific Ocean from 20{degrees}S to 50{degrees}N. The authors examine the abundant model data through visualization , by animating the appropriate model fields and viewing the time history of each model simulation as a color movie. The animations are used to aid understanding of ocean circulation.

  6. Earth - Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the Earth was obtained by the Galileo spacecraft early Dec. 12, 1990, when the spacecraft was about 1.6 million miles from the Earth. The color composite used images taken through the red, green and violet filters. The Pacific Ocean covers virtually all of the visible disk of the Earth in this picture. The glint of the Sun reflected from smooth water is near the center. This is a frame of the Galileo Earth spin movie, a 500-frame time-lapse motion picture showing a 25-hour period of Earths rotation and atmospheric dynamics.

  7. Spin-up of South Pacific Subtropical Gyre Freshens and Cools the Upper Layer of the Eastern South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Schneider, W.; Fukasawa, M.; Garcés-Vargas, J.; Bravo, L.

    2007-05-01

    The general circulation in the South Pacific Ocean is dominated by the subtropical gyre, which manifests itself through elevated mean dynamic topography at its center. Gyre circulation consists of the westward South Equatorial Current, a narrow poleward western boundary current, the East Australian current, the eastward South Pacific Current streaming along the South Tropical Front (centered at around 40°S in the western ocean basin and at 30-35°S in the eastern basin), and the Humboldt Current System, a broad equatorward eastern boundary current, (in the literature, also referred to as the Peru/Chile Current) (Tomczak and Godfrey 1994; Levitus 1982; Reid 1986). The volume transport of upper water (700 m) between the Pacific coast of South America and the East Pacific Rise amounted to 18 Sv across 32.5°S (WOCE section P06) and 14 Sv across 17°S (WOCE section P21) (Tsimplis et al. 1998), emphasizing the importance of equatorward transport by this eastern boundary current system. This boundary current also plays a vital role in the fresh water budget by advecting fresher Subantarctic Surface Water northward thus forming Eastern South Pacific Transition Water (Emery and Meincke 1986). Here, temperature and salinity from the upper 200 m of the water column in the South Pacific Ocean were compared basin wide along 32°30'S between 2003 and 1992, based on two vertically and horizontally high resolution hydrographic repeat-sections involving 227 station pairs (WOCE, BEAGLE). Additionally, the seasonal cycles of the upper water column temperature and salinity between 90- 140°W and 30-35°S were established utilizing more than 1500 ARGO profiles from 2003 to 2006. The surface waters (0-200 m) of the eastern South Pacific Ocean, on average and seasonally adjusted, were clearly fresher in 2003 by 0.14 PSU. The seasonally adjusted, depth integrated temperature was 0.25°C colder in the same region. We further concluded a spin-up of the South Pacific subtropical gyre

  8. Stratocumulus Clouds, eastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This sheet of closed-cell stratocumulus clouds was sighted in the eastern Pacific Ocean (13.5N, 141.0W) southeast of the Hawaiian Islands. This cloud sheet has a distinctive fracture zone that separates an older cloud layer (right side of scene) from a newly formed layer (left). Stratocumulus cloud sheets originate over the cold waters of the California current and migrate westward over the Pacific Ocean.

  9. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean

    SciTech Connect

    Sabine, C.L.; Key, R.M.; Hall, M.; Kozyr, A.

    1999-08-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity [measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2.

  10. Consistency and synthesis of Pacific Ocean CO2 survey data

    SciTech Connect

    Lamb, M. F.; Sabine, Chris; Feely, R. A.; Wanninkhof, R.; Key, Robert; Johnson, G.C.; Millero, F. J.; Lee, K.; Peng, T.-H.; Kozyr, Alexander; Bullister, J.L.; Greeley, D.; Byrne, R.H.; Chipman, D.W.; Dickson, A.G.; Goyet, C.; Guenther, P.R.; Ishii, M.; Johnson, K.M.; Ono, Tsueno; Tilbrook, B.; Takahashi, Taro; Wallace, D.W.R.; Watanabe, Y.W.; Winn, C.; Wong, C. S.

    2002-01-01

    Between 1991 and 1999, carbon measurements were made on twenty-five WOCE/JGOFS/OACES cruises in the Pacific Ocean. Investigators from 15 different laboratories and four countries analyzed at least two of the four measurable ocean carbon parameters (DIC, TAlk, fCO2, and pH) on almost all cruises. The goal of this work is to assess the quality of the Pacific carbon survey data and to make recommendations for generating a unified data set that is consistent between cruises. Several different lines of evidence were used to examine the consistency, including comparison of calibration techniques, results from certified reference material analyses, precision of at-sea replicate analyses, agreement between shipboard analyses and replicate shore based analyses, comparison of deep water values at locations where two or more cruises overlapped or crossed, consistency with other hydrographic parameters, and internal consistency with multiple carbon parameter measurements. With the adjustments proposed here, the data can be combined to generate a Pacific Ocean data set, with over 36,000 unique sample locations analyzed for at least two carbon parameters in most cases. The best data coverage was for DIC, which has an estimated overall accuracy of ~3 umol/kg. TAlk, the second most common carbon parameter analyzed, had an estimated overall accuracy of ~5 umol/kg. To obtain additional details on this study, including detailed crossover plots and information on the availability of the compiled, adjusted data set, visit the Global Data Analysis Project web site at: http://cdiac.ornl.gov/oceans/glodap.

  11. Carbon dioxide, hydrographic, and chemical data from the F/S Meteor Cruise No. 18 in the North Atlantic Ocean (WOCE Section A1/E) during September 1991

    SciTech Connect

    Johnson, K.M.; Wallace, D.W.R.; Schneider, B.; Mintrop, L.

    1995-08-01

    This report presents the procedures and methods used to obtain total carbon dioxide (C{sub T}), total alkalinity, and underway pCO{sub 2} data during the F/S Meteor Cruise 18 in the North Atlantic Ocean (WOCE Section A1/E). The F/S Meteor departed Reykjavik on September 2, 1991 and docked in Hamburg early on the morning of September 25, 1991 after 24 days at sea. A two day steam from Reykjavik brought the ship to the starting position for WOCE zonal section A1/east (A1/E) on September 5. Section work began and ended with a closely spaced series hydrocasts on the SE-Greenland (60{degree}N 42{degree}30 minutes W) and Porcupine Shelves (52{degree}20 minutes N 14{degree}15 minutes W), respectively. The cast schedule was interrupted for equipment problems (6 and 7 September), current meter deployments (9, 10, 11, 14, and 19 September), and by high seas (13, 14, and 17 September). Of 64 CTD casts made, 58 were bottle casts including two calibration stations. Measurements made included CTD pressure, temperature, salinity, bottle salinity, oxygen, phosphate, nitrate, nitrite, silicate, total alkalinity, CFC`S, total carbon dioxide, and continuous underway pCO{sub 2} of surface waters. Carbonate samples were collected from 31 section stations (55.4% of the section stations), one test station, and two calibration stations. Repeated XBT, and ADCP profiles were taken throughout the cruise. Instructions for accessing the data are provided.

  12. PACIFICA (PACIFic ocean Interior CArbon) Database: A Data Synthesis Resource (NDP-92, ORNL/CDIAC-159)

    DOE Data Explorer

    Suzuki, T.; Ishii, M.; Aoyama, M. R; Christian, J. R.; Enyo, K.; Kawano, T.; Key, R. M.; Kosugi, N.; Kozyr, A.; Miller, L. A.; Murata, A.; Nakano, T.; Ono, T.; Saino, T.; Sasaki, K.; Sasano, D; Takatani, Y.; Wakita, M.; Sabine, C.

    PACIFICA (PACIFic ocean Interior CArbon) was an international collaborative project for synthesis of data on ocean interior carbon and its related parameters in the Pacific Ocean. The North Pacific Marine Science Organization (PICES), Section on Carbon and Climate (S-CC) supported the project. Hydrographic/hydrochemical datasets have been merged from a total of 272 cruises, including those from cruises conducted between the late 1980s and 2000 but not included in GLODAP, as well as CLIVAR/CO2 Repeat Hydrography datasets from the 2000s. Adjustments were calculated to account for analytical offsets in dissolved inorganic carbon, total alkalinity, salinity, oxygen, and nutrients (nitrate and nitrite, phosphate, and silicic acid) for each cruise as a result of the secondary quality control procedure, based on crossover analysis using data from deep layers (Tanhua et al., 2010). A total of 59 adjusted datasets from Line P off the west coast of Canada were also merged. Finally, the authors have produced the adjusted PACIFICA database that consists of datasets from a total of 306 cruises that also includes 34 datasets from WOCE Hydrographic Program cruises in the Pacific Ocean conducted in the 1990s. The PACIFICA database is available free of charge as a numeric data package (NDP-92) from the Carbon Dioxide Information Analysis Center (CDIAC) and the primary PACIFICA data site at pacifica.pices.jp. The NDP consists of the original cruise data files, adjusted data product, and the documentation.

  13. Comparison of synoptic and climatologically mapped sections in the south Pacific ocean

    SciTech Connect

    Bindoff, N.L.; Wunsch, C. )

    1992-06-01

    To understand the extent to which oceanic climate shifts could be detected, a South Pacific climatology has been used to create pseudosections of temperature, salinity, and other tracers along a zonal and meridional lines at 15[degrees]S and 90[degrees]W, respectively. Interpolations from the climatology were made using combined empirical orthogonal functions and objective mapping. Comparisons are made with independent measurements, taken in 1987, of temperature and salinity at 15[degrees]S. Temperature and salinity fields between the surface and 300 db along the 15[degrees]S section are predicted with an uncertainty sufficiently small to display significant differences in temperature and salinity related to El Nino of 1987. The 90[degrees]W pseudosection is a forecast of a synoptic section to be obtained as part of WOCE in 1992. Explicit values for the smallest temperature shift with depth that could be detected are produced. 17 refs., 10 figs.

  14. Paleoceanography of the tropical eastern pacific ocean.

    PubMed

    Grigg, R W; Hey, R

    1992-01-10

    The East Pacific Barrier (EPB) is the most effective marine barrier to dispersal of tropical shallow-water fauna in the world today. The fossil record of corals in the eastern Pacific suggests this has been true throughout the Cenozoic. In the Cretaceous, the EPB was apparently less effective in limiting dispersal. Equatorial circulation in the Pacific then appears to have been primarily east to west and the existence of oceanic atolls (now drowned guyots) in the eastern Pacific probably aided dispersal. Similarly, in the middle and early Mesozoic and late Paleozoic, terranes in the central tropical Pacific likely served as stepping stones to dispersal of tropical shelf faunas, reducing the isolating effect of an otherwise wider Pacific Ocean (Panthalassa). PMID:17756067

  15. Anomalous Heat Budgets in the Interior Pacific Ocean on Seasonal- to -Timescales and Gyre Spacescales

    NASA Technical Reports Server (NTRS)

    White, Warren; Cayan, Daniel R.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This study quantifies uncertainties in closing the seasonal cycle of diabatic heat storage over the Pacific Ocean from 20 degrees S to 60 degrees N through the synthesis of World Ocean Circulation Experiment (WOCE) products over 7 years from 1993-1999. We utilize WOCE reanalysis products from the following sources: diabatic heat storage (DHS) from the Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from the Earth and Space Research (ESR); and air-sea heat fluxes from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). We interpolate these products onto a common grid, allowing the seasonal cycle of DHS to be modeled for comparison with that observed. Everywhere latent heat flux residuals dominate sensible heat flux residuals and shortwave heat flux residuals dominate longwave heat flux residuals, both comparable in magnitude to the residual horizontal heat advection. We find the root-mean-square (RMS) of the differences between observed and model residual DHS tendencies to be less than 15 W per square meters everywhere except in the Kuroshio extension. Comparable COADS and NCEP products perform better than ECMWF products in the extra-tropics, while the NCEP product performs best in the tropics. Radiative and turbulent air-sea heat flux residuals computed from ship-born measurements perform better than those computed from satellite cloud and wind measurements. Since the RMS differences derive largely from biases in measured wind speed and cloud fraction, least-squares minimization is used to correct the residual Ekman heat advection and air-sea heat flux. Minimization reduces RMS differences less than 5 W per square meters except in the Kuroshio extension, suggesting how winds, clouds, and exchange coefficients in the NCEP, ECMWF, and ESR products can be improved.

  16. Carbon dioxide, hydrographic, and chemical data obtained during the R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E, September 1991)

    SciTech Connect

    Johnson, K.M.; Wallace, D.W.R.; Schneider, B.; Mintrop, L.; Kozyr, A.

    1996-07-01

    The North Atlantic Ocean is characterized by an intense meridional circulation cell carrying near-surface waters of tropical and subtropical origin northward and deep waters of arctic and subarctic origin southward. The related {open_quotes}overturning{close_quotes} is driven by the sinking of water masses at high latitudes. The overturning rate and thus the intensity of the meridional transports of mass, heat, and salt, is an important control parameter for the modeling of the ocean`s role in climate. The Research Vessel (R/V) Meteor Cruise 18/1 was one in a series of cruises in the North Atlantic that started in March 1991 and continued until 1995. This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and total alkalinity (TALK) at hydrographic stations, as well as underway partial pressure of CO{sub 2} (pCO{sub 2}) measured during the RIV Meteor Cruise 18/1 in the North Atlantic Ocean (Section A1E). Conducted as part of the World Ocean Circulation Experiment (WOCE) and the German North Atlantic Overturning Rate Determination expedition, the cruise began in Reykjavik, Iceland, on September 2, 1991, and ended after 24 days at sea in Hamburg, Germany, on September 25, 1991. WOCE Zonal Section AlE began at 60{degrees}N and 42{degrees}30{prime} W (southeast of Greenland) and continued southeast with a closely spaced series of hydrocasts to 52{degrees}20{prime} N and 14{degrees}15{prime} W (Porcupine Shelves). Measurements made along WOCE Section AlE included pressure, temperature, salinity, and oxygen measured by a conductivity, temperature and depth (CTD) sensor; bottle salinity; oxygen; phosphate; nitrate; nitrite; silicate; TCO{sub 2}; TALK; and underway pCO{sub 2}. A total of 61 CTD casts were made, including 59 bottle casts and 2 calibration stations.

  17. Volume, heat, and freshwater transports of the global ocean circulation 1993-2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data

    NASA Astrophysics Data System (ADS)

    Stammer, D.; Wunsch, C.; Giering, R.; Eckert, C.; Heimbach, P.; Marotzke, J.; Adcroft, A.; Hill, C. N.; Marshall, J.

    2003-01-01

    An analysis of ocean volume, heat, and freshwater transports from a fully constrained general circulation model (GCM) is described. Output from a data synthesis, or state estimation, method is used by which the model was forced to large-scale, time-varying global ocean data sets over 1993 through 2000. Time-mean horizontal transports, estimated from this fully time-dependent circulation, have converged with independent time-independent estimates from box inversions over most parts of the world ocean but especially in the southern hemisphere. However, heat transport estimates differ substantially in the North Atlantic where our estimates result in only 1/2 previous results. The models drift over the estimation period is consistent with observations from TOPEX/Poseidon in their spatial pattern, but smaller in their amplitudes by about a factor of 2. Associated temperature and salinity changes are complex, and both point toward air-sea interaction over water mass formation regions as the primary source for changes in the deep ocean. The estimated mean circulation around Australia involves a net volume transport of 11 Sv through the Indonesian Throughflow and the Mozambique Channel. In addition, we show that this flow regime exists on all timescales above 1 month, rendering the variability in the South Pacific strongly coupled to the Indian Ocean. Moreover, the dynamically consistent variations in the model show temporal variability of oceanic heat transports, heat storage, and atmospheric exchanges that are complex and with a strong dependence upon location, depth, and timescale. Our results demonstrate the great potential of an ocean state estimation system to provide a dynamical description of the time-dependent observed heat transport and heat content changes and their relation to air-sea interactions.

  18. Electronic atlas of WOCE hydrographic and tracer data now available

    NASA Astrophysics Data System (ADS)

    Schlitzer, Reiner

    During the last decade, as part of the World Climate Research Programme, the World Ocean Circulation Experiment (WOCE) produced a global set of hydrographic, nutrient, and tracer data of unprecedented quality and quantity Large parts of this data set are now publicly available and are being used for general oceanographic research and climate studies. However, widespread use of the combined WOCE data set is hampered; the data reside in many separate data files and the file format is complex.To facilitate the use of the global WOCE data set, all data released by the WOCE Hydrographic Programme (WHP) have been compiled into an integrated data set. When used with the Ocean Data View visualization software for Windows, this data set constitutes an “Electronic Atlas of WOCE Data” (eWOCE) that permits graphical display and interactive analysis of the data in many different ways. With extensive interactive controls such as user-defined plot configuration, zooming, auto-scaling, color adjustment, and station/sample selection, this electronic atlas complements and surpasses printed atlases that are now in preparation.

  19. Decadal Changes in Hydrography of the Southern Pacific Ocean and Ross Sea

    NASA Astrophysics Data System (ADS)

    Talley, L. D.; Carter, B.; Warner, M. J.; Swift, J. H.; Orsi, A. H.; Sloyan, B.

    2014-12-01

    Quasi-decadal hydrographic sections of the GO-SHIP program cross the world's oceans with the highest accuracy measurements, documenting temporal variability in physical and chemical properties. The central southern Pacific and Ross Sea have been surveyed regularly along GO-SHIP sections P16S (150W) and S4P (67S) since the first occupation in WOCE in 1992. Observed changes are consistent with anthropogenic forcing. The central Ross Sea gyre's bottom 1000 m is nearly adiabatic (well mixed), and well-ventilated based on chlorofluorocarbon (CFC) and sulfur hexafluoride observations (see Figure), and can be easily compared from one survey to the next. This Ross Sea bottom layer observed in March, 2014, on P16S continued to warm, with a monotonic increase over the 4 WOCE/GO-SHIP surveys thus far: 1992, 2005, 2011, and now 2014 (see Figure). Deep temperature has increased by 0.1°C since 1992, continuing the trend of enhanced global ocean deep warming in the Southern Ocean documented by Purkey/Johnson (2010) and IPCC AR5 WG1. The abyssal central Ross Sea waters also continued to freshen slightly. The upper ocean in the Ross Sea warmed, became more stratified, had higher nutrients and total carbon, and was less ventilated in terms of apparent oxygen utilization than in 2005. North of the Antarctic Circumpolar Current along 150W, the upper ocean's Subantarctic Mode Water became saltier, also continuing the subtropical trend of the past several decades (Durack/Wijffels 2010), with an apparently stronger incursion of saline subtropical waters that render it more salt and temperature stratified, ruling out a local deep mixed layer formation mechanism, with an increasing tendency towards double diffusive processes. The Antarctic Intermediate Water salinity minimum continued to freshen. The arrival in 2014 of CFC's at the ocean bottom between 32S and 40S indicates that the Antarctic Bottom Water there is about 40-50 years old. CFCs in the ocean's surface layer decreased, in

  20. Pacific Array (Transportable Broadband Ocean Floor Array)

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Hitoshi; Ekstrom, Goran; Evans, Rob; Forsyth, Don; Gaherty, Jim; Kennett, Brian; Montagner, Jean-Paul; Utada, Hisashi

    2016-04-01

    Based on recent developments on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry1, together with advances in the seismic analysis methodology, have enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (azimuthal, and hopefully radial), with deployments of ~15 broadband ocean bottom seismometers (BBOBSs). Having ~15 BBOBSs as an array unit for a 2-year deployment, and repeating such deployments in a leap-frog way or concurrently (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure beneath Pacific ocean, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations is essential: if three countries/institutions participate this endeavor together, Pacific Array may be accomplished within five-or-so years.

  1. Oceanic Situational Awareness Over the Pacific Corridor

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the Pacific Ocean. The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the Pacific Corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  2. Collapsed Thunderstorm, Southwest Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This collapsed thunderstorm was observed over the open ocean (9.0N, 120.0E) between the Philippine island of Mindoro and Borneo, Malaysia. The cleared area in the center is the result of the clouds being driven from there by the sudden rush of katabatic air spreading downward and outward from the dying thunderstorm. Around the edges of the downdrafted air, new though smaller storms are developing. The two small coral atolls are the Tubbataha Reefs.

  3. Salinity fronts in the tropical Pacific Ocean

    PubMed Central

    Kao, Hsun-Ying; Lagerloef, Gary S E

    2015-01-01

    This study delineates the salinity fronts (SF) across the tropical Pacific, and describes their variability and regional dynamical significance using Aquarius satellite observations. From the monthly maps of the SF, we find that the SF in the tropical Pacific are (1) usually observed around the boundaries of the fresh pool under the intertropical convergence zone (ITCZ), (2) stronger in boreal autumn than in other seasons, and (3) usually stronger in the eastern Pacific than in the western Pacific. The relationship between the SF and the precipitation and the surface velocity are also discussed. We further present detailed analysis of the SF in three key tropical Pacific regions. Extending zonally around the ITCZ, where the temperature is nearly homogeneous, we find the strong SF of 1.2 psu from 7° to 11°N to be the main contributor of the horizontal density difference of 0.8 kg/m3. In the eastern Pacific, we observe a southward extension of the SF in the boreal spring that could be driven by both precipitation and horizontal advection. In the western Pacific, the importance of these newly resolved SF associated with the western Pacific warm/fresh pool and El Niño southern oscillations are also discussed in the context of prior literature. The main conclusions of this study are that (a) Aquarius satellite salinity measurements reveal the heretofore unknown proliferation, structure, and variability of surface salinity fronts, and that (b) the fine-scale structures of the SF in the tropical Pacific yield important new information on the regional air-sea interaction and the upper ocean dynamics. PMID:26213676

  4. The seasonal cycle of diabatic heat storage in the Pacific Ocean

    USGS Publications Warehouse

    White, Warren B.; Cayan, D.R.; Niiler, P.P.; Moisan, J.; Lagerloef, G.; Bonjean, F.; Legler, D.

    2005-01-01

    This study quantifies uncertainties in closing the seasonal cycle of diabatic heat storage (DHS) over the Pacific Ocean from 20??S to 60??N through the synthesis of World Ocean Circulation Experiment (WOCE) reanalysis products from 1993 to 1999. These products are DHS from Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from Earth and Space Research (ESR); and air-sea heat fluxes from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). With these products, we compute residual heat budget components by differencing long-term monthly means from the long-term annual mean. This allows the seasonal cycle of the DHS tendency to be modeled. Everywhere latent heat flux residuals dominate sensible heat flux residuals, shortwave heat flux residuals dominate longwave heat flux residuals, and residual Ekman heat advection dominates residual geostrophic heat advection, with residual dissipation significant only in the Kuroshio-Oyashio current extension. The root-mean-square (RMS) of the differences between observed and model residual DHS tendencies (averaged over 10??latitude-by-20??longitude boxes) is <20 W m-2 in the interior ocean and <100 W m-2 in the Kuroshio-Oyashio current extension. This reveals that the residual DHS tendency is driven everywhere by some mix of residual latent heat flux, shortwave heat flux, and Ekman heat advection. Suppressing bias errors in residual air-sea turbulent heat fluxes and Ekman heat advection through minimization of the RMS differences reduces the latter to <10 W m-2 over the interior ocean and <25 W m -2 in the Kuroshio-Oyashio current extension. This reveals air-sea temperature and specific humidity differences from in situ surface marine weather observations to be a principal source of bias error, overestimated over most of ocean but underestimated near the Intertropical Convergence Zone

  5. Scientific Drilling in the Southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Exon, Neville; Gallagher, Stephen; Seton, Maria

    2013-03-01

    Recent geophysical surveys and geological studies in the southwest Pacific Ocean have improved scientists' understanding of geological evolution and helped to crystallize new research goals. In the current phase of the Integrated Ocean Drilling Program (IODP), there have been five regional expeditions: Canterbury Basin Sea Level (Expedition 317), Wilkes Land Glacial History off Antarctica (Expedition 318), Great Barrier Reef Environmental Changes (Expedition 325), South Pacific Gyre Subseafloor Life (Expedition 329), and Louisville Seamount Trail (Expedition 330). Of six current IODP proposals, four are ready to drill. To review the latest research in the region, briefly outline possible future IODP expeditions, and set up working groups to develop compelling new drilling proposals in the global science context, a workshop was organized at the University of Sydney with a diverse group of 80 scientists. As the JOIDES Resolution may be in the region fairly soon, the workshop participants agreed on the urgent need to build strong science proposals.

  6. Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data

    NASA Technical Reports Server (NTRS)

    Kelly, Kathryn A.

    1999-01-01

    The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.

  7. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, December 1992-January 1993)

    SciTech Connect

    Kozyr, A.

    1998-12-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and total alkalinity (TALK) at hydrographic stations, as well as the underway partial pressure of CO{sub 2} (pCO{sub 2}) during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (Section A10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Rio de Janeiro on December 27, 1992, and ended after 36 days at sea in Capetown, South Africa, on January 31, 1993. Measurements made along WOCE Section A10 included pressure, temperature, and salinity [measured by conductivity, temperature, and depth (CTD) sensor], bottle salinity, bottle oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbons (CFC-1 1 , CFC-12), TCO{sub 2}, TALK, and underway pCO{sub 2}. The TCO{sub 2} was measured by using two Single-Operator Multiparameter Metabolic Analyzers (SOMMAs) for extracting CO{sub 2} from seawater samples that were coupled to a coulometer for detection of the extracted CO{sub 2}. The overall precision and accuracy of the analyses was {+-} 1.9 {micro}mol/kg. Samples collected for TALK were measured by potentiometric titration; precision was {+-}2.0 {micro}mol/kg. Underway pCO{sub 2} was measured by infrared photometry with a precision of {+-} 2.0 {micro}atm. The work aboard the R/V Meteor was supported by the U.S. Department of Energy under contract DE-AC02-76CHOO016, and the Bundesministerium fir Forschung und Technologies through grants 03F0545A and MPG 099/1.

  8. Atmosphere-ocean interactions in the Pacific Southern Ocean

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Gersonde, R.; Purcell, C.; Winckler, G.; Tiedemann, R.; Knorr, G.

    2014-12-01

    Atmosphere-ocean interactions play an important role for understanding processes and feedbacks in the Southern Ocean (SO) that play a key role for explaining the variability in atmospheric CO2 concentrations. The most important atmospheric forcing at high and mid-latitudes of the Southern Hemisphere is the westerly wind belt which strongly impacts the strength and extension of the Antarctic Circumpolar Current (ACC), upwelling of deep-water masses, and also controls the back-flow of intermediate waters to the tropics. We combine sea surface temperature, current strength, and mineral dust proxy data from the Pacific SO including Drake Passage with climate model results. Our data show that Drake Passage throughflow was reduced and the ACC generally weakened during the last glacial. The reduced Drake Passage throughflow was accompanied by a pronounced northward extension of the Antarctic cold-water sphere in the Southeast Pacific sector and stronger export of surface and intermediate water into the South Pacific gyre. These oceanographic changes are consistent with reduced westerly winds within the modern maximum wind strength zone over the subantarctic ACC and reduced wind forcing due to extended sea-ice further south. Despite of reduced winds in the core of the westerlies, we observe 3-fold higher dust deposition during glacial periods in the Pacific SO. This observation may be explained by a combination of factors including more expanded arid dust source areas in Australia and a northward extent or enhancement of the westerlies over Southeast Australia during glacials that would plausibly increase the dust uptake and export into the Pacific SO. Such scenario would imply stronger westerlies at the present northernmost margin of the wind belt coeval with weaker core westerlies and reduced ACC strength including Drake Passage throughflow during glacials. These results have strong implications for the global meridional overturning circulation and the interbasin

  9. Ocean noise in the tropical and subtropical Pacific Ocean.

    PubMed

    Sirović, Ana; Wiggins, Sean M; Oleson, Erin M

    2013-10-01

    Ocean ambient noise is well studied in the North Pacific and North Atlantic but is poorly described for most of the worlds' oceans. Calibrated passive acoustic recordings were collected during 2009-2010 at seven locations in the central and western tropical and subtropical Pacific. Monthly and hourly mean power spectra (15-1000 Hz) were calculated in addition to their skewness, kurtosis, and percentile distributions. Overall, ambient noise at these seven sites was 10-20 dB lower than reported recently for most other locations in the North Pacific. At frequencies <100 Hz, spectrum levels were equivalent to those predicted for remote or light shipping. Noise levels in the 40 Hz band were compared to the presence of nearby and distant ships as reported to the World Meteorological Organization Voluntary Observing Ship Scheme (VOS) project. There was a positive, but nonsignificant correlation between distant shipping and low frequency noise (at 40 Hz). There was a seasonal variation in ambient noise at frequencies >200 Hz with higher levels recorded in the winter than in the summer. Several species of baleen whales, humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (B. physalus) whales, also contributed seasonally to ambient noise in characteristic frequency bands. PMID:24116406

  10. Basalts Dredged from the Northeastern Pacific Ocean.

    PubMed

    Engel, C G; Engel, A E

    1963-06-21

    Volcanic rocks dredged from seamounts, fault ridges, and other major geological features of the northeast Pacific Ocean include a wide variety of basalts. Most of these are vesicular, porphyritic types with near analogues in the Hawaiian and other oceanic islands. In addition, aluminous basalts and diabasic theoleiites impoverished in potassium also occur. There is no simple correlation of composition, degree of oxidation, vesiculation, or hydration of these basalts with texture, or depth of dredge site. Most samples appear to have been extruded at much shallower depths than those now pertaining at the dredge site. The distribution of these basalts suggests that the andesite line coincides with or lies on the continent side of the foot of the continental slope. PMID:17802173

  11. Basalts dredged from the northeastern Pacific Ocean

    USGS Publications Warehouse

    Engel, C.G.; Engel, A.E.J.

    1963-01-01

    Volcanic rocks dredged from seamounts, fault ridges, and other major geological features of the northeast Pacific Ocean include a wide variety of basalts. Most of these are vesicular, porphyritic types with near analogues in the Hawaiian and other oceanic islands. in addition, aluminous basalts and diabasic tholeiites impoverished in potassium also occur. There is no simple correlation of composition, degree of oxidation, vesiculation, or hydration of these basalts with texture, or depth of dredge site. Most samples appear to have been extruded at much shallower depths than those now pertaining at the dredge site. the distribution of these basalts suggests that the andesite line coincides with or lies on the continent side of the foot of the continental slope.

  12. SUPPORT FOR THE CONFERENCE ''WOCE & BEYOND'' TO BE HELD NOVEMBER 2002

    SciTech Connect

    Nowlin, Worth, D., Jr., Distinguished Professor, Department of Oceanography, Texas A&M University

    2003-02-05

    of Technology ''An Eddy-resolving State Estimate of the Ocean Circulation during the Subduction Experiment Using a North Atlantic Regional Model (ECCO)'' Mr Hiroki Uehara, Tohoku University ''The role of Mesoscale Eddies on Formation and Transport of the North Pacific Subtropical Mode Water Demonstrated with Argo Floats'' Mr Josh Willis, Scripps Institution of Oceanography ''Combining Altimetric Height with Broadside Profile Data: A Technique for Estimating Subsurface Variability''

  13. Flexure and rheology of Pacific oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Hunter, Johnny; Watts, Tony

    2016-04-01

    The idea of a rigid lithosphere that supports loads through flexural isostasy was first postulated in the late 19th century. Since then, there has been much effort to investigate the spatial and temporal variation of the lithosphere's flexural rigidity, and to understand how these variations are linked to its rheology. We have used flexural modelling to first re-assess the variation in the rigidity of oceanic lithosphere with its age at the time of loading, and then to constrain mantle rheology by testing the predictions of laboratory-derived flow laws. A broken elastic plate model was used to model trench-normal, ensemble-averaged profiles of satellite-derived gravity at the trench-outer rise system of circum-Pacific subduction zones, where an inverse procedure was used to find the best-fit Te and loading conditions. The results show a first-order increase in Te with plate age, which is best fit by the depth to the 400 ± 35°C plate-cooling isotherm. Fits to the observed gravity are significantly improved by an elastic plate that weakens landward of the outer rise, which suggests that bending-induced plate weakening is a ubiquitous feature of circum-Pacific subduction zones. Two methods were used to constrain mantle rheology. In the first, the Te derived by modelling flexural observations was compared to the Te predicted by laboratory-derived yield strength envelopes. In the second, flexural observations were modelled using elastic-plastic plates with laboratory-derived, depth-dependent yield strength. The results show that flow laws for low-temperature plasticity of dry olivine provide a good fit to the observations at circum-Pacific subduction zones, but are much too strong to fit observations of flexure in the Hawaiian Islands region. We suggest that this discrepancy can be explained by differences in the timescale of loading combined with moderate thermal rejuvenation of the Hawaiian lithosphere.

  14. 33 CFR 334.1390 - Pacific Ocean off the Pacific Missile Range Facility at Barking Sands, Island of Kauai, Hawaii...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean off the Pacific... AND RESTRICTED AREA REGULATIONS § 334.1390 Pacific Ocean off the Pacific Missile Range Facility at... Pacific Missile Range Facility range boats, beach markings including beach signs along the north and...

  15. INTELSAT 4. [to be positioned over equator of Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A news release on the launching of Intelsat 4 commercial communication satellite is presented. This satellite will be positioned on the equator over the Pacific Ocean. The Atlas-Centaur launch vehicle is considered, along with the launch windows.

  16. Determination of Carbon Dioxide, Hydrograohic, and Chemical Parameters During the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 3 May - 4 July, 1996)

    SciTech Connect

    Kozyr, Alex

    2006-03-31

    This report discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and partial pressure of CO2 (pCO2) at hydrographic stations during the cruise of research vessel (R/V) Nathaniel B. Palmer in the Southern Indian Ocean on the S04I Section as a part of the Joint Global Ocean Flux Study (JGOFS)/World Ocean Circulation Experiment (WOCE). The carbon-related measurements were sponsored by the U.S. Department of Energy (DOE). The expedition started in Cape Town, South Africa, on May 3, 1996, and ended in Hobart, Australia, on July 4, 1996. Instructions for accessing the data are provided. The TCO2 was measured in discrete water samples using the Lamont-Doherty Earth Observatory (LDEO) coulomteric system with an overall precision of ±1.7 μmol/kg. TALK was determined by potentiometric titration with an overall precision of ±1.7 μmol/kg. During the S04I cruise pCO2 was also measured using the LDEO equilibrator-gas chromatograph system with a precision of 0.5% (including the station-to-station reproducibility) at a constant temperature of 4.0ºC. The R/V Nathaniel B. Palmer S04I data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of the oceanographic data files and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  17. 33 CFR 334.1340 - Pacific Ocean, Hawaii; danger zones.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, Hawaii; danger zones. 334.1340 Section 334.1340 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1340 Pacific...

  18. 33 CFR 334.1340 - Pacific Ocean, Hawaii; danger zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, Hawaii; danger zones. 334.1340 Section 334.1340 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1340 Pacific...

  19. 33 CFR 334.1340 - Pacific Ocean, Hawaii; danger zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, Hawaii; danger zones. 334.1340 Section 334.1340 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1340 Pacific...

  20. 33 CFR 334.1340 - Pacific Ocean, Hawaii; danger zones.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, Hawaii; danger zones. 334.1340 Section 334.1340 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1340 Pacific...

  1. 33 CFR 334.1340 - Pacific Ocean, Hawaii; danger zones.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, Hawaii; danger zones. 334.1340 Section 334.1340 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1340 Pacific...

  2. Dynamic compensation in the central Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Hinojosa, Juan Homero; Marsh, Bruce D.

    1988-01-01

    The intermediate-wavelength geoid (lambda similar to 2000 km) and sea-floor topography fields in the central Pacific Ocean were studied in terms of static and dynamic compensation models. Topographic features on the sea-floor with lambda less than 1000 km were found to be compensated both regionally, by the elastic strength of the lithosphere, and locally, by displacing mantle material to reach isostatic adjustment. The larger-scale sea-floor topography and the corresponding geoid anomalies with lambda similar to 2000 km cannot be explained by either local or regional compensation. The topography and the resulting geoid anomaly at this wavelength were modeled by considering the dynamic effects arising from viscous stresses in a layer of fluid with a highly temperature-dependent viscosity for the cases of: (1) surface cooling, and (2) basal heating. In this model, the mechanical properties of the elastic part of the lithosphere were taken into account by considering an activation energy of about 520 kJ/mol in the Arrhenius law for the viscosity. Numerical predictions of the topography, total geoid anomaly, and admittance were obtained, and the results show that the thermal perturbation in the layer, which accounts for the mass deficit, must be located close to the surface to compensate the gravitational effect of the surface deformation. For the case of basal heating, the temperature dependence of viscosity results in a separation of the upper, quasi-rigid lid from the lower mobile fluid, hence inhibiting the development of a compensating thermal perturbation at shallow depths. The results clearly rule out small-scale, upper-mantle convection as the source of these anomalies. Instead, the geophysical observables can be well explained by a shallow, transient thermal perturbation.

  3. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, March 29 - May 12, 1994)

    SciTech Connect

    Kozyr, A.

    2002-05-09

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and the fugacity of CO{sub 2} (fCO{sub 2}) at hydrographic stations during the R/V Meteor oceanographic cruise 28/1 in the South Atlantic Ocean (Section A8). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Recife, Brazil, on March 29, 1994, and ended after 35 days at sea in Walvis Bay, Namibia, on May 12, 1994. Instructions for accessing the data are provided. TCO{sub 2} was measured using two single-operator multiparameter metabolic analyzers (SOMMA) coupled to a coulometer for extracting and detecting CO{sub 2} from seawater samples. The overall precision and accuracy of the analyses was {+-}1.17 {micro}mol/kg. For the second carbonate system parameter, the fCO{sub 2} was measured in discrete samples by equilibrating a known volume of liquid phase (seawater) with a known volume of a gas phase containing a known mixture of CO{sub 2} in gaseous nitrogen (N{sub 2}). After equilibration, the gas phase CO{sub 2} concentration was determined by flame ionization detection following the catalytic conversion of CO{sub 2} to methane (CH{sub 4}). The precision of these measurements was less than or equal to 1.0%. The R/V Meteor Cruise 28/1 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 90 data retrieval routine files, a readme file, and this printed documentation that describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  4. Carbon dioxide, hydrographic, and chemical data obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, December 1992--January 1993)

    SciTech Connect

    Johnson, K.M.; Wallace, D.W.R.; Schneider, B.; Mintrop, L.

    1997-04-01

    This documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}), total alkalinity at Hydrographic stations as well as the underway partial pressure of CO{sub 2} (pCO{sub 2}) during the R/V Meteor Cruise M22/5 in the South Atlantic Ocean (Section A10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Rio de Janeiro on 27 December 1992, and ended after 36 days at sea in Capetown, South Africa on 31 January 1993. Instructions for accessing the data are provided. TCO{sub 2} was measured using tow automated sample processors for extracting CO{sub 2} from seawater samples which were coupled to a Coulometer for detection of the extracted CO{sub 2}. The overall precision and accuracy of the analyses was {+-} 1.9 {micro}mol/kg. Samples collected for total alkalinity were measured by potentiometric titration; precision was {+-} 2.0 {micro}mol/kg. Underway pCO{sub 2} was measured by Infra Red (IR) Photometry; precision was {+-} 2.0 {micro}atm. From these cruises the large-scale three-dimensional distribution of temperature, salinity, and chemical constituents, including the carbonate system parameters will be mapped. Knowledge of these parameters and their initial conditions will allow determination of heat and water transports as well as carbon transport. An understanding of these transports will contribute to the understanding of processes which are relevant for climate change. This section in the South Atlantic subtropical Gyre is especially relevant for CO{sub 2} transport because it crosses both the Brazil and the Benguela Boundary Currents.

  5. Abstracting the Pacific Ocean's Impact on North Atlantic Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Faghmous, J.; Le, M.; Liess, S.; Mesquita, M.; Kumar, V.

    2012-12-01

    The warming anomalies of sea surface temperatures (SSTs) along the near- equatorial Pacific Ocean (ENSO) have well documented global long-range weather teleconnections from rainfall in southern India to mudslides in the western United States. In this work, we focus on ENSO's teleconnections with North Atlantic tropical cyclone (TC) activity. Traditionally, ENSO's impact on Atlantic TCs has been abstracted by monitoring the warming of static regions along the equatorial Pacific Ocean. We propose that the spatial distribution of Pacific Ocean warming might provide better predictive insights into ENSO-Atlantic TC impact than warming anomalies alone. We present a distance-based ENSO index (S-ENSO for spatial ENSO) that tracks the location of the maximum near-tropical Pacific warming anomaly instead the absolute warming of a static region. Our spatial ENSO index correlates better with seasonal TC activity than standard ENSO indices, especially with increased lead times.

  6. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures.

    PubMed

    Mei, Wei; Xie, Shang-Ping; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2015-05-01

    Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100. PMID:26601179

  7. Northwestern Pacific Typhoon Intensity Controlled by Changes in Ocean Temperatures

    NASA Astrophysics Data System (ADS)

    Mei, W.; Xie, S. P.; Primeau, F.; McWilliams, J. C.; Pasquero, C.

    2015-12-01

    Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate (i.e., RCP 4.5) climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100.

  8. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures

    PubMed Central

    Mei, Wei; Xie, Shang-Ping; Primeau, François; McWilliams, James C.; Pasquero, Claudia

    2015-01-01

    Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100. PMID:26601179

  9. Climate Variability and Phytoplankton in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (p<0.01) with the Multivariate El Nino Southern Oscillation Index (MEI). In the North Central Pacific, MEI and chlorophyll were significantly (p<0.01) correlated along with two of the phytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Nina events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  10. An oceanic mechanism for decadal variability in the North Pacific

    NASA Astrophysics Data System (ADS)

    Dawson, Andrew; Stevens, David; Matthews, Adrian

    2013-04-01

    Many studies have noted decadal scale sea surface temperature (SST) variability in the North Pacific Ocean. The spatial SST pattern has a cold anomaly in the central North Pacific that extends to the Pacific western boundary and resembles a broader and weaker El Nino signal in the tropics. This pattern of variability is often referred to as the Pacific Decadal Oscillation (PDO). Despite extensive research, the nature of the apparent oscillation between warm and cold SST anomalies in the central North Pacific is still surrounded by much uncertainty. A generally agreed upon point is that decadal-scale SST variability appears to be somehow linked to El Nino. However, the mechanism by which such variability is generated, be it an independent dynamical process or a stochastic reddening of other climate signals, is not well understood. Decadal variability in the North Pacific has impacts both locally and remotely. Temperature changes in the North Pacific can have a significant effect on the local ecosystem. Remote effects of the PDO include changes to the surface climate (e.g., temperature and precipitation) in Australia, South and North America, the Russian Far East, much of eastern Asia, and the maritime continent. Improved understanding of decadal variability in the North Pacific could lead to a better understanding of climate variability in these remote regions. Here we use a state-of-the-art high-resolution coupled climate model, HiGEM, to show that anomalous ocean transport in the North Pacific can largely account for the decadal-scale SST variability. We also demonstrate that it is likely that the same mechanism occurs in the real ocean, and therefore that internal ocean dynamics play a key role in regulating decadal-scale variability in the North Pacific.

  11. Modelling the distribution of plutonium in the Pacific Ocean.

    PubMed

    Nakano, Masanao; Povinec, Pavel P

    2003-01-01

    An Oceanic General Circulation Model (OGCM) including a plutonium scavenging model as well as an advection-diffusion model has been developed for modelling the distribution of plutonium in the Pacific Ocean. Calculated 239, 240Pu water profile concentrations and 239, 240Pu inventories in water and sediment of the Pacific Ocean have showed a reasonable agreement with the experimental results. The presence of local fallout plutonium in central North Pacific waters has been confirmed. The observed 240Pu/239Pu mass ratios confirm that plutonium originating from local fallout from nuclear weapons tests carried out at Bikini and Enewetak Atolls is more rapidly removed from surface waters to deeper waters than plutonium originating from global fallout. The developed OGCM can be used for modelling the dispersion of other non-conservative tracers in the ocean as well. PMID:12860091

  12. Persistence of deeply sourced iron in the Pacific Ocean.

    PubMed

    Horner, Tristan J; Williams, Helen M; Hein, James R; Saito, Mak A; Burton, Kevin W; Halliday, Alex N; Nielsen, Sune G

    2015-02-01

    Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe-Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface. PMID:25605900

  13. Persistence of deeply sourced iron in the Pacific Ocean

    PubMed Central

    Horner, Tristan J.; Williams, Helen M.; Hein, James R.; Saito, Mak A.; Burton, Kevin W.; Halliday, Alex N.; Nielsen, Sune G.

    2015-01-01

    Biological carbon fixation is limited by the supply of Fe in vast regions of the global ocean. Dissolved Fe in seawater is primarily sourced from continental mineral dust, submarine hydrothermalism, and sediment dissolution along continental margins. However, the relative contributions of these three sources to the Fe budget of the open ocean remains contentious. By exploiting the Fe stable isotopic fingerprints of these sources, it is possible to trace distinct Fe pools through marine environments, and through time using sedimentary records. We present a reconstruction of deep-sea Fe isotopic compositions from a Pacific Fe−Mn crust spanning the past 76 My. We find that there have been large and systematic changes in the Fe isotopic composition of seawater over the Cenozoic that reflect the influence of several, distinct Fe sources to the central Pacific Ocean. Given that deeply sourced Fe from hydrothermalism and marginal sediment dissolution exhibit the largest Fe isotopic variations in modern oceanic settings, the record requires that these deep Fe sources have exerted a major control over the Fe inventory of the Pacific for the past 76 My. The persistence of deeply sourced Fe in the Pacific Ocean illustrates that multiple sources contribute to the total Fe budget of the ocean and highlights the importance of oceanic circulation in determining if deeply sourced Fe is ever ventilated at the surface. PMID:25605900

  14. Bottom water warming in the North Pacific Ocean.

    PubMed

    Fukasawa, Masao; Freeland, Howard; Perkin, Ron; Watanabe, Tomowo; Uchida, Hiroshi; Nishina, Ayako

    2004-02-26

    Observations of changes in the properties of ocean waters have been restricted to surface or intermediate-depth waters, because the detection of change in bottom water is extremely difficult owing to the small magnitude of the expected signals. Nevertheless, temporal changes in the properties of such deep waters across an ocean basin are of particular interest, as they can be used to constrain the transport of water at the bottom of the ocean and to detect changes in the global thermohaline circulation. Here we present a comparison of a trans-Pacific survey completed in 1985 (refs 4, 5) and its repetition in 1999 (ref. 6). We find that the deepest waters of the North Pacific Ocean have warmed significantly across the entire width of the ocean basin. Our observations imply that changes in water properties are now detectable in water masses that have long been insulated from heat exchange with the atmosphere. PMID:14985757

  15. Air-sea interaction in the tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.

    1972-01-01

    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  16. Relative motions between oceanic plates of the Pacific Basin

    NASA Astrophysics Data System (ADS)

    Engebretson, David C.; Cox, Allan; Gordon, Richard G.

    1984-11-01

    Appendix tables are available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C., 20009. Document B84-012; $2.50. Payment must accompany order. Relative motion poles describing the displacement histories between the Pacific plate and once adjacent oceanic plates (Farallon, Kula, Izanagi I, Izanagi II, and Phoenix) were derived for the late Mesozoic and Cenozoic eras. Because fracture zone and magnetic anomaly data are generally available from the Pacific plate but not from adjacent plates, a new method of analysis for onesided data was required. This analysis produced stage poles and rates of relative plate motion and estimates of their confidence regions. The following are the main conclusions drawn from our analysis: (1) For time intervals of the order of 107 years, termed stages, relative motion poles for plate pairs remained nearly fixed. Between stages, shifts in poles were commonly both large and abrupt. Within stages, rates of plate motion were commonly observed to change markedly, indicating that plates changed speed more frequently than they changed direction. (2) The relative motions of all of the plates analyzed changed at about chron M11 (135 Ma), chron 34 (85 Ma), and chron 25 (56 Ma). (3) During the Early Cretaceous there were five oceanic plates in the Pacific basin rather than the four recognized by previous workers. (4) To determine the number of Farallon plates that existed to the east of the Pacific plate during the time interval from chron 34 (85 Ma) to chron 25 (56 Ma), fracture zones and magnetic anomalies that record Pacific-Farallon spreading from the northern, central, and southern Pacific plate were analyzed separately and collectively. The analysis shows that a single Pacific-Farallon relative motion pole and a single rate are consistent with all of the data. (5) Spreading rates along the Pacific-Kula ridge decreased markedly between chrons 32b and 25 (72-56 Ma), probably

  17. Decadal atmosphere-ocean variations in the Pacific

    SciTech Connect

    Trenberth, K.E.; Hurrell, J.W.

    1994-03-01

    Considerable evidence has emerged of a substantial decade-long change in the north Pacific atmosphere and ocean lasting from about 1976 to 1988. Observed significant changes in the atmospheric circulation throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific. Consequently, there were increases in temperatures and sea surface temperatures (SSTs) along the west coast of North America and Alaska but decreases in SSTs over the central north Pacific, as well as changes in coastal rainfall and stream flow, and decreases in sea ice in the Bering Sea. In addition to the changes in the physical environment, the deeper Aleutian low increased the nutrient supply as seen through increases in total chlorophyll in the water column, phytoplankton and zooplankton. These changes changed the migration patterns and increased the stock of many fish species. The dominant atmosphere-ocean relation in the north Pacific is one where atmospheric changes lead SSTs by one to two months. However, strong ties are revealed with events in the tropical Pacific, with changes in tropical Pacific SSTs leading SSTs in the north Pacific by three months. Changes in the storm tracks in the north Pacific help to reinforce and maintain the anomalous circulation in the upper troposphere. A hypothesis is put forward outlining the tropical and extratropical relationships which stresses the role of tropical forcing but with important feedbacks in the extratropics that serve to emphasize the decadal relative to interannual time scales. The Pacific decadal timescale variations are linked to recent changes in the frequency and intensity of El Nino versus La Nina events but whether climate change associated with {open_quotes}global warming{close_quotes} is a factor is an open question. 79 refs., 20 figs., 1 tab.

  18. The Southwest Pacific Ocean circulation and climate experiment (SPICE)

    NASA Astrophysics Data System (ADS)

    Ganachaud, A.; Cravatte, S.; Melet, A.; Schiller, A.; Holbrook, N. J.; Sloyan, B. M.; Widlansky, M. J.; Bowen, M.; Verron, J.; Wiles, P.; Ridgway, K.; Sutton, P.; Sprintall, J.; Steinberg, C.; Brassington, G.; Cai, W.; Davis, R.; Gasparin, F.; Gourdeau, L.; Hasegawa, T.; Kessler, W.; Maes, C.; Takahashi, K.; Richards, K. J.; Send, U.

    2014-11-01

    The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Niño-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions.

  19. Midlatitude atmosphere-ocean interaction during El Nino. Part I. The north Pacific ocean

    SciTech Connect

    Alexander, M.A. )

    1992-09-01

    Atmosphere-ocean modeling experiments are used to investigate the formation of sea surface temperature (SST) anomalies in the North Pacific Ocean during fall and winter of the El Nino year. Experiments in which the NCAR Community Climate Model (CCM) surface fields are used to force a mixed-layer ocean model in the North Pacific (no air-sea feedback) are compared to simulations in which the CCM and North Pacific Ocean model are coupled. Anomalies in the atmosphere and the North Pacific Ocean during El Nino are obtained from the difference between simulations with and without prescribed warm SST anomalies in the tropical Pacific. In both the forced and coupled experiments, the anomaly pattern resembles a composite of the actual SST anomaly field during El Nino: warm SSTs develop along the coast of North America and cold SSTs form in the central Pacific. In the coupled simulations, air-sea interaction results in a 25% to 50% reduction in the magnitude of the SST and mixed-layer depth anomalies, resulting in more realistic SST fields. Coupling also decreases the SST anomaly variance; as a result, the anomaly centers remain statistically significant even though the magnitude of the anomalies is reduced. Three additional sensitivity studies indicate that air-sea feedback and entrainment act to damp SST anomalies while Ekman pumping has a negligible effect on mixed-layer depth and SST anomalies in midatitudes.

  20. Characterization of Pacific Ocean Surface Temperatures Using Eulerian Motion Magnification

    NASA Astrophysics Data System (ADS)

    Rojo Hernandez, J. D.; Mesa, O. J.

    2014-12-01

    The Eulerian Motion Magnification Method was used in order to identify the spatial-temporal patterns in the variability of sea-surface temperatures (SST) in the Pacific Ocean. This method, developed by a research team at MIT, consists in jointly applying spatial and temporal filters to a sequence of images with a known playback speed, and then amplifying the intensity of a signal associated with a certain frequency, so that periodic phenomena can be easily displayed. Magnifying the SST in the frequency band of 2-7 years - which corresponds to ENSO- various processes can be clearly observed, such as the dynamics of temperature variability in the Pacific Ocean associated with the occurrence of warm and cool episodes of the differentiated ocean warming type (Central-Pacific El Nino and Eastern-Pacific El Nino), the possible interaction between tropical and extra-tropical waves that may enhance or diminish the possible ENSO events, and it displays that the ocean heating and/or cooling patterns can be represented as Kelvin and Rosby wave propagation at inter-annual scale.

  1. 78 FR 33240 - International Fisheries; Pacific Tuna Fisheries; Fishing Restrictions in the Eastern Pacific Ocean

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ...NMFS is issuing regulations under the Tuna Conventions Act of 1950 to implement Resolution C-12-09 of the Inter-American Tropical Tuna Commission (IATTC) by establishing limits on commercial retention of Pacific bluefin tuna by U.S. fishing vessels operating in the Eastern Pacific Ocean (EPO) in 2013. This action is necessary for the United States to satisfy its obligations as a member of the......

  2. Anatomizing the Ocean's role in maintaining the pacific decadal variability

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Yuh; Chang, Cheng-Wei

    2014-05-01

    The role of ocean dynamics in maintaining the Pacific Decadal Variability (PDV) was investigated based on simulation results from the Parallel Ocean Program (POP) ocean general circulation model developed at the Los Alamos National Laboratory (LANL). A long-term control simulation of the LANL-POP model forced by a reconstructed coupled wind stress field over the period 1949-2001 showed that the ocean model not only simulates a reasonable climatology, but also produces a climate variability pattern very similar to observed PDV. In the Equatorial Pacific (EP) region, the decadal warming is confined in the thin surface layer. Beneath the surface, a strong compensating cooling, accompanied by a basin-wide-scale overturning circulation in opposition to the mean flow, occurs in the thermocline layer. In the North Pacific (NP) region, the decadal variability nonetheless exhibits a relatively monotonous pattern, characterized by the dominance of anomalous cooling and eastward flows. A term balance analysis of the perturbation heat budget equation was conducted to highlight the ocean's role in maintaining the PDV-like variability over the EP and NP regions. The analyses showed that strong oceanic adjustment must occur in the equatorial thermocline in association with the anomalous overturning circulation in order to maintain the PDV-like variability, including a flattening of the equatorial thermocline slpoe and an enhancement of the upper ocean's stratification (stability), as the climate shifts from a colder regime toward a warmer one. On the other hand, the oceanic response in the extratropical region seems to be confined to the surface layer, without much participation from the subsurface oceanic dynamics.

  3. 137Cs in the western South Pacific Ocean.

    PubMed

    Yamada, Masatoshi; Wang, Zhong-Liang

    2007-09-01

    The 137Cs activities were determined for seawater samples from the East Caroline, Coral Sea, New Hebrides, South Fiji and Tasman Sea (two stations) Basins of the western South Pacific Ocean by gamma spectrometry using a low background Ge detector. The 137Cs activities ranged from 1.4 to 2.3 Bq m(-3) over the depth interval 0-250 m and decreased exponentially from the subsurface to 1000 m depth. The distribution profiles of 137Cs activity at these six western South Pacific Ocean stations did not differ from each other significantly. There was a remarkable difference for the vertical profiles of 137Cs activity between the East Caroline Basin station in this study and the GEOSECS (Geochemical Ocean Sections Study) station at the same latitude in the Equatorial Pacific Ocean; the 137Cs inventory over the depth interval 100-1000 m increased from 400+/-30 Bq m(-2) to 560+/-30 Bq m(-2) during the period from 1973 to 1992. The total 137Cs inventories in the western South Pacific Ocean ranged from 850+/-70 Bq m(-2) in the Coral Sea Basin to 1270+/-90 Bq m(-2) in the South Fiji Basin. Higher 137Cs inventories were observed at middle latitude stations in the subtropical gyre than at low latitude stations. The 137Cs inventories were 1.9-4.5 times (2.9+/-0.7 on average) and 1.7-4.3 times (3.1+/-0.7 on average) higher than that of the expected deposition density of atmospheric global fallout at the same latitude and that of the estimated 137Cs deposition density in 10 degrees latitude by 10 degrees longitude grid data obtained by Aoyama et al. [Aoyama M, Hirose K, Igarashi Y. Re-construction and updating our understanding on the global weapons tests 137Cs fallout. J Environ Monit 2006;8:431-438], respectively. The possible processes for higher 137Cs inventories in the western South Pacific Ocean than that of the expected deposition density of atmospheric global fallout may be attributable to the inter-hemisphere dispersion of the atmospheric nuclear weapons testing 137Cs from

  4. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean off Point Loma....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending southerly from Point Loma, California, described as...

  5. 33 CFR 334.980 - Pacific Ocean; around San Nicolas Island, Calif., naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean; around San Nicolas....980 Pacific Ocean; around San Nicolas Island, Calif., naval restricted area. (a) The area. The waters of the Pacific Ocean around San Nicolas Island, Calif., extending about 3 miles seaward from...

  6. 33 CFR 334.980 - Pacific Ocean, around San Nicholas Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, around San... REGULATIONS § 334.980 Pacific Ocean, around San Nicholas Island, Calif.; naval restricted area. (a) The area—(1) Perimeter (restricted). The waters of the Pacific Ocean around San Nicholas Island,...

  7. 33 CFR 334.980 - Pacific Ocean; around San Nicolas Island, Calif., naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean; around San Nicolas....980 Pacific Ocean; around San Nicolas Island, Calif., naval restricted area. (a) The area. The waters of the Pacific Ocean around San Nicolas Island, Calif., extending about 3 miles seaward from...

  8. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean off Point Loma....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending southerly from Point Loma, California, described as...

  9. 33 CFR 334.950 - Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at San Clemente... REGULATIONS § 334.950 Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas. (a) The danger zones. (1) The waters of the Pacific Ocean within an area beginning at China Point...

  10. 33 CFR 334.950 - Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at San Clemente... REGULATIONS § 334.950 Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas. (a) The danger zones. (1) The waters of the Pacific Ocean within an area beginning at China Point...

  11. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean off Point Loma....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending southerly from Point Loma, California, described as...

  12. 33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, at Barbers Point... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area. That portion of the Pacific Ocean lying offshore of Oahu between Ewa Beach and Barbers Point,...

  13. 33 CFR 334.950 - Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at San Clemente... REGULATIONS § 334.950 Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas. (a) The danger zones. (1) The waters of the Pacific Ocean within an area beginning at China Point...

  14. 33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, at Barbers Point... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area. That portion of the Pacific Ocean lying offshore of Oahu between Ewa Beach and Barbers Point,...

  15. 33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, at Barbers Point... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area. That portion of the Pacific Ocean lying offshore of Oahu between Ewa Beach and Barbers Point,...

  16. 33 CFR 334.980 - Pacific Ocean; around San Nicolas Island, Calif., naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean; around San Nicolas....980 Pacific Ocean; around San Nicolas Island, Calif., naval restricted area. (a) The area. The waters of the Pacific Ocean around San Nicolas Island, Calif., extending about 3 miles seaward from...

  17. 33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, at Barbers Point... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area. That portion of the Pacific Ocean lying offshore of Oahu between Ewa Beach and Barbers Point,...

  18. 33 CFR 334.1400 - Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, at Barbers Point... REGULATIONS § 334.1400 Pacific Ocean, at Barbers Point, Island of Oahu, Hawaii; restricted area. (a) The area. That portion of the Pacific Ocean lying offshore of Oahu between Ewa Beach and Barbers Point,...

  19. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean off Point Loma....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending southerly from Point Loma, California, described as...

  20. 33 CFR 334.980 - Pacific Ocean; around San Nicolas Island, Calif., naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean; around San Nicolas....980 Pacific Ocean; around San Nicolas Island, Calif., naval restricted area. (a) The area. The waters of the Pacific Ocean around San Nicolas Island, Calif., extending about 3 miles seaward from...

  1. 33 CFR 334.890 - Pacific Ocean off Point Loma, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean off Point Loma....890 Pacific Ocean off Point Loma, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending southerly from Point Loma, California, described as...

  2. 33 CFR 334.950 - Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at San Clemente... REGULATIONS § 334.950 Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas. (a) The danger zones. (1) The waters of the Pacific Ocean within an area beginning at China Point...

  3. 33 CFR 334.950 - Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at San Clemente... REGULATIONS § 334.950 Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas. (a) The danger zones. (1) The waters of the Pacific Ocean within an area beginning at China Point...

  4. 75 FR 53873 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch for Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... Economic Zone Off Alaska; Pacific Ocean Perch for Vessels Participating in the Rockfish Entry Level Fishery...: NMFS is prohibiting directed fishing for Pacific ocean perch for vessels participating in the rockfish... to prevent exceeding the 2010 total allowable catch (TAC) of Pacific ocean perch allocated to...

  5. Apollo 17 command module splashdown in South Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 17 command module, with astronauts Eugene A. Cernan, Ronald E. Evans and Harrison H. Schmitt aboard, nears splashdown in the South Pacific Ocean to conclude the final lunar landing mission in the Apollo program. This overhead view was taken from a recovery aircraft seconds before the spacecraft hit the water. The splashdown occurred at 304:31:59 ground elapsed time, 1:24:59 p.m. December 19, 1972 about 350 nautical miles southeast of the Samoan Islands.

  6. 78 FR 39198 - Pacific Ocean Off the Pacific Missile Range Facility at Barking Sands, Island of Kauai, Hawaii...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ...The Corps of Engineers is proposing to amend an existing danger zone in waters of the Pacific Ocean off the Pacific Missile Range Facility at Barking Sands, Island of Kauai, Hawaii. The U.S. Navy conducts missile defense activities, test missile launches, and training activities at the Pacific Missile Range Facility. The proposed amendment is necessary to protect the public from hazards......

  7. Heat and salt transport throughout the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.

  8. Transit time distributions and oxygen utilization rates from chlorofluorocarbons and sulfur hexafluoride in the Southeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sonnerup, Rolf E.; Mecking, Sabine; Bullister, John L.; Warner, Mark J.

    2015-05-01

    Chlorofluorocarbons-11 (CFC-11), CFC-12, and sulfur hexafluoride (SF6) were measured during the December 2007 to February 2008 CLIVAR/Repeat Hydrography (RH) P18 section along ˜103°W in the Southeast Pacific Ocean. Transit-time distributions (TTDs) of 1-D transport that matched all three tracers were consistent with high Peclet number flow ventilating the subtropical mode water and the main subtropical thermocline (30°S-42°S, 200-800 m). In the subtropics, TTDs with predominantly advective transport predicted decadal increases in CFC-12 and CFC-11 consistent with those observed comparing 1994 WOCE with 2007/2008 CLIVAR/RH data, indicating steady ventilation in this region, and consistent with the near-zero changes observed in dissolved oxygen. The mean transport timescales from the tracer-tuned TTDs were used to estimate apparent oxygen utilization rates (OURs) on the order of 8-20 μmol kg-1 yr-1 at ˜200 m depth, attenuating to ˜2 μmol kg-1 yr-1 typically by 500 m depth in this region. Depth-integrated over the thermocline, these OURs implied carbon export rates from the overlying sea surface on the order of ˜1.8 moles C m-2 yr-1 from 30°S to 45°S, 2-2.5 moles C m-2 yr-1 from 45°S to 52°S, and 2.5-3.5 moles C m-2 yr-1 from 52°S to 60°S.

  9. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the Nine R/V Korr Cruises Comprising the Indian Ocean CO2Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; December 1, 1994-January 19, 1996)

    SciTech Connect

    Kozyr, A.V.

    2003-09-15

    This document describes the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and total alkalinity (TALK) at hydrographic stations taken during the R/V Knorr Indian Ocean cruises (Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2) in 1994-1996. The measurements were conducted as part of the World Ocean Circulation Experiment (WOCE). The expedition began in Fremantle, Australia, on December 1, 1994, and ended in Mombasa, Kenya, on January 22, 1996. During the nine cruises, 12 WOCE sections were occupied. Total carbon dioxide was extracted from water samples and measured using single-operator multiparameter metabolic analyzers (SOMMAs) coupled to coulometers. The overall precision and accuracy of the analyses was {+-} 1.20 {micro}mol/kg. The second carbonate system parameter, TALK, was determined by potentiometric titration. The precision of the measurements determined from 962 analyses of certified reference material was {+-} 4.2 {micro}mol/kg (REFERENCE). This work was supported by grants from the National Science Foundation, the U. S. Department of Energy, and the National Oceanographic and Atmospheric Administration. The R/V Knorr Indian Ocean data set is available as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of 18 oceanographic data files, two FORTRAN 77 data retrieval routine files, a readme file, and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data. Instructions for accessing the data are provided.

  10. Warm Ocean Temperatures Blanket the Far-Western Pacific

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These data, taken during a 10-day collection cycle ending March 9, 2001, show that above-normal sea-surface heights and warmer ocean temperatures(indicated by the red and white areas) still blanket the far-western tropical Pacific and much of the north (and south) mid-Pacific. Red areas are about 10centimeters (4 inches) above normal; white areas show the sea-surface height is between 14 and 32 centimeters (6 to 13 inches) above normal.

    This build-up of heat dominating the Western Pacific was first noted by TOPEX/Poseidon oceanographers more than two years ago and has outlasted the El Nino and La Nina events of the past few years. See: http://www.jpl.nasa.gov/elnino/990127.html . This warmth contrasts with the Bering Sea, Gulf of Alaska and tropical Pacific where lower-than-normal sea levels and cool ocean temperatures continue (indicated by blue areas). The blue areas are between 5 and 13centimeters (2 and 5 inches) below normal, whereas the purple areas range from 14 to 18 centimeters (6 to 7 inches) below normal. Actually, the near-equatorial ocean cooled through the fall of 2000 and into mid-winter and continues almost La Nina-like.

    Looking at the entire Pacific basin, the Pacific Decadal Oscillation's warm horseshoe and cool wedge pattern still dominates this sea-level height image. Most recent National Oceanic and Atmospheric Administration (NOAA) sea-surface temperature data also clearly illustrate the persistence of this basin-wide pattern. They are available at http://psbsgi1.nesdis.noaa.gov:8080/PSB/EPS/SST/climo.html

    The U.S.-French TOPEX/Poseidon mission is managed by JPL for NASA's Earth Science Enterprise, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena. For more information on the TOPEX/Poseidon project, see: http://topex-www.jpl.nasa.gov

  11. 33 CFR 334.1140 - Pacific Ocean at San Miguel Island, Calif.; naval danger zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at San Miguel....1140 Pacific Ocean at San Miguel Island, Calif.; naval danger zone. (a) The area. The waters around San... calling the Pacific Missile Test Center (PMTC) on telephone number (805) 982-8280 or 982-8841. (4)...

  12. 33 CFR 334.905 - Pacific Ocean, offshore of Camp Pendleton, California; Fallbrook restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, offshore of Camp... REGULATIONS § 334.905 Pacific Ocean, offshore of Camp Pendleton, California; Fallbrook restricted area. (a) The area. The waters of the Gulf of Santa Catalina, offshore of Camp Pendleton in the Pacific...

  13. 33 CFR 334.1140 - Pacific Ocean at San Miguel Island, Calif.; naval danger zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at San Miguel....1140 Pacific Ocean at San Miguel Island, Calif.; naval danger zone. (a) The area. The waters around San... calling the Pacific Missile Test Center (PMTC) on telephone number (805) 982-8280 or 982-8841. (4)...

  14. 33 CFR 334.905 - Pacific Ocean, offshore of Camp Pendleton, California; Fallbrook restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, offshore of Camp... REGULATIONS § 334.905 Pacific Ocean, offshore of Camp Pendleton, California; Fallbrook restricted area. (a) The area. The waters of the Gulf of Santa Catalina, offshore of Camp Pendleton in the Pacific...

  15. 33 CFR 334.1140 - Pacific Ocean at San Miguel Island, Calif.; naval danger zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at San Miguel....1140 Pacific Ocean at San Miguel Island, Calif.; naval danger zone. (a) The area. The waters around San... calling the Pacific Missile Test Center (PMTC) on telephone number (805) 982-8280 or 982-8841. (4)...

  16. 33 CFR 334.905 - Pacific Ocean, offshore of Camp Pendleton, California; Fallbrook restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, offshore of Camp... REGULATIONS § 334.905 Pacific Ocean, offshore of Camp Pendleton, California; Fallbrook restricted area. (a) The area. The waters of the Gulf of Santa Catalina, offshore of Camp Pendleton in the Pacific...

  17. 33 CFR 334.905 - Pacific Ocean, offshore of Camp Pendleton, California; Fallbrook restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, offshore of Camp... REGULATIONS § 334.905 Pacific Ocean, offshore of Camp Pendleton, California; Fallbrook restricted area. (a) The area. The waters of the Gulf of Santa Catalina, offshore of Camp Pendleton in the Pacific...

  18. 33 CFR 334.905 - Pacific Ocean, offshore of Camp Pendleton, California; Fallbrook restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, offshore of Camp... REGULATIONS § 334.905 Pacific Ocean, offshore of Camp Pendleton, California; Fallbrook restricted area. (a) The area. The waters of the Gulf of Santa Catalina, offshore of Camp Pendleton in the Pacific...

  19. Microbial Life of North Pacific Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Schumann, G.; Koos, R.; Manz, W.; Reitner, J.

    2003-12-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed reactions that influence the geophysical properties of these environments. Drilling into 45-Ma oceanic basaltic crust in a deepwater environment during ODP Leg 200 provided a promising opportunity to explore the abundance, diversity and activity of micro-organisms. The combined use of culture-independent molecular phylogenetic analyses and enrichment culture techniques is an advantageous approach in investigating subsurface microbial ecosystems. Enrichment culture methods allow the evaluation of potential activities and functions. Microbiological investigations revealed few aerobic cultivable, in part hitherto unknown, micro-organisms in deep submarine sediments and basaltic lava flows. 16S rDNA sequencing of isolates from sediment revealed the next relatives to be members of the genera Halomonas, Pseudomonas, and Lactobacillus. Within the Pseudomonadaceae the closest relative is Acinetobacter sp., which was isolated from a deep subsurface environment. The next phylogenetical relatives within the Halomonadaceae are bacteria typically isolated from Soda lakes, which are considered as model of early life conditions. Interestingly, not only sediment bacteria could be obtained in pure culture. Aerobic strains could also be successfully isolated from the massive tholeiitic basalt layer at a depth of 76.16 mbsf (46 m below the sediment/basement contact). These particular isolates are gram-positive with low G+C content of DNA, phylogenetically affiliated to the phylum Firmicutes. The closest neighbors are e.g. a marine Bacillus isolated from the Gulf of Mexico and a low G+C gram-positive bacterium, which belongs to the microbial flora in the deepest sea mud of the Mariana Trench, isolated from a depth of 10,897 m. Based on the similarity values, the isolates represent hitherto undescribed species of the deep

  20. Carbon disulfide in the North Atlantic and Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Xie, Huixiang; Moore, Robert M.

    1999-03-01

    Carbon disulfide (CS2) was determined in surface waters of the North Atlantic and Pacific Oceans. The mean concentrations (and ranges) of CS2 in open ocean waters were 13.4 (7.8-26.1) pM S (picomol sulfur per liter) for the North Atlantic and 14.6 (7.2-27.5) pM S for the Pacific. The concentrations in the coastal waters of the North Atlantic averaged 26.4 pM S and ranged from 17.9 to 40.4 pM S. Warm waters generally contained higher levels of CS2 than did cold waters. All the study areas were found to be supersaturated in CS2 relative to the atmosphere based on calculations from published CS2 mixing ratios in the marine boundary layer and their Henry's law constants. Sea-to-air fluxes of CS2 were estimated using exchange velocities for spot and climatological wind speeds. The global oceanic flux extrapolated from this study is 0.18 Tg CS2 yr-1 and in the range 0.13-0.24 Tg CS2 yr-1. It is suggested that microbial processes, photochemical reactions, and phytoplankton activity are potential sources for oceanic CS2.

  1. Sea surface temperature fronts affect distribution of Pacific saury (Cololabis saira) in the Northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Tseng, Chen-Te; Sun, Chi-Lu; Belkin, Igor M.; Yeh, Su-Zan; Kuo, Chin-Lau; Liu, Don-Chung

    2014-09-01

    Pacific saury (Cololabis saira) is an important fisheries resource and commercial species of Taiwanese deep-sea saury stick-held dip net fishery in the Northwestern Pacific Ocean. In this study, the logbook data of a 3-year (2006-2008) Taiwanese Pacific saury fishery and corresponding satellite-derived MODIS sea surface temperature (SST) data were analyzed to detect SST fronts and examine their influence on the spatio-temporal distribution of Pacific saury. The fronts were identified by the Cayula-Cornillon single-image edge detection algorithm. The results show that low frequency of SST fronts is associated with lower CPUEs during the early fishing season (June-August), while high frequency of SST fronts is associated with higher CPUEs during the peak fishing season. When fishing locations of Pacific saury are close to the SST fronts, higher CPUEs are observed. Results of this study provide a better understanding of how SST fronts influence distribution of Pacific saury and improve the basis of fishing ground forecasting.

  2. A nomenclator of Pacific oceanic island Phyllanthus (Phyllanthaceae), including Glochidion

    PubMed Central

    Wagner, Warren L.; Lorence, David H.

    2011-01-01

    Abstract Recent molecular phylogenetic studies and reevaluation of morphological characters have led to the inclusion of Glochidion within a broader delimitation of Phyllanthus. It is necessary for preparation of the Vascular Flora of the Marquesas Islands to make new combinations for the Marquesan species. We also provide the relevant combinations and listing of all of the currently accepted species of Phyllanthus on Pacific oceanic islands for a total of 69 native species in oceanic Pacific islands. Glochidion tooviianum J. Florenceis here placed into synonymy of Phyllanthus marchionicus (F. Br.) W. L. Wagner & Lorence based on new assessment of recently collected specimens from Nuku Hiva. Glochidion excorticans Fosberg var. calvum Fosberg is placed into synonomy of Phyllanthus ponapense (Hosokawa) W. L. Wagner & Lorenceand Glochidion puberulum Hosokawa and Glochidion excorticans Fosberg are placed in synonymy of Phyllanthus senyavinianus (Glassman)W. L. Wagner & Lorence based on new study of all Micronesian specimens available to us. No infraspecific taxa are recognized within Phyllanthus pacificus of the Marquesas Islands. Species already with valid names in Phyllanthus are also listed for completeness and convenience. Brief distributional comments are given for each species. We propose new names for species for which a new combination is not possible: Phyllanthus florencei W. L. Wagner & Lorence, nom. nov., Phyllanthus mariannensis W.L. Wagner & Lorence, nom. nov., Phyllanthus otobedii W. L. Wagner & Lorence, Phyllanthus raiateaensis W. L. Wagner & Lorence, Phyllanthus st-johnii W. L. Wagner & Lorence, nom. nov., and Phyllanthus vitilevuensis W.L. Wagner & Lorence, nom. nov. We provide information for four additional naturalized species within the region (Phyllanthus amarus, Phyllanthus debilis, Phyllanthus tenellus, and Phyllanthus urinaria). The name Glochidion ramiflorum widely applied to Pacific island populations is here considered to be a species further

  3. Microphysical properties of low clouds over the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Maruyama, Takumi; Hayasaka, Tadahiro

    2012-11-01

    Low clouds are widespread over the North Pacific Ocean during summer. Past ship observations, which were carried out in the western region of the North Pacific Ocean, suggested that low clouds (stratus and fog) are likely to occur when sea surface temperature (SST) is lower than surface air temperature (SAT). In this study, we investigated the SST-SAT relationship and microphysical properties of low clouds for the first step of understanding the mechanism of cloud occurrence, maintenance and disappearance by using MODIS satellite observations, JAMSTEC ship observations and MERRA reanalysis data. We divided the North Pacific into four regions according to meteorological condition and made basic statistical analysis about cloud properties in each region by using monthly mean data for July 2011. The statistical analysis indicates that in the central region of the North Pacific where SST-SAT value is negative and the difference is the largest, cloud effective particle radius (re) is larger than those in other regions. We also used ship observation data and simultaneous satellite observation data to examine the relationship between SST-SAT and cloud microphysical properties in detail. This analysis indicates that re in the positive SST-SAT area is larger than that in the negative SSTSAT area. This feature is opposite to the monthly mean results. It suggests that other factors such as humidity and aerosols as well as SST-SAT have to be taken into account, although the SST-SAT relationship can be one of the important factors determining cloud microphysical properties in the summer North Pacific region.

  4. Mercury in Pacific bluefin tuna (Thunnus orientalis):bioaccumulation and trans-Pacific Ocean migration

    USGS Publications Warehouse

    Colman, John A.; Nogueira, Jacob I.; Pancorbo, Oscar C.; Batdorf, Carol A.; Block, Barbara A.

    2015-01-01

    Pacific bluefin tuna (Thunnus orientalis) have the largest home range of any tuna species and are well known for the capacity to make transoceanic migrations. We report the measurement of mercury (Hg) concentrations in wild Pacific bluefin tuna (PBFT), the first reported with known size-of-fish and capture location. The results indicate juvenile PBFT that are recently arrived in the California Current from the western Pacific Ocean have significantly higher Hg concentrations in white muscle (0.51 ug/g wet mass, wm) than PBFT of longer California Current residency (0.41 ug/g wm). These new arrivals are also higher in Hg concentration than PBFT in farm pens (0.43 ug/g wm) that were captured on arrival in the California Current and raised in pens on locally derived feed. Analysis by direct Hg analyzer and attention to Hg by tissue type and location on the fish allowed precise comparisons of mercury among wild and captive fish populations. Analysis of migration and nearshore residency, determined through extensive archival tagging, bioaccumulation models, trophic investigations, and potential coastal sources of methylmercury, indicates Hg bioaccumulation is likely greater for PBFT juvenile habitats in the western Pacific Ocean (East China Sea, Yellow Sea) than in the eastern Pacific Ocean (California Current). Differential bioaccumulation may be a trophic effect or reflect methylmercury availability, with potential sources for coastal China (large hypoxic continental shelf receiving discharge of three large rivers, and island-arc volcanism) different from those for coastal Baja California (small continental shelf, no large rivers, spreading-center volcanism).

  5. Gravity, Bathymetry and Submarine Volcanism in the Mesozoic Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Kalnins, L. M.

    2007-12-01

    Submarine volcano loading studies suggest that the effective elastic thickness, Te, of oceanic lithosphere increases with age at the time of loading. Therefore, a seamount formed on a ridge crest will be characterised by a lower Te than a similar size feature that formed off-ridge. Compilations of data where both crustal and sample ages are known show that Te is given approximately by the depth to the 450° oceanic isotherm, based on plate cooling models. By comparing observed bathymetry and gravity anomalies to predictions based on simple elastic plate models it is possible to estimate Te and hence the age of oceanic lithosphere at the time of loading at bathymetric features of unknown tectonic setting. Early results based on ~100 features suggested that Hess Rise, Necker ridge, Line Islands, and Manihiki Plateaus formed on-ridge and, hence, that there was a major period of volcanism in the central Pacific ~90- 120 Ma. This 'event' appears to have been accompanied by deep-water volcanism, as shown by the pioneering work of Roger L. Larson in the Nauru Basin. Recently, Watts et al. (2006) used a bathymetric prediction technique to estimate the Te at >9000 seamounts in the Wessel (2001) database. Plots of Te Vs. age at features of known age, however, revealed considerable scatter with many lower values at old ages than expected. Te maps show that these low values form a broad swath from East Pacific Rise crest in the SE, through the Tuamotu Plateau region, to the Line and Marshall Islands and Mid-Pacific Mountains in the NW. The SE end of the swath includes the region dubbed the South Pacific Isotopic and Thermal Anomaly (SOPITA) and some features (e.g. Marcus Wake Guyots, Lines Islands) at the NW end backtrack into the SOPITA. Therefore, some of the scatter maybe caused by a regional shallowing of the controlling isotherm. This has been verified using a moving window admittance technique which suggest controlling isotherms of <~350° as the SOPITA region is

  6. A regional ocean model for the Southwest Pacific Ocean region to assess the risk of storms

    NASA Astrophysics Data System (ADS)

    Natoo, N.; Paul, A.; Hadfield, M.; Jendersie, S.; Bornman, J.; de Lange, W.; Ye, W.; Schulz, M.

    2012-04-01

    New Zealand's coasts are not only affected by mid-latitude storms, but infrequently also by storms that originate from the tropics. Projections for the southern hemisphere's southwest Pacific island countries for the 21st century show a poleward shift of the mid-latitude storm tracks, which consequently might result in changes in wind, precipitation and temperature patterns. Furthermore, an increase in frequency of intense storms is expected for the New Zealand region, which will very likely increase the risk of storm surges and flooding of coastal and low-lying regions. We employ the Regional Ocean Modeling System (ROMS) to assess the changes in the storm climate of the New Zealand region. The model set-up uses a resolution of ~50 km for the Southwest Pacific Ocean "parent domain" and ~10 km for the New Zealand "child domain", to well represent the major eddies that influence the climate of North Island. With the aim to later utilize this nested ocean model set-up as part of a coupled ocean-atmosphere modelling system for the Southwest Pacific Ocean region, results for the 20th century will be presented. The simulated circulation is shown to be largely consistent with the observed regional oceanography.

  7. Taxonomy of the common dolphins of the Eastern Pacific Ocean

    USGS Publications Warehouse

    Banks, R.C.; Brownell, R.

    1969-01-01

    Delphinus bairdii Dall is a species of dolphin distinct from D. delphis Linnaeus, with which it has usually been synonymized. D. bairdii has a longer rostrum relative to the zygomatic width of the skull; the ratio of these measurements falls at 1.55 or above for bairdii and 1.53 and below for delphis. In the eastern Pacific Ocean, D. bairdii is found in the Gulf of California and along the west coast of Baja California, Mexico; D. delphis is presently found in the waters off California. Until approximately the beginning of the present century, bairdii occurred farther north in the eastern Pacific Ocean, at least to the Monterey Bay area of California. Restriction of bairdii to more southerly waters, probably as an indirect result of a change in water temperature, may have permitted delphis to move into inshore Californian waters. The Pacific population of D. delphis has a somewhat shorter rostrum than the Atlantic population, and is perhaps subspecifically different. A thorough analysis of the entire genus Delphinus is needed before the relationship of all the populations can be understood and names properly applied.

  8. 77 FR 73969 - International Fisheries; Pacific Tuna Fisheries; Fishing Restrictions in the Eastern Pacific Ocean

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ...NMFS proposes regulations under the Tuna Conventions Act to implement Resolution C-12-09 of the Inter-American Tropical Tuna Commission (IATTC) by establishing limits on commercial retention of bluefin tuna by U.S. fishing vessels operating in the Eastern Pacific Ocean in 2012 and 2013. This action is necessary for the United States to satisfy its obligations as a member of the IATTC and to......

  9. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean

    PubMed Central

    Smith, Kenneth L.; Ruhl, Henry A.; Kahru, Mati; Huffard, Christine L.; Sherman, Alana D.

    2013-01-01

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (∼4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections. PMID:24218565

  10. A Pacific Ocean general circulation model for satellite data assimilation

    NASA Technical Reports Server (NTRS)

    Chao, Y.; Halpern, D.; Mechoso, C. R.

    1991-01-01

    A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.

  11. FERROMANGANESE CRUST RESOURCES IN THE PACIFIC AND ATLANTIC OCEANS.

    USGS Publications Warehouse

    Commeau, R.F.; Clark, A.; Johnson, Chad; Manheim, F. T.; Aruscavage, P. J.; Lane, C.M.

    1984-01-01

    Ferromanganese crusts on raised areas of the ocean floor have joined abyssal manganese nodules and hydrothermal sulfides as potential marine resources. Significant volumes of cobalt-rich (about 1% Co) crusts have been identified to date within the US Exclusive Economic Zone (EEZ) in the Central Pacific: in the NW Hawaiian Ridge and Seamount region and in the seamounts in the Johnston Island and Palmyra Island regions. Large volumes of lower grade crusts, slabs, and nodules are also present in shallow ( greater than 1000 m) waters on the Blake plateau, off Florida-South Carolina in the Atlantic Ocean. Data on ferromanganese crusts have been increased by recent German and USGS cruises, but are still sparse, and other regions having crust potential are under current investigation. The authors discuss economic potentials for cobalt-rich crusts in the Central Pacific and Western North Atlantic oceans, with special reference to US EEZ areas. Additional research is needed before more quantitative resource estimates can be made.

  12. Droughts and fertility, Pacific Ocean echos from the past Millenium

    NASA Astrophysics Data System (ADS)

    Herguera, J. C.

    2010-03-01

    An outstanding issue in our understanding of future evolution of climate and coastal ocean dynamics in México and is how the increasing anthropogenic CO2 injection into the atmosphere will change rainfall patterns on land and biological fertility patterns in the coastal oceans. The discovery, barely two decades ago, of a large biological regime shifts in the Pacific spawned the search for the underlying physical variability to explain them. Climate and oceanographic observations soon discovered fluctuations in air temperatures, atmospheric circulation, and ocean temperatures that were remarkably similar in timing and duration to the biological records. Recent modeling work has shown how complex coastal food webs can undergo substantial changes in response to subtle physical forcing. Here we will review some physical and biological fluctuations in the Pacific preserved in high resolution records from the California Current to show their variability patterns for the past millennium, the period prior to the present atmospheric carbon forcing, to explore and evaluate their links with climate forcings known to operate during this period. Hemispheric temperature and pressure gradients are linked to surface circulation patterns on the ocean, thermal structure, and depth of the thermocline separating nutrient depleted surface waters from nutrient rich at depth through the strength of the trade winds. These basin scale gradients oscillate between extremes influenced by large scale events like El Niño or its counterpart La Niña or by basin wide multidecadal fluctuations with similar effects on sea surface temperatures, rainfall variability on land and fertility patterns in the coastal ocean. Our knowledge of these large scale, long period recurring variations becomes critical especially when considering adaptative and sustainable strategies to human-induced climate change.

  13. A decade of acoustic thermometry in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Dushaw, B. D.; Worcester, P. F.; Munk, W. H.; Spindel, R. C.; Mercer, J. A.; Howe, B. M.; Metzger, K.; Birdsall, T. G.; Andrew, R. K.; Dzieciuch, M. A.; Cornuelle, B. D.; Menemenlis, D.

    2009-07-01

    Over the decade 1996-2006, acoustic sources located off central California (1996-1999) and north of Kauai (1997-1999, 2002-2006) transmitted to receivers distributed throughout the northeast and north central Pacific. The acoustic travel times are inherently spatially integrating, which suppresses mesoscale variability and provides a precise measure of ray-averaged temperature. Daily average travel times at 4-day intervals provide excellent temporal resolution of the large-scale thermal field. The interannual, seasonal, and shorter-period variability is large, with substantial changes sometimes occurring in only a few weeks. Linear trends estimated over the decade are small compared to the interannual variability and inconsistent from path to path, with some acoustic paths warming slightly and others cooling slightly. The measured travel times are compared with travel times derived from four independent estimates of the North Pacific: (1) climatology, as represented by the World Ocean Atlas 2005 (WOA05); (2) objective analysis of the upper-ocean temperature field derived from satellite altimetry and in situ profiles; (3) an analysis provided by the Estimating the Circulation and Climate of the Ocean project, as implemented at the Jet Propulsion Laboratory (JPL-ECCO); and (4) simulation results from a high-resolution configuration of the Parallel Ocean Program (POP) model. The acoustic data show that WOA05 is a better estimate of the time mean hydrography than either the JPL-ECCO or the POP estimates, both of which proved incapable of reproducing the observed acoustic arrival patterns. The comparisons of time series provide a stringent test of the large-scale temperature variability in the models. The differences are sometimes substantial, indicating that acoustic thermometry data can provide significant additional constraints for numerical ocean models.

  14. Vicariance biogeography of the open-ocean Pacific

    NASA Astrophysics Data System (ADS)

    White, Brian N.

    The first cladogram to treat oceanic water masses as distinct geographic units presents a ‘hydrotectonic’ history of Pacific surface water masses. It is used to test the idea that the oceanographic subdivision of the surface waters of the Pacific Basin into separate water masses shaped pelagic biogeographic patterns in much the same way that the tectonic fragmentation of Pangea influenced biogeographic patterns on land. The historical water-mass relationships depicted by the surface water-mass cladogram resemble modern pelagic biogeographic regions. The prediction that the cladistic phylogenies of monophyletic groups having allopatric taxa in three or more surface water masses will be consistent with the topology of the surface water-mass cladogram is met by the pelagic fish genera Stomias and Evermanella.

  15. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  16. Aging of oceanic crust at the Southern East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Weigel, W.; Grevemeyer, I.; Kaul, N.; Villinger, H.; Lüdmann, T.; Wong, H. K.

    The oceanic crust covers almost 57% of the Earth's surface and is created by seafloor spreading at mid-ocean ridges. Although crustal structure is similar everywhere, seismic experiments near spreading ridges indicate that seismic velocities in the top of the igneous crust are typically much lower than those in mature oceanic crust. While profound differences between juvenile and mature crust have long been recognized, little is known about the relationship between crustal aging and the properties of oceanic crust.German researchers from the Universities of Hamburg and Bremen explored seafloor created over the last 8 million years at the “super-fast” spreading East Pacific Rise south of the Garrett Fracture Zone (14-16°S) during a 52-day marine geophysical survey aboard the R/V Sonne. The seafloor in that area spreads at a rate of 150 mm/yr. The researchers studied age-dependent trends in the structure and properties of upper oceanic crust; this was the first study in nearly two decades to use an integrated approach to study variations and heat transfer in the upper crustal structure.

  17. Distribution of ferromanganese nodules in the Pacific Ocean.

    USGS Publications Warehouse

    Piper, D.Z.; Swint-Iki, T.R.; McCoy, F.W.

    1987-01-01

    The occurrence and distribution of deep-ocean ferromanganese nodules are related to the lithology of pelagic surface-sediment, sediment accumulation rates, sea-floor bathymetry, and benthic circulation. Nodules often occur in association with both biosiliceous and pelagic clay, and less often with calcareous sediment. Factors which influence the rather complex patterns of sediment lithology and accumulation rates include the supply of material to the sea-floor and secondary processes in the deep ocean which alter or redistribute that supply. The supply is largely controlled by: 1) proximity to a source of alumino-silicate material and 2) primary biological productivity in the photic zone of the ocean. Primary productivity controls the 'rain' to the sea-floor of biogenic detritus, which consists mostly of siliceous and calcareous tests of planktonic organisms but also contains smaller proportions of phosphatic material and organic matter. The high accumulation rate (5 mm/1000 yr) of sediment along the equator is a direct result of high productivity in this region of the Pacific. Secondary processes include the dissolution of particulate organic matter at depth in the ocean, notably CaCO3, and the redistribution of sedimentary particles by deep-ocean currents. -J.M.H.

  18. Plate tectonics of the northern part of the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Verzhbitsky, E. V.; Kononov, M. V.; Kotelkin, V. D.

    2007-10-01

    Geophysical data on the northern part of the Pacific Ocean were systematized to compile a map of geomagnetic and geothermal studies of the Bering Sea. The absence of reliable data about the formation time of the Bering Sea structures of oceanic and continental origins is noted; this hampered the assessment of the geodynamical processes in the North Pacific. Based on the geophysical data, we estimated the age of the structures of the Bering Sea floor such as the Commander Basin (21 My), the Shirshov Ridge (95 and 33 My in the northern and southern parts, respectively), the Aleutian Basin (70 My), the Vitus Arch (44 My), the Bowers Ridge (30 My), and the Bowers Basin (40 My). These values are confirmed by the geological, geophysical, and kinematic data. A numerical modeling of the formation of extensive regional structures (Emperor Fracture Zone, Chinook Trough, and others) in the Northern Pacific is carried out. A conclusion was made on the basis of the geological and geothermal analysis that the northern and southern parts of the Shirshov Ridge have different geological ages and different tectonic structures. The northern part of the ridge is characterized by an upthrust-nappe terrain origin, while the southern part has originated from a torn-away island arc similar to the origin of the Bowers Ridge. The sea floor of the Aleutian Basin represents a detached part of the Upper Cretaceous Kula plate, on which spreading processes took place in the Vitus Arch area in the Eocene. The final activity phase in the Bering Sea began 21 My B.P. by spreading of the ancient oceanic floor of the Commander Basin. Based on the age estimations of the structures of the Bering Sea floor, the results of the modeling of the process of formation of regional fracture zones and of the geomagnetic, geothermal, tectonic, geological, and structural data, we calculated and compiled a kinematic model (with respect to a hot spot reference system) of the northern part of the Pacific Ocean for 21

  19. Thunderstorms over the Pacific Ocean as seen from STS-64

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Multiple thunderstorm cells leading to Earth's atmosphere were photographed on 70mm by the astronauts of STS-64, orbiting aboard the Space Shuttle Discovery 130 nautical miles away. These thunderstorms are located about 16 degrees southeast of Hawaii in the Pacific Ocean. Every stage of a developing thunderstorm is documented in this photo: from the building cauliflower tops to the mature anvil phase. The anvil or the tops of the clouds being blown off are at about 50,000 feet. The light line in the blue atmosphere is either clouds in the distance or an atmospheric layer which is defined but different particle sizes.

  20. Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer

    PubMed Central

    Shaffer, Scott A.; Tremblay, Yann; Weimerskirch, Henri; Scott, Darren; Thompson, David R.; Sagar, Paul M.; Moller, Henrik; Taylor, Graeme A.; Foley, David G.; Block, Barbara A.; Costa, Daniel P.

    2006-01-01

    Electronic tracking tags have revolutionized our understanding of broad-scale movements and habitat use of highly mobile marine animals, but a large gap in our knowledge still remains for a wide range of small species. Here, we report the extraordinary transequatorial postbreeding migrations of a small seabird, the sooty shearwater, obtained with miniature archival tags that log data for estimating position, dive depth, and ambient temperature. Tracks (262 ± 23 days) reveal that shearwaters fly across the entire Pacific Ocean in a figure-eight pattern while traveling 64,037 ± 9,779 km roundtrip, the longest animal migration ever recorded electronically. Each shearwater made a prolonged stopover in one of three discrete regions off Japan, Alaska, or California before returning to New Zealand through a relatively narrow corridor in the central Pacific Ocean. Transit rates as high as 910 ± 186 km·day−1 were recorded, and shearwaters accessed prey resources in both the Northern and Southern Hemisphere’s most productive waters from the surface to 68.2 m depth. Our results indicate that sooty shearwaters integrate oceanic resources throughout the Pacific Basin on a yearly scale. Sooty shearwater populations today are declining, and because they operate on a global scale, they may serve as an important indicator of climate change and ocean health. PMID:16908846

  1. Chemical oceanography. Increasing anthropogenic nitrogen in the North Pacific Ocean.

    PubMed

    Kim, Il-Nam; Lee, Kitack; Gruber, Nicolas; Karl, David M; Bullister, John L; Yang, Simon; Kim, Tae-Wook

    2014-11-28

    The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (~0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited. PMID:25430767

  2. Increasing anthropogenic nitrogen in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kim, Il-Nam; Lee, Kitack; Gruber, Nicolas; Karl, David M.; Bullister, John L.; Yang, Simon; Kim, Tae-Wook

    2014-11-01

    The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (∼0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited.

  3. Warm Eddy Structure Observed During EPIC in Eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Shay, L. K.; Jaimes, B.; Brewster, J.

    2007-05-01

    During the NSF/NOAA sponsored Eastern Pacific Investigation of Climate (EPIC) field program in Sept. and Oct. 2001, oceanic current, temperature and salinity profiles were acquired by deploying expendable profilers from research aircraft flights above the warm pool grid centered on the TAO mooring at 10oN 95oW and the R/V Ron Brown, and along the 95oW transect from the NOAA WP-3D and the NCAR WC-130, respectively. Analyses of mooring, ship and aircraft observations suggest the propagation of a wind-forced, warm eddy in accord with remotely sensed fields from radar altimetry and TRMM microwave imager (TMI) measurements. This anti- cyclonically rotating warm eddy, consistent with Rossby wave dynamics, impacted both the oceanic and atmospheric mixed layer structure. To examine the evolving characteristics of this oceanic feature, SSTs, isotherm depths and oceanic heat content variations (relative to the 26oC isotherm depth referred to as OHC) were compared at the TAO buoy. Satellite- based OHC variations were estimated by inferring isotherm depths (20oC, 26oC) from blended and objectively mapped, altimeter-derived surface height anomaly (SHA) fields based on climatology and TMI-derived SSTs. Based on sequential maps of the SHA, the observed warm eddy had SHA elevation of 12 to 14 cm that indicated a propagation speed of 13 cm s-1 towards the southwest. Inferred isotherm depths and OHC variations agreed with those from the TAO mooring and profiler measurements. For example, the 26oC isotherm depth ranged from 35 to 40 m with OHC values of 40 kJ cm-2. Understanding the evolving 3-D structure of these features is central to assessing the upper ocean's role in hurricane intensity fluctuations in the Eastern Pacific Ocean. This approach is now being applied to several years of in situ and remotely sensed measurements in this regime to assess uncertainties in satellite retrievals to build climatology for use with hurricane intensity forecast models as in the Atlantic Ocean

  4. Fin whale vocalizations observed with ocean bottom seismometers of cabled observatories off east Japan Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Iwase, Ryoichi

    2015-07-01

    Fin whale vocalizations were found in the archived waveform data from both hydrophones and ocean bottom seismometers (OBSs) of a cabled observatory off Kushiro-Tokachi in Hokkaido. A fin whale was localized on the basis of the incident orientation estimated with a single OBS and the time difference of multipath arrival of sound pressure data from a hydrophone. Furthermore, several fin whale vocalizations were found in the archived OBS waveform data from other cabled observatories off east Japan Pacific Ocean. These findings suggest that the cabled OBSs would be significant apparatuses for real-time monitoring of the presence of baleen whales around Japan.

  5. Space-time variability of oceanic fronts and currents in the Southeastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey; Kostianoy, Andrey; Sirota, Alexander

    The TOPEX/Poseidon and Jason-1 altimetry data (sea level anomalies (SLA) charts) for 1992- 2006, as well as corresponding charts of sea surface dynamic heights, constructed by the superposition of SLA distributions over the climatic dynamic topography, calculated from mean temperature and salinity data of WOA-1998 Atlas relative to 1000 m depth and combined mean dynamic topography RIO-03, were used to study main oceanic currents and fronts in the region 50-10° S, 160-70° W. Spatial, seasonal and interannual variability of the South Pacific Current has been investigated basing on the charts of dynamic heights gradients. The analysis allowed to distinguish zones with different degree of the South Pacific Current position variability, being minimal at 99° W, where the current was the most intense. Westward of 105° W the South Pacific Current may have bimodal structure and r.m.s. of its position may reach 3° of latitude. Frequency analysis showed that this is accompanied by a pronounced 350 days peak in its temporal variability. Eastward of 105° W there is no predominance in temporal variability of the current. Sea surface temperature (SST) and SST gradient maps were used to study thermal regime and main oceanic fronts (Subtropical Front and coastal upwelling front) in the Southeastern Pacific Ocean. The analysis of the SST spatial and temporal variability was based on the daily and monthly satellite Global Ocean Data Assimilation Experiment (GODAE) Highresolution SST Pilot Project (GHRSST-PP) data for 1992-2006. A comparison of the satellite altimetry and radiometry data with field measurements onboard R/V "Atlantida" (AtlantNIRO, Russia) during the expedition in November-December 2002 showed a good correspondence. The combined analysis of the pelagic fish distribution patterns in the Southeastern Pacific Ocean, based on the in-situ acoustic surveys, and of mesoscale structure of the South Pacific Current revealed a clear correlation of the location of the most

  6. Azimuthal anisotropy layering and plate motion in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Romanowicz, B. A.

    2012-12-01

    We recently developed a three dimensional radially and azimuthally anisotropic model of the upper mantle in north America, using a combination of long-period 3-component surface and overtone waveforms, and SKS splitting measurements (Yuan and Romanowicz, 2010, Yuan et al., 2011). We showed that azimuthal anisotropy is a powerful tool to detect layering in the upper mantle, revealing two domains in the cratonic lithosphere, separated by a sharp laterally varying boundary in the depth range 100-150 km, which seems to coincide with the mid-lithospheric boundary (MLD) found in receiver function studies. Contrary to receiver functions, azimuthal anisotropy also detects the lithosphere-asthenosphere boundary (LAB) as manifested by a change in the fast axis direction, which becomes quasi-parallel to the absolute plate motion below ~250 km depth. A zone of stronger azimuthal anisotropy is found below the LAB both in the western US (peaking at depths of 100-150km) and in the craton (peaking at a depth of about 300 km). Here we show preliminary attempts at expanding our approach to the global scale, with a specific goal of determining whether such an anisotropic LAB can also be observed in the Pacific ocean. We started with our most recent global upper mantle radially anisotropic shear velocity model, determined using the Spectral Element Method (SEMum2; French et al., this meeting). We augment the corresponding global surface wave and overtone dataset (period range 60 to 400 s) with deep events and shorter period body waves, in order to ensure optimal deeper depth (>250km) anisotropy recovery due to the paucity of shear wave splitting measurements in the oceans. Our preliminary results, which do not yet incorporate SKS splitting measurements, look promising as they confirm the layering found previously in North America, using a different, global dataset and starting model. In the Pacific, our study confirms earlier azimuthal anisotropy results in the region (e.g. Smith et

  7. Transport of North Pacific 137Cs labeled waters to the south-eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Sanchez-Cabeza, J. A.; Levy, I.; Gastaud, J.; Eriksson, M.; Osvath, I.; Aoyama, M.; Povinec, P. P.; Komura, K.

    2011-04-01

    During the reoccupation of the WOCE transect A10 at 30°S by the BEAGLE2003 cruise, the SHOTS project partners collected a large number of samples for the analysis of isotopic tracers. 137Cs was mostly deposited on the oceans surface during the late 1950s and early 1960s, after the atmospheric detonation of large nuclear devices, which mostly occurred in the Northern Hemisphere. The development of advanced radioanalytical and counting techniques allowed to obtain, for the first time in this region, a zonal section of 137Cs water concentrations, where little information existed before, thus constituting an important benchmark for further studies. 137Cs concentrations in the upper waters (0-1000 m) of the south-eastern Atlantic Ocean are similar to those observed in the south-western Indian Ocean, suggesting transport of 137Cs labeled waters by the Agulhas current to the Benguela Current region. In contrast, bomb radiocarbon data do not show this feature, indicating the usefulness of 137Cs as a radiotracer of water mass transport from the Indian to the South Atlantic Ocean.

  8. Characteristics of regional aerosols: Southern Arizona and eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Prabhakar, Gouri

    Atmospheric aerosols impact the quality of our life in many direct and indirect ways. Inhalation of aerosols can have harmful effects on human health. Aerosols also have climatic impacts by absorbing or scattering solar radiation, or more indirectly through their interactions with clouds. Despite a better understanding of several relevant aerosol properties and processes in the past years, they remain the largest uncertainty in the estimate of global radiative forcing. The uncertainties arise because although aerosols are ubiquitous in the Earth's atmosphere they are highly variable in space, time and their physicochemical properties. This makes in-situ measurements of aerosols vital in our effort towards reducing uncertainties in the estimate of global radiative forcing due to aerosols. This study is an effort to characterize atmospheric aerosols at a regional scale, in southern Arizona and eastern Pacific Ocean, based on ground and airborne observations of aerosols. Metals and metalloids in particles with aerodynamic diameter (Dp) smaller than 2.5 μm are found to be ubiquitous in southern Arizona. The major sources of the elements considered in the study are identified to be crustal dust, smelting/mining activities and fuel combustion. The spatial and temporal variability in the mass concentrations of these elements depend both on the source strength and meteorological conditions. Aircraft measurements of aerosol and cloud properties collected during various field campaigns over the eastern Pacific Ocean are used to study the sources of nitrate in stratocumulus cloud water and the relevant processes. The major sources of nitrate in cloud water in the region are emissions from ships and wildfires. Different pathways for nitrate to enter cloud water and the role of meteorology in these processes are examined. Observations of microphysical properties of ambient aerosols in ship plumes are examined. The study shows that there is an enhancement in the number

  9. Interannual and decadal variability and trends in upper ocean temperatures in the North Pacific Ocean

    SciTech Connect

    White, W.B.; Cayan, D.R.

    1994-12-31

    Temperature profiles from the surface to 400 m deployed over the North Pacific Ocean for the 45 years from 1950--1994 are mapped onto a coarse grid each month, allowing trends in the upper ocean temperature to be estimated. Only temperature profiles distributed from 20{degree}N-60{degree}N are used, these subjected to rigorous scientific quality control. Two parameters are chosen to be representative of the upper ocean thermal structure; i.e., sea surface temperature (SST) and heat storage over the upper 400 m (HS400). Mapping of SST and HS400 is conducted monthly, with optimal interpolation utilizing a priori estimates of the covariance structure of the anomalous fields determined by White. This yields a time sequence of 540 monthly maps for each parameter over this 45-year period. Examining these time sequences for decadal variability and trends finds their magnitude and sign to change substantially as a function of geographical location over the North Pacific Ocean. For example, all along the west coast of North America, both SST and HS400 warmed during the past 45 years. But, in the middle of the North Pacific Ocean, both parameters cooled over this period. The average SST and HS400 over the entire domain from 20{degree}-60{degree}N did not show a trend. Rather, decadal variability dominated the time sequence, with the 1950`s colder than normal, the 1960`s near normal, the 1970`s warmer than normal, the 1980`s colder than normal, and the 1990`s warmer than normal. This natural decadal variability obscures any possible anthropogenic warming due to increased greenhouse gas concentrations in the atmosphere over this period.

  10. 33 CFR 165.T11-577 - Security Zone; Naval Exercise; Pacific Ocean, Coronado, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Naval Exercise; Pacific Ocean, Coronado, CA. 165.T11-577 Section 165.T11-577 Navigation and Navigable Waters COAST GUARD... § 165.T11-577 Security Zone; Naval Exercise; Pacific Ocean, Coronado, CA. (a) Location. The limits...

  11. 76 FR 73517 - Fisheries in the Eastern Pacific Ocean; Pelagic Fisheries; Vessel Identification Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ..., 2010 (75 FR 3335 and 3416), NMFS implemented those standards for U.S. fishing vessels under the... Eastern Pacific Ocean; Pelagic Fisheries; Vessel Identification Requirements AGENCY: National Marine... Western and Central Pacific Ocean (Convention Area). Currently, the marking requirements for...

  12. 76 FR 18706 - Fisheries in the Eastern Pacific Ocean; Pelagic Fisheries; Vessel Identification Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... FR 3335 and 3416), NMFS implemented those standards for U.S. fishing vessels under the authority of... Eastern Pacific Ocean; Pelagic Fisheries; Vessel Identification Requirements AGENCY: National Marine... Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean (Convention Area)...

  13. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All...

  14. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1)...

  15. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage...

  16. 33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone....

  17. 33 CFR 110.237 - Pacific Ocean at Waimea, Hawaii, Naval Anchorage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at Waimea, Hawaii, Naval Anchorage. 110.237 Section 110.237 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.237 Pacific Ocean at...

  18. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1)...

  19. 33 CFR 334.1440 - Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. 334.1440 Section 334.1440 Navigation and Navigable Waters CORPS OF....1440 Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. (a) The warning...

  20. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at...

  1. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted area....

  2. 33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone....

  3. 33 CFR 110.237 - Pacific Ocean at Waimea, Hawaii, Naval Anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at Waimea, Hawaii, Naval Anchorage. 110.237 Section 110.237 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.237 Pacific Ocean at...

  4. 33 CFR 110.237 - Pacific Ocean at Waimea, Hawaii, Naval Anchorage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at Waimea, Hawaii, Naval Anchorage. 110.237 Section 110.237 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.237 Pacific Ocean at...

  5. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at...

  6. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage...

  7. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage...

  8. 33 CFR 334.1370 - Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. 334.1370 Section 334.1370 Navigation and Navigable Waters CORPS OF....1370 Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The...

  9. 33 CFR 334.1440 - Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. 334.1440 Section 334.1440 Navigation and Navigable Waters CORPS OF....1440 Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. (a) The warning...

  10. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at...

  11. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All...

  12. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at...

  13. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at...

  14. 33 CFR 334.1370 - Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. 334.1370 Section 334.1370 Navigation and Navigable Waters CORPS OF....1370 Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The...

  15. 33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone....

  16. 33 CFR 334.1370 - Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. 334.1370 Section 334.1370 Navigation and Navigable Waters CORPS OF....1370 Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The...

  17. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at...

  18. 33 CFR 334.1440 - Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. 334.1440 Section 334.1440 Navigation and Navigable Waters CORPS OF....1440 Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. (a) The warning...

  19. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All...

  20. 33 CFR 110.237 - Pacific Ocean at Waimea, Hawaii, Naval Anchorage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at Waimea, Hawaii, Naval Anchorage. 110.237 Section 110.237 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.237 Pacific Ocean at...

  1. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at...

  2. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1)...

  3. 33 CFR 334.1370 - Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. 334.1370 Section 334.1370 Navigation and Navigable Waters CORPS OF....1370 Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The...

  4. 33 CFR 334.1140 - Pacific Ocean at San Miguel Island, Calif.; naval danger zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at San Miguel Island, Calif.; naval danger zone. 334.1140 Section 334.1140 Navigation and Navigable Waters CORPS OF....1140 Pacific Ocean at San Miguel Island, Calif.; naval danger zone. (a) The area. The waters around...

  5. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage...

  6. 33 CFR 334.1370 - Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. 334.1370 Section 334.1370 Navigation and Navigable Waters CORPS OF....1370 Pacific Ocean at Keahi Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The...

  7. 33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone....

  8. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage...

  9. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All...

  10. 33 CFR 110.222 - Pacific Ocean at Santa Barbara Island, Calif.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at Santa Barbara Island, Calif. 110.222 Section 110.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.222 Pacific Ocean at...

  11. 33 CFR 334.1140 - Pacific Ocean at San Miguel Island, Calif.; naval danger zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at San Miguel Island, Calif.; naval danger zone. 334.1140 Section 334.1140 Navigation and Navigable Waters CORPS OF....1140 Pacific Ocean at San Miguel Island, Calif.; naval danger zone. (a) The area. The waters around...

  12. 33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone....

  13. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at...

  14. 33 CFR 110.220 - Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. 110.220 Section 110.220 Navigation and Navigable Waters COAST... Pacific Ocean at San Nicolas Island, Calif.; restricted anchorage areas. (a) The restricted areas—(1)...

  15. 33 CFR 110.216 - Pacific Ocean at Santa Catalina Island, Calif.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at Santa Catalina Island, Calif. 110.216 Section 110.216 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.216 Pacific Ocean at...

  16. 33 CFR 110.237 - Pacific Ocean at Waimea, Hawaii, Naval Anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at Waimea, Hawaii, Naval Anchorage. 110.237 Section 110.237 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.237 Pacific Ocean at...

  17. 33 CFR 334.921 - Pacific Ocean at San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at San Clemente Island, Calif.; naval restricted area. 334.921 Section 334.921 Navigation and Navigable Waters CORPS OF....921 Pacific Ocean at San Clemente Island, Calif.; naval restricted area. (a) The area. All...

  18. 33 CFR 334.1440 - Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. 334.1440 Section 334.1440 Navigation and Navigable Waters CORPS OF....1440 Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. (a) The warning...

  19. 33 CFR 334.1440 - Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. 334.1440 Section 334.1440 Navigation and Navigable Waters CORPS OF....1440 Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. (a) The warning...

  20. A connection between the tropical Pacific Ocean and the winter climate in the Asian-Pacific region

    NASA Astrophysics Data System (ADS)

    Jia, XiaoJing; Wang, Su; Lin, Hai; Bao, Qing

    2015-01-01

    The impact of the tropical Pacific sea surface temperature (SST) anomaly on the winter mean surface air temperature (SAT) in the Asian-Pacific region is investigated during the period from 1948 to 2008 using both observations and a linear baroclinic model (LBM). A singular value decomposition (SVD) analysis is conducted between the 500 hPa geopotential height (Z500) over the Northern Hemisphere and the SST over the tropical Pacific Ocean to obtain the large-scale atmospheric patterns related to tropical Pacific SST. Focus is given to the second pair of SVD mode (SVD2) which bears some similarities in the Z500 field to the Arctic Oscillation over the North Atlantic sector and can impact the SAT over a larger area of Asian-Pacific. In the winter of a positive SVD2 the SAT over the midlatitude to high-latitude Asian continent, the Arctic Ocean, the Indian Ocean, and the western subtropical Pacific Ocean tends to be warmer than normal, while the North Pacific Ocean around the Bering Strait is abnormally cold, and vice versa. Examination of the associated surface general circulation shows that a positive SVD2 tends to shift the Siberian High southward and the Aleutian Low eastward resulting in anomalous weak pressure gradient between the Asian continent the North Pacific. Anomalous positive sea level pressure anomalies around Japan and southerly wind along the east coast of the Asian continent are observed. At the same time, the East Asian trough at midtroposphere becomes weaker than normal and the East Asian westerly jet stream is increased in magnitudes and shifted northward. The analysis of the wave activity flux and result of idealized numerical experiments show a possible influence of the western tropical Pacific SST forcing on the SVD2.

  1. A connection between the tropical Pacific Ocean and the winter climate in the Asian-Pacific region

    NASA Astrophysics Data System (ADS)

    Jia, xiaojing; lin, hai; bao, qing

    2015-04-01

    The impact of the tropical Pacific sea surface temperature (SST) anomaly on the winter mean surface air temperature (SAT) in the Asian-Pacific region is investigated during the period from 1948 to 2008 using both observations and a linear baroclinic model (LBM). A singular value decomposition (SVD) analysis is conducted between the 500-hPa geopotential height (Z500) over the Northern Hemisphere and the SST over the tropical Pacific Ocean to obtain the tropical Pacific SST-forced large scale atmospheric patterns. Focus is given to the second pair of SVD mode (SVD2) which bear many similarities in the Z500 field to the Arctic Oscillation (AO) but can impact the SAT over a larger area of Asian-Pacific than the AO. In the winter of a positive SVD2 the SAT over the mid-to high-latitude Asian continent, the Arctic Ocean, the Indian Ocean and the western subtropical Pacific Ocean tend to be warmer-than-normal while the North Pacific Ocean around the Bering Strait is abnormally cold, and vice versa. Examination of the associated surface general circulation shows that corresponding to a positive SVD2 the Siberian High is weaker-than-normal and the Aleutian low shifted eastward resulting in abnormalous weak pressure gradient between the Asian continent the North Pacific and abnormalous southerly wind along the east coast of the Asian continent. At the same time, the East Asian trough at mid-troposphere becomes weaker-than-normal and the East Asian westerly jet stream is shifted northward. The analysis of the wave activity flux and the precipitation associated with the SVD2 show a possible influence of the western tropical Pacific SST forcing on the SVD2.

  2. Introduction to "Tsunamis in the Pacific Ocean: 2011-2012"

    NASA Astrophysics Data System (ADS)

    Rabinovich, Alexander B.; Borrero, Jose C.; Fritz, Hermann M.

    2014-12-01

    With this volume of the Pure and Applied Geophysics (PAGEOPH) topical issue "Tsunamis in the Pacific Ocean: 2011-2012", we are pleased to present 21 new papers discussing tsunami events occurring in this two-year span. Owing to the profound impact resulting from the unique crossover of a natural and nuclear disaster, research into the 11 March 2011 Tohoku, Japan earthquake and tsunami continues; here we present 12 papers related to this event. Three papers report on detailed field survey results and updated analyses of the wave dynamics based on these surveys. Two papers explore the effects of the Tohoku tsunami on the coast of Russia. Three papers discuss the tsunami source mechanism, and four papers deal with tsunami hydrodynamics in the far field or over the wider Pacific basin. In addition, a series of five papers presents studies of four new tsunami and earthquake events occurring over this time period. This includes tsunamis in El Salvador, the Philippines, Japan and the west coast of British Columbia, Canada. Finally, we present four new papers on tsunami science, including discussions on tsunami event duration, tsunami wave amplitude, tsunami energy and tsunami recurrence.

  3. Map helps unravel complexities of the southwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Collot, Julien; Vendé-Leclerc, Myriam; Rouillard, Pierrick; Lafoy, Yves; Géli, Louis

    2012-01-01

    The southwestern Pacific Ocean region hosts submerged continental margins, ridges, sedimentary basins, and volcanic arcs located around Papua New Guinea, New Zealand, Australia, and Fiji. The geological history of this vast region has remained controversial, and to improve understanding of the processes that controlled its geodynamical evolution, it is essential to place each piece of available data in a regional spatiotemporal framework. To this end, a new map, entitled “Structural Provinces of the Southwest Pacific,” was released by the Geological Survey of New Caledonia in May 2011. The publication consists of two parts: (1) a 40-page booklet of geological notes, which documents the nature and age of each structure and contains an associated list of references; and (2) a 3- x 4-foot poster of a structural map revealing the nature of the basement, location, and type of the main structural features (see simplified version in Figure 1) and the age of formation using the international standards for geological color codes established by the Commission for the Geological Map of the World (CGMW) (see http://ccgm.free.fr/index.html).

  4. North Pacific deglacial hypoxic events linked to abrupt ocean warming.

    PubMed

    Praetorius, S K; Mix, A C; Walczak, M H; Wolhowe, M D; Addison, J A; Prahl, F G

    2015-11-19

    Marine sediments from the North Pacific document two episodes of expansion and strengthening of the subsurface oxygen minimum zone (OMZ) accompanied by seafloor hypoxia during the last deglacial transition. The mechanisms driving this hypoxia remain under debate. We present a new high-resolution alkenone palaeotemperature reconstruction from the Gulf of Alaska that reveals two abrupt warming events of 4-5 degrees Celsius at the onset of the Bølling and Holocene intervals that coincide with sudden shifts to hypoxia at intermediate depths. The presence of diatomaceous laminations and hypoxia-tolerant benthic foraminiferal species, peaks in redox-sensitive trace metals, and enhanced (15)N/(14)N ratio of organic matter, collectively suggest association with high export production. A decrease in (18)O/(16)O values of benthic foraminifera accompanying the most severe deoxygenation event indicates subsurface warming of up to about 2 degrees Celsius. We infer that abrupt warming triggered expansion of the North Pacific OMZ through reduced oxygen solubility and increased marine productivity via physiological effects; following initiation of hypoxia, remobilization of iron from hypoxic sediments could have provided a positive feedback on ocean deoxygenation through increased nutrient utilization and carbon export. Such a biogeochemical amplification process implies high sensitivity of OMZ expansion to warming. PMID:26581293

  5. Ocean-Scale Patterns in Community Respiration Rates along Continuous Transects across the Pacific Ocean

    PubMed Central

    Wilson, Jesse M.; Severson, Rodney; Beman, J. Michael

    2014-01-01

    Community respiration (CR) of organic material to carbon dioxide plays a fundamental role in ecosystems and ocean biogeochemical cycles, as it dictates the amount of production available to higher trophic levels and for export to the deep ocean. Yet how CR varies across large oceanographic gradients is not well-known: CR is measured infrequently and cannot be easily sensed from space. We used continuous oxygen measurements collected by autonomous gliders to quantify surface CR rates across the Pacific Ocean. CR rates were calculated from changes in apparent oxygen utilization and six different estimates of oxygen flux based on wind speed. CR showed substantial spatial variation: rates were lowest in ocean gyres (mean of 6.93 mmol m−3 d−1±8.0 mmol m−3 d−1 standard deviation in the North Pacific Subtropical Gyre) and were more rapid and more variable near the equator (8.69 mmol m−3 d−1±7.32 mmol m−3 d−1 between 10°N and 10°S) and near shore (e.g., 5.62 mmol m−3 d−1±45.6 mmol m−3 d−1 between the coast of California and 124°W, and 17.0 mmol m−3 d−1±13.9 mmol m−3 d−1 between 156°E and the Australian coast). We examined how CR varied with coincident measurements of temperature, turbidity, and chlorophyll concentrations (a proxy for phytoplankton biomass), and found that CR was weakly related to different explanatory variables across the Pacific, but more strongly related to particular variables in different biogeographical areas. Our results indicate that CR is not a simple linear function of chlorophyll or temperature, and that at the scale of the Pacific, the coupling between primary production, ocean warming, and CR is complex and variable. We suggest that this stems from substantial spatial variation in CR captured by high-resolution autonomous measurements. PMID:25048960

  6. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, Western Space and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. (a) The Area. (1) The waters of the Pacific Ocean in an area extending...

  7. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from...

  8. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean in the vicinity of... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a) The danger zone. A triangular area extending westerly into the waters of the Pacific Ocean from...

  9. 33 CFR 334.961 - Pacific Ocean, San Clemente Island, California, naval danger zone off the northwest shore.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, San Clemente... RESTRICTED AREA REGULATIONS § 334.961 Pacific Ocean, San Clemente Island, California, naval danger zone off the northwest shore. (a) The danger zone: The waters of the Pacific Ocean adjacent to San...

  10. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean in the vicinity of... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a) The danger zone. A triangular area extending westerly into the waters of the Pacific Ocean from...

  11. 33 CFR 334.866 - Pacific Ocean at Naval Base Coronado, in the City of Coronado, San Diego County, California...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean at Naval Base... AND RESTRICTED AREA REGULATIONS § 334.866 Pacific Ocean at Naval Base Coronado, in the City of... westerly into the waters of the Pacific Ocean from a point on the beach of Naval Base Coronado,...

  12. 33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, San Clemente... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The danger zone. The waters of the Pacific Ocean in an area about one-half mile off the west coast of...

  13. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from...

  14. 33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, San Clemente... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The danger zone. The waters of the Pacific Ocean in an area about one-half mile off the west coast of...

  15. 33 CFR 334.866 - Pacific Ocean at Naval Base Coronado, in the City of Coronado, San Diego County, California...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Naval Base... AND RESTRICTED AREA REGULATIONS § 334.866 Pacific Ocean at Naval Base Coronado, in the City of... westerly into the waters of the Pacific Ocean from a point on the beach of Naval Base Coronado,...

  16. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean in the vicinity of... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a) The danger zone. A triangular area extending westerly into the waters of the Pacific Ocean from...

  17. 33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, San Clemente... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The danger zone. The waters of the Pacific Ocean in an area about one-half mile off the west coast of...

  18. 33 CFR 334.961 - Pacific Ocean, San Clemente Island, California, naval danger zone off the northwest shore.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, San Clemente... RESTRICTED AREA REGULATIONS § 334.961 Pacific Ocean, San Clemente Island, California, naval danger zone off the northwest shore. (a) The danger zone: The waters of the Pacific Ocean adjacent to San...

  19. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, Western Space and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. (a) The area. (1) The waters of the Pacific Ocean in an area extending...

  20. 33 CFR 334.866 - Pacific Ocean at Naval Base Coronado, in the City of Coronado, San Diego County, California...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at Naval Base... AND RESTRICTED AREA REGULATIONS § 334.866 Pacific Ocean at Naval Base Coronado, in the City of... westerly into the waters of the Pacific Ocean from a point on the beach of Naval Base Coronado,...

  1. 33 CFR 334.961 - Pacific Ocean, San Clemente Island, California, naval danger zone off the northwest shore.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, San Clemente... RESTRICTED AREA REGULATIONS § 334.961 Pacific Ocean, San Clemente Island, California, naval danger zone off the northwest shore. (a) The danger zone: The waters of the Pacific Ocean adjacent to San...

  2. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from...

  3. 33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, San Clemente... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The danger zone. The waters of the Pacific Ocean in an area about one-half mile off the west coast of...

  4. 33 CFR 334.961 - Pacific Ocean, San Clemente Island, California, naval danger zone off the northwest shore.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, San Clemente... RESTRICTED AREA REGULATIONS § 334.961 Pacific Ocean, San Clemente Island, California, naval danger zone off the northwest shore. (a) The danger zone: The waters of the Pacific Ocean adjacent to San...

  5. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from...

  6. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean in the vicinity of... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a) The danger zone. A triangular area extending westerly into the waters of the Pacific Ocean from...

  7. 33 CFR 334.960 - Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, San Clemente... REGULATIONS § 334.960 Pacific Ocean, San Clemente Island, Calif.; naval danger zone off West Cove. (a) The danger zone. The waters of the Pacific Ocean in an area about one-half mile off the west coast of...

  8. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, Western Space and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. (a) The Area. (1) The waters of the Pacific Ocean in an area extending...

  9. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean in the vicinity of... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a) The danger zone. A triangular area extending westerly into the waters of the Pacific Ocean from...

  10. 33 CFR 334.920 - Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean off the east coast... RESTRICTED AREA REGULATIONS § 334.920 Pacific Ocean off the east coast of San Clemente Island, Calif.; naval restricted area. (a) The area. The waters of the Pacific Ocean within an area extending easterly from...

  11. 33 CFR 334.961 - Pacific Ocean, San Clemente Island, California, naval danger zone off the northwest shore.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, San Clemente... RESTRICTED AREA REGULATIONS § 334.961 Pacific Ocean, San Clemente Island, California, naval danger zone off the northwest shore. (a) The danger zone: The waters of the Pacific Ocean adjacent to San...

  12. 75 FR 42338 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Regulatory Area of the Gulf of Alaska AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting retention of Pacific ocean perch in the... allowable catch (TAC) of Pacific ocean perch in the Western Regulatory Area of the GOA has been...

  13. 75 FR 53608 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the West Yakutat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the West Yakutat District of the Gulf of Alaska AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch in... the 2010 total allowable catch (TAC) of Pacific ocean perch in the West Yakutat District of the...

  14. 76 FR 45709 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the West Yakutat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the West Yakutat District of the... for Pacific ocean perch in the West Yakutat District of the Gulf of Alaska (GOA). This action is necessary to prevent exceeding the 2011 total allowable catch (TAC) of Pacific ocean perch in the...

  15. 77 FR 41332 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Regulatory Area of the Gulf of Alaska AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting retention of Pacific ocean perch in the... allowable catch (TAC) of Pacific ocean perch in the Western Regulatory Area of the GOA has been...

  16. 33 CFR 334.866 - Pacific Ocean at Naval Base Coronado, in the City of Coronado, San Diego County, California...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at Naval Base... AND RESTRICTED AREA REGULATIONS § 334.866 Pacific Ocean at Naval Base Coronado, in the City of... westerly into the waters of the Pacific Ocean from a point on the beach of Naval Base Coronado,...

  17. 78 FR 64892 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch in... exceeding the 2013 total allowable catch (TAC) of Pacific ocean perch in this area allocated to...

  18. 76 FR 68658 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea Subarea of the Bering Sea and Aleutian... is opening directed fishing for Pacific ocean perch in the Bering Sea subarea of the Bering Sea and... Pacific ocean perch specified for the Bering Sea subarea of the Bering Sea and Aleutian Islands...

  19. 75 FR 69598 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch by Vessels in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch by Vessels in the Amendment 80 Limited Access Fishery in the...: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch by vessels.... The 2010 Pacific ocean perch TAC specified for vessels participating in the Amendment 80...

  20. 75 FR 69599 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch by Vessels in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch by Vessels in the Amendment 80 Limited Access Fishery in the...: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch by vessels.... The 2010 Pacific ocean perch TAC specified for vessels participating in the Amendment 80...

  1. 77 FR 65838 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea Subarea of the Bering Sea and Aleutian... directed fishing for Pacific ocean perch in the Bering Sea subarea of the Bering Sea and Aleutian Islands management area. This action is necessary to fully use the 2012 total allowable catch of Pacific ocean...

  2. 78 FR 64891 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch in... exceeding the 2013 total allowable catch (TAC) of Pacific ocean perch in this area allocated to...

  3. 76 FR 39791 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Regulatory Area of the Gulf of Alaska AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch in... the 2011 total allowable catch (TAC) of Pacific ocean perch in the Western Regulatory Area of the...

  4. 76 FR 40838 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch for Catcher Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... Economic Zone Off Alaska; Pacific Ocean Perch for Catcher Vessels Participating in the Rockfish Entry Level...; modification of a closure. SUMMARY: NMFS is opening directed fishing for Pacific ocean perch by trawl catcher... Pacific ocean perch for trawl catcher vessels participating in the rockfish entry level fishery in...

  5. 75 FR 69600 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Eastern Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2010 allocation of Pacific ocean perch in this...

  6. 77 FR 34262 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Western Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2012 allocation of Pacific ocean perch in this...

  7. 76 FR 43933 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Western Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2011 allocation of Pacific ocean perch in this...

  8. 75 FR 69601 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Central Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2010 allocation of Pacific ocean perch in this...

  9. 76 FR 39792 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch, Northern Rockfish, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Economic Zone Off Alaska; Pacific Ocean Perch, Northern Rockfish, and Pelagic Shelf Rockfish in the Western...; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch, northern rockfish, and... exceeding the ] 2011 sideboard limits of Pacific ocean perch, northern rockfish, and pelagic shelf...

  10. 76 FR 54716 - Fisheries of the Exclusive Economic Zone off Alaska; Northern Rockfish, Pacific Ocean Perch, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... Economic Zone off Alaska; Northern Rockfish, Pacific Ocean Perch, and Pelagic Shelf Rockfish for Vessels... prohibiting directed fishing for northern rockfish, Pacific ocean perch, and pelagic shelf rockfish for... northern rockfish, Pacific ocean perch, and pelagic shelf rockfish allocated to vessels participating...

  11. 33 CFR 334.866 - Pacific Ocean at Naval Base Coronado, in the City of Coronado, San Diego County, California...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at Naval Base... AND RESTRICTED AREA REGULATIONS § 334.866 Pacific Ocean at Naval Base Coronado, in the City of... westerly into the waters of the Pacific Ocean from a point on the beach of Naval Base Coronado,...

  12. 75 FR 69601 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Western Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2010 allocation of Pacific ocean perch in this...

  13. 77 FR 39440 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Central Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Central Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2012 allocation of Pacific ocean perch in this...

  14. 78 FR 42718 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea and Aleutian Islands Management Area AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch in... exceeding the 2013 total allowable catch (TAC) of Pacific ocean perch in this area allocated to...

  15. 75 FR 43090 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western Yakutat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Yakutat District of the Gulf of Alaska AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch by... appear at subpart H of 50 CFR part 600 and 50 CFR part 679. The 2010 Pacific ocean perch sideboard...

  16. 75 FR 39183 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Regulatory Area of the Gulf of Alaska AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch in... the 2010 total allowable catch (TAC) of Pacific ocean perch in the Western Regulatory Area of the...

  17. 76 FR 65972 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Eastern Aleutian District of the Bering Sea and... directed fishing for Pacific ocean perch in the Eastern Aleutian District of the Bering Sea and Aleutian... action is necessary to prevent exceeding the 2011 allocation of Pacific ocean perch in this...

  18. 77 FR 39649 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Regulatory Area of the Gulf of Alaska AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch in... the 2012 total allowable catch (TAC) of Pacific ocean perch in the Western Regulatory Area of the...

  19. 78 FR 39631 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Western...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Western Regulatory Area of the Gulf of Alaska AGENCY.... ACTION: Temporary rule; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch in... the 2013 total allowable catch of Pacific ocean perch in the Western Regulatory Area of the GOA....

  20. SEA Semester Undergraduates Research the Ocean's Role in Climate Systems in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Meyer, A. W.; Becker, M. K.; Grabb, K. C.

    2014-12-01

    Sea Education Association (SEA)'s fully accredited Oceans & Climate SEA Semester program provides upper-level science undergraduates a unique opportunity to explore the ocean's role in the global climate system as they conduct real-world oceanographic research and gain first-hand understanding of and appreciation for the collaborative nature of the scientific research process. Oceans & Climate is an interdisciplinary science and policy semester in which students also explore public policy perspectives to learn how scientific knowledge is used in making climate-related policy. Working first at SEA's shore campus, students collaborate with SEA faculty and other researchers in the local Woods Hole scientific community to design and develop an original research project to be completed at sea. Students then participate as full, working members of the scientific team and sailing crew aboard the 134-foot brigantine SSV Robert C. Seamans; they conduct extensive oceanographic sampling, manage shipboard operations, and complete and present the independent research project they designed onshore. Oceans & Climate SEA Semester Cruise S-250 sailed from San Diego to Tahiti on a 7-week, >4000nm voyage last fall (November-December 2013). This remote open-ocean cruise track traversed subtropical and equatorial regions of the Pacific particularly well suited for a diverse range of climate-focused studies. Furthermore, as SEA has regularly collected scientific data along similar Pacific cruise tracks for more than a decade, students often undertake projects that require time-series analyses. 18 undergraduates from 15 different colleges and universities participated in the S-250 program. Two examples of the many projects completed by S-250 students include a study of the possible relationship between tropical cyclone intensification, driven by warm sea surface temperatures, and the presence of barrier layers; and a study of nutrient cycling in the eastern Pacific, focusing on primary

  1. Connection of sea level height between Western Pacific and South Indian Ocean in recent decades

    NASA Astrophysics Data System (ADS)

    DU, Y.; Wang, T.; Zhuang, W.; Wang, J.

    2014-12-01

    Based on merged altimetry data and in site observations from tide gauges, we analyzed the fast increasing trend of sea surface height (SSH) in the recent two decades in the tropical Pacific and Indian Ocean. The results of analysis indicated a dynamic connection of SSH between the tropical western Pacific and the southeastern Indian Ocean. The low-frequency variations of SSH propagate westward in the tropical Pacific, enter the Indonesian Seas through the waveguide, and influence the southeastern India Ocean with the Kelvin-Rossby wave transformation. The thermal structure of upper ocean reveals the above adjustment mainly occur in the thermocline. However, the impacts from the Pacific are limited in the southeast Indian Ocean. In the central and west of the south Indian Ocean, local wind dominates the SSH changes in the last two decades. By lead-lag statistic analyses, we identified the cause of interdecadal from the interannual SSH variations. The interannual SSH variations is dominated by ENSO, forced by the anomalous wind along the equatorial Pacific. Whereas, the interdecadal SSH variations results from the off-equatorial wind stress curl, which is closely related to the Pacific Decadal Oscillation. The dynamic connections between the western Pacific and the south Indian Ocean were tested in the baroclinic Rossby wave solution and the numerical experiments based on the nonlinear reduced-gravity dynamics model.

  2. CO sub 2 measurements along the WOCE P-16 and 19 sections in the South Pacific Ocean: A joint LDGO/WHOI program

    SciTech Connect

    Chipman, D.W.; Takahashi, Taro.

    1991-07-18

    This report summarizes the progress made between October 15, 1990 through July 16, 1991, during the second year of the research grant and is submitted in support of the application of the third year continuation of the grant. Due to substantial delays in the refitting of the R/V KNORR, the field work which was originally scheduled to begin in October, 1990, had to be delayed by seven months and modified. In late May, 1991, our analytical equipment and personnel were loaded on the R/V THOMAS WASHINGTON, departing from San Diego, CA to Tahiti on May 31, 1991. During the 40-day first leg of the expedition, the CO{sub 2} analyses were carried out. Approximately 1500 seawater samples were analyzed for the total CO{sub 2} concentration and about one-third as many for alkalinity. Additional water samples were collected for land-based manometric measurements of total CO{sub 2} concentration. The second leg of this expedition is in progress. The data obtained during the expedition will be analyzed and interpreted during the third year of this grant. During the 7-month delay period, we have further improved and tested the coulometer and gas-chromatograph. The nature of improvements achieved and the results of tests conducted during this period is described. 2 figs.

  3. Comparative Study on the Electrical Properties of the Oceanic Mantle Beneath the Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Toh, H.

    2013-12-01

    We have been conducting long-term seafloor electromagnetic (EM) observations at two sites in the northwest Pacific since 2001. The older site was established at the deep seafloor (~5600m) on the northwest Pacific basin (Site NWP), while the new one was installed on the west Philippine basin (Site WPB) in 2006 at the slightly deeper (~5700m) seafloor. The ages of the oceanic basins at those sites are approximately 129 Ma for Site NWP (Shipboard Scientific Party of ODP Leg 191, 2000) and 49 Ma for Site WPB (Salisbury et al., 2006), respectively. The EM instruments deployed at those sites are seafloor EM stations (SFEMS; Toh et al., 2004 and 2006) and capable of measuring vector EM fields at the seafloor for as long as one year or more with other physical quantities such as the instruments' attitude, orientation and temperature. One of the objectives of the seafloor long-term EM observations by SFEMSs is to make a comparative study of the oceanic mantle with and without influence of the so-called 'stagnant slabs' in terms of their electrical conductivity. It is anticipated that the mantle transition zone under the influence of the stagnant slab has a higher electrical conductivity because the transition zone there could be wetter than that in the absence of the stagnant slab. In this context, the mantle transition zone beneath Site WPB can be said to have influence by the stagnant slab, while that beneath Site NWP does not. It, therefore, is basically possible to estimate how much water is present in each transition zone by comparison of the electrical conductivity profiles of the two. The one-dimensional electrical profile beneath Site NWP has been derived so far using the magnetotelluric (MT) and geomagnetic depth sounding (GDS) methods with significant jumps in the electrical property at 410 and 660km discontinuities. The jumps are approximately factors of 10 and 2, respectively (Ichiki et al., 2009). Here we show a profile beneath Site WPB using both MT and GDS

  4. Ocean Color and the Equatorial Annual Cycle in the Pacific

    NASA Astrophysics Data System (ADS)

    Hammann, A. C.; Gnanadesikan, A.

    2012-12-01

    The presence of chlorophyll, colored dissolved organic matter (CDOM) and other scatterers in ocean surface waters affect the flux divergence of solar radiation and thus the vertical distribution of radiant heating of the ocean. While this may directly alter the local mixed-layer depth and temperature (Martin 1985; Strutton & Chavez 2004), non-local changes are propagated through advection (Manizza et al. 2005; Murtugudde et al. 2002; Nakamoto et al. 2001; Sweeny et al. 2005). In and coupled feedbacks (Lengaigne et al. 2007; Marzeion & Timmermann 2005). Anderson et al. (2007), Anderson et al. (2009) and Gnanadesikan & Anderson (2009) have performed a series of experiments with a fully coupled climate model which parameterizes the e-folding depth of solar irradiance in terms of surface chlorophyll-a concentration. The results have so far been discussed with respect to the climatic mean state and ENSO variability in the tropical Pacific. We extend the discussion here to the Pacific equatorial annual cycle. The focus of the coupled experiments has been the sensitivity of the coupled system to regional differences in chlorophyll concentration. While runs have been completed with realistic SeaWiFS-derived monthly composite chlorophyll ('green') and with a globally chlorophyll-free ocean ('blue'), the concentrations in two additional runs have been selectively set to zero in specific regions: the oligotrophic subtropical gyres ('gyre') in one case and the mesotrophic gyre margins ('margin') in the other. The annual cycle of ocean temperatures exhibits distinctly reduced amplitudes in the 'blue' and 'margin' experiments, and a slight reduction in 'gyre' (while ENSO variability almost vanishes in 'blue' and 'gyre', but amplifies in 'margin' - thus the frequently quoted inverse correlation between ENSO and annual amplitudes holds only for the 'green' / 'margin' comparison). It is well-known that on annual time scales, the anomalous divergence of surface currents and vertical

  5. Boundary scavenging in the Pacific Ocean - A comparison of Be-10 and Pa-231

    NASA Technical Reports Server (NTRS)

    Anderson, R. F.; Lao, Y.; Broecker, W. S.; Trumbore, S. E.; Hofmann, H. J.

    1990-01-01

    Measurements of U, Th, Pa-231, and Be-10 concentrations were conducted in Holocene sediments from several sites representing open-ocean and ocean-margin environments in the Pacific Ocean. The results show that boundary scavenging plays a major role in the removal of Be-10 from the Pacific. Deposition of Be-10 is more than an order of magnitude greater at margin sites than at deep central Pacific sites, while Pa-231 is 4- to 5-fold greater at margin sites. The factors controling boundary scavenging of Pa and Be are discussed.

  6. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Nino-Southern Oscillation

    SciTech Connect

    Jin, F.F.

    1996-10-04

    The tropical Pacific basin allows strong feedbacks among the trade winds, equatorial zonal sea surface temperature contrast, and upper ocean heat content. Coupled atmosphere-ocean dynamics produce both the strong Pacific cold tongue climate state and the El Nino-Southern Oscillation phenomenon. A simple paradigm of the tropical climate system is presented, capturing the basic physics of these two important aspects of the tropic Pacific and basic features of the climate states of the Atlantic and Indian ocean basins. 21 refs., 3 figs.

  7. Spectral wave conditions in the Colombian Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Portilla, Jesús; Caicedo, Ana Lucía; Padilla-Hernández, Roberto; Cavaleri, Luigi

    2015-08-01

    A comprehensive characterization of the wave conditions in the Colombian Pacific based on wave spectra is presented. The spectral approach offers a detailed description of the different wave regimes, their associated meteorological conditions and their variation in time and geographical space. To this end, two complementary data sources are used, the first is representative for the near-shore zone and comes from observations of the local monitoring network. The second comes from numerical wave model results that cover the open ocean. The measured data used are the first systematically collected spectral wave data in the Eastern Equatorial Pacific. Modelled spectra correspond to the ERA-Interim database of the European Centre for Medium-Range Weather Forecasts that spans 35 years. An indicator for statistical analysis of the wave spectra has been introduced which basically consists of the occurrence probability of spectral partitions. This indicator has proved to be skilful for the task of defining spectral wave systems of both model and, the more challenging, measured spectra. Following the spectral approach and using this new indicator, six main wave regimes are found in the study area. Two of these systems have well defined swell characteristics that are originated outside the study area in the northern and southern hemispheres. Other three wave systems are to a certain extent associated to the local winds, and in general may be classified as old wind-seas. These are found to flow northeastwards, westwards, and southwards. The sixth system is composed of locally generated wind waves of relatively low magnitude that propagate in several directions. The time variability of these wave systems is highly dependent on the boreal and austral winter storms and on the tropical conditions, in such a way that the wave energy propagation to the region is rather constant along the year, but their origin and characteristics vary significantly.

  8. Observation of Directional Ocean Wave Spectra in China Seas and Northwest Pacific Ocean Using SAR Retrieval Software

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Zeng, Kan; He, Mingxia

    2014-11-01

    A software to retrieve directional ocean wave spectra from SAR images has been developed for China seas and northwest Pacific. The software, written with C programming language, is based on the MPI method proposed by Hasselmann. It is designed to support the wave mode SAR data of ERS, Envisat, Sentinel and so on. The directional ocean wave spectra produced by this software are validated with buoy data in global ocean area, northwest Pacific and China seas and the retrieved significant wave height (SWH) errors are 5.2%, 4.9% and 9.3% respectively. About 15,000 directional ocean wave spectra are obtained with the software from the wave mode data of Envisat/ASAR over the China seas and northwest Pacific during the period between Jan 2003 and Jan 2012. The preliminary analysis is presented.

  9. Helium isotopes in ferromanganese crusts from the central Pacific Ocean

    USGS Publications Warehouse

    Basu, S.; Stuart, F.M.; Klemm, V.; Korschinek, G.; Knie, K.; Hein, J.R.

    2006-01-01

    Helium isotopes have been measured in samples of two ferromanganese crusts (VA13/2 and CD29-2) from the central Pacific Ocean. With the exception of the deepest part of crust CD29-2 the data can be explained by a mixture of implanted solar- and galactic cosmic ray-produced (GCR) He, in extraterrestrial grains, and radiogenic He in wind-borne continental dust grains. 4He concentrations are invariant and require retention of less than 12% of the in situ He produced since crust formation. Loss has occurred by recoil and diffusion. High 4He in CD29-2 samples older than 42 Ma are correlated with phosphatization and can be explained by retention of up to 12% of the in situ-produced 4He. 3He/4He of VA13/2 samples varies from 18.5 to 1852 Ra due almost entirely to variation in the extraterrestrial He contribution. The highest 3He/4He is comparable to the highest values measured in interplanetary dust particles (IDPs) and micrometeorites (MMs). Helium concentrations are orders of magnitude lower than in oceanic sediments reflecting the low trapping efficiency for in-falling terrestrial and extraterrestrial grains of Fe-Mn crusts. The extraterrestrial 3He concentration of the crusts rules out whole, undegassed 4–40 μm diameter IDPs as the host. Instead it requires that the extraterrestrial He inventory is carried by numerous particles with significantly lower He concentrations, and occasional high concentration GCR-He-bearing particles.

  10. Interbasin effects of the Indian Ocean on Pacific decadal climate change

    NASA Astrophysics Data System (ADS)

    Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Chikamoto, Yoshimitsu; Ishii, Masayoshi

    2016-07-01

    We demonstrate the significant impact of the Indian Ocean on the Pacific climate on decadal timescales by comparing two sets of data assimilation experiments (pacemaker experiments) conducted over recent decades. For the Indian Ocean of an atmosphere-ocean coupled global climate model, we assimilate ocean temperature and salinity anomalies defined as deviations from climatology or as anomalies with the area-averaged changes for the Indian Ocean subtracted. When decadal sea surface temperature (SST) trends are observed to be strong over the Indian Ocean, the equatorial thermocline uniformly deepens, and the model simulates the eastward tendencies of surface wind aloft. Surface winds strongly converge around the maritime continent, and the associated strengthening of the Walker circulation suppresses an increasing trend in the equatorial Pacific SST through ocean thermocline shoaling, similar to common changes associated with seasonal Indian Ocean warming.

  11. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment.

    PubMed

    Pan, Jie; Sun, Cong; Zhang, Xin-Qi; Huo, Ying-Yi; Zhu, Xu-Fen; Wu, Min

    2014-08-01

    Strain CMB17(T) was a short rod-shaped bacterium isolated from marine sediment of the Pacific Ocean. Cells were Gram-stain-negative and non-motile. Optimal growth occurred at 25-30 °C, pH 6.5-7 and 0.5-1% (w/v) NaCl. The major fatty acid was C(18 : 1)ω7c (87.59%), and ubiquinone-10 was detected as the only isoprenoid quinone. The DNA G+C content of the genomic DNA was 62.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CMB17(T) is most closely related to Paracoccus stylophorae KTW-16(T) (96.7%), P. solventivorans DSM 6637(T) (96.4%) and P. saliphilus YIM 90738(T) (96.4%). Based on phenotypic, genotypic and phylogenetic characteristics, strain CMB17(T) is proposed to represent a novel species, denominated Paracoccus sediminis sp. nov. (type strain CMB17(T) = JCM 18467(T) = DSM 26170(T) = CGMCC 1.12681(T)). PMID:24812365

  12. Hydrogen peroxide and methyl hydroperoxide over the Northern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Bae, B.; Lee, M.

    2003-04-01

    H2O2 and CH3OOH were measured during the cruise sponsored by Intergovernmental Oceanographic Commission (IOC). Experiments were made from Osaka to Honolulu covering the North Pacific on the research vessel MelVill belonging to Scripps Institution of Oceanography in May - June 2002. Gaseous hydroperoxides were extracted onto aqueous solution using a continuous glass coil. Collected samples were analyzed by a high performance liquid chromatography (HPLC) with fluorescence detector using postcolumn enzyme derivatization. It was the first measurement of species specific hydroperoxides on the ship, particularly CH_3OOH. The concentration of H_2O_2 and CH_3OOH increased from 0.93 ±0.48 ppbv and 0.27±0.40 ppbv at higher latitudes (˜50^oN) to 2.05±0.87 ppbv and 2.47±0.76 ppbv at low latitudes (˜24^oN). Hydroperoxides showed a typical diurnal variation with maximum in the late afternoon and minimum right before sunrise. In general, hydroperoxide and ozone concentrations were negatively correlated, particularly in the afternoon. There was no clear minimum and concentrations were higher than 1 ppbv during the night. Moreover, H_2O_2 concentrations were gradually increased even after the sunset. Consequently, other source than known photochemical production was proposed that hydroperoxides could be generated from the ozonlysis of alkene emitted from the ocean.

  13. Early Palaeogene temperature evolution of the southwest Pacific Ocean.

    PubMed

    Bijl, Peter K; Schouten, Stefan; Sluijs, Appy; Reichart, Gert-Jan; Zachos, James C; Brinkhuis, Henk

    2009-10-01

    Relative to the present day, meridional temperature gradients in the Early Eocene age ( approximately 56-53 Myr ago) were unusually low, with slightly warmer equatorial regions but with much warmer subtropical Arctic and mid-latitude climates. By the end of the Eocene epoch ( approximately 34 Myr ago), the first major Antarctic ice sheets had appeared, suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX(86) record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude approximately 65 degrees S). We show that southwest Pacific SSTs rose above present-day tropical values (to approximately 34 degrees C) during the Early Eocene age ( approximately 53 Myr ago) and had gradually decreased to about 21 degrees C by the early Late Eocene age ( approximately 36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration, additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes. PMID:19812670

  14. From anchovies to sardines and back: multidecadal change in the Pacific Ocean.

    PubMed

    Chavez, Francisco P; Ryan, John; Lluch-Cota, Salvador E; Niquen C, Miguel

    2003-01-10

    In the Pacific Ocean, air and ocean temperatures, atmospheric carbon dioxide, landings of anchovies and sardines, and the productivity of coastal and open ocean ecosystems have varied over periods of about 50 years. In the mid-1970s, the Pacific changed from a cool "anchovy regime" to a warm "sardine regime." A shift back to an anchovy regime occurred in the middle to late 1990s. These large-scale, naturally occurring variations must be taken into account when considering human-induced climate change and the management of ocean living resources. PMID:12522241

  15. The seismic Moho structure of Shatsky Rise oceanic plateau, northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Jinchang; Sager, William W.; Korenaga, Jun

    2016-05-01

    Oceanic plateaus are large igneous provinces formed by extraordinary eruptions that create thick oceanic crust, whose structure is poorly known owing to the lack of deep-penetration seismic data. Multichannel seismic (MCS) reflection and wide-angle refraction data allow us to show Moho structure beneath a large part of the Shatsky Rise oceanic plateau in the northwest Pacific Ocean. Moho reflectors in the two data sets can be connected to trace the interface from the adjacent abyssal plain across much of the interior. The reflectors display varied character in continuity, shape, and amplitude, similar to characteristics reported in other locations. Beneath normal crust, the Moho is observed at ∼13 km depth (∼7 km below the seafloor) in MCS data and disappears at ∼20 km depth (∼17 km below the seafloor) beneath the high plateau. Moho at the distal flanks dips downward towards the center with slopes of ∼0.5°-1°, increasing to 3°-5° at the middle flanks. Seismic Moho topography is consistent with Airy isostasy, confirming this widely-applied assumption. Data from this study show that crustal thickness between the massifs in the interior of the plateau is nearly twice normal crustal thickness, despite the fact that this crust records apparently normal seafloor spreading magnetic lineations. The Moho model allows improved estimates of plateau area (5.33 ×105 km2) and volume (6.90 ×106 km3), the latter assuming that the entire crust was formed by Shatsky Rise volcanism because the massifs formed at spreading ridges. This study is unique in showing Moho depth and structure over an extraordinarily large area beneath an oceanic plateau, giving insight to plateau structure and formation.

  16. Upper Ocean Responses to typhoons in the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Hong, C.; Masuda, A.; Yoon, J.

    2012-12-01

    Responses of upper ocean to typhoons in the Northwestern Pacific are studied using historical temperature data obtained at a buoy station (St. 21004; 29°N,135°E) of the Japan Meteorological Agency during 1982-2000 and a three-dimensional primitive equation model (the Princeton Ocean Model; POM). In the data period, 25 typhoons passed through within ~200km from the buoy, and cooled overall the sea surface by 1.6-4.3°C. In particular, several intense, slowly moving typhoons (≤4ms-1) showed common features of temperature variations; they very much cooled the sea surface water by 3-4°C, and the cooled states kept longer than two weeks even after the passage of typhoons, and the SST minima occurred 1-2days after the typhoon passage. On the other hand, the subsurface temperatures at the depths of 50m and 100m increased 2-3days before the passage of typhoons, and showed near-inertial oscillations. The model is implemented for simulating the temperature variations with an intense, slowly moving Typhoon Abby (1983), and well reproduces these observed features before, during, and after the passage of the typhoon. The deepening of the surface mixed layer was simulated as well, though the corresponding observation was not available. The model also revealed that the subsurface temperature temporal-variation is roughly governed by a linearized thermal equation, showing that the temperature variation is mostly caused by the vertical displacement of the stratified water columns. An unexpected result in the numerical model is the appearance of a surface cyclonic flow in the rear of the typhoon, which was accompanied by the depression of the sea surface. Obviously such features could not have been detected from the analysis of temperature data only. In other presentation (Masuda and Hong, 2012), a theoretical explanation is given to both the surface cyclonic current and temperature variation of the upper ocean based on our conceptual model.; Fig.1. Time series of the observed

  17. Oxygen gradients across the Pacific Ocean: Resolving an apparent discrepancy between atmospheric and ocean observations and models

    NASA Astrophysics Data System (ADS)

    Mikaloff Fletcher, S. E.; Steinkamp, K.; Stephens, B. B.; Tohjima, Y.; Gruber, N.

    2015-12-01

    We use oceanic and atmospheric model simulations to investigate and resolve a disagreement between observations of atmospheric O2/N2 and CO2 data and air-sea fluxes estimated from an ocean inversion. Atmospheric observations of O2/N2 and CO2 can be combined to calculate atmospheric potential oxygen (APO=O2/N2+1.1CO2), a powerful atmospheric tracer for ocean biogeochemical processes that is not influenced by terrestrial photosynthesis or respiration. A recent study identified a deep APO minimum in the Northwest Pacific from measurements collected on a repeat transect between New Zealand and Japan. This minimum could not be reproduced in atmospheric model simulations forced with air-sea fluxes estimated from ocean data, suggesting that oxygen uptake in the Northwest Pacific must be under-estimated by a factor of two. We use an updated ocean inverse method to estimate new air-sea fluxes from the ocean interior measurements at a higher spatial resolution than previous work using a suite of ten ocean general circulation models (OGCMs). These new air-sea flux estimates are able to match the atmospheric APO data when used as boundary conditions for an atmospheric transport model. The relative roles of thermal and biological processses in contributing to oxygen absorption by the North Pacific and other ocean regions is investigated.

  18. High-precision measurements of {sup 14}C as a circulation tracer in the Pacific, Indian, and Southern Oceans with Accelerator Mass Spectrometry (AMS)

    SciTech Connect

    Reden, Karl F. von; Peden, John C.; Schneider, Robert J.; Bellino, Mary; Donoghue, Joanne; Elder, Kathryn L.; Gagnon, Alan R.; Long, Patricia; McNichol, Ann P.; Morin, Tracey; Stuart, Dana; Hayes, John M.; Key, Robert M.

    1999-04-26

    The National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS) has completed the carbon isotope analysis of a major fraction of the 13,500 sea water samples collected in the framework of the World Ocean Circulation Experiment (WOCE) from three of the major world oceans between 1991 and 1996. We will describe the AMS technique employed at NOSAMS and, using 3-D data visualization techniques we will demonstrate the present status of the data set and offer some preliminary conclusions about the distribution of natural and anthropogenic {sup 14}C in the oceans. In particular, we will be able to compare some of the data with results from the Geochemical Ocean Sections Study (GEOSECS, 1972-1978) to obtain information about the time dependence of oceanic circulation processes, tracing the {sup 14}C signal introduced into the oceans during the atmospheric nuclear bomb tests in the 1950's and 1960's.

  19. Evidence for transoceanic migrations by loggerhead sea turtles in the southern Pacific Ocean.

    PubMed

    Boyle, M C; Fitzsimmons, N N; Limpus, C J; Kelez, S; Velez-Zuazo, X; Waycott, M

    2009-06-01

    Post-hatchling loggerhead turtles (Caretta caretta) in the northern Pacific and northern Atlantic Oceans undertake transoceanic developmental migrations. Similar migratory behaviour is hypothesized in the South Pacific Ocean as post-hatchling loggerhead turtles are observed in Peruvian fisheries, yet no loggerhead rookeries occur along the coast of South America. This hypothesis was supported by analyses of the size-class distribution of 123 post-hatchling turtles in the South Pacific and genetic analysis of mtDNA haplotypes of 103 nesting females in the southwest Pacific, 19 post-hatchlings stranded on the southeastern Australian beaches and 22 post-hatchlings caught by Peruvian longline fisheries. Only two haplotypes (CCP1 93% and CCP5 7%) were observed across all samples, and there were no significant differences in haplotype frequencies between the southwest Pacific rookeries and the post-hatchlings. By contrast, the predominant CCP1 haplotype is rarely observed in North Pacific rookeries and haplotype frequencies were strongly differentiated between the two regions (F(st)=0.82; p=<0.00001). These results suggest that post-hatchling loggerhead turtles emerging from the southwest Pacific rookeries are undertaking transoceanic migrations to the southeastern Pacific Ocean, thus emphasizing the need for a broader focus on juvenile mortality throughout the South Pacific to develop effective conservation strategies. PMID:19324768

  20. 33 CFR 334.1390 - Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean at Barking Sands... REGULATIONS § 334.1390 Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. (a... individual basis, by prior arrangement with the Commanding Officer, Pacific Missile Range Facility,...

  1. 33 CFR 334.1390 - Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Barking Sands... REGULATIONS § 334.1390 Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. (a... individual basis, by prior arrangement with the Commanding Officer, Pacific Missile Range Facility,...

  2. 75 FR 38938 - Fisheries of the Exclusive Economic Zone Off Alaska; Northern Rockfish, Pacific Ocean Perch, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Economic Zone Off Alaska; Northern Rockfish, Pacific Ocean Perch, and Pelagic Shelf Rockfish for Catcher... northern rockfish, Pacific ocean perch, and pelagic shelf rockfish for catcher vessels participating in the... necessary to prevent exceeding the 2010 total allowable catch (TAC) of northern rockfish, Pacific...

  3. 75 FR 41999 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch for Catcher Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... Economic Zone Off Alaska; Pacific Ocean Perch for Catcher Vessels Participating in the Rockfish Entry Level...; modification of closure. SUMMARY: NMFS is reopening directed fishing for Pacific ocean perch by trawl catcher... Alaska (GOA). This action is necessary to fully use the 2010 directed fishing allowance of Pacific...

  4. 76 FR 39790 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch for Catcher Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Economic Zone Off Alaska; Pacific Ocean Perch for Catcher Vessels Participating in the Rockfish Entry Level...; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch by trawl catcher vessels...). This action is necessary ] to prevent exceeding the 2011 directed fishing allowance of Pacific...

  5. 75 FR 38936 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch for Catcher Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Economic Zone Off Alaska; Pacific Ocean Perch for Catcher Vessels Participating in the Rockfish Entry Level...; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch by trawl catcher vessels...). This action is necessary to prevent exceeding the 2010 directed fishing allowance of Pacific...

  6. 76 FR 43934 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch for Catcher/Processors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... Economic Zone Off Alaska; Pacific Ocean Perch for Catcher/Processors Participating in the Rockfish Limited...; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch by catcher/processors...). This action is necessary to prevent exceeding the 2011 total allowable catch (TAC) of Pacific...

  7. 75 FR 42337 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch for Catcher/Processors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... Economic Zone Off Alaska; Pacific Ocean Perch for Catcher/Processors Participating in the Rockfish Limited...; closure. SUMMARY: NMFS is prohibiting directed fishing for Pacific ocean perch by catcher/processors...). This action is necessary to prevent exceeding the 2010 total allowable catch (TAC) of Pacific...

  8. 76 FR 39793 - Fisheries of the Exclusive Economic Zone Off Alaska; Northern Rockfish, Pacific Ocean Perch, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Economic Zone Off Alaska; Northern Rockfish, Pacific Ocean Perch, and Pelagic Shelf Rockfish for Catcher... northern rockfish, Pacific ocean perch, and pelagic shelf rockfish for catcher vessels participating in the... necessary to prevent exceeding the 2011 total allowable catch (TAC) of northern rockfish, Pacific...

  9. Metal quotas of plankton in the equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Twining, Benjamin S.; Baines, Stephen B.; Bozard, James B.; Vogt, Stefan; Walker, Elyse A.; Nelson, David M.

    2011-03-01

    The micronutrient metals Mn, Fe, Co, Ni and Zn are required for phytoplankton growth, and their availability influences ocean productivity and biogeochemistry. Here we report the first direct measurements of these metals in phytoplankton and protozoa from the equatorial Pacific Ocean. Cells representing 4 functional groups (diatoms, autotrophic flagellates, heterotrophic flagellates and autotrophic picoplankton) were collected from the surface mixed layer using trace-metal clean techniques during transects across the equator at 110°W and along the equator between 110°W and 140°W. Metal quotas were determined for individual cells with synchrotron x-ray fluorescence microscopy, and cellular stoichiometries were calculated relative to measured P and S, as well as to C calculated from biovolume. Bulk particulate (>3 μm) metal concentrations were also determined at 3 stations using inductively coupled plasma mass spectrometry for comparison to single-cell stoichiometries. Phosphorus-normalized Mn, Fe, Ni and Zn ratios were significantly higher in diatoms than other cell types, while Co stoichiometries were highest in autotrophic flagellates. The magnitude of these effects ranged from approximately 2-fold for Mn in diatoms and autotrophic flagellates to nearly an order of magnitude for Fe in diatoms and picoplankton. Variations in S-normalized metal stoichiometries were also significant but of lower magnitude (1.4 to 6-fold). Cobalt and Mn quotas were 1.6 and 3-fold higher in autotrophic than heterotrophic flagellates. Autotrophic picoplankton were relatively enriched in Ni but depleted in Zn, matching expectations based on known uses of these metals in prokaryotes and eukaryotes. Significant spatial variability in metal stoichiometries was also observed. At two stations deviations in Fe stoichiometries reflected features in the dissolved Fe distribution. At these same stations, high Ni stoichiometries in autotrophic flagellates were correlated with elevated ammonium

  10. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean.

    PubMed

    Desforges, Jean-Pierre W; Galbraith, Moira; Ross, Peter S

    2015-10-01

    Microplastics are increasingly recognized as being widespread in the world's oceans, but relatively little is known about ingestion by marine biota. In light of the potential for microplastic fibers and fragments to be taken up by small marine organisms, we examined plastic ingestion by two foundation species near the base of North Pacific marine food webs, the calanoid copepod Neocalanus cristatus and the euphausiid Euphausia pacifia. We developed an acid digestion method to assess plastic ingestion by individual zooplankton and detected microplastics in both species. Encounter rates resulting from ingestion were 1 particle/every 34 copepods and 1/every 17 euphausiids (euphausiids > copepods; p = 0.01). Consistent with differences in the size selection of food between these two zooplankton species, the ingested particle size was greater in euphausiids (816 ± 108 μm) than in copepods (556 ± 149 μm) (p = 0.014). The contribution of ingested microplastic fibres to total plastic decreased with distance from shore in euphausiids (r (2) = 70, p = 0.003), corresponding to patterns in our previous observations of microplastics in seawater samples from the same locations. This first evidence of microplastic ingestion by marine zooplankton indicate that species at lower trophic levels of the marine food web are mistaking plastic for food, which raises fundamental questions about potential risks to higher trophic level species. One concern is risk to salmon: We estimate that consumption of microplastic-containing zooplankton will lead to the ingestion of 2-7 microplastic particles/day by individual juvenile salmon in coastal British Columbia, and ≤91 microplastic particles/day in returning adults. PMID:26066061

  11. Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Danovaro, R.; Gambi, C.; Della Croce, N.

    2002-05-01

    Meiofaunal assemblages were investigated (in terms of abundance, biomass, individual size and community structure) at bathyal and hadal depths (from 1050 to 7800 m) in the Atacama Trench in the upwelling sector of the eastern South Pacific Ocean, in relation to the distribution and availability of potential food sources (phytopigments, biochemical compounds and bacterial biomass) in this highly productive region. Meiofaunal density and biomass in the Atacama Trench were one to two orders of magnitude higher than values reported in other "oligotrophic" hadal systems. The Atacama Trench presented very high concentrations of nutritionally rich organic matter at 7800-m depth and displayed characteristics typical of eutrophic systems. Surprisingly, despite a decrease in chlorophyll- a and organic matter concentrations of about 50% from bathyal to hadal depths, meiofaunal abundance in hadal sediments was 10-fold higher than at bathyal depths. As indicated by the higher protein to carbohydrate ratio observed in trench sediments, the extraordinarily high meiofaunal density reported in the Atacama Trench was more dependent upon organic matter quality than on its quantity. The trophic richness of the system was reflected by a shift of the size structure of the benthic organisms. In contrast with typical trends of deep-sea systems, the ratio of bacterial to meiofaunal biomass decreased with increasing depth and, in the Atacama Trench, meiofaunal biomass largely dominated total benthic biomass. Nematodes at 7800-m depth accounted for more than 80% of total density and about 50% of total meiofaunal biomass. In hadal sediments a clear meiofaunal dwarfism was observed: the individual body size of nematodes and other taxa was reduced by 30-40% compared to individuals collected at bathyal depths. The peculiarity of this trophic-rich system allows rejection of previous hypotheses, which explained deep-sea dwarfism by the extremely oligotrophic conditions typical of deep-sea regions.

  12. Calcite production by coccolithophores in the south east Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; Couapel, M.; Buchet, N.; Claustre, H.; Goyet, C.

    2008-08-01

    BIOSOPE cruise covered an oceanographic transect through the centre of the South Pacific Gyre (SPG) from the Marquesas archipelago to the Peru-Chile upwelling (PCU). Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks were usually low and reached maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales) represented more than 30% of all the suspended calcite particles detected in the size range 0.1 46 μm (22% of PIC in term of calcite weight). These species grew preferentially in the Chlorophyll maximum zone. In the SPG their maximum cell concentrations were recorded between depth of 150 and 200 m, which is unusually deep for these taxa. The weight of coccoliths and coccospheres were correlated to their size. Large and heavy coccoliths and coccospheres were found in regions with relatively high fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres were found west of the PCU. This distribution is strongly related to ocean chemistry in particular to alkalinity and to carbonate ions concentration. The biotic (coccolithophores production) influence on calcification is mainly driven at the local scale (depth) whereas the abiotic (carbonate chemistry) plays its most important role at the regional (horizontal) level. Here 94% of the variability of coccolith and coccosphere weight can be explained by a change in 7 environmental variables.

  13. Northwest Pacific Ocean during the last 20,000 years: Initial results of the Sino-German Pacific Ocean Experiment (SiGePax)

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerrit; Lembke-Jene, Lester; Scholz, Patrick; Gong, Xun; Max, Lars; Tiedemann, Ralf; Shi, Xuefa; Zou, Jianjun; Liu, Yanguang; Wu, Yonghua; Ge, Shulan

    2016-04-01

    Arctic and Subarctic Regions are most sensitive to climate change, and reversely provide dramatic feedbacks to the global climate. Paleoclimate studies in these regions are of vital importance for a better understanding of the natural processes in the climate system prior to the influences of human activities. With a focus on discovering paleoceanographic evolutions in the Northwest Pacific Ocean during the last 20,000 years, we show first results of the German-Sino cooperation programme SiGePax. We present a collection of sediment cores covering climatical key regions in the Northwest Pacific Ocean. Our climate simulations provide the first step towards 'Data-Model Syntheses', which are crucial for exploring the underlying mechanisms of observed changes in proxy records. Analyses of Holocene sea surface temperature records on a basin-wide scale show a spatially heterogenous, but no simple warming or cooling pattern, indicating that extratropical atmospheric dynamics is involved. The temperature data are compared to model scenarios. We use the Finite-Element Sea-Ice Ocean Model (FESOM) in a global configuration, with a regional focus on the marginal seas of the Northwest Pacific Ocean to provide the underlying dynamics. We find that the Okhotsk Sea is characterized by a highly dynamical sea-ice cover, where due to brine release, the Okhotsk Sea Intermediate Water is formed, contributing to North Pacific Intermediate Water.

  14. 33 CFR 334.1350 - Pacific Ocean, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, Island of Oahu, Hawaii; danger zone. 334.1350 Section 334.1350 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean, Island of Oahu, Hawaii; danger zone. (a) The danger zone. Beginning at point of origin at...

  15. 33 CFR 334.1350 - Pacific Ocean, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, Island of Oahu, Hawaii; danger zone. 334.1350 Section 334.1350 Navigation and Navigable Waters CORPS OF ENGINEERS... Ocean, Island of Oahu, Hawaii; danger zone. (a) The danger zone. Beginning at point of origin at...

  16. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling

    NASA Astrophysics Data System (ADS)

    Rustic, Gerald T.; Koutavas, Athanasios; Marchitto, Thomas M.; Linsley, Braddock K.

    2015-12-01

    Tropical Pacific Ocean dynamics during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are poorly characterized due to a lack of evidence from the eastern equatorial Pacific. We reconstructed sea surface temperature, El Niño-Southern Oscillation (ENSO) activity, and the tropical Pacific zonal gradient for the past millennium from Galápagos ocean sediments. We document a mid-millennium shift (MMS) in ocean-atmosphere circulation around 1500-1650 CE, from a state with dampened ENSO and strong zonal gradient to one with amplified ENSO and weak gradient. The MMS coincided with the deepest LIA cooling and was probably caused by a southward shift of the intertropical convergence zone. The peak of the MCA (900-1150 CE) was a warm period in the eastern Pacific, contradicting the paradigm of a persistent La Niña pattern.

  17. Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling.

    PubMed

    Rustic, Gerald T; Koutavas, Athanasios; Marchitto, Thomas M; Linsley, Braddock K

    2015-12-18

    Tropical Pacific Ocean dynamics during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) are poorly characterized due to a lack of evidence from the eastern equatorial Pacific. We reconstructed sea surface temperature, El Niño-Southern Oscillation (ENSO) activity, and the tropical Pacific zonal gradient for the past millennium from Galápagos ocean sediments. We document a mid-millennium shift (MMS) in ocean-atmosphere circulation around 1500-1650 CE, from a state with dampened ENSO and strong zonal gradient to one with amplified ENSO and weak gradient. The MMS coincided with the deepest LIA cooling and was probably caused by a southward shift of the intertropical convergence zone. The peak of the MCA (900-1150 CE) was a warm period in the eastern Pacific, contradicting the paradigm of a persistent La Niña pattern. PMID:26634438

  18. The Effect of ENSO on Phytoplankton Composition in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (p less than 0.01) with the Multivariate El Nino Southern Oscillation Index (MEI). In the North Central Pacific, MEI and chlorophyll were significantly (p<0.01) correlated along with two of the phytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Ni a events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  19. 78 FR 73110 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... ocean perch (POP) in the Bering Sea subarea of the BSAI under Sec. 679.20(d)(1)(iii) (78 FR 13813, March... Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea Subarea of the Bering Sea and Aleutian... directed fishing for Pacific ocean perch in the Bering Sea subarea of the Bering Sea and Aleutian...

  20. World Ocean Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Clarke, R. Allyn

    1992-01-01

    The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.

  1. Can Indian Ocean SST variability impact TC activity in the South Pacific? A Spatial Analysis

    NASA Astrophysics Data System (ADS)

    Magee, Andrew D.; Verdon-Kidd, Danielle C.; Kiem, Anthony S.

    2015-04-01

    Tropical Cyclones (TCs) represent a significant natural hazard to the 15 island nations and 2.7 million inhabitants of the South Pacific, accounting for 76% of reported disasters in the region since 1950. This vast area, dominated by the coupled ocean-atmosphere interactions of the South Pacific fuels the highly variable nature of TCs (both spatially and temporally), leading to difficulties in planning for and responding to these extreme events. While it is well known that the El Niño/Southern Oscillation (ENSO) plays a significant role in modulating the background state on which TCs form, there are other large-scale climate drivers operating on annual timescales or longer within the South Pacific (e.g. ENSO Modoki and the Interdecadal Pacific Oscillation) and outside the Pacific Basin (e.g. the Indian Ocean Dipole and the Southern Annular Mode) that may also influence TC formation. In response to this issue, the impact of these large-scale climate drivers upon the spatial characteristics of tropical cyclogenesis is assessed for the South Pacific region (5o-35oS, 145oE-130oW) over a 67-year period (1945-2011). It is shown, that in addition to the impact of 'Pacific-centric' climate drivers, eastern Indian Ocean sea surface temperatures significantly impact the spatial characteristics of tropical cyclogenesis in the South Pacific. In particular, warming (cooling) in the eastern Indian Ocean is found to result in an eastward (westward) shift in the average location of tropical cyclogenesis in the South Pacific (up to 712km between extreme phases). One mechanism that may account for this east/west modulation of TC activity in the South Pacific is the propagation of warmer water from the Timor Sea through the Coral Sea to the Pacific, resulting in a strengthening of the Pacific Warm Pool and associated meteorological characteristics connected with tropical cyclogenesis. Understanding how other large-scale climate modes interact with Indian Ocean processes is important

  2. Comparison of the cloud activation potential of open ocean and coastal aerosol in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Vidaurre, G.; Brooks, S. D.; Thornton, D. C.

    2010-12-01

    Continuous measurements of aerosol concentration, particle size distribution, and cloud activation potential between 0.15 and 1.2% supersaturation were performed for open ocean and coastal air during the Halocarbon Air Sea Transect - Pacific (HalocAST) campaign. The nearly 7000 mile transect, aboard the R/V Thomas G. Thompson, started in Punta Arenas, Chile and ended in Seattle, Washington. Air mass source regions were identified on the basis of air mass back trajectories. For air masses in the southern hemisphere, aerosols sampled over the open ocean acted as cloud condensation nuclei at supersaturations between 0.5 and 1%, while coastal aerosols required higher supersaturations. In the pristine open ocean, observed aerosol concentrations were very low, typically below 200 cm-3, with an average particle diameter of approximately 0.4 μm. On the other hand, coastal aerosol concentrations were above 1000 cm-3 with an average particle diameter of 0.7 μm. Air masses originating in the northern hemisphere had much higher aerosol loads, between 500 and 2000 cm-3 over the ocean and above 4000 cm-3 at the coast. In both cases, the average particle diameters were approximately 0.5 μm. Measurements suggest that the northern hemisphere, substantially more polluted than the southern hemisphere, is characterized by alternating regions of high and medium aerosol number concentration. In addition, measurements of microorganism and organic matter concentration in the surface layer of the ocean water were conducted along the cruise track, to test the hypothesis that biogenic aerosol containing marine organic matter contribute to cloud activation potential. There was a significant correlation between mean aerosol diameter and prokaryote concentration in surface waters (r = 0.585, p < 0.01, n = 24), and between critical supersaturation and prokaryote concentration in surface waters (r = 0.538, p < 0.01, n = 24). This correlation indicates that larger aerosols occurred over water

  3. WOCE 1991 chlorofluorocarbon standard intercomparison report. Data report

    SciTech Connect

    Bullister, J.L.; Menzia, F.; Wisegarver, D.P.

    1993-07-01

    A chlorofluorocarbon (CFC) standard intercomparison study was done among ten laboratories involved in measurements of dissolved and atmospheric CFCs as part of the World Ocean Circulation Experiment (WOCE) and other programs. The goal of the study was to compare CFC calibration scales and to allow CFC data sets collected by the participating groups to be merged together more easily. One cyclinder was distributed to each participating laboratory for analysis and return to PMEL. Within the precision of the analytical techniques used at PMEL, the CFC-11 and CFC-12 concentrations in the cylinders remained uniform throughout the intercomparison exercise. The CFC-113 and carbon tetrachloride content of the cylinders remained relatively uniform in all but one of the cylinders analyzed. The CFC-11 concentrations reported by participating laboratories ranged from 258.8 to 275.6 parts-per-trillion (PPT). The reported CFC-12 concentrations ranged from 487.4 to 503.5 PPT. Two laboratories reported values for CFC-113, and only one laboratory reported a value for carbon tetrachloride. Details of the calibration techniques used by the ten participating laboratories are given in the Appendices of the report.

  4. Ash Emissions and Risk Management in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Steensen, T. S.; Webley, P. W.; Stuefer, M.

    2012-12-01

    Located in the 'Ring of Fire', regions and communities around the Pacific Ocean often face volcanic eruptions and subsequent ash emissions. Volcanic ash clouds pose a significant risk to aviation, especially in the highly-frequented flight corridors around active volcano zones like Indonesia or Eastern Russia and the Alaskan Aleutian Islands. To mitigate and manage such events, a detailed quantitative analysis using a range of scientific measurements, including satellite data and Volcanic Ash Transport and Dispersion (VATD) model results, needs to be conducted in real-time. For the case study of the Sarychev Peak eruption in Russia's Kurile Islands during 2009, we compare ash loading and dispersion from Weather Research and Forecast model with online Chemistry (WRF-Chem) results with satellite data of the eruption. These parameters are needed for the real-time management of volcanic crises to outline no-fly zones and to predict the areas that the ash is most likely to reach in the near future. In the early stages after the eruption, an international group with representatives from the Kamchatkan and Sachalin Volcanic Eruption Response Teams (KVERT, SVERT), the National Aeronautics and Space Administration (NASA), and the Alaska Volcano Observatory (AVO) published early research on the geological and geophysical characteristics of the eruption and the behavior of the resulting ash clouds. The study presented here is a follow-up project aimed to implement VATD model results and satellite data retrospectively to demonstrate the possibilities to develop this approach in real-time for future eruptions. Our research finds that, although meteorological cloud coverage is high in those geographical regions and, consequently, these clouds can cover most of the ash clouds and as such prevent satellites from detecting it, both approaches compare well and supplement each other to reduce the risk of volcanic eruptions. We carry out spatial extent and absolute quantitative

  5. Interannual sea level variability in the tropical Pacific Ocean from 1993 to 2006

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Zuo, Juncheng; Li, Yanfang; Chen, Meixiang

    2013-08-01

    Three net surface heat flux products, namely from 1) version 2 of Common Ocean Reference Experiment (CORE.2), 2) Objectively Analyzed Air-Sea Fluxes (OAFlux), and 3) the European Centre for Medium-Range Weather Forecasts operational ocean analysis/reanalysis system (ECMWF ORA-S3), and three wind stress products, namely from 1) CORE.2, 2) Simple Ocean Data Assimilation Reanalysis, version 2.1.6 (SODA 2.1.6), and 3) ECMWF ORA-S3 are used to investigate the abilities of four simple oceanic mechanisms in explaining the interannual variance of altimetry-derived sea surface height (SSH) anomalies in the tropical Pacific Ocean over the period 1993-2006. It is found that local response to surface heating plays an important role in sea level rise along the western equatorial Pacific (150°-180°E). The dominant processes affecting interannual variability of observed SSH anomalies vary regionally in the tropical Pacific; local response to surface heating, local Ekman pumping, wind-induced first baroclinic mode Rossby waves and the eastern boundary forcing are all important. Both the local response to surface heating and the eastern boundary forcing are important in explaining the interannual variance of observed SSH anomalies in the northeastern tropical Pacific; while the dominant contribution to interannual sea level variability in the southeastern tropical Pacific is from the eastern boundary forcing, the local Ekman pumping plays a relatively minor role in the interannual SSH change there. The wind-induced first baroclinic mode Rossby waves dominate interannual SSH variability in the western tropical Pacific, excluding the area of 2°-10°N, west of 170°E. Although a large part of the interannual sea level variability in the western tropical Pacific is related to the oceanic remote adjustment to wind stress forcing, the contributions of local responses to surface heating and wind forcing cannot be overlooked.

  6. Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian-Emperor bend

    NASA Astrophysics Data System (ADS)

    O'Connor, John M.; Hoernle, Kaj; Müller, R. Dietmar; Morgan, Jason P.; Butterworth, Nathaniel P.; Hauff, Folkmar; Sandwell, David T.; Jokat, Wilfried; Wijbrans, Jan R.; Stoffers, Peter

    2015-05-01

    Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions. A distinctive bend in the Hawaiian-Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate, movement of the Hawaiian plume, or a combination of both. However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian-Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. 40Ar/39Ar dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian-Emperor bend, 53-52 and 48-47 million years ago. We conclude that the Hawaiian-Emperor bend was formed by plate-mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins.

  7. Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon

    PubMed Central

    Ueda, Hiroaki; Kamae, Youichi; Hayasaki, Masamitsu; Kitoh, Akio; Watanabe, Shigeru; Miki, Yurisa; Kumai, Atsuki

    2015-01-01

    Recent research indicates that the cooling trend in the tropical Pacific Ocean over the past 15 years underlies the contemporaneous hiatus in global mean temperature increase. During the hiatus, the tropical Pacific Ocean displays a La Niña-like cooling pattern while sea surface temperature (SST) in the Indian Ocean has continued to increase. This SST pattern differs from the well-known La Niña-induced basin-wide cooling across the Indian Ocean on the interannual timescale. Here, based on model experiments, we show that the SST pattern during the hiatus explains pronounced regional anomalies of rainfall in the Asian monsoon region and thermodynamic effects due to specific humidity change are secondary. Specifically, Indo-Pacific SST anomalies cause convection to intensify over the tropical western Pacific, which in turn suppresses rainfall in mid-latitude East Asia through atmospheric teleconnection. Overall, the tropical Pacific SST effect opposes and is greater than the Indian Ocean SST effect. PMID:26564801

  8. Aerosol transport along the Andes from Amazonia to the remote Pacific Ocean: A multiyear CALIOP assessment

    NASA Astrophysics Data System (ADS)

    Bourgeois, Quentin; Ekman, Annica; Krejci, Radovan

    2015-04-01

    The free troposphere over South America and the Pacific Ocean is a particularly interesting region to study due to the prevailing easterly wind direction, forcing air over Amazonia towards the Pacific Ocean but encountering a natural barrier - the Andes - in between which might play a significant role. In addition, the strong contrast between the wet, relatively clean season and the dry, relatively polluted season as well as the difference between day and night meteorological conditions may influence the vertical distribution of aerosols in the free troposphere. Six years (2007-2012) of CALIOP observations at both day and night were used to investigate the vertical distribution, transport and removal processes of aerosols over South America and the Pacific Ocean. The multiyear assessment shows that aerosols, mainly biomass burning particles emitted during the dry season in Amazonia, may be lifted along the Andes. During their lifting, aerosols remain in the boundary layer which makes them subject to scavenging and deposition processes. The removal aerosol extinction rate was quantified. After reaching the top of the Andes, free tropospheric aerosols are likely pushed by the large-scale subsidence towards the marine boundary layer (MBL) during their transport over the Pacific Ocean. CALIOP observations may indicate that aerosols are transported over thousands of kilometers in the free troposphere over the Pacific Ocean. During their long range transport, aerosols could be entrained into the MBL and may further act as cloud condensation nuclei, and influence climate and the radiative budget of the Earth.

  9. Tropical Pacific Nutrient Dynamics From the Late Quaternary to the Modern Ocean

    NASA Astrophysics Data System (ADS)

    Rafter, P. A.; Charles, C. D.; Sigman, D. M.

    2008-12-01

    New measurements of the nitrogen isotopic composition of nitrate in the modern tropical Pacific illustrate the power of the d15N tracer to resolve aspects of upper ocean dynamics such as water mass origin, mixing, nutrient cycling, and productivity. Here we couple these modern day measurements with a network of nitrogen isotopic records from sediment cores across the equatorial Pacific to provide, in effect, a synoptic view of eastern tropical Pacific productivity and nutrient cycling over the ice ages. Specifically, the suite of sediment cores spanning the large gradient in equatorial Pacific surface properties is crucial to distinguishing between secular changes in the isotopic composition of nitrate and varying nitrate uptake by phytoplankton. The sediment d15N record from the nitrate-free west Pacific warm pool provides us with the record of secular nitrate isotopic variability for the tropical Pacific-a record that must be a product of either denitrification in the eastern tropical Pacific or pre-formed high latitude influences. This western equatorial Pacific sediment d15N record can then be used as a baseline to remove the secular d15N trend from sediment records in the nitrate-rich eastern equatorial Pacific. With this approach, we resolve nearly complete relative nitrate utilization for surface waters of the eastern tropical Pacific at glacial maxima. Variability in relative nitrate utilization off the Peru Margin is high during interglacial and low during glacial periods with a strong 100 kyr frequency.

  10. First Lanuginellinae (Porifera, Hexactinellida, Rossellidae) from the NE Pacific and first species of Doconesthes from the Pacific Ocean.

    PubMed

    Reiswig, Henry M

    2015-01-01

    A new sac-shaped hexactinellid collected from western Canada bearing long lateral prostal spicules was first thought to be a typical Rossellinae.  Subsequent examination of its spiculation proved it to have distinctive strobiloplumicomes, typical of the subfamily Lanuginellinae.  Other spicules showed it to be a member of the monospecific genus Doconesthes, known previously only from the North Atlantic Ocean.  The new species described here as Doconesthes dustinchiversi is only the second known species of the genus and the first to be found in the Pacific Ocean. PMID:25781403

  11. Equatorward shift of annual Rossby waves in the Equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Sun, Che

    2016-01-01

    Annual Rossby wave is a key component of the ENSO phenomenon in the equatorial Pacific Ocean. Due to the paucity and seasonal bias in historical hydrographic data, previous studies on equatorial Rossby waves only gave qualitative description. The accumulation of Argo measurements in recent years has greatly alleviated the data problem. In this study, seasonal variation of the equatorial Pacific Ocean is examined with annual harmonic analysis of Argo gridded data. Results show that strong seasonal signal is present in the western equatorial Pacific and explains more than 50% of the thermal variance below 500 m. Lag-correlation tracing further shows that this sub-thermocline seasonal signal originates from the eastern equatorial Pacific via downward and southwestward propagation of annual Rossby waves. Possible mechanisms for the equatorward shift of Rossby wave path are also discussed.

  12. The Pacific and Indian Ocean Exchange: Analysis of the Imos Timor Passage and Ombai Strait Moorings

    NASA Astrophysics Data System (ADS)

    Sloyan, B.; Wijffels, S. A.; Cowley, R.

    2014-12-01

    A fundamental aspect of observing, describing, understanding and modeling the global climate and particularly the Maritime Continent, is a better knowledge of the fluxes of momentum, heat and freshwater in the ocean. The Indonesian seas are the only major low-latitude connection in the global oceans. This connection permits the transfer of Pacific waters into the Indian Ocean, known as the Indonesian Throughflow. The interaction of the Pacific and Indian basins and their modes of variability (El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD)), both through atmospheric teleconnections and the ocean link via the Indonesian Throughflow, is now being hotly pursued in the research community. We will present some initial findings from the 3-year time series (2011-2014) of the Timor Passage and Ombai Strait moorings. This mooring array is a component of the Australian Integrated Marine Observing System (IMOS), and builds on the earlier results of the INSTANT (2003-2006) observational program. The moorings comprise of velocity, temperature and salinity instruments. Observations from these moorings provide the required spatial and temporal coverage to understand ocean dynamics, the ocean's role in climate variability and change, investigate forcing of the atmosphere and ocean and assess the realism of data-assimilative ocean models and coupled ocean-atmosphere models.

  13. Observations of wind-forced deep ocean currents in the North Pacific

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.; Niiler, P. P.; Schmitz, W. J., Jr.

    1989-01-01

    The role of the quasi-steady Sverdrup balance in the midlatitude atmospheric response in the North Pacific was investigated by examining 200 instrument-years of moored current measurements in the deep ocean across the breadth of the midlatitude North Pacific. These data provide evidence of a seasonal modulation in the ocean eddy kinetic energy beneath the thermocline at several locations north of 35 deg N, which was often found to be in phase with the local atmospheric forcing function. Results of the measurements indicate that, throughout the midlatitude North Pacific, topography plays a crucial role in the wind forced response; the bottom slope tends to enhance the beta effect in this basin. Topography narrows the available bandwidth for forced barotropic Rossby waves, facilitating a quasi-steady topographic Sverdrup response over most of the basin. However, the enhanced beta effect reduces the magnitude of the ocean's response to wind forcing.

  14. Biogeochemical linkage between atmosphere and ocean in the eastern equatorial Pacific Ocean: Results from the EqPOS research cruise

    NASA Astrophysics Data System (ADS)

    Furutani, H.; Inai, Y.; Aoki, S.; Honda, H.; Omori, Y.; Tanimoto, H.; Iwata, T.; Ueda, S.; Miura, K.; Uematsu, M.

    2012-12-01

    Eastern equatorial Pacific Ocean is a unique oceanic region from several biogeochemical points of view. It is a remote open ocean with relatively high marine biological activity, which would result in limited influence of human activity but enhanced effect of marine natural processes on atmospheric composition. It is also characterized as high nutrient low chlorophyll (HNLC) ocean, in which availability of trace metals such as iron and zinc limits marine primary production and thus atmospheric deposition of these trace elements to the ocean surface is expected to play an important role in regulating marine primary production and defining unique microbial community. High sea surface temperature in the region generates strong vertical air convection which efficiently brings tropospheric atmospheric composition into stratosphere. In this unique eastern equatorial Pacific Ocean, EqPOS (Equatorial Pacific Ocean and Stratospheric/Tropospheric Atmospheric Study) research cruise was organized as a part of SOLAS Japan activity to understand biogeochemical ocean-atmospheric interaction in the region. Coordinated atmospheric, oceanic, and marine biological observations including sampling/characterization of thin air-sea interfacial layer (sea surface microlayer: SML) and launching large stratospheric air sampling balloons were carried out on-board R/V Hakuho Maru starting from 29 January for 39 days. Biogeochemically important trace/long-lived gases such as CO2, dimethyl sulfide (DMS), and some volatile organic carbons (VOCs) both in the atmosphere and seawater were continuously monitored and their air-sea fluxes were also observed using gradient and eddy-covariance techniques. Atmospheric gas measurement of CO2, CH4, N2O, SF6, CO, H2, Ar and isotopic composition of selected gases were further extended to stratospheric air by balloon-born sampling in addition to a vertical profiling of O3, CO2, and H2O with sounding sondes. Physical and chemical properties of marine

  15. The variability of the surface wind field in the equatorial Pacific Ocean: Criteria for satellite measurements

    NASA Technical Reports Server (NTRS)

    Halpern, D.

    1984-01-01

    The natural variability of the equatorial Pacific surface wind field is described from long period surface wind measurements made at three sites along the equator (95 deg W, 109 deg 30 W, 152 deg 30 W). The data were obtained from surface buoys moored in the deep ocean far from islands or land, and provide criteria to adequately sample the tropical Pacific winds from satellites.

  16. Seasonal variation of the surface North Equatorial Countercurrent (NECC) in the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Li, Yuanlong; Wang, Fan

    2016-03-01

    The North Equatorial Countercurrent (NECC) is an important zonal flow in the upper circulation of the tropical Pacific Ocean, which plays a vital role in the heat budget of the western Pacific warm pool. Using satellite-derived data of ocean surface currents and sea surface heights (SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacific Ocean was investigated. It was found that the intensity (INT) and axis position (Y CM) of the surface NECC exhibit strikingly different seasonal fluctuations in the upstream (128°-136°E) and downstream (145°-160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and YCM are greatly influenced by variations of the Mindanao Eddy, Mindanao Dome (MD), and equatorial Rossby waves to its south. Both INT and Y CM also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacific and local wind forcing in the western Pacific Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacific Ocean. Those in the MD region are especially important in modulating the YCM of the downstream NECC. In addition to the SSH-related geostrophic flow, zonal Ekman flow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions reflect the high complexity of regional ocean dynamics.

  17. Distribution of He-3 in the intermediate waters of the Indian Ocean: implications for mid-depth circulation and mixing

    NASA Astrophysics Data System (ADS)

    Schlosser, P.; Hohmann, R.; Winckler, G.; Newton, R.; Srinivasan, A.; Top, Z.; Lupton, J.; Jenkins, W.; Jean-Baptiste, P.

    2003-04-01

    Since the discovery of mantle He-3 in the ocean by Clarke et al. (1969) this isotope has been used in numerous studies of the mid-depth circulation of the ocean. Data from GEOSECS and a number of cruises dedicated to the mapping of He-3 in the Pacific Ocean provided a solid foundation for oceanographic applications even before the WOCE survey. In the Indian Ocean the data set was sparser and the WOCE Hydrographic Program for the first time provided coverage that was sufficiently dense to map out the major features of the 3He plumes. We present and discuss d3He distributions constructed from WOCE data, the GEOSECS survey, as well as from smaller cruises that aimed at defining sources on the Mid Ocean Ridges. The delta He-3 distributions are plotted on isopycnal surfaces corresponding to depths of major He-3 sources. The major plume can be found close to the depth of the Mid-Ocean Ridge crests. This main plume spreads from the western basin to the eastern Indian Ocean. It seems to be emanated from a limited stretch of the MOR near to, but distinctly off, the Triple Junction. It is slightly elongated in a southwestern direction and can easily be distinguished from the plumes originating in the Indonesian Throughflow regime and in the Gulf of Aden. The d3He values in the mid-depth plume emanating from the MOR decrease towards the south (ACC). This feature indicates ventilation in the Southern Ocean. It is concentrated at depths between 1500 and 3500 meters with maximum delta He-3 concentrations (about 18%) found around 2500 meters depth. The plume can easily be traced over distances of 2500 km or more. Implications of the delta He-3 field for mixing and spreading of the intermediate waters are discussed.

  18. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years

    NASA Astrophysics Data System (ADS)

    Winckler, Gisela; Anderson, Robert F.; Jaccard, Samuel L.; Marcantonio, Franco

    2016-05-01

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity.

  19. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.

    PubMed

    Winckler, Gisela; Anderson, Robert F; Jaccard, Samuel L; Marcantonio, Franco

    2016-05-31

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity. PMID:27185933

  20. Volcanology and Geochemistry of the Taney Seamounts northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Coumans, J. P.; Clague, D. A.; Stix, J.

    2011-12-01

    The Taney seamounts are a NW-SE trending, linear, near-ridge chain consisting of five submarine volcanoes located on the Pacific plate 300 km west of San Francisco, California. Morphologically, the seamounts are characterized as truncated cones with nested calderas decreasing in age towards the ridge axis. This study examines the volcanology and geochemistry of the largest and oldest seamount, (Taney A, ~26 Ma), which is comprised of four well-exposed nested calderas. Each successive collapse event exposes previously infilled lavas, defining a relative chronology. The caldera walls and intracaldera pillow mounds were carefully sampled by the remotely operated vehicle (ROV) Doc Ricketts to obtain stratigraphically-controlled samples. Whole rock samples were analyzed for major and trace elements, volcanic glasses were analyzed for major and volatile elements(S, Cl), and plagioclase phenocrysts were separated for mineral and glass inclusion microprobe analysis. Overall, the erupted lavas are mostly subalkalic mid-ocean ridge basalts (MORB) varying from differentiated to more primitive (6.0 - 8.2 wt. % MgO) with decreasing age. Incompatible elements and REE profiles normalized to primitive mantle suggest that the lavas are transitional to slightly enriched (0.1 - 0.3 wt. % K2O; 1.1 - 2.2 wt. % TiO2), which is unusual for near-ridge seamounts. Sc, which is compatible in clinopyroxene, increases linearly with TiO2 at primitive compositions (>7.0 wt. % MgO). In more evolved seamount basalts (<7.0 wt. % MgO), the low CaO and Sc contents and decreasing CaO/Al2O3 suggest that there is either extensive clinopyroxene fractionation, or mixing with magmas that have undergone extensive clinopyroxene fractionation. MELTS modeling suggests that clinopyroxene fractionation occurs at <6.0 wt. % MgO, inconsistent with the observed clinopyroxene imprint at <7.0 wt. % MgO. The discrepancy could indicate magma mixing. Although whole rock ICP-MS data have some scatter, especially for

  1. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (November 2-December 5, 1996) and A24, A20, and A22 (May 30-September 3, 1997)

    SciTech Connect

    Johnson, K.M.

    2003-10-23

    This documentation describes the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) total alkalinity (TALK), and partial pressure of CO{sub 2} (pCO{sub 2}) at hydrographic stations on the North Atlantic Ocean sections AR24, A24, A20, and A22 during the R/V Knorr Cruises 147-2, 151-2, 151-3, and 151-4 in 1996 and 1997. Conducted as part of the World Ocean Circulation Experiment (WOCE), the expeditions began at Woods Hole, Massachusetts, on October 24, 1996, and ended at Woods Hole on September 3, 1997. Instructions for accessing the data are provided. A total of 5,614 water samples were analyzed for discrete TCO{sub 2} using two single-operator multiparameter metabolic analyzers (SOMMAs) coupled to a coulometer for extracting and detecting CO{sub 2}. The overall accuracy of the TCO{sub 2} determination was {+-} 1.59 {micro}mol/kg. The TALK was determined in a total of 6,088 discrete samples on all sections by potentiometric titration using an automated titration system developed at the University of Miami. The accuracy of the TALK determination was {+-} 3 {micro}mol/kg. A total of 2,465 discrete water samples were collected for determination of pCO{sub 2} in seawater on sections A24, A20, and A22. The pCO{sub 2} was measured by means of an equilibrator-IR system by scientists from Lamont-Doherty Earth Observatory. The precision of the measurements was estimated to be about {+-} 0.15%, based on the reproducibility of the replicate equilibrations on a single hydrographic station. The North Atlantic data set is available as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of 12 ASCII data files, one Ocean Data View-formatted data file, a NDP-082 ASCII text file, a NDP-082 PDF file, and this printed documentation, which describes the contents and format of all files, as well as the procedures and methods used to obtain the data.

  2. Sea-air partitioning of mercury in the equatorial Pacific Ocean

    SciTech Connect

    Kim, J.P.; Fitzgerald, W.F.

    1986-03-07

    The partitioning of gaseous mercury between the atmosphere and surface waters was determined in the equatorial Pacific Ocean. The highest concentrations of dissolved gaseous mercury occurred in cooler, nutrient-rich waters that characterize equatorial upwelling and increased biological productivity at the sea surface. The surface waters were supersaturated with respect to elemental mercury; a significant flux of elemental mercury to the atmosphere is predicted for the equatorial Pacific. When normalized to primary production on a global basis, the ocean effluxes of mercury may rival anthropogenic emissions of mercury to the atmosphere. 23 references, 2 figures.

  3. The East Asian Sea: A vanished Cenozoic ocean between the Pacific and Indian oceans revealed by subducted slab constraints

    NASA Astrophysics Data System (ADS)

    Wu, Jonny; Lu, Renqi; Suppe, John; Kanda, Ravi V. S.

    2014-05-01

    We have mapped an extensive 2500 km by 7500 km swath of sub-horizontal slabs at 600 to 1200 km depths that we call the 'East Asian Sea'. The northern margin of the East Asian Sea slabs begin at Taiwan and Japan, and extend south to SE Australia near New Zealand, underlying the Philippine Sea, the Caroline Sea, New Guinea, and northern to eastern Australia. When restored with other mapped slabs under Asia-Oceania, the mapped slabs reveal a vanished ocean that existed between the Pacific and Indian oceans in the Cenozoic. The subduction of the Asian Sea fills a crucial gap in plate tectonic reconstructions of East Asia by accounting for a significant proportion of fast Pacific and Indo-Australian convergence towards Eurasia since 43 Ma, during which time the Pacific moved ~3000 km WNW and Australia moved ~2500 km northward in a near-orthogonal direction relative to a mantle reference. In addition, the Australian plate expanded up to 2000 km at its northern and eastern margins. Slabs were primarily mapped from the MITP08 global P-wave mantle tomographic model (Li et al., 2008) and compared to other global P- and S-wave global tomography. Reconstructed slab lengths were assessed by quantitative flexural slip unfolding of mid-slab surfaces to a spherical Earth surface model. Seismic tomographic volumes were also calculated for selected serial cross-sections. We present a plate tectonic reconstruction with the slab constraints, with the implication that the East Asian Sea was progressively overrun and subducted beneath the Philippine Sea, the Caroline Sea and the expanding Melanesian arcs. Reconstructions to earlier periods indicate the East Asian Sea was originally Pacific or proto-Pacific mantle lithosphere, and was fragmented from the Pacific plate during the major ~45 Ma Eocene motion change. This implies that the East Asian Sea was initially the upper plate of the Mariana and Tonga-Kermadec Western Pacific subduction zones.

  4. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch.

    PubMed

    Stott, Lowell; Cannariato, Kevin; Thunell, Robert; Haug, Gerald H; Koutavas, Athanasios; Lund, Steve

    2004-09-01

    In the present-day climate, surface water salinities are low in the western tropical Pacific Ocean and increase towards the eastern part of the basin. The salinity of surface waters in the tropical Pacific Ocean is thought to be controlled by a combination of atmospheric convection, precipitation, evaporation and ocean dynamics, and on interannual timescales significant variability is associated with the El Niño/Southern Oscillation cycles. However, little is known about the variability of the coupled ocean-atmosphere system on timescales of centuries to millennia. Here we combine oxygen isotope and Mg/Ca data from foraminifers retrieved from three sediment cores in the western tropical Pacific Ocean to reconstruct Holocene sea surface temperatures and salinities in the region. We find a decrease in sea surface temperatures of approximately 0.5 degrees C over the past 10,000 yr, whereas sea surface salinities decreased by approximately 1.5 practical salinity units. Our data imply either that the Pacific basin as a whole has become progressively less salty or that the present salinity gradient along the Equator has developed relatively recently. PMID:15343330

  5. Response of the tropical Pacific Ocean to El Niño versus global warming

    NASA Astrophysics Data System (ADS)

    Liu, Fukai; Luo, Yiyong; Lu, Jian; Wan, Xiuquan

    2016-04-01

    Climate models project an El Niño-like SST response in the tropical Pacific Ocean to global warming (GW). By employing the Community Earth System Model and applying an overriding technique to its ocean component, Parallel Ocean Program version 2, this study investigates the similarity and difference of formation mechanism for the changes in the tropical Pacific Ocean under El Niño and GW. Results show that, despite sharing some similarities between the two scenarios, there are many significant distinctions between GW and El Niño: (1) the phase locking of the seasonal cycle reduction is more notable under GW compared with El Niño, implying more extreme El Niño events in the future; (2) in contrast to the penetration of the equatorial subsurface temperature anomaly that appears to propagate in the form of an oceanic equatorial upwelling Kelvin wave during El Niño, the GW-induced subsurface temperature anomaly manifest in the form of off-equatorial upwelling Rossby waves; (3) while significant across-equator northward heat transport (NHT) is induced by the wind stress anomalies associated with El Niño, little NHT is found at the equator due to a symmetric change in the shallow meridional overturning circulation that appears to be weakened in both North and South Pacific under GW; and (4) heat budget analysis shows that the maintaining mechanisms for the eastern equatorial Pacific warming are also substantially different.

  6. Upper Colorado River and Great Basin streamflow and snowpack forecasting using Pacific oceanic-atmospheric variability

    NASA Astrophysics Data System (ADS)

    Oubeidillah, Abdoul A.; Tootle, Glenn A.; Moser, Cody; Piechota, Thomas; Lamb, Kenneth

    2011-11-01

    SummaryWater managers in western U.S., including areas such as the State of Utah, are challenged with managing scarce resources and thus, rely heavily on forecasts to allocate and meet various water demands. The need for improved streamflow and snowpack forecast models in the Upper Colorado River and Great Basin is of the utmost importance. In this research, the use of oceanic and climatic variables as predictors to improve the long lead-time (three to nine months) forecast of streamflow and snowpack was investigated. Singular Value Decomposition (SVD) analysis was used to identify a region of Pacific Ocean SSTs and a region of 500 mbar geopotential height (Z 500) that were teleconnected with streamflow (and snowpack) in Upper Colorado River and Great Basin headwaters. The resulting Pacific Ocean SSTs and Z 500 regions were used to create indices that were then used as predictors in a non-parametric forecasting model. The majority of forecasts resulted in positive statistical skill, which indicated an improvement of the forecast over the climatology or no-skill forecast. The results indicated that derived indices from Pacific Ocean SSTs were better suited for long lead-time (six to nine month) forecasts of streamflow (and snowpack) while the derived indices from Z 500 improved short-lead time (3 month) forecasts. In all, the results of the forecast model indicated that incorporating Pacific oceanic-atmospheric climatic variability in forecast models can lead to improved forecasts for both streamflow and snowpack.

  7. Plutonium and 137Cs in surface water of the South Pacific Ocean.

    PubMed

    Hirose, K; Aoyama, M; Fukasawa, M; Kim, C S; Komura, K; Povinec, P P; Sanchez-Cabeza, J A

    2007-08-01

    The present plutonium and 137Cs concentrations in South Pacific Ocean surface waters were determined. The water samples were collected in the South Pacific mid-latitude region (32.5 degrees S) during the BEAGLE expedition conducted in 2003-04 by JAMSTEC. 239,240Pu concentrations in surface seawater of the South Pacific were in the range of 0.5 to 4.1 mBq m(-3), whereas 137Cs concentrations ranged from 0.07 to 1.7 Bq m(-3). The observed 239,240Pu and 137Cs concentrations in the South Pacific were almost of the same level as those in the North Pacific subtropical gyre. The surface 239,240Pu in the South Pacific subtropical gyre showed larger spatial variations than 137Cs, as it may be affected by physical and biogeochemical processes. The 239,240Pu/137Cs activity ratios, which reflect biogeochemical processes in seawater, were generally smaller than that observed in global fallout, except for the most eastern station. The 239,240Pu/137Cs ratios in the South Pacific tend to be higher than that in the North Pacific. The relationships between anthropogenic radionuclides and oceanographic parameters such as salinity and nutrients were examined. The 137Cs concentrations in the western South Pacific (the Tasman Sea) and the eastern South Pacific were negatively correlated with the phosphate concentration, whereas there is no correlation between the 137Cs and nutrients concentrations in the South Pacific subtropical gyre. The mutual relationships between anthropogenic radionuclides and oceanographic parameters are important for better understanding of transport processes of anthropogenic radionuclides and their fate in the South Pacific. PMID:17459459

  8. A Southern Ocean trigger for Northwest Pacific ventilation during the Holocene?

    PubMed Central

    Rella, S. F.; Uchida, M.

    2014-01-01

    Holocene ocean circulation is poorly understood due to sparsity of dateable marine archives with submillennial-scale resolution. Here we present a record of mid-depth water radiocarbon contents in the Northwest (NW) Pacific Ocean over the last 12.000 years, which shows remarkable millennial-scale variations relative to changes in atmospheric radiocarbon inventory. Apparent decoupling of these variations from regional ventilation and mixing processes leads us to the suggestion that the mid-depth NW Pacific may have responded to changes in Southern Ocean overturning forced by latitudinal displacements of the southern westerly winds. By inference, a tendency of in-phase related North Atlantic and Southern Ocean overturning would argue against the development of a steady bipolar seesaw regime during the Holocene. PMID:24509792

  9. Impact of effective ocean optical properties on the Pacific subtropical cell: a CGCM study

    NASA Astrophysics Data System (ADS)

    Yamanaka, G.; Tsujino, H.; Ishizaki, H.; Nakano, H.; Hirabara, M.

    2012-12-01

    The choice of ocean radiant scheme is important for modeling the upper ocean. According to the ocean-only simulation (Yamanaka et al., 2012), introduction of the chlorophyll-a dependent ocean radiant scheme results in the decreased mixed layer depth (MLD), the enhanced subtropical cell (STC), and the cooling of the eastern tropical Pacific sea surface temperature (SST). They also found that the enhanced STC results from the velocity profile change associated with the decreased Ekman boundary layer. However, the impact is not well understood when the air-sea feedback process is at work. This study examines the impact of the effective ocean optical properties on the Pacific mean fields, especially focusing on the STC, using a coupled general circulation model (CGCM). The CGCM we employed is the Meteorological Research Institute Earth System Model (MRI-ESM1). The atmospheric model is TL159L48, and the ocean model has a horizontal resolution of 1 x 0.5 deg. with 51 levels in vertical. Experimental design basically follows the CMIP5 protocol. Two experiments (CTL and SLR runs) are performed to investigate the impact of the effective ocean optical properties. In the CTL run, a conventional ocean radiant heating scheme (Paul and Simpson, 1977) is used, whereas a new ocean radiant heating scheme is used in the SLR run, where the satellite-derived chlorophyll-a distribution is taken into consideration based on Morel and Antoine (1994) as well as the effect of the varying solar angle (Ishizaki and Yamanaka, 2010). Each experiment is integrated during the period from 1985 to 2005. It is found that introduction of the new ocean radiant scheme (SLR run) changes the long-term mean wind pattern in the Pacific: easterly winds are strengthened in the equatorial Pacific, but weakened in the off-equatorial region. In the tropical Pacific, the enhanced equatorial upwelling cools the equatorial SST and the MLD becomes shallower. This is similar to the ocean-only simulation, but is more

  10. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline...

  11. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a)...

  12. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine...

  13. 33 CFR 334.1410 - Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range. 334.1410 Section 334.1410 Navigation and... RESTRICTED AREA REGULATIONS § 334.1410 Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu,...

  14. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a)...

  15. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage...

  16. 33 CFR 334.1420 - Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing range. 334.1420 Section 334.1420... AND RESTRICTED AREA REGULATIONS § 334.1420 Pacific Ocean off Orote Point, Apra Harbor, Island of...

  17. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline...

  18. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage...

  19. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline...

  20. 33 CFR 334.1420 - Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing range. 334.1420 Section 334.1420... AND RESTRICTED AREA REGULATIONS § 334.1420 Pacific Ocean off Orote Point, Apra Harbor, Island of...

  1. 33 CFR 334.1420 - Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing range. 334.1420 Section 334.1420... AND RESTRICTED AREA REGULATIONS § 334.1420 Pacific Ocean off Orote Point, Apra Harbor, Island of...

  2. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a)...

  3. 33 CFR 334.1410 - Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range. 334.1410 Section 334.1410 Navigation and... RESTRICTED AREA REGULATIONS § 334.1410 Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu,...

  4. 33 CFR 334.1410 - Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range. 334.1410 Section 334.1410 Navigation and... RESTRICTED AREA REGULATIONS § 334.1410 Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu,...

  5. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage...

  6. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine...

  7. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine...

  8. 78 FR 27124 - Pacific Ocean Off the Kekaha Range Facility at Barking Sands, Island of Kauai, Hawaii; Danger Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Department of the Army, Corps of Engineers 33 CFR Part 334 Pacific Ocean Off the Kekaha Range Facility at... amend its regulations to establish a new danger zone in waters of the Pacific Ocean off the Kekaha Range... National Guard to continue small arms training operations at the Kekaha Range Facility and to protect...

  9. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a)...

  10. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST... Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. (a) The anchorage...

  11. 33 CFR 334.1420 - Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing range. 334.1420 Section 334.1420... AND RESTRICTED AREA REGULATIONS § 334.1420 Pacific Ocean off Orote Point, Apra Harbor, Island of...

  12. 33 CFR 334.1390 - Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. 334.1390 Section 334.1390 Navigation and Navigable... REGULATIONS § 334.1390 Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility....

  13. 33 CFR 334.900 - Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.900 Section 334.900 Navigation and Navigable Waters... REGULATIONS § 334.900 Pacific Ocean, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. (a)...

  14. 33 CFR 334.1390 - Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. 334.1390 Section 334.1390 Navigation and Navigable... REGULATIONS § 334.1390 Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility....

  15. 33 CFR 334.1410 - Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range. 334.1410 Section 334.1410 Navigation and... RESTRICTED AREA REGULATIONS § 334.1410 Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu,...

  16. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine...

  17. 33 CFR 334.1420 - Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean off Orote Point, Apra Harbor, Island of Guam, Marianas Islands; small arms firing range. 334.1420 Section 334.1420... AND RESTRICTED AREA REGULATIONS § 334.1420 Pacific Ocean off Orote Point, Apra Harbor, Island of...

  18. 33 CFR 334.1410 - Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu, Hawaii, Makai Undersea Test Range. 334.1410 Section 334.1410 Navigation and... RESTRICTED AREA REGULATIONS § 334.1410 Pacific Ocean, at Makapuu Point, Waimanalo, Island of Oahu,...

  19. 33 CFR 334.910 - Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine Corps Base, Camp Pendleton, Calif.; restricted area. 334.910 Section 334.910... AND RESTRICTED AREA REGULATIONS § 334.910 Pacific Ocean, Camp Pendleton Boat Basin, U.S. Marine...

  20. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and... Grounds § 110.236 Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline...

  1. 76 FR 46207 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch for Catcher Vessels...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ...NMFS is opening directed fishing for Pacific ocean perch by trawl catcher vessels participating in the rockfish entry level fishery in the Central Regulatory Area of the Gulf of Alaska (GOA) for 48 hours. This action is necessary to fully use the 2011 directed fishing allowance of Pacific ocean perch for trawl catcher vessels participating in the rockfish entry level fishery in the Central......

  2. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean, Western Space and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... Point Arguello, unless prior permission is obtained from the Commander, Western Space and Missile...

  3. 33 CFR 110.218 - Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean at San Clemente Island, Calif.; in vicinity of Wilson Cove. 110.218 Section 110.218 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.218 Pacific Ocean at San Clemente Island,...

  4. 75 FR 69361 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ... groundfish in the BSAI (75 FR 11778, March 12, 2010). The harvest specification for the 2010 Pacific ocean... Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea Subarea of the Bering Sea and Aleutian... 2011 harvest specifications for groundfish of the BSAI (75 FR 11778, March 12, 2010). In...

  5. 75 FR 68726 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ...NMFS is opening directed fishing for Pacific ocean perch in the Bering Sea subarea of the Bering Sea and Aleutian Islands management area. This action is necessary to fully use the 2010 total allowable catch of Pacific ocean perch specified for the Bering Sea subarea of the Bering Sea and Aleutian Islands management...

  6. 33 CFR 110.236 - Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pacific Ocean off Barbers Point, Island of Oahu, Hawaii: Offshore pipeline terminal anchorages. 110.236 Section 110.236 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.236 Pacific Ocean off...

  7. 77 FR 42439 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the West Yakutat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ...NMFS is prohibiting directed fishing for Pacific ocean perch in the West Yakutat District of the Gulf of Alaska (GOA). This action is necessary to prevent exceeding the 2012 total allowable catch (TAC) of Pacific ocean perch in the West Yakutat District of the...

  8. 76 FR 70665 - Fisheries of the Exclusive Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... Economic Zone Off Alaska; Pacific Ocean Perch in the Bering Sea Subarea of the Bering Sea and Aleutian...) of Pacific ocean perch in the Bering Sea subarea was established as 4,854 metric tons (mt) by the final 2011 and 2012 harvest specifications for groundfish of the BSAI (76 FR 11139, March 1, 2011)....

  9. Oceanic Control of Northeast Pacific Hurricane Activity at Interannual Timescales

    SciTech Connect

    Balaguru, Karthik; Leung, Lai-Yung R.; Yoon, Jin-Ho

    2013-10-16

    Despite the strong dependence of the Power Dissipation Index (PDI), which is a measure of the intensity of Tropical Cyclone (TC) activity, on tropical sea-surface temperatures (SSTs), the variations in PDI are not completely explained by SST. Here we show, using an analysis of a string of observational data sets, that the variability of the thermocline depth (TD) in the east Pacific exerts a significant degree of control on the variability of PDI in that region. On average, a deep thermocline with a larger reservoir of heat favors TC intensification by reducing SST cooling while a shallow thermocline with a smaller heat reservoir promotes enhanced SST cooling that contributes to TC decay. At interannual time scales, the variability of basin-mean TD accounts for nearly 30% of the variability in the PDI during the TC season. Also, about 20% of the interannual variability in the east Pacific basin-mean TD is due to the El Niño and the Southern Oscillation (ENSO), a dominant climate signal in this region. This study suggests that a better understanding of the factors governing the interannual variability of the TD conditions in the east Pacific and how they may change over time, may lead to an improved projection of future east Pacific TC activity.

  10. IRON LIMITATION OF PHYTOPLANKTON PHOTOSYNTHESIS IN THE EQUATORIAL PACIFIC OCEAN

    EPA Science Inventory

    The surface waters of the equatorial Pacific have unusually high nitrate and phosphate concentrations, but relatively low phytoplankton biomass. his high nitrate, low chlorophyll' (HNLC) phenomenon has been ascribed to 'top-down' grazing pressure by herbivores which prevent the p...

  11. Reviewing the circulation and mixing of Antarctic Intermediate Water in the South Pacific using evidence from geochemical tracers and Argo float trajectories

    NASA Astrophysics Data System (ADS)

    Bostock, Helen C.; Sutton, Phil J.; Williams, Michael J. M.; Opdyke, Bradley N.

    2013-03-01

    Evidence from physical and geochemical tracers measured during the World Ocean Circulation Experiment (WOCE) shows that there are four sub-types of Antarctic Intermediate Water (AAIW) in the South Pacific. The main formation region of AAIW is the southeast Pacific, where fresh, cold, high oxygen, low nutrient, intermediate waters are created. This AAIW is transported north and mixes with Equatorial Pacific Intermediate Waters (EqPIW), themselves a combination of AAIW and nutrient rich, old North Pacific deep waters. 'Tasman' AAIW found in the Coral and Tasman Seas is more saline and warmer than the main subtropical gyre, and appears to have formed from mixing of AAIW with thermocline waters in the Tasman Gyre. Tasman AAIW leaks out of the Tasman basin to the north of New Zealand and along Chatham Rise, and also in the South Tasman Sea via the Tasman Leakage. Another source of relatively fresh, high oxygen, low nutrient, young AAIW comes directly from the Southern Ocean, flowing into the southwest and central South Pacific Basin, west of the East Pacific Rise. This 'Southern Ocean' (SO) AAIW is most likely a mixture of AAIW formed locally at the Subantarctic Front (SAF), and AAIW formed along the SAF in the southeast Pacific or Indian oceans and transported by the Antarctic Circumpolar Current (ACC). Interpreting physical and geochemical tracers, combined with velocity estimates from Argo floats, and previous research, has allowed us to refine the detailed circulation pattern of AAIW in the South Pacific, especially in the topographically complex southwest Pacific.

  12. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean.

    PubMed

    Resing, Joseph A; Sedwick, Peter N; German, Christopher R; Jenkins, William J; Moffett, James W; Sohst, Bettina M; Tagliabue, Alessandro

    2015-07-01

    Hydrothermal venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean that are of critical importance for the global carbon cycle. It has been thought that most of the dissolved iron discharged by hydrothermal vents is lost from solution close to ridge-axis sources and is thus of limited importance for ocean biogeochemistry. This long-standing view is challenged by recent studies which suggest that stabilization of hydrothermal dissolved iron may facilitate its long-range oceanic transport. Such transport has been subsequently inferred from spatially limited oceanographic observations. Here we report data from the US GEOTRACES Eastern Pacific Zonal Transect (EPZT) that demonstrate lateral transport of hydrothermal dissolved iron, manganese, and aluminium from the southern East Pacific Rise (SEPR) several thousand kilometres westward across the South Pacific Ocean. Dissolved iron exhibits nearly conservative (that is, no loss from solution during transport and mixing) behaviour in this hydrothermal plume, implying a greater longevity in the deep ocean than previously assumed. Based on our observations, we estimate a global hydrothermal dissolved iron input of three to four gigamoles per year to the ocean interior, which is more than fourfold higher than previous estimates. Complementary simulations with a global-scale ocean biogeochemical model suggest that the observed transport of hydrothermal dissolved iron requires some means of physicochemical stabilization and indicate that hydrothermally derived iron sustains a large fraction of Southern Ocean export production. PMID:26156374

  13. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Resing, Joseph A.; Sedwick, Peter N.; German, Christopher R.; Jenkins, William J.; Moffett, James W.; Sohst, Bettina M.; Tagliabue, Alessandro

    2015-07-01

    Hydrothermal venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean that are of critical importance for the global carbon cycle. It has been thought that most of the dissolved iron discharged by hydrothermal vents is lost from solution close to ridge-axis sources and is thus of limited importance for ocean biogeochemistry. This long-standing view is challenged by recent studies which suggest that stabilization of hydrothermal dissolved iron may facilitate its long-range oceanic transport. Such transport has been subsequently inferred from spatially limited oceanographic observations. Here we report data from the US GEOTRACES Eastern Pacific Zonal Transect (EPZT) that demonstrate lateral transport of hydrothermal dissolved iron, manganese, and aluminium from the southern East Pacific Rise (SEPR) several thousand kilometres westward across the South Pacific Ocean. Dissolved iron exhibits nearly conservative (that is, no loss from solution during transport and mixing) behaviour in this hydrothermal plume, implying a greater longevity in the deep ocean than previously assumed. Based on our observations, we estimate a global hydrothermal dissolved iron input of three to four gigamoles per year to the ocean interior, which is more than fourfold higher than previous estimates. Complementary simulations with a global-scale ocean biogeochemical model suggest that the observed transport of hydrothermal dissolved iron requires some means of physicochemical stabilization and indicate that hydrothermally derived iron sustains a large fraction of Southern Ocean export production.

  14. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Fang, Jiabei; Yang, Xiu-Qun

    2015-12-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean

  15. Variability within the ocean-atmospheric system over the North Pacific

    SciTech Connect

    Ciesielski, P E

    1980-01-01

    Characteristics of the oceanic mixed layer over the North Pacific were examined utilizing a number of statistical methods. Based on the analyses of twelve years of data, a quasi-meridional differentiation (QMD) in sea surface temperature (SST) spectra across the North Pacific was observed. The SST spectra became increasingly red as an increasing function of latitude. A strong 21 to 26 day cycle in SST anomalies is discussed which may be a reflection of heat fluxes. These fluxes also vacillate significantly on this time-scale in conjunction with cycles observed in the atmospheric energy modes of available potential and kinetic energy. Examination of an oceanic heat budget on a spatial and temporal basis suggest that the impact of latent and sensible heat fluxes upon ..delta..SST is partially a function of the magnitude of the heat fluxes as well as of the depth to which their effects are mixed. The heat budget analyses and the fitting of power spectra of SST anomalies over the North Pacific to a two-parameter oceanic model, suggest that SST behavior over the mid-oceanic regions of the North Pacific is dominated by the influence of latent and sensible heat fluxes. On the other hand, over the remainder of the North Pacific one could surmise that other processes, such as advection of heat within the ocean, the entrainment heat flux at the base of the mixed layer, and radiation are at least as important in determining the behavior of SST's. By analyzing anomalous patterns of atmospheric thickness and SST's, it appears that the modification of air masses as they are advected over oceanic waters, as well as the stability of the lower atmosphere, are instrumental factors in determining the nature of large-scale air-sea heat exchange processes.

  16. Decadal variations of Pacific North Equatorial Current bifurcation from multiple ocean products

    NASA Astrophysics Data System (ADS)

    Zhai, Fangguo; Wang, Qingye; Wang, Fujun; Hu, Dunxin

    2014-02-01

    In this study, we examine the decadal variations of the Pacific North Equatorial Current (NEC) bifurcation latitude (NBL) averaged over upper 100 m and underlying dynamics over the past six decades using 11 ocean products, including seven kinds of ocean reanalyzes based on ocean data assimilation systems, two kinds of numerical simulations without assimilating observations and two kinds of objective analyzes based on in situ observations only. During the period of 1954-2007, the multiproduct mean of decadal NBL anomalies shows maxima around 1965/1966, 1980/1981, 1995/1996, and 2003/2004, and minima around 1958, 1971/1972, 1986/1987, and 2000/2001, respectively. The NBL decadal variations are related to the first Empirical Orthogonal Function mode of decadal anomalies of sea surface height (SSH) in the northwestern tropical Pacific Ocean, which shows spatially coherent variation over the whole region and explains most of the total variance. Further regression and composite analyzes indicate that northerly/southerly NBL corresponds to negative/positive SSH anomalies and cyclonic/anticyclonic gyre anomalies in the northwestern tropical Pacific Ocean. These decadal circulation variations and thus the decadal NBL variations are governed mostly by the first two vertical modes and attribute the most to the first baroclinic mode. The NBL decadal variation is highly positively correlated with the tropical Pacific decadal variability (TPDV) around the zero time lag. With a lead of about half the decadal cycle the NBL displays closer but negative relationship to TPDV in four ocean products, possibly manifesting the dynamical role of the circulation in the northwestern tropical Pacific in the phase-shifting of TPDV.

  17. Interaction between Coastal and Oceanic Ecosystems of the Western and Central Pacific Ocean through Predator-Prey Relationship Studies

    PubMed Central

    Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D.; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J.

    2012-01-01

    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators. PMID:22615796

  18. Interaction between coastal and oceanic ecosystems of the Western and Central Pacific Ocean through predator-prey relationship studies.

    PubMed

    Allain, Valerie; Fernandez, Emilie; Hoyle, Simon D; Caillot, Sylvain; Jurado-Molina, Jesus; Andréfouët, Serge; Nicol, Simon J

    2012-01-01

    The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8 ± 0.40 CV million tonnes or 2.17 × 10(12)± 0.40 CV individuals. This represents 6.1% ± 0.17 CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators. PMID:22615796

  19. Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Kajtar, Jules B.; Santoso, Agus; England, Matthew H.; Cai, Wenju

    2016-06-01

    Complex interactions manifest between modes of tropical climate variability across the Pacific, Indian, and Atlantic Oceans. For example, the El Niño-Southern Oscillation (ENSO) extends its influence on modes of variability in the tropical Indian and Atlantic Oceans, which in turn feed back onto ENSO. Interactions between pairs of modes can alter their strength, periodicity, seasonality, and ultimately their predictability, yet little is known about the role that a third mode plays. Here we examine the interactions and relative influences between pairs of climate modes using ensembles of 100-year partially coupled experiments in an otherwise fully coupled general circulation model. In these experiments, the air-sea interaction over each tropical ocean basin, as well as pairs of ocean basins, is suppressed in turn. We find that Indian Ocean variability has a net damping effect on ENSO and Atlantic Ocean variability, and conversely they each promote Indian Ocean variability. The connection between the Pacific and the Atlantic is most clearly revealed in the absence of Indian Ocean variability. Our model runs suggest a weak damping influence by Atlantic variability on ENSO, and an enhancing influence by ENSO on Atlantic variability.

  20. Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat.

    PubMed

    Jin, F-F; Boucharel, J; Lin, I-I

    2014-12-01

    The El Niño Southern Oscillation (ENSO) creates strong variations in sea surface temperature in the eastern equatorial Pacific, leading to major climatic and societal impacts. In particular, ENSO influences the yearly variations of tropical cyclone (TC) activities in both the Pacific and Atlantic basins through atmospheric dynamical factors such as vertical wind shear and stability. Until recently, however, the direct ocean thermal control of ENSO on TCs has not been taken into consideration because of an apparent mismatch in both timing and location: ENSO peaks in winter and its surface warming occurs mostly along the Equator, a region without TC activity. Here we show that El Niño--the warm phase of an ENSO cycle--effectively discharges heat into the eastern North Pacific basin two to three seasons after its wintertime peak, leading to intensified TCs. This basin is characterized by abundant TC activity and is the second most active TC region in the world. As a result of the time involved in ocean transport, El Niño's equatorial subsurface 'heat reservoir', built up in boreal winter, appears in the eastern North Pacific several months later during peak TC season (boreal summer and autumn). By means of this delayed ocean transport mechanism, ENSO provides an additional heat supply favourable for the formation of strong hurricanes. This thermal control on intense TC variability has significant implications for seasonal predictions and long-term projections of TC activity over the eastern North Pacific. PMID:25471884

  1. Further study of the variability in the frequency of typhoon formation over the West Pacific ocean

    SciTech Connect

    Ding, Y.H.; Reiter, E.R.

    1980-01-01

    This paper presents a study of the variability in the frequency of typhoon formation over the West Pacific ocean, emphasizing the effects of the large-scale sea-air system on the activity of typhoons. Some important relationships between typhoon formation and the climatological aspect of air-sea interaction are pointed out.

  2. 78 FR 37971 - Security Zone; Naval Exercise; Pacific Ocean, Coronado, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    .... SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; Naval Exercise; Pacific Ocean, Coronado... speed zone from an anchored naval high value unit vessel during a Naval exercise, which will...

  3. Fishing and Oceanologic Investigation of the Pacific Ocean Southeast Part by Satellite Radiometry and Altimetry Data

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; Sirota, A.

    Analyse of structure and time-space variability of Subantarctic front and South Pacific ocean current in Pacific ocean southeast part (20--45S, 70--110W) are based on the sea surface dynamic heights calculated by the TOPEX/Poseidon satellite altimetry data and gradients of the sea surface temperature for time period 1992-2003. The sea surface dynamic heights constructed by the superposition of sea level anomaly distributions over the climatic dynamic topography and temperature gradients at the ocean surface on the basis of the satellite Multi-Channel Sea Surface Temperature (MCSST) data. Comparison calculations results of the Subantarctic front and the Southern Pacific current position on basin the satellite data with the data of the research ship ``Atlantida'' measurements (November - December 2002) has shown good data fit. The analysis of scads fishery distribution in a southeast part of Pacific Ocean (the drag-net and the acoustic data of fish accumulation) and synoptic variability of the sea surface dynamic heights has revealed, that the distribution of the most dense of the fish accumulation is connected to dynamic heterogeneities, which are on northern peripherals of the Subantarctic front.

  4. 33 CFR 334.1350 - Pacific Ocean, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean, Island of Oahu, Hawaii; danger zone. 334.1350 Section 334.1350 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1350...

  5. 33 CFR 334.1350 - Pacific Ocean, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean, Island of Oahu, Hawaii; danger zone. 334.1350 Section 334.1350 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1350...

  6. 33 CFR 334.1350 - Pacific Ocean, Island of Oahu, Hawaii; danger zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean, Island of Oahu, Hawaii; danger zone. 334.1350 Section 334.1350 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1350...

  7. Shallow scattering layer in the subarctic pacific ocean: detection by high-frequency echo sounder.

    PubMed

    Barraclough, W E; Lebrasseur, R J; Kennedy, O D

    1969-10-31

    Shallow scattering layers consisting mainly of Calanus cristatus were detected on a trans-Pacific crossing to depths of 60 meters with a high-frequency echo sounder. Biomass estimates of these layers indicate concentrations of zoo-plankton that are greater and more extensive than previously reported in the open ocean. PMID:17778203

  8. The dependence of aerosol light-scattering on RH over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hegg, D. A.; Covert, D. S.; Crahan, K.; Jonssen, H.

    2002-04-01

    Measurements of the relative humidity dependence of aerosol light scattering are reported from three experimental venues over the Pacific Ocean. The measurement platform utilized was the CIRPAS Twin Otter aircraft. Results are compared with previous measurements at other locales and with theoretical models. The relatively low values of hygroscopicity obtained in marine air are consistent with a substantial organic component to the aerosol.

  9. Eastern equatorial Pacific Ocean T-S variations with El Nino

    NASA Technical Reports Server (NTRS)

    Wang, O.; Fukumori, I.; Lee, T.; Johnson, G. C.

    2004-01-01

    Temperature-Salinity (T-S) relationship variability in the pycnocline of the eastern equatorial Pacific Ocean (NINO3 region, 5 degrees S ??degrees N, 150 degrees W ?? degrees W) over the last two decades is investigated using observational data and model simulation.

  10. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient

    NASA Astrophysics Data System (ADS)

    Zinke, J.; Hoell, A.; Lough, J. M.; Feng, M.; Kuret, A. J.; Clarke, H.; Ricca, V.; Rankenburg, K.; McCulloch, M. T.

    2015-10-01

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia.

  11. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool

    NASA Astrophysics Data System (ADS)

    Jaccard, S. L.; Galbraith, E. D.; Sigman, D. M.; Haug, G. H.; Francois, R.; Pedersen, T. F.; Dulski, P.; Thierstein, H. R.

    2009-01-01

    Measurements of benthic foraminiferal cadmium:calcium (Cd/Ca) have indicated that the glacial-interglacial change in deep North Pacific phosphate (PO 4) concentration was minimal, which has been taken by some workers as a sign that the biological pump did not store more carbon in the deep glacial ocean. Here we present sedimentary redox-sensitive trace metal records from Ocean Drilling Program (ODP) Site 882 (NW subarctic Pacific, water depth 3244 m) to make inferences about changes in deep North Pacific oxygenation - and thus respired carbon storage - over the past 150,000 yr. These observations are complemented with biogenic barium and opal measurements as indicators for past organic carbon export to separate the influences of deep-water oxygen concentration and sedimentary organic carbon respiration on the redox state of the sediment. Our results suggest that the deep subarctic Pacific water mass was depleted in oxygen during glacial maxima, though it was not anoxic. We reconcile our results with the existing benthic foraminiferal Cd/Ca by invoking a decrease in the fraction of the deep ocean nutrient inventory that was preformed, rather than remineralized. This change would have corresponded to an increase in the deep Pacific storage of respired carbon, which would have lowered atmospheric carbon dioxide (CO 2) by sequestering CO 2 away from the atmosphere and by increasing ocean alkalinity through a transient dissolution event in the deep sea. The magnitude of change in preformed nutrients suggested by the North Pacific data would have accounted for a majority of the observed decrease in glacial atmospheric pCO 2.

  12. Regal phylogeography: Range-wide survey of the marine angelfish Pygoplites diacanthus reveals evolutionary partitions between the Red Sea, Indian Ocean, and Pacific Ocean.

    PubMed

    Coleman, Richard R; Eble, Jeffrey A; DiBattista, Joseph D; Rocha, Luiz A; Randall, John E; Berumen, Michael L; Bowen, Brian W

    2016-07-01

    The regal angelfish (Pygoplites diacanthus; family Pomacanthidae) occurs on reefs from the Red Sea to the central Pacific, with an Indian Ocean/Rea Sea color morph distinct from a Pacific Ocean morph. To assess population differentiation and evaluate the possibility of cryptic evolutionary partitions in this monotypic genus, we surveyed mtDNA cytochrome b and two nuclear introns (S7 and RAG2) in 547 individuals from 15 locations. Phylogeographic analyses revealed four mtDNA lineages (d=0.006-0.015) corresponding to the Pacific Ocean, the Red Sea, and two admixed lineages in the Indian Ocean, a pattern consistent with known biogeographic barriers. Christmas Island in the eastern Indian Ocean had both Indian and Pacific lineages. Both S7 and RAG2 showed strong population-level differentiation between the Red Sea, Indian Ocean, and Pacific Ocean (ΦST=0.066-0.512). The only consistent population sub-structure within these three regions was at the Society Islands (French Polynesia), where surrounding oceanographic conditions may reinforce isolation. Coalescence analyses indicate the Pacific (1.7Ma) as the oldest extant lineage followed by the Red Sea lineage (1.4Ma). Results from a median-joining network suggest radiations of two lineages from the Red Sea that currently occupy the Indian Ocean (0.7-0.9Ma). Persistence of a Red Sea lineage through Pleistocene glacial cycles suggests a long-term refuge in this region. The affiliation of Pacific and Red Sea populations, apparent in cytochrome b and S7 (but equivocal in RAG2) raises the hypothesis that the Indian Ocean was recolonized from the Red Sea, possibly more than once. Assessing the genetic architecture of this widespread monotypic genus reveals cryptic evolutionary diversity that merits subspecific recognition. We recommend P.d. diacanthus and P.d. flavescens for the Pacific and Indian Ocean/Red Sea forms. PMID:27068838

  13. Isotopic composition of dissolved iron in the Equatorial Pacific and the Southern oceans

    NASA Astrophysics Data System (ADS)

    Radic, A.; Lacan, F.; Jeandel, C.; Poitrasson, F.; Sarthou, G.

    2009-12-01

    Iron is a fundamental element linking ocean biogeochemistry and climate. Iron isotopes are a very promising tool for the study of the iron oceanic cycle, notably for tracing its sources to the ocean and/or for studying its speciation. Several studies reports iron isotopic data in the marine environment: in plankton tows, pore waters, aerosols, seafloor or marginal seas (Bergquist and Boyle, 2006; Severmann et al., 2006; De Jong et al., 2007). To link these isotopic data together and to fully study the iron isotope marine cycle, we need to document the central reservoir in the marine environment : dissolved iron in seawater, espacially in High Nutrient Low Chlorophyll (NHLC) areas. So far there are very few comunicated data of dissolved iron isotopic composition in the open ocean (Rouxel, 2008; Lacan et al., 2008; John and Andkins, 2009;). Here, the first profiles in HNLC areas will be presented : 2 full-depth profiles in the Equatorial Pacific Ocean (EUCFe 2006), 2 full-depth profiles in the Atlantic sector of the Southern Ocean (Bonus-GoodHope 2008) and some data from the Kerguelen area (Southern Ocean, KEOPS 2005). δ56Fe values range from -0.7‰ to more than 1.0‰. All the samples from the Equatorial Pacific Ocean display positive values (heavy iron) whereas samples from the Sourthern Ocean display rather negative values (light iron), especially around 450 m deepth. These results will be discussed in terms of iron sources to ocean. Potential applications of this new tracer for studying internal oceanic processes, such as biological uptake, will be discussed.

  14. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean

    PubMed Central

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F.; McWilliams, James C.

    2016-01-01

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth. PMID:26929376

  15. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean.

    PubMed

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F; McWilliams, James C

    2016-03-15

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth. PMID:26929376

  16. The Specific Features of Pollution Transport in the Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Diansky, Nikolay; Fomin, Vladimir; Gusev, Anatoly

    2013-04-01

    Two calculations of pollutant dispersal in the Northwest Pacific Ocean are presented: (1) during possible shipwrecks in the process of spent nuclear fuel transportation from Petropavlovsk-Kamchatsky and (2) pollutant spread from the Japanese coast after the Fukushima 1 nuclear disaster on March 11, 2011. The circulation was simulated using a σ - coordinate ocean model INMOM (Institute of Numerical Mathematics Ocean Model) developed at the INM RAS. The INMOM is based on the primitive equations using the spherical σ - coordinate system with a free ocean surface. The INMOM was realized for the Pacific Ocean basin from the equator to the Bering Strait with a high 1/8° spatial resolution for reproducing the mesoscale ocean variability. The pollutant dispersal in the case of possible shipwrecks was estimated for currents for a statistically average year with atmospheric forcing from Common Ocean-ice Reference Experiments (CORE) for normal year data. The pollution spread from the Fukushima 1 nuclear power plant (NPP) was estimated for currents calculated with the real atmospheric forcing in accordance with the NCEP GFS (0.5 degree grid). The simulation period of pollutant dispersal from Fukushima 1 was 17 days: from March 11 to 28, 2011. The results of numerical simulation show that pollutant dispersal from the Fukushima 1 spread eastward according to the Kuroshio. Moreover, exceeding of natural background radiation level was simulated in the narrow region of the Japanese coast with width of less than 50 km.

  17. Knowledge of marine fish trematodes of Atlantic and Eastern Pacific Oceans.

    PubMed

    Bray, Rodney A; Diaz, Pablo E; Cribb, Thomas H

    2016-03-01

    A brief summary of the early history of the study of Atlantic Ocean marine fish digeneans is followed by a discussion of the occurrence and distribution of these worms in the Atlantic Ocean and adjacent Eastern Pacific Ocean, using the Provinces of the 'Marine Ecoregions' delimited by Spalding et al. (Bioscience 57:573-583, 2007). The discussion is based on a database of 9,880 records of 1,274 species in 430 genera and 45 families. 8,633 of these records are from the Atlantic Ocean, including 1,125 species in 384 genera and 45 families. About 1,000 species are endemic to the Atlantic Ocean Basin. The most species-rich families in the Atlantic Ocean are the Opecoelidae Ozaki, 1925, Hemiuridae Looss, 1899 and Bucephalidae Poche, 1907, and the most wide-spread the Opecoelidae, Hemiuridae, Acanthocolpidae Lühe, 1906, Lepocreadiidae Odhner, 1905 and Lecithasteridae Odhner, 1905. A total of 109 species are shared by the Atlantic Ocean and the Eastern Pacific, made up of cosmopolitan, circum-boreal, trans-Panama Isthmus and Magellanic species. The lack of genetic evaluation of identifications is emphasised and the scope for much more work is stressed. PMID:26898586

  18. Climate and ocean dynamics and the lead isotopic records in pacific ferromanganese crusts

    SciTech Connect

    Christensen, J.N.; Halliday, A.N.; Rea, D.K.

    1997-08-15

    As hydrogenous iron-manganese crusts grow, at rates of millimeters per million years, they record changes in the lead isotopic composition of ambient seawater. Time-resolved lead isotopic data for cut slabs of two central Pacific iron-manganese crusts that have been growing since about 50 million years ago were measured in situ by laser ablation, multiple-collector, inductively coupled plasma mass spectrometry. The lead isotopic compositions have remained remarkably uniform over the past 30 million years, but the record of small variations corresponds with other paleoceanographic indicators of climate change, including weathering and glaciation. This implies that despite the short residence time of lead in the oceans, global mechanisms may influence lead isotopic compositions in the central Pacific, far from continental inputs, because of changes in weathering, ocean circulation, and degree of mixing. Thus lead isotopic data could be used to probe climate-driven changes in ocean circulation through time. 40 refs., 4 figs.

  19. Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model

    NASA Astrophysics Data System (ADS)

    Yuan, Dongliang; Xu, Peng; Xu, Tengfei

    2016-03-01

    An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.

  20. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean.

    PubMed

    Roe, John H; Morreale, Stephen J; Paladino, Frank V; Shillinger, George L; Benson, Scott R; Eckert, Scott A; Bailey, Helen; Tomillo, Pilar Santidrián; Bograd, Steven J; Eguchi, Tomoharu; Dutton, Peter H; Seminoff, Jeffrey A; Block, Barbara A; Spotila, James R

    2014-02-22

    Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch. PMID:24403331

  1. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean

    PubMed Central

    Roe, John H.; Morreale, Stephen J.; Paladino, Frank V.; Shillinger, George L.; Benson, Scott R.; Eckert, Scott A.; Bailey, Helen; Tomillo, Pilar Santidrián; Bograd, Steven J.; Eguchi, Tomoharu; Dutton, Peter H.; Seminoff, Jeffrey A.; Block, Barbara A.; Spotila, James R.

    2014-01-01

    Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch. PMID:24403331

  2. Tracing radioactivity from Fukushima in the Northern Pacific Ocean.

    PubMed

    Aoyama, M; Hult, M; Hamajima, Y; Lutter, G; Marissens, G; Stroh, H; Tzika, F

    2016-03-01

    Following the accident at the Fukushima Daiichi nuclear power plant, a campaign of sampling and measuring anthropogenic radionuclides in North Pacific seawater was set up. The main aim was to study natural processes using these radionuclides as tracers. Because of dilution, the activities of anthropogenic radionuclides at long range were very low and their measurement required advanced pre-concentration techniques and underground gamma-ray spectrometry. Data and metrological aspects of the measurements using HPGe-detectors are presented and discussed. PMID:26682891

  3. Investigating bomb radiocarbon transport in the southern Pacific Ocean with otolith radiocarbon

    NASA Astrophysics Data System (ADS)

    Grammer, G. L.; Fallon, S. J.; Izzo, C.; Wood, R.; Gillanders, B. M.

    2015-08-01

    To explore the transport of carbon into water masses from the surface ocean to depths of ∼ 1000 m in the southwest Pacific Ocean, we generated time series of radiocarbon (Δ14C) from fish otoliths. Otoliths (carbonate earstones) from long-lived fish provide an indirect method to examine the "bomb pulse" of radiocarbon that originated in the 1950s and 1960s, allowing identification of changes to distributions of 14C that has entered and mixed within the ocean. We micro-sampled ocean perch (Helicolenus barathri) otoliths, collected at ∼ 400- 500 m in the Tasman Sea, to obtain measurements of Δ14C for those depths. We compared our ocean perch Δ14C series to published otolith-based marine surface water Δ14C values (Australasian snapper (Chrysophrys auratus) and nannygai (Centroberyx affinis)) and to published deep-water values (800-1000 m; orange roughy (Hoplostethus atlanticus)) from the southwest Pacific to establish a mid-water Δ14C series. The otolith bomb 14C results from these different depths were consistent with previous water mass results in the upper 1500 m of the southwest Pacific Ocean (e.g. World Ocean Circulation Experiment and Geochemical Ocean Sections Study). A comparison between the initial Δ14C bomb pulse rise at 400-500 m suggested a ventilation lag of 5 to 10 yr, whereas a comparison of the surface and depths of 800-1000 m detailed a 10 to 20 yr lag in the time history of radiocarbon invasion at this depth. Pre-bomb reservoir ages derived from otolith 14C located in Tasman Sea thermocline waters were ∼ 530 yr, while reservoir ages estimated for Tasman Antarctic intermediate water were ∼ 730 yr.

  4. Iodine-129 concentrations in marginal seas of the north Pacific and Pacific-influenced waters of the Arctic Ocean.

    PubMed

    Cooper, L W; Hong, G H; Beasley, T M; Grebmeier, J M

    2001-12-01

    Water sampling during the 1993 IV Russian-US Joint Expedition to the Bering and Chukchi Seas (BERPAC) indicates that Pacific Ocean burdens of the long-lived radionuclide 129I are relatively low in the Pacific-influenced Arctic, particularly compared to high latitude waters influenced by the North Atlantic. These low concentrations occur despite the presence of potential submerged anthropogenic sources in the East Sea (Sea of Japan), and in the northwest Pacific Ocean, east of the Kamchatka Peninsula. The concentration of 129I entering the Arctic Ocean through Bering Strait, approximately 0.7 x 10(8) atoms kg(-1), is only slightly higher than observed in deep Pacific waters. Similar concentrations (0.44-0.76 x 10(8) atoms kg(-1)) measured in Long Strait indicate no significant transfer of 129I eastward into the Chukchi Sea in the Siberian Coastal Current from the Siberian marginal seas to the west. However, the concentrations reported here are more than an order of magnitude higher than the Bering Strait input concentration estimated (1.0 x 10(6) atoms kg(-1)) from bomb fallout mass balances, which supports other existing evidence for a significant atmospheric deposition term for this radionuclide in surface ocean waters. Near-bottom water samples collected in productive waters of the Bering and Chukchi Seas also suggest that sediment regeneration may locally elevate 129I concentrations, and impact its utility as a water mass tracer. As part of this study, two deep 129I profiles were also measured in the East Sea in 1993-1994. The near-surface concentration of 129I ranged from 0.12 to 0.31 x 10(8) atoms kg(-1). The 129I concentration showed a steady decrease with depth, although because of active deep water ventilation, the entire 3000 m water column exceeded natural concentrations of the radionuclide. Atom ratios of 129I/137Cs in the East Sea also suggest an excess of 129I above bomb fallout estimates, also possibly resulting from atmospheric deposition ultimately

  5. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    SciTech Connect

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes

  6. Alkyl nitrate distributions and seasonal variation over the Pacific Ocean during HIPPO

    NASA Astrophysics Data System (ADS)

    Atlas, E. L.; Smith, K.; Zhu, X.; Pope, L.; Lueb, R.; Hendershot, R.; Moore, F. L.; Miller, B. R.; Montzka, S. A.; Elkins, J. W.; Wofsy, S. C.

    2012-12-01

    Alkyl nitrates are produced in both the atmosphere and in the ocean by photochemical oxidation of organic precursors. Past studies have shown that low molecular weight alkyl nitrates, particularly methyl and ethyl nitrate, have high production rates and air-sea fluxes from equatorial ocean waters. In addition, high concentrations of these organic nitrates have been found in the atmosphere of the Southern Ocean. Measurements during the HIPPO campaign were able to characterize the tropospheric distribution of these alkyl nitrates over all seasons, and from virtually pole to pole over the Central Pacific Ocean. The measurements from HIPPO confirm the strong equatorial source and in addition show a strong asymmetry in methyl nitrate concentrations between hemispheres, with the Southern Hemisphere having consistently higher concentrations compared to the Northern Hemisphere. This presentation will discuss the alkyl nitrate distributions, sources, and variations observed during the HIPPO campaign and examine relationships to other trace gases of oceanic origin, such as DMS and methyl iodide.

  7. Principles underlying the epizootiology of viral hemorrhagic septicemia in Pacific herring and other fishes throughout the North Pacific Ocean

    USGS Publications Warehouse

    Hershberger, Paul K.; Garver, Kyle A.; Winton, James R.

    2016-01-01

    Although viral hemorrhagic septicemia virus (VHSV) typically occurs at low prevalence and intensity in natural populations of Pacific herring (Clupea pallasii) and other marine fishes in the Northeast Pacific Ocean, epizootics of the resulting disease (VHS) periodically occur, often in association with observed fish kills. Here we identify a list of principles, based on a combination of field studies, controlled laboratory experiments, and previously unpublished observations, that govern the epizootiology of VHS in Pacific herring. A thorough understanding of these principles provides the basis for identifying risk factors that predispose certain marine fish populations to VHS epizootics, including the lack of population resistance, presence of chronic viral carriers in a population, copious viral shedding by infected individuals, cool water temperatures, limited water circulation patterns, and gregarious host behavioral patterns. Further, these principles are used to define the epizootiological stages of the disease in Pacific herring, including the susceptible (where susceptible individuals predominate a school or subpopulation), enzootic (where infection prevalence and intensity are often below the limits of reasonable laboratory detection), disease amplification (where infection prevalence and intensity increase rapidly), outbreak (often accompanied by host mortalities with high virus loads and active shedding), recovery (in which the mortality rate and virus load decline owing to an active host immune response), and refractory stages (characterized by little or no susceptibility and where viral clearance occurs in most VHS survivors). In addition to providing a foundation for quantitatively assessing the potential risks of future VHS epizootics in Pacific herring, these principles provide insights into the epizootiology of VHS in other fish communities where susceptible species exist.

  8. Geoid anomalies and fracture zones in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The high degree and order geoid field in the Pacific is a superposition of fracture zone anomalies and hot-spot swell anomalies. A two-dimensional spectral analysis of this field reveals a very strong north-south wavenumber contribution with a dominant wavelength of about 2000 km, a much smaller contribution from east-west wavenumbers, and negligible contributions from other directions. One dimensional profiles were taken in order to appreciate the magnitudes of the north-south and east-west components. A calculated geoid anomaly using an idealized fracture zone model contains just about the same amount of power in the 2350 km band wavelength as does the north-south profile of the SEASAT geoid field. In an attempt to correlate plate age with geoid anomalies, a digitized age map of the Pacific was used to generate a synthetic geoid, which was subtracted from SEASAT. This procedure produces a residual geoid in which the fracture zone anomalies appear to be diminished, if not removed.

  9. 137Cs(90Sr) and Pu isotopes in the Pacific Ocean sources & trends

    SciTech Connect

    Hamilton, T.F., Millies-Lacrox, J.C.; Hong, G.H.

    1996-11-01

    The main source of artificial radioactivity in the world`s oceans can be attributed to worldwide fallout from atmospheric nuclear weapons testing. Measurements of selected artificial radionuclides in the Pacific Ocean were first conducted in the 1960`s where it was observed that fallout radioactivity had penetrated the deep ocean. Extensive studies carried out during the 1973-74 GEOSECS provided the first comprehensive data on the lateral and vertical distributions of {sup 9O}Sr, {sup 137}Cs and Pu isotopes in the Pacific on a basin wide scale. Estimates of radionuclide inventories in excess of amounts predicted to be delivered by global fallout alone were attributed to close-in fallout and tropospheric inputs from early U.S. tests conducted on Bikini and Enewetak Atolls in the Equatorial Pacific. In general, levels of fallout radionuclides (including {sup 9O}Sr, {sup 137}Cs and Pu isotopes) in the surface waters of the Pacific Ocean have decreased considerably over the past 4 decades and are now much more homogeneously distributed. Resuspension and the subsequent deposition of fallout radionuclides from previously deposited debris on land has become an important source term for the surface ocean. This can be clearly seen in measurements of fallout radionuclides in mineral aerosols over the Korean Peninsula (Yellow dust events). Radionuclides may also be transported from land to sea in river runoff-these transport mechanisms are more important in the Pacific Ocean where large quantities of river water and suspended sands/fluvial sediments reach the coastal zone. Another unique source of artificial radionuclides in the Pacific Ocean is derived from the slow resolubilization and transport of radionuclides deposited in contaminated lagoon and slope sediments near U.S. and French test sites. Although there is a small but significant flux of artificial radionuclides depositing on the sea floor, > 80% of the total 239, {sup 240}Pu inventory and > 95% of the total {sup

  10. The elastic thickness of the lithosphere in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Calmant, Stephane

    1987-09-01

    The effective elastic thickness T(e) of the oceanic lithosphere along the Hawaiian-Emperor, the Marquesas, the Pitcairn-Mururoa-Gloucester (PMG) chains, the Tuamotu archipelago, and the Samoa islands was determined by computing the deflection of a continuous elastic plate under the load of volcanoes and was constrained by the geoid heights over the oceans provided by Seasat. The prediction by Watts (1978) according to which the value of the T(e) should increase with the square root of crustal age of the lithosphere at the time of volcano emplacement was not confirmed; while the T(e) estimate of the Hawaiian-Emperor chain and an isolated estimate in the Samoan group agree with the empirical trend found by Watts, the Marquesas and the PMG chains, as well as the previously analyzed Cook-Austral and Society chains, present anomalously low values which increase only slightly with age.

  11. Using Three Global Climate Indices to Forecast Hurricane Activity in the Pacific and Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Giovannettone, J. P.

    2014-12-01

    Quantitative relationships between global climate indices and hurricane activity in the Pacific and Atlantic Oceans have not been widely studied. A few studies have explored qualitative relationships between hurricane activity and such climate indices as the North Atlantic Oscillation and sea-surface temperatures, among others. The current work presents the most comprehensive analysis of the potential relationships between 39 different climate indices and hurricane activity using regression and frequency analysis. Attempts are made to develop statistical relationships between any one of these indices and hurricane activity in the eastern and western Pacific as well as the Atlantic Oceans. There were three climate indices, one per region, showing significantly higher correlation in each region. They were the ENSO Precipitation Index (EPI) in the western Pacific, the Atlantic Multi-decadal Oscillation (AMO) in the eastern Pacific, and the Atlantic Meridional Mode (AMM) in the Atlantic. The linear relationships between each index and hurricane numbers resulted in Pearson-R values of near 0.65 or greater. In addition, the Madden-Julian Oscillation showed some correlation with hurricane activity in each region and therefore was included in the analysis. Several important results were found during these analyses. For instance, the relationship between the AMM index and hurricane numbers in the Atlantic Ocean revealed that the average July - October AMM index was greater than -0.5 within a range of -5.0 to 5.0 for years within the last 70 years when the number of hurricanes during that same period was greater than 7. It is also shown that the number of hurricanes expected to be exceeded or not exceeded at frequencies of 50- to 100-years, for example, varies substantially depending on the range of AMM index values being analyzed. Similar results are shown for the eastern and western Pacific Ocean as well. Such relationships provide forecasters with a simple tool using only

  12. Geographic variation in Pacific herring growth in response to regime shifts in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ito, Shin-ichi; Rose, Kenneth A.; Megrey, Bernard A.; Schweigert, Jake; Hay, Douglas; Werner, Francisco E.; Aita, Maki Noguchi

    2015-11-01

    Pacific herring populations at eight North Pacific Rim locations were simulated to compare basin-wide geographic variations in age-specific growth due to environmental influences on marine productivity and population-specific responses to regime shifts. Temperature and zooplankton abundance from a three-dimensional lower-trophic ecosystem model (NEMURO: North Pacific Ecosystem Model for Understanding Regional Oceanography) simulation from 1948 to 2002 were used as inputs to a herring bioenergetics growth model. Herring populations from California, the west coast of Vancouver Island (WCVI), Prince William Sound (PWS), Togiak Alaska, the western Bering Sea (WBS), the Sea of Okhotsk (SO), Sakhalin, and Peter the Great Bay (PGB) were examined. The half-saturation coefficients of herring feeding were calibrated to climatological conditions at each of the eight locations to reproduce averaged size-at-age data. The depth of averaging used for water temperature and zooplankton, and the maximum consumption rate parameter, were made specific to each location. Using the calibrated half-saturation coefficients, the 1948-2002 period was then simulated using daily values of water temperature and zooplankton densities interpolated from monthly model output. To detect regime shifts in simulated temperatures, zooplankton and herring growth rates, we applied sequential t-test analyses on the 54 years of hindcast simulation values. The detected shifts of herring age-5 growth showed closest match (69%) to the regime shift years (1957/58, 1970/71, 1976/77, 1988/89, 1998/99). We explored relationships among locations using cluster and principal component analyses. The first principal component of water temperature showed good correspondence to the Pacific Decadal Oscillation and all zooplankton groups showed a pan-Pacific decrease after the 1976/77 regime shift. However, the first principal component of herring growth rate showed decreased growth at the SO, PWS, WCVI and California

  13. Dissolved lead in the deep Southeast Pacific Ocean: results of the 2013 US GEOTRACES cruise

    NASA Astrophysics Data System (ADS)

    Boyle, E. A.; Lee, J. M.; Zhang, J.; Echegoyen, Y.

    2014-12-01

    Lead (Pb) in the modern ocean is dominated by anthropogenic Pb, which has been evidenced by highly elevated seawater Pb concentrations and Pb stable isotope ratios (204Pb, 206Pb, 207Pb, and 208Pb) altered from pre-anthropogenic values. A number of studies have shown the human impact on oceanic Pb in many parts of the world ocean, but little Pb data has been available for the Southeast Pacific Ocean. In this presentation, we will show the dissolved Pb (<0.2µm) results from the US GEOTRACES cruise in October - December 2013, which sailed from Manta, Ecuador, to Tahiti along around 12 degrees south. Dissolved Pb concentrations from all 36 surface stations and deep (>1000m) Pb profiles from 18 stations will be presented, and the results will be also compared to our unpublished data from the BiG RAPA cruise in 2010, whose cruise track from Arica, Peru, to Easter Island is slightly south of the US GEOTRACES cruise. The BiG RAPA data showed that dissolved Pb concentrations of the southeast Pacific Ocean are relatively low, varying in the range of 8-20 pmol/kg at the surface with a slight maximum (14-22 pmol/kg) at around 400m depth, and 2-10 pmol/kg in deep waters below 1000m depth. The Pb concentrations were found to be higher at a marginal station off Peru, reaching 45 pmol/kg at the surface and 65 pmol/kg in the subsurface maximum at 150m depth, and varying between 17 and 23 pmol/kg in deep waters. Our dataset, along with the results from the BiG RAPA cruise, will provide the first overview on the dissolved Pb distribution of the southeast Pacific Ocean, which will further our understanding on the human impact on the global ocean.

  14. Helium and neon isotopes in deep Pacific Ocean sediments

    NASA Technical Reports Server (NTRS)

    Nier, A. O.; Schlutter, D. J.; Brownlee, D. E.

    1990-01-01

    Helium and neon concentration measurements, along with isotope ratio determinations, have been made for particles collected in the deep Pacific with a magnetic sled, and they are believed to be of extraterrestrial origin. Analyses were made for samples consisting of composites of many extremely fine particles and for several individual particles large enough to contain sufficient gas for analysis but small enough to escape melting in their passage through the atmosphere. Step-heating was employed to extract the gas. Cosmic-ray spallation products or solar-wind helium and neon, if present, were not abundant enough to account for the isotopic compositions measured. In the case of the samples of magnetic fines, the low temperature extractions provided elemental and isotopic ratios in the general range found for the primordial gas in carbonaceous chondrites and gas-rich meteorites. The isotopic ratios found in the high temperature extractions suggest the presence of solar-flare helium and neon.

  15. Geodynamic investigation of a Cretaceous superplume in the Pacific ocean

    NASA Astrophysics Data System (ADS)

    Xue, Jing; King, Scott D.

    2016-08-01

    The similarity in both age and geochemistry of the Ontong-Java, Hikurangi, and Manihiki plateaus suggests that they formed as a single superplateau from a unique mantle source. We investigate the necessity of a thermal superplume to form the Great Ontong-Java plateau at about 120 Ma using 3D spherical models of convection with imposed plate reconstruction models. The numerical simulations show that the giant plateau which formed as a result of melting due to the interaction of a plume head and the lithosphere would have been divided into smaller plateaus by spreading ridges, and end up at the present locations of Ontong-Java, Manihiki, and Hikurangi plateaus as well as a fragment in the western Caribbean. By comparing temperature and melt fraction between models with and without an initial thermal superplume, we propose that a Cretaceous superplume in Pacific at 120 Ma is required to form large igneous plateaus.

  16. El Nino north - Nino effects in the eastern subarctic Pacific ocean

    SciTech Connect

    Wooster, W.S.; Fluharty, D.L.

    1985-01-01

    This book represents the proceedings of a meeting on El Nino effects in the eastern subarctic Pacific, held on 12-13 September 1984 at the Pacific Marine Environmental Laboratory, Seattle, Washington. The papers of the first day focused on the physical environment; the second day was devoted to examining the biological response. These papers show how an El Nino event such as that of 1982-1983 can perturb the ocean and its biota far from the equator and provide some insight into the research required if the environmental effects and their biological consequences are to be successfully predicted.

  17. Effect of climate-ocean changes on the abundance of Pacific saury.

    PubMed

    Gong, Yeong; Suh, Young Sang

    2013-01-01

    Effects of ocean climate changes on the population structure and abundance of Pacific saury (Cololabis sira) were investigated on the basis of climate indices, sea surface temperature (SST) anomalies, catch and body size information from the Tsushima Warm Current (TWC) region (Yellow Sea, East China Sea and East/Japan Sea) during the period 1950-2010. It is suggested that oceanic regime shifts in the early 1970s, late 1980s and late 1990s occurred in the TWC region in winter, but the regime shifts in the mid-1970s and in the late 1980s were not evident in the spring SST anomaly series. The abundance and body size of Pacific saury fluctuated in association with the winter oceanic changes in the TWC region. The catch rates and abundance of large size saury were far bellow average during their northward migrations in the TWC region in the years with abnormally cool winters (e.g., 1963, 1970, 1977, 1981-1989 and 2006) and above average in the years with warm winters. These patterns demonstrate decadal-scale variations together with large inter-annual fluctuations in the structure and abundance of Pacific saury in association with the climatic-oceanic changes. These results, along with an alternation of dominant pelagic fish species, indicate the status of the saury population in the TWC region is in good condition, similar to that in the Kuroshio-Oyashio Current (KOC) region during the warm regime after the late 1980s climate regime shift. PMID:24006803

  18. Interannual Variation in Phytoplankton Concentration and Community in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Rousseaux, C. S.; Gregg, W. W.

    2011-01-01

    Climate events such as El Nino have been shown to have an effect on the biology of our ocean. Because of the lack of data, we still have very little knowledge about the spatial and temporal effect these climate events may have on biological marine systems. In this study, we used the NASA Ocean Biogeochemical Model (NOBM) to assess the interannual variability in phytoplankton community in the Pacific Ocean between 1998 and 2005. In the North Central and Equatorial Pacific Ocean, changes in the Multivariate El Nino Index were associated with changes in phytoplankton composition. The model identified an increase in diatoms of approx.33 % in the equatorial Pacific in 1999 during a La Nina event. This increase in diatoms coincided with a decrease of approx.11 % in cyanobacteria concentration. The inverse relationship between cyanobacteria and diatoms concentration was significant (p<0.05) throughout the period of study. The use of a numerical model allows us to assess the impact climate variability has on key phytoplankton groups known to lead to contrasting food chain at a spatial and temporal resolution unachievable when relying solely on in-situ observations.

  19. Anthropogenic processing of dust affects the oxygen content of the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nenes, Athanasios; Ito, Taka; Johnson, Matthew; Meskhidze, Nicholas; Valett, Jackie; Deutsch, Curtis

    2015-04-01

    Observations from the last several decades show a significant expansion of the tropical Pacific oxygen minimum zone (OMZ). However, the underlying causes remain elusive, as the currently accepted effects of ocean warming and associated solubility decease cannot fully explain the observed oxygen trend. Here we show that anthropogenic pollution can change the pattern of biological productivity and oxygen trends consistent with observations in the tropics and extratropics. These effects are caused by the mobilization of iron in mineral dust by pollutants, where it is transported and deposited to the HNLC regions of the tropical pacific affecting primary productivity and oxygen consumption by bacterial respiration. In this study, it is shown that pollution-mobilized iron deposited to high latitude oceanic environments can profoundly impact subsurface oxygen and the extent of the OMZ through long-range oceanic transport. Together with the intensification of tropical upwelling since the 1990s associated with natural climate variability, our results can explain the expansion of the OMZ in the tropical Pacific in the late twentieth century. Unlike climate variability, however, anthropogenic pollution likely influences the long-term trends in marine biogeochemistry and further alters regional productivity and subsurface oxygen distributions with profound implications for marine habitats and nitrate inventory of the oceans.

  20. Anthropogenic processing of dust affects the oxygen content of the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nenes, A.; Ito, T.; Johnson, M. S.; Meskhidze, N.; Valett, J.; Deutsch, C. A.

    2014-12-01

    Observations from the last several decades show a significant expansion of the tropical Pacific oxygen minimum zone (OMZ). However, the underlying causes remain elusive, as the currently accepted effects of ocean warming and associated solubility decease cannot fully explain the observed oxygen trend. Here we show that anthropogenic pollution can change the pattern of biological productivity and oxygen trends consistent with observations in the tropics and extratropics. These effects are caused by the mobilization of iron in mineral dust by pollutants, where it is transported and deposited to the HNLC regions of the tropical pacific affecting primary productivity and oxygen consumption by bacterial respiration. In this study, it is shown that pollution-mobilized iron deposited to high latitude oceanic environments can profoundly impact subsurface oxygen and the extent of the OMZ through long-range oceanic transport. Together with the intensification of tropical upwelling since the 1990s associated with natural climate variability, our results can explain the expansion of the OMZ in the tropical Pacific in the late twentieth century. Unlike climate variability, however, anthropogenic pollution likely influences the long-term trends in marine biogeochemistry and further alters regional productivity and subsurface oxygen distributions with profound implications for marine habitats and nitrate inventory of the oceans.

  1. Remote forcing at the Last Glacial Maximum in the Tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Andreasen, Dyke H.; Ravelo, A. Christina; Broccoli, Anthony J.

    2001-01-01

    We present results of a Last Glacial Maximum (LGM) wind stress sensitivity experiment using a high-resolution ocean general circulation model of the tropical Pacific Ocean. LGM wind stress, used to drive the ocean model, was generated using an atmospheric general circulation model simulation forced by LGM boundary conditions as part of the Paleoclimate Modeling Intercomparison Project (PMIP) [Broccoli, 2000]. LGM wind stress anomalies were large in the western half of the basin, yet there was a significant hydrographic response in the eastern half. This ocean model experiment hind casts changes that are in close agreement with paleoceanographic data from the entire region, even without the explicit modeling of the air-sea interactions. Data and model both predict that the annual average thermocline tilt across the basin was enhanced. Data and model are consistent with a stronger equatorial undercurrent which shoaled to the west of where it does today, and stronger advection of water from the Peru Current into the east equatorial Pacific and across the equator. Paleoproductivity and sea surface temperature (SST) data are interpreted in light of the modeling results, indicating that paleoproductivity changes were related to wind-forced dynamical changes resulting from LGM boundary conditions, while SST changes were related to independent, possibly radiative, forcing. Overall, our results imply that much of the dynamic response of the tropical Pacific during the LGM can be explained by wind field changes resulting from global LGM boundary conditions.

  2. Upper Colorado River and Great Basin Streamflow and Snowpack Forecasting using Pacific Oceanic-Atmospheric Variability

    NASA Astrophysics Data System (ADS)

    Aziz, O. A.; Tootle, G. A.; Moser, C.; Piechota, T. C.; Lamb, K. W.; Kao, S.

    2011-12-01

    Water managers in western U.S., including areas such as the State of Utah, are challenged with managing scarce resources and thus, rely heavily on forecasts to allocate and meet various water demands. The need for improved streamflow and snowpack forecast models in the Upper Colorado River and Great Basin is of the utmost importance. In this research, the use of oceanic and climatic variables as predictors to improve the long lead-time (three to nine months) forecast of streamflow and snowpack was investigated. Singular Value Decomposition (SVD) analysis was used to identify a region of Pacific Ocean SSTs and a region of 500 mbar geopotential height (Z500) that were teleconnected with streamflow (and snowpack) in Upper Colorado River and Great Basin headwaters. The resulting Pacific Ocean SSTs and Z500 regions were used to create indices that were then used as predictors in a non-parametric forecasting model. The majority of forecasts resulted in positive statistical skill, which indicates an improvement over the climatology or no-skill forecast (i.e., ranking of events using the Weibull distribution). The results indicated that derived indices from Pacific Ocean SSTs were better suited for long lead-time (six to nine month) forecasts of streamflow (and snowpack) while the derived indices from Z500 improved short-lead time (3 month) forecasts. In all, the results of the forecast model indicated that incorporating Pacific oceanic-atmospheric climatic variability in forecast models can lead to improved forecasts for both streamflow and snowpack. This method will be applied and tested at several selected hydropower projects in the study area, and some preliminary results will be shown.

  3. No iron fertilization in the equatorial Pacific Ocean during the last ice age.

    PubMed

    Costa, K M; McManus, J F; Anderson, R F; Ren, H; Sigman, D M; Winckler, G; Fleisher, M Q; Marcantonio, F; Ravelo, A C

    2016-01-28

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age--the Last Glacial Period (LGP)--but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the (232)Th proxy), phytoplankton productivity (using opal, (231)Pa/(230)Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ(15)N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the

  4. No iron fertilization in the equatorial Pacific Ocean during the last ice age

    NASA Astrophysics Data System (ADS)

    Costa, K. M.; McManus, J. F.; Anderson, R. F.; Ren, H.; Sigman, D. M.; Winckler, G.; Fleisher, M. Q.; Marcantonio, F.; Ravelo, A. C.

    2016-01-01

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP)—but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0–10,000 years ago) and the LGP (17,000–27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the

  5. Variability of oceanic carbon cycle in the North Pacific from seasonal to decadal scales

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Chai, Fei

    2014-08-01

    Variability of upper-ocean carbon cycle in the North Pacific during 1958-2010 period is investigated using a physical-biogeochemical model. Comparisons with in situ data from five different oceanographic environments in the South China Sea, Monterey Bay, North Pacific gyre, northwestern Pacific, and Gulf of Alaska indicate that the model usually captures observed seasonal and interannual variability in both sea surface pCO2 and sea-air CO2 flux. Seasonal variability of pCO2 and CO2 flux in the North Pacific follows the change in sea surface temperature (SST) closely with high and low values in summer and winter, respectively. Total CO2 modifies pCO2 seasonal pattern in an opposite manner with respect to SST, and surface wind speed modifies the magnitude of CO2 flux variations. On interannual and decadal time scales, sea surface pCO2 is primarily controlled by anthropogenic CO2, followed by modulations by the El Niño-Southern Oscillation and the Pacific Decadal Oscillation (PDO), while sea-air CO2 flux is significantly regulated by the PDO and the North Pacific Gyre Oscillation (NPGO). We show that anthropogenic CO2 tends to amplify the influence on CO2 flux from the PDO but to damp the influence from the NPGO.

  6. Massive nitrous oxide emissions from the tropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Arévalo-Martínez, D. L.; Kock, A.; Löscher, C. R.; Schmitz, R. A.; Bange, H. W.

    2015-07-01

    Nitrous oxide is a potent greenhouse gas and a key compound in stratospheric ozone depletion. In the ocean, nitrous oxide is produced at intermediate depths through nitrification and denitrification, in particular at low oxygen concentrations. Although a third of natural emissions of nitrous oxide to the atmosphere originate from the ocean, considerable uncertainties in the distribution and magnitude of the emissions still exist. Here we present high-resolution surface measurements and vertical profiles of nitrous oxide that include the highest reported nitrous oxide concentrations in marine surface waters, suggesting that there is a hotspot of nitrous oxide emissions in high-productivity upwelling ecosystems along the Peruvian coast. We estimate that off Peru, the extremely high nitrous oxide supersaturations we observed drive a massive efflux of 0.2-0.9 Tg of nitrogen emitted as nitrous oxide per year, equivalent to 5-22% of previous estimates of global marine nitrous oxide emissions. Nutrient and gene abundance data suggest that coupled nitrification-denitrification in the upper oxygen minimum zone and transport of resulting nitrous oxide to the surface by upwelling lead to the high nitrous oxide concentrations. Our estimate of nitrous oxide emissions from the Peruvian coast surpasses values from similar, highly productive areas.

  7. Calls reveal population structure of blue whales across the southeast Indian Ocean and the southwest Pacific Ocean

    PubMed Central

    Balcazar, Naysa E.; Tripovich, Joy S.; Klinck, Holger; Nieukirk, Sharon L.; Mellinger, David K.; Dziak, Robert P.; Rogers, Tracey L.

    2015-01-01

    For effective species management, understanding population structure and distribution is critical. However, quantifying population structure is not always straightforward. Within the Southern Hemisphere, the blue whale (Balaenoptera musculus) complex is extremely diverse but difficult to study. Using automated detector methods, we identified “acoustic populations” of whales producing region-specific call types. We examined blue whale call types in passive acoustic data at sites spanning over 7,370 km across the southeast Indian Ocean and southwest Pacific Ocean (SWPO) from 2009 to 2012. In the absence of genetic resolution, these acoustic populations offer unique information about the blue whale population complex. We found that the Australian continent acts as a geographic boundary, separating Australia and New Zealand blue whale acoustic populations at the junction of the Indian and Pacific Ocean basins. We located blue whales in previously undocumented locations, including the far SWPO, in the Tasman Sea off the east coast of Australia, and along the Lau Basin near Tonga. Our understanding of population dynamics across this broad scale has significant implications to recovery and conservation management for this endangered species, at a regional and global scale. PMID:26989263

  8. Oxygen Fugacity Recorded by Xenoliths from Pacific Oceanic Islands

    NASA Astrophysics Data System (ADS)

    Wall, K.; Davis, F. A.; Cottrell, E.

    2014-12-01

    Oxygen fugacity (fO2) plays a vital role in determining mineral stability and depth of melting in the mantle. Several studies have used the spinel peridotite oxybarometer to estimate fO2; yet few data exist from ocean islands, despite the importance of fO2 to understanding ocean island basalt petrogenesis (Herzberg and Asimow, 2008). We report fO2 recorded by peridotite xenoliths from three ocean islands: Savai'i (average fO2 = QFM -1.4 to +0.9), Tahiti (QFM +0.6 to +0.7) and Tubuai (QFM -1.1 to +0.2). We calculate fO2 using methods and standards from Wood and Virgo (1989) and Wood (RiMG, 1990). Oxygen fugacities span a similar range to those reported for El Hierro, Oahu, and Tahiti by Ballhaus (1993): more reduced than arc peridotites, but more oxidized than abyssal peridotites. Spinels in several of the xenoliths are heterogeneous and record a range of apparent fO2 at the mm scale. We propose two distinct mechanisms for introducing fO2 heterogeneity: melt refertilization (Tubuai) and diffusive reequilibration (Savai'i and Tubuai). Spinels in one Tubuai sample record increasing fO2 from QFM-0.6 in the xenolith interior to +1.1 at the basalt interface. Apparent fO2 recorded by these spinels correlate with TiO2, an indicator of melt refertilization (Pearce et al., 2000). We suggest that spinels from the xenolith interior record the relatively low fO2 conditions of the lithospheric mantle, while host basalt has oxidized near-interface spinels. Uniformly high TiO2, fO2, and low olivine Mg# in Tahitian xenoliths from this study may indicate that refertilization has reset the fO2 recorded by these rocks. Closed-system diffusive reequilibration, caused by changes in temperature, can also change the fO2 recorded by a peridotite. In samples from Savai'i and Tubuai with multiple spinel habits, fine intergrowth spinels and the rims of large, equant spinels record higher apparent fO2 and lower Al2O3 than cores of large grains. Canil and O'Neill (1996) suggest that the MgAl2O4

  9. Nitrous Oxide Cycling and its Isotopic Signatures in South West Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Mullungal, M.; Van Hale, R.; Frew, R. D.; Law, C. S.

    2013-12-01

    Nitrous oxide (N2O) is a significant greenhouse gas and is also involved in ozone depletion. The contribution of N2O to both these processes is expected to increase this century. The ocean contributes about 30% to the atmospheric N2O budget so there is strong interest in the oceanic N2O cycle. In the ocean N2O is produced via a number of different processes (e.g. bacterial nitrification, and denitrification). While coastal regions are well-studied there are limited data available for open ocean N2O especially in the Southern Ocean, with few studies of the relative contribution of different bacterial processes. Here we apply new stable isotope techniques and present a detailed overview of the distribution and fate of dissolved nitrous oxide from sampling sites in the southwest Pacific Ocean near New Zealand. Samples for nitrous oxide and nutrients were collected along the depth profiles from two biophysical mooring stations (subtropical and sub- Antarctic), four Geotraces stations (GP13, subtropical Pacific) and two bloom voyage stations in the subtropical front and subtropical pacific waters. The N2O saturation ranged from near equilibrium with air at the surface to a maximum value in the oxygen minimum zone. Thus the surface water masses are not a significant sink or atmospheric source for N2O .Multi-isotope characterization of N2O including d15Nbulk, d18O, d15Nα and its site preference (SP, the difference between d15Nα and d15Nβ)indicates that nitrification is the primary process responsible for nitrous oxide production in oxic waters whereas coupling between nitrification and denitrification may be an important mechanism for production in the oxygen minimum zone with a minor contribution by nitrification.

  10. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Jiao, N.; Zhang, R.

    2013-12-01

    As the most abundant biological entities in the ocean, viruses can influence host mortality and nutrients recycling mainly through lytic infection. Yet ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In present study, viral abundance and lytic infection was investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21-16.23 to 2.45-23.40, at surface and 2000 m depth, respectively. The lytic viral production rates in surface and 2000 m waters were, averagely, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1, respectively. Relatively high percentages of prokaryotic cells lysed by virus in 1000 m and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in the deep western Pacific Ocean and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  11. Accumulation of organic matter in Cretaceous oxygen-deficient depositional environments in the central Pacific Ocean

    USGS Publications Warehouse

    Dean, W.E.; Claypool, G.E.; Thide, J.

    1984-01-01

    Complete records of organic-carbon-rich Cretaceous strata were continuouslycored on the flanks of the Mid-Pacific Mountains and southern Hess Rise in the central North Pacific Ocean during DSDP Leg 62. Organic-carbon-rich laminated silicified limestones were deposited in the western Mid-Pacific Mountains during the early Aptian, a time when that region was south of the equator and considerably shallower than at present. Organic-carbon-rich, laminated limestone on southern Hess Rise overlies volcanic basement and includes 136 m of stratigraphic section of late Albian to early Cenomanian age. This limestone unit was deposited rapidly as Hess Rise was passing under the equatorial high-productivity zone and was subsiding from shallow to intermediate depths. The association of volcanogenic components with organic-carbon-rich strata on Hess Rise in the Mid-Pacific Mountains is striking and suggests that there was a coincidence of mid-plate volcanic activity and the production and accumulation of organic matter at intermediate water depths in the tropical Pacific Ocean during the middle Cretaceous. Pyrolysis assays and analyses of extractable hydrocarbons indicate that the organic matter in the limestone on Hess Rise is composed mainly of lipid-rich kerogen derived from aquatic marine organisms and bacteria. Limestones from the Mid-Pacific Mountains generally contain low ratios of pyrolytic hydrocarbons to organic carbon and low hydrogen indices, suggesting that the organic matter may contain a significant proportion of land-derived material, possibly derived from numerous volcanic islands that must have existed before the area subsided. The organic carbon in all samples analyzed is isotopically light (??13C - 24 to - 29 per mil) relative to most modern rine organic carbon, and the lightest carbon is also the most lipid-rich. There is a positive linear correlation between sulfur and organic carbon in samples from Hess Rise and from the Mid-Pacific Mountains. The slopes

  12. Mercury species concentrations and fluxes in the Central Tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Munson, Kathleen M.; Lamborg, Carl H.; Swarr, Gretchen J.; Saito, Mak A.

    2015-05-01

    The formation of the toxic and bioaccumulating monomethylmercury (MMHg) in marine systems is poorly understood, due in part to sparse data from many ocean regions. We present dissolved mercury (Hg) speciation data from 10 stations in the North and South Equatorial Pacific spanning large water mass differences and gradients in oxygen utilization. We also compare the mercury content in suspended particles from six stations and sinking particles from three stations to constrain local Hg sources and sinks. Concentrations of total Hg (THg) and methylated Hg in the surface and intermediate waters of the Equatorial and South Pacific suggest Hg cycling distinct from that of the North Pacific gyre. Maximum concentrations of 180 fM for both MMHg and dimethylmercury (DMHg) are observed in the Equatorial Pacific. South of the equator, concentrations of MMHg and DMHg are less than 100 fM. Sinking fluxes of particulate THg can reasonably explain the shape of dissolved THg profiles, but those of MMHg are too low to account for dissolved MMHg profiles. However, methylated Hg species are lower than predicted from remineralization rates based on North Pacific data, consistent with limitation of methylation in Equatorial and South Pacific waters. Full water column depth profiles were also measured for the first time in these regions. Concentrations of THg are elevated in deep waters of the North Pacific, compared to those in the intermediate and surface waters, and taper off in the South Pacific. Comparisons with previous measurements from nearby regions suggest little enrichment of THg or MMHg over the past 20 years.

  13. One- to two-month oscillations in SSMI surface wind speed in western tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Collins, Michael L.; Stanford, John L.; Halpern, David

    1994-01-01

    The 10-m wind speed over the ocean can be estimated from microwave brightness temperature measurements recorded by the Special Sensor Microwave Imager (SSMI) instrument mounted on a polar-orbiting spacecraft. Four-year (1988-1991) time series of average daily 1 deg x 1 deg SSMI wind speeds were analyzed at selected sites in the western tropical Pacific Ocean. One- to two-month period wind speed oscillations with amplitudes statistically significant at the 95% confidence level were observed near Kanton, Eniwetok, Guam, and Truk. This is the first report of such an oscillation in SSMI wind speeds.

  14. On the Cause of Eastern Equatorial Pacific Ocean T-S Variations Associated with El Nino

    NASA Technical Reports Server (NTRS)

    Wang, Ou; Fukumori, Ichiro; Lee, Tong; Cheng, Benny

    2004-01-01

    The nature of observed variations in temperature-salinity (T-S) relationship between El Nino and non-El Nino years in the pycnocline of the eastern equatorial Pacific Ocean (NINO3 region, 5(deg)S-5(deg)N, 150(deg)W-90(deg)W) is investigated using an ocean general circulation model. The origin of the subject water mass is identified using the adjoint of a simulated passive tracer. The higher salinity during El Nino is attributed to larger convergence of saltier water from the Southern Hemisphere and smaller convergence of fresher water from the Northern Hemisphere.

  15. Coupled isotopic systematics of surface cerium and neodymium in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Tazoe, H.; Obata, H.; Gamo, T.

    2011-04-01

    Trace metals are known to be essential elements in marine ecosystems. Radiogenic isotopes of neodymium (Nd) have been used as tracers in many recent oceanic trace metal studies, although, among rare earth elements, cerium (Ce) isotopes might be an interesting complementary tracer for particle reactive and lithogenic metals such as manganese. This study determined the 138Ce/142Ce ratios in surface waters of the Pacific Ocean and its surrounding marginal seas: the Sulu Sea, the South China Sea, the East China Sea, and the South Australian Basin. The 138Ce/142Ce and 143Nd/144Nd data are discussed in terms of the sources of rare earth elements and elemental fractionation between Ce and Nd in the marine environment. In the Western North Pacific Central Water, East China Sea, and South China Sea, isotopic compositions of Ce (ɛCe = +0.7 to 1.4) are most affected by radiogenic Ce of continental origin. In contrast, less radiogenic isotopic compositions of Ce (ɛCe = -0.4 to +0.3) in the Pacific Equatorial Water were observed locally near volcanic islands such as New Guinea Island, suggesting the influence of mantle-derived Ce. Compared with Nd, the isotopic composition of Ce showed a heterogeneous distribution in a given surface water mass, reflecting the importance of local sources. Variations of isotopic compositions and concentrations of Ce in the western Equatorial Pacific and the East China Sea suggest that lithogenic Ce is supplied and scavenged by particle-dissolved interaction near the margins. Radiogenic Ce in the Western North Pacific Central Water, which is more continental-like than Nd isotopes, suggests direct input by atmospheric dust into the North Pacific Ocean. The isotopic distribution of Ce is sensitive to aeolian supply to the surface waters of the open ocean. This unique feature indicates that the 138Ce/142Ce ratio can be a useful chemical tracer for lithogenic trace elements such as iron and manganese, which have short oceanic residence time.

  16. STS-46 Earth observation of Tropical Storm Javier in eastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, is of Tropical Storm Javier in the eastern Pacific Ocean. Most of Javier's circulation, about 400 nautical miles in diameter, was captured on film by the STS-46 crewmembers as they passed over the eastern Pacific Ocean. Low level winds are spinning counter-clockwise (cyclonic) about a pivot point in the picture while cirrus outflow from the lone thunderstorm in the upper right is moving clockwise (anticyclonic). The noticeable absence of thunderstorms around Javier's circulation center implies a diminished state in the storm's intensity. In fact, Javier never had sustained winds greater than 55 knots (63 miles per hour). When this view was recorded, Javier was centered about 19 degrees north latitude and 132.4 degrees west longitude.

  17. Evidence for a K/T impact event in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Robin, E.; Froget, L.; Jehanno, C.; Rocchia, R.

    1993-06-01

    The spinel-bearing material recovered from K/T boundary deposits at site 577 in the Pacific Ocean has been examined, and two distinct populations of particles are found: spherules with dendritic spinel textures dispersed throughout the grains and irregularly shaped fragments with spinels essentially confined to the rim. The morphology and composition of the particles are characteristic of melted and partially melted meteoritic ablation debris, but their location is difficult to reconcile with an impact on the Yucatan peninsula, some 10,000 km away. It is suggested instead that the spinel-bearing particles at site 577 are derived from the impact of a 2-km asteroid in the Pacific Ocean, and that several accretionary events of this type are required to explain the local distribution of spinel-bearing spherules at the K/T boundary.

  18. Misidentification of Carcharhinus galapagensis (Snodgrass & Heller, 1905) in the Southwest Pacific Ocean.

    PubMed

    Duffy, Clinton A J

    2016-01-01

    Although primarily a coral reef species the grey reef shark Carcharhinus amblyrhynchos has been recorded from a number of subtropical oceanic islands and reefs in the Southwest Pacific Ocean. Examination of all nominal C. amblyrhynchos voucher material collected from Lord Howe Island, Elizabeth and Middleton Reefs and Norfolk Island resulted in the re-identification of these specimens as Galapagos sharks, C. galapagensis. As C. amblyrhynchos superficially resembles C. galapagensis visual records of C. amblyrhynchos from Elizabeth and Middleton Reefs and the Kermadec Islands cannot be substantiated without voucher material. Carcharhinus amblyrhynchos therefore appears to be confined to waters north of about 25o S in the Southwest Pacific. Precaudal vertebral counts should be used to confirm the identification of nominal C. amblyrhynchos specimens that have an interdorsal ridge. PMID:27395655

  19. Origin and fate of surface drift in the oceanic convergence zones of the eastern Pacific

    NASA Astrophysics Data System (ADS)

    Maes, Christophe; Blanke, Bruno; Martinez, Elodie

    2016-04-01

    This study investigates the structure and intensity of the surface pathways connecting to and from the central areas of the large-scale convergence regions of the eastern Pacific Ocean. Surface waters are traced with numerical Lagrangian particles transported in the velocity field of three different ocean models with horizontal resolutions that range from ¼° to 1/32°. The connections resulting from the large-scale convergent Ekman dynamics agree qualitatively but are strongly modulated by eddy variability that introduces meridional asymmetry in the amplitude of transport. Lagrangian forward-in-time integrations are used to analyze the fate of particles originating from the central regions of the convergence zones and highlight specific outflows not yet reported for the southeastern Pacific when using the currents at the highest resolutions (1/12° and 1/32°). The meridional scales of these outflows are comparable to the characteristic width of the fine-scale striation of mean currents.

  20. Blunt ocean dynamical thermostat in response of tropical eastern Pacific SST to global warming

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Im, Seul-Hee

    2014-10-01

    Using an intermediate ocean-atmosphere coupled model (ICM) for the tropical Pacific, we investigated the role of the ocean dynamical thermostat (ODT) in regulating the tropical eastern Pacific sea surface temperature (SST) under global warming conditions. The external, uniformly distributed surface heating results in the cooling of the tropical eastern Pacific "cold tongue," and the amplitude of the cooling increases as more heat is added but not simply linearly. Furthermore, an upper bound for the influence of the equatorially symmetric surface heating on the cold tongue cooling exists. The additional heating beyond the upper bound does not cool the cold tongue in a systematic manner. The heat budget analysis suggests that the zonal advection is the primary factor that contributes to such nonlinear SST response. The radiative heating due to the greenhouse effect (hereafter, RHG) that is obtained from the multi-model ensemble of the Climate Model Intercomparison Project Phase III (CMIP3) was externally given to ICM. The RHG obtained from the twentieth century simulation intensified the cold tongue cooling and the subtropical warming, which were further intensified by the RHG from the doubled CO2 concentration simulation. However, the cold tongue cooling was significantly reduced and the negative SST response region was shrunken toward the equator by the RHG from the quadrupled CO2 concentration simulation, while the subtropical warming increased further. A systematic RHG forced experiment having the same spatial pattern of RHG from doubled CO2 concentration simulation with different amplitude of forcing revealed that the ocean dynamical response to global warming tended to enhance the cooling in the tropical eastern Pacific by virtue of meridional advection and upwelling; however, these cooling effects could not fully compensate a given RHG warming as the external forcing becomes larger. Moreover, the feedback by the zonal thermal advection actually exerted the

  1. Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Westberry, Toby K.; Schultz, Patrick; Behrenfeld, Michael J.; Dunne, John P.; Hiscock, Michael R.; Maritorena, Stephane; Sarmiento, Jorge L.; Siegel, David A.

    2016-02-01

    High-latitude phytoplankton blooms support productive fisheries and play an important role in oceanic uptake of atmospheric carbon dioxide. In the subarctic North Atlantic Ocean, blooms are a recurrent feature each year, while in the eastern subarctic Pacific only small changes in chlorophyll (Chl) are seen over the annual cycle. Here we show that when evaluated using phytoplankton carbon biomass (Cphyto) rather than Chl, an annual bloom in the North Pacific is evident and can even rival blooms observed in the North Atlantic. The annual increase in subarctic Pacific phytoplankton biomass is not readily observed in the Chl record because it is paralleled by light- and nutrient-driven decreases in cellular pigment levels (Cphyto:Chl). Specifically, photoacclimation and iron stress effects on Cphyto:Chl oppose the biomass increase, leading to only modest changes in bulk Chl. The magnitude of the photoacclimation effect is quantified using descriptors of the near-surface light environment and a photophysiological model. Iron stress effects are diagnosed from satellite chlorophyll fluorescence data. Lastly, we show that biomass accumulation in the Pacific is slower than that in the Atlantic but is closely tied to similar levels of seasonal nutrient uptake in both basins. Annual cycles of satellite-derived Chl and Cphyto are reproduced by in situ autonomous profiling floats. These results contradict the long-standing paradigm that environmental conditions prevent phytoplankton accumulation in the subarctic Northeast Pacific and suggest a greater seasonal decoupling between phytoplankton growth and losses than traditionally implied. Further, our results highlight the role of physiological processes in shaping bulk properties, such as Chl, and their interpretation in studies of ocean ecosystem dynamics and climate change.

  2. Surface ocean iron fertilization: The role of airborne volcanic ash and iron-flux into the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Olgun, N.; Duggen, S.; Croot, P.; Dietze, H.

    2009-04-01

    Iron is a limiting micro-nutrient for marine primary production (MPP) in vast areas in the surface ocean. Hence, atmospheric supply of iron to the surface ocean can affect marine biogeochemical cycles, associated ocean-atmosphere exchange of CO2 and eventually climate development. Airborne volcanic ash from volcanic eruptions can be an important atmospheric iron-source in the surface ocean by releasing bio-available iron while settling through in the surface ocean. Here we present new data from time-dependent geochemical experiments with pristine (unhydrated) volcanic ash samples and natural seawater by means of Cathodic Stripping Voltammetry. Our results demonstrate that volcanic ash mobilizes significant amounts of soluble Fe within 60 minutes of contact with natural seawater. Depending on the amount of volcanic ash deposited offshore during major volcanic eruptions and the amount of iron that ash can release on contact with seawater, the calculated increase in the surface ocean Fe levels range from several nanomolar up to several hundred nanomolar (nM). Only 2 nM increase in iron concentrations can stimulate massive diatom blooms in the oceanic regions in which MPP is limited by the availability of iron (the iron-limited oceanic areas) (Wells, 2003). Therefore volcanic ash should be able to significantly affect marine phytoplankton growth in an ash fall area, acting as an iron fertilizer. Based on our new iron-release data and marine sediment core data we provide the first estimate of the flux of Fe from volcanic ash into the Pacific Ocean that covers more than 60 percent of the iron-limited oceanic regions. Our calculations show that the flux of Fe from volcanic ash is comparable to the order of magnitude of the flux of Fe from aeolian dust. Our study shows that volcanic ash is a major and so far underestimated atmospheric iron-source for the oceans and therefore an important component in marine biogeochemical iron cycles. Wells, M.L.: The level of iron

  3. 75 FR 26100 - Danger Zone, Pacific Ocean, Naval Base Coronado, Coronado, California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...The U.S. Army Corps of Engineers (Corps) is amending its regulations to establish a naval danger zone in the waters of the Pacific Ocean extending offshore from the small arms range at the Naval Base Coronado (NBC), in Coronado, San Diego County, California. The danger zone will provide an appropriate and enforceable zone in which the Navy may conduct small arms test firing to qualify military......

  4. STS-65 Earth observation of Hurricane Emilia in Eastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows Hurricane Emilia in the Eastern Pacific Ocean. Hurricane Emilia's wind speeds exceeded 150 knots. This high oblique view of the storm shows numerous spiral bands of thunderstorms, overshooting thunderstorm tops at the tropopause, and a well developed eye at the center of the picture. Shuttle photography provides high resolution details of these powerful and destructive systems that are not fully possible from lower-resolution, unmanned satellites.

  5. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    NASA Astrophysics Data System (ADS)

    Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J. B.; Robertson, F. R.; Husak, G.

    2014-12-01

    In eastern East Africa (the southern Ethiopia, eastern Kenya and southern Somalia region), poor boreal spring (long wet season) rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent East African droughts to a stronger Walker circulation, resulting from warming in the Indo-Pacific warm pool and an increased east-to-west sea surface temperature (SST) gradient in the western Pacific, we show that the two dominant modes of East African boreal spring rainfall variability are tied to SST fluctuations in the western central Pacific and central Indian Ocean, respectively. Variations in these two rainfall modes can thus be predicted using two SST indices - the western Pacific gradient (WPG) and central Indian Ocean index (CIO), with our statistical forecasts exhibiting reasonable cross-validated skill (rcv ≈ 0.6). In contrast, the current generation of coupled forecast models show no skill during the long rains. Our SST indices also appear to capture most of the major recent drought events such as 2000, 2009 and 2011. Predictions based on these simple indices can be used to support regional forecasting efforts and land surface data assimilations to help inform early warning and guide climate outlooks.

  6. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    NASA Astrophysics Data System (ADS)

    Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J. B.; Robertson, F. R.; Husak, G.

    2014-03-01

    In southern Ethiopia, Eastern Kenya, and southern Somalia, poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts in that region to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we show that the two dominant modes of East African boreal spring rainfall variability are tied, respectively, to western-central Pacific and central Indian Ocean SST. Variations in these rainfall modes can be predicted using two previously defined SST indices - the West Pacific Gradient (WPG) and Central Indian Ocean index (CIO), with the WPG and CIO being used, respectively, to predict the first and second rainfall modes. These simple indices can be used in concert with more sophisticated coupled modeling systems and land surface data assimilations to help inform early warning and guide climate outlooks.

  7. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping; Kosaka, Yu; Du, Yan; Hu, Kaiming; Chowdary, Jasti S.; Huang, Gang

    2016-04-01

    ENSO induces coherent climate anomalies over the Indo-western Pacific, but these anomalies outlast SST anomalies of the equatorial Pacific by a season, with major effects on the Asian summer monsoon. This review provides historical accounts of major milestones and synthesizes recent advances in the endeavor to understand summer variability over the Indo-Northwest Pacific region. Specifically, a large-scale anomalous anticyclone (AAC) is a recurrent pattern in post-El Ni˜no summers, spanning the tropical Northwest Pacific and North Indian oceans. Regarding the ocean memory that anchors the summer AAC, competing hypotheses emphasize either SST cooling in the easterly trade wind regime of the Northwest Pacific or SST warming in the westerly monsoon regime of the North Indian Ocean. Our synthesis reveals a coupled ocean-atmosphere mode that builds on both mechanisms in a two-stage evolution. In spring, when the northeast trades prevail, the AAC and Northwest Pacific cooling are coupled via wind-evaporation-SST feedback. The Northwest Pacific cooling persists to trigger a summer feedback that arises from the interaction of the AAC and North Indian Ocean warming, enabled by the westerly monsoon wind regime. This Indo-western Pacific ocean capacitor (IPOC) effect explains why El Ni˜no stages its last act over the monsoonal Indo-Northwest Pacific and casts the Indian Ocean warming and AAC in leading roles. The IPOC displays interdecadal modulations by the ENSO variance cycle, significantly correlated with ENSO at the turn of the 20th century and after the 1970s, but not in between. Outstanding issues, including future climate projections, are also discussed.

  8. Pronounced warming in the Indian and Pacific sectors of the Southern Ocean during the 1970s

    NASA Astrophysics Data System (ADS)

    Turney, Chris; Fogwill, Chris; Palmer, Jonathan; van Sebille, Erik; Thomas, Zoë; McGlone, Matt; Richardson, Sarah; Wilmshurst, Janet; Fenwick, Pavla; Carter, Lionel; Jones, Richard; Harsch, Melanie; Wilson, Kerry-Jayne; Clark, Graeme; Marzinelli, Ezequiel; Rogers, Tracey; Rainsley, Eleanor; Ciasto, Laura; Waterman, Stephanie; Antarctic Expedition 2013-2014 Members, Australasian

    2015-04-01

    Occupying some 20% of the world's ocean surface, the Southern Ocean is home to a diverse and unique biota and plays a fundamental role in global oceanic circulation, climate variability, Antarctic ice sheet stability and carbon cycling. Significant warming has been observed over recent decades, most prominently in the Antarctic Circumpolar Current (ACC). The mechanism(s) behind this warming, however, remain uncertain. Here, we integrate historic ocean and atmospheric observations and climate-sensitive tree growth on subantarctic islands from the northern limit of the ACC to extend historic and satellite measurements to produce a unique proxy record of temperature across 4˚ of latitude in the southwest Pacific. We demonstrate a hitherto unobserved abrupt warming during the 1970s that is unprecedented over the past 130 years, coincident with a significant decline in marine vertebrate populations and wider warming across the Indian Ocean. Comparison between our reconstruction and high-resolution ocean modelling provides a possible mechanism, suggesting warmer waters resulted from a poleward migration of the subtropical and ACC fronts. Projected increases in the strength of westerly winds are likely to continue the fronts' migration, driving warming in the Southern Ocean (>50˚S), with significant impacts on biota.

  9. Modeling the tropical Pacific Ocean using a regional coupled climate model

    NASA Astrophysics Data System (ADS)

    Fu, Weiwei; Zhou, Guangqing; Wang, Huijun

    2006-12-01

    A high-resolution tropical Pacific general circulation model (GCM) coupled to a global atmospheric GCM is described in this paper. The atmosphere component is the 5° × 4° global general circulation model of the Institute of Atmospheric Physics (IAP) with 9 levels in the vertical direction. The ocean component with a horizontal resolution of 0.5°, is based on a low-resolution model (2° × 1° in longitude-latitude). Simulations of the ocean component are first compared with its previous version. Results show that the enhanced ocean horizontal resolution allows an improved ocean state to be simulated: this involves (1) an apparent decrease in errors in the tropical Pacific cold tongue region, which exists in many ocean models, (2) more realistic large-scale flows, and (3) an improved ability to simulate the interannual variability and a reduced root mean square error (RMSE) in a long time integration. In coupling these component models, a monthly “linear-regression” method is employed to correct the model’s exchanged flux between the sea and the atmosphere. A 100-year integration conducted with the coupled GCM (CGCM) shows the effectiveness of such a method in reducing climate drift. Results from years 70 to 100 are described. The model produces a reasonably realistic annual cycle of equatorial SST. The large SSTA is confined to the eastern equatorial Pacific with little propagation. Irregular warm and cold events alternate with a broad spectrum of periods between 24 and 50 months, which is very realistic. But the simulated variability is weaker than the observed and is also asymmetric in the sense of the amplitude of the warm and cold events.

  10. Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing.

    PubMed

    Moum, James N; Perlin, Alexander; Nash, Jonathan D; McPhaden, Michael J

    2013-08-01

    Sea surface temperature (SST) is a critical control on the atmosphere, and numerical models of atmosphere-ocean circulation emphasize its accurate prediction. Yet many models demonstrate large, systematic biases in simulated SST in the equatorial 'cold tongues' (expansive regions of net heat uptake from the atmosphere) of the Atlantic and Pacific oceans, particularly with regard to a central but little-understood feature of tropical oceans: a strong seasonal cycle. The biases may be related to the inability of models to constrain turbulent mixing realistically, given that turbulent mixing, combined with seasonal variations in atmospheric heating, determines SST. In temperate oceans, the seasonal SST cycle is clearly related to varying solar heating; in the tropics, however, SSTs vary seasonally in the absence of similar variations in solar inputs. Turbulent mixing has long been a likely explanation, but firm, long-term observational evidence has been absent. Here we show the existence of a distinctive seasonal cycle of subsurface cooling via mixing in the equatorial Pacific cold tongue, using multi-year measurements of turbulence in the ocean. In boreal spring, SST rises by 2 kelvin when heating of the upper ocean by the atmosphere exceeds cooling by mixing from below. In boreal summer, SST decreases because cooling from below exceeds heating from above. When the effects of lateral advection are considered, the magnitude of summer cooling via mixing (4 kelvin per month) is equivalent to that required to counter the heating terms. These results provide quantitative assessment of how mixing varies on timescales longer than a few weeks, clearly showing its controlling influence on seasonal cooling of SST in a critical oceanic regime. PMID:23883934

  11. Microbial community structure in the North Pacific ocean.

    PubMed

    Brown, Mark V; Philip, Gayle K; Bunge, John A; Smith, Matthew C; Bissett, Andrew; Lauro, Federico M; Fuhrman, Jed A; Donachie, Stuart P

    2009-12-01

    We report a ribosomal tag pyrosequencing study of the phylogenetic diversity of Archaea, Bacteria and Eucarya over a depth profile at the Hawaii Ocean Time-Series Station, ALOHA. The V9 region of the SSU rRNA gene was amplified from samples representing the epi- (10 m), meso- (800 m) and bathy- (4400 m) pelagia. The primers used are expected to amplify representatives of approximately 80% of known phylogenetic diversity across all three domains. Comparisons of unique sequences revealed a remarkably low degree of overlap between communities at each depth. The 444 147 sequence tags analyzed represented 62 975 unique sequences. Of these, 3707 (5.9%) occurred at two depths, and only 298 (0.5%) were observed at all three depths. At this level of phylogenetic resolution, Bacteria diversity decreased with depth but was still equivalent to that reported elsewhere for different soil types. Archaea diversity was highest in the two deeper samples. Eucarya observations and richness estimates are almost one order of magnitude higher than any previous marine microbial Eucarya richness estimates. The associations of many Eucarya sequences with putative parasitic organisms may have significant impacts on our understanding of the mechanisms controlling host population density and diversity, and point to a more significant role for microbial Eucarya in carbon flux through the microbial loop. We posit that the majority of sequences detected from the deep sea that have closest matches to sequences from non-pelagic sources are indeed native to the marine environment, and are possibly responsible for key metabolic processes in global biogeochemical cycles. PMID:19626056

  12. Comparison of Hygroscopicity, Volatility, and Mixing State of Submicrometer Particles between Cruises over the Arctic Ocean and the Pacific Ocean.

    PubMed

    Kim, Gibaek; Cho, Hee-Joo; Seo, Arom; Kim, Dohyung; Gim, Yeontae; Lee, Bang Yong; Yoon, Young Jun; Park, Kihong

    2015-10-20

    Ship-borne measurements of ambient aerosols were conducted during an 11 937 km cruise over the Arctic Ocean (cruise 1) and the Pacific Ocean (cruise 2). A frequent nucleation event was observed during cruise 1 under marine influence, and the abundant organic matter resulting from the strong biological activity in the ocean could contribute to the formation of new particles and their growth to a detectable size. Concentrations of particle mass and black carbon increased with increasing continental influence from polluted areas. During cruise 1, multiple peaks of hygroscopic growth factor (HGF) of 1.1-1.2, 1.4, and 1.6 were found, and higher amounts of volatile organic species existed in the particles compared to that during cruise 2, which is consistent with the greater availability of volatile organic species caused by the strong oceanic biological activity (cruise 1). Internal mixtures of volatile and nonhygroscopic organic species, nonvolatile and less-hygroscopic organic species, and nonvolatile and hygroscopic nss-sulfate with varying fractions can be assumed to constitute the submicrometer particles. On the basis of elemental composition and morphology, the submicrometer particles were classified into C-rich mixture, S-rich mixture, C/S-rich mixture, Na-rich mixture, C/P-rich mixture, and mineral-rich mixture. Consistently, the fraction of biological particles (i.e., P-containing particles) increased when the ship traveled along a strongly biologically active area. PMID:26389581

  13. Feature Analysis of Ocean Waves in North Central Pacific Ocean Based ASAR Wave Spectral Data and Wave Model

    NASA Astrophysics Data System (ADS)

    Wang, Jichao; Zhang, Jie; Yang, Jungang; Meng, Junmin

    2013-01-01

    Directional Spectrum of the ocean waves could be obtained form Envisat advanced synthetic aperture radar (ASAR) wave spectral data. The wave model WAVEWATCH III (WW3) is applied to simulate the ocean wave field. Study area is 185°E-215°E and 15°N-30°N, time range is from 1 January 2008 to 31 December 2008. Based on ASAR and buoy data, the wave numerical simulation and assimilation of the north central Pacific Ocean is carried out. The validation and assessment of ASAR ocean wave spectra products is performed. The optimal interpolation (OI) algorithm is used in model WW3 for assimilating ASAR wave spectra data. Based on the result of the simulation and assimilation, mean waves direction (MWD), significant wave height (SWH) and mean wave period (MWP) are analysed. SWH and MWP are larger in winter and SWH reach to more than 2.5 meters. Seasonal change of SWH and MWP are significant.

  14. Scientists push for an integrated ocean observing system

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Some elements of a U.S. system to monitor the world s oceans already are in place. For instance, the El Niæo-Southern Oscillation Observing System provided important data to scientists and planners tracking the 1998 El Niæo in the Pacific Ocean. The VENTS program, established in 1984, is helping to increase understanding of the spreading of the sea floor in the Pacific. The Long-Term Ecosystem Observatory in 15 meters of water (LEO-15) monitors the marine environment off the coast of New Jersey. Additional programs include a federal network of 22 National Estuarine Research reserve monitoring sites, the World Ocean Circulation Experiment (WOCE), RIDGE (Ridge Inter-Disciplinary Global Experiments), and other projects and observing stations maintained by research institutions and government agencies.These pieces, however, do not yet add up to an integrated ocean observing system (IOOS), according to proponents, who argue that an investment to create a national ocean information system that fits in with an international oceans system would be similar to existing national and global weather information systems. While the price tag for an IOOS and an international oceans system could be expensive, the human, ecological, and economic benefits far outweigh the costs, these individuals say.

  15. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-02-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate.

  16. Salinity Exchange through the Quasi-Stationary Jet from the Subtropical to the Subpolar Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Miyama, T.; Mitsudera, H.

    2014-12-01

    It is known that a quasi-stationary jet-like current [referred to as J1 in Isoguchi et al. (2006)] flows along the northern part of the Kuroshio/Oyashio mixed water region in the western Pacific Ocean. Observations (Isoguchi et al. 2006, Wagawa et al. 2014) have shown that the jet transports saline water in the subtropical Pacific Ocean to the subpolar region. To investigate how the subtropical water is transported through the quasi-stationary jet, numerical particle were tracked using a high resolution ocean reanalysis dataset, the Japan Coastal Ocean Predictability Experiment (JCOPE2). Particle released from the region near the quasi-stationary jet (152-158°E, 42-45°N) are tracked for one year from 15th day of every month and every year (1993-2013) with daily velocity of the JCOPE2 reanalysis at 30 m depth. Backward particle tracking shows that the particles near the jet come from wide southward area, which suggests that eddies are important in the transport process of the saline subtropical water. The number of particles that go back to the region south of 36°N within one year varies greatly in time, from 0.002% to 20% of the total particles. Forward particle tracking shows that the part of particles flows northeastward, which indicates the western subpolar gyre, while part of the particles are trapped in another jet-like current [referred to as J2 in Isoguchi et al. (2006)].

  17. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean

    PubMed Central

    Glasser, Neil F.; Jansson, Krister N.; Duller, Geoffrey A. T.; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-01-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate. PMID:26869235

  18. Glacial lake drainage in Patagonia (13-8 kyr) and response of the adjacent Pacific Ocean.

    PubMed

    Glasser, Neil F; Jansson, Krister N; Duller, Geoffrey A T; Singarayer, Joy; Holloway, Max; Harrison, Stephan

    2016-01-01

    Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their effect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to define three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/Pueyrredón basins of Patagonia and provide the first assessment of the effects of lake drainage on the Pacific Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Pacific as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface "hosing" to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but significant impacts on coastal ocean vertical mixing and regional climate. PMID:26869235

  19. Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones

    NASA Astrophysics Data System (ADS)

    Wang, Guihua; Wu, Lingwei; Johnson, Nathaniel C.; Ling, Zheng

    2016-07-01

    Sea surface cooling along tropical cyclone (TC) tracks has been well observed, but a complete understanding of the full three-dimensional structure of upper ocean TC-induced cooling is still needed. In this study, observed ocean temperature profiles derived from Argo floats and TC statistics from 1996 to 2012 are used to determine the three-dimensional structure of TC-induced cooling over the northwest Pacific. The average TC-induced sea surface temperature change derived from Argo reaches -1.4°C, which agrees well with satellite-derived estimates. The Argo profiles further reveal that this cooling can extend to a depth of ~30 m and can persist for about 20 days. The time scale of cooling recovery is somewhat longer in subsurface layers between a depth of ~10-15 m. Over the ocean domain where the mixed layer is shallower (deeper), the cooling is stronger (weaker), shallower (deeper), and more (less) persistent. The effect of initial MLD on the cooling derived from Argo observations may be only half of the idealized piecewise continuous model of tropical cyclone. These findings have implications for the total upper ocean heat content change induced by northwest Pacific TCs.

  20. Prediction of the fate of radioactive material in the South Pacific Ocean using a global high-resolution ocean model.

    PubMed

    Hazell, Douglas R; England, Matthew H

    2003-01-01

    We investigate the release of radioactive contaminants from Moruroa Atoll in a global high-resolution off-line model. The spread of tracer is studied in a series of simulations with varying release depths and time-scales, and into ocean velocity fields corresponding to long-term annual mean, seasonal, and interannually varying scenarios. In the instantaneous surface release scenarios we find that the incorporation of a seasonal cycle greatly influences tracer advection, with maximum concentrations still found within the French Polynesia region after 10 years. In contrast, the maximum trace is located in the southeast Pacific when long-term annual mean fields are used. This emphasizes the importance of the seasonal cycle in models of pollution dispersion on large scales. We further find that during an El Niño/Southern Oscillation (ENSO) event reduced currents in the region of Moruroa Atoll result in increased concentrations of radioactive material in French Polynesia, as direct flushing from the source is reduced. In terms of the sensitivity to tracer release time-rates, we find that a gradual input results in maximum concentrations in the near vicinity of French Polynesia. This contrasts the instantaneous-release scenarios, which see maximum concentrations and tracer spread across much of the South Pacific Ocean. For example, in as little as seven years radioactive contamination can reach the east coast of Australia diluted by only a factor of 1,000 of the initial concentration. A comparison of results is made with previous studies. Overall, we find much higher concentrations of radionuclides in the South Pacific than has previously been predicted using coarser-resolution models. PMID:12573864

  1. Relationship Between Intraseasonal Oscillation and Subtropical Wind Maxima Over the South Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Hurrell, James W.; Speth, P.; Sperling, T.; Funk, A.; Zube, S.

    1991-01-01

    The significance of tropical heat sources on higher latitude jet streams has been examined by numerous investigators. Hurrell and Vincent (1990) provide a summary of many of these investigations in their observational case study of the relationship between tropical heating and subtropical wind maxima in the Southern Hemisphere during SOP-1, FGGE. They showed that the divergent outflow from tropical heating associated with the South Pacific Convergence Zone (SPCZ), acted on by the coriolis force, was an important factor in maintaining the subtropical jet on the poleward side of the SPCZ during the period, 6-20 January 1979. They found a similar, but weaker relationship, over the southern Indian Ocean from 3-17 February 1979, a period when the SPCZ heating was greatly reduced and the jet was essentially non-existent. Since their findings were based on a case study and involved the use of the highly-specialized FGGE data set, the natural questions which arose were: (1) Is this relationship a regular feature of the circulation over the South Pacific? and, (2) If so, can it be detected with a routine data set? Another question posed by Hurrell and Vincent in their papers was:(3) How important was the intraseasonal oscillation in causing the enhanced heating and divergent outflow in the Pacific Ocean in January and southern Indian Ocean in February? The purpose of the present paper is to address the answer to these three questions. To accomplish this, some circulation features for an entire warm season in the Southern Hemisphere were examined. The year selected was 1984-85, and the warm season consisted of the 6-month period, 1 November 1984 - 30 April 1985. This period was chosen because there were numerous cases of the westerly wind maxima over the South Pacific and the intraseasonal oscillation was well documented.

  2. Are South Texas Streamflow Variations Influenced by Sea Surface Temperature Changes in Pacific and Atlantic Oceans?

    NASA Astrophysics Data System (ADS)

    Murgulet, V.; Hay, R.; Ard, R.

    2013-12-01

    The impact of sea surface temperature (SST) anomalies of the Pacific and Atlantic Oceans on several major river basins in the continental U. S. has recently become well documented. Clear relationships have been identified between El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO) and continental U. S. streamflow. Because these relationships can be potentially used to predict streamflow variability, it would also be of great importance to evaluate whether these climate phenomena affect river basins at the sub-regional and/or local scale, objectives that are not usually addressed in previous studies. Therefore, this study is focused on the basin river system of South Texas, an area that encompasses approximately 30,000 km2 and is climatologically defined as subtropical subhumid. Streamflow data (1940-2011) from sixteen unimpaired U.S. Geological Survey gage stations were normalized into a South Texas streamflow data set and evaluated with respect to ENSO, PDO and AMO index time series. The comparison of South Texas annual streamflow with Pacific Decadal Oscillation and El Niño Southern Oscillation Indices shows that the warm phases of ENSO and PDO are generally associated with increased streamflow, whereas cold phases of ENSO and PDO result in lower streamflow volumes. In addition, cross-correlation analyses show a 7-8 month delayed streamflow response to sea surface temperature signals. Furthermore, annual streamflow variability in the South Texas river basins can be also due to sea surface temperature anomalies in the Atlantic Ocean. Higher streamflow values are shown during the cold phase of AMO, while relatively low streamflow values are illustrated during the warm phase of AMO. Thus, preliminary results show that SST anomalies in both Pacific and Atlantic Oceans influence the streamflow variability in the South Texas area. Current research is also focused on evaluating if these climate phenomena

  3. Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Miyama, Toru; Furue, Ryo; Jensen, Tommy; Kang, Hyoun-Woo; Bang, Bohyun; Qu, Tangdong

    2007-10-01

    Circulations associated with the Indonesian Throughflow (IT), particularly concerning subsurface currents in the Pacific Ocean, are studied using three types of models: a linear, continuously stratified (LCS) model and a nonlinear, 4{1}/{2}-layer model (LOM), both confined to the Indo-Pacific basin; and a global, ocean general circulation model (COCO). Solutions are wind forced, and obtained with both open and closed Indonesian passages. Layers 1-4 of LOM correspond to near-surface, thermocline, subthermocline (thermostad), and upper-intermediate (AAIW) water, respectively, and analogous layers are defined for COCO. The three models share a common dynamics. When the Indonesian passages are abruptly opened, barotropic and baroclinic waves radiate into the interiors of both oceans. The steady-state, barotropic flow field from the difference (open - closed) solution is an anticlockwise circulation around the perimeter of the southern Indian Ocean, with its meridional branches confined to the western boundaries of both oceans. In contrast, steady-state, baroclinic flows extend into the interiors of both basins, a consequence of damping of baroclinic waves by diapycnal processes (internal diffusion, upwelling and subduction, and convective overturning). Deep IT-associated currents are the subsurface parts of these baroclinic flows. In the Pacific, they tend to be directed eastward and poleward, extend throughout the basin, and are closed by upwelling in the eastern ocean and Subpolar Gyre. Smaller-scale aspects of their structure vary significantly among the models, depending on the nature of their diapycnal mixing. At the exit to the Indonesian Seas, the IT is highly surface trapped in all the models, with a prominent, deep core in the LCS model and in LOM. The separation into two cores is due to near-equatorial, eastward-flowing, subsurface currents in the Pacific Ocean, which drain layer 2 and layer 3 waters from the western ocean to supply water for the upwelling

  4. Presence of Prochlorococcus in the aphotic waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Jiao, N.; Luo, T.; Zhang, R.; Yan, W.; Lin, Y.; Johnson, Z. I.; Tian, J.; Yuan, D.; Yang, Q.; Zheng, Q.; Sun, J.; Hu, D.; Wang, P.

    2014-04-01

    Prochlorococcus, the smallest but most abundant marine primary producer, plays an important role in carbon cycling of the global ocean. As a phototroph, Prochlorococcus is thought to be confined to the euphotic zone, with commonly observed maximum depths of ~ 150-200 m, but here we show for the first time the substantial presence of Prochlorococcus populations in the dark ocean ("deep Prochlorococcus" hereafter). Intensive studies at the Luzon Strait in the western Pacific Ocean show that the deep Prochlorococcus populations are exported from the euphotic zone. Multiple physical processes including internal solitary waves could be responsible for the transportation. These findings reveal a novel mechanism for picoplankton carbon export other than the known mechanisms such as sinking of phytodetritus and aggregates or grazing-mediated transportation.

  5. Litter and seabirds found across a longitudinal gradient in the South Pacific Ocean.

    PubMed

    Miranda-Urbina, Diego; Thiel, Martin; Luna-Jorquera, Guillermo

    2015-07-15

    Abundances and composition of marine litter and seabirds were estimated in the central South Pacific (SP) Ocean between the Chilean continental coast and the Easter Island Ecoregion. Litter was dominated by plastics throughout the study area, but the proportion of plastics was higher at sea and on the oceanic islands than in coastal waters and on continental beaches. Litter densities were higher close to the center of the SP subtropical gyre compared to the continental coast. The seabird assemblage was diverse (28 species), and several endemic species were recorded. Seabird abundances were higher in the coastal waters and around Juan Fernández Islands off the continental coast than in the Oceanic and Polynesian sectors. Endangered species breeding on Salas & Gómez Island were observed in the Polynesian sector, which suggests a high potential for negative interactions between seabirds and floating litter, both occurring in high densities in this sector. PMID:25998727

  6. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    PubMed

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. PMID:26140748

  7. Population trends in Pacific Oceanic sharks and the utility of regulations on shark finning.

    PubMed

    Clarke, Shelley C; Harley, Shelton J; Hoyle, Simon D; Rice, Joel S

    2013-02-01

    Accurate assessment of shark population status is essential for conservation but is often constrained by limited and unreliable data. To provide a basis for improved management of shark resources, we analyzed a long-term record of species-specific catches, sizes, and sexes of sharks collected by onboard observers in the western and central Pacific Ocean from 1995 to 2010. Using generalized linear models, we estimated population-status indicators on the basis of catch rate and biological indicators of fishing pressure on the basis of median size to identify trends for blue (Prionace glauca), mako (Isurus spp.), oceanic whitetip (Carcharhinus longimanus), and silky (Carcharhinus falciformis) sharks. Standardized catch rates of longline fleets declined significantly for blue sharks in the North Pacific (by 5% per year [CI 2% to 8%]), for mako sharks in the North Pacific (by 7% per year [CI 3% to 11%]), and for oceanic whitetip sharks in tropical waters (by 17% per year [CI 14% to 20%]). Median lengths of silky and oceanic whitetip sharks decreased significantly in their core habitat, and almost all sampled silky sharks were immature. Our results are consistent with results of analyses of similar data sets. Combined, these results and evidence of targeted fishing for sharks in some regional fisheries heighten concerns for sustainable utilization, particularly for oceanic whitetip and North Pacific blue sharks. Regional regulations that prohibit shark finning (removal of fins and discarding of the carcass) were enacted in 2007 and are in many cases the only form of control on shark catches. However, there is little evidence of a reduction of finning in longline fisheries. In addition, silky and oceanic whitetip sharks are more frequently retained than finned, which suggests that even full implementation of and adherence to a finning prohibition may not substantially reduce mortality rates for these species. We argue that finning prohibitions divert attention from

  8. Ocean response to typhoon Nuri (2008) in western Pacific and South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Jingru; Oey, Lie-Yauw; Chang, Roger; Xu, Fanghua; Huang, Shih-Ming

    2015-05-01

    Typhoon Nuri formed on 18 August 2008 in the western North Pacific east of the Philippines and traversed northwestward over the Kuroshio in the Luzon Strait where it intensified to a category 3 typhoon. The storm weakened as it passed over South China Sea (SCS) and made landfall in Hong Kong as a category 1 typhoon on 22 August. Despite the storm's modest strength, the change in typhoon Nuri's intensity was unique in that it strongly depended on the upper ocean. This study examines the ocean response to typhoon Nuri using the Princeton Ocean Model. An ocean state accounting for the sea-surface temperature (SST) and mesoscale eddy field prior to Nuri was constructed by assimilating satellite SST and altimetry data 12 days before the storm. The simulation then continued without further data assimilation, so that the ocean response to the strong wind can be used to understand processes. It is found that the SST cooling was biased to the right of the storm's track due to inertial currents that rotated in the same sense as the wind vector, as has previously been found in the literature. However, despite the comparable wind speeds while the storm was in western Pacific and SCS, the SST cooling was much more intense in SCS. The reason was because in SCS, the surface layer was thinner, the vorticity field of the Kuroshio was cyclonic, and moreover a combination of larger Coriolis frequency as the storm moved northward and the typhoon's slower translational speed produced a stronger resonance between wind and current, resulting in strong shears and entrainment of cool subsurface waters in the upper ocean.

  9. Petrological studies on the mantle peridotites recovered from the ocean floor in the western Pacific

    NASA Astrophysics Data System (ADS)

    Ishii, T.; Hirano, N.; Ohara, Y.; Bloomer, S.

    2006-12-01

    Geological and geophysical models for the various oceanic crusts (or lithosphere) have been proposed on the basis of the combined studies between seismic observation for the oceanic crusts and petrological models of the onland ophiolites, which have been assumed as fossil of oceanic crusts. It is very important to collect basement rocks constituting various oceanic crusts and to characterize those petrological features. Ocean floor is commonly covered by effusive volcanic rocks, however occasionally hypabyssal and plutonic rocks are observed among the unique geological environments in the Western Pacific as partly shown in the followings. VOLCANIC DIATREME(?): Very unique volcanic knolls have been recently discovered by N. Hirano at the typical oceanic crust in the Northwestern Pacific, off Tohoku of Northeastern Japan. The constituting rocks for the main volcanic edifice are porous alkaline lavas with 1-5Ma age containing abundant lithic fragments including gabbros as well as mantle peridotites. They are assumed as a volcanic diatreme induced in the Cretaceous oceanic lithosphere . Geological and petrological analyses on those volcano and volcanic rocks can make clear the geological cross (or columnar) section of the typical oceanic lithosphere including crust as well as upper mantle down to 100 km deep asthenospheric mantle. PARECE VERA BASIN: The Parece Vela Basin (PVB) is an extinct backarc basin in the Philippine Sea. The NNE extending escarpments and depressions (maximum depth 7500 m) are fossil fracture zones and extinct segmented spreading axes (first-order segments), respectively. Oceanic core complexes (OCCs), or megamullions, develop at each first-order segment. Recently discovered OCCs at slow-spreading ridges have been interpreted as exhumed footwalls of oceanic detachment faults in magma-starved ridge environments. Godzilla Mullion, one of the OCC in the PVR, is the worlds largest OCC, 10 times larger in area than the normal OCCs in the Mid

  10. Recent Progresses in Impacts of Indo-Western Pacific Ocean on East Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Li, Jianping

    2016-04-01

    Some progresses in impacts of Western Pacific Ocean (WPO) on East Asian monsoon and stratosphere climate are reviewed from the following aspects. (1) Impact of the IPOD (a cross-basin dipole pattern of SSTA variability between the Indo-Pacific warm pool (IPWP) and North Pacific Ocean) on the East Asian summer monsoon (EASM).The IPOD exhibits a considerable correlation with the EASM. In summers with a positive IPOD phase, the western Pacific subtropical high (WPSH) weakens and shrinks with WPSH ridge moving northwards, which favours an intensified EASM and a decrease in summer rainfall in the Yangtze River valley, and vice versa. (2) TheIndo-Western Pacific convection oscillation (IPCO),which is an out-of-phase fluctuation in convection anomalies between the north Indian Ocean and the western North Pacific region,is closely related to the EASM.Negative IPCO phases, which exhibit an enhanced convection over the north Indian Ocean and a suppressed convection over the western North Pacific, favor a weakened EASM and an increase of summer rainfall in the Yangtze River valley with the joint actions of the stronger than normal Ural and Okhotsk blocking highs and the subtropical western Pacific high, and vice versa.(3) Asymmetric influence of the two types of ENSO on summer rainfall in China. The two types of ENSO have asymmetric impacts on summer rainfall over the Yangtze River Valley. The relation between summer rainfall over this valley and the cold tongue (CT) El Niño is significantly positive, while the relation with the CT La Niña is not significant. The negative phase of the warm pool (WP) ENSO has a significant positive influence, whereas no significant relation with the positive phase. They indicated that this asymmetric response of the EASM is likely to be linked to the different spatial patterns of the two types of ENSO.(4) Linkage between recent winter precipitation increase in the middle-lower Yangtze River valley (MLY) since the late 1970s andwarming in the

  11. Aerosol Backscatter from Airborne Continuous Wave CO2 Lidars over Western North America and the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Rothermel, Jeffry

    1999-01-01

    Aerosol backscatter measurements using two continuous wave CO2 Doppler lidars were obtained over western North America and the Pacific Ocean during a 1995 NASA airborne mission. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/m.sr, consistent with previous lidar datasets.

  12. Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems

    NASA Astrophysics Data System (ADS)

    Xue, Yan; Wen, Caihong; Yang, Xiaosong; Behringer, David; Kumar, Arun; Vecchi, Gabriel; Rosati, Anthony; Gudgel, Rich

    2015-08-01

    The TAO/TRITON array is the cornerstone of the tropical Pacific and ENSO observing system. Motivated by the recent rapid decline of the TAO/TRITON array, the potential utility of TAO/TRITON was assessed for ENSO monitoring and prediction. The analysis focused on the period when observations from Argo floats were also available. We coordinated observing system experiments (OSEs) using the global ocean data assimilation system (GODAS) from the National Centers for Environmental Prediction and the ensemble coupled data assimilation (ECDA) from the Geophysical Fluid Dynamics Laboratory for the period 2004-2011. Four OSE simulations were conducted with inclusion of different subsets of in situ profiles: all profiles (XBT, moorings, Argo), all except the moorings, all except the Argo and no profiles. For evaluation of the OSE simulations, we examined the mean bias, standard deviation difference, root-mean-square difference (RMSD) and anomaly correlation against observations and objective analyses. Without assimilation of in situ observations, both GODAS and ECDA had large mean biases and RMSD in all variables. Assimilation of all in situ data significantly reduced mean biases and RMSD in all variables except zonal current at the equator. For GODAS, the mooring data is critical in constraining temperature in the eastern and northwestern tropical Pacific, while for ECDA both the mooring and Argo data is needed in constraining temperature in the western tropical Pacific. The Argo data is critical in constraining temperature in off-equatorial regions for both GODAS and ECDA. For constraining salinity, sea surface height and surface current analysis, the influence of Argo data was more pronounced. In addition, the salinity data from the TRITON buoys played an important role in constraining salinity in the western Pacific. GODAS was more sensitive to withholding Argo data in off-equatorial regions than ECDA because it relied on local observations to correct model biases and

  13. When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans.

    PubMed

    Yang, Jin-Shu; Lu, Bo; Chen, Dian-Fu; Yu, Yan-Qin; Yang, Fan; Nagasawa, Hiromichi; Tsuchida, Shinji; Fujiwara, Yoshihiro; Yang, Wei-Jun

    2013-02-01

    Hydrothermal vents are typically located in midocean ridges and back-arc basins and are usually generated by the movement of tectonic plates. Life thrives in these environments despite the extreme conditions. In addition to chemoautotrophic bacteria, decapod crustaceans are dominant in many of the hydrothermal vents discovered to date. Contrary to the hypothesis that these species are remnants of relic fauna, increasing evidence supports the notion that hydrothermal vent decapods have diversified in more recent times with previous research attributing the origin of alvinocarid shrimps to the Miocene. This study investigated seven representative decapod species from four hydrothermal vents throughout the Western Pacific and Indian Oceans. A partitioned mix-model phylogenomic analysis of mitochondrial DNA produced a consistent phylogenetic topology of these vent-endemic species. Additionally, molecular dating analysis calibrated using multiple fossils suggested that both bythograeid crabs and alvinocarid shrimps originated in the late Mesozoic and early Cenozoic. Although of limited sampling, our estimates support the extinction/repopulation hypothesis, which postulates recent diversification times for most hydrothermal vent species due to their mass extinction by global deep-water anoxic/dysoxic events during the Late Cretaceous and Early Tertiary. The continental-derived property of the West Pacific province is compatible with the possibility that vent decapods diversified from ancestors from shallow-water regions such as cold seeps. Our results move us a step closer toward understanding the evolutionary origin of hydrothermal vent species and their distribution in the Western Pacific-Indian Ocean Region. PMID:23002089

  14. Input of 129I into the western Pacific Ocean resulting from the Fukushima nuclear event

    DOE PAGESBeta

    Tumey, S. J.; Guilderson, T. P.; Brown, T. A.; Broek, T.; Buesseler, K. O.

    2013-04-02

    We present an initial characterization of the input of 129I into the Pacific Ocean resulting from the 2011 Fukushima nuclear accident. This characterization is based primarily on 129I measurements on samples collected from a research cruise conducted in waters off the eastern coast of Japan in June 2011. The resulting measurements were compared with samples intended to reflect pre-Fukushima background that were collected during a May 2011 transect of the Pacific by a commercial container vessel. In surface waters, we observed peak 129I concentrations of ~300 μBq/m3 which represents an elevation of nearly three orders of magnitude compared to pre-Fukushimamore » backgrounds. The 129I results were coupled with 137Cs measurements from the same cruise and derived an average 129I/137Cs activity ratio of 0.442 × 10-6 for the effluent from Fukushima. Finally, we present 129I depth profiles from five stations from this cruise which form the basis for future studies of ocean transport and mixing process as well as estimations of the total budget of 129I released into the Pacific.« less

  15. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient

    PubMed Central

    Zinke, J.; Hoell, A.; Lough, J. M.; Feng, M.; Kuret, A. J.; Clarke, H.; Ricca, V.; Rankenburg, K.; McCulloch, M. T.

    2015-01-01

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795–2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia. PMID:26493738

  16. Glacial deep ocean sequestration of CO2 driven by the eastern equatorial Pacific biologic pump

    NASA Astrophysics Data System (ADS)

    Doss, Whitney; Marchitto, Thomas M.

    2013-09-01

    The potential influence of low latitude ocean primary productivity on glacial atmospheric carbon dioxide levels has proven challenging to deduce using mass accumulation rates (MARs) of biogenic particulates in deep sea sediment cores. Benthic foraminiferal B/Ca serves as a proxy for past seawater calcite saturation state, and thereby provides a fresh perspective on this outstanding paleoceanographic problem. Here we employ Cibicidoides wuellerstorfi B/Ca in the Panama Basin region of the eastern equatorial Pacific (EEP) to investigate the nature of deep tropical Pacific carbon storage over the past 50 ka BP. We present evidence for persistently lower deep Panama Basin calcite saturation state, reflecting an increase in total carbon dioxide storage, during the last ice age relative to the Holocene. These results reflect the modification of inflowing deep waters by overlying export productivity, and support the concept of an invigorated glacial EEP soft-tissue pump possibly driven by oceanic nutrient (iron and silica) redistribution. Benthic Cibicidoides spp. carbon-13 is consistent with this conclusion by exhibiting substantially lighter values during glacial time, reflecting the accumulation of metabolic carbon dioxide in the deep tropical Pacific. Counterintuitively, downcore application of the Globorotalia menardii calcite fragmentation index (MFI) reveals enhanced glacial sedimentary calcite preservation in the Panama Basin. Together these results point towards a systematic decoupling of bottom water chemistry from biogenic burial fluxes: the crux of the aforementioned traditional paleoproductivity problem.

  17. Glacial deep ocean sequestration of CO2 driven by the eastern equatorial Pacific biologic pump

    NASA Astrophysics Data System (ADS)

    Doss, W. C.; Marchitto, T. M.

    2013-12-01

    The potential influence of low latitude ocean primary productivity on glacial atmospheric carbon dioxide levels has proven challenging to deduce using mass accumulation rates (MARs) of biogenic particulates in deep sea sediment cores. Benthic foraminiferal B/Ca serves as a proxy for past seawater calcite saturation state,and thereby provides a fresh perspective on this outstanding paleoceanographic problem. Here we employ Cibicidoides wuellerstorfi B/Ca in the Panama Basin region of the eastern equatorial Pacific (EEP) to investigate the nature of deep tropical Pacific carbon storage over the past 50 ka BP. We present evidence for persistently lower deep Panama Basin calcite saturation state, reflecting an increase in total carbon dioxide storage, during the last ice age relative to the Holocene. These results reflect the modification of inflowing deep waters by overlying export productivity, and support the concept of an invigorated glacial EEP soft-tissue pump possibly driven by oceanic nutrient (iron and silica) redistribution. Benthic Cibicidoides spp. carbon-13 is consistent with this conclusion by exhibiting substantially lighter values during glacial time, reflecting the accumulation of metabolic carbon dioxide in the deep tropical Pacific. Counterintuitively, downcore application of the Globorotalia menardii calcite fragmentation index (MFI) reveals enhanced glacial sedimentary calcite preservation in the Panama Basin. Together these results point towards a systematic decoupling of bottom water chemistry from biogenic burial fluxes: the crux of the aforementioned traditional paleoproductivity problem.

  18. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient.

    PubMed

    Zinke, J; Hoell, A; Lough, J M; Feng, M; Kuret, A J; Clarke, H; Ricca, V; Rankenburg, K; McCulloch, M T

    2015-01-01

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia. PMID:26493738

  19. A Regional View of Easterly Waves over Pacific and Atlantic Ocean: Tropical Cyclogenesis Thresholds and Rainfall

    NASA Astrophysics Data System (ADS)

    Dominguez, C.; Done, J.; Bruyere, C. L.

    2015-12-01

    Tropical cyclones (TCs) are well known as important contributors to summer precipitation over Intra America Seas (IAS) and the Eastern Pacific Ocean (EPA). They contribute up to 30% in the Caribbean Region, Gulf of Mexico and Eastern Pacific during high active seasons. Although Easterly Waves (EWs) are considered high-impact weather phenomena, their regional importance in summer rainfall and regional differences in their development into TCs remains uncertain. This study quantifies the contribution of EWs to summer rainfall. We find that EWs contributed up to 50% of summer rainfall over IAS and EPA during the period 1980-2013. In addition, this study demonstrates regional dependency of the structure of EWs that develop into hurricanes and the thresholds of tropical cyclogenesis. Using ERA-Interim data, vorticity at three levels (850, 700 and 600), Column Integrated Heating, equivalent potential temperature, sea surface temperature, wind speed, stretching radius and integrated moisture flux were analyzed to investigate regional dependency of thresholds for tropical cyclogenesis during the 1980-2013 period. We found that tropical cyclogenesis occurred under different regional environments over Pacific and Atlantic Ocean and the structure of EWs changed depending on the basin. This research can be relevant to improve operational forecast of tropical cyclogenesis since thresholds are used to indicate where and when a TC formation can occur.

  20. Oceanic plate structures beneath the northwestern Pacific Ocean revealed by explosion experiments

    NASA Astrophysics Data System (ADS)

    Isse, T.; Shiobara, H.; Shinohara, M.; Yamada, T.; Yagi, T.; Sugioka, H.; Utada, H.

    2014-12-01

    Plate tectonics is based on a concept that a rigid lithosphere moves over a weaker asthenosphere. Understanding of the plate tectonics is important to understand the Earth's system. However, the nature of the lithosphere and asthenosphere boundary (LAB) is not yet well determined. To understand the physical condition for the LAB, we have conduct a seafloor observation called " Normal Oceanic Mantle (NOMan) Project". We focused on the oceanic plate because the nature and evolution history of the oceanic plate is simpler than the continental plate so that it is easier to investigate its nature. To analyze the upper mantle structures around the LAB, we conducted a seismic explosion experiments as a part of NOMan project. Seismic explosion experiments were conducted at four shot sites with ten broadband ocean bottom seismometers and the size of explosions is 400 kg at two sites, and 200 kg at other sites. The profile lengths are about 700 and 400 km, respectively. Previous studies in this area revealed the azimuthal anisotropy in the uppermost lithosphere (Shinohara et al., 2008), a sharp LAB at a depth of ~ 80 km (Kawakatsu et al. 2009), small-scale heterogeneities in the lithosphere (Shito et al., 2013). After explosion experiments, we recovered five BBOBSs. Rest of them will be recovered at this September.

  1. Reduced Surface Ocean Temperature Variability in the Eastern Equatorial Pacific During the Late Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ford, H. L.; Ravelo, A. C.; Polissar, P. J.

    2012-12-01

    El Niño-Southern Oscillation is the largest source of global interannual variability with far-reaching climatic effects. Climate model simulations of future warming exhibit widely divergent behavior indicating an incomplete understanding of the factors that dictate tropical climate variability. Generating records of past tropical Pacific variability during times with different climate states is one approach to deepening our understanding of tropical climate change processes and improving predictions of future change. Here we reconstruct tropical Pacific ocean variability from the Last Glacial Maximum (LGM) and from the Holocene at ODP Sites 806 and 849, located in the western equatorial Pacific (WEP) warm pool and eastern equatorial Pacific (EEP) cold tongue, respectively. We reconstruct ocean temperature variability using the intra-sample distribution of Mg/Ca values from individual foraminifera. Sea surface temperature variability is reconstructed from individual specimens of G. sacculifer analyzed for Mg/Ca values with laser ablation ICP-MS (Photon Machines Analyte.193 with HelEx sample cell coupled with a Thermo ElementXS ICP-MS, LA-ICP-MS). Subsurface temperature variability is reconstructed from individual specimens of G. tumida analyzed for Mg/Ca values by ICP-OES. Our results indicate that the cooling of last glacial maximum SSTs was greater in the WEP compared to the EEP. Furthermore, we show this cooling is not an artifact of changes in seasonal or interannual foraminiferal fluxes, but rather, reflects overall cooler temperatures and thus changes in seasonal/interannual heat fluxes. At Site 806 in the WEP, variability during the Holocene and LGM was similar, suggesting the cooling was a direct response to pCO2-radiative forcing. In contrast, at Site 849, sea surface temperature variability during the LGM was greatly diminished in comparison to the Holocene suggesting reduced ENSO and seasonal variability. Therefore conditions in the EEP responded to both

  2. Distribution, source and chemical speciation of phosphorus in surface sediments of the central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ni, Jianyu; Lin, Peng; Zhen, Yang; Yao, Xuying; Guo, Laodong

    2015-11-01

    The abundance of five forms of phosphorus (P) in surface sediments from the central Pacific Ocean (4.5-15ºN, 154-143ºW) was determined using a sequential extraction procedure (SEDEX) to examine the distribution and source of different P species. Total P (TP) concentrations ranged from 13.2 to 119 μmol-P/g with an average of 48.6±27.4 μmol-P/g. Within the TP pool, total inorganic P (TIP) concentrations varied from 11.1 to 121 μmol-P/g, while total organic P (TOP) concentrations ranged from undetectable to 4.8 μmol-P/g. Inorganic P was generally the predominant form in surface sediments, comprising on average up to 93% of sedimentary TP, leaving <16% as TOP. Among the five P species, the authigenic or CaCO3-bound P and detrital P were the two major P species (comprising on average 43.4±13.5% and 45.7±14.8% of TP, respectively), followed by the refractory organic P, representing 6.7±2.4% of TP. Fe-bound P accounted for 3.3±1.3% of TP, and exchangeable or adsorbed P made up less than 1% of TP. The spatial distribution of different sedimentary P species showed that higher concentrations of detrital P and Fe-bound P were both found at around 11°N, suggesting similar sources for these two P species. Much of the detrital P was derived from atmospheric sources in the study area, where heavy rainfall in the intertropical convergence zone between 3°N and 11°N has been widely reported. Compared with other marine environments, the central Pacific Ocean had relatively higher detrital P, but lower abundance of adsorbed-P and Fe-bound P. These unquine results suggested that most of the labile P could have been released into the water column during its settling from the surface to the seafloor, or that atmospheric inputs of refractory P were an important source for sedimentary P, accounting for an average of 63% of the TP, in the central Pacific Ocean. High proportions of authigenic P in deep-sea sediments, on the other hand, implied that oceanic sediments are an

  3. Seasonal variation of the upper ocean responding to surface heating in the North Pacific

    NASA Astrophysics Data System (ADS)

    Lee, Eunjeong; Noh, Yign; Qiu, Bo; Yeh, Sang-Wook

    2015-08-01

    Seasonal variations of the upper ocean, such as mixed layer depth (MLD) and sea surface temperature (SST), responding to the atmospheric forcing in the North Pacific (10°N-50°N), are investigated by analyzing the Argo and NCEP/NCAR reanalysis 1 data. The OAFlux data are also used for comparison. During the early heating period in the high-latitude ocean north of 30°N, where a seasonal thermocline is formed above the deep mixed layer under strong surface heating, the MLD h is found to be scaled as h∝>(Lλ>)1/2, where L is the Monin-Obukhov length scale and λ is the Ekman length scale. On the other hand, in the low-latitude ocean south of 30°N, where the preexisting MLD is shallow and surface heating is weak, h is found to be scaled by λ. It is found that a large amount of heat flux across the MLD occurs, especially in the high-latitude ocean during the late heating period, in which h is small. It suggests the contribution by turbulent mixing across the MLD in addition to radiation penetration, and the eddy diffusivity in the high-latitude ocean is estimated as Kv ˜ 10-4-10-3 m2 s-1. The heat budget of the mixed layer reveals that the contribution from the ocean heat transport is much smaller than the surface heat flux in the high-latitude ocean except in the Kuroshio region, but it is sometimes comparable in the low-latitude ocean.

  4. Pliocene climate change of the Southwest Pacific and the impact of ocean gateways

    NASA Astrophysics Data System (ADS)

    Karas, Cyrus; Nürnberg, Dirk; Tiedemann, Ralf; Garbe-Schönberg, Dieter

    2011-01-01

    The transition from the early Pliocene “Warmhouse” towards the present “Icehouse” climate and the role of Gateway dynamics are intensively debated. Both, the constrictions of the Central American Seaway and the Indonesian Gateway affected ocean circulation and climate during the Pliocene epoch. Here, we use combined δ18O and Mg/Ca ratios of planktonic foraminifera (marine protozoa) from surface and subsurface levels to reconstruct the thermal structure and changes in salinities from the Southwest Pacific Deep Sea Drilling Project (DSDP) Site 590B from 6.5 to 2.5 Ma. Our data suggest a gradual cooling of ~ 2 °C and freshening of the sea surface during ~ 4.6-4 Ma with an increased meridional temperature gradient between the West Pacific Warm Pool and the Southwest Pacific when the closing of the Central American Seaway reached a critical threshold. After ~ 3.5 Ma, the restricted Indonesian Gateway might have amplified the East Australian Current, allowing enhanced heat transport towards the Southwest Pacific with reduced meridional temperature gradients when the global climate gradually cooled. At the same time our data suggest a cooling and freshening of Subantarctic Mode Water (SAMW) or/and an increased northward flow of SAMW towards Site 590B, possibly a first step towards the present Antarctic Frontal System.

  5. Long-term Internal Variability of the Tropical Pacific Atmosphere-Ocean System

    NASA Astrophysics Data System (ADS)

    Hadi Bordbar, Mohammad; Martin, Thomas; Park, Wonsun; Latif, Mojib

    2016-04-01

    The tropical Pacific has featured some remarkable trends during the recent decades such as an unprecedented strengthening of the Trade Winds, a strong cooling of sea surface temperatures (SST) in the eastern and central part, thereby slowing global warming and strengthening the zonal SST gradient, and highly asymmetric sea level trends with an accelerated rise relative to the global average in the western and a drop in the eastern part. These trends have been linked to an anomalously strong Pacific Walker Circulation, the major zonal atmospheric overturning cell in the tropical Pacific sector, but the origin of the strengthening is controversial. Here we address the question as to whether the recent decadal trends in the tropical Pacific atmosphere-ocean system are within the range of internal variability, as simulated in long unforced integrations of global climate models. We show that the recent trends are still within the range of long-term internal decadal variability. Further, such variability strengthens in response to enhanced greenhouse gas concentrations, which may further hinder detection of anthropogenic climate signals in that region.

  6. New production in the warm waters of the tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Pena, M. Angelica; Lewis, Marlon R.; Cullen, John J.

    1994-01-01

    The average depth-integrated rate of new production in the tropical Pacific Ocean was estimated from a calculation of horizontal and vertical nitrate balance over the region enclosed by the climatological 26 C isotherm. The net turbulent flux of nitrate into the region was computed in terms of the climatological net surface heat flux and the nitrate-temperature relationship at the base of the 26 C isotherm. The net advective transport of nitrate into the region was estimated using the mean nitrate distribution obtained from the analysis of historical data and previous results of a general circulation model of the tropical Pacific. The rate of new production resulting from vertical turbulent fluxes of nitrate was found to be similar in magnitude to that due to advective transport. Most (about 75%) of the advective input of nitrate was due to the horizontal transport of nutrient-rich water from the eastern equatorial region rather than from equatorial upwelling. An average rate of new production of 14.5 - 16 g C/sq m/yr was found for the warm waters of the tropical Pacific region. These values are in good agreement with previous estimates for this region and are almost five times less than is estimated for the eastern equatorial Pacific, where most of the nutrient upwelling occurs.

  7. Southwest Pacific Ocean response to a warmer world: Insights from Marine Isotope Stage 5e

    NASA Astrophysics Data System (ADS)

    Cortese, G.; Dunbar, G. B.; Carter, L.; Scott, G.; Bostock, H.; Bowen, M.; Crundwell, M.; Hayward, B. W.; Howard, W.; Martínez, J. I.; Moy, A.; Neil, H.; Sabaa, A.; Sturm, A.

    2013-09-01

    Paleoceanographic archives derived from 17 marine sediment cores reconstruct the response of the Southwest Pacific Ocean to the peak interglacial, Marine Isotope Stage (MIS) 5e (ca. 125 ka). Paleo-Sea Surface Temperature (SST) estimates were obtained from the Random Forest model—an ensemble decision tree tool—applied to core-top planktonic foraminiferal faunas calibrated to modern SSTs. The reconstructed geographic pattern of the SST anomaly (maximum SST between 120 and 132 ka minus mean modern SST) seems to indicate how MIS 5e conditions were generally warmer in the Southwest Pacific, especially in the western Tasman Sea where a strengthened East Australian Current (EAC) likely extended subtropical influence to ca. 45°S off Tasmania. In contrast, the eastern Tasman Sea may have had a modest cooling except around 45°S. The observed pattern resembles that developing under the present warming trend in the region. An increase in wind stress curl over the modern South Pacific is hypothesized to have spun-up the South Pacific Subtropical Gyre, with concurrent increase in subtropical flow in the western boundary currents that include the EAC. However, warmer temperatures along the Subtropical Front and Campbell Plateau to the south suggest that the relative influence of the boundary inflows to eastern New Zealand may have differed in MIS 5e, and these currents may have followed different paths compared to today.

  8. Spatial and temporal distribution of Pu in the Northwest Pacific Ocean using modern coral archives.

    PubMed

    Lindahl, Patric; Andersen, Morten B; Keith-Roach, Miranda; Worsfold, Paul; Hyeong, Kiseong; Choi, Min-Seok; Lee, Sang-Hoon

    2012-04-01

    Historical (239)Pu activity concentrations and (240)Pu/(239)Pu atom ratios were determined in skeletons of dated modern corals collected from three locations (Chuuk Lagoon, Ishigaki Island and Iki Island) to identify spatial and temporal variations in Pu inputs to the Northwest Pacific Ocean. The main Pu source in the Northwest Pacific is fallout from atmospheric nuclear weapons testing which consists of global fallout and close-in fallout from the former US Pacific Proving Grounds (PPG) in the Marshall Islands. PPG close-in fallout dominated the Pu input in the 1950s, as was observed with higher (240)Pu/(239)Pu atom ratios (>0.30) at the Ishigaki site. Specific fallout Pu contamination from the Nagasaki atomic bomb and the Ivy Mike thermonuclear detonation at the PPG were identified at Ishigaki Island from the (240)Pu/(239)Pu atom ratios of 0.07 and 0.46, respectively. During the 1960s and 1970s, global fallout was the major Pu source to the Northwest Pacific with over 60% contribution to the total Pu. After the cessation of the atmospheric nuclear tests, the PPG again dominated the Pu input due to the continuous transport of remobilised Pu from the Marshall Islands along the North Equatorial Current and the subsequent Kuroshio Current. The Pu contributions from the PPG in recent coral bands (1984 onwards) varied over time with average estimated PPG contributions between 54% and 72% depending on location. PMID:21890207

  9. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hu, Rong; Piotrowski, Alexander M.; Bostock, Helen C.; Crowhurst, Simon; Rennie, Victoria

    2016-08-01

    The deep Pacific Ocean holds the largest oceanic reservoir of carbon which may interchange with the atmosphere on climatologically important timescales. The circulation of the deep Pacific during the Last Glacial Maximum (LGM), however, is not well understood. Neodymium (Nd) isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera are a valuable proxy for deep ocean water mass reconstruction in paleoceanography. In this study, we present Nd isotope compositions (εNd) of planktonic foraminifera for the Holocene and the LGM obtained from 55 new sites widely distributed in the Pacific Ocean. The Holocene planktonic foraminiferal εNd results agree with the proximal seawater data, indicating that they provide a reliable record of modern bottom water Nd isotopes in the deep Pacific. There is a good correlation between foraminiferal εNd and seawater phosphate concentrations (R2 = 0.80), but poorer correlation with silicate (R2 = 0.37). Our interpretation is that the radiogenic Nd isotope is added to the deep open Pacific through particle release from the upper ocean during deep water mass advection and aging. The data thus also imply the Nd isotopes in the Pacific are not likely to be controlled by silicate cycling. In the North Pacific, the glacial Nd isotopic compositions are similar to the Holocene values, indicating that the Nd isotope composition of North Pacific Deep Water (NPDW) remained constant (-3.5 to -4). During the LGM, the southwest Pacific cores throughout the water column show higher εNd corroborating previous studies which suggested a reduced inflow of North Atlantic Deep Water to the Pacific. However, the western equatorial Pacific deep water does not record a corresponding radiogenic excursion, implying reduced radiogenic boundary inputs during the LGM probably due to a shorter duration of seawater-particle interaction in a stronger glacial deep boundary current. A significant negative glacial εNd excursion is evident in

  10. Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean

    PubMed Central

    Sumida, Paulo Y. G.; Alfaro-Lucas, Joan M.; Shimabukuro, Mauricio; Kitazato, Hiroshi; Perez, Jose A. A.; Soares-Gomes, Abilio; Toyofuku, Takashi; Lima, Andre O. S.; Ara, Koichi; Fujiwara, Yoshihiro

    2016-01-01

    Whale carcasses create remarkable habitats in the deep-sea by producing concentrated sources of organic matter for a food-deprived biota as well as places of evolutionary novelty and biodiversity. Although many of the faunal patterns on whale falls have already been described, the biogeography of these communities is still poorly known especially from basins other than the NE Pacific Ocean. The present work describes the community composition of the deepest natural whale carcass described to date found at 4204 m depth on Southwest Atlantic Ocean with manned submersible Shinkai 6500. This is the first record of a natural whale fall in the deep Atlantic Ocean. The skeleton belonged to an Antarctic Minke whale composed of only nine caudal vertebrae, whose degradation state suggests it was on the bottom for 5–10 years. The fauna consisted mainly of galatheid crabs, a new species of the snail Rubyspira and polychaete worms, including a new Osedax species. Most of the 41 species found in the carcass are new to science, with several genera shared with NE Pacific whale falls and vent and seep ecosystems. This similarity suggests the whale-fall fauna is widespread and has dispersed in a stepping stone fashion, deeply influencing its evolutionary history. PMID:26907101

  11. Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sumida, Paulo Y. G.; Alfaro-Lucas, Joan M.; Shimabukuro, Mauricio; Kitazato, Hiroshi; Perez, Jose A. A.; Soares-Gomes, Abilio; Toyofuku, Takashi; Lima, Andre O. S.; Ara, Koichi; Fujiwara, Yoshihiro

    2016-02-01

    Whale carcasses create remarkable habitats in the deep-sea by producing concentrated sources of organic matter for a food-deprived biota as well as places of evolutionary novelty and biodiversity. Although many of the faunal patterns on whale falls have already been described, the biogeography of these communities is still poorly known especially from basins other than the NE Pacific Ocean. The present work describes the community composition of the deepest natural whale carcass described to date found at 4204 m depth on Southwest Atlantic Ocean with manned submersible Shinkai 6500. This is the first record of a natural whale fall in the deep Atlantic Ocean. The skeleton belonged to an Antarctic Minke whale composed of only nine caudal vertebrae, whose degradation state suggests it was on the bottom for 5-10 years. The fauna consisted mainly of galatheid crabs, a new species of the snail Rubyspira and polychaete worms, including a new Osedax species. Most of the 41 species found in the carcass are new to science, with several genera shared with NE Pacific whale falls and vent and seep ecosystems. This similarity suggests the whale-fall fauna is widespread and has dispersed in a stepping stone fashion, deeply influencing its evolutionary history.

  12. Southern ocean controls on the extent of denitrification in the southeast Pacific (ODP Site 1234)

    NASA Astrophysics Data System (ADS)

    Robinson, R. S.; Mix, A.; Martinez, P.

    2005-12-01

    A mechanistic understanding of the observed temporal changes in oceanic denitrification, the bacterial reduction of nitrate under suboxic conditions, has been sought due to the potential importance of N inventory changes and the production of N2O on the climate system. High-resolution oxygen isotope and bulk sediment δ15N records from ODP Site 1234 on the Chile Margin are presented as a record of denitrification changes within the Peru-Chile Upwelling system over the last 65ky. The character of the Site 1234 δ15N record is quite similar to that of its northern hemisphere counterparts with the exception of timing. Denitrification changes in the southeast Pacific show coherent variation with Antarctic climate, as indicated by the Byrd ice core δ18O record, rather than with northern hemisphere climate change. The high latitude polar oceans play a fundamental role in setting the physical and biological controls on subsurface oxygen supply and demand. The southern hemisphere character of the Chile margin record suggests that episodes of reduced denitrification in the SE Pacific likely represent times when more oxygen was supplied as the result of changes in the chemical composition of Subantarctic Mode Water (SAMW), which forms in the Subantarctic zone of the Southern Ocean and ventilates the low latitude thermocline. An increase in oxygen can be achieved through (1) lower temperatures/ higher ventilation rates and/or (2) reduced oxygen demand in the low latitude subsurface due to reduction in the preformed nutrient content of SAMW.

  13. Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean.

    PubMed

    Sumida, Paulo Y G; Alfaro-Lucas, Joan M; Shimabukuro, Mauricio; Kitazato, Hiroshi; Perez, Jose A A; Soares-Gomes, Abilio; Toyofuku, Takashi; Lima, Andre O S; Ara, Koichi; Fujiwara, Yoshihiro

    2016-01-01

    Whale carcasses create remarkable habitats in the deep-sea by producing concentrated sources of organic matter for a food-deprived biota as well as places of evolutionary novelty and biodiversity. Although many of the faunal patterns on whale falls have already been described, the biogeography of these communities is still poorly known especially from basins other than the NE Pacific Ocean. The present work describes the community composition of the deepest natural whale carcass described to date found at 4204 m depth on Southwest Atlantic Ocean with manned submersible Shinkai 6500. This is the first record of a natural whale fall in the deep Atlantic Ocean. The skeleton belonged to an Antarctic Minke whale composed of only nine caudal vertebrae, whose degradation state suggests it was on the bottom for 5-10 years. The fauna consisted mainly of galatheid crabs, a new species of the snail Rubyspira and polychaete worms, including a new Osedax species. Most of the 41 species found in the carcass are new to science, with several genera shared with NE Pacific whale falls and vent and seep ecosystems. This similarity suggests the whale-fall fauna is widespread and has dispersed in a stepping stone fashion, deeply influencing its evolutionary history. PMID:26907101

  14. Extreme endurance flights by landbirds crossing the Pacific Ocean: Ecological corridor rather than barrier?

    USGS Publications Warehouse

    Gill, R.E., Jr.; Tibbitts, T.L.; Douglas, D.C.; Handel, C.M.; Mulcahy, D.M.; Gottschalck, J.C.; Warnock, N.; McCaffery, B.J.; Battley, Phil F.; Piersma, Theunis

    2009-01-01

    Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8117-11680km (10153??1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7008-7390km. Flight duration ranged from 6.0 to 9.4 days (7.8??1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators. ?? 2008 The Royal Society.

  15. A comparison of polar vortex trend response to Pacific and Indian Ocean warming

    NASA Astrophysics Data System (ADS)

    Li, S.

    2009-12-01

    During the past decades the tropical Indo-Pacific Ocean has become warmer than before. Meanwhile, both the northern and the southern hemispheric polar vortex (NPV and SPV) exhibit a deepening trend in boreal winter-half year. Although previous studies reveal that the tropical Indian Ocean Warming (IOW) favors intensifying the NPV and weakening the SPV, how the tropical Pacific Ocean Warming (POW) influences the NPV and the SPV is unclear. In this study, a comparative analysis is conducted through ensemble atmospheric general circulation model (AGCM) experiments. The results show that, for the northern hemisphere, the two warming exert an opposite impact in boreal winter, in that the IOW intensifies the NPV while the POW weakens the NPV. For the southern hemisphere, both the IOW and POW warm the southern polar atmosphere and weaken the SPV. A diagnostic analysis based on vorticity budget reveals that such an interhemispheric different influence in boreal winter between the IOW and the POW is associated with the different roles of transient eddy momentum flux convergence. Furthermore, this difference may be linked to the different strength of stationary wave activity between the hemispheres in boreal winter.

  16. A comparison of polar vortex response to Pacific and Indian Ocean warming

    NASA Astrophysics Data System (ADS)

    Li, Shuanglin

    2010-05-01

    During recent decades, the tropical Indo-Pacific Ocean has become increasingly warmer. Meanwhile, both the northern and southern hemispheric polar vortices (NPV and SPV) have exhibited a deepening trend in boreal winter. Although previous studies have revealed that the tropical Indian Ocean warming (IOW) favors an intensifying NPV and a weakening SPV, how the tropical Pacific Ocean warming (POW) influences the NPV and SPV remains unclear. In this study, a comparative analysis has been conducted through ensemble atmospheric general circulation model (AGCM) experiments. The results show that, for the Northern Hemisphere, the two warmings exerted opposite impacts in boreal winter, in that the IOW intensified the NPV while the POW weakened the NPV. For the Southern Hemisphere, both the IOW and POW warmed the southern polar atmosphere and weakened the SPV. A diagnostic analysis based on the vorticity budget revealed that such an interhemispheric difference in influences from the IOW and POW in boreal winter was associated with different roles of transient eddy momentum flux convergence between the hemispheres. Furthermore, this difference may have been linked to different strengths of stationary wave activity between the hemispheres in boreal winter.

  17. Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier?

    PubMed Central

    Gill, Robert E.; Tibbitts, T. Lee; Douglas, David C.; Handel, Colleen M.; Mulcahy, Daniel M.; Gottschalck, Jon C.; Warnock, Nils; McCaffery, Brian J.; Battley, Philip F.; Piersma, Theunis

    2008-01-01

    Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8117–11 680 km (10 153±1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7008–7390 km. Flight duration ranged from 6.0 to 9.4 days (7.8±1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators. PMID:18974033

  18. A magneto- and chemostratigraphically calibrated dinoflagellate cyst zonation of the early Palaeogene South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Bijl, Peter K.; Sluijs, Appy; Brinkhuis, Henk

    2013-09-01

    Investigation of the early Palaeogene palaeoecological and palaeoclimatological evolution of the Polar Regions is hindered by the absence of calcite microfossils in sedimentary archives, which are conventionally the main dating tool. To overcome this problem, we have generated large datasets of organic dinoflagellate cyst (dinocyst) assemblages from Southern Ocean shelf sediments over the past decade, and we here calibrate these to the Geomagnetic Polarity Time Scale (GPTS) using magnetostratigraphy and stable isotope stratigraphy. This now for the first time allows a high-resolution Southern Pacific Ocean dinocyst zonation for the late Palaeocene to late Eocene (58-36 million years ago; Ma). We compile published dinocyst chronologies from Ocean Drilling Program (ODP) Hole 1171D on the South Tasman Rise, Hole 1172A/D on the East Tasman Plateau and Integrated Ocean Drilling Program (IODP) Hole U1356A on the Wilkes Land margin. Correlation to dinocyst zonations from New Zealand lead to revisions of the magnetostratigraphic age model at Holes 1171D and 1172A/D. Stable carbon and oxygen isotope records reveal the stratigraphic location of the Palaeocene-Eocene Thermal Maximum (~ 56 Ma) and the Middle Eocene Climatic Optimum (~ 40 Ma), respectively. The resulting zonation consists of thirteen dinocyst zones, calibrated to the Geomagnetic Polarity Time Scale (GPTS) of Vandenberghe et al. (2012), which can likely be applied to the entire Southern Ocean. Finally, we apply the revised stratigraphy to all published TEX86 data, a biomarker-based proxy for sea surface temperature (SST), from ODP Site 1172 to assess long-term climate evolution. This shows that Southwest Pacific SST trends mimic the global compilation of benthic foraminiferal oxygen isotopes even better than previously appreciated.

  19. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Liang, Y.; Jiao, N.; Zhang, R.

    2014-05-01

    As the most abundant biological entities in the ocean, viruses influence host mortality and nutrient recycling mainly through lytic infection. Yet, the ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In the present study, viral abundance and lytic infection were investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21 to 16.23 to 2.45-23.40, at the surface and 2000 m, respectively. Lytic viral production rates in surface and 2000 m waters were, on average, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1. Relatively high percentages of prokaryotic cells lysed by viruses at 1000 and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in the deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in these deep waters and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  20. Biogeography in 231Pa/230Th ratios and a balanced 231Pa budget for the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hayes, Christopher T.; Anderson, Robert F.; Fleisher, Martin Q.; Serno, Sascha; Winckler, Gisela; Gersonde, Rainer

    2014-04-01

    The ratio of unsupported protactinium-231 to thorium-230 in marine sediments, (Pa/Th)xs, is potentially sensitive to several processes of oceanographic and climatological interest: deep ocean circulation, marine biological productivity (as it relates to total particle flux) and particle composition (specifically, biogenic opal and authigenic Mn). In order to attribute variations in (Pa/Th)xs observed in sediment records to changes in specific processes through time, a better understanding of the chemical cycling of these elements in the modern ocean is necessary. To this end, a survey was undertaken of (Pa/Th)xs in surface sediments from the subarctic Pacific (SO202-INOPEX expedition) in combination with a Pacific-wide compilation of published data. Throughout the Pacific, (Pa/Th)xs is robustly correlated with the opal content of sediments. In the North and equatorial Pacific, simultaneous positive correlations with productivity indicators suggest that boundary scavenging and opal scavenging combine to enhance the removal of Pa in the eastern equatorial Pacific and subarctic Pacific. Deep ocean water mass ageing (>3.5 km) associated with the Pacific overturning appears to play a secondary role in determining the basin scale distribution of (Pa/Th)xs. A basin-wide extrapolation of Pa removal is performed which suggests that the Pacific Pa budget is nearly in balance. We hypothesize that through time (Pa/Th)xs distributions in the Pacific could define the evolving boundaries of contrasting biogeographic provinces in the North Pacific, while the influence of hydrothermal scavenging of Pa potentially confounds this approach in the South Pacific.