Sample records for pack ice area

  1. SPH Modelling of Sea-ice Pack Dynamics

    NASA Astrophysics Data System (ADS)

    Staroszczyk, Ryszard

    2017-12-01

    The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.

  2. Mapping and Assessing Variability in the Antarctic Marginal Ice Zone, the Pack Ice and Coastal Polynyas

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Jenouvrier, Stephanie

    2016-04-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore mapping their spatial extent, seasonal and interannual variability is essential for understanding how current and future changes in these biological active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of different ice types to the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent data record for assessing different ice types. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depends strongly on what sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Polynya area is also larger in the NASA Team algorithm, and the timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.

  3. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine

    2016-08-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack ice and coastal polynyas in the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea ice cover that is covered by each of these ice categories. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depend strongly on which sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea ice concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack ice is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack ice area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken ice within the consolidated ice pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These

  4. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  5. Length of perineal pain relief after ice pack application: A quasi-experimental study.

    PubMed

    de Souza Bosco Paiva, Caroline; Junqueira Vasconcellos de Oliveira, Sonia Maria; Amorim Francisco, Adriana; da Silva, Renata Luana; de Paula Batista Mendes, Edilaine; Steen, Mary

    2016-04-01

    Ice pack is effective for alleviating postpartum perineal pain in primiparous women while multiparous women's levels of perineal pain appear to be poorly explored. Ice pack is a low-cost non-invasive localised treatment that can be used with no impact on breastfeeding. However, how long perineal analgesia persists after applying an ice pack is still unknown. To evaluate if perineal analgesia is maintained up to 2h after applying an ice pack to the perineum for 20min. A quasi-experimental study, using a pre and post-test design, was undertaken with a sample size of 50 multiparous women in Brazil. Data was collected by structured interview. The intervention involved a single application of an ice pack applied for 20min to the perineal area of women who reported perineal pain ≥3 by use of a numeric rating scale (0-10), with intact perineum, 1st or 2nd degree lacerations or episiotomy, between 6 and 24h after spontaneous vaginal birth. Perineal pain was evaluated at three points of time: before, immediately after and 2h after applying an ice pack. Immediately after applying an ice pack to the perineal area, there was a significant reduction in the severity of perineal pain reported (5.4 vs. 1.0, p<0.0005), which continued for 1h 35min up to 2h after the local application. Ice pack application for 20min is effective for alleviating postpartum perineal pain and continues to be effective between 1h 35min for up to 2h. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  6. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  7. Ecology of southern ocean pack ice.

    PubMed

    Brierley, Andrew S; Thomas, David N

    2002-01-01

    Around Antarctica the annual five-fold growth and decay of sea ice is the most prominent physical process and has a profound impact on marine life there. In winter the pack ice canopy extends to cover almost 20 million square kilometres--some 8% of the southern hemisphere and an area larger than the Antarctic continent itself (13.2 million square kilometres)--and is one of the largest, most dynamic ecosystems on earth. Biological activity is associated with all physical components of the sea-ice system: the sea-ice surface; the internal sea-ice matrix and brine channel system; the underside of sea ice and the waters in the vicinity of sea ice that are modified by the presence of sea ice. Microbial and microalgal communities proliferate on and within sea ice and are grazed by a wide range of proto- and macrozooplankton that inhabit the sea ice in large concentrations. Grazing organisms also exploit biogenic material released from the sea ice at ice break-up or melt. Although rates of primary production in the underlying water column are often low because of shading by sea-ice cover, sea ice itself forms a substratum that provides standing stocks of bacteria, algae and grazers significantly higher than those in ice-free areas. Decay of sea ice in summer releases particulate and dissolved organic matter to the water column, playing a major role in biogeochemical cycling as well as seeding water column phytoplankton blooms. Numerous zooplankton species graze sea-ice algae, benefiting additionally because the overlying sea-ice ceiling provides a refuge from surface predators. Sea ice is an important nursery habitat for Antarctic krill, the pivotal species in the Southern Ocean marine ecosystem. Some deep-water fish migrate to shallow depths beneath sea ice to exploit the elevated concentrations of some zooplankton there. The increased secondary production associated with pack ice and the sea-ice edge is exploited by many higher predators, with seals, seabirds and whales

  8. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  9. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  10. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  11. Sea ice motions in the Central Arctic pack ice as inferred from AVHRR imagery

    NASA Technical Reports Server (NTRS)

    Emery, William; Maslanik, James; Fowler, Charles

    1995-01-01

    Synoptic observations of ice motion in the Arctic Basin are currently limited to those acquired by drifting buoys and, more recently, radar data from ERS-1. Buoys are not uniformly distributed throughout the Arctic, and SAR coverage is currently limited regionally and temporally due to the data volume, swath width, processing requirements, and power needs of the SAR. Additional ice-motion observations that can map ice responses simultaneously over large portions of the Arctic on daily to weekly time intervals are thus needed to augment the SAR and buoys data and to provide an intermediate-scale measure of ice drift suitable for climatological analyses and ice modeling. Principal objectives of this project were to: (1) demonstrate whether sufficient ice features and ice motion existed within the consolidated ice pack to permit motion tracking using AVHRR imagery; (2) determine the limits imposed on AVHRR mapping by cloud cover; and (3) test the applicability of AVHRR-derived motions in studies of ice-atmosphere interactions. Each of these main objectives was addressed. We conclude that AVHRR data, particularly when blended with other available observations, provide a valuable data set for studying sea ice processes. In a follow-on project, we are now extending this work to cover larger areas and to address science questions in more detail.

  12. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  13. SAR imagery of the Grand Banks (Newfoundland) pack ice pack and its relationship to surface features

    NASA Technical Reports Server (NTRS)

    Argus, S. D.; Carsey, F. D.

    1988-01-01

    Synthetic Aperture Radar (SAR) data and aerial photographs were obtained over pack ice off the East Coast of Canada in March 1987 as part of the Labrador Ice Margin Experiment (LIMEX) pilot project. Examination of this data shows that although the pack ice off the Canadian East Coast appears essentially homogeneous to visible light imagery, two clearly defined zones of ice are apparent on C-band SAR imagery. To identify factors that create the zones seen on the radar image, aerial photographs were compared to the SAR imagery. Floe size data from the aerial photographs was compared to digital number values taken from SAR imagery of the same ice. The SAR data of the inner zone acquired three days apart over the melt period was also examined. The studies indicate that the radar response is governed by floe size and meltwater distribution.

  14. Year-Round Pack Ice in the Weddell Sea, Antarctica: Response and Sensitivity to Atmospheric and Oceanic Forcing

    NASA Technical Reports Server (NTRS)

    Geiger, Cathleen A.; Ackley, Stephen F.; Hibler, William D., III

    1997-01-01

    Using a dynamic-thermodynamic numerical sea-ice model, external oceanic and atmospheric forcings on sea ice in the Weddell Sea are examined to identify physical processes associated with the seasonal cycle of pack ice, and to identify further the parameters that coupled models need to consider in predicting the response of the pack ice to climate and ocean-circulation changes. In agreement with earlier studies, the primary influence on the winter ice-edge maximum extent is air temperature. Ocean heat flux has more impact on the minimum-ice-edge extent and in reducing pack-ice thickness, especially in the eastern-Weddell Sea. Low relative humidity enhances ice growth in thin ice and open-water regions, producing a more realistic ice edge along the coastal areas of the western-Weddell Sea where dry continental air has an impact. The modeled extent of the Weddell summer pack is equally sensitive to ocean heat flux and atmospheric relative humidity variations with the more dynamic responses being from the atmosphere. Since the atmospheric regime in the eastern Weddell is dominated by marine intrusions from lower latitudes, with high humidity already, it is unlikely that either the moisture trans- port could be further raised or that it could be significantly lowered because of its distance from the continent (the lower humidity source). Ocean heat-transport variability is shown to lead to overall ice thinning in the model response and is a known feature of the actual system, as evidenced by the occurrence of the Weddell Polynya in the mid 1970s.

  15. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

    PubMed Central

    Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.

    2017-01-01

    The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean. PMID:28102329

  16. Experimental Investigation of the Resistance Performance and Heave and Pitch Motions of Ice-Going Container Ship Under Pack Ice Conditions

    NASA Astrophysics Data System (ADS)

    Guo, Chun-yu; Xie, Chang; Zhang, Jin-zhao; Wang, Shuai; Zhao, Da-gang

    2018-04-01

    In order to analyze the ice-going ship's performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.

  17. Effects of lead structure in Bering Sea pack ice on the flight costs of wintering spectacled eiders

    NASA Astrophysics Data System (ADS)

    Bump, Joseph K.; Lovvorn, James R.

    2004-10-01

    In polar regions, sea ice is critical habitat for many marine birds and mammals. The quality of pack ice habitat depends on the duration and spacing of leads (openings in the ice), which determine access to water and air for diving endotherms, and how often and how far they must move as leads open and close. Recent warming trends have caused major changes in the extent and nature of sea ice at large scales used in climate models. However, no studies have analyzed lead structure in terms of habitat for ice-dependent endotherms, or effects of climate on ice habitat at scales relevant to their daily movements. Based on observations from an icebreaker and synthetic aperture radar (SAR) images, we developed methods to describe the dynamics and thermodynamics of lead structure relative to use by spectacled eiders ( Somateria fischeri) wintering in pack ice of the Bering Sea. By correlating lead structure with weather variables, we then used these methods to estimate changes in lead dynamics from 1945 to 2002, and effects of such changes on flight costs of the eiders. For 1991-1992, when images were available about every 3 days throughout winter, SAR images were divided among five weather regimes defined by wind speed, wind direction, and air temperature. Based on 12.5-m pixels, lead shape, compass orientation, and fetch across leads did not differ among the weather regimes. However, the five regimes differed in total area of open water, leads per unit area, and distance between leads. Lead duration was modeled based on air temperature, wind, and fetch. Estimates of mean daily flight time for eiders, based on lead duration and distance between neighboring leads, differed among regimes by 0 to 15 min. Resulting flight costs varied from 0 to 158 kJ day -1, or from 0% to 11% of estimated field metabolic rate. Over 57 winters (1945-2002), variation among years in mean daily flight time was most influenced by the north-south wind component, which determined pack divergence

  18. Pack ice along the Kamchatka Peninsula, Russia as seen from STS-60

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pack ice is documented in this photograph along the coast of the Kamchatka Peninsula of Russia in Zaliv Ozernoj. Detailed photographs of the ice provide information to scientists in both Russia and the United States about the location and fluctuation of ice edges, and how this new sea ice interacts with ocean and littoral currents.

  19. Ice pack heat sink subsystem - phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, and test of a functional laboratory model ice pack heat sink subsystem are discussed. Operating instructions to include mechanical and electrical schematics, maintenance instructions, and equipment specifications are presented.

  20. Is it worth packing the head with ice in patients undergoing deep hypothermic circulatory arrest?

    PubMed

    O'Neill, Bridie; Bilal, Haris; Mahmood, Sarah; Waterworth, Paul

    2012-10-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: Is it worth packing the head with ice in patients undergoing deep hypothermic circulatory arrest (DHCA)? Altogether more than 34 papers were found using the reported search, of which 7 represented the best evidence to answer the clinical question, 5 of which were animal studies, 1 was a theoretical laboratory study and 1 study looked at the ability to cool using circulating water 'jackets' in humans. There were no available human studies looking at the neurological outcome with or without topical head cooling with ice without further adjunct methods of cerebral protection. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Four papers studied animals undergoing DHCA for 45 min-2 h depending on the study design, with or without packing the head with ice. The studies all demonstrated improved cerebral cooling when the head was packed with ice during DHCA. They also illustrated an improved neurological outcome, with better behavioural scores (P < 0.05), and in some, survival, when compared with animals whose heads were not packed in ice. One study examined selective head cooling with the use of packing the head with ice during rewarming after DHCA. However, they demonstrated worse neurological outcomes in these animals, possibly due to the loss of cerebral vasoregulation and cerebral oedema. One study involved a laboratory experiment showing improved cooling using circulating cool water in cryotherapy braces than by using packed ice. They extrapolated that newer devices to cool the head may improve cerebral cooling during DHCA. The final study discussed here demonstrated the use of circulating water to the head in humans undergoing pulmonary endarterectomy. They found that tympanic membrane temperatures could be maintained significantly lower than bladder

  1. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill.

    PubMed

    Meyer, Bettina; Freier, Ulrich; Grimm, Volker; Groeneveld, Jürgen; Hunt, Brian P V; Kerwath, Sven; King, Rob; Klaas, Christine; Pakhomov, Evgeny; Meiners, Klaus M; Melbourne-Thomas, Jessica; Murphy, Eugene J; Thorpe, Sally E; Stammerjohn, Sharon; Wolf-Gladrow, Dieter; Auerswald, Lutz; Götz, Albrecht; Halbach, Laura; Jarman, Simon; Kawaguchi, So; Krumpen, Thomas; Nehrke, Gernot; Ricker, Robert; Sumner, Michael; Teschke, Mathias; Trebilco, Rowan; Yilmaz, Noyan I

    2017-12-01

    A dominant Antarctic ecological paradigm suggests that winter sea ice is generally the main feeding ground for krill larvae. Observations from our winter cruise to the southwest Atlantic sector of the Southern Ocean contradict this view and present the first evidence that the pack-ice zone is a food-poor habitat for larval development. In contrast, the more open marginal ice zone provides a more favourable food environment for high larval krill growth rates. We found that complex under-ice habitats are, however, vital for larval krill when water column productivity is limited by light, by providing structures that offer protection from predators and to collect organic material released from the ice. The larvae feed on this sparse ice-associated food during the day. After sunset, they migrate into the water below the ice (upper 20 m) and drift away from the ice areas where they have previously fed. Model analyses indicate that this behaviour increases both food uptake in a patchy food environment and the likelihood of overwinter transport to areas where feeding conditions are more favourable in spring.

  2. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations?

    PubMed Central

    Wilcox, Christie L.; Yanagihara, Angel A.

    2016-01-01

    Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes. PMID:27043628

  3. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations?

    PubMed

    Wilcox, Christie L; Yanagihara, Angel A

    2016-04-01

    Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes.

  4. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  5. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  6. Analysis of sea ice dynamics

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The ongoing work has established the basis for using multiyear sea ice concentrations from SMMR passive microwave for studies of largescale advection and convergence/divergence of the Arctic sea ice pack. Comparisons were made with numerical model simulations and buoy data showing qualitative agreement on daily to interannual time scales. Analysis of the 7-year SMMR data set shows significant interannual variations in the total area of multiyear ice. The scientific objective is to investigate the dynamics, mass balance, and interannual variability of the Arctic sea ice pack. The research emphasizes the direct application of sea ice parameters derived from passive microwave data (SMMR and SSMI) and collaborative studies using a sea ice dynamics model. The possible causes of observed interannual variations in the multiyear ice area are being examined. The relative effects of variations in the large scale advection and convergence/divergence within the ice pack on a regional and seasonal basis are investigated. The effects of anomolous atmospheric forcings are being examined, including the long-lived effects of synoptic events and monthly variations in the mean geostrophic winds. Estimates to be made will include the amount of new ice production within the ice pack during winter and the amount of ice exported from the pack.

  7. Effect of local cooling on excitation-contraction coupling in myasthenic muscle: Another mechanism of ice-pack test in myasthenia gravis.

    PubMed

    Yamamoto, Daisuke; Imai, Tomihiro; Tsuda, Emiko; Hozuki, Takayoshi; Yamauchi, Rika; Hisahara, Shin; Kawamata, Jun; Shimohama, Shun

    2017-11-01

    The ice-pack test is a convenient diagnostic testing procedure for myasthenia gravis (MG). We investigated the underlying mechanism of the ice-pack test performed on bilateral masseters. We performed trigeminal repetitive nerve stimulation (RNS), excitation-contraction (E-C) coupling assessment (Imai's method) and bite force measurement before and after cooling of the masseters in MG patients and normal controls. After placing the ice-pack on the masseters for 3min, serial recordings of the three tests were performed at various time intervals during 10min after cooling. The bite force increased significantly after cooling in ice-pack-positive MG patients. The acceleration and acceleration ratio (acceleration at a given time to baseline acceleration) of jaw movement increased significantly after cooling of the masseters in ice-pack-positive MG patients compared to ice-pack-negative patients and normal controls. The prolonged effect of cooling continued until the end of recording even though decremental response to RNS had returned to baseline value. Cooling of myasthenic muscle may induce two effects. One is relatively short effect on electrical synaptic transmission at the endplate, and another is prolonged effect on E-C coupling in the muscle. The ice-pack test induces a prolonged effect of ameliorating impaired E-C coupling in MG. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. Fifteen-second skin icing using a frozen gel pack is effective for reducing goserelin injection pain.

    PubMed

    Naya, Yoshio; Hagiwara, Nobuhisa; Takeuchi, Ichiro; Mori, Masaru; Inagaki, Akinori; Nakanouchi, Tsuneyuki; Mikami, Kazuya

    2014-01-01

    The efficacy of skin icing to reduce the pain of goserelin injection has been reported. We investigated the optimal icing time with a frozen gel pack and its effectiveness. Abdominal skin temperatures of 49 healthy volunteers were measured after application of the frozen gel pack for 10, 15 and 30 s, and it was decided that a 15-second icing was adequate. For 55 consecutive patients who received goserelin (10.8 mg) injection, pain was evaluated employing a visual analog scale (VAS). The first injection was administered routinely. A second injection was administered after skin icing in 27 of 55 patients who wanted to try icing. At the time of the third injection, all patient decided whether they were to receive icing or the routine method. After icing, VAS scores decreased in 20 of 27 patients. At the third injection, 18 patients requested icing. When a patient complains of injection pain, the icing method should be considered for pain reduction. 2014 S. Karger AG, Basel.

  9. Comparisons of ice packs, hot water immersion, and analgesia injection for the treatment of centipede envenomations in Taiwan.

    PubMed

    Chaou, Chung-Hsien; Chen, Chian-Kuang; Chen, Jih-Chang; Chiu, Te-Fa; Lin, Chih-Chuan

    2009-08-01

    To compare the effectiveness of ice packs and hot water immersion for the treatment of centipede envenomations. Sixty patients envenomated by centipedes were randomized into three groups and were treated with ice packs, hot water immersion, or analgesia injection. The visual analog score (VAS) for pain was measured before the treatment and 15 min afterward. Demographic data and data on local and systemic effects after centipede bites were collected. The VAS scores and the pain decrease (DeltaVAS) were compared between the three groups. All patients suffered from pain at the affected sites; other local effects included redness (n = 49, 81.7%), swelling (n = 32, 53.3%), heat (n = 14, 23.3%), itchiness (n = 5, 8.3), and bullae formation (n = 3, 5.0%). Rare systemic effects were reported. All three groups had similar VAS scores before and after treatment. They also had similar effectiveness in reducing pain caused by centipedes bites (DeltaVAS = 2.55 +/- 1.88, 2.33 +/- 1.78, and 1.55 +/- 1.68, with ice packs, analgesia, and hot water immersion, respectively, p = 0.165). Ice packs, hot water immersion, and analgesics all improved the pain from centipede envenomation. Ice pack treatment is a safe, inexpensive, and non-invasive method for pre-hospital management in patients with centipede envenomation.

  10. Parameterization and scaling of arctic ice conditions in the context of ice-atmospheric processes

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Steffen, K.; Heinrichs, J. F.; Key, J. R.; Maslanik, J. A.; Serreze, M. C.; Weaver, R. L.

    1995-01-01

    The goals of this project are to observe how the open water/thin ice fraction in a high-concentration ice pack responds to different short-period atmospheric forcings, and how this response is represented in different scales of observation. The objectives can be summarized as follows: determine the feasibility and accuracy of ice concentration and ice typing by ERS-1 SAR backscatter data, and whether SAR data might be used to calibrate concentration estimates from optical and massive-microwave sensors; investigate methods to integrate SAR data with other satellite data for turbulent heat flux parameterization at the ocean/atmosphere interface; determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open-water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space.

  11. Biogeochemical Impact of Snow Cover and Cyclonic Intrusions on the Winter Weddell Sea Ice Pack

    NASA Astrophysics Data System (ADS)

    Tison, J.-L.; Schwegmann, S.; Dieckmann, G.; Rintala, J.-M.; Meyer, H.; Moreau, S.; Vancoppenolle, M.; Nomura, D.; Engberg, S.; Blomster, L. J.; Hendrickx, S.; Uhlig, C.; Luhtanen, A.-M.; de Jong, J.; Janssens, J.; Carnat, G.; Zhou, J.; Delille, B.

    2017-12-01

    Sea ice is a dynamic biogeochemical reactor and a double interface actively interacting with both the atmosphere and the ocean. However, proper understanding of its annual impact on exchanges, and therefore potentially on the climate, notably suffer from the paucity of autumnal and winter data sets. Here we present the results of physical and biogeochemical investigations on winter Antarctic pack ice in the Weddell Sea (R. V. Polarstern AWECS cruise, June-August 2013) which are compared with those from two similar studies conducted in the area in 1986 and 1992. The winter 2013 was characterized by a warm sea ice cover due to the combined effects of deep snow and frequent warm cyclones events penetrating southward from the open Southern Ocean. These conditions were favorable to high ice permeability and cyclic events of brine movements within the sea ice cover (brine tubes), favoring relatively high chlorophyll-a (Chl-a) concentrations. We discuss the timing of this algal activity showing that arguments can be presented in favor of continued activity during the winter due to the specific physical conditions. Large-scale sea ice model simulations also suggest a context of increasingly deep snow, warm ice, and large brine fractions across the three observational years, despite the fact that the model is forced with a snowfall climatology. This lends support to the claim that more severe Antarctic sea ice conditions, characterized by a longer ice season, thicker, and more concentrated ice are sufficient to increase the snow depth and, somehow counterintuitively, to warm the ice.

  12. Oral health-related quality of life following third molar surgery with or without application of ice pack therapy.

    PubMed

    Ibikunle, Adebayo A; Adeyemo, Wasiu L

    2016-09-01

    To evaluate the effect of ice pack therapy on oral health-related quality of life (OHRQoL) following third molar surgery. All consecutive subjects who required surgical extraction of lower third molars and satisfied the inclusion criteria were randomly allocated into two groups. Subjects in group A were instructed to apply ice packs directly over the masseteric region on the operated side intermittently after third molar surgery. This first application was supervised in the clinic and was repeated at the 24-h postoperative review. Subjects in group A were further instructed to apply the ice pack when at home every one and a half hours on postoperative days 0 and 1 while he/she was awake as described. Group B subjects did not apply ice pack therapy. Facial swelling, pain, trismus, and quality of life (using Oral Health Impact Profile-14 (OHIP-14) instrument) were evaluated both preoperatively and postoperatively. Postoperative scores in both groups were compared. A significant increase in the mean total and subscale scores of OHIP-14 was found in both groups postoperatively when compared with preoperative value. Subjects who received ice pack therapy had a better quality of life than those who did not. Subjects whose postoperative QoL were affected were statistically significantly higher in group B than in group A at all postoperative evaluation points (P < 0.05). Statistically significant differences were also observed between the groups in the various subscales analyzed, with better quality of life seen among subjects in group A. Quality of life after third molar surgery was significantly better in subjects who had cryotherapy after third molar than those who did not have cryotherapy. Cryotherapy is a viable alternative or adjunct to other established modes of improving the quality of life of patients following surgical extraction of third molars.

  13. The zooplankton food web under East Antarctic pack ice - A stable isotope study

    NASA Astrophysics Data System (ADS)

    Jia, Zhongnan; Swadling, Kerrie M.; Meiners, Klaus M.; Kawaguchi, So; Virtue, Patti

    2016-09-01

    Understanding how sea ice serves zooplankton species during the food-limited season is crucial information to evaluate the potential responses of pelagic food webs to changes in sea-ice conditions in the Southern Ocean. Stable isotope analyses (13C/12C and 15N/14N) were used to compare the dietary preferences and trophic relationships of major zooplankton species under pack ice during two winter-spring transitions (2007 and 2012). During sampling, furcilia of Euphausia superba demonstrated dietary plasticity between years, herbivory when feeding on sea-ice biota, and with a more heterotrophic diet when feeding from both the sea ice and the water column. Carbon isotope signatures suggested that the pteropod Limacina helicina, small copepods Oithona spp., ostracods and amphipods relied heavily on sea-ice biota. Post larval E. superba and omnivorous krill Thysanoessa macrura consumed both water column and ice biota, but further investigations are needed to estimate the contribution from each source. Large copepods and chaetognaths overwintered on a water column-based diet. Our study suggests that warm and permeable sea ice is more likely to provide food for zooplankton species under the ice than the colder ice.

  14. Pack ice along the Kamchatka Peninsula, Russia as seen from STS-60

    NASA Image and Video Library

    1994-02-09

    STS060-73-038 (3-11 Feb 1994) --- Pack ice is documented in this photograph along the coast of the Kamchatka Peninsula of Russia in Zaliv Ozernoj. Newly formed ice continually breaks away from the land and takes the form imposed by coastal currents. Detailed photographs of the ice provide information to scientists in both Russia and the united States about the location and fluctuation of ice edges, and how this new sea ice interacts with ocean and littoral currents. This information results in better ice warnings to shipping traffic and provides data points for long-range climate change research for both the Mission-To-Planet Earth and the Russian Priroda ("Nature") monitoring and assessment programs that are respectively coordinated by NASA and the Russian Academy of Sciences. This photography of ice development in the North Pacific, North Atlantic, the Southern Ocean, the Baltic and North Seas, and the Great Lakes is of great interest to the international scientific community. NASA scientists feel high-resolution analog and digital photography from the Space Shuttle and future craft can be a particularly important component in satisfying their data needs on both an operational and a long-term research basis.

  15. Parameterization and scaling of Arctic ice conditions in the context of ice-atmosphere processes

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Heinrichs, J.; Steffen, K.; Maslanik, J. A.; Key, J.; Serreze, M. C.; Weaver, R. W.

    1994-01-01

    This report summarizes achievements during year three of our project to investigate the use of ERS-1 SAR data to study Arctic ice and ice/atmosphere processes. The project was granted a one year extension, and goals for the final year are outlined. The specific objects of the project are to determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space; determine whether SAR data might be used to calibrate ice concentration estimates from medium and low-rate bit sensors (AVHRR and DMSP-OLS) and the special sensor microwave imager (SSM/I); and investigate methods to integrate SAR data for turbulent heat flux parametrization at the atmosphere interface with other satellite data.

  16. Future Interannual Variability of Arctic Sea Ice Area and its Implications for Marine Navigation

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.; Mioduszewski, J.; Holland, M. M.; Wang, M.; Landrum, L.

    2016-12-01

    As both a symbol and driver of ongoing climate change, the diminishing Arctic sea ice pack has been widely studied in a variety of contexts. Most research, however, has focused on time-mean changes in sea ice, rather than on short-term variations that also have important physical and societal consequences. In this study we test the hypothesis that interannual Arctic sea ice variability will increase in the future by utilizing a set of 40 independent simulations from the Community Earth System Model's Large Ensemble for the 1920-2100 period. The model projects that ice variability will indeed grow substantially in all months but with a strong seasonal dependence in magnitude and timing. The variability increases most during late autumn (November-December) and least during spring. This increase proceeds in a time-transgressive manner over the course of the year, peaking soonest (2020s) in late-summer months and latest (2090s) during late spring. The variability in every month is inversely correlated with the average melt rate, resulting in an eventual decline in both terms as the ice pack becomes seasonal by late century. These projected changes in sea ice variations will likely have significant consequences for marine navigation, which we assess with the empirical Ice Numeral (IN) metric. A function of ice concentration and thickness, the IN quantifies the difficulty in traversing a transect of sea ice-covered ocean as a function of vessel strength. Our results show that although increasingly open Arctic seas will mean generally more favorable conditions for navigation, the concurrent rise in the variability of ice cover poses a competing risk. In particular, future intervals featuring the most rapid declines in ice area that coincide with the highest interannual ice variations will offer more inviting shipping opportunities tempered by less predictable navigational conditions.

  17. Time-dependence of sea-ice concentration and multiyear ice fraction in the Arctic Basin

    USGS Publications Warehouse

    Gloersen, P.; Zwally, H.J.; Chang, A.T.C.; Hall, D.K.; Campbell, W.J.; Ramseier, R.O.

    1978-01-01

    The time variation of the sea-ice concentration and multiyear ice fraction within the pack ice in the Arctic Basin is examined, using microwave images of sea ice recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973-1975 to illustrate some basic differences in the properties of the sea ice during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic Ice Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-ice concentration (divergence). These observations indicate significant variations in the sea-ice concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-ice pack, heretofore unobserved large areas, several hundred kilometers in extent, of sea-ice concentrations as low as 50% are indicated. ?? 1978 D. Reidel Publishing Company.

  18. CO2 flux over young and snow-covered Arctic pack ice in winter and spring

    NASA Astrophysics Data System (ADS)

    Nomura, Daiki; Granskog, Mats A.; Fransson, Agneta; Chierici, Melissa; Silyakova, Anna; Ohshima, Kay I.; Cohen, Lana; Delille, Bruno; Hudson, Stephen R.; Dieckmann, Gerhard S.

    2018-06-01

    Rare CO2 flux measurements from Arctic pack ice show that two types of ice contribute to the release of CO2 from the ice to the atmosphere during winter and spring: young, thin ice with a thin layer of snow and older (several weeks), thicker ice with thick snow cover. Young, thin sea ice is characterized by high salinity and high porosity, and snow-covered thick ice remains relatively warm ( > -7.5 °C) due to the insulating snow cover despite air temperatures as low as -40 °C. Therefore, brine volume fractions of these two ice types are high enough to provide favorable conditions for gas exchange between sea ice and the atmosphere even in mid-winter. Although the potential CO2 flux from sea ice decreased due to the presence of the snow, the snow surface is still a CO2 source to the atmosphere for low snow density and thin snow conditions. We found that young sea ice that is formed in leads without snow cover produces CO2 fluxes an order of magnitude higher than those in snow-covered older ice (+1.0 ± 0.6 mmol C m-2 day-1 for young ice and +0.2 ± 0.2 mmol C m-2 day-1 for older ice).

  19. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    NASA Astrophysics Data System (ADS)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  20. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Image and Video Library

    1991-09-18

    STS048-152-007 (12-18 Sept 1991) --- The periphery of the Antarctic ice shelf and the Antarctic Peninsula were photographed by the STS 48 crew members. Strong offshore winds, probably associated with katabatic winds from the interior of the continent, are peeling off the edges of the ice shelf into ribbons of sea ice, icebergs, bergy bits and growlers into the cold waters of the circum-Antarctic southern ocean.

  1. Acoustic effects of oil-production activities on bowhead and white whales visible during spring migration near Pt. Barrow, Alaska-1990 phase: sound propagation and whale responses to playbacks of continuous drilling noise from an ice platform, as studied in pack ice conditions. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, W.J.; Greene, C.R.; Koski, W.R.

    1991-10-01

    The report concerns the effects of underwater noise from simulated oil production operations on the movements and behavior of bowhead and white whales migrating around northern Alaska in spring. An underwater sound projector suspended from pack ice was used to introduce recorded drilling noise and other test sounds into leads through the pack ice. These sounds were received and measured at various distances to determine the rate of sound attenuation with distance and frequency. The movements and behavior of bowhead and white whales approaching the operating projector were studied by aircraft- and ice-based observers. Some individuals of both species weremore » observed to approach well within the ensonified area. However, behavioral changes and avoidance reactions were evident when the received sound level became sufficiently high. Reactions to aircraft are also discussed.« less

  2. Estimation of Antarctic Land-Fast Sea Ice Algal Biomass and Snow Thickness From Under-Ice Radiance Spectra in Two Contrasting Areas

    NASA Astrophysics Data System (ADS)

    Wongpan, P.; Meiners, K. M.; Langhorne, P. J.; Heil, P.; Smith, I. J.; Leonard, G. H.; Massom, R. A.; Clementson, L. A.; Haskell, T. G.

    2018-03-01

    Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique has been calibrated to assess biomass in Arctic fast ice and pack ice, as well as Antarctic pack ice, relationships are currently lacking for Antarctic fast ice characterized by bottom ice algae communities with high algal biomass. We analyze measurements along transects at two contrasting Antarctic fast ice sites in terms of platelet ice presence: near and distant from an ice shelf, i.e., in McMurdo Sound and off Davis Station, respectively. Snow and ice thickness, and ice salinity and temperature measurements support our paired in situ optical and biological measurements. Analyses show that NDI wavelength pairs near the first chlorophyll a (chl a) absorption peak (≈440 nm) explain up to 70% of the total variability in algal biomass. Eighty-eight percent of snow thickness variability is explained using an NDI with a wavelength pair of 648 and 567 nm. Accounting for pigment packaging effects by including the ratio of chl a-specific absorption coefficients improved the NDI-based algal biomass estimation only slightly. Our new observation-based algorithms can be used to estimate Antarctic fast ice algal biomass and snow thickness noninvasively, for example, by using moored sensors (time series) or mapping their spatial distributions using underwater vehicles.

  3. There goes the sea ice: following Arctic sea ice parcels and their properties.

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  4. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  5. Radar image interpretation techniques applied to sea ice geophysical problems

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.

    1983-01-01

    The geophysical science problems in the sea ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and ice at the ice margins is discussed. The science problems relate to basic questions of sea ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of interactions between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.

  6. Spatial Variability of Barrow-Area Shore-Fast Sea Ice and Its Relationships to Passive Microwave Emissivity

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.; Rivas, M. Belmonte; Holmgren, J.; Gasiewski, A. J.; Heinrichs, J. F.; Stroeve, J. C.; Klein, M.; Markus, T.; Perovich, D. K.; Sonntag, J. G.; hide

    2006-01-01

    Aircraft-acquired passive microwave data, laser radar height observations, RADARSAT synthetic aperture radar imagery, and in situ measurements obtained during the AMSR-Ice03 experiment are used to investigate relationships between microwave emission and ice characteristics over several space scales. The data fusion allows delineation of the shore-fast ice and pack ice in the Barrow area, AK, into several ice classes. Results show good agreement between observed and Polarimetric Scanning Radiometer (PSR)-derived snow depths over relatively smooth ice, with larger differences over ridged and rubbled ice. The PSR results are consistent with the effects on snow depth of the spatial distribution and nature of ice roughness, ridging, and other factors such as ice age. Apparent relationships exist between ice roughness and the degree of depolarization of emission at 10,19, and 37 GHz. This depolarization .would yield overestimates of total ice concentration using polarization-based algorithms, with indications of this seen when the NT-2 algorithm is applied to the PSR data. Other characteristics of the microwave data, such as effects of grounding of sea ice and large contrast between sea ice and adjacent land, are also apparent in the PSR data. Overall, the results further demonstrate the importance of macroscale ice roughness conditions such as ridging and rubbling on snow depth and microwave emissivity.

  7. Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kohout, Alison; Fraser, Alexander D.

    2016-09-01

    To understand the behavior of the Seasonal Ice Zone (SIZ), which is composed of sea-ice floes of various sizes, knowledge of the floe size distribution (FSD) is important. In particular, FSD in the Marginal Ice Zone (MIZ), controlled by wave-ice interaction, plays an important role in determining the retreating rates of sea-ice extent on a global scale because the cumulative perimeter of floes enhances melting. To improve the understanding of wave-ice interaction and subsequent effects on FSD in the MIZ, FSD measurements were conducted off East Antarctica during the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) in late winter 2012. Since logistical reasons limited helicopter operations to two interior ice regions, FSD in the interior ice region was determined using a combination of heli-photos and MODIS satellite visible images. The possible effect of wave-ice interaction in the MIZ was examined by comparison with past results obtained in the same MIZ, with our analysis showing: (1) FSD in the interior ice region is basically scale invariant for both small- (<100 m) and large- (>1 km) scale regimes; (2) although fractal dimensions are quite different between these two regimes, they are both rather close to that in the MIZ; and (3) for floes <100 m in diameter, a regime shift which appeared at 20-40 m in the MIZ is absent. These results indicate that one role of wave-ice interaction is to modulate the FSD that already exists in the interior ice region, rather than directly determine it. The possibilities of floe-floe collisions and storm-induced lead formation are considered as possible formation processes of FSD in the interior pack.

  8. Pain Intensity after an Ice Pack Application Prior to Venipuncture among School-Age Children: An Experimental Study

    ERIC Educational Resources Information Center

    Alalo, Fadeelah Mansour Ahmed; Ahmad, Awatef El Sayed; El Sayed, Hoda Mohamed Nafee

    2016-01-01

    Venipuncture and other invasive procedures as blood draws, intramuscular injections or heel pricks are the most commonly performed painful procedures in children. These can be a terrifying and painful experience for children and their families. The present study aimed to identify Pain intensity after an ice pack application prior to venipuncture…

  9. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    USGS Publications Warehouse

    Durner, George M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.

  10. Landward and eastward shift of Alaskan polar bear denning associated with recent sea ice changes

    USGS Publications Warehouse

    Fischbach, Anthony S.; Amstrup, Steven C.; Douglas, David C.

    2007-01-01

    Polar bears (Ursus maritimus) in the northern Alaska region den in coastal areas and on offshore drifting ice. We evaluated changes in the distribution of polar bear maternal dens between 1985 and 2005, using satellite telemetry. We determined the distribution of maternal dens occupied by 89 satellite collared female polar bears between 137°W and 167°W longitude. The proportion of dens on pack ice declined from 62% in 1985–1994 to 37% in 1998–2004 (P = 0.044) and among pack ice dens fewer occurred in the western Beaufort Sea after 1998. We evaluated whether hunting, attraction to bowhead whale remains, or changes in sea ice could explain changes in den distribution. We concluded that denning distribution changed in response to reductions in stable old ice, increases in unconsolidated ice, and lengthening of the melt season. In consort, these changes have likely reduced the availability and quality of pack ice denning habitat. Further declines in sea ice availability are predicted. Therefore, we expect the proportion of polar bears denning in coastal areas will continue to increase, until such time as the autumn ice retreats far enough from shore that it precludes offshore pregnant females from reaching the Alaska coast in advance of denning.

  11. Sea ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.

    1973-01-01

    The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.

  12. Sea Ice, Climate and Fram Strait

    NASA Technical Reports Server (NTRS)

    Hunkins, K.

    1984-01-01

    When sea ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. Sea ice also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the ice pack in that area including the interactions between sea, air and ice.

  13. On the 2012 Record Low Arctic Sea Ice Cover: Combined Impact of Preconditioning and an August Storm

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Comiso, Josefino C.

    2013-01-01

    A new record low Arctic sea ice extent for the satellite era, 3.4 x 10(exp 6) square kilometers, was reached on 13 September 2012; and a new record low sea ice area, 3.01 x 10(exp 6) square kilometers was reached on the same date. Preconditioning through decades of overall ice reductions made the ice pack more vulnerable to a strong storm that entered the central Arctic in early August 2012. The storm caused the separation of an expanse of 0.4 x 10(exp 6) square kilometers of ice that melted in total, while its removal left the main pack more exposed to wind and waves, facilitating the main pack's further decay. Future summer storms could lead to a further acceleration of the decline in the Arctic sea ice cover and should be carefully monitored.

  14. Thin Ice Area Extraction in the Seasonal Sea Ice Zones of the Northern Hemisphere Using Modis Data

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Naoki, K.; Cho, K.

    2018-04-01

    Sea ice has an important role of reflecting the solar radiation back into space. However, once the sea ice area melts, the area starts to absorb the solar radiation which accelerates the global warming. This means that the trend of global warming is likely to be enhanced in sea ice areas. In this study, the authors have developed a method to extract thin ice area using reflectance data of MODIS onboard Terra and Aqua satellites of NASA. The reflectance of thin sea ice in the visible region is rather low. Moreover, since the surface of thin sea ice is likely to be wet, the reflectance of thin sea ice in the near infrared region is much lower than that of visible region. Considering these characteristics, the authors have developed a method to extract thin sea ice areas by using the reflectance data of MODIS (NASA MYD09 product, 2017) derived from MODIS L1B. By using the scatter plots of the reflectance of Band 1 (620 nm-670 nm) and Band 2 (841 nm-876 nm)) of MODIS, equations for extracting thin ice area were derived. By using those equations, most of the thin ice areas which could be recognized from MODIS images were well extracted in the seasonal sea ice zones in the Northern Hemisphere, namely the Sea of Okhotsk, the Bering Sea and the Gulf of Saint Lawrence. For some limited areas, Landsat-8 OLI images were also used for validation.

  15. A Terminal Area Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  16. Ross sea ice motion, area flux, and deformation

    NASA Technical Reports Server (NTRS)

    kwok, Ron

    2005-01-01

    The sea ice motion, area export, and deformation of the Ross Sea ice cover are examined with satellite passive microwave and RADARSAT observations. The record of high-resolution synthetic aperture radar (SAR) data, from 1998 and 2000, allows the estimation of the variability of ice deformation at the small scale (10 km) and to assess the quality of the longer record of passive microwave ice motion. Daily and subdaily deformation fields and RADARSAT imagery highlight the variability of motion and deformation in the Ross Sea. With the passive microwave ice motion, the area export at a flux gate positioned between Cape Adare and Land Bay is estimated. Between 1992 and 2003, a positive trend can be seen in the winter (March-November) ice area flux that has a mean of 990 x 103 km2 and ranges from a low of 600 x 103 km2 in 1992 to a peak of 1600 x 103 km2 in 2001. In the mean, the southern Ross Sea produces almost twice its own area of sea ice during the winter. Cross-gate sea level pressure (SLP) gradients explain 60% of the variance in the ice area flux. A positive trend in this gradient, from reanalysis products, suggests a 'spinup' of the Ross Sea Gyre over the past 12 yr. In both the NCEP-NCAR and ERA-40 surface pressure fields, longer-term trends in this gradient and mean SLP between 1979 and 2002 are explored along with positive anomalies in the monthly cross-gate SLP gradient associated with the positive phase of the Southern Hemisphere annular mode and the extrapolar Southern Oscillation.

  17. Observing Radiative Properties of a Thinner, Seasonal Arctic Ice Pack

    NASA Astrophysics Data System (ADS)

    Hudson, S. R.; Nicolaus, M.; Granskog, M.; Gerland, S.; Wang, C.

    2011-12-01

    variability. For this, we have developed a radiation sled for measuring the full radiation budget of sea ice at a grid of locations to observe the variability within an area similar to a satellite pixel or model grid cell. Based on a modified dog sled, it carries upward and downward looking longwave and shortwave broadband radiometers, a spectral radiometer (350 to 2500 nm) for measuring spectral albedo, cameras to record surface and ground conditions at each measurement site, a thermometer, hygrometer, and GPS. Small enough to be deployed from a ship at short ice stations, it can also be used at longer stations to observe the effect of the spatial variability on the temporal variability. When combined with measurements or estimates of the sensible and latent heat fluxes, a full picture of the large-scale energy budget and its small-scale variations is obtained, valuable insight for parameterization and remote sensing product development. Surface profiles with the sled can be complemented by under-ice profiles made with a spectral radiometer mounted on an ROV or carried by a diver, providing a measure of the spatial variability of the partitioning of the absorbed solar energy into the ice and water.

  18. Variability of Antarctic Sea Ice 1979-1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the

  19. Oil and ice in the arctic ocean: possible large-scale interactions.

    PubMed

    Campbell, W J; Martin, S

    1973-07-06

    The diffusion and transport mechanisms generated by the pack ice dynamics of the Beaufort Sea, combined with the slow rate of biodegradation of oil under Arctic conditions, would combine to diffuse an oil spill over the sea and eventually deposit the oil on the ice surface, where it would lower the natural albedo over a large area.

  20. Antarctic Sea-Ice Freeboard and Estimated Thickness from NASA's ICESat and IceBridge Observations

    NASA Technical Reports Server (NTRS)

    Yi, Donghui; Kurtz, Nathan; Harbeck, Jeremy; Manizade, Serdar; Hofton, Michelle; Cornejo, Helen G.; Zwally, H. Jay; Robbins, John

    2016-01-01

    ICESat completed 18 observational campaigns during its lifetime from 2003 to 2009. Data from all of the 18 campaign periods are used in this study. Most of the operational periods were between 34 and 38 days long. Because of laser failure and orbit transition from 8-day to 91-day orbit, there were four periods lasting 57, 16, 23, and 12 days. IceBridge data from 2009, 2010, and 2011 are used in this study. Since 2009, there are 19 Airborne Topographic Mapper (ATM) campaigns, and eight Land, Vegetation, and Ice Sensor (LVIS) campaigns over the Antarctic sea ice. Freeboard heights are derived from ICESat, ATM and LVIS elevation and waveform data. With nominal densities of snow, water, and sea ice, combined with snow depth data from AMSR-E/AMSR2 passive microwave observation over the southern ocean, sea-ice thickness is derived from the freeboard. Combined with AMSR-E/AMSR2 ice concentration, sea-ice area and volume are also calculated. During the 2003-2009 period, sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of the growth and decay of the Antarctic pack ice. We found no significant trend of thickness or area for the Antarctic sea ice during the ICESat period. IceBridge sea ice freeboard and thickness data from 2009 to 2011 over the Weddell Sea and Amundsen and Bellingshausen Seas are compared with the ICESat results.

  1. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  2. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    DTIC Science & Technology

    2013-09-30

    ice . The albedo of sea ice is large compared to open water, and most of the incoming solar radiation...ocean and the ice pack where the seasonal retreat of the main ice pack takes place. It is a highly variable sea ice environment, usually comprised of...many individual floes of variable shape and size and made of mixed ice types, from young forming ice to fragmented multiyear ice . The presence of sea

  3. Western Ross Sea and McMurdo Sound Ice Forecasting Guide.

    DTIC Science & Technology

    1975-06-01

    areal ice distribution and follow the sane historical proqression of pack disintergration . This technique assumes that environmental conditions...30-day) are based on historical ice data which cxnbine averaae disintergration rates as well as averace wind and current drift. Iong-range wind...original 2 to 3 okta area and its new cnfiguration remains the same, the products of ocnoentrations and widths at the verifying time must equal the

  4. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain atmore » a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.« less

  5. Effects of summer ice coverage on phytoplankton assemblages in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Mangoni, O.; Modigh, M.; Conversano, F.; Carrada, G. C.; Saggiomo, V.

    2004-11-01

    An oceanographic cruise was conducted in the Ross Sea (Antarctica) during summer 2001 as part of the Italian National Program for Antarctic Research (PNRA). Extensive areas of pack ice occurred over the Ross Sea, atypical for summer when offshore waters are normally free of ice. The present study focuses on the effects of increased ice coverage on phytoplankton assemblages. Water samples collected at various depths at 72 hydrographical stations in offshore and coastal waters were used to determine size-fractionated phytoplankton biomass as chlorophyll a (chla) concentrations, and HPLC photosynthetic pigments. For the offshore waters, the average chla concentration was 57.8 mg m-2, approximately three times the values recorded under ice-free conditions during summer 1996. In coastal waters, the average chla concentrations were 102 and 206 mg m-2 during January and February, respectively, i.e., up to 2.5 times those of 1996. Micro- and nano-phytoplankton size fractions made up about 90% of the phytoplankton biomass over the entire study area and were composed primarily of diatoms with a pico-phytoplankton fraction dominated by prymnesiophyceans. The broken pack and melting ice was strongly coloured by an extensive algal biomass suggesting that the phytoplankton was a result of seeding from ice algal communities. The Ross Sea considered to be one of the most productive areas of the Southern Ocean, had primary production values about four-fold those of other areas. The lengthening of the ice season observed in the Western Ross Sea, associated with a considerable increase in phytoplankton biomass as observed in summer 2001, would have a major impact on the trophic structure of the entire ecosystem, and presumably, also on carbon export.

  6. Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition

    NASA Astrophysics Data System (ADS)

    Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.

  7. Recalculated Areas for Maximum Ice Extents of the Baltic Sea During Winters 1971-2008

    NASA Astrophysics Data System (ADS)

    Niskanen, T.; Vainio, J.; Eriksson, P.; Heiler, I.

    2009-04-01

    Publication of operational ice charts in Finland was started from the Baltic Sea in a year 1915. Until year 1993 all ice charts were hand drawn paper copies but in the year 1993 ice charting software IceMap was introduced. Since then all ice charts were produced digitally. Since the year 1996 IceMap has had an option that user can calculate areas of single ice area polygons in the chart. Using this option the area of the maximum ice extent can be easily solved fully automatically. Before this option was introduced (and in full operation) all maximum extent areas were calculated manually by a planimeter. During recent years it has become clear that some areas calculated before 1996 don't give the same result as IceMap. Differences can come from for example inaccuracy of old coastlines, map projections, the calibration of the planimeter or interpretation of old ice area symbols. Old ice charts since winter 1970-71 have now been scanned, rectified and re-drawn. New maximum ice extent areas for Baltic Sea have now been re-calculated. By these new technological tools it can be concluded that in some cases clear differences can be found.

  8. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    NASA Astrophysics Data System (ADS)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  9. Peopling of the high Arctic - induced by sea ice?

    NASA Astrophysics Data System (ADS)

    Funder, Svend

    2010-05-01

    'We travelled in the winter after the return of daylight and did not go into fixed camp until spring, when the ice broke up. There was good hunting on the way, seals, beluga, walrus, bear.' (From Old Merkrusârk's account of his childhood's trek from Baffin Island to Northwest Greenland, told to Knud Rasmussen on Saunders Island in 1904) Five thousand years ago people moving eastwards from Beringia spread over the barrens of the Canadian high Arctic. This was the first of three waves of prehistoric Arctic 'cultures', which eventually reached Greenland. The passage into Greenland has to go through the northernmost and most hostile part of the country with a 5 month Polar night, and to understand this extraordinary example of human behaviour and endurance, it has been customary to invoke a more favourable (warmer) climate. This presentation suggests that land-fast sea ice, i.e. stationary sea ice anchored to the coast, is among the most important environmental factors behind the spread of prehistoric polar cultures. The ice provides the road for travelling and social communion - and access to the most important source of food, the ocean. In the LongTerm Project (2006 and 2007) we attempted to establish a Holocene record for sea ice variations along oceanic coasts in northernmost Greenland. Presently the coasts north of 80° N are beleaguered by year-round sea ice - for ten months this is land-fast ice, and only for a period in the stormy autumn months are the coasts exposed to pack-ice. This presentation Land-fast ice - as opposed to pack-ice - is a product of local temperatures, but its duration over the year, and especially into the daylight season, is also conditioned by other factors, notably wind strength. In the geological record we recognize long lasting land-fast ice by two absences: absence of traces of wave action (no beach formation), which, however, can also be a result of pack-ice along the coast; - and absence of driftwood on the shore (land-fast ice

  10. The phase diagram of high-pressure superionic ice

    DOE PAGES

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; ...

    2015-08-28

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P2 1/c symmetry. We also discover that higher pressuremore » phases have lower transition temperatures. The diffusive hydrogen in the P2 1/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P2 1/c superionic phase transition.« less

  11. Statistical Analyses of High-Resolution Aircraft and Satellite Observations of Sea Ice: Applications for Improving Model Simulations

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.

    2012-12-01

    Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent

  12. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  13. Ice interaction with offshore structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammaert, A.B.; Muggeridge, D.B.

    1988-01-01

    Oil platforms and other offshore structures being built in the arctic regions must be able to withstand icebergs, ice islands, and pack ice. This reference explain the effect ice has on offshore structures and demonstrates design and construction methods that allow such structures to survive in harsh, ice-ridden environments. It analyzes the characteristics of sea ice as well as dynamic ice forces on structures. Techniques for ice modeling and field testing facilitate the design and construction of sturdy, offshore constructions. Computer programs included.

  14. Under the Sea Ice: Exploration of the Relationships Between Sea Ice Patterns and Foraging Movements of a Marine Predator in East Antarctica.

    NASA Astrophysics Data System (ADS)

    Labrousse, S.; Sallee, J. B.; Fraser, A. D.; Massom, R. A.; Reid, P.; Sumner, M.; Guinet, C.; Harcourt, R.; Bailleul, F.; Hindell, M.; Charrassin, J. B.

    2016-02-01

    Investigating ecological relationships between top predators and their environment is essential to understand the response of marine ecosystems to climate variability. Specifically, variability and changes in sea ice, which is known as an important habitat for marine ecosystems, presents complex patterns in East Antarctic. The impact for ecosystems of such changes of their habitat is however still unknown. Acting as an ecological double-edged sword, sea ice can impede access to marine resources while harboring a rich ecosystem during winter. Here, we investigated which type of sea ice habitat is used by male and female southern elephant seals during winter and examine if and how the spatio-temporal variability of sea ice concentration (SIC) influence their foraging strategies. We also examined over a 10 years time-series the impact of SIC and sea ice advance anomaly on foraging activity. To do this, we studied 46 individuals equipped with Satellite linked data recorders between 2004 and 2014, undertaking post-moult trips in winter from Kerguelen to the peri-Antarctic shelf. The general patterns of sea ice use by males and females are clearly distinct; while females tended to follow the sea ice edge as it extended northward, males remained on the continental shelf. Female foraging activity was higher in late autumn in the outer part of the pack ice in concentrated SIC and spatially stable. They remained in areas of variable SIC over time and low persistence. The seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was much higher during earlier advance of sea ice over female time-series. The females were possibly taking advantage of the ice algal autumn bloom sustaining krill and an under ice ecosystem without being trapped in sea ice. Males foraging activity increased when they remained deep inside sea ice over the shelf using variable SIC in time and space, presumably in polynyas or flaw leads between fast and pack ice. This strategy

  15. SEASAT views oceans and sea ice with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1982-01-01

    Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.

  16. The Preservation and Recycling of Snow Pack Nitrate at the West Antarctic Ice Sheet (WAIS) Divide Ice Core Site from the Present Day to the Last Glacial Period.

    NASA Astrophysics Data System (ADS)

    Robinson, J. W.; Buffen, A.; Hastings, M. G.; Schauer, A. J.; Moore, L.; Isaacs, A.; Geng, L.; Savarino, J. P.; Alexander, B.

    2017-12-01

    We use observations of the nitrogen isotopic composition of nitrate (δ15N(NO3-)) from snow and ice collected at the West Antarctic ice sheet (WAIS) divide ice core site to quantify the preservation and recycling of snow nitrate. Ice-core samples cover a continuous section from 36 to 52 thousand years ago and discrete samples from the Holocene, the last glacial maximum (LGM), and the glacial-Holocene transition. Higher δ15N of nitrate is consistently associated with lower temperatures with δ15N(NO3-) varying from 26 to 45 ‰ during the last glacial period and from 1 to 45 ‰ between the Holocene and glacial periods, respectively. We attribute the higher δ15N in colder periods to lower snow accumulation rates which lead to greater loss of snow nitrate via photolysis before burial beneath the snow photic zone. Modeling of nitrate preservation in snow pack was performed for modern and LGM conditions. The model is used in conjunction with observations to estimate the fraction of snow nitrate that is photolyzed, re-oxidized, and re-deposited over WAIS divide versus the fraction of primary nitrate that is deposited via long range transport. We used these estimates of fractional loss of snow nitrate in different time periods to determine the variation in the deposition flux of primary nitrate at WAIS divide with climate. Our findings have implications for the climate sensitivity of the oxidizing capacity of the polar atmosphere and the interpretation of ice-core records of nitrate in terms of past atmospheric composition.

  17. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

    NASA Astrophysics Data System (ADS)

    Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.

    2017-06-01

    The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.

  18. Airborne gravity measurement over sea-ice: The western Weddel Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, J.; Peters, M.; LaBrecque, J.

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less

  19. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  20. Mobility of icy sand packs, with application to Martian permafrost

    USGS Publications Warehouse

    Durham, W.B.; Pathare, A.V.; Stern, L.A.; Lenferink, H.J.

    2009-01-01

    [1] The physical state of water on Mars has fundamental ramifications for both climatology and astrobiology. The widespread presence of "softened" Martian landforms (such as impact craters) can be attributed to viscous creep of subsurface ground ice. We present laboratory experiments designed to determine the minimum amount of ice necessary to mobilize topography within Martian permafrost. Our results show that the jammed-to-mobile transition of icy sand packs neither occurs at fixed ice content nor is dependent on temperature or stress, but instead correlates strongly with the maximum dry packing density of the sand component. Viscosity also changes rapidly near the mobility transition. The results suggest a potentially lower minimum volatile inventory for the impact-pulverized megaregolith of Mars. Furthermore, the long-term preservation of partially relaxed craters implies that the ice content of Martian permafrost has remained close to that at the mobility transition throughout Martian history. Copyright 2009 by the American Geophysical Union.

  1. 49. TILE PACKING AREA AND APPRENTICE WORKSPACE, SECOND FLOOR, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. TILE PACKING AREA AND APPRENTICE WORKSPACE, SECOND FLOOR, SOUTH END OF EAST WING. THE SKYLIGHT, ADDED IN 1976. COVERS A ROOF OPENING LEFT FOR THE CHIMNEY OF A POSSIBLE THIRD BISCUIT KILN. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  2. Variational Ridging in Sea Ice Models

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  3. Antartic sea ice, 1973 - 1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Comiso, J. C.; Parkinson, C. L.; Campbell, W. J.; Carsey, F. D.; Gloersen, P.

    1983-01-01

    Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.

  4. Walrus areas of use in the Chukchi Sea during sparse sea ice cover

    USGS Publications Warehouse

    Jay, Chadwick V.; Fischbach, Anthony S.; Kochnev, Anatoly A.

    2012-01-01

    The Pacific walrus Odobenus rosmarus divergens feeds on benthic invertebrates on the continental shelf of the Chukchi and Bering Seas and rests on sea ice between foraging trips. With climate warming, ice-free periods in the Chukchi Sea have increased and are projected to increase further in frequency and duration. We radio-tracked walruses to estimate areas of walrus foraging and occupancy in the Chukchi Sea from June to November of 2008 to 2011, years when sea ice was sparse over the continental shelf in comparison to historical records. The earlier and more extensive sea ice retreat in June to September, and delayed freeze-up of sea ice in October to November, created conditions for walruses to arrive earlier and stay later in the Chukchi Sea than in the past. The lack of sea ice over the continental shelf from September to October caused walruses to forage in nearshore areas instead of offshore areas as in the past. Walruses did not frequent the deep waters of the Arctic Basin when sea ice retreated off the shelf. Walruses foraged in most areas they occupied, and areas of concentrated foraging generally corresponded to regions of high benthic biomass, such as in the northeastern (Hanna Shoal) and southwestern Chukchi Sea. A notable exception was the occurrence of concentrated foraging in a nearshore area of northwestern Alaska that is apparently depauperate in walrus prey. With increasing sea ice loss, it is likely that walruses will increase their use of coastal haul-outs and nearshore foraging areas, with consequences to the population that are yet to be understood.

  5. Convergence on the Prediction of Ice Particle Mass and Projected Area in Ice Clouds

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.

    2013-12-01

    Ice particle mass- and area-dimensional power law (henceforth m-D and A-D) relationships are building-blocks for formulating microphysical processes and optical properties in cloud and climate models, and they are critical for ice cloud remote sensing algorithms, affecting the retrieval accuracy. They can be estimated by (1) directly measuring the sizes, masses and areas of individual ice particles at ground-level and (2) using aircraft probes to simultaneously measure the ice water content (IWC) and ice particle size distribution. A third indirect method is to use observations from method 1 to develop an m-A relationship representing mean conditions in ice clouds. Owing to a tighter correlation (relative to m-D data), this m-A relationship can be used to estimate m from aircraft probe measurements of A. This has the advantage of estimating m at small sizes, down to 10 μm using the 2D-Sterio probe. In this way, 2D-S measurements of maximum dimension D can be related to corresponding estimates of m to develop ice cloud type and temperature dependent m-D expressions. However, these expressions are no longer linear in log-log space, but are slowly varying curves covering most of the size range of natural ice particles. This work compares all three of the above methods and demonstrates close agreement between them. Regarding (1), 4869 ice particles and corresponding melted hemispheres were measured during a field campaign to obtain D and m. Selecting only those unrimed habits that formed between -20°C and -40°C, the mean mass values for selected size intervals are within 35% of the corresponding masses predicted by the Method 3 curve based on a similar temperature range. Moreover, the most recent m-D expression based on Method 2 differs by no more than 50% with the m-D curve from Method 3. Method 3 appears to be the most accurate over the observed ice particle size range (10-4000 μm). An m-D/A-D scheme was developed by which self-consistent m-D and A-D power laws

  6. Europa Ice Rafts

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This high resolution image shows the ice-rich crust of Europa, one of the moons of Jupiter. Seen here are crustal plates ranging up to 13 kilometers (8 miles) across, which have been broken apart and 'rafted' into new positions, superficially resembling the disruption of pack-ice on polar seas during spring thaws on Earth. The size and geometry of these features suggest that motion was enabled by ice-crusted water or soft ice close to the surface at the time of disruption.

    The area shown is about 34 kilometers by 42 kilometers (21 miles by 26 miles), centered at 9.4 degrees north latitude, 274 degrees west longitude, and the resolution is 54 meters (59 yards). This picture was taken by the Solid State Imaging system on board the Galileo spacecraft on February 20, 1997, from a distance of 5,340 kilometers (3,320 miles) during the spacecraft's close flyby of Europa.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.

  7. Collar temperature sensor data reveal long-term patterns in southern Beaufort Sea polar bear den distribution on pack ice and land

    USGS Publications Warehouse

    Olson, Jay W; Rode, Karyn D.; Eggett, Dennis L.; Smith, T.S.; Wilson, R. R.; Durner, George M.; Fischbach, Anthony S.; Atwood, Todd C.; Douglas, David C.

    2017-01-01

    In response to a changing climate, many species alter habitat use. Polar bears Ursus maritimus in the southern Beaufort Sea have increasingly used land for maternal denning. To aid in detecting denning behavior, we developed an objective method to identify polar bear denning events using temperature sensor data collected by satellite-linked transmitters deployed on adult females between 1985 and 2013. We then applied this method to determine whether southern Beaufort Sea polar bears have continued to increase land denning with recent sea-ice loss and examined whether sea-ice conditions affect the distribution of dens between pack-ice and coastal substrates. Because land use in summer and autumn has also increased, we examined potential associations between summering substrate and denning substrate. Statistical process control methods applied to temperature-sensor data identified denning events with 94.5% accuracy in comparison to direct observations (n = 73) and 95.7% accuracy relative to subjective classifications based on temperature, location, and activity sensor data (n = 116). We found an increase in land-based denning during the study period. The frequency of land denning was directly related to the distance that sea ice retreated from the coast. Among females that denned, all 14 that summered on land subsequently denned there, whereas 29% of the 69 bears summering on ice denned on land. These results suggest that denning on land may continue to increase with further loss of sea ice. While the effects that den substrate have on nutrition, energetics, and reproduction are unclear, more polar bears denning onshore will likely increase human-bear interactions.

  8. Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate

    NASA Astrophysics Data System (ADS)

    Coon, Max; Kwok, Ron; Levy, Gad; Pruis, Matthew; Schreyer, Howard; Sulsky, Deborah

    2007-11-01

    This paper revisits the Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions about pack ice behavior with an eye to modeling sea ice dynamics. The AIDJEX assumptions were that (1) enough leads were present in a 100 km by 100 km region to make the ice isotropic on that scale; (2) the ice had no tensile strength; and (3) the ice behavior could be approximated by an isotropic yield surface. These assumptions were made during the development of the AIDJEX model in the 1970s, and are now found inadequate. The assumptions were made in part because of insufficient large-scale (10 km) deformation and stress data, and in part because of computer capability limitations. Upon reviewing deformation and stress data, it is clear that a model including deformation on discontinuities and an anisotropic failure surface with tension would better describe the behavior of pack ice. A model based on these assumptions is needed to represent the deformation and stress in pack ice on scales from 10 to 100 km, and would need to explicitly resolve discontinuities. Such a model would require a different class of metrics to validate discontinuities against observations.

  9. The Rapidly Diminishing Arctic ice Cover and its Potential Impact on Navy Operational Considerations

    NASA Astrophysics Data System (ADS)

    Muench, R. D.; Conlon, D.; Lamb, D.

    2001-12-01

    Observations made from U.S. Navy Fleet submarines during the 1990s have revealed a dramatic decrease in thickness, when compared to historical values, of the central Arctic Ocean pack ice cover. Estimates of this decrease have been as high as 40%. Remote sensing observations have shown a coincident decrease in the areal extent of the pack. The areal decrease has been especially apparent during winter. The overall loss of ice appears to have accelerated over the past decade, raising the possibility that the Northwest Passage and the Northern Sea Route may become seasonally navigable on a regular basis in the coming decade. The ice loss has been most evident in the peripheral seas and continental shelf areas. For example, during winter 2000-2001 the Bering Sea was effectively ice-free, with strong and immediate impacts on the surrounding indigenous populations. Lessening of the peripheral pack ice cover will presumably, lead to accelerated development of the resource-rich regions that surround the deep, central Arctic Ocean basin. This raises potential issues with respect to national security and commercial interests, and has implicit strategic concerns for the Navy. The timeline for a significantly navigable Arctic may extend decades into the future; however, operational requirements must be identified in the nearer term to ensure that the necessary capabilities exist when future Arctic missions do present themselves. A first step is to improve the understanding of the coupled atmosphere/ice/ocean system. Current environmental measurement and prediction, including Arctic weather and ice prediction, shallow water acoustic performance prediction, dynamic ocean environmental changes and data to support navigation is inadequate to support sustained naval operations in the Arctic. A new focus on data collection is required in order to measure, map, monitor and model Arctic weather, ice and oceanographic conditions.

  10. Multiscale Models of Melting Arctic Sea Ice

    DTIC Science & Technology

    2013-09-30

    September 29, 2013 LONG-TERM GOALS Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond...and ice floe configurations. Ice - albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However...understanding the evolution of melt ponds and sea ice albedo remains a significant challenge to improving climate models. Our research is focused on

  11. Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.

    2014-12-01

    Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.

  12. Sea-ice eukaryotes of the Gulf of Finland, Baltic Sea, and evidence for herbivory on weakly shade-adapted ice algae.

    PubMed

    Majaneva, Markus; Blomster, Jaanika; Müller, Susann; Autio, Riitta; Majaneva, Sanna; Hyytiäinen, Kirsi; Nagai, Satoshi; Rintala, Janne-Markus

    2017-02-01

    To determine community composition and physiological status of early spring sea-ice organisms, we collected sea-ice, slush and under-ice water samples from the Baltic Sea. We combined light microscopy, HPLC pigment analysis and pyrosequencing, and related the biomass and physiological status of sea-ice algae with the protistan community composition in a new way in the area. In terms of biomass, centric diatoms including a distinct Melosira arctica bloom in the upper intermediate section of the fast ice, dinoflagellates, euglenoids and the cyanobacterium Aphanizomenon sp. predominated in the sea-ice sections and unidentified flagellates in the slush. Based on pigment analyses, the ice-algal communities showed no adjusted photosynthetic pigment pools throughout the sea ice, and the bottom-ice communities were not shade-adapted. The sea ice included more characteristic phototrophic taxa (49%) than did slush (18%) and under-ice water (37%). Cercozoans and ciliates were the richest taxon groups, and the differences among the communities arose mainly from the various phagotrophic protistan taxa inhabiting the communities. The presence of pheophytin a coincided with an elevated ciliate biomass and read abundance in the drift ice and with a high Eurytemora affinis read abundance in the pack ice, indicating that ciliates and Eurytemora affinis were grazing on algae. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Atmospheric forcing of sea ice leads in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.

    2016-12-01

    Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.

  14. Particulate matter in pack ice of the Beaufort Gyre

    USGS Publications Warehouse

    Reimnitz, E.; Barnes, P.W.; Weber, W.S.

    1993-01-01

    Fine sediment occurred in very small patches of turbid ice, as thin spotty surface layers, in mud pellets or in old snowdrifts. The latter were widespread south of 74??N, containing an estimated 22 tonnes of silt and clay km-2. Average particle concentration in sea ice (40 mg1-1) was much higher than in sea water (0.8 mg 1 -1) or in new snow. Assuming one-third of the load is released each year, the estimated deposition rate would equal the measured Holocene rate (~2cm 1000 year-1). Therefore, modern sea-ice rafting represents a substantial fraction of the total Arctic Ocean sediment budget. -from Authors

  15. Characterization of the mechanical behavior of sea ice as a frictional material

    NASA Astrophysics Data System (ADS)

    Lade, Poul V.

    2002-12-01

    The mechanical properties of sea ice are determined by the formation process, and the consequent material behavior at the element scale exhibits viscoelastic behavior at the early loading stages, followed by brittle fracture or ductile, irrecoverable deformation that may be captured by hardening/softening plasticity models with nonassociated flow. Failure of sea ice under different loading conditions follows a pattern that demonstrates its highly cross-anisotropic nature as well as its behavior as a frictional material. The interactions between the floes in the pack ice resemble those observed in granular materials. These materials are frictional in nature, they exhibit both contractive and dilative volume changes, the plastic flow is nonassociated, and their stiffnesses and strengths increase with confining pressure, but they do not have any strength when unconfined. The overall behavior of the pack ice may be close to isotropic. Constitutive modeling of this behavior may be achieved by models used in geotechnical engineering. Formation of leads and subsequent freezing of the water results in cementation between the ice floes, and the pack ice becomes stronger. The behavior of the pack ice may now be compared with that observed in cemented soils or concrete. For these materials, increasing amounts of cementation result in increasing rates of dilation when sheared, and this accounts for the largest contribution to the increase in shear strength.

  16. Ice tracking techniques, implementation, performance, and applications

    NASA Technical Reports Server (NTRS)

    Rothrock, D. A.; Carsey, F. D.; Curlander, J. C.; Holt, B.; Kwok, R.; Weeks, W. F.

    1992-01-01

    Present techniques of ice tracking make use both of cross-correlation and of edge tracking, the former being more successful in heavy pack ice, the latter being critical for the broken ice of the pack margins. Algorithms must assume some constraints on the spatial variations of displacements to eliminate fliers, but must avoid introducing any errors into the spatial statistics of the measured displacement field. We draw our illustrations from the implementation of an automated tracking system for kinematic analyses of ERS-1 and JERS-1 SAR imagery at the University of Alaska - the Alaska SAR Facility's Geophysical Processor System. Analyses of the ice kinematic data that might have some general interest to analysts of cloud-derived wind fields are the spatial structure of the fields, and the evaluation and variability of average deformation and its invariants: divergence, vorticity and shear. Many problems in sea ice dynamics and mechanics can be addressed with the kinematic data from SAR.

  17. Dissolved iron and iron(II) distributions beneath the pack ice in the East Antarctic (120°E) during the winter/spring transition

    NASA Astrophysics Data System (ADS)

    Schallenberg, Christina; van der Merwe, Pier; Chever, Fanny; Cullen, Jay T.; Lannuzel, Delphine; Bowie, Andrew R.

    2016-09-01

    Distributions of dissolved iron (dFe) and its reduced form, Fe(II), to a depth of 1000 m were investigated under the seasonal pack ice off East Antarctica during the Sea Ice Physics and Ecosystem experiment (SIPEX-2) sea-ice voyage in September-October 2012. Concentrations of dFe were elevated up to five-fold relative to Southern Ocean background concentrations and were spatially variable. The mean dFe concentration was 0.44±0.4 nM, with a range from 0.09 to 3.05 nM. Profiles of dFe were more variable within and among stations than were macronutrients, suggesting that coupling between these biologically-essential elements was weak at the time of the study. Brine rejection and drainage from sea ice are estimated to be the dominant contributors to elevated dFe concentrations in the mixed layer, but mass budget considerations indicate that estimated dFe fluxes from brine input alone are insufficient to account for all observed dFe. Melting icebergs and shelf sediments are suspected to provide the additional dFe. Fe(II) was mostly below the detection limit but elevated at depth near the continental shelf, implying that benthic processes are a source of reduced Fe in bottom waters. The data indicate that dFe builds up under the seasonal sea-ice cover during winter and that reduction of Fe may be hampered in early spring by several factors such as lack of electron donors, low biological productivity and inadequate light below the sea ice. The accumulated dFe pool in the mixed layer is expected to contribute to the formation of the spring bloom as the ice retreats.

  18. Shuttle Imaging Radar B (SIR-B) Weddell Sea ice observations - A comparison of SIR-B and scanning multichannel microwave radiometer ice concentrations

    NASA Technical Reports Server (NTRS)

    Martin, Seelye; Holt, Benjamin; Cavalieri, Donald J.; Squire, Vernon

    1987-01-01

    Ice concentrations over the Weddell Sea were studied using SIR-B data obtained during the October 1984 mission, with special attention given to the effect of ocean waves on the radar return at the ice edge. Sea ice concentrations were derived from the SIR-B data using two image processing methods: the classification scheme at JPL and the manual classification method at Scott Polar Research Institute (SPRI), England. The SIR ice concentrations were compared with coincident concentrations from the Nimbus-7 SMMR. For concentrations greater than 40 percent, which was the smallest concentration observed jointly by SIR-B and the SMMR, the mean difference between the two data sets for 12 points was 2 percent. A comparison between the JPL and the SPRI SIR-B algorithms showed that the algorithms agree to within 1 percent in the interior ice pack, but the JPL algorithm gives slightly greater concentrations at the ice edge (due to the fact that the algorithm is affected by the wind waves in these areas).

  19. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  20. Time Dependent Frictional Changes in Ice due to Contact Area Changes

    NASA Astrophysics Data System (ADS)

    Sevostianov, V.; Lipovsky, B. P.; Rubinstein, S.; Dillavou, S.

    2017-12-01

    Sliding processes along the ice-bed interface of Earth's great ice sheets are the largest contributor to our uncertainty in future sea level rise. Laboratory experiments that have probed sliding processes have ubiquitously shown that ice-rock interfaces strengthen while in stationary contact (Schulson and Fortt, 2013; Zoet et al., 2013; McCarthy et al., 2017). This so-called frictional ageing effect may have profound consequences for ice sheet dynamics because it introduces the possibility of basal strength hysteresis. Furthermore this effect is quite strong in ice-rock interfaces (more than an order of magnitude more pronounced than in rock-rock sliding) and can double in frictional strength in a matter of minutes, much faster than most frictional aging (Dieterich, 1972; Baumberger and Caroli, 2006). Despite this importance, the underling physics of frictional ageing of ice remain poorly understood. Here we conduct laboratory experiments to image the microscopic points of contact along an ice-glass interface. We optically measure changes in the real area of contact over time using measurements of this reflected optical light intensity. We show that contact area increases with time of stationary contact. This result suggests that thermally enhanced creep of microscopic icy contacts is responsible for the much larger frictional ageing observed in ice-rock versus rock-rock interfaces. Furthermore, this supports a more physically detailed description of the thermal dependence of basal sliding than that used in the current generation of large scale ice sheet models.

  1. The study of fresh-water lake ice using multiplexed imaging radar

    USGS Publications Warehouse

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (< 3.0) and a low loss tangent Thus, this ice is somewhat transparent to the energy used by the imaging SLAR system. The ice types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  2. Advances in Measuring Antarctic Sea-Ice Thickness and Ice-Sheet Elevations with ICESat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2004-01-01

    elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.

  3. Top predators in relation to bathymetry, ice and krill during austral winter in Marguerite Bay, Antarctica

    USGS Publications Warehouse

    Ribic, C.A.; Chapman, E.; Fraser, William R.; Lawson, G.L.; Wiebe, P.H.

    2008-01-01

    A key hypothesis guiding the US Southern Ocean Global Ocean Ecosystems Dynamics (US SO GLOBEC) program is that deep across-shelf troughs facilitate the transport of warm and nutrient-rich waters onto the continental shelf of the Western Antarctic Peninsula, resulting in enhanced winter production and prey availability to top predators. We tested aspects of this hypothesis during austral winter by assessing the distribution of the resident pack-ice top predators in relation to these deep across-shelf troughs and by investigating associations between top predators and their prey. Surveys were conducted July-August 2001 and August-September 2002 in Marguerite Bay, Antarctica, with a focus on the main across-shelf trough in the bay, Marguerite Trough. The common pack-ice seabird species were snow petrel (Pagodroma nivea, 1.2 individuals km-2), Antarctic petrel (Thalassoica antarctica, 0.3 individuals km-2), and Ade??lie penguin (Pygoscelis adeliae, 0.5 individuals km-2). The most common pack-ice pinniped was crabeater seal (Lobodon carcinophagus). During both winters, snow and Antarctic petrels were associated with low sea-ice concentrations independent of Marguerite Trough, while Ade??lie penguins occurred in association with this trough. Krill concentrations, both shallow and deep, also were associated with Ade??lie penguin and snow petrel distributions. During both winters, crabeater seal occurrence was associated with deep krill concentrations and with regions of lower chlorophyll concentration. The area of lower chlorophyll concentrations occurred in an area with complex bathymetry close to land and heavy ice concentrations. Complex or unusual bathymetry via its influence on physical and biological processes appears to be one of the keys to understanding how top predators survive during the winter in this Antarctic region. ?? 2007 Elsevier Ltd. All rights reserved.

  4. Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.

    2015-01-01

    Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65m or better.

  5. Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears (Ursus maritimus).

    PubMed

    Laidre, Kristin L; Born, Erik W; Gurarie, Eliezer; Wiig, Øystein; Dietz, Rune; Stern, Harry

    2013-02-07

    Intraspecific differences in movement behaviour reflect different tactics used by individuals or sexes to favour strategies that maximize fitness. We report movement data collected from n = 23 adult male polar bears with novel ear-attached transmitters in two separate pack ice subpopulations over five breeding seasons. We compared movements with n = 26 concurrently tagged adult females, and analysed velocities, movement tortuosity, range sizes and habitat selection with respect to sex, reproductive status and body mass. There were no differences in 4-day displacements or sea ice habitat selection for sex or population. By contrast, adult females in all years and both populations had significantly more linear movements and significantly larger breeding range sizes than males. We hypothesized that differences were related to encounter rates, and used observed movement metrics to parametrize a simulation model of male-male and male-female encounter. The simulation showed that the more tortuous movement of males leads to significantly longer times to male-male encounter, while having little impact on male-female encounter. By contrast, linear movements of females are consistent with a prioritized search for sparsely distributed prey. These results suggest a possible mechanism for explaining the smaller breeding range sizes of some solitary male carnivores compared to females.

  6. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  7. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  8. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  9. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  10. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1986-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  11. Long-Term Observations of Atmospheric CO2, O3 and BrO over the Transitioning Arctic Ocean Pack-ice: The O-Buoy Chemical Network

    NASA Astrophysics Data System (ADS)

    Matrai, P.

    2016-02-01

    Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).

  12. Change and variability in East antarctic sea ice seasonality, 1979/80-2009/10.

    PubMed

    Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki

    2013-01-01

    Recent analyses have shown that significant changes have occurred in patterns of sea ice seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of sea ice advance, retreat and resultant ice season duration in East Antarctica. These were calculated from satellite-derived ice concentration data for the period 1979/80 to 2009/10. The pattern of change in sea ice seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine "icescape", including fast ice, polynyas and the marginal ice zone. A trend towards shorter sea-ice duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer pack from∼95-110°E, and in various near-coastal areas that include an area of particularly strong and persistent change near Australia's Davis Station and between the Amery and West Ice Shelves. These areas are largely associated with coastal polynyas that are important as sites of enhanced sea ice production/melt. Areas of positive trend in ice season duration are more extensive, and include an extensive zone from 160-170°E (i.e., the western Ross Sea sector) and the near-coastal zone between 40-100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen Sea and western Ross Sea sectors.

  13. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  14. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  15. NASA: First Map Of Thawed Areas Under Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA researchers have helped produce the first map showing what parts of the bottom of the massive Greenland Ice Sheet are thawed – key information in better predicting how the ice sheet will react to a warming climate. Greenland’s thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth’s depths. Knowing whether Greenland’s ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future, But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Now, a new study synthesizes several methods to infer the Greenland Ice Sheet’s basal thermal state –whether the bottom of the ice is melted or not– leading to the first map that identifies frozen and thawed areas across the whole ice sheet. Map caption: This first-of-a-kind map, showing which parts of the bottom of the Greenland Ice Sheet are likely thawed (red), frozen (blue) or still uncertain (gray), will help scientists better predict how the ice will flow in a warming climate. Credit: NASA Earth Observatory/Jesse Allen Read more: go.nasa.gov/2avKgl2 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?

  17. Numerical model of ice melange expansion during abrupt ice-shelf collapse

    NASA Astrophysics Data System (ADS)

    Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.

    2010-12-01

    Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system

  18. Meteorological conditions influencing the formation of level ice within the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Mazur, A. K.; Krezel, A.

    2012-12-01

    The Baltic Sea is covered by ice every winter and on average, the ice-covered area is 45% of the total area of the Baltic Sea. The beginning of ice season usually starts in the end of November, ice extent is the largest between mid-February and mid-March and sea ice disappears completely in May. The ice covered areas during a typical winter are the Gulf of Bothnia, the Gulf of Finland and the Gulf of Riga. The studies of sea ice in the Baltic Sea are related to two aspects: climate and marine transport. Depending on the local weather conditions during the winter different types of sea ice can be formed. From the point of winter shipping it is important to locate level and deformed ice areas (rafted ice, ridged ice, and hummocked ice). Because of cloud and daylight independency as well as good spatial resolution, SAR data seems to be the most suitable source of data for sea ice observation in the comparatively small area of the Baltic Sea. We used ASAR Wide Swath Mode data with spatial resolution 150 m. We analyzed data from the three winter seasons which were examples of severe, typical and mild winters. To remove the speckle effect the data were resampled to 250 m pixel size and filtred using Frost filter 5x5. To detect edges we used Sobel filter. The data were also converted into grayscale. Sea ice classification was based on Object-Based Image Analysis (OBIA). Object-based methods are not a common tool in sea ice studies but they seem to accurately separate level ice within the ice pack. The data were segmented and classified using eCognition Developer software. Level ice were classified based on texture features defined by Haralick (Grey Level Co-Occurrence Matrix homogeneity, GLCM contrast, GLCM entropy and GLCM correlation). The long-term changes of the Baltic Sea ice conditions have been already studied. They include date of freezing, date of break-up, sea ice extent and some of work also ice thickness. There is a little knowledge about the relationship of

  19. Studies of Antarctic Sea Ice Concentrations from Satellite Data and Their Applications

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Steffen, Konrad; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Large changes in the sea ice cover have been observed recently. Because of the relevance of such changes to climate change studies it is important that key ice concentration data sets used for evaluating such changes are interpreted properly. High and medium resolution visible and infrared satellite data are used in conjunction with passive microwave data to study the true characteristics of the Antarctic sea ice cover, assess errors in currently available ice concentration products, and evaluate the applications and limitations of the latter in polar process studies. Cloud-free high resolution data provide valuable information about the natural distribution, stage of formation, and composition of the ice cover that enables interpretation of the large spatial and temporal variability of the microwave emissivity of Antarctic sea ice. Comparative analyses of co-registered visible, infrared and microwave data were used to evaluate ice concentrations derived from standard ice algorithms (i.e., Bootstrap and Team) and investigate the 10 to 35% difference in derived values from large areas within the ice pack, especially in the Weddell Sea, Amundsen Sea, and Ross Sea regions. Landsat and OLS data show a predominance of thick consolidated ice in these areas and show good agreement with the Bootstrap Algorithm. While direct measurements were not possible, the lower values from the Team Algorithm results are likely due to layering within the ice and snow and/or surface flooding, which are known to affect the polarization ratio. In predominantly new ice regions, the derived ice concentration from passive microwave data is usually lower than the true percentage because the emissivity of new ice changes with age and thickness and is lower than that of thick ice. However, the product provides a more realistic characterization of the sea ice cover, and are more useful in polar process studies since it allows for the identification of areas of significant divergence and polynya

  20. Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Rösel, Anja; Dodd, Paul A.; Divine, Dmitry; Gerland, Sebastian; Martma, Tõnu; Leng, Melanie J.

    2017-03-01

    The salinity and water oxygen isotope composition (δ18O) of 29 first-year (FYI) and second-year (SYI) Arctic sea ice cores (total length 32.0 m) from the drifting ice pack north of Svalbard were examined to quantify the contribution of snow to sea ice mass. Five cores (total length 6.4 m) were analyzed for their structural composition, showing variable contribution of 10-30% by granular ice. In these cores, snow had been entrained in 6-28% of the total ice thickness. We found evidence of snow contribution in about three quarters of the sea ice cores, when surface granular layers had very low δ18O values. Snow contributed 7.5-9.7% to sea ice mass balance on average (including also cores with no snow) based on δ18O mass balance calculations. In SYI cores, snow fraction by mass (12.7-16.3%) was much higher than in FYI cores (3.3-4.4%), while the bulk salinity of FYI (4.9) was distinctively higher than for SYI (2.7). We conclude that oxygen isotopes and salinity profiles can give information on the age of the ice and enables distinction between FYI and SYI (or older) ice in the area north of Svalbard.Plain Language SummaryThe role of snow in sea <span class="hlt">ice</span> mass balance is largely two fold. Firstly, it can slow down growth and melt due to its high insulation and high reflectance, but secondly it can actually contribute to sea <span class="hlt">ice</span> growth if the snow cover is turned into <span class="hlt">ice</span>. The latter is largely a consequence of high mass of snow on top of sea <span class="hlt">ice</span> that can push the surface of the sea <span class="hlt">ice</span> below sea level and seawater can flood the <span class="hlt">ice</span>. This mixture of seawater and snow can then freeze and add to the growth of sea <span class="hlt">ice</span>. This is very typical in the Antarctic but not believed to be so important in the Arctic. In this work we show, for the first time, that snow actually contributes significantly to the growth of Arctic sea <span class="hlt">ice</span>. This is likely a consequence of the thinning of the Arctic sea <span class="hlt">ice</span>. The conditions in the Arctic, with</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840008344&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea%2Bworld','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840008344&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsea%2Bworld"><span>Spaceborne SAR and sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weeks, W. F.</p> <p>1983-01-01</p> <p>A number of remote sensing systems deployed in satellites to view the Earth which are successful in gathering data on the behavior of the world's snow and <span class="hlt">ice</span> covers are described. Considering sea <span class="hlt">ice</span> which covers over 10% of the world ocean, systems that have proven capable to collect useful data include those operating in the visible, near-infrared, infrared, and microwave frequency ranges. The microwave systems have the essential advantage in observing the <span class="hlt">ice</span> under all weather and lighting conditions. Without this capability data are lost during the long polar night and during times of storm passage, periods when <span class="hlt">ice</span> activity can be intense. The margins of the <span class="hlt">ice</span> <span class="hlt">pack</span>, a region of particular interest, is shrouded in cloud between 80 and 90% of the time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110005552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110005552"><span>ICESat Observations of Seasonal and Interannual Variations of Sea-<span class="hlt">Ice</span> Freeboard and Estimated Thickness in the Weddell Sea, Antarctica (2003-2009)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yi, Donghui; Robbins, John W.</p> <p>2010-01-01</p> <p>Sea-<span class="hlt">ice</span> freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea <span class="hlt">ice</span>, to estimate sea-<span class="hlt">ice</span> thickness. Sea-<span class="hlt">ice</span> freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) <span class="hlt">pack</span> <span class="hlt">ice</span>. During October-November, sea <span class="hlt">ice</span> grows to its seasonal maximum both in <span class="hlt">area</span> and thickness; the mean freeboards are 0.33-0.41 m and the mean thicknesses are 2.10-2.59 m. During February-March, thinner sea <span class="hlt">ice</span> melts away and the sea-<span class="hlt">ice</span> <span class="hlt">pack</span> is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35-0.46 m and the mean thicknesses are 1.48-1.94 m. During May-June, the mean freeboards and thicknesses are 0.26-0.29 m and 1.32-1.37 m, respectively. The 6 year trends in sea-<span class="hlt">ice</span> extent and volume are (0.023+/-0.051) x 10(exp 6)sq km/a (0.45%/a) and (0.007+/-1.0.092) x 10(exp 3)cu km/a (0.08%/a); however, the large standard deviations indicate that these positive trends are not statistically significant.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17781630','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17781630"><span>The surface of the <span class="hlt">ice</span>-age Earth.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>1976-03-19</p> <p>In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based <span class="hlt">ice</span> sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of <span class="hlt">pack</span> <span class="hlt">ice</span> and marine-based <span class="hlt">ice</span> sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea <span class="hlt">ice</span>. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive <span class="hlt">areas</span> of permanent <span class="hlt">ice</span> and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21E..05P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21E..05P"><span>Variability in Arctic sea <span class="hlt">ice</span> topography and atmospheric form drag: Combining <span class="hlt">Ice</span>Bridge laser altimetry with ASCAT radar backscatter.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petty, A.; Tsamados, M.; Kurtz, N. T.</p> <p>2016-12-01</p> <p>Here we present atmospheric form drag estimates over Arctic sea <span class="hlt">ice</span> using high resolution, three-dimensional surface elevation data from NASA's Operation <span class="hlt">Ice</span>Bridge Airborne Topographic Mapper (ATM), and surface roughness estimates from the Advanced Scatterometer (ASCAT). Surface features of the <span class="hlt">ice</span> <span class="hlt">pack</span> (e.g. pressure ridges) are detected using <span class="hlt">Ice</span>Bridge ATM elevation data and a novel surface feature-picking algorithm. We use simple form drag parameterizations to convert the observed height and spacing of surface features into an effective atmospheric form drag coefficient. The results demonstrate strong regional variability in the atmospheric form drag coefficient, linked to variability in both the height and spacing of surface features. This includes form drag estimates around 2-3 times higher over the multiyear <span class="hlt">ice</span> north of Greenland, compared to the first-year <span class="hlt">ice</span> of the Beaufort/Chukchi seas. We compare results from both scanning and linear profiling to ensure our results are consistent with previous studies investigating form drag over Arctic sea <span class="hlt">ice</span>. A strong correlation between ASCAT surface roughness estimates (using radar backscatter) and the <span class="hlt">Ice</span>Bridge form drag results enable us to extrapolate the <span class="hlt">Ice</span>Bridge data collected over the western-Arctic across the entire Arctic Ocean. While our focus is on spring, due to the timing of the primary <span class="hlt">Ice</span>Bridge campaigns since 2009, we also take advantage of the autumn data collected by <span class="hlt">Ice</span>Bridge in 2015 to investigate seasonality in Arctic <span class="hlt">ice</span> topography and the resulting form drag coefficient. Our results offer the first large-scale assessment of atmospheric form drag over Arctic sea <span class="hlt">ice</span> due to variable <span class="hlt">ice</span> topography (i.e. within the Arctic <span class="hlt">pack</span> <span class="hlt">ice</span>). The analysis is being extended to the Antarctic <span class="hlt">Ice</span>Bridge sea <span class="hlt">ice</span> data, and the results are being used to calibrate a sophisticated form drag parameterization scheme included in the sea <span class="hlt">ice</span> model CICE, to improve the representation of form drag over Arctic and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41A0639L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41A0639L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal <span class="hlt">Ice</span> Zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.</p> <p>2016-12-01</p> <p>The observed reduction of Arctic summertime sea <span class="hlt">ice</span> extent and expansion of the marginal <span class="hlt">ice</span> zone (MIZ) have profound impacts on the balance of processes controlling sea <span class="hlt">ice</span> evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea <span class="hlt">ice</span>. Spatial and temporal variability in <span class="hlt">ice</span> properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing <span class="hlt">ice</span> cover, how the balance of processes shift as a function of <span class="hlt">ice</span> fraction and distance from open water, and how these processes impact sea <span class="hlt">ice</span> evolution, a network of autonomous platforms sampled the atmosphere-<span class="hlt">ice</span>-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal <span class="hlt">ice</span> zone, deep into the <span class="hlt">pack</span> during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the <span class="hlt">ice</span> <span class="hlt">pack</span>, under complete <span class="hlt">ice</span> cover for up to 10 consecutive days. Sections reveal strong fronts where cold, <span class="hlt">ice</span>-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the <span class="hlt">ice</span> edge. In the <span class="hlt">pack</span>, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the <span class="hlt">ice</span> edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PrOce.156...17L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PrOce.156...17L"><span>Under the sea <span class="hlt">ice</span>: Exploring the relationship between sea <span class="hlt">ice</span> and the foraging behaviour of southern elephant seals in East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Robert A.; Reid, Phillip; Sumner, Michael; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit</p> <p>2017-08-01</p> <p>Investigating ecological relationships between predators and their environment is essential to understand the response of marine ecosystems to climate variability and change. This is particularly true in polar regions, where sea <span class="hlt">ice</span> (a sensitive climate variable) plays a crucial yet highly dynamic and variable role in how it influences the whole marine ecosystem, from phytoplankton to top predators. For mesopredators such as seals, sea <span class="hlt">ice</span> both supports a rich (under-<span class="hlt">ice</span>) food resource, access to which depends on local to regional coverage and conditions. Here, we investigate sex-specific relationships between the foraging strategies of southern elephant seals (Mirounga leonina) in winter and spatio-temporal variability in sea <span class="hlt">ice</span> concentration (SIC) and coverage in East Antarctica. We satellite-tracked 46 individuals undertaking post-moult trips in winter from Kerguelen Islands to the peri-Antarctic shelf between 2004 and 2014. These data indicate distinct general patterns of sea <span class="hlt">ice</span> usage: while females tended to follow the sea <span class="hlt">ice</span> edge as it extended northward, the males remained on the continental shelf despite increasing sea <span class="hlt">ice</span>. Seal hunting time, a proxy of foraging activity inferred from the diving behaviour, was longer for females in late autumn in the outer part of the <span class="hlt">pack</span> <span class="hlt">ice</span>, ∼150-370 km south of the <span class="hlt">ice</span> edge. Within persistent regions of compact sea <span class="hlt">ice</span>, females had a longer foraging activity (i) in the highest sea <span class="hlt">ice</span> concentration at their position, but (ii) their foraging activity was longer when there were more patches of low concentration sea <span class="hlt">ice</span> around their position (either in time or in space; 30 days & 50 km). The high spatio-temporal variability of sea <span class="hlt">ice</span> around female positions is probably a key factor allowing them to exploit these concentrated patches. Despite lack of information on prey availability, females may exploit mesopelagic finfishes and squids that concentrate near the <span class="hlt">ice</span>-water interface or within the water column (from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760055139&hterms=sensing+drainage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsensing%2Bdrainage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760055139&hterms=sensing+drainage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsensing%2Bdrainage"><span>An integrated approach to the remote sensing of floating <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.</p> <p>1976-01-01</p> <p>Review article on remote sensing applications to glaciology. <span class="hlt">Ice</span> parameters sensed include: <span class="hlt">ice</span> cover vs open water, <span class="hlt">ice</span> thickness, distribution and morphology of <span class="hlt">ice</span> formations, vertical resolution of <span class="hlt">ice</span> thickness, <span class="hlt">ice</span> salinity (percolation and drainage of brine; flushing of <span class="hlt">ice</span> body with fresh water), first-year <span class="hlt">ice</span> and multiyear <span class="hlt">ice</span>, <span class="hlt">ice</span> growth rate and surface heat flux, divergence of <span class="hlt">ice</span> <span class="hlt">packs</span>, snow cover masking <span class="hlt">ice</span>, behavior of <span class="hlt">ice</span> shelves, icebergs, lake <span class="hlt">ice</span> and river <span class="hlt">ice</span>; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational <span class="hlt">ice</span> forecasting are also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/2600/Q/pdf/imap_I-2600-Q_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/2600/Q/pdf/imap_I-2600-Q_pamphlet.pdf"><span>Coastal-change and glaciological map of the Amery <span class="hlt">Ice</span> Shelf <span class="hlt">area</span>, Antarctica: 1961–2004</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Foley, Kevin M.; Ferrigno, Jane G.; Swithinbank, Charles; Williams, Richard S.; Orndorff, Audrey L.</p> <p>2013-01-01</p> <p>Reduction in the <span class="hlt">area</span> and volume of Earth’s two polar <span class="hlt">ice</span> sheets is intricately linked to changes in global climate and to the resulting rise in sea level. Measurement of changes in <span class="hlt">area</span> and mass balance of the Antarctic <span class="hlt">ice</span> sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council. On the basis of these recommendations, the U.S. Geological Survey used its archive of satellite images to document changes in the cryospheric coastline of Antarctica and analyze the glaciological features of the coastal regions. Amery <span class="hlt">Ice</span> Shelf, lying between 67.5° and 75° East longitude and 68.5° and 73.2° South latitude, is the largest <span class="hlt">ice</span> shelf in East Antarctica. The latest measurements of the <span class="hlt">area</span> of the <span class="hlt">ice</span> shelf range between 62,620 and 71,260 square kilometers. The <span class="hlt">ice</span> shelf is fed primarily by Lambert, Mellor, and Fisher Glaciers; its thickness ranges from 3,000 meters in the center of the grounding line to less than 300 meters at the <span class="hlt">ice</span> front. Lambert Glacier is considered to be the largest glacier in the world, and its drainage basin is more than 1 million square kilometers in <span class="hlt">area</span>. It is possible to see some coastal change on the outlet glaciers along the coast, but most of the noticeable change occurs on the Amery <span class="hlt">Ice</span> Shelf front.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000081188&hterms=geophysic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeophysic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000081188&hterms=geophysic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeophysic"><span>Geophysics of an Oceanic <span class="hlt">Ice</span> Shell on Snowball Earth</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gaidos, E. J.</p> <p>2000-01-01</p> <p>Kirschvink proposed Precambrian low-latitude glaciation could result in an albedo-driven catastrophic runaway to a "Snowball Earth" state in which <span class="hlt">pack</span> <span class="hlt">ice</span> up to 1 km thick covered the world ocean. The geophysical state of an <span class="hlt">ice</span> crust on a Snowball Earth is examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660359','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660359"><span>Change and Variability in East Antarctic Sea <span class="hlt">Ice</span> Seasonality, 1979/80–2009/10</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Massom, Robert; Reid, Philip; Stammerjohn, Sharon; Raymond, Ben; Fraser, Alexander; Ushio, Shuki</p> <p>2013-01-01</p> <p>Recent analyses have shown that significant changes have occurred in patterns of sea <span class="hlt">ice</span> seasonality in West Antarctica since 1979, with wide-ranging climatic, biological and biogeochemical consequences. Here, we provide the first detailed report on long-term change and variability in annual timings of sea <span class="hlt">ice</span> advance, retreat and resultant <span class="hlt">ice</span> season duration in East Antarctica. These were calculated from satellite-derived <span class="hlt">ice</span> concentration data for the period 1979/80 to 2009/10. The pattern of change in sea <span class="hlt">ice</span> seasonality off East Antarctica comprises mixed signals on regional to local scales, with pockets of strongly positive and negative trends occurring in near juxtaposition in certain regions e.g., Prydz Bay. This pattern strongly reflects change and variability in different elements of the marine “icescape”, including fast <span class="hlt">ice</span>, polynyas and the marginal <span class="hlt">ice</span> zone. A trend towards shorter sea-<span class="hlt">ice</span> duration (of 1 to 3 days per annum) occurs in fairly isolated pockets in the outer <span class="hlt">pack</span> from∼95–110°E, and in various near-coastal <span class="hlt">areas</span> that include an <span class="hlt">area</span> of particularly strong and persistent change near Australia's Davis Station and between the Amery and West <span class="hlt">Ice</span> Shelves. These <span class="hlt">areas</span> are largely associated with coastal polynyas that are important as sites of enhanced sea <span class="hlt">ice</span> production/melt. <span class="hlt">Areas</span> of positive trend in <span class="hlt">ice</span> season duration are more extensive, and include an extensive zone from 160–170°E (i.e., the western Ross Sea sector) and the near-coastal zone between 40–100°E. The East Antarctic pattern is considerably more complex than the well-documented trends in West Antarctica e.g., in the Antarctic Peninsula-Bellingshausen Sea and western Ross Sea sectors. PMID:23705008</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513583C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513583C"><span><span class="hlt">Ice</span> shelf breaking and increase velocity of glacier: the view from analogue experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corti, Giacomo; Iandelli, Irene</p> <p>2013-04-01</p> <p>Collapse of the Larsen II platform during the late 90s has generated an increase in velocity if <span class="hlt">ice</span> sheet discharge, highlighting that these processes may strongly destabilize large <span class="hlt">ice</span> masses speeding up the plateau discharge toward the sea. Parameters such as <span class="hlt">ice</span> thickness, valley width and slope, <span class="hlt">ice</span> <span class="hlt">pack</span> dimensions may contribute to modulate the effect of increase in <span class="hlt">ice</span> flow velocity following the removal of <span class="hlt">ice</span>. We analyze this process through scale analogue models, aimed at reproducing the flow of <span class="hlt">ice</span> from a plateau into the sea through a narrow valley. The <span class="hlt">ice</span> is reproduced with a transparent silicone (Polydimethisiloxane), flowing at velocities of a few centimeters per hour and simulating natural velocities in the range of a few meters per year. Having almost the same density of the <span class="hlt">ice</span>, PDMS floats on water and simulate the <span class="hlt">ice</span>-shelf formation. Results of preliminary experimental series support that this methodology is able to reasonably reproduce the process and support a significant increase in velocity discharge following the removal of <span class="hlt">ice</span> <span class="hlt">pack</span>. Additional tests are designed to verify the influence of the above-mentioned parameters on the increase in <span class="hlt">ice</span> velocity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED187850.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED187850.pdf"><span>Career Action <span class="hlt">Pack</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Blum, Robert E.; Raymond, Carolyn D.</p> <p></p> <p>One of five McDonald's Action <span class="hlt">Packs</span>, these instructional materials for ninth and tenth graders (and more able sixth and seventh graders) have incorporated ideas around three career development goals--subject relevance, career awareness, and self-awareness. The action <span class="hlt">pack</span> contains six units--three units each in the subject <span class="hlt">areas</span> of language arts…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038117&hterms=SSM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DSSM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038117&hterms=SSM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DSSM"><span>A Comparison of Sea <span class="hlt">Ice</span> Type, Sea <span class="hlt">Ice</span> Temperature, and Snow Thickness Distributions in the Arctic Seasonal <span class="hlt">Ice</span> Zones with the DMSP SSM/I</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>St.Germain, Karen; Cavalieri, Donald J.; Markus, Thorsten</p> <p>1997-01-01</p> <p>Global climate studies have shown that sea <span class="hlt">ice</span> is a critical component in the global climate system through its effect on the ocean and atmosphere, and on the earth's radiation balance. Polar energy studies have further shown that the distribution of thin <span class="hlt">ice</span> and open water largely controls the distribution of surface heat exchange between the ocean and atmosphere within the winter Arctic <span class="hlt">ice</span> <span class="hlt">pack</span>. The thickness of the <span class="hlt">ice</span>, the depth of snow on the <span class="hlt">ice</span>, and the temperature profile of the snow/<span class="hlt">ice</span> composite are all important parameters in calculating surface heat fluxes. In recent years, researchers have used various combinations of DMSP SSMI channels to independently estimate the thin <span class="hlt">ice</span> type (which is related to <span class="hlt">ice</span> thickness), the thin <span class="hlt">ice</span> temperature, and the depth of snow on the <span class="hlt">ice</span>. In each case validation efforts provided encouraging results, but taken individually each algorithm gives only one piece of the information necessary to compute the energy fluxes through the <span class="hlt">ice</span> and snow. In this paper we present a comparison of the results from each of these algorithms to provide a more comprehensive picture of the seasonal <span class="hlt">ice</span> zone using passive microwave observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020441','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020441"><span>Greenland Sea Odden sea <span class="hlt">ice</span> feature: Intra-annual and interannual variability</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shuchman, R.A.; Josberger, E.G.; Russel, C.A.; Fischer, K.W.; Johannessen, O.M.; Johannessen, J.; Gloersen, P.</p> <p>1998-01-01</p> <p>The "Odden" is a large sea <span class="hlt">ice</span> feature that forms in the east Greenland Sea that may protrude eastward to 5??E from the main sea <span class="hlt">ice</span> <span class="hlt">pack</span> (at about 8??W) between 73?? and 77??N. It generally forms at the beginning of the winter season and can cover 300,000 km2. Throughout the winter the outer edge of the Odden may advance and retreat by several hundred kilometers on timescales of a few days to weeks. Satellite passive microwave observations from 1978 through 1995 provide a continuous record of the spatial and temporal variations of this extremely dynamic phenomenon. Aircraft synthetic aperture radar, satellite passive microwave, and ship observations in the Odden show that the Odden consists of new <span class="hlt">ice</span> types, rather than older <span class="hlt">ice</span> types advected eastward from the main <span class="hlt">pack</span>. The 17-year record shows both strong interannual and intra-annual variations in Odden extent and temporal behavior. For example, in 1983 the Odden was weak, in 1984 the Odden did not occur, and in 1985 the Odden returned late in the season. An analysis of the <span class="hlt">ice</span> <span class="hlt">area</span> and extent time series derived from the satellite passive microwave observations along with meteorological data from the International Arctic Buoy Program (IABP) determined the meteorological forcing associated with Odden growth, maintenance, and decay. The key meteorological parameters that are related to the rapid <span class="hlt">ice</span> formation and decay associated with the Odden are, in order of importance, air temperature, wind speed, and wind direction. Oceanographic parameters must play an important role in controlling Odden formation, but it is not yet possible to quantify this role because of a lack of long-term oceanographic observations. Copyright 1998 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19199560','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19199560"><span>Body and blubber relationships in antarctic <span class="hlt">pack</span> <span class="hlt">ice</span> seals: implications for blubber depth patterns.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castellini, M A; Trumble, S J; Mau, T L; Yochem, P K; Stewart, B S; Koski, M A</p> <p>2009-01-01</p> <p>Morphometrics and blubber depths from all four high Antarctic seals (Weddell, Ross, crabeater, and leopard) were obtained during a midsummer research cruise in the Ross Sea as the physiological ecology component of the U.S. Antarctic <span class="hlt">Pack</span> <span class="hlt">Ice</span> Seals project. These data are the only in vivo measurements of all four species from the same location and time of year and focused on variances in morphometrics and blubber depth related to species, sex, and age. By controlling for location and season, this cross-species design provided the means to differentiate how blubber mass might be influenced in these groups. We measured both absolute blubber depth and ratio of blubber depth to body core diameter. We found that adult and younger animals showed differences in blubber depth, but male versus female seals did not show differences within any given species. However, when compared across species, the ratio of blubber ring depth to body core diameter suggests that adult Weddell seals differ in their use of blubber compared with the other three species. We propose that this difference in blubber pattern is most likely related to Weddell nutritional requirements during the breeding season having a greater influence on blubber depth than thermal requirements when compared with the other three species.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRF..117.2029B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRF..117.2029B"><span>In situ cosmogenic radiocarbon production and 2-D <span class="hlt">ice</span> flow line modeling for an Antarctic blue <span class="hlt">ice</span> <span class="hlt">area</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buizert, Christo; Petrenko, Vasilii V.; Kavanaugh, Jeffrey L.; Cuffey, Kurt M.; Lifton, Nathaniel A.; Brook, Edward J.; Severinghaus, Jeffrey P.</p> <p>2012-06-01</p> <p>Radiocarbon measurements at <span class="hlt">ice</span> margin sites and blue <span class="hlt">ice</span> <span class="hlt">areas</span> can potentially be used for <span class="hlt">ice</span> dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic 14C production in <span class="hlt">ice</span>, and this component must be well understood before useful information can be extracted from 14C data. We combine cosmic ray scaling and production estimates with a two-dimensional <span class="hlt">ice</span> flow line model to study cosmogenic 14C production at Taylor Glacier, Antarctica. We find (1) that 14C production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including <span class="hlt">ice</span> flow patterns caused by basal topography can lead to a surface 14C activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional <span class="hlt">ice</span> flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future 14C and <span class="hlt">ice</span> flow studies at <span class="hlt">ice</span> margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric 14C content of methane.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.5747D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.5747D"><span><span class="hlt">ICE</span> stereocamera system - photogrammetric setup for retrieval and analysis of small scale sea <span class="hlt">ice</span> topography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Divine, Dmitry; Pedersen, Christina; Karlsen, Tor Ivan; Aas, Harald; Granskog, Mats; Renner, Angelika; Spreen, Gunnar; Gerland, Sebastian</p> <p>2013-04-01</p> <p>A new thin-<span class="hlt">ice</span> Arctic paradigm requires reconsideration of the set of parameterizations of mass and energy exchange within the ocean-sea-<span class="hlt">ice</span>-atmosphere system used in modern CGCMs. Such a reassessment would require a comprehensive collection of measurements made specifically on first-year <span class="hlt">pack</span> <span class="hlt">ice</span> with a focus on summer melt season when the difference from typical conditions for the earlier multi-year Arctic sea <span class="hlt">ice</span> cover becomes most pronounced. Previous in situ studies have demonstrated a crucial importance of smaller (i.e. less than 10 m) scale surface topography features for the seasonal evolution of <span class="hlt">pack</span> <span class="hlt">ice</span>. During 2011-2012 NPI developed a helicopter borne <span class="hlt">ICE</span> stereocamera system intended for mapping the sea <span class="hlt">ice</span> surface topography and aerial photography. The hardware component of the system comprises two Canon 5D Mark II cameras, combined GPS/INS unit by "Novatel" and a laser altimeter mounted in a single enclosure outside the helicopter. The unit is controlled by a PXI chassis mounted inside the helicopter cabin. The <span class="hlt">ICE</span> stereocamera system was deployed for the first time during the 2012 summer field season. The hardware setup has proven to be highly reliable and was used in about 30 helicopter flights over Arctic sea-<span class="hlt">ice</span> during July-September. Being highly automated it required a minimal human supervision during in-flight operation. The deployment of the camera system was mostly done in combination with the EM-bird, which measures sea-<span class="hlt">ice</span> thickness, and this combination provides an integrated view of sea <span class="hlt">ice</span> cover along the flight track. During the flight the cameras shot sequentially with a time interval of 1 second each to ensure sufficient overlap between subsequent images. Some 35000 images of sea <span class="hlt">ice</span>/water surface captured per camera sums into 6 Tb of data collected during its first field season. The reconstruction of the digital elevation model of sea <span class="hlt">ice</span> surface will be done using SOCET SET commercial software. Refraction at water/air interface can</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014695','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014695"><span>Remote sensing of the Fram Strait marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shuchman, R.A.; Burns, B.A.; Johannessen, O.M.; Josberger, E.G.; Campbell, W.J.; Manley, T.O.; Lannelongue, N.</p> <p>1987-01-01</p> <p>Sequential remote sensing images of the Fram Strait marginal <span class="hlt">ice</span> zone played a key role in elucidating the complex interactions of the atmosphere, ocean, and sea <span class="hlt">ice</span>. Analysis of a subset of these images covering a 1-week period provided quantitative data on the mesoscale <span class="hlt">ice</span> morphology, including <span class="hlt">ice</span> edge positions, <span class="hlt">ice</span> concentrations, floe size distribution, and <span class="hlt">ice</span> kinematics. The analysis showed that, under light to moderate wind conditions, the morphology of the marginal <span class="hlt">ice</span> zone reflects the underlying ocean circulation. High-resolution radar observations showed the location and size of ocean eddies near the <span class="hlt">ice</span> edge. <span class="hlt">Ice</span> kinematics from sequential radar images revealed an ocean eddy beneath the interior <span class="hlt">pack</span> <span class="hlt">ice</span> that was verified by in situ oceanographic measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11809961','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11809961"><span>Antarctic Sea <span class="hlt">ice</span>--a habitat for extremophiles.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thomas, D N; Dieckmann, G S</p> <p>2002-01-25</p> <p>The <span class="hlt">pack</span> <span class="hlt">ice</span> of Earth's polar oceans appears to be frozen white desert, devoid of life. However, beneath the snow lies a unique habitat for a group of bacteria and microscopic plants and animals that are encased in an <span class="hlt">ice</span> matrix at low temperatures and light levels, with the only liquid being pockets of concentrated brines. Survival in these conditions requires a complex suite of physiological and metabolic adaptations, but sea-<span class="hlt">ice</span> organisms thrive in the <span class="hlt">ice</span>, and their prolific growth ensures they play a fundamental role in polar ecosystems. Apart from their ecological importance, the bacterial and algae species found in sea <span class="hlt">ice</span> have become the focus for novel biotechnology, as well as being considered proxies for possible life forms on <span class="hlt">ice</span>-covered extraterrestrial bodies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22414930','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22414930"><span>Microbiological quality of cuttlefish (Sepia pharaonis) fillets stored in dry and wet <span class="hlt">ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jeyasekaran, G; Jeya Shakila, R; Sukumar, D</p> <p>2012-10-01</p> <p>Microbiological quality of cuttlefish (Sepia pharaonis) fillets stored in three different <span class="hlt">ice</span> conditions was studied. Fillets stored in wet <span class="hlt">ice</span> at a ratio of 1:1 (package III) were sensorially acceptable for only 18 h, while that stored in dry <span class="hlt">ice</span> at 1:1 (package I) and combination of dry <span class="hlt">ice</span> and wet <span class="hlt">ice</span> at 1:0.2:0.5 (package II) were in acceptable condition up to 24 h without re-<span class="hlt">icing</span> and thus there was an extension of shelf life by about 33%. Total bacterial load was 7 log₁₀ cfu/g at the end of the storage period. Total psychrophilic population increased from zero to 7 log₁₀ cfu/g while total lactic acid bacteria from zero to 5 log₁₀ cfu/g. H₂S producers were detected only at 18 h, with a count of 1 log₁₀ cfu/g. Sulphite-reducing Clostridia increased gradually from zero to 110 most probable number count/g. Fresh cuttlefish fillets carried a bacterial flora of Micrococcus, Planococcus, Streptococcus, Moraxella, Proteus and Aeromonas. Pseudomonas was dominant in wet <span class="hlt">ice</span> <span class="hlt">pack</span>, while Aeromonas was dominant in both the dry <span class="hlt">ice</span> and combination <span class="hlt">pack</span>. Immediately after <span class="hlt">packing</span>, the temperatures recorded in packages I, II and III were 10.5, 1.2 and 3.0 °C, respectively, which drastically decreased in 1 h and then maintained and finally increased gradually. The results indicate that use of combination of dry <span class="hlt">ice</span> and wet <span class="hlt">ice</span> is economical and very much useful to seafood industries, as this package considerably reduced the cost of air freight, as well as improved the quality and shelf life of cuttlefish.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913097K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913097K"><span>Improved method for sea <span class="hlt">ice</span> age computation based on combination of sea <span class="hlt">ice</span> drift and concentration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe</p> <p>2017-04-01</p> <p>Sea <span class="hlt">Ice</span> Age is one of the components of the Sea <span class="hlt">Ice</span> ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea <span class="hlt">ice</span> state in addition to sea <span class="hlt">ice</span> concentration (SIC) and thickness (SIT). The amount of old/thick <span class="hlt">ice</span> in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea <span class="hlt">ice</span> age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and <span class="hlt">Ice</span> Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-<span class="hlt">ice</span>-age/]. The sea <span class="hlt">ice</span> age algorithm [Fowler et al., 2004] is using satellite-derived <span class="hlt">ice</span> drift for Lagrangian tracking of individual <span class="hlt">ice</span> parcels (12-km grid cells) defined by <span class="hlt">areas</span> of sea <span class="hlt">ice</span> concentration > 15% [Maslanik et al., 2011], i.e. sea <span class="hlt">ice</span> extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea <span class="hlt">ice</span> extent instead of sea <span class="hlt">ice</span> concentration leads to overestimation of the amount of older <span class="hlt">ice</span>. (2) The individual <span class="hlt">ice</span> parcels are not advected uniformly over (long) time. This leads to undersampling in <span class="hlt">areas</span> of consistent <span class="hlt">ice</span> divergence. (3) The end product grid cells are assigned the age of the oldest <span class="hlt">ice</span> parcel within that cell, and the frequency distribution of the <span class="hlt">ice</span> age is not taken into account. In addition, the base sea <span class="hlt">ice</span> drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea <span class="hlt">ice</span> drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-<span class="hlt">ice</span> content, incorrect shape of the old-<span class="hlt">ice</span> <span class="hlt">pack</span>, and lack of information about the <span class="hlt">ice</span> age distribution within the grid cells. We</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ia0526.photos.319590p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ia0526.photos.319590p/"><span>1. DETAIL OF TUBE <span class="hlt">ICE</span> MACHINE OUTLET AT SOUTHWEST CORNER ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>1. DETAIL OF TUBE <span class="hlt">ICE</span> MACHINE OUTLET AT SOUTHWEST CORNER OF BUILDING 162; <span class="hlt">ICE</span> MANUFACTURED INSIDE THE BUILDING WAS AUGURED THROUGH THE WALL AND DROPPED INTO COMPARTMENTS IN REFIGERATED RAIL CARS - Rath <span class="hlt">Packing</span> Company, Cooler Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017491','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017491"><span>NASA Team 2 Sea <span class="hlt">Ice</span> Concentration Algorithm Retrieval Uncertainty</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brucker, Ludovic; Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro</p> <p>2014-01-01</p> <p>Satellite microwave radiometers are widely used to estimate sea <span class="hlt">ice</span> cover properties (concentration, extent, and <span class="hlt">area</span>) through the use of sea <span class="hlt">ice</span> concentration (IC) algorithms. Rare are the algorithms providing associated IC uncertainty estimates. Algorithm uncertainty estimates are needed to assess accurately global and regional trends in IC (and thus extent and <span class="hlt">area</span>), and to improve sea <span class="hlt">ice</span> predictions on seasonal to interannual timescales using data assimilation approaches. This paper presents a method to provide relative IC uncertainty estimates using the enhanced NASA Team (NT2) IC algorithm. The proposed approach takes advantage of the NT2 calculations and solely relies on the brightness temperatures (TBs) used as input. NT2 IC and its associated relative uncertainty are obtained for both the Northern and Southern Hemispheres using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) TB. NT2 IC relative uncertainties estimated on a footprint-by-footprint swath-by-swath basis were averaged daily over each 12.5-km grid cell of the polar stereographic grid. For both hemispheres and throughout the year, the NT2 relative uncertainty is less than 5%. In the Southern Hemisphere, it is low in the interior <span class="hlt">ice</span> <span class="hlt">pack</span>, and it increases in the marginal <span class="hlt">ice</span> zone up to 5%. In the Northern Hemisphere, <span class="hlt">areas</span> with high uncertainties are also found in the high IC <span class="hlt">area</span> of the Central Arctic. Retrieval uncertainties are greater in <span class="hlt">areas</span> corresponding to NT2 <span class="hlt">ice</span> types associated with deep snow and new <span class="hlt">ice</span>. Seasonal variations in uncertainty show larger values in summer as a result of melt conditions and greater atmospheric contributions. Our analysis also includes an evaluation of the NT2 algorithm sensitivity to AMSR-E sensor noise. There is a 60% probability that the IC does not change (to within the computed retrieval precision of 1%) due to sensor noise, and the cumulated probability shows that there is a 90% chance that the IC varies by less than</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......177C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......177C"><span>Sea <span class="hlt">Ice</span> Topography Profiling using Laser Altimetry from Small Unmanned Aircraft Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crocker, Roger Ian</p> <p></p> <p>Arctic sea <span class="hlt">ice</span> is undergoing a dramatic transition from a perennial <span class="hlt">ice</span> <span class="hlt">pack</span> with a high prevalence of old multiyear <span class="hlt">ice</span>, to a predominantly seasonal <span class="hlt">ice</span> <span class="hlt">pack</span> comprised primarily of young first-year and second-year <span class="hlt">ice</span>. This transition has brought about changes in the sea <span class="hlt">ice</span> thickness and topography characteristics, which will further affect the evolution and survivability of the <span class="hlt">ice</span> <span class="hlt">pack</span>. The varying <span class="hlt">ice</span> conditions have substantial implications for commercial operations, international affairs, regional and global climate, our ability to model climate dynamics, and the livelihood of Arctic inhabitants. A number of satellite and airborne missions are dedicated to monitoring sea <span class="hlt">ice</span>, but they are limited by their spatial and temporal resolution and coverage. Given the fast rate of sea <span class="hlt">ice</span> change and its pervasive implications, enhanced observational capabilities are needed to augment the current strategies. The CU Laser Profilometer and Imaging System (CULPIS) is designed specifically for collecting fine-resolution elevation data and imagery from small unmanned aircraft systems (UAS), and has a great potential to compliment ongoing missions. This altimeter system has been integrated into four different UAS, and has been deployed during Arctic and Antarctic science campaigns. The CULPIS elevation measurement accuracy is shown to be 95±25 cm, and is limited primarily by GPS positioning error (<25 cm), aircraft attitude determination error (<20 cm), and sensor misalignment error (<20 cm). The relative error is considerably smaller over short flight distances, and the measurement precision is shown to be <10 cm over a distance of 200 m. Given its fine precision, the CULPIS is well suited for measuring sea <span class="hlt">ice</span> topography, and observed ridge height and ridge separation distributions are found to agree with theoretical distributions to within 5%. Simulations demonstrate the inability of course-resolution measurements to accurately represent the theoretical distributions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ENews..47b..26B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ENews..47b..26B"><span>Delicious <span class="hlt">ice</span> cream, why does salt thaw <span class="hlt">ice</span>?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagnoli, Franco</p> <p>2016-03-01</p> <p>Plain Awful is an imaginary valley on the Andes populated by a highly-imitative, cubical people for which the most criminal offence is to exhibit round objects. The duck family (Scrooge, Donald and nephews) are teaming against Scrooge's worst enemy, Flintheart Glomgold, trying to buy the famous Plain Awful square eggs. Inadvertently, Scrooge violates the taboo, showing his Number One Dime, and is imprisoned in the stone quarries. He can be released only after the presentation of an <span class="hlt">ice</span> cream soda to the President of Plain Awful. Donald and his nephews fly with Flintheart to deliver it, but Scrooge's enemy, of course, betrays the previous agreement after getting the <span class="hlt">ice</span> cream, forcing the ducks into making an emergence replacement on the spot. Using dried milk, sugar and chocolate from their ration <span class="hlt">packs</span>, plus some snow and salt for cooling they are able make the <span class="hlt">ice</span> cream, and after dressing it with the carbonated water from a fire extinguisher they finally manage to produce the desired dessert. This comic may serve as an introduction to the "mysterious" phenomenon that added salt melts the <span class="hlt">ice</span> and, even more surprising, does it by lowering the temperature of the mixture.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41B1208W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41B1208W"><span>Determining Distributed Ablation over Dirty <span class="hlt">Ice</span> <span class="hlt">Areas</span> of Debris-covered Glaciers Using a UAV-SfM Approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woodget, A.; Fyffe, C. L.; Kirkbride, M. P.; Deline, P.; Westoby, M.; Brock, B. W.</p> <p>2017-12-01</p> <p>Dirty <span class="hlt">ice</span> <span class="hlt">areas</span> (where debris cover is discontinuous) are often found on debris-covered glaciers above the limit of continuous debris and are important because they are <span class="hlt">areas</span> of high melt and have been recognized as the locus of the identified upglacier increase in debris cover. The modelling of glacial ablation in <span class="hlt">areas</span> of dirty <span class="hlt">ice</span> is in its infancy and is currently restricted to theoretical studies. Glacial ablation is traditionally determined at point locations using stakes drilled into the <span class="hlt">ice</span>. However, in <span class="hlt">areas</span> of dirty <span class="hlt">ice</span>, ablation is highly spatially variable, since debris a few centimetres thick is near the threshold between enhancing and reducing ablation. As a result, it is very difficult to ascertain if point ablation measurements are representative of ablation of the <span class="hlt">area</span> surrounding the stake - making these measurements unsuitable for the validation of models of dirty <span class="hlt">ice</span> ablation. This paper aims to quantify distributed ablation and its relationship to essential dirty <span class="hlt">ice</span> characteristics with a view to informing the construction of dirty <span class="hlt">ice</span> melt models. A novel approach to determine distributed ablation is presented which uses repeat aerial imagery acquired from a UAV (Unmanned Aerial Vehicle), processed using SfM (Structure from Motion) techniques, on an <span class="hlt">area</span> of dirty <span class="hlt">ice</span> on Miage Glacier, Italian Alps. A spatially continuous ablation map is presented, along with a correlation to the local debris characteristics. Furthermore, methods are developed which link ground truth data on the percentage debris cover, albedo and clast depth to the UAV imagery, allowing these characteristics to be determined for the entire study <span class="hlt">area</span>, and used as model inputs. For example, debris thickness is determined through a field relationship with clast size, which is then correlated with image texture and point cloud roughness metrics derived from the UAV imagery. Finally, we evaluate the potential of our novel approach to lead to improved modelling of dirty <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950034736&hterms=typing&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtyping','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950034736&hterms=typing&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtyping"><span>Feasibility of sea <span class="hlt">ice</span> typing with synthetic aperture radar (SAR): Merging of Landsat thematic mapper and ERS 1 SAR satellite imagery</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steffen, Konrad; Heinrichs, John</p> <p>1994-01-01</p> <p>Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) and Landsat thematic mapper (TM) images were acquired for the same <span class="hlt">area</span> in the Beaufort Sea, April 16 and 18, 1992. The two image pairs were colocated to the same grid (25-m resolution), and a supervised <span class="hlt">ice</span> type classification was performed on the TM images in order to classify <span class="hlt">ice</span> free, nilas, gray <span class="hlt">ice</span>, gray-white <span class="hlt">ice</span>, thin first-year <span class="hlt">ice</span>, medium and thick first-year <span class="hlt">ice</span>, and old <span class="hlt">ice</span>. Comparison of the collocated SAR pixels showed that <span class="hlt">ice</span>-free <span class="hlt">areas</span> can only be classified under calm wind conditions (less than 3 m/s) and for surface winds greater than 10 m/s based on the backscattering coefficient alone. This is true for <span class="hlt">pack</span> <span class="hlt">ice</span> regions during the cold months of the year where <span class="hlt">ice</span>-free <span class="hlt">areas</span> are spatially limited and where the capillary waves that cause SAR backscatter are dampened by entrained <span class="hlt">ice</span> crystals. For nilas, two distinct backscatter classes were found at -17 dB and at -10 dB. The higher backscattering coefficient is attributed to the presence of frost flowers on light nilas. Gray and gray-white <span class="hlt">ice</span> have a backscatter signature similar to first-year <span class="hlt">ice</span> and therefore cannot be distinguished by SAR alone. First-year and old <span class="hlt">ice</span> can be clearly separated based on their backscattering coefficient. The performance of the Geophysical Processor System <span class="hlt">ice</span> classifier was tested against the Landsat derived <span class="hlt">ice</span> products. It was found that smooth first-year <span class="hlt">ice</span> and rough first-year <span class="hlt">ice</span> were not significantly different in the backscatter domain. <span class="hlt">Ice</span> concentration estimates based on ERS 1 C band SAR showed an error range of 5 to 8% for high <span class="hlt">ice</span> concentration regions, mainly due to misclassified <span class="hlt">ice</span>-free and smooth first-year <span class="hlt">ice</span> <span class="hlt">areas</span>. This error is expected to increase for <span class="hlt">areas</span> of lower <span class="hlt">ice</span> concentration. The combination of C band SAR and TM channels 2, 4, and 6 resulted in <span class="hlt">ice</span> typing performance with an estimated accuracy of 90% for all seven <span class="hlt">ice</span> classes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......122B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......122B"><span>Greenland <span class="hlt">ice</span> sheet retreat since the Little <span class="hlt">Ice</span> Age</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beitch, Marci J.</p> <p></p> <p>Late 20th century and 21st century satellite imagery of the perimeter of the Greenland <span class="hlt">Ice</span> Sheet (GrIS) provide high resolution observations of the <span class="hlt">ice</span> sheet margins. Examining changes in <span class="hlt">ice</span> margin positions over time yield measurements of GrIS <span class="hlt">area</span> change and rates of margin retreat. However, longer records of <span class="hlt">ice</span> sheet margin change are needed to establish more accurate predictions of the <span class="hlt">ice</span> sheet's future response to global conditions. In this study, the trimzone, the <span class="hlt">area</span> of deglaciated terrain along the <span class="hlt">ice</span> sheet edge that lacks mature vegetation cover, is used as a marker of the maximum extent of the <span class="hlt">ice</span> from its most recent major advance during the Little <span class="hlt">Ice</span> Age. We compile recently acquired Landsat ETM+ scenes covering the perimeter of the GrIS on which we map <span class="hlt">area</span> loss on land-, lake-, and marine-terminating margins. We measure an <span class="hlt">area</span> loss of 13,327 +/- 830 km2, which corresponds to 0.8% shrinkage of the <span class="hlt">ice</span> sheet. This equates to an averaged horizontal retreat of 363 +/- 69 m across the entire GrIS margin. Mapping the <span class="hlt">areas</span> exposed since the Little <span class="hlt">Ice</span> Age maximum, circa 1900 C.E., yields a century-scale rate of change. On average the <span class="hlt">ice</span> sheet lost an <span class="hlt">area</span> of 120 +/- 16 km 2/yr, or retreated at a rate of 3.3 +/- 0.7 m/yr since the LIA maximum.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870060018&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870060018&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmarginal"><span>Variations of mesoscale and large-scale sea <span class="hlt">ice</span> morphology in the 1984 Marginal <span class="hlt">Ice</span> Zone Experiment as observed by microwave remote sensing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Campbell, W. J.; Josberger, E. G.; Gloersen, P.; Johannessen, O. M.; Guest, P. S.</p> <p>1987-01-01</p> <p>The data acquired during the summer 1984 Marginal <span class="hlt">Ice</span> Zone Experiment in the Fram Strait-Greenland Sea marginal <span class="hlt">ice</span> zone, using airborne active and passive microwave sensors and the Nimbus 7 SMMR, were analyzed to compile a sequential description of the mesoscale and large-scale <span class="hlt">ice</span> morphology variations during the period of June 6 - July 16, 1984. Throughout the experiment, the long <span class="hlt">ice</span> edge between northwest Svalbard and central Greenland meandered; eddies were repeatedly formed, moved, and disappeared but the <span class="hlt">ice</span> edge remained within a 100-km-wide zone. The <span class="hlt">ice</span> <span class="hlt">pack</span> behind this alternately diffuse and compact edge underwent rapid and pronounced variations in <span class="hlt">ice</span> concentration over a 200-km-wide zone. The high-resolution <span class="hlt">ice</span> concentration distributions obtained in the aircraft images agree well with the low-resolution distributions of SMMR images.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601069','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601069"><span>The Seasonal Evolution of Sea <span class="hlt">Ice</span> Floe Size Distribution</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>the summer breakup of the <span class="hlt">ice</span> cover . Large-scale, lower resolution imagery from MODIS and other platforms will also be analyzed to determine changes...control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE The Seasonal Evolution...appearance and morphology of the Arctic sea <span class="hlt">ice</span> cover over and annual cycle. These photos were taken over the <span class="hlt">pack</span> <span class="hlt">ice</span> near SHEBA in May (left) and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5970T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5970T"><span>Relative influences of the metocean forcings on the drifting <span class="hlt">ice</span> <span class="hlt">pack</span> and estimation of internal <span class="hlt">ice</span> stress gradients in the Labrador Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turnbull, I. D.; Torbati, R. Z.; Taylor, R. S.</p> <p>2017-07-01</p> <p>Understanding the relative influences of the metocean forcings on the drift of sea <span class="hlt">ice</span> floes is a crucial component to the overall characterization of an <span class="hlt">ice</span> environment and to developing an understanding of the factors controlling the <span class="hlt">ice</span> dynamics. In addition, estimating the magnitude of the internal stress gradients on drifting sea <span class="hlt">ice</span> floes generated by surrounding <span class="hlt">ice</span> cover is important for modeling operations, informing the design of offshore structures and vessels in <span class="hlt">ice</span> environments, and for the proper calibration of Discrete Element Models (DEM) of fields of drifting <span class="hlt">ice</span> floes. In the spring of 2015 and 2016, four sea <span class="hlt">ice</span> floes offshore Makkovik, Labrador were tagged with satellite-linked <span class="hlt">ice</span> tracking buoys along with one satellite-linked weather station on each floe to transmit wind speed and direction. Twenty satellite-linked Lagrangian surface ocean current tracking buoys were also deployed in the open water adjacent to the targeted <span class="hlt">ice</span> floes. In this paper, the dynamics of the four <span class="hlt">ice</span> floes are explored in terms of the relative proportions which were forced by the wind, current, sea surface topography, Coriolis, and internal stress gradients. The internal <span class="hlt">ice</span> stress gradients are calculated as residuals between the observed accelerations of the floes as measured by the tracking buoys and the sums of the other metocean forcings. Results show that internal <span class="hlt">ice</span> stress gradients accounted for up to 50% of the observed forcing on the floes, and may have reached up to around 0.19 kPa.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43D0577F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43D0577F"><span>Sea <span class="hlt">Ice</span> and Hydrographic Variability in the Northwest North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fenty, I. G.; Heimbach, P.; Wunsch, C. I.</p> <p>2010-12-01</p> <p>Sea <span class="hlt">ice</span> anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea <span class="hlt">ice</span> in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea <span class="hlt">ice</span> and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea <span class="hlt">ice</span> observations with numerical models. To elaborate the relationship between sea <span class="hlt">ice</span> and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea <span class="hlt">ice</span> state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea <span class="hlt">ice</span> model with a suite of contemporary in situ and satellite hydrographic and <span class="hlt">ice</span> data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the <span class="hlt">ice</span> <span class="hlt">pack</span> attains a state of quasi-equilibrium in mid-March (the annual sea <span class="hlt">ice</span> maximum) in which the total <span class="hlt">ice</span>-covered <span class="hlt">area</span> reaches a steady state -<span class="hlt">ice</span> production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea <span class="hlt">ice</span> advected to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14602413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14602413"><span>Prevention and suppression of metal <span class="hlt">packing</span> fires.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roberts, Mark; Rogers, William J; Sam Mannan, M; Ostrowski, Scott W</p> <p>2003-11-14</p> <p>Structured <span class="hlt">packing</span> has been widely used because of large surface <span class="hlt">area</span> that makes possible columns with high capacity and efficiency. The large surface <span class="hlt">area</span> also contributes to fire hazards because of hydrocarbon deposits that can easily combust and promote combustion of the thin metal <span class="hlt">packing</span> materials. Materials of high surface <span class="hlt">area</span> that can fuel fires include reactive metals, such as titanium, and materials that are not considered combustible, such as stainless steel. Column design and material selection for <span class="hlt">packing</span> construction is discussed together with employee training and practices for safe column maintenance and operations. Presented also are methods and agents for suppression of metal fires. Guidance for prevention and suppression of metal fires is related to incidents involving <span class="hlt">packing</span> fires in columns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27135699','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27135699"><span>Photochemical degradation of hydroxy PAHs in <span class="hlt">ice</span>: Implications for the polar <span class="hlt">areas</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ge, Linke; Li, Jun; Na, Guangshui; Chen, Chang-Er; Huo, Cheng; Zhang, Peng; Yao, Ziwei</p> <p>2016-07-01</p> <p>Hydroxyl polycyclic aromatic hydrocarbons (OH-PAHs) are derived from hydroxylated PAHs as contaminants of emerging concern. They are ubiquitous in the aqueous and atmospheric environments and may exist in the polar snow and <span class="hlt">ice</span>, which urges new insights into their environmental transformation, especially in <span class="hlt">ice</span>. In present study the simulated-solar (λ > 290 nm) photodegradation kinetics, products and pathways of four OH-PAHs (9-Hydroxyfluorene, 2-Hydroxyfluorene, 1-Hydroxypyrene and 9-Hydroxyphenanthrene) in <span class="hlt">ice</span> were investigated, and the corresponding implications for the polar <span class="hlt">areas</span> were explored. It was found that the kinetics followed the pseudo-first-order kinetics with the photolysis quantum yields (Φs) ranging from 7.48 × 10(-3) (1-Hydroxypyrene) to 4.16 × 10(-2) (2-Hydroxyfluorene). These 4 OH-PAHs were proposed to undergo photoinduced hydroxylation, resulting in multiple hydroxylated intermediates, particularly for 9-Hydroxyfluorene. Extrapolation of the lab data to the real environment is expected to provide a reasonable estimate of OH-PAH photolytic half-lives (t1/2,E) in mid-summer of the polar <span class="hlt">areas</span>. The estimated t1/2,E values ranged from 0.08 h for 1-OHPyr in the Arctic to 54.27 h for 9-OHFl in the Antarctic. In consideration of the lower temperature and less microorganisms in polar <span class="hlt">areas</span>, the photodegradation can be a key factor in determining the fate of OH-PAHs in sunlit surface snow/<span class="hlt">ice</span>. To the best of our knowledge, this is the first report on the photodegradation of OH-PAHs in polar <span class="hlt">areas</span>. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TCry....9..905M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TCry....9..905M"><span>Multi-modal albedo distributions in the ablation <span class="hlt">area</span> of the southwestern Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.; Koenig, L. S.; Hom, M. G.; Shuman, C. A.</p> <p>2015-05-01</p> <p>Surface albedo is a key variable controlling solar radiation absorbed at the Greenland <span class="hlt">Ice</span> Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation <span class="hlt">area</span> albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325-1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation <span class="hlt">area</span> albedos in 2013 have a bimodal distribution, with snow and <span class="hlt">ice</span> facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10-14 July and 20-24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation <span class="hlt">area</span> albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from <span class="hlt">ice</span> crystal growth, our findings demonstrate that seasonal changes in GrIS ablation <span class="hlt">area</span> albedos are controlled by changes in the fractional coverage of snow, bare <span class="hlt">ice</span>, and impurity-rich surface types. Thus, seasonal variability in ablation <span class="hlt">area</span> albedos appears to be regulated primarily as a function</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28388209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28388209"><span>Wind-Driven Formation of <span class="hlt">Ice</span> Bridges in Straits.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rallabandi, Bhargav; Zheng, Zhong; Winton, Michael; Stone, Howard A</p> <p>2017-03-24</p> <p><span class="hlt">Ice</span> bridges are static structures composed of tightly <span class="hlt">packed</span> sea <span class="hlt">ice</span> that can form during the course of its flow through a narrow strait. Despite their important role in local ecology and climate, the formation and breakup of <span class="hlt">ice</span> bridges is not well understood and has proved difficult to predict. Using long-wave approximations and a continuum description of sea <span class="hlt">ice</span> dynamics, we develop a one-dimensional theory for the wind-driven formation of <span class="hlt">ice</span> bridges in narrow straits, which is verified against direct numerical simulations. We show that for a given wind stress and minimum and maximum channel widths, a steady-state <span class="hlt">ice</span> bridge can only form beyond a critical value of the thickness and the compactness of the <span class="hlt">ice</span> field. The theory also makes quantitative predictions for <span class="hlt">ice</span> fluxes, which are particularly useful to estimate the <span class="hlt">ice</span> export associated with the breakup of <span class="hlt">ice</span> bridges. We note that similar ideas are applicable to dense granular flows in confined geometries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE34A1451P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE34A1451P"><span>Effects of an Arctic under-<span class="hlt">ice</span> phytoplankton bloom on bio-optical properties of surface waters during the Norwegian Young Sea <span class="hlt">Ice</span> Cruise (N-<span class="hlt">ICE</span>2015)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pavlov, A. K.; Granskog, M. A.; Hudson, S. R.; Taskjelle, T.; Kauko, H.; Hamre, B.; Assmy, P.; Mundy, C. J.; Nicolaus, M.; Kowalczuk, P.; Stedmon, C. A.; Fernandez Mendez, M.</p> <p>2016-02-01</p> <p>A thinner and younger Arctic sea-<span class="hlt">ice</span> cover has led to an increase in solar light transmission into the surface ocean, especially during late spring and summer. A description of the seasonal evolution of polar surface water optical properties is essential, in order to understand how changes are affecting light availability for photosynthetic organisms and the surface ocean energy budget. The development of the bio-optical properties of Arctic surface waters under predominantly first-year sea <span class="hlt">ice</span> in the southern Nansen Basin were studied from January to June 2015 during the Norwegian Young Sea <span class="hlt">Ice</span> Cruise (N-<span class="hlt">ICE</span>2015). Observations included inherent optical properties, absorption by colored dissolved organic matter and particles, as well as radiometric measurements. We documented a rapid transition from relatively clear and transparent waters in winter to turbid waters in late May and June. This transition was associated with a strong under-<span class="hlt">ice</span> phytoplankton bloom detected first under the compact <span class="hlt">ice</span> <span class="hlt">pack</span> and then monitored during drift across the marginal <span class="hlt">ice</span> zone. We discuss potential implications of underwater light availability for photosynthesis, heat redistribution in the upper ocean layer, and energy budget of the sea-<span class="hlt">ice</span> - ocean system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA030362','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA030362"><span>Sea-<span class="hlt">Ice</span> Conditions in the Norwegian, Barents, and White Seas</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1976-08-01</p> <p><span class="hlt">pack</span>, aided by relatively warm water from the Murman coast current, would reduce the maximum <span class="hlt">ice</span> thickness predicted by the equation used for...THICKNESS With the aid of the <span class="hlt">ice</span> growth model in the appendix, it is pos- sible to relate the maximum <span class="hlt">ice</span> thickness attained during a winter season to a...inserted merely to aid the reader in discerning differences between individual winter seasons. As was the case for the 12-month mean temperatures</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=cooking&pg=2&id=EJ1049030','ERIC'); return false;" href="https://eric.ed.gov/?q=cooking&pg=2&id=EJ1049030"><span>Simple Cloud Chambers Using a Freezing Mixture of <span class="hlt">Ice</span> and Cooking Salt</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Yoshinaga, Kyohei; Kubota, Miki; Kamata, Masahiro</p> <p>2015-01-01</p> <p>We have developed much simpler cloud chambers that use only <span class="hlt">ice</span> and cooking salt instead of the dry <span class="hlt">ice</span> or <span class="hlt">ice</span> gel <span class="hlt">pack</span> needed for the cloud chambers produced in our previous work. The observed alpha-ray particle tracks are as clear as those observed using our previous cloud chambers. The tracks can be observed continuously for about 20?min, and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617970','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617970"><span>The Seasonal Evolution of Sea <span class="hlt">Ice</span> Floe Size Distribution</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>summer breakup of the <span class="hlt">ice</span> cover . Large-scale, lower resolution imagery from MODIS and other platforms will also be analyzed to determine changes in floe...number. 1. REPORT DATE 30 SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE The Seasonal Evolution of Sea...morphology of the Arctic sea <span class="hlt">ice</span> cover over and annual cycle. These photos were taken over the <span class="hlt">pack</span> <span class="hlt">ice</span> near SHEBA in May (left) and August (right</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940007290&hterms=SSM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DSSM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940007290&hterms=SSM&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DSSM"><span>Summer Arctic <span class="hlt">ice</span> concentrations and characteristics from SAR and SSM/I data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Joey C.; Kwok, Ron</p> <p>1993-01-01</p> <p>The extent and concentration of the Summer minima provide indirect information about the long term ability of the perennial portion of the <span class="hlt">ice</span> <span class="hlt">pack</span> to survive the Arctic atmosphere and ocean system. Both active and passive microwave data were used with some success for monitoring the <span class="hlt">ice</span> cover during the Summer, but they both suffer from similar problems caused by the presence of meltponding, surface wetness, flooding, and freeze/thaw cycles associated with periodic changes in surface air temperatures. A comparative analysis of <span class="hlt">ice</span> conditions in the Arctic region using coregistered ERS-1 SAR (Synthetic Aperture Radar) and SSM/I (Special Sensor Microwave/Imager) data was made. The analysis benefits from complementary information from the two systems, the good spatial resolution of SAR data, and the good time resolution of and global coverage by SSM/I data. The results show that in many <span class="hlt">areas</span> <span class="hlt">ice</span> concentrations derived from SAR data are significantly different (usually higher) than those derived from passive microwave data. Additional insights about surface conditions can be inferred depending on the nature of the discrepancies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121..267B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121..267B"><span>Physical processes contributing to an <span class="hlt">ice</span> free Beaufort Sea during September 2012</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babb, D. G.; Galley, R. J.; Barber, D. G.; Rysgaard, S.</p> <p>2016-01-01</p> <p>During the record September 2012 sea <span class="hlt">ice</span> minimum, the Beaufort Sea became <span class="hlt">ice</span> free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal <span class="hlt">ice</span> coverage that contributed to negative sea <span class="hlt">ice</span> anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea <span class="hlt">ice</span> loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea <span class="hlt">ice</span> extent, anomalous solar absorption developed during May, increased during June, peaked during July, and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea <span class="hlt">ice</span> minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling, and riverine inputs, but was ultimately made possible through years of preconditioning toward a younger, thinner <span class="hlt">ice</span> <span class="hlt">pack</span>. Significant negative trends in sea <span class="hlt">ice</span> concentration between 1979 and 2012 from June to October, coupled with a tendency toward earlier sea <span class="hlt">ice</span> reductions have fostered a significant trend of +12.9 MJ m-2 yr-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 yr-1. Overall through preconditioning toward a younger, thinner <span class="hlt">ice</span> <span class="hlt">pack</span> the Beaufort Sea has become increasingly susceptible to increased sea <span class="hlt">ice</span> loss that may render it <span class="hlt">ice</span> free more frequently in coming years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0748B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0748B"><span>Physical Processes contributing to an <span class="hlt">ice</span> free Beaufort Sea during September 2012</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babb, D.; Galley, R.; Barber, D. G.; Rysgaard, S.</p> <p>2016-12-01</p> <p>During the record September 2012 sea <span class="hlt">ice</span> minimum the Beaufort Sea became <span class="hlt">ice</span> free for the first time during the observational record. Increased dynamic activity during late winter enabled increased open water and seasonal <span class="hlt">ice</span> coverage that contributed to negative sea <span class="hlt">ice</span> anomalies and positive solar absorption anomalies which drove rapid bottom melt and sea <span class="hlt">ice</span> loss. As had happened in the Beaufort Sea during previous years of exceptionally low September sea <span class="hlt">ice</span> extent, anomalous solar absorption developed during May, increased during June, peaked during July and persisted into October. However in situ observations from a single floe reveal less than 78% of the energy required for bottom melt during 2012 was available from solar absorption. We show that the 2012 sea <span class="hlt">ice</span> minimum in the Beaufort was the result of anomalously large solar absorption that was compounded by an arctic cyclone and other sources of heat such as solar transmission, oceanic upwelling and riverine inputs, but was ultimately made possible through years of preconditioning towards a younger, thinner <span class="hlt">ice</span> <span class="hlt">pack</span>. Significant negative trends in sea <span class="hlt">ice</span> concentration between 1979 and 2012 from June to October, coupled with a tendency towards earlier sea <span class="hlt">ice</span> reductions have fostered a significant trend of +12.9 MJ m-2 year-1 in cumulative solar absorption, sufficient to melt an additional 4.3 cm m-2 year-1. Overall through preconditioning towards a younger, thinner <span class="hlt">ice</span> <span class="hlt">pack</span> the Beaufort Sea has become increasingly susceptible to increased sea <span class="hlt">ice</span> loss that may render it <span class="hlt">ice</span> free more frequently in coming years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012473','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012473"><span>Arctic continental shelf morphology related to sea-<span class="hlt">ice</span> zonation, Beaufort Sea, Alaska</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reimnitz, E.; Toimil, L.; Barnes, P.</p> <p>1978-01-01</p> <p>Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of <span class="hlt">ice</span> and sea-floor data were used to study sea-<span class="hlt">ice</span> zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast <span class="hlt">ice</span> and westward-drifting <span class="hlt">pack</span> <span class="hlt">ice</span> of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, <span class="hlt">pack-ice</span> drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and <span class="hlt">ice</span> seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major <span class="hlt">ice</span>-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of <span class="hlt">ice</span> up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high <span class="hlt">ice</span>-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large <span class="hlt">ice</span> ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast <span class="hlt">ice</span> grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-<span class="hlt">ice</span> zonation, <span class="hlt">ice</span> dynamics, and bottom</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AnGla..44..253U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AnGla..44..253U"><span>Ship-borne electromagnetic induction sounding of sea-<span class="hlt">ice</span> thickness in the southern Sea of Okhotsk</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uto, Shotaro; Toyota, Takenobu; Shimoda, Haruhito; Tateyama, Kazutaka; Shirasawa, Kunio</p> <p></p> <p>Recent observations have revealed that dynamical thickening is dominant in the growth process of sea <span class="hlt">ice</span> in the southern Sea of Okhotsk. That indicates the importance of understanding the nature of thick deformed <span class="hlt">ice</span> in this <span class="hlt">area</span>. The objective of the present paper is to establish a ship-based method for observing the thickness of deformed <span class="hlt">ice</span> with reasonable accuracy. Since February 2003, one of the authors has engaged in the core sampling using a small basket from the icebreaker Soya. Based on these results, we developed a new model which expressed the internal structure of <span class="hlt">pack</span> <span class="hlt">ice</span> in the southern Sea of Okhotsk, as a one-dimensional multilayered structure. Since 2004, the electromagnetic (EM) inductive sounding of sea-<span class="hlt">ice</span> thickness has been conducted on board Soya. By combining the model and theoretical calculations, a new algorithm was developed for transforming the output of the EM inductive instrument to <span class="hlt">ice</span> + snow thickness (total thickness). Comparison with total thickness by drillhole observations showed fair agreement. The probability density functions of total thickness in 2004 and 2005 showed some difference, which reflected the difference of fractions of thick deformed <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ia0526.photos.319591p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ia0526.photos.319591p/"><span>2. DETAIL OF DISCHARGE CHUTES FROM VOGT AUTOMATIC TUBE <span class="hlt">ICE</span> ...</span></a></p> <p><a target="_blank" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>2. DETAIL OF DISCHARGE CHUTES FROM VOGT AUTOMATIC TUBE <span class="hlt">ICE</span> MACHINE IN SOUTHWEST CORNER OF LEVEL 5; <span class="hlt">ICE</span> DROPPED INTO HOLDING BIN BEFORE BEING TRANSFERRED TO RAIL CARS OUTSIDE BUILDING (HENRY VOGT MACHINE COMPANY, LOUISVILLE, USA, PATENT NO. 2,200,424 - Rath <span class="hlt">Packing</span> Company, Cooler Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C11D..06N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C11D..06N"><span>Advances in Airborne Altimetric Techniques for the Measurement of Snow on Arctic Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newman, T.; Farrell, S. L.; Richter-Menge, J.; Elder, B. C.; Ruth, J.; Connor, L. N.</p> <p>2014-12-01</p> <p>Current sea <span class="hlt">ice</span> observations and models indicate a transition towards a more seasonal Arctic <span class="hlt">ice</span> <span class="hlt">pack</span> with a smaller, and geographically more variable, multiyear <span class="hlt">ice</span> component. To gain a comprehensive understanding of the processes governing this transition it is important to include the impact of the snow cover, determining the mechanisms by which snow is both responding to and forcing changes to the sea <span class="hlt">ice</span> <span class="hlt">pack</span>. Data from NASA's Operation <span class="hlt">Ice</span>Bridge (OIB) snow radar system, which has been making yearly surveys of the western Arctic since 2009, offers a key resource for investigating the snow cover. In this work, we characterize the OIB snow radar instrument response to ascertain the location of 'side-lobes', aiding the interpretation of snow radar data. We apply novel wavelet-based techniques to identify the primary reflecting interfaces within the snow <span class="hlt">pack</span> from which snow depth estimates are derived. We apply these techniques to the range of available snow radar data collected over the last 6 years during the NASA OIB mission. Our results are validated through comparison with a range of in-situ data. We discuss the impact of sea <span class="hlt">ice</span> surface morphology on snow radar returns (with respect to <span class="hlt">ice</span> type) and the topographic conditions over which accurate snow-radar-derived snow depths may be obtained. Finally we present improvements to in situ survey design that will allow for both an improved sampling of the snow radar footprint and more accurate assessment of the uncertainties in radar-derived snow depths in the future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30b7101J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30b7101J"><span>Mixed <span class="hlt">ice</span> accretion on aircraft wings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So</p> <p>2018-02-01</p> <p><span class="hlt">Ice</span> accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime <span class="hlt">ice</span> or runback as water along the wing to form glaze <span class="hlt">ice</span>. Most models to date have ignored the accretion of mixed <span class="hlt">ice</span>, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion <span class="hlt">ice</span> to explore the concept of mixed <span class="hlt">ice</span> accretion. Additionally we consider different "<span class="hlt">packing</span> densities" of rime <span class="hlt">ice</span>, mimicking the different bulk rime densities observed in nature. <span class="hlt">Ice</span> accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze <span class="hlt">ice</span>. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed <span class="hlt">ice</span> formulation however provides additional insight into the composition of the overall <span class="hlt">ice</span> structure, which ultimately influences adhesion and <span class="hlt">ice</span> thickness, and shows that for similar atmospheric parameter ranges, this simple mixed <span class="hlt">ice</span> description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze <span class="hlt">ice</span> accretion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C41C0478A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C41C0478A"><span>Controls on Arctic sea <span class="hlt">ice</span> from first-year and multi-year <span class="hlt">ice</span> survival rates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.</p> <p>2009-12-01</p> <p>The recent decrease in Arctic sea <span class="hlt">ice</span> cover has transpired with a significant loss of multi-year (MY) <span class="hlt">ice</span>. The transition to an Arctic that is populated by thinner first-year (FY) sea <span class="hlt">ice</span> has important implications for future trends in <span class="hlt">area</span> and volume. We develop a reduced model for Arctic sea <span class="hlt">ice</span> with which we investigate how the survivability of FY and MY <span class="hlt">ice</span> control various aspects of the sea-<span class="hlt">ice</span> system. We demonstrate that Arctic sea-<span class="hlt">ice</span> <span class="hlt">area</span> and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-<span class="hlt">ice</span> in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY <span class="hlt">ice</span>. This model, used in concert with a sea-<span class="hlt">ice</span> simulation that traces FY and MY <span class="hlt">ice</span> <span class="hlt">areas</span> to estimate the survival rates, reveals that small trends in the <span class="hlt">ice</span> survival rates explain the decline in total Arctic <span class="hlt">ice</span> <span class="hlt">area</span>, and the relatively larger loss of MY <span class="hlt">ice</span> <span class="hlt">area</span>, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September <span class="hlt">area</span> and volume anomalies. A relatively short memory time scale for <span class="hlt">ice</span> <span class="hlt">area</span> (~ 1 year) implies that Arctic <span class="hlt">ice</span> <span class="hlt">area</span> is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in <span class="hlt">area</span> are a clear indication of a changing climate. A longer memory time scale for <span class="hlt">ice</span> volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in <span class="hlt">ice</span> volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of <span class="hlt">ice</span> <span class="hlt">area</span> and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September <span class="hlt">ice</span> <span class="hlt">area</span> and volume will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4481831','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4481831"><span>Lower limb <span class="hlt">ice</span> application alters ground reaction force during gait initiation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Muniz, Thiago B.; Moraes, Renato; Guirro, Rinaldo R. J.</p> <p>2015-01-01</p> <p>BACKGROUND: Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. OBJECTIVES: To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. METHOD: This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task - gait initiation - was performed before <span class="hlt">ice</span> application, immediately after and 30 minutes after removal of the <span class="hlt">ice</span> <span class="hlt">pack</span>. <span class="hlt">Ice</span> was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. RESULTS: It was demonstrated that <span class="hlt">ice</span> application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the <span class="hlt">ice</span> <span class="hlt">pack</span>. <span class="hlt">Ice</span> application to the ankle only reduced propulsion impulse. CONCLUSIONS: These results suggest that although caution is necessary when performing activities that require good gait control, the application of <span class="hlt">ice</span> to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities. PMID:25993625</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25993625','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25993625"><span>Lower limb <span class="hlt">ice</span> application alters ground reaction force during gait initiation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muniz, Thiago B; Moraes, Renato; Guirro, Rinaldo R J</p> <p>2015-01-01</p> <p>Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task--gait initiation--was performed before <span class="hlt">ice</span> application, immediately after and 30 minutes after removal of the <span class="hlt">ice</span> <span class="hlt">pack</span>. <span class="hlt">Ice</span> was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. It was demonstrated that <span class="hlt">ice</span> application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the <span class="hlt">ice</span> <span class="hlt">pack</span>. <span class="hlt">Ice</span> application to the ankle only reduced propulsion impulse. These results suggest that although caution is necessary when performing activities that require good gait control, the application of <span class="hlt">ice</span> to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24105059','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24105059"><span>[<span class="hlt">Ice</span> application for reducing pain associated with goserelin acetate injection].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ishii, Kaname; Nagata, Chika; Koshizaki, Eiko; Nishiuchi, Satoko</p> <p>2013-10-01</p> <p>We investigated the effectiveness of using an <span class="hlt">ice</span> <span class="hlt">pack</span> for reducing the pain associated with goserelin acetate injection. In this study, 39 patients with prostate cancer and 1 patient with breast cancer receiving hormonal therapy with goserelin acetate were enrolled. All patients completed a questionnaire regarding the use of <span class="hlt">ice</span> application. We used the numerical rating scale (NRS) to assess the pain associated with injection. The NRS scores indicated that the pain was significantly less with <span class="hlt">ice</span> application than with the usual method (p < 0.001). Further, <span class="hlt">ice</span> application could decrease the duration of pain sensation. <span class="hlt">Ice</span> application at the injection site is safe and effective for reducing pain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840059709&hterms=Thorndike&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DThorndike','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840059709&hterms=Thorndike&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DThorndike"><span>Measuring the sea <span class="hlt">ice</span> floe size distribution</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rothrock, D. A.; Thorndike, A. S.</p> <p>1984-01-01</p> <p>The sea <span class="hlt">ice</span> covering the Arctic Ocean is broken into distinct pieces,called floes. In the summer, these floes, which have diameters ranging up to 100 km, are separated from each other by a region of open water. In the winter, floes still exist, but they are less easily identified. An understanding of the geometry of the <span class="hlt">ice</span> <span class="hlt">pack</span> is of interest for a number of practical applications associated with transportation in <span class="hlt">ice</span>-covered seas and with the design of offshore structures intended to survive in the presence of <span class="hlt">ice</span>. The present investigation has the objective to clarify ideas about floe sizes and to propose techniques for measuring them. Measurements are presented with the primary aim to illustrate points of technique or approach. A preliminary discussion of the floe size distribution of sea <span class="hlt">ice</span> is devoted to questions of definition and of measurement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27981595','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27981595"><span>An investigation of the effect of rapid slurry chilling on blown <span class="hlt">pack</span> spoilage of vacuum-packaged beef primals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reid, R; Fanning, S; Whyte, P; Kerry, J; Bolton, D</p> <p>2017-02-01</p> <p>The aim of this study was to investigate if rapid slurry chilling would retard or prevent blown <span class="hlt">pack</span> spoilage (BPS) of vacuum-packaged beef primals. Beef primals were inoculated with Clostridium estertheticum subspp. estertheticum (DSMZ 8809), C. estertheticum subspp. laramenise (DSMZ 14864) and C. gasigenes (DSMZ 12272), and vacuum-packaged with and without heat shrinkage (90°C for 3 s). These <span class="hlt">packs</span> were then subjected to immediate chilling in an <span class="hlt">ice</span> slurry or using conventional blast chilling systems and stored at 2°C for up to 100 days. The onset and progress of BPS was monitored using the following scale; 0-no gas bubbles in drip; 1-gas bubbles in drip; 2-loss of vacuum; 3-'blown'; 4-presence of sufficient gas inside the <span class="hlt">packs</span> to produce <span class="hlt">pack</span> distension and 5-tightly stretched, 'overblown' <span class="hlt">packs/packs</span> leaking. Rapid slurry chilling (as compared to conventional chilling) did not significantly affect (P > 0.05) the time to the onset or progress of BPS. It was therefore concluded that rapid chilling of vacuum-packaged beef primals, using an <span class="hlt">ice</span> slurry system, may not be used as a control intervention to prevent or retard blown <span class="hlt">pack</span> spoilage. This study adds to our growing understanding of blown <span class="hlt">pack</span> spoilage of vacuum-packaged beef primals and suggests that rapid chilling of vacuum-packaged beef primals is not a control option for the beef industry. The results suggest that neither eliminating the heat shrinkage step nor rapid chilling of vacuum-packaged beef retard the time to blown <span class="hlt">pack</span> spoilage. © 2016 The Society for Applied Microbiology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA422192','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA422192"><span>AUV Commercialization - Who’s Leading the <span class="hlt">Pack</span>?</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-09-01</p> <p>the Theseus and ARCS, is designing a deep water commercial site survey AUV for Fugro GeoServices Inc. Called the Explorer, the vehicle will conduct...ISE has the ARCS and the Theseus vehicles and Perry Technologies has the MUST. These vehicles have each performed some dramatic operations including the...deployment of fiber optic cables. In the case of Theseus , the fiber optic cable was deployed under the <span class="hlt">ice</span> <span class="hlt">pack</span>. Mid-size vehicles include those from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1210167G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1210167G"><span>Air-<span class="hlt">ice</span> CO2 fluxes and pCO2 dynamics in the Arctic coastal <span class="hlt">area</span> (Amundsen Gulf, Canada)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geilfus, Nicolas-Xavier; Tison, Jean Louis; Carnat, Gauthier; Else, Brent; Borges, Alberto V.; Thomas, Helmuth; Shadwick, Elizabeth; Delille, Bruno</p> <p>2010-05-01</p> <p>Sea <span class="hlt">ice</span> covers about 7% of the Earth surface at its maximum seasonal extent. For decades sea <span class="hlt">ice</span> was assumed to be an impermeable and inert barrier for air - sea exchange of CO2 so that global climate models do not include CO2 exchange between the oceans and the atmosphere in the polar regions. However, uptake of atmospheric CO2 by sea <span class="hlt">ice</span> cover was recently reported raising the need to further investigate pCO2 dynamics in the marine cryosphere realm and related air-<span class="hlt">ice</span> CO2 fluxes. In addition, budget of CO2 fluxes are poorly constrained in high latitudes continental shelves [Borges et al., 2006]. We report measurements of air-<span class="hlt">ice</span> CO2 fluxes above the Canadian continental shelf and compare them to previous measurements carried out in Antarctica. We carried out measurements of pCO2 within brines and bulk <span class="hlt">ice</span>, and related air-<span class="hlt">ice</span> CO2 fluxes (chamber method) in Antarctic first year <span class="hlt">pack</span> <span class="hlt">ice</span> ("Sea <span class="hlt">Ice</span> Mass Balance in Antarctica -SIMBA" drifting station experiment September - October 2007) and in Arctic first year land fast <span class="hlt">ice</span> ("Circumpolar Flaw Lead" - CFL, April - June 2008). These 2 experiments were carried out in contrasted sites. SIMBA was carried out on sea <span class="hlt">ice</span> in early spring while CFL was carried out in from the middle of the winter to the late spring while sea <span class="hlt">ice</span> was melting. Both in Arctic and Antarctic, no air-<span class="hlt">ice</span> CO2 fluxes were detected when sea <span class="hlt">ice</span> interface was below -10°C. Slightly above -10°C, fluxes toward the atmosphere were observed. In contrast, at -7°C fluxes from the atmosphere to the <span class="hlt">ice</span> were significant. The pCO2 of the brine exhibits a same trend in both hemispheres with a strong decrease of the pCO2 anti-correlated with the increase of sea <span class="hlt">ice</span> temperature. The pCO2 shifted from a large over-saturation at low temperature to a marked under-saturation at high temperature. These air-<span class="hlt">ice</span> CO2 fluxes are partly controlled by the permeability of the air-<span class="hlt">ice</span> interface, which depends of the temperature of this one. Moreover, air-<span class="hlt">ice</span> CO2 fluxes are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25810206','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25810206"><span>Square <span class="hlt">ice</span> in graphene nanocapillaries.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Algara-Siller, G; Lehtinen, O; Wang, F C; Nair, R R; Kaiser, U; Wu, H A; Geim, A K; Grigorieva, I V</p> <p>2015-03-26</p> <p>Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of <span class="hlt">ice</span>, with hexagonal <span class="hlt">ice</span> being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms 'square <span class="hlt">ice</span>'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square <span class="hlt">ice</span> has a high <span class="hlt">packing</span> density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square <span class="hlt">ice</span> should be present inside hydrophobic nanochannels independently of their exact atomic nature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Natur.519..443A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Natur.519..443A"><span>Square <span class="hlt">ice</span> in graphene nanocapillaries</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V.</p> <p>2015-03-01</p> <p>Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of <span class="hlt">ice</span>, with hexagonal <span class="hlt">ice</span> being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms `square <span class="hlt">ice</span>'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square <span class="hlt">ice</span> has a high <span class="hlt">packing</span> density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square <span class="hlt">ice</span> should be present inside hydrophobic nanochannels independently of their exact atomic nature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C11C..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C11C..05F"><span>A Decade of Arctic Sea <span class="hlt">Ice</span> Thickness Change from Airborne and Satellite Altimetry (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farrell, S. L.; Richter-Menge, J.; Kurtz, N. T.; McAdoo, D. C.; Newman, T.; Zwally, H.; Ruth, J.</p> <p>2013-12-01</p> <p>Altimeters on both airborne and satellite platforms provide direct measurements of sea <span class="hlt">ice</span> freeboard from which sea <span class="hlt">ice</span> thickness may be calculated. Satellite altimetry observations of Arctic sea <span class="hlt">ice</span> from ICESat and CryoSat-2 indicate a significant decline in <span class="hlt">ice</span> thickness, and volume, over the last decade. During this time the <span class="hlt">ice</span> <span class="hlt">pack</span> has experienced a rapid change in its composition, transitioning from predominantly thick, multi-year <span class="hlt">ice</span> to thinner, increasingly seasonal <span class="hlt">ice</span>. We will discuss the regional trends in <span class="hlt">ice</span> thickness derived from ICESat and <span class="hlt">Ice</span>Bridge altimetry between 2003 and 2013, contrasting observations of the multi-year <span class="hlt">ice</span> <span class="hlt">pack</span> with seasonal <span class="hlt">ice</span> zones. ICESat ceased operation in 2009, and the final, reprocessed data set became available recently. We extend our analysis to April 2013 using data from the <span class="hlt">Ice</span>Bridge airborne mission, which commenced operations in 2009. We describe our current efforts to more accurately convert from freeboard to <span class="hlt">ice</span> thickness, with a modified methodology that corrects for range errors, instrument biases, and includes an enhanced treatment of snow depth, with respect to <span class="hlt">ice</span> type. With the planned launch by NASA of ICESat-2 in 2016 we can expect continuity of the sea <span class="hlt">ice</span> thickness time series through the end of this decade. Data from the ICESat-2 mission, together with ongoing observations from CryoSat-2, will allow us to understand both the decadal trends and inter-annual variability in the Arctic sea <span class="hlt">ice</span> thickness record. We briefly present the status of planned ICESat-2 sea <span class="hlt">ice</span> data products, and demonstrate the utility of micro-pulse, photon-counting laser altimetry over sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24190391','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24190391"><span>Bacterial activity in sea <span class="hlt">ice</span> and open water of the Weddell Sea, Antarctica: A microautoradiographic study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grossmann, S</p> <p>1994-07-01</p> <p>Metabolic activity of bacteria was investigated in open water, newly forming sea <span class="hlt">ice</span>, and successive stages of <span class="hlt">pack</span> <span class="hlt">ice</span> in the Weddell Sea. Microautoradiography, using [(3)H]leucine as substrate, was compared with incorporation rates of [(3)H]leucine into proteins. Relation of [(3)H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an <span class="hlt">ice</span>-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 10(5) ml(-1), but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3-0.4 days(-1). Total cell concentration of bacteria in 400 m depth was 6.6 × 10(4) ml(-1). Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea <span class="hlt">ice</span> was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed <span class="hlt">ice</span> was 49.1 ng C ml(-1), exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new <span class="hlt">ice</span>, since specific bacterial activity was reduced during <span class="hlt">ice</span> formation, and enrichment of bacteria was not observed when <span class="hlt">ice</span> formed at low algal concentration. During growth of <span class="hlt">pack</span> <span class="hlt">ice</span>, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of <span class="hlt">ice</span> development, and percentages of active cells were as low as 3-5%. In old, thick <span class="hlt">pack</span> <span class="hlt">ice</span>, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the <span class="hlt">ice</span> and were dominated by bacteria with lower average metabolic activity than those of <span class="hlt">ice</span>-free water.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C41A0504B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C41A0504B"><span>Managing <span class="hlt">Ice</span>Bridge Airborne Mission Data at the National Snow and <span class="hlt">Ice</span> Data Center</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brodzik, M.; Kaminski, M. L.; Deems, J. S.; Scambos, T. A.</p> <p>2010-12-01</p> <p>Operation <span class="hlt">Ice</span>Bridge (OIB) is a NASA airborne geophysical survey mission conducting laser altimetry, <span class="hlt">ice</span>-penetrating radar profiling, gravimetry and other geophysical measurements to monitor and characterize the Earth's cryosphere. The <span class="hlt">Ice</span>Bridge mission will operate from 2009 until after the launch of ICESat-II (currently planned for 2015), and provides continuity of measurements between that mission and its predecessor. Data collection sites include the Greenland and Antarctic <span class="hlt">Ice</span> Sheets and the sea <span class="hlt">ice</span> <span class="hlt">pack</span> regions of both poles. These regions include some of the most rapidly changing <span class="hlt">areas</span> of the cryosphere. <span class="hlt">Ice</span>Bridge is also collecting data in East Antarctica via the University of Texas ICECAP program and in Alaska via the University of Alaska, Fairbanks glacier mapping program. The NSIDC Distributed Active Archive Center at the University of Colorado at Boulder provides data archive and distribution support for the <span class="hlt">Ice</span>Bridge mission. Our <span class="hlt">Ice</span>Bridge work is based on two guiding principles: ensuring preservation of the data, and maximizing usage of the data. This broadens our work beyond the typical scope of a data archive. In addition to the necessary data management, discovery, distribution, and outreach functions, we are also developing tools that will enable broader use of the data, and integrating diverse data types to enable new science research. Researchers require expeditious access to data collected from the <span class="hlt">Ice</span>Bridge missions; our archive approach balances that need with our long-term preservation goal. We have adopted a "fast-track" approach to publish data quickly after collection and make it available via FTP download. Subsequently, data sets are archived in the NASA EOSDIS ECS system, which enables data discovery and distribution with the appropriate backup, documentation, and metadata to assure its availability for future research purposes. NSIDC is designing an <span class="hlt">Ice</span>Bridge data portal to allow interactive data search, exploration, and subsetting via</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA126316','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA126316"><span>Modeling Sea <span class="hlt">Ice</span> Trajectories for Oil Spill Tracking.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-06-01</p> <p>is compared with sea <span class="hlt">ice</span> motions observed during the AIDJEX main field experiment in the Beaufort Sea from April 1975 to February 1976. The average ...more recently grown on leads formed as the floes fracture and divide. The large-scale average thickness of the <span class="hlt">pack</span> <span class="hlt">ice</span> is roughly 3 m. As an...opposite extreme, during the summer when air temperatures rise above freezing, melting and offshore winds combine to form an approximately 300-km-wide swath</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51E2110S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51E2110S"><span>Relating Radiative Fluxes on Arctic Sea <span class="hlt">Ice</span> <span class="hlt">Area</span> Using Arctic Observation and Reanalysis Integrated System (ArORIS)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sledd, A.; L'Ecuyer, T. S.</p> <p>2017-12-01</p> <p>With Arctic sea <span class="hlt">ice</span> declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and <span class="hlt">ice</span> cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea <span class="hlt">ice</span> fraction and <span class="hlt">area</span> to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea <span class="hlt">ice</span> <span class="hlt">areas</span>. Surface fluxes are especially responsive to the September sea <span class="hlt">ice</span> minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea <span class="hlt">ice</span> <span class="hlt">area</span>. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea <span class="hlt">ice</span> <span class="hlt">area</span> than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....1613359B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....1613359B"><span>Effect of particle surface <span class="hlt">area</span> on <span class="hlt">ice</span> active site densities retrieved from droplet freezing spectra</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.</p> <p>2016-10-01</p> <p>Heterogeneous <span class="hlt">ice</span> nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an <span class="hlt">ice</span> active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the <span class="hlt">ice</span> nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local <span class="hlt">ice</span> nucleation rates. Upon integration, this yields a full freezing probability function for an <span class="hlt">ice</span> nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface <span class="hlt">area</span> present to derive the commonly used <span class="hlt">ice</span> nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an <span class="hlt">ice</span> nucleating species' specific critical surface <span class="hlt">area</span> is presented and explains the concentration dependence as a result of increasing the variability in <span class="hlt">ice</span> nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810068859','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810068859"><span>Statistical Study of Aircraft <span class="hlt">Icing</span> Probabilities at the 700- and 500- Millibar Levels over Ocean <span class="hlt">Areas</span> in the Northern Hemisphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Perkins, Porter J.; Lewis, William; Mulholland, Donald R.</p> <p>1957-01-01</p> <p>A statistical study is made of <span class="hlt">icing</span> data reported from weather reconnaissance aircraft flown by Air Weather Service (USAF). The weather missions studied were flown at fixed flight levels of 500 millibars (18,000 ft) and 700 millibars (10,000 ft) over wide <span class="hlt">areas</span> of the Pacific, Atlantic, and Arctic Oceans. This report is presented as part of a program conducted by the NACA to obtain extensive <span class="hlt">icing</span> statistics relevant to aircraft design and operation. The thousands of in-flight observations recorded over a 2- to 4-year period provide reliable statistics on <span class="hlt">icing</span> encounters for the specific <span class="hlt">areas</span>, altitudes, and seasons included in the data. The relative frequencies of <span class="hlt">icing</span> occurrence are presented, together with the estimated <span class="hlt">icing</span> probabilities and the relation of these probabilities to the frequencies of flight in clouds and cloud temperatures. The results show that aircraft operators can expect <span class="hlt">icing</span> probabilities to vary widely throughout the year from near zero in the cold Arctic <span class="hlt">areas</span> in winter up to 7 percent in <span class="hlt">areas</span> where greater cloudiness and warmer temperatures prevail. The data also reveal a general tendency of colder cloud temperatures to reduce the probability of <span class="hlt">icing</span> in equally cloudy conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994ESRv...36...59R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994ESRv...36...59R"><span>Particle <span class="hlt">packing</span> from an earth science viewpoint</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rogers, C. D. F.; Dijkstra, T. A.; Smalley, I. J.</p> <p>1994-04-01</p> <p>Particle <span class="hlt">packings</span> are relevant to many aspects of the Earth sciences, and there is a long history of the study of <span class="hlt">packings</span> from an Earth science viewpoint. <span class="hlt">Packings</span> have also been studied in connection with other subjects and disciplines. Allen (1982) produced a major review which provides a solid base for Earth science related studies. This review complements Allen's work and in particular focuses on advances in the study of random <span class="hlt">packings</span> over the last ten years. Transitions from <span class="hlt">packing</span> to <span class="hlt">packing</span> may be as important as the <span class="hlt">packings</span> themselves, and possibly easier to model. This paper places emphasis on certain neglected works, in particular Morrow and Graves (1969) and the <span class="hlt">packing</span> transition envelope, Kahn (1956) and the measurement of <span class="hlt">packing</span> parameters, Griffiths (1962) on <span class="hlt">packings</span> in one-dimension, and Getis and Boots (1978) on <span class="hlt">packings</span> in two dimensions. Certain <span class="hlt">packing</span> problems are relevant to current <span class="hlt">areas</span> of study including structure collapse in loess (hydroconsolidation), flowslides in very sensitive soils, wind erosion, jewel quality in opals and the structure and functions of sand dunes. The region where interparticle forces become active (particles < 200 μm) is considered and the implications for <span class="hlt">packing</span> are examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C22A..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C22A..02N"><span>Snow depth evolution on sea <span class="hlt">ice</span> from Snow Buoy measurement</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicolaus, M.; Arndt, S.; Hendricks, S.; Hoppmann, M.; Katlein, C.; König-Langlo, G.; Nicolaus, A.; Rossmann, H. L.; Schiller, M.; Schwegmann, S.; Langevin, D.</p> <p>2016-12-01</p> <p>Snow cover is an Essential Climate Variable. On sea <span class="hlt">ice</span>, snow dominates the energy and momentum exchanges across the atmosphere-<span class="hlt">ice</span>-ocean interfaces, and actively contributes to sea <span class="hlt">ice</span> mass balance. Yet, snow depth on sea <span class="hlt">ice</span> is one of the least known and most difficult to observe parameters of the Arctic and Antarctic; mainly due to its exceptionally high spatial and temporal variability. In this study; we present a unique time series dataset of snow depth and air temperature evolution on Arctic and Antarctic sea <span class="hlt">ice</span> recorded by autonomous instruments. Snow Buoys record snow depth with four independent ultrasonic sensors, increasing the reliability of the measurements and allowing for additional analyses. Auxiliary measurements include surface and air temperature, barometric pressure and GPS position. 39 deployments of such Snow Buoys were achieved over the last three years either on drifting <span class="hlt">pack</span> <span class="hlt">ice</span>, on landfast sea <span class="hlt">ice</span> or on an <span class="hlt">ice</span> shelf. Here we highlight results from two pairs of Snow Buoys installed on drifting <span class="hlt">pack</span> <span class="hlt">ice</span> in the Weddell Sea. The data reveals large regional differences in the annual cycle of snow depth. Almost no reduction in snow depth (snow melt) was observed in the inner and southern part of the Weddell Sea, allowing a net snow accumulation of 0.2 to 0.9 m per year. In contrast, summer snow melt close to the <span class="hlt">ice</span> edge resulted in a decrease of about 0.5 m during the summer 2015/16. Another array of eight Snow Buoys was installed on central Arctic sea <span class="hlt">ice</span> in September 2015. Their air temperature record revealed exceptionally high air temperatures in the subsequent winter, even exceeding the melting point but with almost no impact on snow depth at that time. Future applications of Snow Buoys on Arctic and Antarctic sea <span class="hlt">ice</span> will allow additional inter-annual studies of snow depth and snow processes, e.g. to support the development of snow depth data products from airborne and satellite data or though assimilation in numerical models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860048367&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860048367&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarginal"><span>Weddell-Scotia sea marginal <span class="hlt">ice</span> zone observations from space, October 1984</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carsey, F. D.; Holt, B.; Martin, S.; Rothrock, D. A.; Mcnutt, L.</p> <p>1986-01-01</p> <p>Imagery from the Shuttle imaging radar-B experiment as well as other satellite and meteorological data are examined to learn more about the open sea <span class="hlt">ice</span> margin of the Weddell-Scotia Seas region. At the <span class="hlt">ice</span> edge, the <span class="hlt">ice</span> forms into bandlike aggregates of small <span class="hlt">ice</span> floes similar to those observed in the Bering Sea. The radar backscatter characteristics of these bands suggest that their upper surface is wet. Further into the <span class="hlt">pack</span>, the radar imagery shows a transition to large floes. In the open sea, large icebergs and long surface gravity waves are discernable in the radar images.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03717&hterms=Russia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DRussia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03717&hterms=Russia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DRussia"><span>Distinguishing Clouds from <span class="hlt">Ice</span> over the East Siberian Sea, Russia</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p><p/>As a consequence of its capability to retrieve cloud-top elevations, stereoscopic observations from the Multi-angle Imaging SpectroRadiometer (MISR) can discriminate clouds from snow and <span class="hlt">ice</span>. The central portion of Russia's East Siberian Sea, including one of the New Siberian Islands, Novaya Sibir, are portrayed in these views from data acquired on May 28, 2002.<p/>The left-hand image is a natural color view from MISR's nadir camera. On the right is a height field retrieved using automated computer processing of data from multiple MISR cameras. Although both clouds and <span class="hlt">ice</span> appear white in the natural color view, the stereoscopic retrievals are able to identify elevated clouds based on the geometric parallax which results when they are observed from different angles. Owing to their elevation above sea level, clouds are mapped as green and yellow <span class="hlt">areas</span>, whereas land, sea <span class="hlt">ice</span>, and very low clouds appear blue and purple. Purple, in particular, denotes elevations very close to sea level. The island of Novaya Sibir is located in the lower left of the images. It can be identified in the natural color view as the dark <span class="hlt">area</span> surrounded by an expanse of fast <span class="hlt">ice</span>. In the stereo map the island appears as a blue region indicating its elevation of less than 100 meters above sea level. <span class="hlt">Areas</span> where the automated stereo processing failed due to lack of sufficient spatial contrast are shown in dark gray. The northern edge of the Siberian mainland can be found at the very bottom of the panels, and is located a little over 250 kilometers south of Novaya Sibir. <span class="hlt">Pack</span> <span class="hlt">ice</span> containing numerous fragmented <span class="hlt">ice</span> floes surrounds the fast <span class="hlt">ice</span>, and narrow <span class="hlt">areas</span> of open ocean are visible.<p/>The East Siberian Sea is part of the Arctic Ocean and is <span class="hlt">ice</span>-covered most of the year. The New Siberian Islands are almost always covered by snow and <span class="hlt">ice</span>, and tundra vegetation is very scant. Despite continuous sunlight from the end of April until the middle of August, the <span class="hlt">ice</span> between the island and the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001527.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001527.html"><span>Blue Beaufort Sea <span class="hlt">Ice</span> from Operation <span class="hlt">Ice</span>Bridge</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Mosaic image of sea <span class="hlt">ice</span> in the Beaufort Sea created by the Digital Mapping System (DMS) instrument aboard the <span class="hlt">Ice</span>Bridge P-3B. The dark <span class="hlt">area</span> in the middle of the image is open water seen through a lead, or opening, in the <span class="hlt">ice</span>. Light blue <span class="hlt">areas</span> are thick sea <span class="hlt">ice</span> and dark blue <span class="hlt">areas</span> are thinner <span class="hlt">ice</span> formed as water in the lead refreezes. Leads are formed when cracks develop in sea <span class="hlt">ice</span> as it moves in response to wind and ocean currents. DMS uses a modified digital SLR camera that points down through a window in the underside of the plane, capturing roughly one frame per second. These images are then combined into an image mosaic using specialized computer software. Credit: NASA/DMS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA01786.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA01786.html"><span>Space Radar Image of Weddell Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1999-04-15</p> <p>This is the first calibrated, multi-frequency, multi-polarization spaceborne radar image of the seasonal sea-<span class="hlt">ice</span> cover in the Weddell Sea, Antarctica. The multi-channel data provide scientists with details about the <span class="hlt">ice</span> <span class="hlt">pack</span> they cannot see any other way and indicates that the large expanse of sea-<span class="hlt">ice</span> is, in fact, comprised of many smaller rounded <span class="hlt">ice</span> floes, shown in blue-gray. These data are particularly useful in helping scientists estimate the thickness of the <span class="hlt">ice</span> cover which is often extremely difficult to measure with other remote sensing systems. The extent, and especially thickness, of the polar ocean's sea-<span class="hlt">ice</span> cover together have important implications for global climate by regulating the loss of heat from the ocean to the cold polar atmosphere. The image was acquired on October 3, 1994, by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. This image is produced by overlaying three channels of radar data in the following colors: red (C-band, HH-polarization), green (L-band HV-polarization), and blue (L-band, HH-polarization). The image is oriented almost east-west with a center location of 58.2 degrees South and 21.6 degrees East. Image dimensions are 45 kilometers by 18 kilometers (28 miles by 11 miles). Most of the <span class="hlt">ice</span> cover is composed of rounded, undeformed blue-gray floes, about 0.7 meters (2 feet) thick, which are surrounded by a jumble of red-tinged deformed <span class="hlt">ice</span> pieces which are up to 2 meters (7 feet) thick. The winter cycle of <span class="hlt">ice</span> growth and deformation often causes this <span class="hlt">ice</span> cover to split apart, exposing open water or "leads." <span class="hlt">Ice</span> growth within these openings is rapid due to the cold, brisk Antarctic atmosphere. Different stages of new-<span class="hlt">ice</span> growth can be seen within the linear leads, resulting from continuous opening and closing. The blue lines within the leads are open water <span class="hlt">areas</span> in new fractures which are roughened by wind. The bright red lines are an intermediate stage of new-<span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1364126','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1364126"><span>CICE, The Los Alamos Sea <span class="hlt">Ice</span> Model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hunke, Elizabeth; Lipscomb, William; Jones, Philip</p> <p></p> <p>The Los Alamos sea <span class="hlt">ice</span> model (CICE) is the result of an effort to develop a computationally efficient sea <span class="hlt">ice</span> component for a fully coupled atmosphere–land–ocean–<span class="hlt">ice</span> global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and <span class="hlt">ice</span> due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of <span class="hlt">ice</span> dynamics, which predicts the velocity field of themore » <span class="hlt">ice</span> <span class="hlt">pack</span> based on a model of the material strength of the <span class="hlt">ice</span>; an incremental remapping transport model that describes horizontal advection of the areal concentration, <span class="hlt">ice</span> and snow volume and other state variables; and a ridging parameterization that transfers <span class="hlt">ice</span> among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the <span class="hlt">ice</span> ecosystem. The CICE sea <span class="hlt">ice</span> model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea <span class="hlt">ice</span> forecasting in the polar regions and in numerical weather prediction models.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRC..108.3296M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRC..108.3296M"><span>Observations and analyses of an intense waves-in-<span class="hlt">ice</span> event in the Sea of Okhotsk</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marko, John R.</p> <p>2003-09-01</p> <p><span class="hlt">Ice</span> draft, <span class="hlt">ice</span> velocity, <span class="hlt">ice</span> concentration, and current profile data gathered at an array of eight continental shelf monitoring sites east of Sakhalin Island were analyzed in conjunction with regional meteorological data to document and explain intense wave occurrences several hundred kilometers inside the Sea of Okhotsk <span class="hlt">ice</span> <span class="hlt">pack</span>. The studied event was associated with the 19-21 March 1998 passage of an intense cyclone, which produced waves with amplitudes in excess of 1 m at the most offshore monitoring location. The relatively monochromatic character of the waves allowed extraction of wave intensity time series from <span class="hlt">ice</span> draft time series data. Spatial and temporal variations in these data were used to establish directions and speeds of wave energy propagation for comparisons with an earlier interpretation [, 1988] of an Antarctic intense waves-in-<span class="hlt">ice</span> event. It was concluded that although both events are compatible with a two-stage process in which initially slowly advancing wave activity increases subsequent <span class="hlt">ice</span> cover wave transmissivity, the first stage of the Sea of Okhotsk event was not explicable in terms of the static stress-induced changes in the waves-in-<span class="hlt">ice</span> dispersion relationship proposed by Liu and Mollo-Christensen. An alternative explanation is offered that eschews the linkage between wave group velocities and the observed slow rates of wave energy propagation and attributes the subsequent transition to more normal wave propagation behavior to <span class="hlt">ice</span> <span class="hlt">pack</span> divergence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT........29K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT........29K"><span>Arctic landfast sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konig, Christof S.</p> <p></p> <p>Landfast <span class="hlt">ice</span> is sea <span class="hlt">ice</span> which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast <span class="hlt">ice</span> fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to <span class="hlt">pack</span> <span class="hlt">ice</span>. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast <span class="hlt">ice</span> edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea <span class="hlt">ice</span> models is not capable of reproducing certain aspects of landfast <span class="hlt">ice</span> formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new <span class="hlt">ice</span> model that permits the existence of landfast sea <span class="hlt">ice</span> even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic <span class="hlt">ice</span> dynamics I add tensile strength to the <span class="hlt">ice</span> rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast <span class="hlt">ice</span> modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast <span class="hlt">ice</span> that weaken the <span class="hlt">ice</span> sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast <span class="hlt">ice</span> modeling can only verified in comparison to observed data. I have extracted landfast sea <span class="hlt">ice</span> data of several decades from several sources to create a landfast sea <span class="hlt">ice</span> climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast <span class="hlt">ice</span> distribution: distance from the coastline, ocean depth, as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/2600/D/i2600d-pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/2600/D/i2600d-pamphlet.pdf"><span>Coastal-change and glaciological map of the Ronne <span class="hlt">Ice</span> Shelf <span class="hlt">area</span>, Antarctica, 1974-2002</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ferrigno, Jane G.; Foley, K.M.; Swithinbank, C.; Williams, R.S.; Dalide, L.M.</p> <p>2005-01-01</p> <p>Changes in the <span class="hlt">area</span> and volume of polar <span class="hlt">ice</span> sheets are intricately linked to changes in global climate, and the resulting changes in sea level may severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic <span class="hlt">ice</span> sheet could cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic <span class="hlt">ice</span> sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). In spite of its importance, the mass balance (the net volumetric gain or loss) of the Antarctic <span class="hlt">ice</span> sheet is poorly known; it is not known for certain whether the <span class="hlt">ice</span> sheet is growing or shrinking. In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic part of the Antarctic <span class="hlt">ice</span> sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Joughin and Tulaczyk (2002), on the basis of analysis of <span class="hlt">ice</span>-flow velocities derived from synthetic aperture radar, concluded that most of the Ross <span class="hlt">ice</span> streams (<span class="hlt">ice</span> streams on the east side of the Ross <span class="hlt">Ice</span> Shelf) have a positive mass balance, whereas Rignot and others (in press) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b, 2004). The mass balance of the East Antarctic part of the Antarctic <span class="hlt">ice</span> sheet is unknown, but thought to be in near equilibrium. Measurement of changes in <span class="hlt">area</span> and mass balance of the Antarctic <span class="hlt">ice</span> sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation's (1990) Division of Polar Pro-grams. On the basis of these recommendations, the U.S. Geo-logical Survey (USGS) decided that the archive of early 1970s Landsat 1, 2, and 3 Multispectral Scanner</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014251','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014251"><span>Behavioral Ecology of Narwhals in a Changing Arctic</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>ecology in the <span class="hlt">pack</span> <span class="hlt">ice</span> of Baffin Bay. We will collect data on the species’ acoustic , movement, and diving ecology in the offshore <span class="hlt">pack</span> <span class="hlt">ice</span> of Baffin...Bay over a 4 year long research program with three ecological focus <span class="hlt">areas</span> ( acoustic ecology, sea <span class="hlt">ice</span> ecology, and foraging ecology). Our...questions: 2 1. Acoustic ecology: What are baseline characteristics of the acoustic repertoire of narwhals in the offshore Baffin Bay <span class="hlt">pack</span> <span class="hlt">ice</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850042373&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dglacier%2Bmelt','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850042373&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dglacier%2Bmelt"><span><span class="hlt">Ice</span> sheet margins and <span class="hlt">ice</span> shelves</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, R. H.</p> <p>1984-01-01</p> <p>The effect of climate warming on the size of <span class="hlt">ice</span> sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the <span class="hlt">area</span> of summer melt on the <span class="hlt">ice</span> sheets and <span class="hlt">ice</span> shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the <span class="hlt">ice</span> shelves by an increase in <span class="hlt">ice</span> drainage rates, particularly from the <span class="hlt">ice</span> sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine <span class="hlt">ice</span> sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an <span class="hlt">ice</span> sheet is primarily determined by: bedrock topography; the basal conditions of the grounded <span class="hlt">ice</span> sheet; and the <span class="hlt">ice</span> shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of <span class="hlt">ice</span> sheet equilibrium is recommended.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5892929','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5892929"><span>Microalgal photophysiology and macronutrient distribution in summer sea <span class="hlt">ice</span> in the Amundsen and Ross Seas, Antarctica</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fransson, Agneta; Currie, Kim; Wulff, Angela; Chierici, Melissa</p> <p>2018-01-01</p> <p>Our study addresses how environmental variables, such as macronutrients concentrations, snow cover, carbonate chemistry and salinity affect the photophysiology and biomass of Antarctic sea-<span class="hlt">ice</span> algae. We have measured vertical profiles of inorganic macronutrients (phosphate, nitrite + nitrate and silicic acid) in summer sea <span class="hlt">ice</span> and photophysiology of <span class="hlt">ice</span> algal assemblages in the poorly studied Amundsen and Ross Seas sectors of the Southern Ocean. Brine-scaled bacterial abundance, chl a and macronutrient concentrations were often high in the <span class="hlt">ice</span> and positively correlated with each other. Analysis of photosystem II rapid light curves showed that microalgal cells in samples with high phosphate and nitrite + nitrate concentrations had reduced maximum relative electron transport rate and photosynthetic efficiency. We also observed strong couplings of PSII parameters to snow depth, <span class="hlt">ice</span> thickness and brine salinity, which highlights a wide range of photoacclimation in Antarctic <span class="hlt">pack-ice</span> algae. It is likely that the <span class="hlt">pack</span> <span class="hlt">ice</span> was in a post-bloom situation during the late sea-<span class="hlt">ice</span> season, with low photosynthetic efficiency and a high degree of nutrient accumulation occurring in the <span class="hlt">ice</span>. In order to predict how key biogeochemical processes are affected by future changes in sea <span class="hlt">ice</span> cover, such as in situ photosynthesis and nutrient cycling, we need to understand how physicochemical properties of sea <span class="hlt">ice</span> affect the microbial community. Our results support existing hypothesis about sea-<span class="hlt">ice</span> algal photophysiology, and provide additional observations on high nutrient concentrations in sea <span class="hlt">ice</span> that could influence the planktonic communities as the <span class="hlt">ice</span> is retreating. PMID:29634756</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhRvE..81f6123H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhRvE..81f6123H"><span>Sea-<span class="hlt">ice</span> floe-size distribution in the context of spontaneous scaling emergence in stochastic systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herman, Agnieszka</p> <p>2010-06-01</p> <p>Sea-<span class="hlt">ice</span> floe-size distribution (FSD) in <span class="hlt">ice-pack</span> covered seas influences many aspects of ocean-atmosphere interactions. However, data concerning FSD in the polar oceans are still sparse and processes shaping the observed FSD properties are poorly understood. Typically, power-law FSDs are assumed although no feasible explanation has been provided neither for this one nor for other properties of the observed distributions. Consequently, no model exists capable of predicting FSD parameters in any particular situation. Here I show that the observed FSDs can be well represented by a truncated Pareto distribution P(x)=x-1-αexp[(1-α)/x] , which is an emergent property of a certain group of multiplicative stochastic systems, described by the generalized Lotka-Volterra (GLV) equation. Building upon this recognition, a possibility of developing a simple agent-based GLV-type sea-<span class="hlt">ice</span> model is considered. Contrary to simple power-law FSDs, GLV gives consistent estimates of the total floe perimeter, as well as floe-<span class="hlt">area</span> distribution in agreement with observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/2600/B/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/2600/B/"><span>Coastal-Change and Glaciological Map of the Larsen <span class="hlt">Ice</span> Shelf <span class="hlt">Area</span>, Antarctica, 1940-2005</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ferrigno, Jane G.; Cook, Alison J.; Mathie, Amy M.; Williams, Richard S.; Swithinbank, Charles; Foley, Kevin M.; Fox, Adrian J.; Thomson, Janet W.; Sievers, Jorn</p> <p>2008-01-01</p> <p>Changes in the <span class="hlt">area</span> and volume of polar <span class="hlt">ice</span> sheets are intricately linked to changes in global climate, and the resulting changes in sea level could severely impact the densely populated coastal regions on Earth. Antarctica is Earth's largest reservoir of glacial <span class="hlt">ice</span>. Melting of the West Antarctic part alone of the Antarctic <span class="hlt">ice</span> sheet would cause a sea-level rise of approximately 6 meters (m), and the potential sea-level rise after melting of the entire Antarctic <span class="hlt">ice</span> sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). The mass balance (the net volumetric gain or loss) of the Antarctic <span class="hlt">ice</span> sheet is highly complex, responding differently to different climatic and other conditions in each region (Vaughan, 2005). In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic <span class="hlt">ice</span> sheet is probably becoming thinner overall; although it is known to be thickening in the west, it is thinning in the north. The mass balance of the East Antarctic <span class="hlt">ice</span> sheet is thought by Davis and others (2005) to be positive on the basis of the change in satellite-altimetry measurements made between 1992 and 2003. Measurement of changes in <span class="hlt">area</span> and mass balance of the Antarctic <span class="hlt">ice</span> sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation's (1990) Division of Polar Programs. On the basis of these recommendations, the U.S. Geological Survey (USGS) decided that the archive of early 1970s Landsat 1, 2, and 3 Multispectral Scanner (MSS) images of Antarctica and the subsequent repeat coverage made possible with Landsat and other satellite images provided an excellent means of documenting changes in the cryospheric coastline of Antarctica (Ferrigno and Gould, 1987). The availability of this information provided the impetus for carrying out a</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JMS....10....9S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JMS....10....9S"><span>The importance of polynyas, <span class="hlt">ice</span> edges, and leads to marine mammals and birds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stirling, Ian</p> <p>1997-01-01</p> <p>The correlation between <span class="hlt">areas</span> of open water in <span class="hlt">ice</span>-covered seas and increased biological productivity has been noted for some time. To date, most attention has been focused on larger polynyas, such as the Northeast Water and the Northwater. Although spectacular in their own right, these large polynyas represent only part of a vitally important continuum of biological productivity that varies significantly between geographic <span class="hlt">areas</span> and <span class="hlt">ice</span> habitats, that includes the multi-year <span class="hlt">pack</span> of the polar ocean and small localized polynyas in annual <span class="hlt">ice</span>. Surveys of the distribution and abundance of ringed seals in the Canadian Arctic Archipelago have shown differences in density that are correlated with the presence or absence of polynyas. There is also significant variation in the biological productivity of polynya <span class="hlt">areas</span> of the Canadian High Arctic Archipelago and northern Greenland, all of which receive inflow from the polar basin. Long-term studies of polar bears and ringed seals in western Hudson Bay and the eastern Beaufort Sea show significant but dissimilar patterns of change in condition and reproductive rates between the two regions and suggest that fundamentally different climatic or oceanographic processes may be involved. Projections of climate models suggest that, if warming occurs, then the extent of <span class="hlt">ice</span> cover in Hudson Bay may be among the first things affected. Long-term studies of polar bears and ringed seals in the eastern Beaufort Sea and Hudson Bay would suggest these two species to be suitable indicators of significant climatic or oceanographic changes in the marine ecosystem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal <span class="hlt">Ice</span> Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Craig; Rainville, Luc; Perry, Mary Jane</p> <p>2016-04-01</p> <p>The observed reduction of Arctic summertime sea <span class="hlt">ice</span> extent and expansion of the marginal <span class="hlt">ice</span> zone (MIZ) have profound impacts on the balance of processes controlling sea <span class="hlt">ice</span> evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea <span class="hlt">ice</span>. Spatial and temporal variability in <span class="hlt">ice</span> properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing <span class="hlt">ice</span> cover, and how the balance of processes shift as a function of <span class="hlt">ice</span> fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal <span class="hlt">ice</span> zone, deep into the <span class="hlt">pack</span> during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, <span class="hlt">ice</span>-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the <span class="hlt">ice</span> edge. In the <span class="hlt">pack</span>, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the <span class="hlt">ice</span> edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea <span class="hlt">ice</span> extent, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal <span class="hlt">Ice</span> Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Perry, M. J.</p> <p>2016-02-01</p> <p>The observed reduction of Arctic summertime sea <span class="hlt">ice</span> extent and expansion of the marginal <span class="hlt">ice</span> zone (MIZ) have profound impacts on the balance of processes controlling sea <span class="hlt">ice</span> evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea <span class="hlt">ice</span>. Spatial and temporal variability in <span class="hlt">ice</span> properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing <span class="hlt">ice</span> cover, and how the balance of processes shift as a function of <span class="hlt">ice</span> fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal <span class="hlt">ice</span> zone, deep into the <span class="hlt">pack</span> during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, <span class="hlt">ice</span>-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the <span class="hlt">ice</span> edge. In the <span class="hlt">pack</span>, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the <span class="hlt">ice</span> edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea <span class="hlt">ice</span> extent, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TCD.....6..505F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TCD.....6..505F"><span>Quantification of ikaite in Antarctic sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, M.; Thomas, D. N.; Krell, A.; Nehrke, G.; Göttlicher, J.; Norman, L.; Riaux-Gobin, C.; Dieckmann, G. S.</p> <p>2012-02-01</p> <p>Calcium carbonate precipitation in sea <span class="hlt">ice</span> can increase pCO2 during precipitation in winter and decrease pCO2 during dissolution in spring. CaCO3 precipitation in sea <span class="hlt">ice</span> is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea <span class="hlt">ice</span>. This is the first quantitative study of hydrous calcium carbonate, as ikaite, in sea <span class="hlt">ice</span> and discusses its potential significance for the carbon cycle in polar oceans. <span class="hlt">Ice</span> cores and brine samples were collected from <span class="hlt">pack</span> and land fast sea <span class="hlt">ice</span> between September and December 2007 during an expedition in the East Antarctic and another off Terre Adélie, Antarctica. Samples were analysed for CaCO3, Salinity, DOC, DON, Phosphate, and total alkalinity. A relationship between the measured parameters and CaCO3 precipitation could not be observed. We found calcium carbonate, as ikaite, mostly in the top layer of sea <span class="hlt">ice</span> with values up to 126 mg ikaite per liter melted sea <span class="hlt">ice</span>. This potentially represents a contribution between 0.12 and 9 Tg C to the annual carbon flux in polar oceans. The horizontal distribution of ikaite in sea <span class="hlt">ice</span> was heterogenous. We also found the precipitate in the snow on top of the sea <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5695587','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5695587"><span>Benthic colonization in newly <span class="hlt">ice</span>-free soft-bottom <span class="hlt">areas</span> in an Antarctic fjord</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Servetto, Natalia; Torre, Luciana; Sahade, Ricardo</p> <p>2017-01-01</p> <p>Extended glacier retreat is among the main consequences of the rapid warming of the West Antarctic Peninsula. Particularly, in the inner part of Potter Cove (South Shetland Islands, Antarctica) large <span class="hlt">areas</span> are now exposed to open sea conditions owing to the retreat of Fourcade glacier. During the 2010 austral summer, underwater photographic surveys were undertaken by SCUBA diving up to 30 m in these new <span class="hlt">ice</span>-free <span class="hlt">areas</span> 80 m from the glacier front. Our main aim was to investigate colonization and early succession of the benthic assemblages on soft-bottom <span class="hlt">areas</span>. Here, we reported a total of 1,146 animals belonging to 13 taxa. Filter-feeders comprised the largest trophic group and sessile fauna showed much higher coverages and densities than mobile fauna at all depths. The most abundant groups were ascidians and bryozoans, which together comprised ~90% of all taxa documented. In a region where most of marine-terminating glaciers are in retreat, these results are an important contribution to improve our knowledge on colonization in the newly <span class="hlt">ice</span>-free <span class="hlt">areas</span>. PMID:29117262</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29117262','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29117262"><span>Benthic colonization in newly <span class="hlt">ice</span>-free soft-bottom <span class="hlt">areas</span> in an Antarctic fjord.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lagger, Cristian; Servetto, Natalia; Torre, Luciana; Sahade, Ricardo</p> <p>2017-01-01</p> <p>Extended glacier retreat is among the main consequences of the rapid warming of the West Antarctic Peninsula. Particularly, in the inner part of Potter Cove (South Shetland Islands, Antarctica) large <span class="hlt">areas</span> are now exposed to open sea conditions owing to the retreat of Fourcade glacier. During the 2010 austral summer, underwater photographic surveys were undertaken by SCUBA diving up to 30 m in these new <span class="hlt">ice</span>-free <span class="hlt">areas</span> 80 m from the glacier front. Our main aim was to investigate colonization and early succession of the benthic assemblages on soft-bottom <span class="hlt">areas</span>. Here, we reported a total of 1,146 animals belonging to 13 taxa. Filter-feeders comprised the largest trophic group and sessile fauna showed much higher coverages and densities than mobile fauna at all depths. The most abundant groups were ascidians and bryozoans, which together comprised ~90% of all taxa documented. In a region where most of marine-terminating glaciers are in retreat, these results are an important contribution to improve our knowledge on colonization in the newly <span class="hlt">ice</span>-free <span class="hlt">areas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23484000','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23484000"><span>Evidence of macroalgal colonization on newly <span class="hlt">ice</span>-free <span class="hlt">areas</span> following glacial retreat in Potter Cove (South Shetland Islands), Antarctica.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Quartino, María Liliana; Deregibus, Dolores; Campana, Gabriela Laura; Latorre, Gustavo Edgar Juan; Momo, Fernando Roberto</p> <p>2013-01-01</p> <p>Climate warming has been related to glacial retreat along the Western Antarctic Peninsula. Over the last years, a visible melting of Fourcade Glacier (Potter Cove, South Shetland Islands) has exposed newly <span class="hlt">ice</span>-free hard bottom <span class="hlt">areas</span> available for benthic colonization. However, <span class="hlt">ice</span> melting produces a reduction of light penetration due to an increase of sediment input and higher <span class="hlt">ice</span> impact. Seventeen years ago, the coastal sites close to the glacier cliffs were devoid of macroalgae. Are the newly <span class="hlt">ice</span>-free <span class="hlt">areas</span> suitable for macroalgal colonization? To tackle this question, underwater video transects were performed at six newly <span class="hlt">ice</span>-free <span class="hlt">areas</span> with different degree of glacial influence. Macroalgae were found in all sites, even in close proximity to the retreating glacier. We can show that: 1. The complexity of the macroalgal community is positively correlated to the elapsed time from the <span class="hlt">ice</span> retreat, 2. Algae development depends on the optical conditions and the sediment input in the water column; some species are limited by light availability, 3. Macroalgal colonization is negatively affected by the <span class="hlt">ice</span> disturbance, 4. The colonization is determined by the size and type of substrate and by the slope of the bottom. As macroalgae are probably one of the main energy sources for the benthos, an expansion of the macroalgal distribution can be expected to affect the matter and energy fluxes in Potter Cove ecosystem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3587575','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3587575"><span>Evidence of Macroalgal Colonization on Newly <span class="hlt">Ice</span>-Free <span class="hlt">Areas</span> following Glacial Retreat in Potter Cove (South Shetland Islands), Antarctica</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Quartino, María Liliana; Deregibus, Dolores; Campana, Gabriela Laura; Latorre, Gustavo Edgar Juan; Momo, Fernando Roberto</p> <p>2013-01-01</p> <p>Climate warming has been related to glacial retreat along the Western Antarctic Peninsula. Over the last years, a visible melting of Fourcade Glacier (Potter Cove, South Shetland Islands) has exposed newly <span class="hlt">ice</span>-free hard bottom <span class="hlt">areas</span> available for benthic colonization. However, <span class="hlt">ice</span> melting produces a reduction of light penetration due to an increase of sediment input and higher <span class="hlt">ice</span> impact. Seventeen years ago, the coastal sites close to the glacier cliffs were devoid of macroalgae. Are the newly <span class="hlt">ice</span>-free <span class="hlt">areas</span> suitable for macroalgal colonization? To tackle this question, underwater video transects were performed at six newly <span class="hlt">ice</span>-free <span class="hlt">areas</span> with different degree of glacial influence. Macroalgae were found in all sites, even in close proximity to the retreating glacier. We can show that: 1. The complexity of the macroalgal community is positively correlated to the elapsed time from the <span class="hlt">ice</span> retreat, 2. Algae development depends on the optical conditions and the sediment input in the water column; some species are limited by light availability, 3. Macroalgal colonization is negatively affected by the <span class="hlt">ice</span> disturbance, 4. The colonization is determined by the size and type of substrate and by the slope of the bottom. As macroalgae are probably one of the main energy sources for the benthos, an expansion of the macroalgal distribution can be expected to affect the matter and energy fluxes in Potter Cove ecosystem. PMID:23484000</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C31A0275B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C31A0275B"><span>Measuring Sea-<span class="hlt">Ice</span> Motion in the Arctic with Real Time Photogrammetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brozena, J. M.; Hagen, R. A.; Peters, M. F.; Liang, R.; Ball, D.</p> <p>2014-12-01</p> <p>The U.S. Naval Research Laboratory, in coordination with other groups, has been collecting sea-<span class="hlt">ice</span> data in the Arctic off the north coast of Alaska with an airborne system employing a radar altimeter, LiDAR and a photogrammetric camera in an effort to obtain wide swaths of measurements coincident with Cryosat-2 footprints. Because the satellite tracks traverse <span class="hlt">areas</span> of moving <span class="hlt">pack</span> <span class="hlt">ice</span>, precise real-time estimates of the <span class="hlt">ice</span> motion are needed to fly a survey grid that will yield complete data coverage. This requirement led us to develop a method to find the <span class="hlt">ice</span> motion from the aircraft during the survey. With the advent of real-time orthographic photogrammetric systems, we developed a system that measures the sea <span class="hlt">ice</span> motion in-flight, and also permits post-process modeling of sea <span class="hlt">ice</span> velocities to correct the positioning of radar and LiDAR data. For the 2013 and 2014 field seasons, we used this Real Time <span class="hlt">Ice</span> Motion Estimation (RTIME) system to determine <span class="hlt">ice</span> motion using Applanix's Inflight Ortho software with an Applanix DSS439 system. Operationally, a series of photos were taken in the survey <span class="hlt">area</span>. The aircraft then turned around and took more photos along the same line several minutes later. Orthophotos were generated within minutes of collection and evaluated by custom software to find photo footprints and potential overlap. Overlapping photos were passed to the correlation software, which selects a series of "chips" in the first photo and looks for the best matches in the second photo. The correlation results are then passed to a density-based clustering algorithm to determine the offset of the photo pair. To investigate any systematic errors in the photogrammetry, we flew several flight lines over a fixed point on various headings, over an <span class="hlt">area</span> of non-moving <span class="hlt">ice</span> in 2013. The orthophotos were run through the correlation software to find any residual offsets, and run through additional software to measure chip positions and offsets relative to the aircraft</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190395','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190395"><span>Polar bears and sea <span class="hlt">ice</span> habitat change</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Durner, George M.; Atwood, Todd C.; Butterworth, Andy</p> <p>2017-01-01</p> <p>The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea <span class="hlt">ice</span> and as such can be affected by climate warming-induced changes in the extent and composition of <span class="hlt">pack</span> <span class="hlt">ice</span> and its impacts on their seal prey. Sea <span class="hlt">ice</span> declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater <span class="hlt">ice</span> drift, <span class="hlt">ice</span> fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea <span class="hlt">ice</span> that has been typical in that region is being replaced by thinner annual <span class="hlt">ice</span>. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea <span class="hlt">ice</span> will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1479080','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1479080"><span>Langevin Dynamics Simulations of Genome <span class="hlt">Packing</span> in Bacteriophage</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Forrey, Christopher; Muthukumar, M.</p> <p>2006-01-01</p> <p>We use Langevin dynamics simulations to study the process by which a coarse-grained DNA chain is packaged within an icosahedral container. We focus our inquiry on three <span class="hlt">areas</span> of interest in viral <span class="hlt">packing</span>: the evolving structure of the packaged DNA condensate; the <span class="hlt">packing</span> velocity; and the internal buildup of energy and resultant forces. Each of these <span class="hlt">areas</span> has been studied experimentally, and we find that we can qualitatively reproduce experimental results. However, our findings also suggest that the phage genome <span class="hlt">packing</span> process is fundamentally different than that suggested by the inverse spool model. We suggest that <span class="hlt">packing</span> in general does not proceed in the deterministic fashion of the inverse-spool model, but rather is stochastic in character. As the chain configuration becomes compressed within the capsid, the structure, energy, and <span class="hlt">packing</span> velocity all become dependent upon polymer dynamics. That many observed features of the <span class="hlt">packing</span> process are rooted in condensed-phase polymer dynamics suggests that statistical mechanics, rather than mechanics, should serve as the proper theoretical basis for genome <span class="hlt">packing</span>. Finally we suggest that, as a result of an internal protein unique to bacteriophage T7, the T7 genome may be significantly more ordered than is true for bacteriophage in general. PMID:16617089</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16617089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16617089"><span>Langevin dynamics simulations of genome <span class="hlt">packing</span> in bacteriophage.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forrey, Christopher; Muthukumar, M</p> <p>2006-07-01</p> <p>We use Langevin dynamics simulations to study the process by which a coarse-grained DNA chain is packaged within an icosahedral container. We focus our inquiry on three <span class="hlt">areas</span> of interest in viral <span class="hlt">packing</span>: the evolving structure of the packaged DNA condensate; the <span class="hlt">packing</span> velocity; and the internal buildup of energy and resultant forces. Each of these <span class="hlt">areas</span> has been studied experimentally, and we find that we can qualitatively reproduce experimental results. However, our findings also suggest that the phage genome <span class="hlt">packing</span> process is fundamentally different than that suggested by the inverse spool model. We suggest that <span class="hlt">packing</span> in general does not proceed in the deterministic fashion of the inverse-spool model, but rather is stochastic in character. As the chain configuration becomes compressed within the capsid, the structure, energy, and <span class="hlt">packing</span> velocity all become dependent upon polymer dynamics. That many observed features of the <span class="hlt">packing</span> process are rooted in condensed-phase polymer dynamics suggests that statistical mechanics, rather than mechanics, should serve as the proper theoretical basis for genome <span class="hlt">packing</span>. Finally we suggest that, as a result of an internal protein unique to bacteriophage T7, the T7 genome may be significantly more ordered than is true for bacteriophage in general.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/638276-sea-ice-polar-climate-ncar-csm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/638276-sea-ice-polar-climate-ncar-csm"><span>Sea <span class="hlt">ice</span> and polar climate in the NCAR CSM</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weatherly, J.W.; Briegleb, B.P.; Large, W.G.</p> <p></p> <p>The Climate System Model (CSM) consists of atmosphere, ocean, land, and sea-<span class="hlt">ice</span> components linked by a flux coupler, which computes fluxes of energy and momentum between components. The sea-<span class="hlt">ice</span> component consists of a thermodynamic formulation for <span class="hlt">ice</span>, snow, and leads within the <span class="hlt">ice</span> <span class="hlt">pack</span>, and <span class="hlt">ice</span> dynamics using the cavitating-fluid <span class="hlt">ice</span> rheology, which allows for the compressive strength of <span class="hlt">ice</span> but ignores shear viscosity. The results of a 300-yr climate simulation are presented, with the focus on sea <span class="hlt">ice</span> and the atmospheric forcing over sea <span class="hlt">ice</span> in the polar regions. The atmospheric model results are compared to analyses from themore » European Centre for Medium-Range Weather Forecasts and other observational sources. The sea-<span class="hlt">ice</span> concentrations and velocities are compared to satellite observational data. The atmospheric sea level pressure (SLP) in CSM exhibits a high in the central Arctic displaced poleward from the observed Beaufort high. The Southern Hemisphere SLP over sea <span class="hlt">ice</span> is generally 5 mb lower than observed. Air temperatures over sea <span class="hlt">ice</span> in both hemispheres exhibit cold biases of 2--4 K. The precipitation-minus-evaporation fields in both hemispheres are greatly improved over those from earlier versions of the atmospheric GCM.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7271O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7271O"><span>Modeling Wave-<span class="hlt">Ice</span> Interactions in the Marginal <span class="hlt">Ice</span> Zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe</p> <p>2015-04-01</p> <p>The small-scale (O(m)) interactions between waves and <span class="hlt">ice</span> floes in the marginal <span class="hlt">ice</span> zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and <span class="hlt">ice</span> floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and <span class="hlt">ice</span> are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which <span class="hlt">ice</span> floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and <span class="hlt">ice</span> <span class="hlt">pack</span> retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to <span class="hlt">ice</span>. Questions to be examined include: How is energy dissipated by <span class="hlt">ice</span> floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does <span class="hlt">ice</span> material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-<span class="hlt">ice</span> parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21E..02I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21E..02I"><span>Measurements of sea <span class="hlt">ice</span> mass redistribution during <span class="hlt">ice</span> deformation event in Arctic winter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Itkin, P.; Spreen, G.; King, J.; Rösel, A.; Skourup, H.; Munk Hvidegaard, S.; Wilkinson, J.; Oikkonen, A.; Granskog, M. A.; Gerland, S.</p> <p>2016-12-01</p> <p>Sea-<span class="hlt">ice</span> growth during high winter is governed by <span class="hlt">ice</span> dynamics. The highest growth rates are found in leads that open under divergent conditions, where exposure to the cold atmosphere promotes thermodynamic growth. Additionally <span class="hlt">ice</span> thickens dynamically, where convergence causes rafting and ridging. We present a local study of sea-<span class="hlt">ice</span> growth and mass redistribution between two consecutive airborne measurements, on 19 and 24 April 2015, during the N-<span class="hlt">ICE</span>2015 expedition in the <span class="hlt">area</span> north of Svalbard. Between the two overflights an <span class="hlt">ice</span> deformation event was observed. Airborne laser scanner (ALS) measurements revisited the same sea-<span class="hlt">ice</span> <span class="hlt">area</span> of approximately 3x3 km. By identifying the sea surface within the ALS measurements as a reference the sea <span class="hlt">ice</span> plus snow freeboard was obtained with a spatial resolution of 5 m. By assuming isostatic equilibrium of level floes, the freeboard heights can be converted to <span class="hlt">ice</span> thickness. The snow depth is estimated from in-situ measurements. Sea <span class="hlt">ice</span> thickness measurements were made in the same <span class="hlt">area</span> as the ALS measurements by electromagnetic sounding from a helicopter (HEM), and with a ground-based device (EM31), which allows for cross-validation of the sea-<span class="hlt">ice</span> thickness estimated from all 3 procedures. Comparison of the ALS snow freeboard distributions between the first and second overflight shows a decrease in the thin <span class="hlt">ice</span> classes and an increase of the thick <span class="hlt">ice</span> classes. While there was no observable snowfall and a very low sea-<span class="hlt">ice</span> growth of older level <span class="hlt">ice</span> during this period, an autonomous buoy array deployed in the surroundings of the <span class="hlt">area</span> measured by the ALS shows first divergence followed by convergence associated with shear. To quantify and link the sea <span class="hlt">ice</span> deformation with the associated sea-<span class="hlt">ice</span> thickness change and mass redistribution we identify over 100 virtual buoys in the ALS data from both overflights. We triangulate the <span class="hlt">area</span> between the buoys and calculate the strain rates and freeboard change for each individual triangle</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920052553&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920052553&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal"><span>Correlation studies of passive and active microwave data in the marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, J. C.</p> <p>1991-01-01</p> <p>The microwave radiative and backscatter characteristics of sea <span class="hlt">ice</span> in an Arctic marginal <span class="hlt">ice</span> zone have been studied using near-simultaneous passive and active synthetic aperture radar microwave data. Intermediate-resolution multichannel passive microwave data were registered and analyzed. Passive and active microwave data generally complement each other as the two sensors are especially sensitive to different physical properties of the sea <span class="hlt">ice</span>. In the inner <span class="hlt">pack</span>, undeformed first-year <span class="hlt">ice</span> is observed to have low backscatter values but high brightness temperatures while multiyear <span class="hlt">ice</span> has generally high backscatter values and low brightness temperatures. However, in the marginal <span class="hlt">ice</span> zone, the signature and backscatter for multiyear <span class="hlt">ice</span> are considerably different and closer to those of first-year <span class="hlt">ice</span>. Some floes identified by photography as snow-covered thick <span class="hlt">ice</span> have backscatter similar to that of new <span class="hlt">ice</span> or open water while brash <span class="hlt">ice</span> has backscatter similar to or higher than that of ridged <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020004347','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020004347"><span>Sea <span class="hlt">Ice</span> Remote Sensing Using Surface Reflected GPS Signals</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Komjathy, Attila; Maslanik, James; Zavorotny, Valery U.; Axelrad, Penina; Katzberg, Stephen J.</p> <p>2000-01-01</p> <p>This paper describes a new research effort to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. Our experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and freshwater <span class="hlt">ice</span> as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the <span class="hlt">ice</span> <span class="hlt">pack</span> near Barrow, Alaska indicating correlation between forward-scattered GPS returns and RADARSAT backscattered measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27025155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27025155"><span><span class="hlt">Ice</span>-shell purification of <span class="hlt">ice</span>-binding proteins.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marshall, Craig J; Basu, Koli; Davies, Peter L</p> <p>2016-06-01</p> <p><span class="hlt">Ice</span>-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant <span class="hlt">ice</span>-binding proteins. The purification involves the incorporation of <span class="hlt">ice</span>-binding proteins into slowly-growing <span class="hlt">ice</span> and the exclusion of other proteins and solutes. In previous approaches, the <span class="hlt">ice</span> was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs <span class="hlt">ice</span> affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface <span class="hlt">area</span> for the separation was increased by extracting the <span class="hlt">ice</span>-binding proteins into an <span class="hlt">ice</span>-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any <span class="hlt">ice</span>-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990084033&hterms=divergent+series&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddivergent%2Bseries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990084033&hterms=divergent+series&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddivergent%2Bseries"><span>C-Band Backscatter Measurements of Winter Sea-<span class="hlt">Ice</span> in the Weddell Sea, Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drinkwater, M. R.; Hosseinmostafa, R.; Gogineni, P.</p> <p>1995-01-01</p> <p>During the 1992 Winter Weddell Gyre Study, a C-band scatterometer was used from the German <span class="hlt">ice</span>-breaker R/V Polarstern to obtain detailed shipborne measurement scans of Antarctic sea-<span class="hlt">ice</span>. The frequency-modulated continuous-wave (FM-CW) radar operated at 4-3 GHz and acquired like- (VV) and cross polarization (HV) data at a variety of incidence angles (10-75 deg). Calibrated backscatter data were recorded for several <span class="hlt">ice</span> types as the icebreaker crossed the Weddell Sea and detailed measurements were made of corresponding snow and sea-<span class="hlt">ice</span> characteristics at each measurement site, together with meteorological information, radiation budget and oceanographic data. The primary scattering contributions under cold winter conditions arise from the air/snow and snow/<span class="hlt">ice</span> interfaces. Observations indicate so e similarities with Arctic sea-<span class="hlt">ice</span> scattering signatures, although the main difference is generally lower mean backscattering coefficients in the Weddell Sea. This is due to the younger mean <span class="hlt">ice</span> age and thickness, and correspondingly higher mean salinities. In particular, smooth white <span class="hlt">ice</span> found in 1992 in divergent <span class="hlt">areas</span> within the Weddell Gyre <span class="hlt">ice</span> <span class="hlt">pack</span> was generally extremely smooth and undeformed. Comparisons of field scatterometer data with calibrated 20-26 deg incidence ERS-1 radar image data show close correspondence, and indicate that rough Antarctic first-year and older second-year <span class="hlt">ice</span> forms do not produce as distinctively different scattering signatures as observed in the Arctic. Thick deformed first-year and second-year <span class="hlt">ice</span> on the other hand are clearly discriminated from younger undeformed <span class="hlt">ice</span>. thereby allowing successful separation of thick and thin <span class="hlt">ice</span>. Time-series data also indicate that C-band is sensitive to changes in snow and <span class="hlt">ice</span> conditions resulting from atmospheric and oceanographic forcing and the local heat flux environment. Variations of several dB in 45 deg incidence backscatter occur in response to a combination of thermally-regulated parameters</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890024803&hterms=Phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPhytoplankton','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890024803&hterms=Phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPhytoplankton"><span>Phytoplankton standing crops within an Antarctic <span class="hlt">ice</span> edge assessed by satellite remote sensing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sullivan, C. W.; Mcclain, C. R.; Comiso, J. C.; Smith, W. O., Jr.</p> <p>1988-01-01</p> <p>The dynamic interactions between the <span class="hlt">pack-ice</span> recession and the occurrence of <span class="hlt">ice</span> blooms of phytoplankton in waters of the marginal <span class="hlt">ice</span> zone within an Antarctic <span class="hlt">ice</span> edge were investigated using CZCS and SMMR imageries from the Nimbus 7 satellite (September 16-December 17, 1983), together with in situ measurements of pigments and sea <span class="hlt">ice</span> concentration carried out from November 7 to December 2. A substantial amount of spatial variability in pigment concentration was observed to occur along the <span class="hlt">ice</span> edge in the Weddell Sea. The relationships among light, <span class="hlt">ice</span> distribution, and vertical stability and their effects on observed spatial variations in phytoplankton biomass are discussed. The results of this investigation suggest that the retreat of <span class="hlt">ice</span> provides an input of significant volumes of meltwater which creates vertical stability for a period necessary to permit growth and accumulation of phytoplankton.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28708127','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28708127"><span>An active bacterial community linked to high chl-a concentrations in Antarctic winter-<span class="hlt">pack</span> <span class="hlt">ice</span> and evidence for the development of an anaerobic sea-<span class="hlt">ice</span> bacterial community.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eronen-Rasimus, Eeva; Luhtanen, Anne-Mari; Rintala, Janne-Markus; Delille, Bruno; Dieckmann, Gerhard; Karkman, Antti; Tison, Jean-Louis</p> <p>2017-10-01</p> <p>Antarctic sea-<span class="hlt">ice</span> bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the <span class="hlt">ice</span>, leading to high (<4 μg l -1 ) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-<span class="hlt">ice</span> bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-<span class="hlt">ice</span> algal bloom, predominated in the communities. The variability in bacterial community composition in the different <span class="hlt">ice</span> types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea <span class="hlt">ice</span>, the sea-<span class="hlt">ice</span> bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-<span class="hlt">ice</span> algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H 2 S were observed in thick, apparently anoxic <span class="hlt">ice</span>, suggesting that the development of the anaerobic bacterial community may occur in sea <span class="hlt">ice</span> under suitable conditions. In all, the results show that bacterial community in Antarctic sea <span class="hlt">ice</span> can stay active throughout the winter period and thus possible future warming of sea <span class="hlt">ice</span> and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-<span class="hlt">ice</span> zone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/i-2600-h/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/i-2600-h/"><span>Coastal-Change and Glaciological Map of the Northern Ross <span class="hlt">Ice</span> Shelf <span class="hlt">Area</span>, Antarctica: 1962-2004</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ferrigno, Jane G.; Foley, Kevin M.; Swithinbank, Charles; Williams, Richard S.</p> <p>2007-01-01</p> <p>Changes in the <span class="hlt">area</span> and volume of polar <span class="hlt">ice</span> sheets are intricately linked to changes in global climate, and the resulting changes in sea level could severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic <span class="hlt">ice</span> sheet would cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic <span class="hlt">ice</span> sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). The mass balance (the net volumetric gain or loss) of the Antarctic <span class="hlt">ice</span> sheet is highly complex, responding differently to different conditions in each region (Vaughan, 2005). In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic <span class="hlt">ice</span> sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Thomas and others (2004), on the basis of aircraft and satellite laser altimetry surveys, believe the thinning may be accelerating. Joughin and Tulaczyk (2002), on the basis of analysis of <span class="hlt">ice</span>-flow velocities derived from synthetic aperture radar, concluded that most of the Ross <span class="hlt">ice</span> streams (<span class="hlt">ice</span> streams on the east side of the Ross <span class="hlt">Ice</span> Shelf) have a positive mass balance, whereas Rignot and others (2004) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b; 2004). The mass balance of the East Antarctic <span class="hlt">ice</span> sheet is thought by Davis and others (2005) to be strongly positive on the basis of the change in satellite altimetry measurements made between 1992 and 2003. Measurement of changes in <span class="hlt">area</span> and mass balance of the Antarctic <span class="hlt">ice</span> sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation?s (1990) Division of Polar</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.293..448S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.293..448S"><span>Geomorphological mapping of <span class="hlt">ice</span>-free <span class="hlt">areas</span> using polarimetric RADARSAT-2 data on Fildes Peninsula and Ardley Island, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmid, T.; López-Martínez, J.; Guillaso, S.; Serrano, E.; D'Hondt, O.; Koch, M.; Nieto, A.; O'Neill, T.; Mink, S.; Durán, J. J.; Maestro, A.</p> <p>2017-09-01</p> <p>Satellite-borne Synthetic Aperture Radar (SAR) has been used for characterizing and mapping in two relevant <span class="hlt">ice</span>-free <span class="hlt">areas</span> in the South Shetland Islands. The objective has been to identify and characterize land surface covers that mainly include periglacial and glacial landforms, using fully polarimetric SAR C band RADARSAT-2 data, on Fildes Peninsula that forms part of King George Island, and Ardley Island. Polarimetric parameters obtained from the SAR data, a selection of field based training and validation sites and a supervised classification approach, using the support vector machine were chosen to determine the spatial distribution of the different landforms. Eight periglacial and glacial landforms were characterized according to their scattering mechanisms using a set of 48 polarimetric parameters. The mapping of the most representative surface covers included colluvial deposits, stone fields and pavements, patterned ground, glacial till and rock outcrops, lakes and glacier <span class="hlt">ice</span>. The overall accuracy of the results was estimated at 81%, a significant value when mapping <span class="hlt">areas</span> that are within isolated regions where access is limited. Periglacial surface covers such as stone fields and pavements occupy 25% and patterned ground over 20% of the <span class="hlt">ice</span>-free <span class="hlt">areas</span>. These are results that form the basis for an extensive monitoring of the <span class="hlt">ice</span>-free <span class="hlt">areas</span> throughout the northern Antarctic Peninsula region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16349347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16349347"><span>Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea <span class="hlt">Ice</span> in the Weddell Sea, Antarctica.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grossmann, S; Dieckmann, G S</p> <p>1994-08-01</p> <p>Bacterial response to formation and growth of sea <span class="hlt">ice</span> was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of <span class="hlt">ice</span> development. During initial <span class="hlt">ice</span> formation, concentrations of bacterial cells, in the order of 1 x 10 to 3 x 10 liter, were not enhanced within the <span class="hlt">ice</span> matrix. This suggests that physical enrichment of bacteria by <span class="hlt">ice</span> crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed <span class="hlt">ice</span> via attachment to algal cells or aggregates was not recorded in this study. As soon as the <span class="hlt">ice</span> had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [H]leucine incorporation into proteins to [H]thymidine incorporation into DNA changed during <span class="hlt">ice</span> growth. In thick <span class="hlt">pack</span> <span class="hlt">ice</span>, bacterial activity recovered and growth rates up to 0.6 day indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 x 10 cells liter along with considerably enlarged cell volumes accumulated within thick <span class="hlt">pack</span> <span class="hlt">ice</span>, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of <span class="hlt">ice</span> development, bacterial carbon production increased from about 0.01 to 0.4 mug of C liter h. In thick <span class="hlt">ice</span>, bacterial secondary production exceeded primary production of microalgae.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JPhA...29.2671Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JPhA...29.2671Z"><span>Effect of <span class="hlt">packing</span> method on the randomness of disc <span class="hlt">packings</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Z. P.; Yu, A. B.; Oakeshott, R. B. S.</p> <p>1996-06-01</p> <p>The randomness of disc <span class="hlt">packings</span>, generated by random sequential adsorption (RSA), random <span class="hlt">packing</span> under gravity (RPG) and Mason <span class="hlt">packing</span> (MP) which gives a <span class="hlt">packing</span> density close to that of the RSA <span class="hlt">packing</span>, has been analysed, based on the Delaunay tessellation, and is evaluated at two levels, i.e. the randomness at individual subunit level which relates to the construction of a triangle from a given edge length distribution and the randomness at network level which relates to the connection between triangles from a given triangle frequency distribution. The Delaunay tessellation itself is also analysed and its almost perfect randomness at the two levels is demonstrated, which verifies the proposed approach and provides a random reference system for the present analysis. It is found that (i) the construction of a triangle subunit is not random for the RSA, MP and RPG <span class="hlt">packings</span>, with the degree of randomness decreasing from the RSA to MP and then to RPG <span class="hlt">packing</span>; (ii) the connection of triangular subunits in the network is almost perfectly random for the RSA <span class="hlt">packing</span>, acceptable for the MP <span class="hlt">packing</span> and not good for the RPG <span class="hlt">packing</span>. <span class="hlt">Packing</span> method is an important factor governing the randomness of disc <span class="hlt">packings</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005APS..MARA34005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005APS..MARA34005M"><span>First Principles Simulations of <span class="hlt">Ice</span> Nucleation at Metal Surfaces</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michaelides, Angelos</p> <p>2005-03-01</p> <p><span class="hlt">Ice</span> nucleation at solid surfaces is of relevance to countless scientific and technological processes. In particular the nucleation of <span class="hlt">ice</span> nano-crystals on metal surfaces is often a key first step in cloud formation and corrosion [1]. Yet unfortunately this remains one of the most poorly understood natural phenomena; severely lacking in atomic level understanding. Here, we discuss detailed density functional theory studies aimed at putting our understanding of <span class="hlt">ice</span> nucleation at metals on a much firmer footing. Specifically the properties of H2O hexamers - the smallest `building blocks' of <span class="hlt">ice</span> - adsorbed on a number of close-<span class="hlt">packed</span> transition metal surfaces have been examined. We find that the competing influences of substrate reactivity and hexamer-substrate epitaxial mismatch conspire to yield a rich variety of (novel) hexameric <span class="hlt">ice</span> structures, some of which have been observed by recent scanning tunnelling microscopy experiments [2]. [1] H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation, (Kluwer, Dordrecht, 2003). [2] K. Morgenstern, et al., (To be published).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910044116&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910044116&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Wave propagation in the marginal <span class="hlt">ice</span> zone - Model predictions and comparisons with buoy and synthetic aperture radar data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Holt, Benjamin; Vachon, Paris W.</p> <p>1991-01-01</p> <p>Ocean wave dispersion relation and viscous attenuation by a sea <span class="hlt">ice</span> cover are studied for waves propagating into the marginal <span class="hlt">ice</span> zone (MIZ). The Labrador <span class="hlt">ice</span> margin experiment (LIMEX), conducted on the MIZ off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR imagery, <span class="hlt">ice</span> property and wave buoy data. Wave energy attenuation rates are estimated from SAR data and the <span class="hlt">ice</span> motion package data that were deployed at the <span class="hlt">ice</span> edge and into the <span class="hlt">ice</span> <span class="hlt">pack</span>, and compared with a model. It is shown that the model data comparisons are quite good for the <span class="hlt">ice</span> conditions observed during LIMEX 1987.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000023203','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000023203"><span>Laboratory Investigation of Direct Measurement of <span class="hlt">Ice</span> Water Content, <span class="hlt">Ice</span> Surface <span class="hlt">Area</span>, and Effective Radius of <span class="hlt">Ice</span> Crystals Using a Laser-Diffraction Instrument</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gerber, H.; DeMott, P. J.; Rogers, D. C.</p> <p>1995-01-01</p> <p>The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure <span class="hlt">ice</span> water content (IWC), PSA, and Re in <span class="hlt">ice</span> clouds. Its response was compared to other means of measuring those <span class="hlt">ice</span>-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for <span class="hlt">ice</span>-crystal concentrations, a film-loop microscope for <span class="hlt">ice</span>-crystal habits and dimensions, and an in-situ microscope for determining <span class="hlt">ice</span>-crystal orientation. Intercomparisons were made in <span class="hlt">ice</span> clouds containing <span class="hlt">ice</span> crystals ranging in size from about 10 microns to 150 microns diameter, and <span class="hlt">ice</span> crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of <span class="hlt">ice</span> crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C53B0778M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C53B0778M"><span>Impact of surface roughness on L-band emissivity of the sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.</p> <p>2015-12-01</p> <p>In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea <span class="hlt">ice</span> thickness probe and engine monitoring instruments, was performing a series of tests in different <span class="hlt">ice</span> conditions in order to validate the <span class="hlt">ice</span> route optimization (IRO) system, advising on his route through <span class="hlt">pack</span> <span class="hlt">ice</span>. In parallel cal/val activities for sea <span class="hlt">ice</span> thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the <span class="hlt">area</span> during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea <span class="hlt">ice</span> Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea <span class="hlt">ice</span> (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea <span class="hlt">ice</span> is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea <span class="hlt">ice</span> surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea <span class="hlt">ice</span>. First results indicate that Gaussian autocorrelation function is suitable for deformed <span class="hlt">ice</span>, for other <span class="hlt">ice</span> types exponential function is the best fit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPP10145C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPP10145C"><span>Accretion growth of water-<span class="hlt">ice</span> grains in astrophysically-relevant dusty plasma experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul</p> <p>2016-10-01</p> <p>The grain growth process in the Caltech water-<span class="hlt">ice</span> dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the <span class="hlt">ice</span> grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the <span class="hlt">ice</span> grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between <span class="hlt">ice</span> grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed <span class="hlt">ice</span> grain growth. The volumetric <span class="hlt">packing</span> factor of the <span class="hlt">ice</span> grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between <span class="hlt">ice</span> grains; this conclusion is consistent with <span class="hlt">ice</span> grain images showing a fractal character.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4096K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4096K"><span>Evaluating the Duration and Continuity of Potential Climate Records From the Allan Hills Blue <span class="hlt">Ice</span> <span class="hlt">Area</span>, East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kehrl, Laura; Conway, Howard; Holschuh, Nicholas; Campbell, Seth; Kurbatov, Andrei V.; Spaulding, Nicole E.</p> <p>2018-05-01</p> <p>The current <span class="hlt">ice</span> core record extends back 800,000 years. Geologic and glaciological evidence suggests that the Allan Hills Blue <span class="hlt">Ice</span> <span class="hlt">Area</span>, East Antarctica, may preserve a continuous record that extends further back in time. In this study, we use <span class="hlt">ice</span>-penetrating radar and existing age constraints to map the internal stratigraphy and age structure of the Allan Hills Main <span class="hlt">Ice</span> Field. The dated isochrones provide constraints for an <span class="hlt">ice</span> flow model to estimate the age of <span class="hlt">ice</span> near the bed. Previous drilling in the region recovered stratigraphically disturbed sections of <span class="hlt">ice</span> up to 2.7 million years old. Our study identifies a site 5 km upstream, which likely preserves a continuous record through Marine Isotope Stage 11 with the possibility that the record extends back 1 million years. Such records would provide new insight into the past climate and glacial history of the Ross Sea Sector.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.3105P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.3105P"><span>Sea-<span class="hlt">ice</span> evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-<span class="hlt">ice</span> model setup for the North Sea and Baltic Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari</p> <p>2017-08-01</p> <p>The Baltic Sea is a seasonally <span class="hlt">ice</span>-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-<span class="hlt">ice</span> <span class="hlt">pack</span> is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-<span class="hlt">ice</span> component of a new NEMO-LIM3.6-based ocean-sea-<span class="hlt">ice</span> setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-<span class="hlt">ice</span> parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-<span class="hlt">ice</span> extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea <span class="hlt">ice</span> extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct <span class="hlt">ice</span> thickness distribution is more challenging. Based on the simulated <span class="hlt">ice</span> thickness distribution we estimate the undeformed and deformed <span class="hlt">ice</span> thickness and concentration in the Baltic Sea, which compares reasonably well with observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950028626&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950028626&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes"><span>The classification of the Arctic Sea <span class="hlt">ice</span> types and the determination of surface temperature using advanced very high resolution radiometer data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Massom, Robert; Comiso, Josefino C.</p> <p>1994-01-01</p> <p>The accurate quantification of new <span class="hlt">ice</span> and open water <span class="hlt">areas</span> and surface temperatures within the sea <span class="hlt">ice</span> <span class="hlt">packs</span> is a key to the realistic parameterization of heat, moisture, and turbulence fluxes between ocean and atmosphere in the polar regions. Multispectral NOAA advanced very high resolution radiometer/2 (AVHRR/2) satellite images are analyzed to evaluate how effectively the data can be used to characterize sea <span class="hlt">ice</span> in the Bering and Greenland seas, both in terms of surface type and physical temperature. The basis of the classification algorithm, which is developed using a late wintertime Bering Sea <span class="hlt">ice</span> cover data, is that frequency distributions of 10.8- micrometers radiances provide four distinct peaks, represeting open water, new <span class="hlt">ice</span>, young <span class="hlt">ice</span>, and thick <span class="hlt">ice</span> with a snow cover. The results are found to be spatially and temporally consistent. Possible sources of ambiguity, especially associated with wider temporal and spatial application of the technique, are discussed. An <span class="hlt">ice</span> surface temperature algorithm is developed for the same study <span class="hlt">area</span> by regressing thermal infrared data from 10.8- and 12.0- micrometers channels against station air temperatures, which are assumed to approximate the skin temperatures of adjacent snow and <span class="hlt">ice</span>. The standard deviations of the results when compared with in situ data are about 0.5 K over leads and polynyas to about 0.5-1.5 K over thick <span class="hlt">ice</span>. This study is based upon a set of in situ data limited in scope and coverage. Cloud masks are applied using a thresholding technique that utilizes 3.74- and 10.8- micrometers channel data. The temperature maps produced show coherence with surface features like new <span class="hlt">ice</span> and leads, and consistency with corresponding surface type maps. Further studies are needed to better understand the effects of both the spatial and temporal variability in emissivity, aerosol and precipitable atmospheric <span class="hlt">ice</span> particle distribution, and atmospheric temperature inversions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C52A..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C52A..03P"><span>Characterizing Arctic sea <span class="hlt">ice</span> topography and atmospheric form drag using high-resolution <span class="hlt">Ice</span>Bridge data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.</p> <p>2015-12-01</p> <p>Here we present a detailed analysis of Arctic sea <span class="hlt">ice</span> topography using high resolution, three-dimensional surface elevation data from the NASA Operation <span class="hlt">Ice</span>Bridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel <span class="hlt">ice</span> topography statistics from 2009-2014 across both first-year and multiyear <span class="hlt">ice</span> regimes - including the height, <span class="hlt">area</span> coverage, orientation and spacing of distinct surface features. The sea <span class="hlt">ice</span> topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and <span class="hlt">area</span> coverage within the multi-year <span class="hlt">ice</span> regions. The <span class="hlt">ice</span> topography also shows a strong coastal dependency, with the feature height and <span class="hlt">area</span> coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The <span class="hlt">ice</span> topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea <span class="hlt">ice</span>; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea <span class="hlt">ice</span> model CICE.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20866494','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20866494"><span>Sea-<span class="hlt">ice</span> floe-size distribution in the context of spontaneous scaling emergence in stochastic systems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Herman, Agnieszka</p> <p>2010-06-01</p> <p>Sea-<span class="hlt">ice</span> floe-size distribution (FSD) in <span class="hlt">ice-pack</span> covered seas influences many aspects of ocean-atmosphere interactions. However, data concerning FSD in the polar oceans are still sparse and processes shaping the observed FSD properties are poorly understood. Typically, power-law FSDs are assumed although no feasible explanation has been provided neither for this one nor for other properties of the observed distributions. Consequently, no model exists capable of predicting FSD parameters in any particular situation. Here I show that the observed FSDs can be well represented by a truncated Pareto distribution P(x)=x(-1-α) exp[(1-α)/x] , which is an emergent property of a certain group of multiplicative stochastic systems, described by the generalized Lotka-Volterra (GLV) equation. Building upon this recognition, a possibility of developing a simple agent-based GLV-type sea-<span class="hlt">ice</span> model is considered. Contrary to simple power-law FSDs, GLV gives consistent estimates of the total floe perimeter, as well as floe-<span class="hlt">area</span> distribution in agreement with observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930013511','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930013511"><span>The influence of the hydrologic cycle on the extent of sea <span class="hlt">ice</span> with climatic implications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dean, Kenneson G.; Stringer, William J.; Searcy, Craig</p> <p>1993-01-01</p> <p>Multi-temporal satellite images, field observations, and field measurements were used to investigate the mechanisms by which sea <span class="hlt">ice</span> melts offshore from the Mackenzie River delta. Advanced Very High Resolution Radiometer (AVHRR) satellite data recorded in 1986 were analyzed. The satellite data were geometrically corrected and radiometrically calibrated so that albedo and temperature values could be extracted. The investigation revealed that sea <span class="hlt">ice</span> melted approximately 2 weeks earlier offshore from the Mackenzie River delta than along coasts where river discharge is minimal or non-existent. There is significant intra-delta variability in the timing and patterns of <span class="hlt">ice</span> melt. An estimation of energy flux indicates that 30 percent more of the visible wavelength energy and 25 percent more of the near-infrared wavelength energy is absorbed by water offshore of the delta compared to coastal <span class="hlt">areas</span> with minimal river discharge. The analysis also revealed that the removal of sea <span class="hlt">ice</span> involves the following: over-<span class="hlt">ice</span>-flooding along the coast offshore from river delta channels; under-<span class="hlt">ice</span> flow of 'warm' river water; melting and calving of the fast <span class="hlt">ice</span>; and, the formation of a bight in the <span class="hlt">pack</span> <span class="hlt">ice</span> edge. Two stages in the melting of sea <span class="hlt">ice</span> were identified: (1) an early stage where heat is supplied to overflows largely by solar radiation, and (2) a later stage where heat is supplied by river discharge in addition to solar radiation. A simple thermodynamic model of the thaw process in the fast <span class="hlt">ice</span> zone was developed and parameterized based on events recorded by the satellite images. The model treats river discharge as the source of sensible heat at the base of the <span class="hlt">ice</span> cover. The results of a series of sensitivity tests to assess the influence of river discharge on the near shore <span class="hlt">ice</span> are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001604.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001604.html"><span>Broken <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>An <span class="hlt">area</span> of broken glacier <span class="hlt">ice</span> seen from the <span class="hlt">Ice</span>Bridge DC-8 on Oct. 22, 2012. Credit: NASA / George Hale NASA's Operation <span class="hlt">Ice</span>Bridge is an airborne science mission to study Earth's polar <span class="hlt">ice</span>. For more information about <span class="hlt">Ice</span>Bridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5099225','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5099225"><span>Estimating cigarette tax avoidance and evasion: evidence from a national sample of littered <span class="hlt">packs</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Barker, Dianne C; Wang, Shu; Merriman, David; Crosby, Andrew; Resnick, Elissa A; Chaloupka, Frank J</p> <p>2016-01-01</p> <p>Introduction A number of recent studies document the proportion of all cigarette <span class="hlt">packs</span> that are ‘contraband’ using discarded <span class="hlt">packs</span> to measure tax avoidance and evasion, which we call tax non-compliance. To date, academic studies using discarded <span class="hlt">packs</span> focused on relatively small geographical <span class="hlt">areas</span> such as a city or a neighbourhood. Methods We visited 160 communities across 38 US states in 2012 and collected data from littered cigarette <span class="hlt">packs</span> as part of the State and Community Tobacco Control (SCTC) Research Initiative and the Bridging the Gap Community Obesity Measures Project (BTG-COMP). Data collectors were trained in a previously tested littered <span class="hlt">pack</span> data collection protocol. Results Field teams collected 2116 <span class="hlt">packs</span> with cellophane across 132 communities. We estimate a national tax non-compliance rate of 18.5% with considerable variation across regions. Suburban <span class="hlt">areas</span> had lower non-compliance than urban <span class="hlt">areas</span> as well as <span class="hlt">areas</span> with high and low median household income <span class="hlt">areas</span> compared with middle income <span class="hlt">areas</span>. Discussion We present the first academic national study of tax non-compliance using littered cigarette <span class="hlt">packs</span>. We demonstrate the feasibility of meaningful large-scale data collection using this methodology and document considerable variation in tax non-compliance across <span class="hlt">areas</span>, suggesting that both policy differences and geography may be important in control of illicit tobacco use. Given the geography of open borders among countries with varying tax rates, this simple methodology may be appropriate to estimate tax non-compliance in countries that use tax stamps or other <span class="hlt">pack</span> markings, such as health warnings. PMID:27697946</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29123023','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29123023"><span>Young adult smokers' perceptions of plain <span class="hlt">packs</span>, numbered <span class="hlt">packs</span> and <span class="hlt">pack</span> inserts in Turkey: a focus group study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mucan, Burcu; Moodie, Crawford</p> <p>2017-11-09</p> <p>The Turkish Government's 'National Tobacco Control Program 2015-2018' included plans to introduce plain packaging and also a ban on brand names on cigarette <span class="hlt">packs</span>, allowing only assigned numbers on <span class="hlt">packs</span>. We explored perceptions of these proposed measures, and also <span class="hlt">pack</span> inserts with cessation messages, another novel way of using the packaging to communicate with consumers. Eight focus groups were conducted with 47 young adult smokers in Manisa and Kutahya (Turkey) in December 2016. Participants were shown three straight-edged plain cigarette <span class="hlt">packs</span>, as required in Australia, and then three bevelled-edged plain <span class="hlt">packs</span>, as permitted in the UK. They were then shown plain <span class="hlt">packs</span> with numbers rather than brand names, and finally three <span class="hlt">pack</span> inserts with messages encouraging quitting or offering tips on how to do so. Participants were asked about their perceptions of each. Plain <span class="hlt">packs</span> were considered unappealing and off-putting, although the bevelled-edged <span class="hlt">packs</span> were viewed more favourably than the straight-edged <span class="hlt">packs</span>. Numbered <span class="hlt">packs</span> were thought by some to diminish the appeal created by the brand name and potentially decrease interest among never smokers and newer smokers. <span class="hlt">Pack</span> inserts were thought to have less of an impact than the on-<span class="hlt">pack</span> warnings, but could potentially help discourage initiation and encourage cessation. That bevelled-edged plain <span class="hlt">packs</span> were perceived more positively than straight-edged plain <span class="hlt">packs</span> is relevant to countries planning to introduce plain packaging. The study provides a first insight into smokers' perceptions of a ban on brand names, which was perceived to reduce appeal among young people. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1211G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1211G"><span>Is snow-<span class="hlt">ice</span> now a major contributor to sea <span class="hlt">ice</span> mass balance in the western Transpolar Drift region?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, R. M.; Merkouriadi, I.; Cheng, B.; Rösel, A.; Granskog, M. A.</p> <p>2017-12-01</p> <p>During the Norwegian young sea <span class="hlt">ICE</span> (N-<span class="hlt">ICE</span>2015) campaign, which took place in the first half of 2015 north of Svalbard, a deep winter snow <span class="hlt">pack</span> (50 cm) on sea <span class="hlt">ice</span> was observed, that was 50% thicker than earlier climatological studies suggested for this region. Moreover, a significant fraction of snow contributed to the total <span class="hlt">ice</span> mass in second-year <span class="hlt">ice</span> (SYI) (9% on average). Interestingly, very little snow (3% snow by mass) was present in first-year <span class="hlt">ice</span> (FYI). The combination of sea <span class="hlt">ice</span> thinning and increased precipitation north of Svalbard is expected to promote the formation of snow-<span class="hlt">ice</span>. Here we use the 1-D snow/<span class="hlt">ice</span> thermodynamic model HIGHTSI forced with reanalysis data, to show that for the case study of N-<span class="hlt">ICE</span>2015, snow-<span class="hlt">ice</span> would even form over SYI with an initial thickness of 2 m. In current conditions north of Svalbard, snow-<span class="hlt">ice</span> is ubiquitous and contributes to the thickness growth up to 30%. This contribution is important, especially in the absence of any bottom thermodynamic growth due to the thick insulating snow cover. Growth of FYI north of Svalbard is mainly controlled by the timing of growth onset relative to snow precipitation events and cold spells. These usually short-lived conditions are largely determined by the frequency of storms entering the Arctic from the Atlantic Ocean. In our case, a later freeze onset was favorable for FYI growth due to less snow accumulation in early autumn. This limited snow-<span class="hlt">ice</span> formation but promoted bottom thermodynamic growth. We surmise these findings are related to a regional phenomenon in the Atlantic sector of the Arctic, with frequent storm events which bring increasing amounts of precipitation in autumn and winter, and also affect the duration of cold temperatures required for <span class="hlt">ice</span> growth in winter. We discuss the implications for the importance of snow-<span class="hlt">ice</span> in the future Arctic, formerly believed to be non-existent in the central Arctic due to thick perennial <span class="hlt">ice</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Sci...341..266R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Sci...341..266R"><span><span class="hlt">Ice</span>-Shelf Melting Around Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.</p> <p>2013-07-01</p> <p>We compare the volume flux divergence of Antarctic <span class="hlt">ice</span> shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making <span class="hlt">ice</span>-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne <span class="hlt">ice</span> shelves covering two-thirds of the total <span class="hlt">ice</span>-shelf <span class="hlt">area</span> account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific <span class="hlt">ice</span> shelves occupying 8% of the <span class="hlt">area</span>. A similar high melt/<span class="hlt">area</span> ratio is found for six East Antarctic <span class="hlt">ice</span> shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023761','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023761"><span>An Overview of NASA Engine <span class="hlt">Ice</span>-Crystal <span class="hlt">Icing</span> Research</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Addy, Harold E., Jr.; Veres, Joseph P.</p> <p>2011-01-01</p> <p><span class="hlt">Ice</span> accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of <span class="hlt">ice</span> crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this <span class="hlt">area</span> to address the hazard. This paper gives an overview of NASA s engine <span class="hlt">ice</span>-crystal <span class="hlt">icing</span> research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C53B0574L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C53B0574L"><span><span class="hlt">Ice</span> Shelf-Ocean Interactions Near <span class="hlt">Ice</span> Rises and <span class="hlt">Ice</span> Rumples</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lange, M. A.; Rückamp, M.; Kleiner, T.</p> <p>2013-12-01</p> <p>, focusing on the floating <span class="hlt">ice</span> parts of the Brunt and Riiser-Larsen <span class="hlt">ice</span> shelves. The major response of the <span class="hlt">ice</span> is observed instantaneously and is caused by the time independent nature of the Stokes equations and the used Glen-type rheology. The influence of <span class="hlt">ice</span> temperatures and therefore the time-dependent effect on the flow-rate are small, given a 100 year time frame and applying a fixed-geometry setting.. A particularly important result of the current project lies in the fact that we have numerically simulated the three-dimensional stress fields in an <span class="hlt">ice</span> shelf. Common numerical models that utilize a vertically integrated Shallow Shelf Approximation (SSA-models), do not provide that information. Due to the detailed horizontal resolution of 1km in our models, we were able to also model the observed heavily fractured <span class="hlt">areas</span> in the vicinity of McDonald <span class="hlt">Ice</span> Rise, a region that is characterized by simulated tensile stresses reaching maximum vertical extension in the <span class="hlt">ice</span> column.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvL.115n8501T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvL.115n8501T"><span>Theory of the Sea <span class="hlt">Ice</span> Thickness Distribution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toppaladoddi, Srikanth; Wettlaufer, J. S.</p> <p>2015-10-01</p> <p>We use concepts from statistical physics to transform the original evolution equation for the sea <span class="hlt">ice</span> thickness distribution g (h ) from Thorndike et al. into a Fokker-Planck-like conservation law. The steady solution is g (h )=N (q )hqe-h /H, where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h ≪1 , g (h ) is controlled by both thermodynamics and mechanics, whereas for h ≫1 only mechanics controls g (h ). Finally, we derive the underlying Langevin equation governing the dynamics of the <span class="hlt">ice</span> thickness h , from which we predict the observed g (h ). The genericity of our approach provides a framework for studying the geophysical-scale structure of the <span class="hlt">ice</span> <span class="hlt">pack</span> using methods of broad relevance in statistical mechanics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26551827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26551827"><span>Theory of the Sea <span class="hlt">Ice</span> Thickness Distribution.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Toppaladoddi, Srikanth; Wettlaufer, J S</p> <p>2015-10-02</p> <p>We use concepts from statistical physics to transform the original evolution equation for the sea <span class="hlt">ice</span> thickness distribution g(h) from Thorndike et al. into a Fokker-Planck-like conservation law. The steady solution is g(h)=N(q)h(q)e(-h/H), where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h≪1, g(h) is controlled by both thermodynamics and mechanics, whereas for h≫1 only mechanics controls g(h). Finally, we derive the underlying Langevin equation governing the dynamics of the <span class="hlt">ice</span> thickness h, from which we predict the observed g(h). The genericity of our approach provides a framework for studying the geophysical-scale structure of the <span class="hlt">ice</span> <span class="hlt">pack</span> using methods of broad relevance in statistical mechanics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26764678','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26764678"><span>Structural characterization of the <span class="hlt">packings</span> of granular regular polygons.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Chuncheng; Dong, Kejun; Yu, Aibing</p> <p>2015-12-01</p> <p>By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random <span class="hlt">packings</span> of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the <span class="hlt">packing</span> structures are investigated by various structural parameters, including <span class="hlt">packing</span> fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that <span class="hlt">packing</span> fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of <span class="hlt">packing</span> fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free <span class="hlt">areas</span> of Voronoi tessellations (which are related to local <span class="hlt">packing</span> fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the <span class="hlt">packings</span> of regular polygons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JPhy1...4..731E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JPhy1...4..731E"><span>Space filling minimal surfaces and sphere <span class="hlt">packings</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elser, Veit</p> <p>1994-05-01</p> <p>A space filling minimal surface is defined to be any embedded minimal surface without boundary with the property that the <span class="hlt">area</span> and genus enclosed by any large spherical region scales in proportion to the volume of the region. The triply periodic minimal surfaces are one realization, but not necessarily the only one. By using the genus per unit volume of the surface, a meaningful comparison of surface <span class="hlt">areas</span> can be made even in cases where there is no unit cell. Of the known periodic minimal surfaces this measure of the surface <span class="hlt">area</span> is smallest for Schoen's FRD surface. This surface is one of several that is closely related to <span class="hlt">packings</span> of spheres. Its low <span class="hlt">area</span> is largely due to the fact that the corresponding sphere <span class="hlt">packing</span> (fcc) has the maximal kissing number.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4552888','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4552888"><span>Aneurysm permeability following coil embolization: <span class="hlt">packing</span> density and coil distribution</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J</p> <p>2015-01-01</p> <p>Background Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of <span class="hlt">packing</span> density and coil uniformity on aneurysm permeability. Methods Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface <span class="hlt">area</span> fraction and coil uniformity. Results All aneurysms were coiled to a <span class="hlt">packing</span> density of at least 27%. <span class="hlt">Packing</span> density, surface <span class="hlt">area</span> fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for <span class="hlt">packing</span> and uniformity measures. Coil mass permeability was modeled better with the inclusion of <span class="hlt">packing</span> and uniformity measures of the dome (r2=0.73) than with <span class="hlt">packing</span> density alone (r2=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with <span class="hlt">packing</span> measures. Conclusions A densely <span class="hlt">packed</span> aneurysm with a high degree of coil mass uniformity will reduce permeability. PMID:25031179</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TCry....9..255D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TCry....9..255D"><span>Regional melt-pond fraction and albedo of thin Arctic first-year drift <span class="hlt">ice</span> in late summer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Divine, D. V.; Granskog, M. A.; Hudson, S. R.; Pedersen, C. A.; Karlsen, T. I.; Divina, S. A.; Renner, A. H. H.; Gerland, S.</p> <p>2015-02-01</p> <p>The paper presents a case study of the regional (≈150 km) morphological and optical properties of a relatively thin, 70-90 cm modal thickness, first-year Arctic sea <span class="hlt">ice</span> <span class="hlt">pack</span> in an advanced stage of melt. The study combines in situ broadband albedo measurements representative of the four main surface types (bare <span class="hlt">ice</span>, dark melt ponds, bright melt ponds and open water) and images acquired by a helicopter-borne camera system during <span class="hlt">ice</span>-survey flights. The data were collected during the 8-day <span class="hlt">ICE</span>12 drift experiment carried out by the Norwegian Polar Institute in the Arctic, north of Svalbard at 82.3° N, from 26 July to 3 August 2012. A set of > 10 000 classified images covering about 28 km2 revealed a homogeneous melt across the study <span class="hlt">area</span> with melt-pond coverage of ≈ 0.29 and open-water fraction of ≈ 0.11. A decrease in pond fractions observed in the 30 km marginal <span class="hlt">ice</span> zone (MIZ) occurred in parallel with an increase in open-water coverage. The moving block bootstrap technique applied to sequences of classified sea-<span class="hlt">ice</span> images and albedo of the four surface types yielded a regional albedo estimate of 0.37 (0.35; 0.40) and regional sea-<span class="hlt">ice</span> albedo of 0.44 (0.42; 0.46). Random sampling from the set of classified images allowed assessment of the aggregate scale of at least 0.7 km2 for the study <span class="hlt">area</span>. For the current setup configuration it implies a minimum set of 300 images to process in order to gain adequate statistics on the state of the <span class="hlt">ice</span> cover. Variance analysis also emphasized the importance of longer series of in situ albedo measurements conducted for each surface type when performing regional upscaling. The uncertainty in the mean estimates of surface type albedo from in situ measurements contributed up to 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea-<span class="hlt">ice</span> cover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020082883','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020082883"><span><span class="hlt">Ice</span> Shelves and Landfast <span class="hlt">Ice</span> on the Antarctic Perimeter: Revised Scope of Work</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scambos, Ted</p> <p>2002-01-01</p> <p><span class="hlt">Ice</span> shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approx. O C and persistent melt pending is observed, a rapid retreat and disintegration occurs. This link was documented for <span class="hlt">ice</span> shelves in the Antarctic Peninsula region (the Larsen 'A', 'B' and Wilkins <span class="hlt">Ice</span> shelves) by the results of a previous grant under ADRO-1. Modeling of <span class="hlt">ice</span> flow and the effects of meltwater indicated that melt pending accelerates shelf breakup by increasing fracture penetration. SAR data supplemented an AVHRR- and SSM/I-based image analysis of extent and surface characteristic changes. This funded grant is a revised, scaled-down version of an earlier proposal under the ADRO-2 NRA. The overall objective remains the same: we propose to build on the previous study by examining other <span class="hlt">ice</span> shelves of the Antarctic and incorporate an examination of the climate-related characteristics of landfast <span class="hlt">ice</span>. The study now considers just a few shelf and fast <span class="hlt">ice</span> <span class="hlt">areas</span> for study, and is funded for two years. The study regions are the northeastern Ross <span class="hlt">Ice</span> Shelf, the Larsen 'B' and 'C' shelves, fast <span class="hlt">ice</span> and floating shelf <span class="hlt">ice</span> in the Pine Island Glacier <span class="hlt">area</span>, and fast <span class="hlt">ice</span> along the Wilkes Land coast. Further, rather than investigating a host of shelf and fast <span class="hlt">ice</span> processes, we will home in on developing a series of characteristics associated with climate change over shelf and fast <span class="hlt">ice</span> <span class="hlt">areas</span>. Melt pending and break-up are the end stages of a response to a warming climate that may begin with increased melt event frequency (which changes both albedo and emissivity temporarily), changing firn backscatter (due to percolation features), and possibly increased rifting of the shelf surface. Fast <span class="hlt">ice</span> may show some of these same processes on a seasonal timescale, providing insight into shelf evolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C41B0700O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C41B0700O"><span>Light Absorption in Arctic Sea <span class="hlt">Ice</span> - Black Carbon vs Chlorophyll</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.</p> <p>2015-12-01</p> <p>The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea <span class="hlt">ice</span> extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea <span class="hlt">ice</span> surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-<span class="hlt">ice</span> physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic <span class="hlt">ice</span> predictions. Here we develop a dynamic <span class="hlt">ice</span> system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea <span class="hlt">Ice</span> Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea <span class="hlt">ice</span> and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the <span class="hlt">ice</span>-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea <span class="hlt">ice</span> by the bottom microbial community, and also within the columnar <span class="hlt">pack</span> wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in <span class="hlt">areas</span> where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/419613-classification-baltic-sea-ice-types-airborne-multifrequency-microwave-radiometer','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/419613-classification-baltic-sea-ice-types-airborne-multifrequency-microwave-radiometer"><span>Classification of Baltic Sea <span class="hlt">ice</span> types by airborne multifrequency microwave radiometer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kurvonen, L.; Hallikainen, M.</p> <p></p> <p>An airborne multifrequency radiometer (24, 34, 48, and 94 GHz, vertical polarization) was used to investigate the behavior of the brightness temperature of different sea <span class="hlt">ice</span> types in the Gulf of Bothnia (Baltic Sea). The measurements and the main results of the analysis are presented. The measurements were made in dry and wet conditions (air temperature above and below 0 C). The angle of incidence was 45{degree} in all measurements. The following topics are evaluated: (a) frequency dependency of the brightness temperature of different <span class="hlt">ice</span> types, (b) the capability of the multifrequency radiometer to classify <span class="hlt">ice</span> types for winter navigationmore » purposes, and (c) the optimum measurement frequencies for mapping sea <span class="hlt">ice</span>. The weather conditions had a significant impact on the radiometric signatures of some <span class="hlt">ice</span> types (snow-covered compact <span class="hlt">pack</span> <span class="hlt">ice</span> and frost-covered new <span class="hlt">ice</span>); the impact was the highest at 94 GHz. In all cases the overall classification accuracy was around 90% (the kappa coefficient was from 0.86 to 0.96) when the optimum channel combination (24/34 GHz and 94 GHz) was used.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..MARP25003W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..MARP25003W"><span>Entanglement Theories: <span class="hlt">Packing</span> vs. Percolation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wool, Richard</p> <p>2007-03-01</p> <p>There are two emergent theories of polymer entanglements, the <span class="hlt">Packing</span> Model (Fetters, Lohse, Graessley, Milner, Whitten, ˜'98) and the Percolation Model (Wool ˜'93). The <span class="hlt">Packing</span> model suggests that the entanglement molecular weight Me is determined by Me = K p^3, where the <span class="hlt">packing</span> length parameter p = V/R^2 in which V is the volume of the chain (V=M/ρNa), R is the end-to end vector of the chain, and K 357 ρNa, is an empirical constant. The Percolation model states that an entanglement network develops when the number of chains per unit <span class="hlt">area</span> σ, intersecting any load bearing plane, is equal to 3 times the number of chain segments (1/a cross-section), such that when 3aσ =1 at the percolation threshold, Me 31 MjC∞, in which Mj is the step molecular weight and C∞ is the characteristic ratio. There are no fitting parameters in the Percolation model. The <span class="hlt">Packing</span> model predicts that Me decreases rapidly with chain stiffness, as Me˜1/C∞^3, while the Percolation model predicts that Me increases with C∞, as Me˜C∞. The Percolation model was found to be the correct model based on computer simulations (M. Bulacu et al) and a re-analysis of the <span class="hlt">Packing</span> model experimental data. The <span class="hlt">Packing</span> model can be derived from the Percolation model, but not visa versa, and reveals a surprising accidental relation between C∞ and Mj in the front factor K. This result significantly impacts the interpretation of the dynamics of rheology and fracture of entangled polymers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237537','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237537"><span>Spatial Distribution of Trends and Seasonality in the Hemispheric Sea <span class="hlt">Ice</span> Covers</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, P.; Parkinson, C. L.; Cavalieri, D. J.; Cosmiso, J. C.; Zwally, H. J.</p> <p>1998-01-01</p> <p>We extend earlier analyses of a 9-year sea <span class="hlt">ice</span> data set that described the local seasonal and trend variations in each of the hemispheric sea <span class="hlt">ice</span> covers to the recently merged 18.2-year sea <span class="hlt">ice</span> record from four satellite instruments. The seasonal cycle characteristics remain essentially the same as for the shorter time series, but the local trends are markedly different, in some cases reversing sign. The sign reversal reflects the lack of a consistent long-term trend and could be the result of localized long-term oscillations in the hemispheric sea <span class="hlt">ice</span> covers. By combining the separate hemispheric sea <span class="hlt">ice</span> records into a global one, we have shown that there are statistically significant net decreases in the sea <span class="hlt">ice</span> coverage on a global scale. The change in the global sea <span class="hlt">ice</span> extent, is -0.01 +/- 0.003 x 10(exp 6) sq km per decade. The decrease in the areal coverage of the sea <span class="hlt">ice</span> is only slightly smaller, so that the difference in the two, the open water within the <span class="hlt">packs</span>, has no statistically significant change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27697946','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27697946"><span>Estimating cigarette tax avoidance and evasion: evidence from a national sample of littered <span class="hlt">packs</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barker, Dianne C; Wang, Shu; Merriman, David; Crosby, Andrew; Resnick, Elissa A; Chaloupka, Frank J</p> <p>2016-10-01</p> <p>A number of recent studies document the proportion of all cigarette <span class="hlt">packs</span> that are 'contraband' using discarded <span class="hlt">packs</span> to measure tax avoidance and evasion, which we call tax non-compliance. To date, academic studies using discarded <span class="hlt">packs</span> focused on relatively small geographical <span class="hlt">areas</span> such as a city or a neighbourhood. We visited 160 communities across 38 US states in 2012 and collected data from littered cigarette <span class="hlt">packs</span> as part of the State and Community Tobacco Control (SCTC) Research Initiative and the Bridging the Gap Community Obesity Measures Project (BTG-COMP). Data collectors were trained in a previously tested littered <span class="hlt">pack</span> data collection protocol. Field teams collected 2116 <span class="hlt">packs</span> with cellophane across 132 communities. We estimate a national tax non-compliance rate of 18.5% with considerable variation across regions. Suburban <span class="hlt">areas</span> had lower non-compliance than urban <span class="hlt">areas</span> as well as <span class="hlt">areas</span> with high and low median household income <span class="hlt">areas</span> compared with middle income <span class="hlt">areas</span>. We present the first academic national study of tax non-compliance using littered cigarette <span class="hlt">packs</span>. We demonstrate the feasibility of meaningful large-scale data collection using this methodology and document considerable variation in tax non-compliance across <span class="hlt">areas</span>, suggesting that both policy differences and geography may be important in control of illicit tobacco use. Given the geography of open borders among countries with varying tax rates, this simple methodology may be appropriate to estimate tax non-compliance in countries that use tax stamps or other <span class="hlt">pack</span> markings, such as health warnings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950038689&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dglacier%2Bmelt','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950038689&hterms=glacier+melt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dglacier%2Bmelt"><span>Radar measurements of melt zones on the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jezek, Kenneth C.; Gogineni, Prasad; Shanableh, M.</p> <p>1994-01-01</p> <p>Surface-based microwave radar measurements were performed at a location on the western flank of the Greenland <span class="hlt">Ice</span> Sheet. Here, firn metamorphasis is dominated by seasonal melt, which leads to marked contrasts in the vertical structure of winter and summer firn. This snow regime is also one of the brightest radar targets on Earth with an average backscatter coefficient of 0 dB at 5.3 GHz and an incidence angle of 25 deg. By combining detailed observations of firn physical properties with ranging radar measurements we find that the glaciological mechanism associated with this strong electromagnetic response is summer <span class="hlt">ice</span> lens formation within the previous winter's snow <span class="hlt">pack</span>. This observation has important implications for monitoring and understanding changes in <span class="hlt">ice</span> sheet volume using spaceborne microwave sensors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C31A0435M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C31A0435M"><span>Help, I don’t know which sea <span class="hlt">ice</span> algorithm to use?!: Developing an authoritative sea <span class="hlt">ice</span> climate data record</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meier, W.; Stroeve, J.; Duerr, R. E.; Fetterer, F. M.</p> <p>2009-12-01</p> <p>The declining Arctic sea <span class="hlt">ice</span> is one of the most dramatic indicators of climate change and is being recognized as a key factor in future climate impacts on biology, human activities, and global climate change. As such, the audience for sea <span class="hlt">ice</span> data is expanding well beyond the sea <span class="hlt">ice</span> community. The most comprehensive sea <span class="hlt">ice</span> data are from a series of satellite-borne passive microwave sensors. They provide a near-complete daily timeseries of sea <span class="hlt">ice</span> concentration and extent since late-1978. However, there are many complicating issues in using such data, particularly for novice users. First, there is not one single, definitive algorithm, but several. And even for a given algorithm, different processing and quality-control methods may be used, depending on the source. Second, for all algorithms, there are uncertainties in any retrieved value. In general, these limitations are well-known: low spatial-resolution results in an imprecise <span class="hlt">ice</span> edge determination and lack of small-scale detail (e.g., lead detection) within the <span class="hlt">ice</span> <span class="hlt">pack</span>; surface melt depresses concentration values during summer; thin <span class="hlt">ice</span> is underestimated in some algorithms; some algorithms are sensitive to physical surface temperature; other surface features (e.g., snow) can influence retrieved data. While general error estimates are available for concentration values, currently the products do not carry grid-cell level or even granule level data quality information. Finally, metadata and data provenance information are limited, both of which are essential for future reprocessing. Here we describe the progress to date toward development of sea <span class="hlt">ice</span> concentration products and outline the future steps needed to complete a sea <span class="hlt">ice</span> climate data record.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.7235C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.7235C"><span>Meteorological conditions in a thinner Arctic sea <span class="hlt">ice</span> regime from winter to summer during the Norwegian Young Sea <span class="hlt">Ice</span> expedition (N-<span class="hlt">ICE</span>2015)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.</p> <p>2017-07-01</p> <p>Atmospheric measurements were made over Arctic sea <span class="hlt">ice</span> north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea <span class="hlt">Ice</span> (N-<span class="hlt">ICE</span>2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea <span class="hlt">ice</span> regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the <span class="hlt">ice</span> <span class="hlt">pack</span>. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-<span class="hlt">ICE</span>2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013760','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013760"><span><span class="hlt">Ice</span>, Ocean and Atmosphere Interactions in the Arctic Marginal <span class="hlt">Ice</span> Zone</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>the northward retreat of the <span class="hlt">ice</span> edge. Through the long-term measurement of the key oceanic, atmospheric, and sea <span class="hlt">ice</span> processes that...began to move southward towards the Alaskan coast. In 2104 the anomalous <span class="hlt">areas</span> of <span class="hlt">ice</span> retreat were the region north of Alaska...and Siberia. (see figures below). This is not uncommon as these regions have seen the greatest retreat in sea <span class="hlt">ice</span>. See http://nsidc.org</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0756M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0756M"><span>Laboratory Studies of Sea-<span class="hlt">Ice</span>-Wave Interactions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monty, J.; Meylan, M. H.; Babanin, A. V.; Toffoli, A.; Bennetts, L.</p> <p>2016-12-01</p> <p>A world-first facility for studying the Marginal <span class="hlt">Ice</span> Zone has been constructed in the Michell Hydrodynamics Laboratory at the University of Melbourne. A 14m long wave tank (0.75m wide, 0.6m deep) resides in a freezer, where air temperature can be controlled down to -15C. This permits the freezing of the water surface. Large stainless steel <span class="hlt">ice</span>-making trays (up to 4 m long) are also available to create <span class="hlt">ice</span> of desired thickness and microstructure, which can be lowered onto the water surface. A computer controlled wave generator is capable of creating waves of any desired form. The temperature of the water in the tank can also be controlled between 2 and 30C. The tank frame is constructed of marine-treated wood and the entire tank is glass and acrylic, permitting the use of corrosive fluids, such as salt water. Here we present the first laboratory experiments of break-up of a controlled thickness, fresh water <span class="hlt">ice</span> sheet impacted by regular and JONSWAP spectrum surface waves. The geometry of the resultant <span class="hlt">ice</span>-floes is measured with high-resolution, time-resolved imaging, providing the crucial data of floe size distribution. Initial observations show that, in the case of high steepness waves, the primary mechanisms of <span class="hlt">ice</span> break-up at the <span class="hlt">ice</span> edge are overwash and rafting, both of which put weight on the <span class="hlt">ice</span> interior to the <span class="hlt">ice</span>-water interface. This additional weight (and impact in the case of rafting) breaks more <span class="hlt">ice</span>, which allows overwash and rafting deeper into the <span class="hlt">ice</span> sheet, breaking more <span class="hlt">ice</span> and so on. For lower steepness waves, overwash and rafting are still present but far less significant. Finally, results of vertical <span class="hlt">ice</span> movement using laser height gauges will be presented showing the attenuation of waves into an <span class="hlt">ice</span> sheet and through a <span class="hlt">pack</span> of <span class="hlt">ice</span> floes. These results are compared with field data and theory available (e.g. Squire & Moore, Nature, 1980 and Kohout et al., Nature, 2014).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031156&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031156&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal"><span>Wave evolution in the marginal <span class="hlt">ice</span> zone - Model predictions and comparisons with on-site and remote data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, A. K.; Holt, B.; Vachon, P. W.</p> <p>1989-01-01</p> <p>The ocean-wave dispersion relation and viscous attenuation by a sea <span class="hlt">ice</span> cover were studied for waves in the marginal <span class="hlt">ice</span> zone (MIZ). The Labrador <span class="hlt">ice</span> margin experiment (Limex), conducted off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR, wave buoy, and <span class="hlt">ice</span> property data. Based on the wave number spectrum from SAR data, the concurrent wave frequency spectrum from ocean buoy data, and accelerometer data on the <span class="hlt">ice</span> during Limex '87, the dispersion relation has been derived and compared with the model. Accelerometers were deployed at the <span class="hlt">ice</span> edge and into the <span class="hlt">ice</span> <span class="hlt">pack</span>. Data from the accelerometers were used to estimate wave energy attenuation rates and compared with the model. The model-data comparisons are reasonably good for the <span class="hlt">ice</span> conditions observed during Limex' 87.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27242155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27242155"><span>The effect of nanoparticle <span class="hlt">packing</span> on capacitive electrode performance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Younghee; Noh, Seonmyeong; Kim, Min-Sik; Kong, Hye Jeong; Im, Kyungun; Kwon, Oh Seok; Kim, Sungmin; Yoon, Hyeonseok</p> <p>2016-06-09</p> <p>Nanoparticles <span class="hlt">pack</span> together to form macro-scale electrodes in various types of devices, and thus, optimization of the nanoparticle <span class="hlt">packing</span> is a prerequisite for the realization of a desirable device performance. In this work, we provide in-depth insight into the effect of nanoparticle <span class="hlt">packing</span> on the performance of nanoparticle-based electrodes by combining experimental and computational findings. As a model system, polypyrrole nanospheres of three different diameters were used to construct pseudocapacitive electrodes, and the performance of the electrodes was examined at various nanosphere diameter ratios and mixed weight fractions. Two numerical algorithms are proposed to simulate the random <span class="hlt">packing</span> of the nanospheres on the electrode. The binary nanospheres exhibited diverse, complicated <span class="hlt">packing</span> behaviors compared with the monophasic <span class="hlt">packing</span> of each nanosphere species. The <span class="hlt">packing</span> of the two nanosphere species with lower diameter ratios at an optimized composition could lead to more dense <span class="hlt">packing</span> of the nanospheres, which in turn could contribute to better device performance. The dense <span class="hlt">packing</span> of the nanospheres would provide more efficient transport pathways for ions because of the reduced inter-nanosphere pore size and enlarged surface <span class="hlt">area</span> for charge storage. Ultimately, it is anticipated that our approach can be widely used to define the concept of "the best nanoparticle <span class="hlt">packing</span>" for desirable device performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25031179','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25031179"><span>Aneurysm permeability following coil embolization: <span class="hlt">packing</span> density and coil distribution.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J</p> <p>2015-09-01</p> <p>Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of <span class="hlt">packing</span> density and coil uniformity on aneurysm permeability. Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface <span class="hlt">area</span> fraction and coil uniformity. All aneurysms were coiled to a <span class="hlt">packing</span> density of at least 27%. <span class="hlt">Packing</span> density, surface <span class="hlt">area</span> fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for <span class="hlt">packing</span> and uniformity measures. Coil mass permeability was modeled better with the inclusion of <span class="hlt">packing</span> and uniformity measures of the dome (r(2)=0.73) than with <span class="hlt">packing</span> density alone (r(2)=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with <span class="hlt">packing</span> measures. A densely <span class="hlt">packed</span> aneurysm with a high degree of coil mass uniformity will reduce permeability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1364752','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1364752"><span>County-Level Climate Uncertainty for Risk Assessments: Volume 21 Appendix T - Forecast Sea <span class="hlt">Ice</span> <span class="hlt">Area</span> Fraction.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M.</p> <p>2017-06-01</p> <p>This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-<span class="hlt">areas</span> on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on <span class="hlt">ice</span> concentration, <span class="hlt">ice</span> thickness, age of <span class="hlt">ice</span>, and <span class="hlt">ice</span> ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plusmore » two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C13D..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C13D..06G"><span>The response of grounded <span class="hlt">ice</span> to ocean temperature forcing in a coupled <span class="hlt">ice</span> sheet-<span class="hlt">ice</span> shelf-ocean cavity model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.</p> <p>2010-12-01</p> <p><span class="hlt">Ice</span> shelves provide a pathway for the heat content of the ocean to influence continental <span class="hlt">ice</span> sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded <span class="hlt">ice</span> response. Recent observations of <span class="hlt">ice</span> streams and <span class="hlt">ice</span> shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, <span class="hlt">ice</span> dynamics in the grounding zone control flux into the shelf and thus <span class="hlt">ice</span> shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and <span class="hlt">ice</span> sheet-<span class="hlt">ice</span> shelf, can be quite strong. We examine the response of the <span class="hlt">ice</span> sheet-<span class="hlt">ice</span> shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional <span class="hlt">ice</span> sheet-<span class="hlt">ice</span> shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The <span class="hlt">ice</span> shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and <span class="hlt">area</span>-averaged melt rate is influenced by the response of <span class="hlt">ice</span> shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that <span class="hlt">area</span>-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and <span class="hlt">ice</span> shelf buttressing in marine <span class="hlt">ice</span> sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24769440','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24769440"><span>Water promotes the sealing of nanoscale <span class="hlt">packing</span> defects in folding proteins.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fernández, Ariel</p> <p>2014-05-21</p> <p>A net dipole moment is shown to arise from a non-Debye component of water polarization created by nanoscale <span class="hlt">packing</span> defects on the protein surface. Accordingly, the protein electrostatic field exerts a torque on the induced dipole, locally impeding the nucleation of <span class="hlt">ice</span> at the protein-water interface. We evaluate the solvent orientation steering (SOS) as the reversible work needed to align the induced dipoles with the Debye electrostatic field and computed the SOS for the variable interface of a folding protein. The minimization of the SOS is shown to drive protein folding as evidenced by the entrainment of the total free energy by the SOS energy along trajectories that approach a Debye limit state where no torque arises. This result suggests that the minimization of anomalous water polarization at the interface promotes the sealing of <span class="hlt">packing</span> defects, thereby maintaining structural integrity and committing the protein chain to fold.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870001646','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870001646"><span>Safety considerations for fabricating lithium battery <span class="hlt">packs</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ciesla, J. J.</p> <p>1986-01-01</p> <p>Lithium cell safety is a major issue with both manufacturers and end users. Most manufacturers have taken great strides to develop the safest cells possible while still maintaining performance characteristics. The combining of lithium cells for higher voltages, currents, and capacities requires the fabricator of lithium battery <span class="hlt">packs</span> to be knowledgable about the specific electrochemical system being used. Relatively high rate, spirally wound (large surface <span class="hlt">area</span>) sulfur oxychloride cells systems, such as Li/Thionyl or Sulfuryl chloride are considered. Prior to the start of a design of a battery <span class="hlt">pack</span>, a review of the characterization studies for the cells should be conducted. The approach for fabricating a battery <span class="hlt">pack</span> might vary with cell size.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRC..118.5899R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRC..118.5899R"><span>Airborne thickness and freeboard measurements over the McMurdo <span class="hlt">Ice</span> Shelf, Antarctica, and implications for <span class="hlt">ice</span> density</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rack, Wolfgang; Haas, Christian; Langhorne, Pat J.</p> <p>2013-11-01</p> <p>We present airborne measurements to investigate the thickness of the western McMurdo <span class="hlt">Ice</span> Shelf in the western Ross Sea, Antarctica. Because of basal accretion of marine <span class="hlt">ice</span> and brine intrusions conventional radar systems are limited in detecting the <span class="hlt">ice</span> thickness in this <span class="hlt">area</span>. In November 2009, we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure several thickness and freeboard profiles across the <span class="hlt">ice</span> shelf. The maximum electromagnetically detectable <span class="hlt">ice</span> thickness was about 55 m. Assuming hydrostatic equilibrium, the simultaneous measurement of <span class="hlt">ice</span> freeboard and thickness was used to derive bulk <span class="hlt">ice</span> densities ranging from 800 to 975 kg m-3. Densities higher than those of pure <span class="hlt">ice</span> can be largely explained by the abundance of sediments accumulated at the surface and present within the <span class="hlt">ice</span> shelf, and are likely to a smaller extent related to the overestimation of <span class="hlt">ice</span> thickness by the electromagnetic induction measurement related to the presence of a subice platelet layer. The equivalent thickness of debris at a density of 2800 kg m-3 is found to be up to about 2 m thick. A subice platelet layer below the <span class="hlt">ice</span> shelf, similar to what is observed in front of the <span class="hlt">ice</span> shelf below the sea <span class="hlt">ice</span>, is likely to exist in <span class="hlt">areas</span> of highest thickness. The thickness and density distribution reflects a picture of <span class="hlt">areas</span> of basal freezing and supercooled <span class="hlt">Ice</span> Shelf Water emerging from below the central <span class="hlt">ice</span> shelf cavity into McMurdo Sound.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920010531','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920010531"><span>Sea <span class="hlt">ice</span>-atmosphere interaction. Application of multispectral satellite data in polar surface energy flux estimates</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steffen, Konrad; Key, Jeff; Maslanik, Jim; Haefliger, Marcel; Fowler, Chuck</p> <p>1992-01-01</p> <p>Satellite data for the estimation of radiative and turbulent heat fluxes is becoming an increasingly important tool in large-scale studies of climate. One parameter needed in the estimation of these fluxes is surface temperature. To our knowledge, little effort has been directed to the retrieval of the sea <span class="hlt">ice</span> surface temperature (IST) in the Arctic, an <span class="hlt">area</span> where the first effects of a changing climate are expected to be seen. The reason is not one of methodology, but rather our limited knowledge of atmospheric temperature, humidity, and aerosol profiles, the microphysical properties of polar clouds, and the spectral characteristics of the wide variety of surface types found there. We have developed a means to correct for the atmospheric attenuation of satellite-measured clear sky brightness temperatures used in the retrieval of <span class="hlt">ice</span> surface temperature from the split-window thermal channels of the advanced very high resolution radiometer (AVHRR) sensors on-board three of the NOAA series satellites. These corrections are specified for three different 'seasons' and as a function of satellite viewing angle, and are expected to be applicable to the perennial <span class="hlt">ice</span> <span class="hlt">pack</span> in the central Arctic Basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070034825','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070034825"><span>Trends in the Sea <span class="hlt">Ice</span> Cover Using Enhanced and Compatible AMSR-E, SSM/I and SMMR Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Nishio, Fumihiko</p> <p>2007-01-01</p> <p>Arguably, the most remarkable manifestation of change in the polar regions is the rapid decline (of about -10 %/decade) in the Arctic perennial <span class="hlt">ice</span> cover. Changes in the global sea <span class="hlt">ice</span> cover, however, are more modest, being slightly positive in the Southern Hemisphere and slightly negative in the Northern Hemisphere, the significance of which has not been adequately assessed because of unknown errors in the satellite historical data. We take advantage of the recent and more accurate AMSR-E data to evaluate the true seasonal and interannual variability of the sea <span class="hlt">ice</span> cover, assess the accuracy of historical data, and determine the real trend. Consistently derived <span class="hlt">ice</span> concentrations from AMSR-E, SSM/I, and SMMR data were analyzed and a slight bias is observed between AMSR-E and SSM/I data mainly because of differences in resolution. Analysis of the combine SMMR, SSM/I and AMSR-E data set, with the bias corrected, shows that the trends in extent and <span class="hlt">area</span> of sea <span class="hlt">ice</span> in the Arctic region is -3.4 +/- 0.2 and -4.0 +/- 0.2 % per decade, respectively, while the corresponding values for the Antarctic region is 0.9 +/- 0.2 and 1.7 .+/- 0.3 % per decade. The higher resolution of the AMSR-E provides an improved determination of the location of the <span class="hlt">ice</span> edge while the SSM/I data show an <span class="hlt">ice</span> edge about 6 to 12 km further away from the <span class="hlt">ice</span> <span class="hlt">pack</span>. Although the current record of AMSR-E is less than 5 years, the data can be utilized in combination with historical data for more accurate determination of the variability and trends in the <span class="hlt">ice</span> cover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25384192','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25384192"><span>The interaction of propionic and butyric acids with <span class="hlt">ice</span> and HNO₃-doped <span class="hlt">ice</span> surfaces at 195-212 K.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Romanias, Manolis N; Papadimitriou, Vassileios C; Papagiannakopoulos, Panos</p> <p>2014-12-04</p> <p>The interaction of propionic and butyric acids on <span class="hlt">ice</span> and HNO3-doped <span class="hlt">ice</span> were studied between 195 and 212 K and low concentrations, using a Knudsen flow reactor coupled with a quadrupole mass spectrometer. The initial uptake coefficients (γ0) of propionic and butyric acids on <span class="hlt">ice</span> as a function of temperature are given by the expressions: γ0(T) = (7.30 ± 1.0) × 10(-10) exp[(3216 ± 478)/T] and γ0(T) = (6.36 ± 0.76) × 10(-11) exp[(3810 ± 434)/T], respectively; the quoted error limits are at 95% level of confidence. Similarly, γ0 of propionic acid on 1.96 wt % (A) and 7.69 wt % (B) HNO3-doped <span class="hlt">ice</span> with temperature are given as γ(0,A)(T) = (2.89 ± 0.26) × 10(-8) exp[(2517 ± 266)/T] and γ(0,B)(T) = (2.77 ± 0.29) × 10(-7) exp[(2126 ± 206)/T], respectively. The results show that γ0 of C1 to C4 n-carboxylic acids on <span class="hlt">ice</span> increase with the alkyl-group length, due to lateral interactions between alkyl-groups that favor a more perpendicular orientation and well <span class="hlt">packing</span> of H-bonded monomers on <span class="hlt">ice</span>. The high uptakes (>10(15) molecules cm(-2)) and long recovery signals indicate efficient growth of random multilayers above the first monolayer driven by significant van der Waals interactions. The heterogeneous loss of both acids on <span class="hlt">ice</span> and HNO3-doped <span class="hlt">ice</span> particles in dense cirrus clouds is estimated to take a few minutes, signifying rapid local heterogeneous removal by dense cirrus clouds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000769.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000769.html"><span>Sea <span class="hlt">ice</span> off western Alaska</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-02-20</p> <p>On February 4, 2014 the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard NASA’s Aqua satellite captured a true-color image of sea <span class="hlt">ice</span> off of western Alaska. In this true-color image, the snow and <span class="hlt">ice</span> covered land appears bright white while the floating sea <span class="hlt">ice</span> appears a duller grayish-white. Snow over the land is drier, and reflects more light back to the instrument, accounting for the very bright color. <span class="hlt">Ice</span> overlying oceans contains more water, and increasing water decreases reflectivity of <span class="hlt">ice</span>, resulting in duller colors. Thinner <span class="hlt">ice</span> is also duller. The ocean waters are tinted with green, likely due to a combination of sediment and phytoplankton. Alaska lies to the east in this image, and Russia to the west. The Bering Strait, covered with <span class="hlt">ice</span>, lies between to two. South of the Bering Strait, the waters are known as the Bering Sea. To the north lies the Chukchi Sea. The bright white island south of the Bering Strait is St. Lawrence Island. Home to just over 1200 people, the windswept island belongs to the United States, but sits closer to Russia than to Alaska. To the southeast of the island a dark <span class="hlt">area</span>, loosely covered with floating sea <span class="hlt">ice</span>, marks a persistent polynya – an <span class="hlt">area</span> of open water surrounded by more frozen sea <span class="hlt">ice</span>. Due to the prevailing winds, which blow the sea <span class="hlt">ice</span> away from the coast in this location, the <span class="hlt">area</span> rarely completely freezes. The <span class="hlt">ice</span>-covered <span class="hlt">areas</span> in this image, as well as the Beaufort Sea, to the north, are critical <span class="hlt">areas</span> for the survival of the ringed seal, a threatened species. The seals use the sea <span class="hlt">ice</span>, including <span class="hlt">ice</span> caves, to rear their young, and use the free-floating sea <span class="hlt">ice</span> for molting, raising the young and breeding. In December 2014, the National Oceanic and Atmospheric Administration (NOAA) proposed that much of this region be set aside as critical, protected habitat for the ringed seal. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001602&hterms=BALANCE+SHEET&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DBALANCE%2BSHEET','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001602&hterms=BALANCE+SHEET&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DBALANCE%2BSHEET"><span>Balance of the West Antarctic <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>For several decades, measurements of the West Antarctic <span class="hlt">Ice</span> Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the <span class="hlt">ice</span> sheet to be growing. Changing Antarctic <span class="hlt">ice</span> sheets remains an <span class="hlt">area</span> of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the <span class="hlt">ice</span> sheet collapsed into the sea. Do these new measurements signal the end of the <span class="hlt">ice</span> sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse <span class="hlt">ice</span> core and surface measurements that produced the previous estimates? Another possibility is that the <span class="hlt">ice</span> accumulation may simply indicate that the <span class="hlt">ice</span> sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured <span class="hlt">ice</span> speed. The fast-moving central <span class="hlt">ice</span> streams are shown in red. Slower tributaries feeding the <span class="hlt">ice</span> streams are shown in blue. Green <span class="hlt">areas</span> depict slow-moving, stable <span class="hlt">areas</span>. Thick black lines depict the <span class="hlt">areas</span> that collect snowfall to feed their respective <span class="hlt">ice</span> streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5795472','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5795472"><span>Hyperspectral Features of Oil-Polluted Sea <span class="hlt">Ice</span> and the Response to the Contamination <span class="hlt">Area</span> Fraction</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Ying; Liu, Chengyu; Xie, Feng</p> <p>2018-01-01</p> <p>Researchers have studied oil spills in open waters using remote sensors, but few have focused on extracting reflectance features of oil pollution on sea <span class="hlt">ice</span>. An experiment was conducted on natural sea <span class="hlt">ice</span> in Bohai Bay, China, to obtain the spectral reflectance of oil-contaminated sea <span class="hlt">ice</span>. The spectral absorption index (SAI), spectral peak height (SPH), and wavelet detail coefficient (DWT d5) were calculated using stepwise multiple linear regression. The reflectances of some false targets were measured and analysed. The simulated false targets were sediment, iron ore fines, coal dust, and the melt pool. The measured reflectances were resampled using five common sensors (GF-2, Landsat8-OLI, Sentinel3-OLCI, MODIS, and AVIRIS). Some significant spectral features could discriminate between oil-polluted and clean sea <span class="hlt">ice</span>. The indices correlated well with the oil <span class="hlt">area</span> fractions. All of the adjusted R2 values exceeded 0.9. The SPH model1, based on spectral features at 507–670 and 1627–1746 nm, displayed the best fitting. The resampled data indicated that these multi-spectral and hyper-spectral sensors could be used to detect crude oil on the sea <span class="hlt">ice</span> if the effect of noise and spatial resolution are neglected. The spectral features and their identified changes may provide reference on sensor design and band selection. PMID:29342945</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C32B..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C32B..01T"><span>Some Results on Sea <span class="hlt">Ice</span> Rheology for the Seasonal <span class="hlt">Ice</span> Zone, Obtained from the Deformation Field of Sea <span class="hlt">Ice</span> Drift Pattern</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toyota, T.; Kimura, N.</p> <p>2017-12-01</p> <p>Sea <span class="hlt">ice</span> rheology which relates sea <span class="hlt">ice</span> stress to the large-scale deformation of the <span class="hlt">ice</span> cover has been a big issue to numerical sea <span class="hlt">ice</span> modelling. At present the treatment of internal stress within sea <span class="hlt">ice</span> <span class="hlt">area</span> is based mostly on the rheology formulated by Hibler (1979), where the whole sea <span class="hlt">ice</span> <span class="hlt">area</span> behaves like an isotropic and plastic matter under the ordinary stress with the yield curve given by an ellipse with an aspect ratio (e) of 2, irrespective of sea <span class="hlt">ice</span> <span class="hlt">area</span> and horizontal resolution of the model. However, this formulation was initially developed to reproduce the seasonal variation of the perennial <span class="hlt">ice</span> in the Arctic Ocean. As for its applicability to the seasonal <span class="hlt">ice</span> zones (SIZ), where various types of sea <span class="hlt">ice</span> are present, it still needs validation from observational data. In this study, the validity of this rheology was examined for the Sea of Okhotsk <span class="hlt">ice</span>, typical of the SIZ, based on the AMSR-derived <span class="hlt">ice</span> drift pattern in comparison with the result obtained for the Beaufort Sea. To examine the dependence on a horizontal scale, the coastal radar data operated near the Hokkaido coast, Japan, were also used. <span class="hlt">Ice</span> drift pattern was obtained by a maximum cross-correlation method with grid spacings of 37.5 km from the 89 GHz brightness temperature of AMSR-E for the entire Sea of Okhotsk and the Beaufort Sea and 1.3 km from the coastal radar for the near-shore Sea of Okhotsk. The validity of this rheology was investigated from a standpoint of work rate done by deformation field, following the theory of Rothrock (1975). In analysis, the relative rates of convergence were compared between theory and observation to check the shape of yield curve, and the strain ellipse at each grid cell was estimated to see the horizontal variation of deformation field. The result shows that the ellipse of e=1.7-2.0 as the yield curve represents the observed relative conversion rates well for all the <span class="hlt">ice</span> <span class="hlt">areas</span>. Since this result corresponds with the yield criterion by Tresca and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019840','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019840"><span>Southern Laurentide <span class="hlt">ice</span> lobes were created by <span class="hlt">ice</span> streams: Des Moines Lobe in Minnesota, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Patterson, C.J.</p> <p>1997-01-01</p> <p>Regional mapping in southern Minnesota has illuminated a suite of landforms developed by the Des Moines Lobe that delimit the position of the lobe at its maximum and at lesser readvances. The <span class="hlt">ice</span> lobe repeatedly advanced, discharged its subglacial water, and subsequently stagnated. Recent glaciological research on Antarctic <span class="hlt">ice</span> streams has led some glacial geologists to postulate that <span class="hlt">ice</span> streams drained parts of the marine-based <span class="hlt">areas</span> of the Laurentide <span class="hlt">Ice</span> Sheet. I postulate that such <span class="hlt">ice</span> streams may develop in land-based <span class="hlt">areas</span> of an <span class="hlt">ice</span> sheet as well, and that the Des Moines Lobe, 200 km wide and 900 km long, was an outlet glacier of an <span class="hlt">ice</span> stream. It appears to have been able to advance beyond the Laurentide <span class="hlt">Ice</span> Sheet as long as adequate water pressure was maintained. However, the outer part of the lobe stagnated because subglacial water that facilitated the flow was able to drain away through tunnel valleys. Stagnation of the lobe is not equivalent to stoppage of the <span class="hlt">ice</span> stream, because <span class="hlt">ice</span> repeatedly advanced into and onto the stagnant margins, stacking <span class="hlt">ice</span> and debris. Similar landforms are also seen in other lobes of the upper midwestern United States.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038166&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DParkinsons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038166&hterms=Parkinsons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DParkinsons"><span>Passive Microwave Algorithms for Sea <span class="hlt">Ice</span> Concentration: A Comparison of Two Techniques</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Cavalieri, Donald J.; Parkinson, Claire L.; Gloersen, Per</p> <p>1997-01-01</p> <p>The most comprehensive large-scale characterization of the global sea <span class="hlt">ice</span> cover so far has been provided by satellite passive microwave data. Accurate retrieval of <span class="hlt">ice</span> concentrations from these data is important because of the sensitivity of surface flux(e.g. heat, salt, and water) calculations to small change in the amount of open water (leads and polynyas) within the polar <span class="hlt">ice</span> <span class="hlt">packs</span>. Two algorithms that have been used for deriving <span class="hlt">ice</span> concentrations from multichannel data are compared. One is the NASA Team algorithm and the other is the Bootstrap algorithm, both of which were developed at NASA's Goddard Space Flight Center. The two algorithms use different channel combinations, reference brightness temperatures, weather filters, and techniques. Analyses are made to evaluate the sensitivity of algorithm results to variations of emissivity and temperature with space and time. To assess the difference in the performance of the two algorithms, analyses were performed with data from both hemispheres and for all seasons. The results show only small differences in the central Arctic in but larger disagreements in the seasonal regions and in summer. In some ares in the Antarctic, the Bootstrap technique show <span class="hlt">ice</span> concentrations higher than those of the Team algorithm by as much as 25%; whereas, in other <span class="hlt">areas</span>, it shows <span class="hlt">ice</span> concentrations lower by as much as 30%. The The differences in the results are caused by temperature effects, emissivity effects, and tie point differences. The Team and the Bootstrap results were compared with available Landsat, advanced very high resolution radiometer (AVHRR) and synthetic aperture radar (SAR) data. AVHRR, Landsat, and SAR data sets all yield higher concentrations than the passive microwave algorithms. Inconsistencies among results suggest the need for further validation studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001118.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001118.html"><span>Persistent <span class="hlt">Ice</span> on Lake Superior</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Though North America is a full month into astronomical spring, the Great Lakes have been slow to give up on winter. As of April 22, 2014, the Great Lakes were 33.9 percent <span class="hlt">ice</span> covered. The lake they call Superior dominated the <span class="hlt">pack</span>. In the early afternoon on April 20, 2014, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured this natural-color image of Lake Superior, which straddles the United States–Canada border. At the time Aqua passed over, the lake was 63.5 percent <span class="hlt">ice</span> covered, according to the NOAA Great Lakes Environmental Research Lab (GLERL). Averaged across Lake Superior, <span class="hlt">ice</span> was 22.6 centimeters (8.9 inches) thick; it was as much as twice that thickness in some locations. GLERL researcher George Leshkevich affirmed that <span class="hlt">ice</span> cover this spring is significantly above normal. For comparison, Lake Superior had 3.6 percent <span class="hlt">ice</span> cover on April 20, 2013; in 2012, <span class="hlt">ice</span> was completely gone by April 12. In the last winter that <span class="hlt">ice</span> cover grew so thick on Lake Superior (2009), it reached 93.7 percent on March 2 but was down to 6.7 percent by April 21. Average water temperatures on all of the Great Lakes have been rising over the past 30 to 40 years and <span class="hlt">ice</span> cover has generally been shrinking. (Lake Superior <span class="hlt">ice</span> was down about 79 percent since the 1970s.) But chilled by persistent polar air masses throughout the 2013-14 winter, <span class="hlt">ice</span> cover reached 88.4 percent on February 13 and 92.2 percent on March 6, 2014, the second highest level in four decades of record-keeping. Air temperatures in the Great Lakes region were well below normal for March, and the cool pattern is being reinforced along the coasts because the water is absorbing less sunlight and warming less than in typical spring conditions. The graph below, based on data from Environment Canada, shows the 2014 conditions for all of the Great Lakes in mid-April compared to the past 33 years. Lake Superior <span class="hlt">ice</span> cover got as high as 95.3 percent on March 19. By April 22, it was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030025277&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dstatistics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030025277&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dstatistics"><span>Space/Time Statistics of Polar <span class="hlt">Ice</span> Motion</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Emery, William J.; Fowler, Charles; Maslanik, James A.</p> <p>2003-01-01</p> <p> <span class="hlt">ice</span> <span class="hlt">pack</span> and lead to an <span class="hlt">ice</span>-free Arctic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.2137T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.2137T"><span>Modelling radiative transfer through ponded first-year Arctic sea <span class="hlt">ice</span> with a plane-parallel model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taskjelle, Torbjørn; Hudson, Stephen R.; Granskog, Mats A.; Hamre, Børge</p> <p>2017-09-01</p> <p>Under-<span class="hlt">ice</span> irradiance measurements were done on ponded first-year <span class="hlt">pack</span> <span class="hlt">ice</span> along three transects during the <span class="hlt">ICE</span>12 expedition north of Svalbard. Bulk transmittances (400-900 nm) were found to be on average 0.15-0.20 under bare <span class="hlt">ice</span>, and 0.39-0.46 under ponded <span class="hlt">ice</span>. Radiative transfer modelling was done with a plane-parallel model. While simulated transmittances deviate significantly from measured transmittances close to the edge of ponds, spatially averaged bulk transmittances agree well. That is, transect-average bulk transmittances, calculated using typical simulated transmittances for ponded and bare <span class="hlt">ice</span> weighted by the fractional coverage of the two surface types, are in good agreement with the measured values. Radiative heating rates calculated from model output indicates that about 20 % of the incident solar energy is absorbed in bare <span class="hlt">ice</span>, and 50 % in ponded <span class="hlt">ice</span> (35 % in pond itself, 15 % in the underlying <span class="hlt">ice</span>). This large difference is due to the highly scattering surface scattering layer (SSL) increasing the albedo of the bare <span class="hlt">ice</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030004821','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030004821"><span>ICESat: <span class="hlt">Ice</span>, Cloud and Land Elevation Satellite</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwally, Jay; Shuman, Christopher</p> <p>2002-01-01</p> <p><span class="hlt">Ice</span> exists in the natural environment in many forms. The Earth dynamic <span class="hlt">ice</span> features shows that at high elevations and/or high latitudes,snow that falls to the ground can gradually build up tu form thick consolidated <span class="hlt">ice</span> masses called glaciers. Glaciers flow downhill under the force of gravity and can extend into <span class="hlt">areas</span> that are too warm to support year-round snow cover. The snow line, called the equilibrium line on a glacier or <span class="hlt">ice</span> sheet, separates the <span class="hlt">ice</span> <span class="hlt">areas</span> that melt on the surface and become show free in summer (net ablation zone) from the <span class="hlt">ice</span> <span class="hlt">area</span> that remain snow covered during the entire year (net accumulation zone). Snow near the surface of a glacier that is gradually being compressed into solid <span class="hlt">ice</span> is called firm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21D..08R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21D..08R"><span>Extensive massive basal-<span class="hlt">ice</span> structures in West Antarctica relate to <span class="hlt">ice</span>-sheet anisotropy and <span class="hlt">ice</span>-flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ross, N.; Bingham, R. G.; Corr, H. F. J.; Siegert, M. J.</p> <p>2016-12-01</p> <p>Complex structures identified within both the East Antarctic and Greenland <span class="hlt">ice</span> sheets are thought to be generated by the action of basal water freezing to the <span class="hlt">ice</span>-sheet base, evolving under <span class="hlt">ice</span> flow. Here, we use <span class="hlt">ice</span>-penetrating radar to image an extensive series of similarly complex basal <span class="hlt">ice</span> facies in West Antarctica, revealing a thick (>500 m) tectonised unit in an <span class="hlt">area</span> of cold-based and relatively slow-flowing <span class="hlt">ice</span>. We show that major folding and overturning of the unit perpendicular to <span class="hlt">ice</span> flow elevates deep, warm <span class="hlt">ice</span> into the mid <span class="hlt">ice</span>-sheet column. Fold axes align with present <span class="hlt">ice</span> flow, and axis amplitudes increase down-<span class="hlt">ice</span>, suggesting long-term consistency in the direction and convergence of flow. In the absence of basal water, and the draping of the tectonised unit over major subglacial mountain ranges, the formation of the unit must be solely through the deformation of meteoric <span class="hlt">ice</span>. Internal layer radar reflectivity is consistently greater parallel to flow compared with the perpendicular direction, revealing <span class="hlt">ice</span>-sheet crystal anisotropy is associated with the folding. By linking layers to the Byrd <span class="hlt">ice</span>-core site, we show the basal <span class="hlt">ice</span> dates to at least the last glacial cycle and may be as old as the last interglacial. Deformation of deep-<span class="hlt">ice</span> in this sector of WAIS, and potentially elsewhere in Antarctica, may be caused by differential shearing at interglacial-glacial boundaries, in a process analogous to that proposed for interior Greenland. The scale and heterogeneity of the englacial structures, and their subsequent impact on <span class="hlt">ice</span> sheet rheology, means that the nature of <span class="hlt">ice</span> flow across the bulk of West Antarctica must be far more complex that is currently accounted for by any numerical <span class="hlt">ice</span> sheet model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29174313','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29174313"><span>The effect of cool water <span class="hlt">pack</span> preparation on vaccine vial temperatures in refrigerators.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goldwood, Geneva; Diesburg, Steven</p> <p>2018-01-02</p> <p>Cool water <span class="hlt">packs</span> are a useful alternative to <span class="hlt">ice</span> <span class="hlt">packs</span> for preventing unintentional freezing of vaccines during outreach in some situations. Current guidelines recommend the use of a separate refrigerator for cooling water <span class="hlt">packs</span> from ambient temperatures to prevent possible heat degradation of adjacent vaccine vials. To investigate whether this additional equipment is necessary, we measured the temperatures that vaccine vials were exposed to when warm water <span class="hlt">packs</span> were placed next to vials in a refrigerator. We then calculated the effect of repeated vial exposure to those temperatures on vaccine vial monitor status to estimate the impact to the vaccine. Vials were tested in a variety of configurations, varying the number and locations of vials and water <span class="hlt">packs</span> in the refrigerator. The calculated average percentage life lost during a month of repeated warming ranged from 20.0% to 30.3% for a category 2 (least stable) vaccine vial monitor and from 3.8% to 6.0% for a category 7 (moderate stability) vaccine vial monitor, compared to 17.0% for category 2 vaccine vial monitors and 3.1% for category 7 vaccine vial monitors at a constant 5 °C. The number of vials, number of water <span class="hlt">packs</span>, and locations of each impacted vial warming and therefore percentage life lost, but the vaccine vial monitor category had a higher impact on the average percentage life lost than any of the other parameters. The results suggest that damage to vaccines from repeated warming over the course of a month is not certain and that cooling water <span class="hlt">packs</span> in a refrigerator where vaccines are being stored may be a useful practice if safe procedures are established. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P31A2092B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P31A2092B"><span>Jamming of granular <span class="hlt">ice</span> mélange in tidewater glacial fjords</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burton, J. C.; Cassotto, R.; Amundson, J. M.; Kuo, C. C.; Dennin, M.</p> <p>2016-12-01</p> <p>In tidewater glacial fjords, the open water in front of the glacier terminus is often filled with a collection of calved iceberg fragments and sea <span class="hlt">ice</span>. For glaciers with large calving rates, this "mélange" of <span class="hlt">ice</span> can be jam-<span class="hlt">packed</span>, so that the flow is mostly determined by granular interactions, in addition to underlying fjord currents. As the glacier pushes the <span class="hlt">ice</span> mélange through the fjord, the mélange will become jammed and may potentially influence calving rates if the back-stress applied to the glacier terminus is large enough. However, the stress applied by a granular <span class="hlt">ice</span> mélange will depend on its rheology, i.e. iceberg-iceberg contact forces, geometry, friction, etc. Here we report 2D, discrete particle simulations to model the granular mechanics of <span class="hlt">ice</span> mélange. A polydisperse collection of particles is <span class="hlt">packed</span> into a long channel and pushed downfjord at a constant speed, the latter derived from terrestrial radar interferometry (TRI). Each individual particle experiences viscoelastic contact forces and tangential frictional forces upon collision with another particle or channel walls. We find the two most important factors that govern the total force applied to the glacier are the geometry of the channel, and the shape of the particles. In addition, our simulated velocity fields reveal shearing margins near the fjord walls with more uniform flow in the middle of the mélange, consistent with TRI observations. Finally, we find that the magnitude of the back-stress applied to the glacier terminus can influence calving, however, the maximum back-stress is limited by the buckling of icebergs into the fjord waters, so that the stress in the quasi-2D mélange is partially determined by the thickness of the mélange layer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4906384','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4906384"><span>Massive subsurface <span class="hlt">ice</span> formed by refreezing of <span class="hlt">ice</span>-shelf melt ponds</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian</p> <p>2016-01-01</p> <p>Surface melt ponds form intermittently on several Antarctic <span class="hlt">ice</span> shelves. Although implicated in <span class="hlt">ice</span>-shelf break up, the consequences of such ponding for <span class="hlt">ice</span> formation and <span class="hlt">ice</span>-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface <span class="hlt">ice</span> layer, at least 16 km across, several kilometres long and tens of metres deep, located in an <span class="hlt">area</span> of intense melting and intermittent ponding on Larsen C <span class="hlt">Ice</span> Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of <span class="hlt">ice</span>-shelf fracture and flow. Surface ponding and <span class="hlt">ice</span> layers such as the one we report are likely to form on a wider range of Antarctic <span class="hlt">ice</span> shelves in response to climatic warming in forthcoming decades. PMID:27283778</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920040056&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920040056&hterms=data+types&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddata%2Btypes"><span>Effects of weather on the retrieval of sea <span class="hlt">ice</span> concentration and <span class="hlt">ice</span> type from passive microwave data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maslanik, J. A.</p> <p>1992-01-01</p> <p>Effects of wind, water vapor, and cloud liquid water on <span class="hlt">ice</span> concentration and <span class="hlt">ice</span> type calculated from passive microwave data are assessed through radiative transfer calculations and observations. These weather effects can cause overestimates in <span class="hlt">ice</span> concentration and more substantial underestimates in multi-year <span class="hlt">ice</span> percentage by decreasing polarization and by decreasing the gradient between frequencies. The effect of surface temperature and air temperature on the magnitudes of weather-related errors is small for <span class="hlt">ice</span> concentration and substantial for multiyear <span class="hlt">ice</span> percentage. The existing weather filter in the NASA Team Algorithm addresses only weather effects over open ocean; the additional use of local open-ocean tie points and an alternative weather correction for the marginal <span class="hlt">ice</span> zone can further reduce errors due to weather. <span class="hlt">Ice</span> concentrations calculated using 37 versus 18 GHz data show little difference in total <span class="hlt">ice</span> covered <span class="hlt">area</span>, but greater differences in intermediate concentration classes. Given the magnitude of weather-related errors in <span class="hlt">ice</span> classification from passive microwave data, corrections for weather effects may be necessary to detect small trends in <span class="hlt">ice</span> covered <span class="hlt">area</span> and <span class="hlt">ice</span> type for climate studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870066726&hterms=ocean+salt+water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DWhy%2Bocean%2Bsalt%2Bwater','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870066726&hterms=ocean+salt+water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DWhy%2Bocean%2Bsalt%2Bwater"><span>A coupled dynamic-thermodynamic model of an <span class="hlt">ice</span>-ocean system in the marginal <span class="hlt">ice</span> zone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hakkinen, Sirpa</p> <p>1987-01-01</p> <p>Thermodynamics are incorporated into a coupled <span class="hlt">ice</span>-ocean model in order to investigate wind-driven <span class="hlt">ice</span>-ocean processes in the marginal zone. Upswelling at the <span class="hlt">ice</span> edge which is generated by the difference in the <span class="hlt">ice</span>-air and air-water surface stresses is found to give rise to a strong entrainment by drawing the pycnocline closer to the surface. Entrainment is shown to be negligible outside the <span class="hlt">areas</span> affected by the <span class="hlt">ice</span> edge upswelling. If cooling at the top is included in the model, the heat and salt exchanges are further enhanced in the upswelling <span class="hlt">areas</span>. It is noted that new <span class="hlt">ice</span> formation occurs in the region not affected by <span class="hlt">ice</span> edge upswelling, and it is suggested that the high-salinity mixed layer regions (with a scale of a few Rossby radii of deformation) will overturn due to cooling, possibly contributing to the formation of deep water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050179461','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050179461"><span>Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.; Cavalieri, Donald J.</p> <p>2005-01-01</p> <p>Sea <span class="hlt">ice</span> covers vast <span class="hlt">areas</span> of the polar oceans, with <span class="hlt">ice</span> extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and <span class="hlt">ice</span> extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These <span class="hlt">ice</span> covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea <span class="hlt">ice</span> covers, and many studies suggest possible connections between the <span class="hlt">ice</span> and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased <span class="hlt">ice</span> coverage in the Arctic and increased <span class="hlt">ice</span> coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic <span class="hlt">ice</span> increases following marked decreases in the Antarctic <span class="hlt">ice</span> during the 1970s. For a detailed picture of the seasonally varying <span class="hlt">ice</span> cover at the start of the 21st century, this chapter includes <span class="hlt">ice</span> concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar <span class="hlt">ice</span> covers from the 1970s through 2003.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12208033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12208033"><span>Influence of <span class="hlt">ice</span> and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cockell, Charles S; Rettberg, Petra; Horneck, Gerda; Wynn-Williams, David D; Scherer, Kerstin; Gugg-Helminger, Anton</p> <p>2002-08-01</p> <p>Bacillus subtilis spore biological dosimeters and electronic dosimeters were used to investigate the exposure of terrestrial microbial communities in micro-habitats covered by snow and <span class="hlt">ice</span> in Antarctica. The melting of snow covers of between 5- and 15-cm thickness, depending on age and heterogeneity, could increase B. subtilis spore inactivation by up to an order of magnitude, a relative increase twice that caused by a 50% ozone depletion. Within the snow-<span class="hlt">pack</span> at depths of less than approximately 3 cm snow algae could receive two to three times the DNA-weighted irradiance they would receive on bare ground. At the edge of the snow-<span class="hlt">pack</span>, warming of low albedo soils resulted in the formation of overhangs that provided transient UV protection to thawed and growing microbial communities on the soils underneath. In shallow aquatic habitats, thin layers of heterogeneous <span class="hlt">ice</span> of a few millimetres thickness were found to reduce DNA-weighted irradiances by up to 55% compared to full-sky values with equivalent DNA-weighted diffuse attenuation coefficients (K(DNA)) of >200 m(-1). A 2-mm snow-encrusted <span class="hlt">ice</span> cover on a pond was equivalent to 10 cm of <span class="hlt">ice</span> on a perennially <span class="hlt">ice</span> covered lake. <span class="hlt">Ice</span> covers also had the effect of stabilizing the UV exposure, which was often subject to rapid variations of up to 33% of the mean value caused by wind-rippling of the water surface. These data show that changing <span class="hlt">ice</span> and snow covers cause relative changes in microbial UV exposure at least as great as those caused by changing ozone column abundance. Copyright 2002 Elsevier Science B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53E0944A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53E0944A"><span>Record low lake <span class="hlt">ice</span> thickness and bedfast <span class="hlt">ice</span> extent on Alaska's Arctic Coastal Plain in 2017 exemplify the value of monitoring freshwater <span class="hlt">ice</span> to understand sea-<span class="hlt">ice</span> forcing and predict permafrost dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arp, C. D.; Alexeev, V. A.; Bondurant, A. C.; Creighton, A.; Engram, M. J.; Jones, B. M.; Parsekian, A.</p> <p>2017-12-01</p> <p>The winter of 2016/2017 was exceptionally warm and snowy along the coast of Arctic Alaska partly due to low fall sea <span class="hlt">ice</span> extent. Based on several decades of field measurements, we documented a new record low maximum <span class="hlt">ice</span> thickness (MIT) for lakes on the Barrow Peninsula, averaging 1.2 m. This is in comparison to a long-term average MIT of 1.7 m stretching back to 1962 with a maximum of 2.1 m in 1970 and previous minimum of 1.3 m in 2014. The relevance of thinner lake <span class="hlt">ice</span> in arctic coastal lowlands, where thermokarst lakes cover greater than 20% of the land <span class="hlt">area</span>, is that permafrost below lakes with bedfast <span class="hlt">ice</span> is typically preserved. Lakes deeper than the MIT warm and thaw sub-lake permafrost forming taliks. Remote sensing analysis using synthetic aperture radar (SAR) is a valuable tool for scaling the field observations of MIT to the entire freshwater landscape to map bedfast <span class="hlt">ice</span>. A new, long-term time-series of late winter multi-platform SAR from 1992 to 2016 shows a large dynamic range of bedfast <span class="hlt">ice</span> extent, 29% of lake <span class="hlt">area</span> or 6% of the total land <span class="hlt">area</span> over this period, and adding 2017 to this record is expected to extend this range further. Empirical models of lake mean annual bed temperature suggest that permafrost begins to thaw at depths less than 60% of MIT. Based on this information and knowledge of average lake <span class="hlt">ice</span> growth trajectories, we suggest that future SAR analysis of lake <span class="hlt">ice</span> should focus on mid-winter (January) to evaluate the extent of bedfast <span class="hlt">ice</span> and corresponding zones of sub-lake permafrost thaw. Tracking changes in these <span class="hlt">areas</span> from year to year in mid-winter may provide the best landscape-scale evaluation of changing permafrost conditions in lake-rich arctic lowlands. Because observed changes in MIT coupled with mid-winter bedfast <span class="hlt">ice</span> extent provide much information on permafrost stability, we suggest that these measurements can serve as Essential Climate Variables (EVCs) to indicate past and future changes in lake-rich arctic regions. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5324094','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5324094"><span>Variability in sea <span class="hlt">ice</span> cover and climate elicit sex specific responses in an Antarctic predator</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit</p> <p>2017-01-01</p> <p>Contrasting regional changes in Southern Ocean sea <span class="hlt">ice</span> have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea <span class="hlt">ice</span> concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in <span class="hlt">pack</span> <span class="hlt">ice</span> in years with greatest sea <span class="hlt">ice</span> concentration and earliest sea <span class="hlt">ice</span> advance, while males foraged longer in polynyas in years of lowest sea <span class="hlt">ice</span> concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea <span class="hlt">ice</span> property and dynamic anomalies. PMID:28233791</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28233791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28233791"><span>Variability in sea <span class="hlt">ice</span> cover and climate elicit sex specific responses in an Antarctic predator.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit</p> <p>2017-02-24</p> <p>Contrasting regional changes in Southern Ocean sea <span class="hlt">ice</span> have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea <span class="hlt">ice</span> concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in <span class="hlt">pack</span> <span class="hlt">ice</span> in years with greatest sea <span class="hlt">ice</span> concentration and earliest sea <span class="hlt">ice</span> advance, while males foraged longer in polynyas in years of lowest sea <span class="hlt">ice</span> concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea <span class="hlt">ice</span> property and dynamic anomalies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070035024','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070035024"><span>Arctic Sea <span class="hlt">Ice</span> Parameters from AMSR-E Data using Two Techniques, and Comparisons with Sea <span class="hlt">Ice</span> from SSM</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.; Parkinson, Claire L.</p> <p>2007-01-01</p> <p>We use two algorithms to process AMSR-E data in order to determine algorithm dependence, if any, on the estimates of sea <span class="hlt">ice</span> concentration, <span class="hlt">ice</span> extent and <span class="hlt">area</span>, and trends and to evaluate how AMSR-E data compare with historical SSM/I data. The monthly <span class="hlt">ice</span> concentrations derived from the two algorithms from AMSR-E data (the AMSR-E Bootstrap Algorithm, or ABA, and the enhanced NASA Team algorithm, or NT2) differ on average by about 1 to 3%, with data from the consolidated <span class="hlt">ice</span> region being generally comparable for ABA and NT2 retrievals while data in the marginal <span class="hlt">ice</span> zones and thin <span class="hlt">ice</span> regions show higher values when the NT2 algorithm is used. The <span class="hlt">ice</span> extents and <span class="hlt">areas</span> derived separately from AMSR-E using these two algorithms are, however, in good agreement, with the differences (ABA-NT2) being about 6.6 x 10(exp 4) square kilometers on average for <span class="hlt">ice</span> extents and -6.6 x 10(exp 4) square kilometers for <span class="hlt">ice</span> <span class="hlt">area</span> which are small compared to mean seasonal values of 10.5 x 10(exp 6) and 9.8 x 10(exp 6) for <span class="hlt">ice</span> extent and <span class="hlt">area</span>: respectively. Likewise, extents and <span class="hlt">areas</span> derived from the same algorithm but from AMSR-E and SSM/I data are consistent but differ by about -24.4 x 10(exp 4) square kilometers and -13.9 x 10(exp 4) square kilometers, respectively. The discrepancies are larger with the estimates of extents than <span class="hlt">area</span> mainly because of differences in channel selection and sensor resolutions. Trends in extent during the AMSR-E era were also estimated and results from all three data sets are shown to be in good agreement (within errors).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770007609','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770007609"><span>Sea <span class="hlt">ice</span> studies in the Spitsbergen-Greenland <span class="hlt">area</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vinje, T. E. (Principal Investigator)</p> <p>1976-01-01</p> <p>The author has identified the following significant results. Detailed information on the outflow through the Fram Strait of <span class="hlt">ice</span> from the Polar Ocean over shorter periods was obtained. It is found that the speed of the outflow may vary about 100% over periods of a few days. The core of the East Greenland Current is found between 2 deg E and 4 deg W. The speed of the surface water at 81 deg N is for a calm period estimated to be about 10 cm/s. A new surging glacier was discovered and new fronts of several glaciers were determined. The variation of the snow line with respect to distance from the coast was for the first time determined for the southern part of Spitsbergen. Great variations were observed, from 200 m in east to 550 m in the central <span class="hlt">area</span> of the island.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhRvE..80e1305D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhRvE..80e1305D"><span>Random close <span class="hlt">packing</span> of disks and spheres in confined geometries</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desmond, Kenneth W.; Weeks, Eric R.</p> <p>2009-11-01</p> <p>Studies of random close <span class="hlt">packing</span> of spheres have advanced our knowledge about the structure of systems such as liquids, glasses, emulsions, granular media, and amorphous solids. In confined geometries, the structural properties of random-<span class="hlt">packed</span> systems will change. To understand these changes, we study random close <span class="hlt">packing</span> in finite-sized confined systems, in both two and three dimensions. Each <span class="hlt">packing</span> consists of a 50-50 binary mixture with particle size ratio of 1.4. The presence of confining walls significantly lowers the overall maximum <span class="hlt">area</span> fraction (or volume fraction in three dimensions). A simple model is presented, which quantifies the reduction in <span class="hlt">packing</span> due to wall-induced structure. This wall-induced structure decays rapidly away from the wall, with characteristic length scales comparable to the small particle diameter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C34B..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C34B..02B"><span>Constraining <span class="hlt">ice</span> sheet history in the Weddell Sea, West Antarctica, using <span class="hlt">ice</span> fabric at Korff <span class="hlt">Ice</span> Rise</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.</p> <p>2017-12-01</p> <p>The grounding history of <span class="hlt">ice</span> rises (grounded <span class="hlt">area</span> of independent flow regime within a floating <span class="hlt">ice</span> shelf) can be used to constrain large scale <span class="hlt">ice</span> sheet history: <span class="hlt">ice</span> fabric, resulting from the preferred orientation of <span class="hlt">ice</span> crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day <span class="hlt">ice</span> fabric at Korff <span class="hlt">Ice</span> Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the <span class="hlt">ice</span> rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the <span class="hlt">ice</span> column. The observations cannot be reproduced using an isotropic <span class="hlt">ice</span> column model. Anisotropic ray tracing has been used to test likely models of <span class="hlt">ice</span> fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff <span class="hlt">Ice</span> Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the <span class="hlt">ice</span> flow configuration across the <span class="hlt">ice</span> rise for this period. This observation has significant implications for the <span class="hlt">ice</span> sheet history of the Weddell Sea sector.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0751P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0751P"><span>Seasonal and Interannual Fast-<span class="hlt">Ice</span> Variability from MODIS Surface-Temperature Anomalies, and its Link to External Forcings in Atka Bay, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paul, S.; Hoppmann, M.; Willmes, S.; Heinemann, G.</p> <p>2016-12-01</p> <p>Around Antarctica, sea <span class="hlt">ice</span> is regularly attached to coastal features. These regions of mostly seasonal fast <span class="hlt">ice</span> interact with the atmosphere, ocean and coastal ecosystem in a variety of ways. The growth and breakup cycles may depend on different factors, such as water- and air temperatures, wind conditions, tides, ocean swell, the passage of icebergs and the presence of nearby polynyas. However, a detailed understanding about the interaction between these factors and the fast-<span class="hlt">ice</span> cycle is missing. In order to better understand the linkages between general fast-<span class="hlt">ice</span> evolution and external forcing factors, we present results from an observational case study performed on the seasonal fast-<span class="hlt">ice</span> cover of Atka Bay, eastern Weddell Sea. The <span class="hlt">ice</span> conditions in this region are critical for the supply of the German wintering station Neumayer III. Moreover, the fast <span class="hlt">ice</span> at Atka Bay hosts a unique ecosystem based on the presence of a sub-<span class="hlt">ice</span> platelet layer and a large emperor penguin colony. While some qualitative characterizations on the seasonal fast-<span class="hlt">ice</span> cycle in this region exist, no proper quantification was carried out to date. The backbone of this work is a new algorithm, which yields the first continuous time series of open-water fractions from Moderate-Resolution Imaging Spectroradiometer (MODIS) surface temperatures. The open-water fractions are derived from a range of running multi-day median temperature composites, utilizing the thermal footprint of warm open water and thin <span class="hlt">ice</span> in contrast to cold <span class="hlt">pack-ice/ice</span>-shelf <span class="hlt">areas</span>. This unique, and manually validated dataset allows us to monitor changes in fast-<span class="hlt">ice</span> extent on a near daily basis, for a period of 14 years (2002-2015). In a second step, we combine these results with iceberg observations, data from the meteorological observatory, and auxiliary satellite data in order to identify the main factors governing fast-<span class="hlt">ice</span> formation and break-up.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.3157L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.3157L"><span>A basal stress parameterization for modeling landfast <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemieux, Jean-François; Tremblay, L. Bruno; Dupont, Frédéric; Plante, Mathieu; Smith, Gregory C.; Dumont, Dany</p> <p>2015-04-01</p> <p>Current large-scale sea <span class="hlt">ice</span> models represent very crudely or are unable to simulate the formation, maintenance and decay of coastal landfast <span class="hlt">ice</span>. We present a simple landfast <span class="hlt">ice</span> parameterization representing the effect of grounded <span class="hlt">ice</span> keels. This parameterization is based on bathymetry data and the mean <span class="hlt">ice</span> thickness in a grid cell. It is easy to implement and can be used for two-thickness and multithickness category models. Two free parameters are used to determine the critical thickness required for large <span class="hlt">ice</span> keels to reach the bottom and to calculate the basal stress associated with the weight of the ridge above hydrostatic balance. A sensitivity study was conducted and demonstrates that the parameter associated with the critical thickness has the largest influence on the simulated landfast <span class="hlt">ice</span> <span class="hlt">area</span>. A 6 year (2001-2007) simulation with a 20 km resolution sea <span class="hlt">ice</span> model was performed. The simulated landfast <span class="hlt">ice</span> <span class="hlt">areas</span> for regions off the coast of Siberia and for the Beaufort Sea were calculated and compared with data from the National <span class="hlt">Ice</span> Center. With optimal parameters, the basal stress parameterization leads to a slightly shorter landfast <span class="hlt">ice</span> season but overall provides a realistic seasonal cycle of the landfast <span class="hlt">ice</span> <span class="hlt">area</span> in the East Siberian, Laptev and Beaufort Seas. However, in the Kara Sea, where <span class="hlt">ice</span> arches between islands are key to the stability of the landfast <span class="hlt">ice</span>, the parameterization consistently leads to an underestimation of the landfast <span class="hlt">area</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1258751-developing-bounding-ice-particle-mass-area-dimension-expressions-use-atmospheric-models-remote-sensing','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1258751-developing-bounding-ice-particle-mass-area-dimension-expressions-use-atmospheric-models-remote-sensing"><span>Developing and bounding <span class="hlt">ice</span> particle mass- and <span class="hlt">area</span>-dimension expressions for use in atmospheric models and remote sensing</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Erfani, Ehsan; Mitchell, David L.</p> <p>2016-04-07</p> <p>Here, <span class="hlt">ice</span> particle mass- and projected <span class="hlt">area</span>-dimension ( m- D and A- D) power laws are commonly used in the treatment of <span class="hlt">ice</span> cloud microphysical and optical properties and the remote sensing of <span class="hlt">ice</span> cloud properties. Although there has long been evidence that a single m- D or A- D power law is often not valid over all <span class="hlt">ice</span> particle sizes, few studies have addressed this fact. This study develops self-consistent m- D and A- D expressions that are not power laws but can easily be reduced to power laws for the <span class="hlt">ice</span> particle size (maximum dimension or D) rangemore » of interest, and they are valid over a much larger D range than power laws. This was done by combining ground measurements of individual <span class="hlt">ice</span> particle m and D formed at temperature T < –20 °C during a cloud seeding field campaign with 2-D stereo (2D-S) and cloud particle imager (CPI) probe measurements of D and A, and estimates of m, in synoptic and anvil <span class="hlt">ice</span> clouds at similar temperatures. The resulting m- D and A- D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m- D power laws developed from recent field studies considering the same temperature range (–60 °C < T < –20 °C).« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740002260','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740002260"><span>Microwave maps of the polar <span class="hlt">ice</span> of the earth. [from Nimbus-5 satellite</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gloersen, P.; Wilheit, T. T.; Chang, T. C.; Nordberg, W.; Campbell, W. J.</p> <p>1973-01-01</p> <p>Synoptic views of the entire polar regions of earth were obtained free of the usual persistent cloud cover using a scanning microwave radiometer operating at a wavelength of 1.55 cm on board the Nimbus-5 satellite. Three different views at each pole are presented utilizing data obtained at approximately one-month intervals during the winter of 1972-1973. The major discoveries resulting from an analysis of these data are as follows: (1) Large discrepancies exist between the climatic norm <span class="hlt">ice</span> cover depicted in various atlases and the actual extent of the canopies. (2) The distribution of multiyear <span class="hlt">ice</span> in the north polar region is markedly different from that predicted by existing <span class="hlt">ice</span> dynamics models. (3) Irregularities in the edge of the Antarctic sea <span class="hlt">ice</span> <span class="hlt">pack</span> occur that have neither been observed previously nor anticipated. (4) The brightness temperatures of the Greenland and Antarctica glaciers show interesting contours probably related to the <span class="hlt">ice</span> and snow morphologic structure.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011TRACE..25...29W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011TRACE..25...29W"><span>Factors Affecting the Changes of <span class="hlt">Ice</span> Crystal Form in <span class="hlt">Ice</span> Cream</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xin; Watanabe, Manabu; Suzuki, Toru</p> <p></p> <p>In this study, the shape of <span class="hlt">ice</span> crystals in <span class="hlt">ice</span> cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial <span class="hlt">ice</span> cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional <span class="hlt">area</span> and the length of circumference for each <span class="hlt">ice</span> crystal were measured to calculate fractal dimension using image analysis software. The results showed that the <span class="hlt">ice</span> crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of <span class="hlt">ice</span> crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape <span class="hlt">ice</span> crystals was relatively higher because of aggregation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP13D1106W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP13D1106W"><span>Wave inhibition by sea <span class="hlt">ice</span> enables trans-Atlantic <span class="hlt">ice</span> rafting of debris during Heinrich Events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, T. J. W.; Dell, R.; Eisenman, I.; Keeling, R. F.; Padman, L.; Severinghaus, J. P.</p> <p>2017-12-01</p> <p>The thickness of the <span class="hlt">ice</span>-rafted debris (IRD) layers that signal Heinrich Events declines far more gradually with distance from the iceberg sources than would be expected based on present-day iceberg trajectories. Here we model icebergs as passive Lagrangian tracers driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. In order to address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, densely <span class="hlt">packed</span> armadas of icebergs. This leads to wintertime sea <span class="hlt">ice</span> formation even in relatively low latitudes. The sea <span class="hlt">ice</span> in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that allowing sea <span class="hlt">ice</span> to form around all icebergs during four months each winter causes the model to approximately agree with the distribution of IRD in sediment cores.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......484S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......484S"><span>Sea-<span class="hlt">ice</span> habitat preference of the Pacific walrus (Odobenus rosmarus divergens) in the Bering Sea: A multiscaled approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sacco, Alexander Edward</p> <p></p> <p>, walruses were preferentially occupying fragmented <span class="hlt">pack</span> <span class="hlt">ice</span> seascapes range 50 -- 89% of the time, when, all throughout the Bering Sea, only range 41 -- 46% of seascapes consisted of fragmented <span class="hlt">pack</span> <span class="hlt">ice</span>. Traditional knowledge of a walrus' use of sea <span class="hlt">ice</span> is investigated through semi-directed interviews conducted with subsistence hunters and elders from Savoonga and Gambell, two Alaskan Native communities on St. Lawrence Island, Alaska. Informants were provided with a large nautical map of the land and ocean surrounding St. Lawrence Island and 45 printed large-format aerial photographs of walruses on sea <span class="hlt">ice</span> to stimulate discussion as questions were asked to direct the topics of conversation. Informants discussed change in sea <span class="hlt">ice</span> conditions over time, walrus behaviors during the fall and spring subsistence hunts, and sea-<span class="hlt">ice</span> characteristics that walruses typically occupy. These observations are compared with <span class="hlt">ice</span>-patch preferences analyzed from aerial imagery. Floe size was found to agree with remotely-sensed <span class="hlt">ice</span>-patch analysis results, while floe shape was not distinguishable to informants during the hunt. <span class="hlt">Ice</span>-patch arrangement descriptors concentration and density generally agreed with <span class="hlt">ice</span>-patch analysis results. Results include possible preference of <span class="hlt">ice</span>-patch descriptors at the <span class="hlt">ice</span>-patch scale and fragmented <span class="hlt">pack</span> <span class="hlt">ice</span> preference at the seascape scale. Traditional knowledge suggests large <span class="hlt">ice</span> ridges are preferential sea-<span class="hlt">ice</span> features at the <span class="hlt">ice</span>-patch scale, which are rapidly becoming less common during the fall and spring migration of sea <span class="hlt">ice</span> through the Bering Sea. Traditional knowledge, combined with a scientific analysis and field work to study species habitat preferences and, ultimately, habitat partitioning, can stem from these results. Future work includes increased sophistication of the synthetic aperture radar classification algorithm, experimentation with various spatial scales to determine the optimal scale for walrus' life-cycle events, and incorporation of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006590','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006590"><span>Large Decadal Decline of the Arctic Multiyear <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2012-01-01</p> <p>The perennial <span class="hlt">ice</span> <span class="hlt">area</span> was drastically reduced to 38% of its climatological average in 2007 but recovered slightly in 2008, 2009, and 2010 with the <span class="hlt">areas</span> being 10%, 24%, and 11% higher than in 2007, respectively. However, trends in extent and <span class="hlt">area</span> remained strongly negative at -12.2% and -13.5% decade (sup -1), respectively. The thick component of the perennial <span class="hlt">ice</span>, called multiyear <span class="hlt">ice</span>, as detected by satellite data during the winters of 1979-2011 was studied, and results reveal that the multiyear <span class="hlt">ice</span> extent and <span class="hlt">area</span> are declining at an even more rapid rate of -15.1% and -17.2% decade(sup -1), respectively, with a record low value in 2008 followed by higher values in 2009, 2010, and 2011. Such a high rate in the decline of the thick component of the Arctic <span class="hlt">ice</span> cover means a reduction in the average <span class="hlt">ice</span> thickness and an even more vulnerable perennial <span class="hlt">ice</span> cover. The decline of the multiyear <span class="hlt">ice</span> <span class="hlt">area</span> from 2007 to 2008 was not as strong as that of the perennial <span class="hlt">ice</span> <span class="hlt">area</span> from 2006 to 2007, suggesting a strong role of second-year <span class="hlt">ice</span> melt in the latter. The sea <span class="hlt">ice</span> cover is shown to be strongly correlated with surface temperature, which is increasing at about 3 times the global average in the Arctic but appears weakly correlated with the Arctic Oscillation (AO), which controls the atmospheric circulation in the region. An 8-9-yr cycle is apparent in the multiyear <span class="hlt">ice</span> record, which could explain, in part, the slight recovery in the last 3 yr.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008253','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008253"><span>Large Decadal Decline of the Arctic Multiyear <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2011-01-01</p> <p>The perennial <span class="hlt">ice</span> <span class="hlt">area</span> was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the <span class="hlt">areas</span> being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the extent and <span class="hlt">area</span> remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial <span class="hlt">ice</span>, called multiyear <span class="hlt">ice</span>, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear <span class="hlt">ice</span> extent and <span class="hlt">area</span> are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic <span class="hlt">ice</span> cover means a reduction in average <span class="hlt">ice</span> thickness and an even more vulnerable perennial <span class="hlt">ice</span> cover. The decline of the multiyear <span class="hlt">ice</span> <span class="hlt">area</span> from 2007 to 2008 was not as strong as that of the perennial <span class="hlt">ice</span> <span class="hlt">area</span> from 2006 to 2007 suggesting a strong role of second year <span class="hlt">ice</span> melt in the latter. The sea <span class="hlt">ice</span> cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear <span class="hlt">ice</span> record which could explain in part the slight recovery in the last three years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186594','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186594"><span>Diminishing sea <span class="hlt">ice</span> in the western Arctic Ocean</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stone, R.S.; Belchansky, G.I.; Drobot, Sheldon; Douglas, David C.; Levinson, D.H.; Waple, A.M.</p> <p>2004-01-01</p> <p>Since the advent of satellite passive microwave radiometry (1978), variations in sea <span class="hlt">ice</span> extent and concentration have been carefully monitored from space. An estimated 7.4% decrease in sea <span class="hlt">ice</span> extent has occurred in the last 25 yr (Johannessen et al. 2004), with recent record minima (e.g., Maslanik et al. 1999; Serreze et al. 2003) accounting for much of the decline. Comparisons between the time series of Arctic sea <span class="hlt">ice</span> melt dynamics and snowmelt dates at the NOAA–CMDL Barrow Observatory (BRW) reveal intriguing correlations.Melt-onset dates over sea <span class="hlt">ice</span> (Drobot and Anderson 2001) were cross correlated with the melt-date time series from BRW, and a prominent region of high correlation between snowmelt onset over sea <span class="hlt">ice</span> and the BRW record of melt dates was approximately aligned with the climatological center of the Beaufort Sea Anticyclone (BSA). The BSA induces anticyclonic <span class="hlt">ice</span> motion in the region, effectively forcing the Beaufort gyre. A weak gyre caused by a breakdown of the BSA diminishes transport of multiyear <span class="hlt">ice</span> into this region (Drobot and Maslanik 2003). Similarly, the annual snow cycle at BRW varies with the position and intensity of the BSA (Stone et al. 2002, their Fig. 6). Thus, variations in the BSA appear to have far-reaching effects on the annual accumulation and subsequent melt of snow over a large region of the western Arctic.A dramatic increase in melt season duration (Belchansky et al. 2004) was also observed within the same region of high correlation between onset of melt over the <span class="hlt">ice</span> <span class="hlt">pack</span> and snowmelt at BRW (Fig. 5.7). By inference, this suggests linkages between factors that modulate the annual cycle of snow on land and processes that influence melting of snow and <span class="hlt">ice</span> in the western Arctic Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TCD.....9.1077S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TCD.....9.1077S"><span>Arctic sea <span class="hlt">ice</span> <span class="hlt">area</span> in CMIP3 and CMIP5 climate model ensembles - variability and change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semenov, V. A.; Martin, T.; Behrens, L. K.; Latif, M.</p> <p>2015-02-01</p> <p>The shrinking Arctic sea <span class="hlt">ice</span> cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea <span class="hlt">ice</span> retreat in the Arctic during the 20th century and simulate further sea <span class="hlt">ice</span> <span class="hlt">area</span> loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the model results exhibit considerable spread. The last generation of climate models from World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5), when compared to the previous CMIP3 model ensemble and considering the whole Arctic, were found to be more consistent with the observed changes in sea <span class="hlt">ice</span> extent during the recent decades. Some CMIP5 models project strongly accelerated (non-linear) sea <span class="hlt">ice</span> loss during the first half of the 21st century. Here, complementary to previous studies, we compare results from CMIP3 and CMIP5 with respect to regional Arctic sea <span class="hlt">ice</span> change. We focus on September and March sea <span class="hlt">ice</span>. Sea <span class="hlt">ice</span> <span class="hlt">area</span> (SIA) variability, sea <span class="hlt">ice</span> concentration (SIC) variability, and characteristics of the SIA seasonal cycle and interannual variability have been analysed for the whole Arctic, termed Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA changes to changes in Northern Hemisphere (NH) averaged temperature is investigated and several important dynamical links between SIA and natural climate variability involving the Atlantic Meridional Overturning Circulation (AMOC), North Atlantic Oscillation (NAO) and sea level pressure gradient (SLPG) in the western Barents Sea opening serving as an index of oceanic inflow to the Barents Sea are studied. The CMIP3 and CMIP5 models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle and in the aforementioned dynamical links. The spatial patterns of SIC variability improve in the CMIP5 ensemble, particularly in summer. Both</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920013291','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920013291"><span>The NASA aircraft <span class="hlt">icing</span> research program</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shaw, Robert J.; Reinmann, John J.</p> <p>1990-01-01</p> <p>The objective of the NASA aircraft <span class="hlt">icing</span> research program is to develop and make available to industry <span class="hlt">icing</span> technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two <span class="hlt">areas</span>, advanced <span class="hlt">ice</span> protection concepts and <span class="hlt">icing</span> simulation. Reviewed here are the computer code development/validation, <span class="hlt">icing</span> wind tunnel testing, and <span class="hlt">icing</span> flight testing efforts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002337','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002337"><span>Possible Mechanisms for Turbofan Engine <span class="hlt">Ice</span> Crystal <span class="hlt">Icing</span> at High Altitude</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael</p> <p>2014-01-01</p> <p>A thermodynamic model is presented to describe possible mechanisms of <span class="hlt">ice</span> formation on unheated surfaces inside a turbofan engine compression system from fully glaciated <span class="hlt">ice</span> crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of <span class="hlt">ice</span> formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted <span class="hlt">ice</span> crystals, the <span class="hlt">ice</span> structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of <span class="hlt">ice</span> crystals, the <span class="hlt">ice</span> structure is formed from accumulation of un-melted <span class="hlt">ice</span> crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental <span class="hlt">ice</span>-crystal <span class="hlt">icing</span> phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine <span class="hlt">ice</span> crystal <span class="hlt">icing</span> test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of <span class="hlt">ice</span> formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the <span class="hlt">ice</span> crystal <span class="hlt">ice</span> formation process in the tested engine low pressure compressor (LPC) targeted <span class="hlt">area</span> under different <span class="hlt">icing</span> conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160011109','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160011109"><span>Possible Mechanisms for Turbofan Engine <span class="hlt">Ice</span> Crystal <span class="hlt">Icing</span> at High Altitude</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.</p> <p>2016-01-01</p> <p>A thermodynamic model is presented to describe possible mechanisms of <span class="hlt">ice</span> formation on unheated surfaces inside a turbofan engine compression system from fully glaciated <span class="hlt">ice</span> crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of <span class="hlt">ice</span> formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted <span class="hlt">ice</span> crystals, the <span class="hlt">ice</span> structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of <span class="hlt">ice</span> crystals, the <span class="hlt">ice</span> structure is formed from accumulation of un-melted <span class="hlt">ice</span> crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental <span class="hlt">ice</span>-crystal <span class="hlt">icing</span> phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine <span class="hlt">ice</span> crystal <span class="hlt">icing</span> test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of <span class="hlt">ice</span> formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the <span class="hlt">ice</span> crystal <span class="hlt">ice</span> formation process in the tested engine low pressure compressor (LPC) targeted <span class="hlt">area</span> under different <span class="hlt">icing</span> conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51A0955L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51A0955L"><span>Sea <span class="hlt">ice</span> roughness: the key for predicting Arctic summer <span class="hlt">ice</span> albedo</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.</p> <p>2017-12-01</p> <p>Although melt ponds on Arctic sea <span class="hlt">ice</span> evolve in stages, <span class="hlt">ice</span> with smoother surface topography typically allows the pond water to spread over a wider <span class="hlt">area</span>, reducing the <span class="hlt">ice</span>-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea <span class="hlt">ice</span> surface roughness and summer <span class="hlt">ice</span> albedo. Our method, previously applied to ICESat observations of the end-of-winter sea <span class="hlt">ice</span> roughness, could account for 85% of the variance in AVHRR observations of the summer <span class="hlt">ice</span>-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea <span class="hlt">ice</span> roughness over the ICESat operational period (from 2003 to 2008) explained a drop in <span class="hlt">ice</span>-albedo that resulted in a 16% increase in solar heat input to the sea <span class="hlt">ice</span> cover. Here we will review this work and present new research linking pre-melt sea <span class="hlt">ice</span> surface roughness observations from Cryosat-2 to summer sea <span class="hlt">ice</span> albedo over the past six years, examining the potential of winter roughness as a significant new source of sea <span class="hlt">ice</span> predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea <span class="hlt">ice</span> albedo from waveform-level Cryosat-2 roughness data in the landfast sea <span class="hlt">ice</span> zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea <span class="hlt">ice</span>, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920045032&hterms=GMT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DGMT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920045032&hterms=GMT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DGMT"><span>AVHRR imagery reveals Antarctic <span class="hlt">ice</span> dynamics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bindschadler, Robert A.; Vornberger, Patricia L.</p> <p>1990-01-01</p> <p>A portion of AVHRR data taken on December 5, 1987 at 06:15 GMT over a part of Antarctica is used here to show that many of the most significant dynamic features of <span class="hlt">ice</span> sheets can be identified by a careful examination of AVHRR imagery. The relatively low resolution of this instrument makes it ideal for obtaining a broad view of the <span class="hlt">ice</span> sheets, while its wide swath allows coverage of <span class="hlt">areas</span> beyond the reach of high-resolution imagers either currently in orbit or planned. An interpretation is given of the present data, which cover the <span class="hlt">area</span> of <span class="hlt">ice</span> streams that drain the interior of the West Antarctic <span class="hlt">ice</span> sheet into the Ross <span class="hlt">Ice</span> Shelf.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C33A0684F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C33A0684F"><span><span class="hlt">Ice</span>911 Research: Preserving and Rebuilding Multi-Year <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Field, L. A.; Chetty, S.; Manzara, A.</p> <p>2013-12-01</p> <p>A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year <span class="hlt">ice</span> using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year <span class="hlt">ice</span> has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid decrease of summer-time <span class="hlt">ice</span>. As summer-time <span class="hlt">ice</span> disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based <span class="hlt">ice</span> melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and <span class="hlt">ice</span> preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key <span class="hlt">areas</span> on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and <span class="hlt">ice</span> preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and <span class="hlt">ice</span> from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011036"><span>Improving Surface Mass Balance Over <span class="hlt">Ice</span> Sheets and Snow Depth on Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan</p> <p>2013-01-01</p> <p>Surface mass balance (SMB) over <span class="hlt">ice</span> sheets and snow on sea <span class="hlt">ice</span> (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On <span class="hlt">ice</span> sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea <span class="hlt">ice</span> cover. The summer of 2012 saw the largest satellite-recorded melt <span class="hlt">area</span> over the Greenland <span class="hlt">ice</span> sheet and the smallest satellite-recorded Arctic sea <span class="hlt">ice</span> extent, making this meeting both timely and relevant.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JVGR..297...89C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JVGR..297...89C"><span>Volcano-<span class="hlt">ice</span>-sea interaction in the Cerro Santa Marta <span class="hlt">area</span>, northwest James Ross Island, Antarctic Peninsula</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calabozo, Fernando M.; Strelin, Jorge A.; Orihashi, Yuji; Sumino, Hirochika; Keller, Randall A.</p> <p>2015-05-01</p> <p>We present here the results of detailed mapping, lithofacies analysis and stratigraphy of the Neogene James Ross Island Volcanic Group (Antarctic Peninsula) in the Cerro Santa Marta <span class="hlt">area</span> (northwest of James Ross Island), in order to give constraints on the evolution of a glaciated volcanic island. Our field results included recognition and interpretation of seventeen volcanic and glacial lithofacies, together with their vertical and lateral arrangements, supported by four new unspiked K-Ar ages. This allowed us to conclude that the construction of the volcanic pile in this <span class="hlt">area</span> took place during two main eruptive stages (Eruptive Stages 1 and 2), separated from the Cretaceous bedrock and from each other by two major glacial unconformities (U1 and U2). The U1 unconformity is related to Antarctic Peninsula <span class="hlt">Ice</span> sheet expansion during the late Miocene (before 6.2 Ma) and deposition of glacial lithofacies in a glaciomarine setting. Following this glacial advance, Eruptive Stage 1 (6.2-4.6 Ma) volcanism started with subaerial extrusion of lava flows from an unrecognized vent north of the study <span class="hlt">area</span>, with eruptions later fed from vent/s centered at Cerro Santa Marta volcano, where cinder cone deposits and a volcanic conduit/lava lake are preserved. These lava flows fed an extensive (> 7 km long) hyaloclastite delta system that was probably emplaced in a shallow marine environment. A second unconformity (U2) was related to expansion of a local <span class="hlt">ice</span> cap, centered on James Ross Island, which truncated all the eruptive units of Eruptive Stage 1. Concomitant with glacier advance, renewed volcanic activity (Eruptive Stage 2) started after 4.6 Ma and volcanic products were fed again by Cerro Santa Marta vents. We infer that glaciovolcanic eruptions occurred under a moderately thin (~ 300 m) glacier, in good agreement with previous estimates of paleo-<span class="hlt">ice</span> thickness for the James Ross Island <span class="hlt">area</span> during the Pliocene.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35..106Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35..106Z"><span>Record low sea-<span class="hlt">ice</span> concentration in the central Arctic during summer 2010</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jinping; Barber, David; Zhang, Shugang; Yang, Qinghua; Wang, Xiaoyu; Xie, Hongjie</p> <p>2018-01-01</p> <p>The Arctic sea-<span class="hlt">ice</span> extent has shown a declining trend over the past 30 years. <span class="hlt">Ice</span> coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-<span class="hlt">ice</span> concentration (SIC) appeared at high Arctic latitudes—even lower than that of surrounding <span class="hlt">pack</span> <span class="hlt">ice</span> at lower latitudes. This striking low <span class="hlt">ice</span> concentration—referred to here as a record low <span class="hlt">ice</span> concentration in the central Arctic (CARLIC)—is unique in our analysis period of 2003-15, and has not been previously reported in the literature. The CARLIC was not the result of <span class="hlt">ice</span> melt, because sea <span class="hlt">ice</span> was still quite thick based on in-situ <span class="hlt">ice</span> thickness measurements. Instead, divergent <span class="hlt">ice</span> drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea <span class="hlt">ice</span> drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of <span class="hlt">ice</span> buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector, which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water, increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea <span class="hlt">ice</span> could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950048358&hterms=Frost&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DFrost','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950048358&hterms=Frost&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DFrost"><span>Measurements of thermal infrared spectral reflectance of frost, snow, and <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salisbury, John W.; D'Aria, Dana M.; Wald, Andrew</p> <p>1994-01-01</p> <p>Because much of Earth's surface is covered by frost, snow, and <span class="hlt">ice</span>, the spectral emissivities of these materials are a significant input to radiation balance calculations in global atmospheric circulation and climate change models. Until now, however, spectral emissivities of frost and snow have been calculated from the optical constants of <span class="hlt">ice</span>. We have measured directional hemispherical reflectance spectra of frost, snow, and <span class="hlt">ice</span> from which emissivities can be predicted using Kirchhoff's law (e = 1-R). These measured spectra show that contrary to conclusions about the emissivity of snow drawn from previously calculated spectra, snow emissivity departs significantly from blackbody behavior in the 8-14 micrometer region of the spectrum; snow emissivity decreases with both increasing particle size and increasing density due to <span class="hlt">packing</span> or grain welding; while snow emissivity increases due to the presence of meltwater.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhRvE..85f1403C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhRvE..85f1403C"><span><span class="hlt">Packings</span> of monodisperse emulsions in flat microfluidic channels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Claussen, Ohle; Herminghaus, Stephan; Brinkmann, Martin</p> <p>2012-06-01</p> <p>In the lateral confinement of a flat microfluidic channel, monodisperse emulsion droplets spontaneously self-organize in a variety of topologically different <span class="hlt">packings</span>. The explicit construction of mechanically equilibrated arrangements of effectively two-dimensional congruent droplet shapes reveals the existence of multiple mechanical equilibria depending on channel width W, droplet <span class="hlt">area</span> Ad, and volume fraction φ of the dispersed phase. The corresponding boundaries of local or global stability are summarized in a <span class="hlt">packing</span> diagram for congruent droplet shapes in terms of the dimensionless channel width w=W/Ad and φ. In agreement with experimental results, an increasingly strong hysteresis of the transition between single-row and two-row <span class="hlt">packings</span> is observed during changes of w above a threshold volume fraction of φ*≃0.813.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002SPIE.4716..348P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002SPIE.4716..348P"><span>Sim<span class="hlt">Pack</span>J/S: a web-oriented toolkit for discrete event simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Minho; Fishwick, Paul A.</p> <p>2002-07-01</p> <p>Sim<span class="hlt">Pack</span>J/S is the JavaScript and Java version of Sim<span class="hlt">Pack</span>, which means Sim<span class="hlt">Pack</span>J/S is a collection of JavaScript and Java libraries and executable programs for computer simulations. The main purpose of creating Sim<span class="hlt">Pack</span>J/S is that we allow existing Sim<span class="hlt">Pack</span> users to expand simulation <span class="hlt">areas</span> and provide future users with a freeware simulation toolkit to simulate and model a system in web environments. One of the goals for this paper is to introduce Sim<span class="hlt">Pack</span>J/S. The other goal is to propose translation rules for converting C to JavaScript and Java. Most parts demonstrate the translation rules with examples. In addition, we discuss a 3D dynamic system model and overview an approach to 3D dynamic systems using Sim<span class="hlt">Pack</span>J/S. We explain an interface between Sim<span class="hlt">Pack</span>J/S and the 3D language--Virtual Reality Modeling Language (VRML). This paper documents how to translate C to JavaScript and Java and how to utilize Sim<span class="hlt">Pack</span>J/S within a 3D web environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DyAtO..79...10S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DyAtO..79...10S"><span>Sensitivity of open-water <span class="hlt">ice</span> growth and <span class="hlt">ice</span> concentration evolution in a coupled atmosphere-ocean-sea <span class="hlt">ice</span> model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Xiaoxu; Lohmann, Gerrit</p> <p>2017-09-01</p> <p>A coupled atmosphere-ocean-sea <span class="hlt">ice</span> model is applied to investigate to what degree the <span class="hlt">area</span>-thickness distribution of new <span class="hlt">ice</span> formed in open water affects the <span class="hlt">ice</span> and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water <span class="hlt">ice</span> growth. The resulting changes in the Arctic sea-<span class="hlt">ice</span> concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-<span class="hlt">ice</span> production. The changes are further amplified through a positive feedback mechanism among the Arctic sea <span class="hlt">ice</span>, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea <span class="hlt">ice</span> import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-<span class="hlt">ice</span> transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea <span class="hlt">ice</span> model with an unstructured mesh and multi-resolution. We find that the subpolar sea-<span class="hlt">ice</span> boundary in the Northern Hemisphere can be improved by tuning the process of open-water <span class="hlt">ice</span> growth, which strongly influences the sea <span class="hlt">ice</span> concentration in the marginal <span class="hlt">ice</span> zone, the North Atlantic circulation, salinity and Arctic sea <span class="hlt">ice</span> volume. Since the distribution of new <span class="hlt">ice</span> on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea <span class="hlt">ice</span> growth which could significantly affect the climate system sensitivity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Natur.547...49L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Natur.547...49L"><span>Climate change drives expansion of Antarctic <span class="hlt">ice</span>-free habitat</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Jasmine R.; Raymond, Ben; Bracegirdle, Thomas J.; Chadès, Iadine; Fuller, Richard A.; Shaw, Justine D.; Terauds, Aleks</p> <p>2017-07-01</p> <p>Antarctic terrestrial biodiversity occurs almost exclusively in <span class="hlt">ice</span>-free <span class="hlt">areas</span> that cover less than 1% of the continent. Climate change will alter the extent and configuration of <span class="hlt">ice</span>-free <span class="hlt">areas</span>, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on <span class="hlt">ice</span>-free <span class="hlt">areas</span> under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, <span class="hlt">ice</span>-free <span class="hlt">areas</span> could expand by over 17,000 km2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in <span class="hlt">ice</span>-free <span class="hlt">area</span> could drastically change the availability and connectivity of biodiversity habitat. Isolated <span class="hlt">ice</span>-free <span class="hlt">areas</span> will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28658207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28658207"><span>Climate change drives expansion of Antarctic <span class="hlt">ice</span>-free habitat.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jasmine R; Raymond, Ben; Bracegirdle, Thomas J; Chadès, Iadine; Fuller, Richard A; Shaw, Justine D; Terauds, Aleks</p> <p>2017-07-06</p> <p>Antarctic terrestrial biodiversity occurs almost exclusively in <span class="hlt">ice</span>-free <span class="hlt">areas</span> that cover less than 1% of the continent. Climate change will alter the extent and configuration of <span class="hlt">ice</span>-free <span class="hlt">areas</span>, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on <span class="hlt">ice</span>-free <span class="hlt">areas</span> under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, <span class="hlt">ice</span>-free <span class="hlt">areas</span> could expand by over 17,000 km 2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in <span class="hlt">ice</span>-free <span class="hlt">area</span> could drastically change the availability and connectivity of biodiversity habitat. Isolated <span class="hlt">ice</span>-free <span class="hlt">areas</span> will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...837...56M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...837...56M"><span>Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&<span class="hlt">ice</span> Dusty Plasma Experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.</p> <p>2017-03-01</p> <p>The grain growth process in the Caltech water-<span class="hlt">ice</span> dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the <span class="hlt">ice</span> grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between <span class="hlt">ice</span> grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the <span class="hlt">ice</span> grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between <span class="hlt">ice</span> grains, the volumetric <span class="hlt">packing</span> factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the <span class="hlt">ice</span> grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed <span class="hlt">ice</span> grain growth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04300&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea%2Bworld','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04300&hterms=sea+world&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea%2Bworld"><span><span class="hlt">Ice</span> Types in the Beaufort Sea, Alaska</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p><p/> Determining the amount and type of sea <span class="hlt">ice</span> in the polar oceans is crucial to improving our knowledge and understanding of polar weather and long term climate fluctuations. These views from two satellite remote sensing instruments; the synthetic aperture radar (SAR) on board the RADARSAT satellite and the Multi-angle Imaging SpectroRadiometer (MISR), illustrate different methods that may be used to assess sea <span class="hlt">ice</span> type. Sea <span class="hlt">ice</span> in the Beaufort Sea off the north coast of Alaska was classified and mapped in these concurrent images acquired March 19, 2001 and mapped to the same geographic <span class="hlt">area</span>.<p/>To identify sea <span class="hlt">ice</span> types, the National Oceanic and Atmospheric Administration (NOAA) National <span class="hlt">Ice</span> Center constructs <span class="hlt">ice</span> charts using several data sources including RADARSAT SAR images such as the one shown at left. SAR classifies sea <span class="hlt">ice</span> types primarily by how the surface and subsurface roughness influence radar backscatter. In the SAR image, white lines delineate different sea <span class="hlt">ice</span> zones as identified by the National <span class="hlt">Ice</span> Center. Regions of mostly multi-year <span class="hlt">ice</span> (A) are separated from regions with large amounts of first year and younger <span class="hlt">ice</span> (B-D), and the dashed white line at bottom marks the coastline. In general, sea <span class="hlt">ice</span> types that exhibit increased radar backscatter appear bright in SAR and are identified as rougher, older <span class="hlt">ice</span> types. Younger, smoother <span class="hlt">ice</span> types appear dark to SAR. Near the top of the SAR image, however, red arrows point to bright <span class="hlt">areas</span> in which large, crystalline 'frost flowers' have formed on young, thin <span class="hlt">ice</span>, causing this young <span class="hlt">ice</span> type to exhibit an increased radar backscatter. Frost flowers are strongly backscattering at radar wavelengths (cm) due to both surface roughness and the high salinity of frost flowers, which causes them to be highly reflective to radar energy.<p/>Surface roughness is also registered by MISR, although the roughness observed is at a different spatial scale. Older, rougher <span class="hlt">ice</span> <span class="hlt">areas</span> are predominantly backward scattering to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411463S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411463S"><span>Algae Drive Enhanced Darkening of Bare <span class="hlt">Ice</span> on the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.</p> <p>2017-11-01</p> <p>Surface ablation of the Greenland <span class="hlt">ice</span> sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the <span class="hlt">ice</span> sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the <span class="hlt">ice</span> sheet. The impact of algae on bare <span class="hlt">ice</span> darkening in the study <span class="hlt">area</span> was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare <span class="hlt">ice</span> darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland <span class="hlt">ice</span> sheet and <span class="hlt">ice</span> masses elsewhere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C44A..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C44A..02B"><span>connecting the dots between Greenland <span class="hlt">ice</span> sheet surface melting and <span class="hlt">ice</span> flow dynamics (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.</p> <p>2013-12-01</p> <p>This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total <span class="hlt">ice</span> sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and <span class="hlt">ice</span> flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare <span class="hlt">ice</span> expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the <span class="hlt">ice</span> sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the <span class="hlt">ice</span> sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the <span class="hlt">ice</span>; 3.) Friction from water turbulence heats the <span class="hlt">ice</span>. It has been shown that for a point on the <span class="hlt">ice</span> sheet, basal lubrication increases <span class="hlt">ice</span> flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the <span class="hlt">ice</span> sheet glides on a wet bed increases inland to a larger <span class="hlt">area</span>. This effect draws down the <span class="hlt">ice</span> surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to <span class="hlt">ice</span> sheet loss reversible only through much slower <span class="hlt">ice</span> sheet growth in an <span class="hlt">ice</span> age environment. As the inland <span class="hlt">ice</span> sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated <span class="hlt">ice</span>. As the bare <span class="hlt">ice</span> <span class="hlt">area</span> increases, the direct sun-exposed crevassed and infiltration <span class="hlt">area</span> increases further allowing the <span class="hlt">ice</span> warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the <span class="hlt">ice</span> integrity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18001756','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18001756"><span>Comparison between the loading capacities of columns <span class="hlt">packed</span> with partially and totally porous fine particles. What is the effective surface <span class="hlt">area</span> available for adsorption?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gritti, Fabrice; Guiochon, Georges</p> <p>2007-12-28</p> <p>The adsorption isotherms of phenol, caffeine, insulin, and lysozyme were measured on two C(18)-bonded silica columns. The first one was <span class="hlt">packed</span> with classical totally porous particles (3 microm Luna(2)-C(18)from Phenomenex, Torrance, CA, USA), the second one with shell particles (2.7 microm Halo-C(18) from Advanced Materials Technology, Wilmington, DE, USA). The measurements were made at room temperature (T=295+/-1K), using mainly frontal analysis (FA) and also elution by characteristic points (FACP) when necessary. The adsorption energy distributions (AEDs) were estimated by the iterative numerical expectation-maximization (EM) procedure and served to justify the choice of the best adsorption isotherm model for each compound. The best isotherm parameters were derived from either the best fit of the experimental data to a multi-Langmuir isotherm model (MLRA) or from the AED results (equilibrium constants and saturation capacities), when the convergence of the EM program was achieved. The experiments show than the loading capacity of the Luna column is more than twice that of the Halo column for low-molecular-weight compounds. This result was expected; it is in good agreement with the values of the accessible surface <span class="hlt">area</span> of these two materials, which were calculated from the pore size volume distributions. The pore size volume distributions are validated by the excellent agreement between the calculated and measured exclusion volumes of polystyrene standards by inverse size exclusion chromatography (ISEC). In contrast, the loading capacity ratio of the two columns is 1.5 or less with insulin and lysozyme. This is due to a significant exclusion of these two proteins from the internal pore volumes of the two <span class="hlt">packing</span> materials. This result raises the problem of the determination of the effective surface <span class="hlt">area</span> of the <span class="hlt">packing</span> material, particularly in the case of proteins. This <span class="hlt">area</span> is about 40 and 30% of the total surface <span class="hlt">area</span> for insulin and for lysozyme, respectively</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED13F..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED13F..05W"><span>How changes in top water bother big turning <span class="hlt">packs</span> of up-going wet air</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, K.</p> <p>2017-12-01</p> <p>Big turning <span class="hlt">packs</span> of up-going wet air form near <span class="hlt">areas</span> of warm water at the top of big bodies of water. After these turning <span class="hlt">packs</span> form, they usually get stronger if the top water stays warm. If the top water becomes less warm, the turning <span class="hlt">packs</span> usually get less strong. Other things can change how strong a turning <span class="hlt">pack</span> gets, like how wet the air around it is and if that air moves faster higher up than lower down. When these turning <span class="hlt">packs</span> hit land, their rain and winds can hurt people and the stuff they own, especially if the turning <span class="hlt">pack</span> is really strong. But it's hard to know how much stronger or less strong it will become before it hits land. Warm top water gives a turning <span class="hlt">pack</span> of up-going wet air a lot of power, but cool top water doesn't, so we need to know how warm the top water is. Because I can't go into every turning <span class="hlt">pack</span> myself, flying computers in outer space tell me what the top water is doing. I look at the top water near turning <span class="hlt">packs</span> that get strong and see how it's different from the top water near those that get less strong. Top water that changes from warm to cool in a small <span class="hlt">area</span> bothers a turning <span class="hlt">pack</span> of up-going wet air, which then gets less strong. If we see these top water changes ahead of time, that might help us know what a turning <span class="hlt">pack</span> will do before it gets close to land.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT...tmp..130X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT...tmp..130X"><span>Numerical simulation of flow and melting characteristics of seawater-<span class="hlt">ice</span> crystals two-phase flow in inlet straight pipe of shell and tube heat exchanger of polar ship</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Li; Huang, Chang-Xu; Huang, Zhen-Fei; Sun, Qiang; Li, Jie</p> <p>2018-05-01</p> <p>The <span class="hlt">ice</span> crystal particles are easy to enter into the seawater cooling system of polar ship together with seawater when it sails in the Arctic. They are easy to accumulate in the pipeline, causing serious blockage of the cooling pipe. In this study, the flow and melting characteristics of <span class="hlt">ice</span> particles-seawater two-phase flow in inlet straight pipe of shell-and-tube heat exchanger were numerically simulated by using Eulerian-Eulerian two-fluid model coupled with the interphase heat and mass transfer model. The influences of inlet <span class="hlt">ice</span> <span class="hlt">packing</span> factor, <span class="hlt">ice</span> crystal particle diameter, and inlet velocity on the distribution and melting characteristics of <span class="hlt">ice</span> crystals were investigated. The degree of asymmetry of the distribution of <span class="hlt">ice</span> crystals in the cross section decreases gradually when the IPF changes from 5 to 15%. The volume fractions of <span class="hlt">ice</span> crystals near the top of the outlet cross section are 19.59, 19.51, and 22.24% respectively for <span class="hlt">ice</span> <span class="hlt">packing</span> factor of 5, 10 and 15%. When the particle diameter is 0.5 mm, the <span class="hlt">ice</span> crystals are gradually stratified during the flow process. With particle diameters of 1.0 and 2.0 mm, the region with the highest volume fraction of <span class="hlt">ice</span> crystals is a small circle and the contours in the cloud map are compact. The greater the inlet flow velocity, the less stratified the <span class="hlt">ice</span> crystals and the more obvious the turbulence on the outlet cross section. The average volume fraction of <span class="hlt">ice</span> crystals along the flow direction is firstly rapidly reduced and then stabilized after 300 mm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23574610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23574610"><span>Impact of early and late winter <span class="hlt">icing</span> events on sub-arctic dwarf shrubs.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Preece, C; Phoenix, G K</p> <p>2014-01-01</p> <p>Polar regions are predicted to undergo large increases in winter temperature and an increased frequency of freeze-thaw cycles, which can cause <span class="hlt">ice</span> layers in the snow <span class="hlt">pack</span> and <span class="hlt">ice</span> encasement of vegetation. Early or late winter timing of <span class="hlt">ice</span> encasement could, however, modify the extent of damage caused to plants. To determine impacts of the date of <span class="hlt">ice</span> encasement, a novel field experiment was established in sub-arctic Sweden, with <span class="hlt">icing</span> events simulated in January and March 2008 and 2009. In the subsequent summers, reproduction, phenology, growth and mortality, as well as physiological indicators of leaf damage were measured in the three dominant dwarf shrubs: Vaccinium uliginosum, Vaccinium vitis-idaea and Empetrum nigrum. It was hypothesised that January <span class="hlt">icing</span> would be more damaging compared to March <span class="hlt">icing</span> due to the longer duration of <span class="hlt">ice</span> encasement. Following 2 years of <span class="hlt">icing</span>, E. nigrum berry production was 83% lower in January-<span class="hlt">iced</span> plots compared to controls, and V. vitis-idaea electrolyte leakage was increased by 69%. Conversely, electrolyte leakage of E. nigrum was 25% lower and leaf emergence of V. vitis-idaea commenced 11 days earlier in March-<span class="hlt">iced</span> plots compared to control plots in 2009. There was no effect of <span class="hlt">icing</span> on any of the other parameters measured, indicating that overall these study species have moderate to high tolerance to <span class="hlt">ice</span> encasement. Even much longer exposure under the January <span class="hlt">icing</span> treatment does not clearly increase damage. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19937284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19937284"><span>Reduced pressure <span class="hlt">ice</span> fog technique for controlled <span class="hlt">ice</span> nucleation during freeze-drying.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patel, Sajal M; Bhugra, Chandan; Pikal, Michael J</p> <p>2009-01-01</p> <p>A method to achieve controlled <span class="hlt">ice</span> nucleation during the freeze-drying process using an <span class="hlt">ice</span> fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the <span class="hlt">ice</span> structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the <span class="hlt">ice</span> fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface <span class="hlt">area</span> of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface <span class="hlt">area</span> for the different experimental conditions studied, indicating that with use of the reduced pressure <span class="hlt">ice</span> fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure <span class="hlt">Ice</span> Fog Technique" is the rapid <span class="hlt">ice</span> nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011969','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011969"><span>Volcanic ash layers in blue <span class="hlt">ice</span> fields (Beardmore Glacier <span class="hlt">Area</span>, Antarctica): Iridium enrichments</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koeberl, Christian</p> <p>1988-01-01</p> <p>Dust bands on blue <span class="hlt">ice</span> fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the <span class="hlt">ice</span> near moraines), and volcanic debris deposited on and incorporated in the <span class="hlt">ice</span> by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. <span class="hlt">Ice</span> core studies have revealed that most of the dust layers in the <span class="hlt">ice</span> cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since <span class="hlt">ice</span> cores usually incorporate younger <span class="hlt">ice</span>. In contrast, dust bands on bare blue <span class="hlt">ice</span> fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the <span class="hlt">ice</span> and from dating the <span class="hlt">ice</span> using the uranium series method. Also for the volcanic ash layers found on blue <span class="hlt">ice</span> fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue <span class="hlt">ice</span> fields at the Lewis Cliff <span class="hlt">Ice</span> Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the <span class="hlt">Ice</span> Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013707','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013707"><span>Evolution of the Marginal <span class="hlt">Ice</span> Zone: Adaptive Sampling with Autonomous Gliders</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>kinetic energy (ε). Gliders also sampled dissolved oxygen, optical backscatter ( chlorophyll and CDOM fluorescence) and multi-spectral downwelling...Fig. 2). In the <span class="hlt">pack</span>, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become...Sections across the <span class="hlt">ice</span> edge just prior to recovery, during freeze-up, reveal elevated chlorophyll fluorescence throughout the mixed layer (Fig. 4</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCC...6..479F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCC...6..479F"><span>The safety band of Antarctic <span class="hlt">ice</span> shelves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Rankl, Melanie; Braun, Matthias; Gagliardini, Olivier</p> <p>2016-05-01</p> <p>The floating <span class="hlt">ice</span> shelves along the seaboard of the Antarctic <span class="hlt">ice</span> sheet restrain the outflow of upstream grounded <span class="hlt">ice</span>. Removal of these <span class="hlt">ice</span> shelves, as shown by past <span class="hlt">ice</span>-shelf recession and break-up, accelerates the outflow, which adds to sea-level rise. A key question in predicting future outflow is to quantify the extent of calving that might precondition other dynamic consequences and lead to loss of <span class="hlt">ice</span>-shelf restraint. Here we delineate frontal <span class="hlt">areas</span> that we label as `passive shelf ice’ and that can be removed without major dynamic implications, with contrasting results across the continent. The <span class="hlt">ice</span> shelves in the Amundsen and Bellingshausen seas have limited or almost no `passive’ portion, which implies that further retreat of current <span class="hlt">ice</span>-shelf fronts will yield important dynamic consequences. This region is particularly vulnerable as <span class="hlt">ice</span> shelves have been thinning at high rates for two decades and as upstream grounded <span class="hlt">ice</span> rests on a backward sloping bed, a precondition to marine <span class="hlt">ice</span>-sheet instability. In contrast to these <span class="hlt">ice</span> shelves, Larsen C <span class="hlt">Ice</span> Shelf, in the Weddell Sea, exhibits a large `passive’ frontal <span class="hlt">area</span>, suggesting that the imminent calving of a vast tabular iceberg will be unlikely to instantly produce much dynamic change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19769106','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19769106"><span>Modeling marine protected <span class="hlt">areas</span> for threatened eiders in a climatically changing Bering Sea.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lovvorn, James R; Grebmeier, Jacqueline M; Cooper, Lee W; Bump, Joseph K; Richman, Samantha E</p> <p>2009-09-01</p> <p>Delineating protected <span class="hlt">areas</span> for sensitive species is a growing challenge as changing climate alters the geographic pattern of habitats as well as human responses to those shifts. When human impacts are expected within projected ranges of threatened species, there is often demand to demarcate the minimum habitat required to ensure the species' persistence. Because diminished or wide-ranging populations may not occupy all viable (and needed) habitat at once, one must identify thresholds of resources that will support the species even in unoccupied <span class="hlt">areas</span>. Long-term data on the shifting mosaic of critical resources may indicate ranges of future variability. We addressed these issues for the Spectacled Eider (Somateria fischeri), a federally threatened species that winters in <span class="hlt">pack</span> <span class="hlt">ice</span> of the Bering Sea. Changing climate has decreased <span class="hlt">ice</span> cover and severely reduced the eiders' benthic prey and has increased prospects for expansion of bottom trawling that may further affect prey communities. To assess long-term changes in habitats that will support eiders, we linked data on benthic prey, sea <span class="hlt">ice</span>, and weather from 1970 to 2001 with a spatially explicit simulation model of eider energy balance that integrated field, laboratory, and remote-sensing studies. <span class="hlt">Areas</span> estimated to have prey densities adequate for eiders in 1970-1974 did not include most <span class="hlt">areas</span> that were viable 20 years later (1993-1994). Unless the entire <span class="hlt">area</span> with adequate prey in 1993-1994 had been protected, the much reduced viable <span class="hlt">area</span> in 1999-2001 might well have been excluded. During long non-foraging periods (as at night), eiders can save much energy by resting on <span class="hlt">ice</span> vs. floating on water; thus, loss of <span class="hlt">ice</span> cover in the future might substantially decrease the <span class="hlt">area</span> in which prey densities are adequate to offset the eiders' energy needs. For wide-ranging benthivores such as eiders, our results emphasize that fixed protected <span class="hlt">areas</span> based on current conditions can be too small or inflexible to subsume long</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C41C0417K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C41C0417K"><span>Pleistocene <span class="hlt">ice</span>-rich yedoma in Interior Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanevskiy, M. Z.; Shur, Y.; Jorgenson, T. T.; Sturm, M.; Bjella, K.; Bray, M.; Harden, J. W.; Dillon, M.; Fortier, D.; O'Donnell, J.</p> <p>2011-12-01</p> <p>Yedoma, or the <span class="hlt">ice</span>-rich syngenetic permafrost with large <span class="hlt">ice</span> wedges, widely occurs in parts of Alaska that were unglaciated during the last glaciation including Interior Alaska, Foothills of Brooks Range and Seward Peninsula. A thick layer of syngenetic permafrost was formed by simultaneous accumulation of silt and upward permafrost aggradation. Until recently, yedoma has been studied mainly in Russia. In Interior Alaska, we have studied yedoma at several field sites (Erickson Creek <span class="hlt">area</span>, Boot Lake <span class="hlt">area</span>, and several sites around Fairbanks, including well-known CRREL Permafrost tunnel). All these locations are characterized by thick sequences of <span class="hlt">ice</span>-rich silt with large <span class="hlt">ice</span> wedges up to 30 m deep. Our study in the CRREL Permafrost tunnel and surrounding <span class="hlt">area</span> revealed a yedoma section up to 18 m thick, whose formation began about 40,000 yr BP. The volume of wedge-<span class="hlt">ice</span> (about 10-15%) is not very big in comparison with other yedoma sites (typically more than 30%), but soils between <span class="hlt">ice</span> wedges are extremely <span class="hlt">ice</span>-rich - an average value of gravimetric moisture content of undisturbed yedoma silt with micro-cryostructures is about 130%. Numerous bodies of thermokarst-cave <span class="hlt">ice</span> were detected in the tunnel. Geotechnical investigations along the Dalton Highway near Livengood (Erickson Creek <span class="hlt">area</span>) provided opportunities for studies of yedoma cores from deep boreholes. The radiocarbon age of sediments varies from 20,000 to 45,000 yr BP. Most of soils in the <span class="hlt">area</span> are extremely <span class="hlt">ice</span>-rich. Thickness of <span class="hlt">ice</span>-rich silt varies from 10 m to more than 26 m, and volume of wedge-<span class="hlt">ice</span> reaches 35-45%. Soil between <span class="hlt">ice</span> wedges has mainly micro-cryostructures and average gravimetric moisture content from 80% to 100%. Our studies have shown that the top part of yedoma in many locations was affected by deep thawing during the Holocene, which resulted in formation of the layer of thawed and refrozen soils up to 6 m thick on top of yedoma deposits. Thawing of the upper permafrost could be related to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11E..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11E..05F"><span>Eastern Ross <span class="hlt">Ice</span> Sheet Deglacial History inferred from the Roosevelt Island <span class="hlt">Ice</span> Core</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.</p> <p>2017-12-01</p> <p>The Ross <span class="hlt">Ice</span> Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross <span class="hlt">Ice</span> Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross <span class="hlt">area</span> where there is no exposed rock and the Ross <span class="hlt">Ice</span> Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old <span class="hlt">ice</span>, can be used to infer the establishment of grounded <span class="hlt">ice</span> and be used to infer past <span class="hlt">ice</span> thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an <span class="hlt">ice</span> core to bedrock. Using <span class="hlt">ice</span>-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer <span class="hlt">ice</span> thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active <span class="hlt">ice</span> streams throughout the Ross <span class="hlt">Ice</span> Sheet advance during the LGM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008934','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008934"><span>Evaluation of Arctic Sea <span class="hlt">Ice</span> Thickness Simulated by Arctic Ocean Model Intercomparison Project Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140008934'); toggleEditAbsImage('author_20140008934_show'); toggleEditAbsImage('author_20140008934_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140008934_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140008934_hide"></p> <p>2012-01-01</p> <p>Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea <span class="hlt">ice</span> thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); <span class="hlt">ice</span> draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured <span class="hlt">ice</span> thinner than approximately 2 mand underestimate the thickness of <span class="hlt">ice</span> measured thicker than about approximately 2m. In the regions of flat immobile landfast <span class="hlt">ice</span> (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea <span class="hlt">ice</span> thickness and rates of September and October <span class="hlt">ice</span> growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast <span class="hlt">ice</span> formation and growth. Instead, the modeled fast <span class="hlt">ice</span> is replaced with <span class="hlt">pack</span> <span class="hlt">ice</span> which drifts, generating ridges of increasing <span class="hlt">ice</span> thickness, in addition to thermodynamic <span class="hlt">ice</span> growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic <span class="hlt">Ice</span> Ocean Modeling and Assimilation System models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43D..04T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43D..04T"><span>Acquisition of Airborne Sea <span class="hlt">Ice</span> Remote Sensing Data with CULPIS-X: an Instrument Mounted on a US Coast Guard C-130</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tschudi, M. A.; Tooth, M.; Barton-Grimley, R. A.</p> <p>2016-12-01</p> <p>To obtain high-resolution observations of sea <span class="hlt">ice</span>, we developed the University of Colorado LIDAR Profiler Instrument Suite - Extended (CULPIS-X). CULPIS-X, originally funded by NASA and currently supported by ONR, is being deployed in the flare tube of a US Coast Guard (USCG) C-130 aircraft, during Arctic Domain Awareness (ADA) flights from Kodiak, AK to the Arctic, in cooperation with the Coast Guard and with the Seasonal <span class="hlt">Ice</span> Zone Remote Sensing (SIZRS, J. Morrison, PI) program. CULPIS-X (Figure 1) contains a LIDAR, digital camera, thermal infrared and hyperspectral radiometers, along with a GPS for aircraft altitude and an Inertial Measurement Unit (IMU) for aircraft attitude, and a computer to process and write the instrument data to SD cards. The package is designed to fly over Arctic sea <span class="hlt">ice</span> for the purposes of measuring sea <span class="hlt">ice</span> roughness, estimating sea <span class="hlt">ice</span> thickness, and measuring <span class="hlt">ice</span> surface temperature and reflectance. CULPIS-X had its inaugural flight aboard a C-130 out of USCG Air Station Sacramento in April 2016. This flight tested the structure of CULPIS-X, along with instrument readiness. The inaugural Arctic flight of CULPIS-X took place on June 15, 2016. The C-130 took off from Kodiak and flew towards Deadhorse, where it turned on to the 150W longitude line and proceeded north to 76N. The C-130 descended to a lower altitude ( 500 feet) during several flight segments along the 150W line, from Deadhorse to 76N and back. The lower altitude is required to obtain ULS LIDAR return pulses as they reflect off the ocean and sea <span class="hlt">ice</span>. A similar flight was also performed on July 13, 2016. LIDAR data will be utilized to determine the surface roughness of the overflown <span class="hlt">ice</span> <span class="hlt">pack</span>. Furthermore, we will pick locations where open water occurred near or within the <span class="hlt">ice</span> <span class="hlt">pack</span>, to establish the freeboard of the <span class="hlt">ice</span> <span class="hlt">pack</span>, which will be used to estimate the sea <span class="hlt">ice</span> thickness. More flights are scheduled for this season, in mid-Aug, Sept, and Oct, and are designed to overfly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940007284&hterms=holt+winters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dholt%2Bwinters','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940007284&hterms=holt+winters&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dholt%2Bwinters"><span>Sea <span class="hlt">ice</span> radar signatures from ERS-1 SAR during late Summer and Fall in the Beaufort and Chukchi Seas</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holt, Benjamin; Cunningham, Glenn; Kwok, Ron</p> <p>1993-01-01</p> <p>A study which examines ERS-1 C band SAR (Synthetic Aperture Radar) imagery of sea <span class="hlt">ice</span> obtained in the Beaufort and Chukchi Seas from mid Summer through Fall freeze up and early Winter in 1991 is presented. Radar backscatter statistics of sea <span class="hlt">ice</span> were obtained from the imagery, using common floes tracked through consecutive repeat images whenever possible. During the Summer months, strong fluctuations in <span class="hlt">ice</span> signatures of several dB are observed over 2 to 3 day periods, which are found to be closely related to air temperature excursions above and below freezing that alters the phase of the <span class="hlt">ice</span> surface. As air temperatures drop steadily below freezing in the Fall, the signatures of the <span class="hlt">pack</span> <span class="hlt">ice</span> increase in brightness and become more stable with time. Multiyear <span class="hlt">ice</span> is distinguished from rough and smooth first year <span class="hlt">ice</span>. There are also variations in the multiyear signatures with latitude. Large variations are seen in new <span class="hlt">ice</span> and open water contained within leads which results in ambiguous classification.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17868292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17868292"><span>Sea <span class="hlt">ice</span> occurrence predicts genetic isolation in the Arctic fox.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geffen, Eli; Waidyaratne, Sitara; Dalén, Love; Angerbjörn, Anders; Vila, Carles; Hersteinsson, Pall; Fuglei, Eva; White, Paula A; Goltsman, Michael; Kapel, Christian M O; Wayne, Robert K</p> <p>2007-10-01</p> <p>Unlike Oceanic islands, the islands of the Arctic Sea are not completely isolated from migration by terrestrial vertebrates. The <span class="hlt">pack</span> <span class="hlt">ice</span> connects many Arctic Sea islands to the mainland during winter months. The Arctic fox (Alopex lagopus), which has a circumpolar distribution, populates numerous islands in the Arctic Sea. In this study, we used genetic data from 20 different populations, spanning the entire distribution of the Arctic fox, to identify barriers to dispersal. Specifically, we considered geographical distance, occurrence of sea <span class="hlt">ice</span>, winter temperature, ecotype, and the presence of red fox and polar bear as nonexclusive factors that influence the dispersal behaviour of individuals. Using distance-based redundancy analysis and the BIOENV procedure, we showed that occurrence of sea <span class="hlt">ice</span> is the key predictor and explained 40-60% of the genetic distance among populations. In addition, our analysis identified the Commander and Pribilof Islands Arctic populations as genetically unique suggesting they deserve special attention from a conservation perspective.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol8/pdf/CFR-2013-title21-vol8-sec880-6050.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title21-vol8/pdf/CFR-2013-title21-vol8-sec880-6050.pdf"><span>21 CFR 880.6050 - <span class="hlt">Ice</span> bag.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... 21 Food and Drugs 8 2013-04-01 2013-04-01 false <span class="hlt">Ice</span> bag. 880.6050 Section 880.6050 Food and Drugs....6050 <span class="hlt">Ice</span> bag. (a) Identification. An <span class="hlt">ice</span> bag is a device intended for medical purposes that is in the form of a container intended to be filled with <span class="hlt">ice</span> that is used to apply dry cold therapy to an <span class="hlt">area</span> of...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title21-vol8/pdf/CFR-2010-title21-vol8-sec880-6050.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title21-vol8/pdf/CFR-2010-title21-vol8-sec880-6050.pdf"><span>21 CFR 880.6050 - <span class="hlt">Ice</span> bag.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... 21 Food and Drugs 8 2010-04-01 2010-04-01 false <span class="hlt">Ice</span> bag. 880.6050 Section 880.6050 Food and Drugs....6050 <span class="hlt">Ice</span> bag. (a) Identification. An <span class="hlt">ice</span> bag is a device intended for medical purposes that is in the form of a container intended to be filled with <span class="hlt">ice</span> that is used to apply dry cold therapy to an <span class="hlt">area</span> of...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol8/pdf/CFR-2012-title21-vol8-sec880-6050.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol8/pdf/CFR-2012-title21-vol8-sec880-6050.pdf"><span>21 CFR 880.6050 - <span class="hlt">Ice</span> bag.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-04-01</p> <p>... 21 Food and Drugs 8 2012-04-01 2012-04-01 false <span class="hlt">Ice</span> bag. 880.6050 Section 880.6050 Food and Drugs....6050 <span class="hlt">Ice</span> bag. (a) Identification. An <span class="hlt">ice</span> bag is a device intended for medical purposes that is in the form of a container intended to be filled with <span class="hlt">ice</span> that is used to apply dry cold therapy to an <span class="hlt">area</span> of...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol8/pdf/CFR-2014-title21-vol8-sec880-6050.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title21-vol8/pdf/CFR-2014-title21-vol8-sec880-6050.pdf"><span>21 CFR 880.6050 - <span class="hlt">Ice</span> bag.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... 21 Food and Drugs 8 2014-04-01 2014-04-01 false <span class="hlt">Ice</span> bag. 880.6050 Section 880.6050 Food and Drugs....6050 <span class="hlt">Ice</span> bag. (a) Identification. An <span class="hlt">ice</span> bag is a device intended for medical purposes that is in the form of a container intended to be filled with <span class="hlt">ice</span> that is used to apply dry cold therapy to an <span class="hlt">area</span> of...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol8/pdf/CFR-2011-title21-vol8-sec880-6050.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title21-vol8/pdf/CFR-2011-title21-vol8-sec880-6050.pdf"><span>21 CFR 880.6050 - <span class="hlt">Ice</span> bag.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... 21 Food and Drugs 8 2011-04-01 2011-04-01 false <span class="hlt">Ice</span> bag. 880.6050 Section 880.6050 Food and Drugs....6050 <span class="hlt">Ice</span> bag. (a) Identification. An <span class="hlt">ice</span> bag is a device intended for medical purposes that is in the form of a container intended to be filled with <span class="hlt">ice</span> that is used to apply dry cold therapy to an <span class="hlt">area</span> of...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..163...56P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..163...56P"><span>Reconstructing the flow pattern evolution in inner region of the Fennoscandian <span class="hlt">Ice</span> Sheet by glacial landforms from Gausdal Vestfjell <span class="hlt">area</span>, south-central Norway</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Putniņš, Artūrs; Henriksen, Mona</p> <p>2017-05-01</p> <p>More than 17 000 landforms from detailed LiDAR data sets have been mapped in the Gausdal Vestfjell <span class="hlt">area</span>, south-central Norway. The spatial distribution and relationships between the identified subglacial bedforms, mainly streamlined landforms and ribbed moraine ridges, have provided new insight on the glacial dynamics and the sequence of glacial events during the last glaciation. This established evolution of the Late Weichselian <span class="hlt">ice</span> flow pattern at this inner region of the Fennoscandian <span class="hlt">Ice</span> Sheet is stepwise where a topography independent <span class="hlt">ice</span> flow (Phase I) are followed by a regional (Phase II) before a strongly channelized, topography driven <span class="hlt">ice</span> flow (Phase III). The latter phase is divided into several substages where the flow sets are becoming increasingly confined into the valleys, likely separated by colder, less active <span class="hlt">ice</span> before down-melting of <span class="hlt">ice</span> took place. A migrating <span class="hlt">ice</span> divide and lowering of the <span class="hlt">ice</span> surface seems to be the main reasons for these changes in <span class="hlt">ice</span> flow pattern. Formation of ribbed moraine can occur both when the <span class="hlt">ice</span> flow slows down and speeds up, forming respectively broad fields and elongated belts of ribbed moraines.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.5412K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.5412K"><span>Bedrock structure and the interpretation of palaeo <span class="hlt">ice</span> stream footprints: examples from the Pleistocene British <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krabbendam, M.; Bradwell, T.</p> <p>2009-04-01</p> <p>To model past and future behaviour of <span class="hlt">ice</span> sheets, a good understanding of both modern and ancient <span class="hlt">ice</span> streams is required. The study of present-day <span class="hlt">ice</span> streams provides detailed data of short-term dynamic changes, whilst the study of Pleistocene palaeo-<span class="hlt">ice</span> streams can provide crucial constraints on the longer-term evolution of <span class="hlt">ice</span> sheets. To date, palaeo-<span class="hlt">ice</span> streams, such as the classical Dubawnt Lake palaeo-<span class="hlt">ice</span> stream of the former Laurentide <span class="hlt">Ice</span> Sheet, have been recognised largely on the basis of extremely elongate drumlins and megascale glacial lineations; all soft-sediment features. Whilst it appears that topographically unconstrained <span class="hlt">ice</span> streams (eg. within the West Antarctic <span class="hlt">Ice</span> Sheet) are generally underlain by deformable till, topographically constrained <span class="hlt">ice</span> streams such as Jakobshavn Isbrae do not require deformable sediment and may occur on a bedrock-dominated bed. Analysis of DEM data and geomorphology and structural geology fieldwork in Northern Scotland and Northern England has shown the occurrence of highly streamlined bedforms in bedrock of the former base of topographically controlled palaeo-<span class="hlt">ice</span> streams, which drained parts of the British <span class="hlt">Ice</span> Sheet. The bedforms are predominantly bedrock megagrooves with asymmetric cross-profiles. In the Ullapool tributary of the Minch palaeo <span class="hlt">ice</span> stream, bedrock megagrooves form the dominant evidence for <span class="hlt">ice</span> streaming. The megagrooves are typically 5-15 m deep, 10-30 m wide and 500 - 3000 m long. Spacing of megagrooves is typically 100 - 200 m. In both study <span class="hlt">areas</span>, the bedrock is strongly anisotropic, either consisting of thin-bedded strata or strongly foliated metasedimentary rocks, with the strata or foliation having a gentle dip. Megagrooves are best developed where the strike of the anisotropy is sub-parallel (within 10 - 20°) with palaeo <span class="hlt">ice</span> flow. The bedrock in both <span class="hlt">areas</span> has a well-developed, relatively densely spaced (< 1m), conjugate joint system. We suggest that asymmetric megagrooves are formed by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P34A..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P34A..05S"><span>Breaking <span class="hlt">Ice</span>: Fracture Processes in Floating <span class="hlt">Ice</span> on Earth and Elsewhere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scambos, T. A.</p> <p>2016-12-01</p> <p>Rapid, intense fracturing events in the <span class="hlt">ice</span> shelves of the Antarctic Peninsula reveal a set of processes that were not fully appreciated prior to the series of <span class="hlt">ice</span> shelf break-ups observed in the late 1990s and early 2000s. A series of studies have uncovered a fascinating array of relationships between climate, ocean, and <span class="hlt">ice</span>: intense widespread hydrofracture; repetitive hydrofracture induced by <span class="hlt">ice</span> plate bending; the ability for sub-surface flooded firn to support hydrofracture; potential triggering by long-period wave action; accelerated fracturing by trapped tsunamic waves; iceberg disintegration, and a remarkable <span class="hlt">ice</span> rebound process from lake drainage that resembles runaway nuclear fission. The events and subsequent studies have shown that rapid regional warming in <span class="hlt">ice</span> shelf <span class="hlt">areas</span> leads to catastrophic changes in a previously stable <span class="hlt">ice</span> mass. More typical fracturing of thick <span class="hlt">ice</span> plates is a natural consequence of <span class="hlt">ice</span> flow in a complex geographic setting, i.e., it is induced by shear and divergence of spreading plate flow around obstacles. While these are not a result of climate or ocean change, weather and ocean processes may impact the exact timing of final separation of an iceberg from a shelf. Taking these terrestrial perspectives to other <span class="hlt">ice</span>-covered ocean worlds, cautiously, provides an observational framework for interpreting features on Europa and Enceladus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC13I0797F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC13I0797F"><span><span class="hlt">ICE</span>911 Research: Preserving and Rebuilding Reflective <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.</p> <p>2014-12-01</p> <p>We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year <span class="hlt">ice</span> using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective <span class="hlt">ice</span> has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid decrease of summer-time <span class="hlt">ice</span>. As summer-time bright <span class="hlt">ice</span> disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based <span class="hlt">ice</span> melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and <span class="hlt">ice</span> preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and <span class="hlt">ice</span> from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and <span class="hlt">ice</span> preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve <span class="hlt">ice</span>, glaciers, permafrost and seasonal snow <span class="hlt">areas</span>, and perhaps aid natural <span class="hlt">ice</span> formation processes. If this method is deployed on a large enough scale, it could conceivably</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917705S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917705S"><span><span class="hlt">Ice</span> particle collisions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael</p> <p>2017-04-01</p> <p> becomes more likely when the particles are new and rough, but also after they have been through many collisions. Experiment 2: To create an even higher collision density and to understand the collective behaviour of these <span class="hlt">ice</span> particles, a sample of them were placed to cover the tray of an electromagnetic shaker, mounted in an environment controlled chamber at -2°C. Continuous shaking of this system permitted observation of a spontaneous transition from dry granular behaviour to that of wetted granules. Vibrating with a fixed acceleration, image sequences were recorded every 10 min to show that at early stage (<15min) the particles adopted the dry granular flow (particles are free to bounce on the vibrating plate). After circa 40 min 90% particles became spontaneously immobile in an approximately hexagonally <span class="hlt">packed</span> 2 dimensional sheet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28417004','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28417004"><span>The effect of relatedness and <span class="hlt">pack</span> size on territory overlap in African wild dogs.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jackson, Craig R; Groom, Rosemary J; Jordan, Neil R; McNutt, J Weldon</p> <p>2017-01-01</p> <p>Spacing patterns mediate competitive interactions between conspecifics, ultimately increasing fitness. The degree of territorial overlap between neighbouring African wild dog ( Lycaon pictus ) <span class="hlt">packs</span> varies greatly, yet the role of factors potentially affecting the degree of overlap, such as relatedness and <span class="hlt">pack</span> size, remain unclear. We used movement data from 21 wild dog <span class="hlt">packs</span> to calculate the extent of territory overlap (20 dyads). On average, unrelated neighbouring <span class="hlt">packs</span> had low levels of overlap restricted to the peripheral regions of their 95% utilisation kernels. Related neighbours had significantly greater levels of peripheral overlap. Only one unrelated dyad included overlap between 75%-75% kernels, but no 50%-50% kernels overlapped. However, eight of 12 related dyads overlapped between their respective 75% kernels and six between the frequented 50% kernels. Overlap between these more frequented kernels confers a heightened likelihood of encounter, as the mean utilisation intensity per unit <span class="hlt">area</span> within the 50% kernels was 4.93 times greater than in the 95% kernels, and 2.34 times greater than in the 75% kernels. Related <span class="hlt">packs</span> spent significantly more time in their 95% kernel overlap zones than did unrelated <span class="hlt">packs</span>. <span class="hlt">Pack</span> size appeared to have little effect on overlap between related dyads, yet among unrelated neighbours larger <span class="hlt">packs</span> tended to overlap more onto smaller <span class="hlt">packs</span>' territories. However, the true effect is unclear given that the model's confidence intervals overlapped zero. Evidence suggests that costly intraspecific aggression is greatly reduced between related <span class="hlt">packs</span>. Consequently, the tendency for dispersing individuals to establish territories alongside relatives, where intensively utilised portions of ranges regularly overlap, may extend kin selection and inclusive fitness benefits from the intra-<span class="hlt">pack</span> to inter-<span class="hlt">pack</span> level. This natural spacing system can affect survival parameters and the carrying capacity of protected <span class="hlt">areas</span>, having important</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890025240&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890025240&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dwind%2Bmonitor"><span>Wind, current and swell influences on the <span class="hlt">ice</span> extent and flux in the Grand Banks-Labrador sea <span class="hlt">area</span> as observed in the LIMEX '87 experiment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Argus, Susan Digby; Carsey, Frank; Holt, Benjamin</p> <p>1988-01-01</p> <p>This paper presents data collected by airborne and satellite instruments during the Labrador <span class="hlt">Ice</span> Margin Experiment, that demonstrate the effects of oceanic and atmospheric processes on the <span class="hlt">ice</span> conditions in the Grand Banks-Labrador sea <span class="hlt">area</span>. Special consideration is given to the development of algorithms for extracting information from SAR data. It is shown that SAR data can be used to monitor <span class="hlt">ice</span> extent, determine <span class="hlt">ice</span> motion, locate shear zones, monitor the penetration of swell into the <span class="hlt">ice</span>, estimate floe sizes, and establish the dimensions of the <span class="hlt">ice</span> velocity zones. It is also shown that the complex interaction of the <span class="hlt">ice</span> cover with winds, currents, swell, and coastlines is similar to the dynamics established for a number of sites in both polar regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E2746R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E2746R"><span>Feasibility of synthetic aperture altimeter data in <span class="hlt">ice</span> charting</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rinne, Eero; Kangas, Antti</p> <p></p> <p>We demonstrate the possibility to utilise synthetic aperture altimeter data in operational <span class="hlt">ice</span> charting. Different waveform parameters from Cryosat-2 SIRAL measurements are compared to AARI <span class="hlt">ice</span> charts over the Barents and Kara seas. It is shown that polygons of different <span class="hlt">ice</span> types are distinguishable in the altimeter data. The most important sea <span class="hlt">ice</span> application of satellite altimeters today is measuring the thickness of Arctic winter sea <span class="hlt">ice</span>. However, the use of altimeters to support <span class="hlt">ice</span> mapping has been suggested already more than 30 years ago. Due to advent of imaging instruments more suitable for <span class="hlt">ice</span> charting, most notably the SAR, altimeters have remained tools for sea <span class="hlt">ice</span> science. They are however used operationally to determine sea height anomaly and significant wave height. Our input data is the SAR mode Level 1B data of CryoSat-2. We only consider the waveform data and calculate simple parameters describing the shape of the waveform such as the pulse peakiness and backscatter coefficient sigma_0. We compare these to <span class="hlt">ice</span> stages of development given in the <span class="hlt">ice</span> chart. As expected, <span class="hlt">ice</span> edge is clearly visible in the altimeter data. What is more promising for operational <span class="hlt">ice</span> thickness, <span class="hlt">areas</span> of old <span class="hlt">ice</span> can be distinguished from <span class="hlt">areas</span> of young <span class="hlt">ice</span> and nilas. Altimeters provide an independent source of sea <span class="hlt">ice</span> information to complement SAR and passive microwave data. Albeit low resolution, altimeter data may prove valuable at times and locations where other data sources are unavailable. SAR data is frequently available for our study <span class="hlt">area</span>, but our methods are applicable to <span class="hlt">areas</span> where SAR data is scarce such as the Southern <span class="hlt">ice</span> covered seas. Furthermore, our results here are directly applicable to the future Sentinel-3 altimeter data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080008836','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080008836"><span>Subsonic Aircraft Safety <span class="hlt">Icing</span> Study</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.</p> <p>2008-01-01</p> <p>NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with <span class="hlt">icing</span> for subsonic transport, summarize reports by subject matter experts in <span class="hlt">icing</span> research on current knowledge of <span class="hlt">icing</span> effects on control parameters and establish future requirements for <span class="hlt">icing</span> research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of <span class="hlt">icing</span> in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft <span class="hlt">icing</span> research in these lists and (4) suggested future requirements for NASA <span class="hlt">icing</span> research. The review of several studies by subject-matter experts was summarized into four high-priority <span class="hlt">icing</span> research <span class="hlt">areas</span>. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority <span class="hlt">icing</span> research <span class="hlt">areas</span> that were identified, with the exception of the developing of methods to sense and document actual <span class="hlt">icing</span> conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10.2027S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10.2027S"><span>Sea-<span class="hlt">ice</span> indicators of polar bear habitat</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, Harry L.; Laidre, Kristin L.</p> <p>2016-09-01</p> <p>Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea <span class="hlt">ice</span> as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-<span class="hlt">ice</span> retreat in spring and advance in fall. We analyzed the dates of sea-<span class="hlt">ice</span> retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-<span class="hlt">ice</span> concentration data from satellite passive microwave instruments. We define the dates of sea-<span class="hlt">ice</span> retreat and advance in a region as the dates when the <span class="hlt">area</span> of sea <span class="hlt">ice</span> drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-<span class="hlt">ice</span> <span class="hlt">areas</span>. In all 19 regions there is a trend toward earlier sea-<span class="hlt">ice</span> retreat and later sea-<span class="hlt">ice</span> advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-<span class="hlt">ice</span> <span class="hlt">area</span> exceeded the threshold (termed <span class="hlt">ice</span>-covered days) and the average sea-<span class="hlt">ice</span> concentration from 1 June through 31 October. The number of <span class="hlt">ice</span>-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-<span class="hlt">ice</span> concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-<span class="hlt">ice</span> metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-<span class="hlt">ice</span> retreat and advance in future reports.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C21D1156T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C21D1156T"><span>Seasonal regional forecast of the minimum sea <span class="hlt">ice</span> extent in the LapteV Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tremblay, B.; Brunette, C.; Newton, R.</p> <p>2017-12-01</p> <p>Late winter anomaly of sea <span class="hlt">ice</span> export from the peripheral seas of the Atctic Ocean was found to be a useful predictor for the minimum sea <span class="hlt">ice</span> extent (SIE) in the Arctic Ocean (Williams et al., 2017). In the following, we present a proof of concept for a regional seasonal forecast of the min SIE for the Laptev Sea based on late winter coastal divergence quantified using a Lagrangian <span class="hlt">Ice</span> Tracking System (LITS) forced with satellite derived sea-<span class="hlt">ice</span> drifts from the Polar Pathfinder. Following Nikolaeva and Sesterikov (1970), we track an imaginary line just offshore of coastal polynyas in the Laptev Sea from December of the previous year to May 1 of the following year using LITS. Results show that coastal divergence in the Laptev Sea between February 1st and May 1st is best correlated (r = -0.61) with the following September minimum SIE in accord with previous results from Krumpen et al. (2013, for the Laptev Sea) and Williams et a. (2017, for the pan-Arctic). This gives a maximum seasonal predictability of Laptev Sea min SIE anomalies from observations of approximately 40%. Coastal <span class="hlt">ice</span> divergence leads to formation of thinner <span class="hlt">ice</span> that melts earlier in early summer, hence creating <span class="hlt">areas</span> of open water that have a lower albedo and trigger an <span class="hlt">ice</span>-albedo feedback. In the Laptev Sea, we find that anomalies of coastal divergence in late winter are amplified threefold to result in the September SIE. We also find a correlation coefficient r = 0.49 between February-March-April (FMA) anomalies of coastal divergence with the FMA averaged AO index. Interestingly, the correlation is stronger, r = 0.61, when comparing the FMA coastal divergence anomalies to the DJFMA averaged AO index. It is hypothesized that the AO index at the beginning of the winter (and the associated anomalous sea <span class="hlt">ice</span> export) also contains information that impact the magnitude of coastal divergence opening later in the winter. Our approach differs from previous approaches (e.g. Krumpen et al and Williams et al</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22935858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22935858"><span>Comparing the efficacy of mature mud <span class="hlt">pack</span> and hot <span class="hlt">pack</span> treatments for knee osteoarthritis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sarsan, Ayşe; Akkaya, Nuray; Ozgen, Merih; Yildiz, Necmettin; Atalay, Nilgun Simsir; Ardic, Fusun</p> <p>2012-01-01</p> <p>The objective of this study is to compare the efficacy of mature mud <span class="hlt">pack</span> and hot <span class="hlt">pack</span> therapies on patients with knee osteoarthritis. This study was designed as a prospective, randomized-controlled, and single-blinded clinical trial. Twenty-seven patients with clinical and radiologic evidence of knee osteoarthritis were randomly assigned into two groups and were treated with mature mud <span class="hlt">packs</span> (n 15) or hot <span class="hlt">packs</span> (n=12). Patients were evaluated for pain [based on the visual analog scale (VAS)], function (WOMAC, 6 min walking distance), quality of life [Short Form-36 (SF-36)], and serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and insulin-like growth factor-1 (IGF-1) at baseline, post-treatment, and 3 and 6~months after treatment. The mud <span class="hlt">pack</span> group shows a significant improvement in VAS, pain, stifness, and physical function domains of WOMAC. The difference between groups of pain and physical activity domains is significant at post-treatment in favor of mud <span class="hlt">pack</span>. For a 6 min walking distance, mud <span class="hlt">pack</span> shows significant improvement, and the difference is significant between groups in favor of mud <span class="hlt">pack</span> at post-treatment and 3 and 6 months after treatment. Mud <span class="hlt">pack</span> shows significant improvement in the pain subscale of SF-36 at the third month continuing until the sixth month after the treatment. Significant improvements are found for the social function, vitality/energy, physical role disability, and general health subscales of SF-36 in favor of the mud <span class="hlt">pack</span> compared with the hot <span class="hlt">pack</span> group at post-treatment. A significant increase is detected for IGF-1 in the mud <span class="hlt">pack</span> group 3 months after treatment compared with the baseline, and the difference is significant between groups 3 months after the treatment. Mud <span class="hlt">pack</span> is a favorable option compared with hotpack for pain relief and for the improvement of functional conditions in treating patients with knee osteoarthritis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080040137&hterms=AES&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080040137&hterms=AES&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAES"><span>Comparison of NASA Team2 and AES-York <span class="hlt">Ice</span> Concentration Algorithms Against Operational <span class="hlt">Ice</span> Charts From the Canadian <span class="hlt">Ice</span> Service</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shokr, Mohammed; Markus, Thorsten</p> <p>2006-01-01</p> <p><span class="hlt">Ice</span> concentration retrieved from spaceborne passive-microwave observations is a prime input to operational sea-<span class="hlt">ice</span>-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)- York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate <span class="hlt">ice</span> concentration from Special Sensor Microwave/Imager observations. This paper furnishes a comparison between <span class="hlt">ice</span> concentrations (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian <span class="hlt">Ice</span> Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total <span class="hlt">ice</span> concentration by 18.35% and 9.66% concentration counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved concentrations of thin and thick <span class="hlt">ice</span> are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing <span class="hlt">area</span>. This is more likely to occur when the total <span class="hlt">ice</span> concentration approaches 100%. If thin and thick <span class="hlt">ice</span> types coexist in comparable concentrations, the algorithms' estimates agree with CIS'S estimates. In terms of <span class="hlt">ice</span> concentration retrieval, thin <span class="hlt">ice</span> is more problematic than thick <span class="hlt">ice</span>. The concept of using a single tie point to represent a thin <span class="hlt">ice</span> surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total <span class="hlt">ice</span> concentration in slightly more agreement with CIS'S estimates, NT2 provides better agreement in retrieving thin and thick <span class="hlt">ice</span> concentrations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28561343','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28561343"><span>Pan-Arctic sea <span class="hlt">ice</span>-algal chl a biomass and suitable habitat are largely underestimated for multiyear <span class="hlt">ice</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lange, Benjamin A; Flores, Hauke; Michel, Christine; Beckers, Justin F; Bublitz, Anne; Casey, John Alec; Castellani, Giulia; Hatam, Ido; Reppchen, Anke; Rudolph, Svenja A; Haas, Christian</p> <p>2017-11-01</p> <p>There is mounting evidence that multiyear <span class="hlt">ice</span> (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea <span class="hlt">ice</span> algae on a pan-Arctic scale. We sampled sea <span class="hlt">ice</span> cores from MYI and first-year sea <span class="hlt">ice</span> (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m 2 , a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial <span class="hlt">ice</span>-algal biomass and represent a reliable <span class="hlt">ice</span>-algal habitat due to the (quasi-) permanent low-snow surface of these features. We identified an <span class="hlt">ice</span>-algal habitat threshold value for calculated light transmittance of 0.014%. <span class="hlt">Ice</span> classes and coverage of suitable <span class="hlt">ice</span>-algal habitat were determined from snow and <span class="hlt">ice</span> surveys. These <span class="hlt">ice</span> classes and associated coverage of suitable habitat were applied to pan-Arctic CryoSat-2 snow and <span class="hlt">ice</span> thickness data products. This habitat classification accounted for the variability of the snow and <span class="hlt">ice</span> properties and showed an areal coverage of suitable <span class="hlt">ice</span>-algal habitat within the MYI-covered region of 0.54 million km 2 (8.5% of total <span class="hlt">ice</span> <span class="hlt">area</span>). This is 27 times greater than the areal coverage of 0.02 million km 2 (0.3% of total <span class="hlt">ice</span> <span class="hlt">area</span>) determined using the conventional block-model classification, which assigns single-parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and <span class="hlt">ice</span> conditions in all sea <span class="hlt">ice</span> studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable <span class="hlt">ice</span>-algal habitat during spring when food is sparse and many organisms depend on <span class="hlt">ice</span>-algae. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARH51007W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARH51007W"><span>Non-equilibrium Statistical Mechanics and the Sea <span class="hlt">Ice</span> Thickness Distribution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wettlaufer, John; Toppaladoddi, Srikanth</p> <p></p> <p>We use concepts from non-equilibrium statistical physics to transform the original evolution equation for the sea <span class="hlt">ice</span> thickness distribution g (h) due to Thorndike et al., (1975) into a Fokker-Planck like conservation law. The steady solution is g (h) = calN (q) hqe - h / H , where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h << 1 , g (h) is controlled by both thermodynamics and mechanics, whereas for h >> 1 only mechanics controls g (h) . Finally, we derive the underlying Langevin equation governing the dynamics of the <span class="hlt">ice</span> thickness h, from which we predict the observed g (h) . This allows us to demonstrate that the <span class="hlt">ice</span> thickness field is ergodic. The genericity of our approach provides a framework for studying the geophysical scale structure of the <span class="hlt">ice</span> <span class="hlt">pack</span> using methods of broad relevance in statistical mechanics. Swedish Research Council Grant No. 638-2013-9243, NASA Grant NNH13ZDA001N-CRYO and the National Science Foundation and the Office of Naval Research under OCE-1332750 for support.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28607400','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28607400"><span>Arctic sea <span class="hlt">ice</span> melt leads to atmospheric new particle formation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M</p> <p>2017-06-12</p> <p>Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea <span class="hlt">ice</span> regions. The occurrence of such events across a full decade was anti-correlated with sea <span class="hlt">ice</span> extent. New particles originating from open water and open <span class="hlt">pack</span> <span class="hlt">ice</span> increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea <span class="hlt">ice</span> melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29089107','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29089107"><span>Column-to-column <span class="hlt">packing</span> variation of disposable pre-<span class="hlt">packed</span> columns for protein chromatography.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois</p> <p>2017-12-08</p> <p>In the biopharmaceutical industry, pre-<span class="hlt">packed</span> columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the <span class="hlt">packed</span> bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D <span class="hlt">packing</span> structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-<span class="hlt">packed</span> and self-<span class="hlt">packed</span> columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column <span class="hlt">packing</span> variation between disposable pre-<span class="hlt">packed</span> columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the <span class="hlt">packing</span> density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-<span class="hlt">packed</span>. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-<span class="hlt">packed</span> columns was equal or better than that of self-<span class="hlt">packed</span> columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17358045','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17358045"><span>Fully <span class="hlt">packed</span> capillary electrochromatographic microchip with self-assembly colloidal silica beads.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Jongman; Lee, Dami; Kim, Won; Horiike, Shigeyoshi; Nishimoto, Takahiro; Lee, Se Hwan; Ahn, Chong H</p> <p>2007-04-15</p> <p>A fully <span class="hlt">packed</span> capillary electrochromatographic (CEC) microchip showing improved solution and chip handling was developed. Microchannels for the CEC microchip were patterned on a cyclic olefin copolymer substrate by injection molding and <span class="hlt">packed</span> fully with 0.8-microm monodisperse colloidal silica beads utilizing a self-assembly <span class="hlt">packing</span> technique. The silica <span class="hlt">packed</span> chip substrate was covered and thermally press-bonded. After fabrication, the chip was filled with buffer solution by self-priming capillary action. The self-assembly <span class="hlt">packing</span> at each channel served as a built-in nanofilter allowing quick loading of samples and running buffer solution without filtration. Because of a large surface <span class="hlt">area</span>-to-volume ratio of the silica <span class="hlt">packing</span>, reproducible control of electroosmotic flow was possible without leveling of the solutions in the reservoirs resulting 1.3% rsd in migration rate. The capillary electrophoretic separation characteristics of the chip were studied using fluorescein isothiocyanate (FITC)-derivatized amino acids as probe molecules. A mixture of FITC and four FITC-derivatized amino acids was successfully separated with 2-mm separation channel length.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1004R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1004R"><span>Modelling MIZ dynamics in a global model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto</p> <p>2016-04-01</p> <p>Exposure of large, previously <span class="hlt">ice</span>-covered <span class="hlt">areas</span> of the Arctic Ocean to the wind and surface ocean waves results in the Arctic <span class="hlt">pack</span> <span class="hlt">ice</span> cover becoming more fragmented and mobile, with large regions of <span class="hlt">ice</span> cover evolving into the Marginal <span class="hlt">Ice</span> Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea <span class="hlt">ice</span> with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea <span class="hlt">ice</span> rheology that represents both the now thinner <span class="hlt">pack</span> <span class="hlt">ice</span> and MIZ <span class="hlt">ice</span> dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea <span class="hlt">ice</span> model CICE. The model setup implements a novel rheological formulation for sea <span class="hlt">ice</span> dynamics, accounting for <span class="hlt">ice</span> floe collisions, thus offering a seamless framework for <span class="hlt">pack</span> <span class="hlt">ice</span> and MIZ simulations. The effect of surface waves on <span class="hlt">ice</span> motion is included through wave pressure and the turbulent kinetic energy of <span class="hlt">ice</span> floes. In the multidecadal model integrations we examine MIZ and basin scale sea <span class="hlt">ice</span> and oceanic responses to the changes in <span class="hlt">ice</span> dynamics. We analyse model sensitivities and attribute them to key sea <span class="hlt">ice</span> and ocean dynamical mechanisms. The results suggest that the effect of the new <span class="hlt">ice</span> rheology is confined to the MIZ. However with the current increase in summer MIZ <span class="hlt">area</span>, which is projected to continue and may become the dominant type of sea <span class="hlt">ice</span> in the Arctic, we argue that the effects of the combined sea <span class="hlt">ice</span> rheology will be noticeable in large <span class="hlt">areas</span> of the Arctic Ocean, affecting sea <span class="hlt">ice</span> and ocean. With this study we assert that to make more accurate sea <span class="hlt">ice</span> predictions in the changing Arctic, models need to include MIZ dynamics and physics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JCHyd..91..146H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JCHyd..91..146H"><span>Road de-<span class="hlt">icing</span> salt as a potential constraint on urban growth in the Greater Toronto <span class="hlt">Area</span>, Canada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howard, Ken W. F.; Maier, Herb</p> <p>2007-04-01</p> <p>North America's fifth most populated municipality — the Greater Toronto <span class="hlt">Area</span> (GTA) — is undergoing rapid urban development with serious questions being raised regarding the long-term impacts of urban growth on the quality and quantity of ground and surface water. Degradation of groundwater quality by NaCl de-<span class="hlt">icing</span> salt is the primary concern since there are no cost effective alternatives to NaCl de-<span class="hlt">icing</span> salt and there is little evidence that salt loadings to the subsurface can be significantly reduced. In 2001, the issue acquired a new sense of urgency when de-<span class="hlt">icing</span> chemicals containing inorganic chloride salts (with or without ferrocyanide de-caking agents) were designated as toxic under the Canadian Environmental Protection Act. To heighten concerns, future growth in the GTA will inevitably take place in <span class="hlt">areas</span> where groundwater is regularly used for potable supply. Studies using groundwater flow and transport models show that significant deterioration of groundwater quality can be expected in shallow aquifers as a result of urban development with chloride concentrations approaching the drinking water quality standard of 250 mg/l. Results demonstrate that urban planning needs a fresh approach that explicitly includes groundwater protection and aquifer management in the decision-making process, clearly defines acceptable environmental performance standards and makes greater use of groundwater models to evaluate alternative urban designs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17166621','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17166621"><span>Road de-<span class="hlt">icing</span> salt as a potential constraint on urban growth in the Greater Toronto <span class="hlt">Area</span>, Canada.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Howard, Ken W F; Maier, Herb</p> <p>2007-04-01</p> <p>North America's fifth most populated municipality--the Greater Toronto <span class="hlt">Area</span> (GTA)--is undergoing rapid urban development with serious questions being raised regarding the long-term impacts of urban growth on the quality and quantity of ground and surface water. Degradation of groundwater quality by NaCl de-<span class="hlt">icing</span> salt is the primary concern since there are no cost effective alternatives to NaCl de-<span class="hlt">icing</span> salt and there is little evidence that salt loadings to the subsurface can be significantly reduced. In 2001, the issue acquired a new sense of urgency when de-<span class="hlt">icing</span> chemicals containing inorganic chloride salts (with or without ferrocyanide de-caking agents) were designated as toxic under the Canadian Environmental Protection Act. To heighten concerns, future growth in the GTA will inevitably take place in <span class="hlt">areas</span> where groundwater is regularly used for potable supply. Studies using groundwater flow and transport models show that significant deterioration of groundwater quality can be expected in shallow aquifers as a result of urban development with chloride concentrations approaching the drinking water quality standard of 250 mg/l. Results demonstrate that urban planning needs a fresh approach that explicitly includes groundwater protection and aquifer management in the decision-making process, clearly defines acceptable environmental performance standards and makes greater use of groundwater models to evaluate alternative urban designs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2575336','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2575336"><span>Southern Ocean frontal structure and sea-<span class="hlt">ice</span> formation rates revealed by elephant seals</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Charrassin, J.-B.; Hindell, M.; Rintoul, S. R.; Roquet, F.; Sokolov, S.; Biuw, M.; Costa, D.; Boehme, L.; Lovell, P.; Coleman, R.; Timmermann, R.; Meijers, A.; Meredith, M.; Park, Y.-H.; Bailleul, F.; Goebel, M.; Tremblay, Y.; Bost, C.-A.; McMahon, C. R.; Field, I. C.; Fedak, M. A.; Guinet, C.</p> <p>2008-01-01</p> <p>Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea <span class="hlt">ice</span>, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea <span class="hlt">ice</span> remains almost entirely unobserved and the rate of sea-<span class="hlt">ice</span> formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-<span class="hlt">ice</span> zone, allowing the major fronts to be mapped south of 60°S and sea-<span class="hlt">ice</span> formation rates to be inferred from changes in upper ocean salinity. Sea-<span class="hlt">ice</span> production rates peaked in early winter (April–May) during the rapid northward expansion of the <span class="hlt">pack</span> <span class="hlt">ice</span> and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-<span class="hlt">ice</span> model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system. PMID:18695241</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.2419Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.2419Z"><span>Sea <span class="hlt">Ice</span> Drift Monitoring in the Bohai Sea Based on GF4 Satellite</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Y.; Wei, P.; Zhu, H.; Xing, B.</p> <p>2018-04-01</p> <p>The Bohai Sea is the inland sea with the highest latitude in China. In winter, the phenomenon of freezing occurs in the Bohai Sea due to frequent cold wave influx. According to historical records, there have been three serious <span class="hlt">ice</span> <span class="hlt">packs</span> in the Bohai Sea in the past 50 years which caused heavy losses to our economy. Therefore, it is of great significance to monitor the drift of sea <span class="hlt">ice</span> and sea <span class="hlt">ice</span> in the Bohai Sea. The GF4 image has the advantages of short imaging time and high spatial resolution. Based on the GF4 satellite images, the three methods of SIFT (Scale invariant feature - the transform and Scale invariant feature transform), MCC (maximum cross-correlation method) and sift combined with MCC are used to monitor sea <span class="hlt">ice</span> drift and calculate the speed and direction of sea <span class="hlt">ice</span> drift, the three calculation results are compared and analyzed by using expert interpretation and historical statistical data to carry out remote sensing monitoring of sea <span class="hlt">ice</span> drift results. The experimental results show that the experimental results of the three methods are in accordance with expert interpretation and historical statistics. Therefore, the GF4 remote sensing satellite images have the ability to monitor sea <span class="hlt">ice</span> drift and can be used for drift monitoring of sea <span class="hlt">ice</span> in the Bohai Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012225','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012225"><span>Aeromagnetic and radio echo <span class="hlt">ice</span>-sounding measurements show much greater <span class="hlt">area</span> of the Dufek intrusion, Antarctica</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Behrendt, John C.; Drewry, D.J.; Jankowski, E.; Grim, M.S.</p> <p>1980-01-01</p> <p>A combined aeromagnetic and radio echo <span class="hlt">ice</span>-sounding survey made in 1978 in Antarctica over the Dufek layered mafic intrusion suggests a minimum <span class="hlt">area</span> of the intrusion of about 50,000 square kilometers, making it comparable in size with the Bushveld Complex of Africa. Comparisons of the magnetic and subglacial topographic profiles illustrate the usefulness of this combination of methods in studying bedrock geology beneath <span class="hlt">ice</span>-covered <span class="hlt">areas</span>. Magnetic anomalies range in peak-to-trough amplitude from about 50 nanoteslas over the lowermost exposed portion of the section in the Dufek Massif to about 3600 nanoteslas over the uppermost part of the section in the Forrestal Range. Theoretical magnetic anomalies, computed from a model based on the subice topography fitted to the highest amplitude observed magnetic anomalies, required normal and reversed magnetizations ranging from 10-3 to 10-2 electromagnetic units per cubic centimeter. This result is interpreted as indicating that the Dufek intrusion cooled through the Curie isotherm during one or more reversals of the earth's magnetic field. Copyright ?? 1980 AAAS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C23B0494D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C23B0494D"><span>Improved parameterization of marine <span class="hlt">ice</span> dynamics and flow instabilities for simulation of the Austfonna <span class="hlt">ice</span> cap using a large-scale <span class="hlt">ice</span> sheet model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dunse, T.; Greve, R.; Schuler, T.; Hagen, J. M.; Navarro, F.; Vasilenko, E.; Reijmer, C.</p> <p>2009-12-01</p> <p>The Austfonna <span class="hlt">ice</span> cap covers an <span class="hlt">area</span> of 8120 km2 and is by far the largest glacier on Svalbard. Almost 30% of the entire <span class="hlt">area</span> is grounded below sea-level, while the figure is as large as 57% for the known surge-type basins in particular. Marine <span class="hlt">ice</span> dynamics, as well as flow instabilities presumably control flow regime, form and evolution of Austfonna. These issues are our focus in numerical simulations of the <span class="hlt">ice</span> cap. We employ the thermodynamic, large-scale <span class="hlt">ice</span> sheet model SICOPOLIS (http://sicopolis.greveweb.net/) which is based on the shallow-<span class="hlt">ice</span> approximation. We present improved parameterizations of (a) the marine extent and calving and (b) processes that may initiate flow instabilities such as switches from cold to temperate basal conditions, surface steepening and hence, increases in driving stress, enhanced sliding or deformation of unconsolidated marine sediments and diminishing <span class="hlt">ice</span> thicknesses towards flotation thickness. Space-borne interferometric snapshots of Austfonna revealed a velocity structure of a slow moving polar <span class="hlt">ice</span> cap (< 10m/a) interrupted by distinct fast flow units with velocities in excess of 100m/a. However, observations of flow variability are scarce. In spring 2008, we established a series of stakes along the centrelines of two fast-flowing units. Repeated DGPS and continuous GPS measurements of the stake positions give insight in the temporal flow variability of these units and provide constrains to the modeled surface velocity field. Austfonna’s thermal structure is described as polythermal. However, direct measurements of the temperature distribution is available only from one single borehole at the summit <span class="hlt">area</span>. The vertical temperature profile shows that the bulk of the 567m thick <span class="hlt">ice</span> column is cold, only underlain by a thin temperate basal layer of approximately 20m. To acquire a spatially extended picture of the thermal structure (and bed topography), we used low-frequency (20 MHz) GPR profiling across the <span class="hlt">ice</span> cap and the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990026767&hterms=vertigo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dvertigo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990026767&hterms=vertigo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dvertigo"><span><span class="hlt">Ice</span> as a Construction Material</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zuppero, Anthony; Lewis, J.</p> <p>1998-01-01</p> <p>This presentation shows how water and <span class="hlt">ice</span> can enable exceptionally simple ways to construct structures in deep space. Practicality is underscored by applying advanced tank methods being developed for Mars missions. Water or <span class="hlt">ice</span> is now known to be present or abundant on most objects in the solar system, starting with the planet Mercury. Thermal processes alone can be used to melt <span class="hlt">ice</span> . The cold of space can refreeze water back into <span class="hlt">ice</span>. The anomalous low vapor pressure of water, about 7 mm Hg, permits bladder containers. Tanks or bladders made with modern polymer fiber and film can exhibit very small (<0.1 %) equivalent tankage and ullage fractions and thus hold thousands of tons of water per ton bladder. Injecting water into a bladder whose shape when inflated is the desired final shape, such as a space vehicle, provides a convenient way to construct large structures. In space, structures of 1O,OOO-T mass become feasible because the bladder mass is low enough to be launched. The bladder can weigh 1OOO times less than its contents, or 10 T. The bladder would be <span class="hlt">packed</span> like a parachute. Shaped memory materials and/or gas inflation could reestablish the desired structure shape after unpacking. The water comes from space resources. An example examines construction of torus space vehicle with 100-m nominal dimension. People would live inside the torus. A torus, like a tire on an automobile, would spin and provide synthetic gravity at its inner surface. A torus of order 100 m across would provide a gravity with gradients low enough to mitigate against vertigo.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987RaPC...29..325N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987RaPC...29..325N"><span>Preliminary investigations on a new method of retaining the colour of shucked cockles ( Anadara Granosa), and the extension of shelflife by gamma irradiation and vacuum <span class="hlt">packing</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ng, Cher Siang; Low, Lai Kim; Chia, Lawrence H. L.</p> <p></p> <p>Live cockles were incubated in atmospheres containing different concentrations of carbon monoxide. Since CO combines more readily with myoglobin and haemoglobin than oxygen, the formation of in vivo deoxygenated haemoglobins and post mortem formation of methaemoglobin were retarded by the more stable carboxyhaemoglobin (HbCO). The bright red colour of the stable HbCO is retained during storage, giving the desired colour to the cockles. The colour of normal, chilled cockle meat deteriorated after 3 days <span class="hlt">ice</span> storage while those treated with 50 and 100% CO retained the bright deep orange colour up to 10 days storage. Irradiation caused faster colour deterioration in both CO and non-CO treated samples. Vacuum <span class="hlt">packing</span> influenced the colour of the cockles with irradiation and with CO treatments. In non-CO treated, irradiated samples, the effect of vacuum <span class="hlt">packing</span> was not obvious. In CO treated, irradiated samples, vacuum <span class="hlt">packing</span> retarded the deterioration of colour. Odour developments were influenced by irradiation, vacuum <span class="hlt">packing</span> and storage temperature, and were not influenced by CO treatments. Irradiation suppressed the development of odour for the first 11 days storage (0°C) while vacuum <span class="hlt">packing</span> depressed the odour by lowering its intensity instead. Odour development was slowed down by lowering the storage temperature. The odour of shucked cockles was rejected within one day at room temperature (26-28°C) while at 0°C the odour of the shucked cockles was still acceptable after 10 days. Suitable chemical indices for quality are K value and TVBN. Treatment with CO did not influence the K value development. Vacuum <span class="hlt">packing</span> produced the highest K values after 19 days storage (0°C), while irradiated samples had higher K values than non-irradiated samples. The TVBN increased with storage and is an indicator of the odour development. The use of CO treatment extended the shelflife of the cockles based on appearance. A combination of CO treatment, vacuum <span class="hlt">packing</span>, <span class="hlt">ice</span> storage</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11312716','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11312716"><span>Remarkable antiagglomeration effect of a yeast biosurfactant, diacylmannosylerythritol, on <span class="hlt">ice</span>-water slurry for cold thermal storage.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kitamoto, D; Yanagishita, H; Endo, A; Nakaiwa, M; Nakane, T; Akiya, T</p> <p>2001-01-01</p> <p>Antiagglomeration effects of different surfactants on <span class="hlt">ice</span> slurry formation were examined to improve the efficiency of an <span class="hlt">ice</span>-water slurry system to be used for cold thermal storage. Among the chemical surfactants tested, a nonionic surfactant, poly(oxyethylene) sorbitan dioleate, was found to show a greater antiagglomeration effect on the slurry than anionic, cationic, or amphoteric surfactants. More interestingly, diacylmannosylerythritol, a glycolipid biosurfactant produced by a yeast strain of Candida antarctica, exhibited a remarkable effect on the slurry, attaining a high <span class="hlt">ice</span> <span class="hlt">packing</span> factor (35%) for 8 h at a biosurfactant concentration of 10 mg/L. These nonionic glycolipid surfactants are likely to effectively adsorb on the <span class="hlt">ice</span> surface in a highly regulated manner to suppress the agglomeration or growth of the <span class="hlt">ice</span> particles. This is the first report on the utilization of biosurfactant for thermal energy storage, which may significantly expand the commercial applications of the highly environmentally friendly slurry system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..115.2005V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..115.2005V"><span>Modeling brine and nutrient dynamics in Antarctic sea <span class="hlt">ice</span>: The case of dissolved silica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vancoppenolle, Martin; Goosse, Hugues; de Montety, Anne; Fichefet, Thierry; Tremblay, Bruno; Tison, Jean-Louis</p> <p>2010-02-01</p> <p>Sea <span class="hlt">ice</span> ecosystems are characterized by microalgae living in brine inclusions. The growth rate of <span class="hlt">ice</span> algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and <span class="hlt">ice</span> thermodynamics with brine physics and an idealized sea <span class="hlt">ice</span> biological component, characterized by one nutrient, namely, dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by <span class="hlt">ice</span> algae. Depending on physical <span class="hlt">ice</span> characteristics, the brine flow is either advective, diffusive, or turbulent. The vertical profiles of <span class="hlt">ice</span> salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic <span class="hlt">pack</span> <span class="hlt">ice</span>. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of <span class="hlt">ice</span>. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the <span class="hlt">ice</span>. In the presence of growing algae, the simulated ocean-to-<span class="hlt">ice</span> DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the <span class="hlt">ice</span> surface in spring. The latter, if present, tends to expell nutrients from the <span class="hlt">ice</span> in summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810023062','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810023062"><span><span class="hlt">Ice</span> sheet altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brooks, R. L.</p> <p>1981-01-01</p> <p>Generalized surface slopes were computed for the Antarctic and Greenland <span class="hlt">ice</span> sheets by differencing plotted contour levels and dividing them by the distance between the contours. It was observed that more than 90% of the <span class="hlt">ice</span> sheets have surface slopes less than 1%. Seasat test mode-1 Seasat altimeter measurements over Greenland were analyzed by comparisons with collinear and intersecting normal mode Seasat altimeter passes. Over the <span class="hlt">ice</span> sheet, the computed surface elevations from test mode-1 measurements were consistently lower by about 45 m and the AGC levels were down by approximately 6 dB. No test mode-1 data were acquired over Antarctica. It is concluded that analysis of the existing altimeter data base over the two <span class="hlt">ice</span> sheets is crucial in designing a future improved altimeter tracking capability. It is recommended that additional waveform retracking be performed to characterize <span class="hlt">ice</span> sheet topography as a function of geographic <span class="hlt">area</span> and elevation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760012427','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760012427"><span>Sea <span class="hlt">ice</span> studies in the Spitsbergen-Greenland <span class="hlt">area</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vinje, T. E. (Principal Investigator)</p> <p>1976-01-01</p> <p>The author has identified the following significant results. Data showed unexpected great variations in the drift velocity of the <span class="hlt">ice</span> in the Fram Strait. Land map improvements were achieved by LANDSAT in the eastern part of the Svalbard archipelago.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1220A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1220A"><span>Polynyas and <span class="hlt">Ice</span> Production Evolution in the Ross Sea (PIPERS)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ackley, S. F.</p> <p>2017-12-01</p> <p>One focus of the PIPERS cruise into the Ross Sea <span class="hlt">ice</span> cover during April-June 2017 was the Terra Nova Bay (TNB) polynya where joint measurements of air-<span class="hlt">ice</span>-ocean wave interaction were conducted over twelve days. In Terra Nova Bay, measurements were made in three katabatic wind events each with sustained winds over 35 ms-1 and air temperatures below -15C. Near shore, intense wave fields with wave amplitudes of over 2m and 7-9 sec periods built and large amounts of frazil <span class="hlt">ice</span> crystals grew. The frazil <span class="hlt">ice</span> gathered initially into short and narrow plumes that eventually were added laterally to create longer and wider streaks or bands. Breaking waves within these wider streaks were dampened which appeared to enhance the development of pancake <span class="hlt">ice</span>. Eventually, the open water <span class="hlt">areas</span> between the streaks sealed off, developing a complete <span class="hlt">ice</span> cover of 100 percent concentration (80-90 percent pancakes, 20-10 percent frazil) over a wide front (30km). The pancakes continued to grow in diameter and thickness as waves alternately contracted and expanded the <span class="hlt">ice</span> cover, with the thicker larger floes further diminishing the wave field and lateral motion between pancakes until the initial pancake <span class="hlt">ice</span> growth ceased. The equilibrium thickness of the <span class="hlt">ice</span> was 20-30cm in the pancake <span class="hlt">ice</span>. While the waves had died off however, katabatic wind velocities were sustained and resulted in a wide <span class="hlt">area</span> of concentrated, rafted, pancake <span class="hlt">ice</span> that was rapidly advected downstream until the end of the katabatic event. High resolution TerraSar-X radar satellite imagery showed the length of the <span class="hlt">ice</span> <span class="hlt">area</span> produced in one single event extended over 300km or ten times the length of the open water <span class="hlt">area</span> during one polynya event. The TNB polynya is therefore an "<span class="hlt">ice</span> factory" where frazil <span class="hlt">ice</span> is manufactured into pancake <span class="hlt">ice</span> floes that are then pushed out of the assembly <span class="hlt">area</span> and advected, rafted (and occasionally piled up into "dragon skin" <span class="hlt">ice</span>), until the katabatic wind dies off at the coastal source.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....17.8577H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....17.8577H"><span>Frost flowers and sea-salt aerosols over seasonal sea-<span class="hlt">ice</span> <span class="hlt">areas</span> in northwestern Greenland during winter-spring</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hara, Keiichiro; Matoba, Sumito; Hirabayashi, Motohiro; Yamasaki, Tetsuhide</p> <p>2017-07-01</p> <p>Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl-, Mg2+, K+, Ca2+, Br-, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14-3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl-, Br-, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-<span class="hlt">ice</span> surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42-. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea <span class="hlt">ice</span> and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-<span class="hlt">ice</span> <span class="hlt">areas</span>. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-<span class="hlt">ice</span> <span class="hlt">areas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPCM...29C3001G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPCM...29C3001G"><span><span class="hlt">Packing</span> in protein cores</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaines, J. C.; Clark, A. H.; Regan, L.; O'Hern, C. S.</p> <p>2017-07-01</p> <p>Proteins are biological polymers that underlie all cellular functions. The first high-resolution protein structures were determined by x-ray crystallography in the 1960s. Since then, there has been continued interest in understanding and predicting protein structure and stability. It is well-established that a large contribution to protein stability originates from the sequestration from solvent of hydrophobic residues in the protein core. How are such hydrophobic residues arranged in the core; how can one best model the <span class="hlt">packing</span> of these residues, and are residues loosely <span class="hlt">packed</span> with multiple allowed side chain conformations or densely <span class="hlt">packed</span> with a single allowed side chain conformation? Here we show that to properly model the <span class="hlt">packing</span> of residues in protein cores it is essential that amino acids are represented by appropriately calibrated atom sizes, and that hydrogen atoms are explicitly included. We show that protein cores possess a <span class="hlt">packing</span> fraction of φ ≈ 0.56 , which is significantly less than the typically quoted value of 0.74 obtained using the extended atom representation. We also compare the results for the <span class="hlt">packing</span> of amino acids in protein cores to results obtained for jammed <span class="hlt">packings</span> from discrete element simulations of spheres, elongated particles, and composite particles with bumpy surfaces. We show that amino acids in protein cores <span class="hlt">pack</span> as densely as disordered jammed <span class="hlt">packings</span> of particles with similar values for the aspect ratio and bumpiness as found for amino acids. Knowing the structural properties of protein cores is of both fundamental and practical importance. Practically, it enables the assessment of changes in the structure and stability of proteins arising from amino acid mutations (such as those identified as a result of the massive human genome sequencing efforts) and the design of new folded, stable proteins and protein-protein interactions with tunable specificity and affinity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41E..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41E..01H"><span><span class="hlt">Ice</span> shelf structure and stability: Larsen C <span class="hlt">Ice</span> Shelf, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hubbard, B. P.; Ashmore, D.; Bevan, S. L.; Booth, A. D.; Holland, P.; Jansen, D.; Kuipers Munneke, P.; Kulessa, B.; Luckman, A. J.; Sevestre, H.; O'Leary, M.</p> <p>2017-12-01</p> <p>We report on recent empirical investigations of the internal structure and stability (or otherwise) of Larsen C <span class="hlt">Ice</span> Shelf (LCIS), Antarctica, focusing on research carried out for the MIDAS research project between 2014 and 2017. Borehole- and surface geophysics-based fieldwork carried out in austral springs 2014 and 2015 revealed that ephemeral surface ponds, preferentially located within the major inlets within the northern sector of the <span class="hlt">ice</span> shelf, result in the formation of several tens of metres of (relatively dense) subsurface <span class="hlt">ice</span> within what would otherwise have been a progressively densifying snow and firn column. Five boreholes were drilled throughout the sector and logged by optical televiewer, showing this refrozen <span class="hlt">ice</span> to be extensive and of variable composition depending on its process of formation. Mapping the depth-distribution of the resulting <span class="hlt">ice</span> types and associating each with a simple flow-line model of <span class="hlt">ice</span> motion and accumulation indicates that this <span class="hlt">area</span> of LCIS has experienced substantial melting for some centuries but that surface ponding has only occurred in recent decades, possibly restricted to the past 20 years. We also present near-surface temperature data that reveal surprising temporal patterns in foehn wind activity and intensity. Finally, we report on the geometrical extension and widening of a rift that was responsible for calving a 5,800 km^2 iceberg from the LCIS in July 2017. The nature of rift propagation through `suture' <span class="hlt">ice</span> bands, widely considered to be composed of marine <span class="hlt">ice</span>, is contrasted with that of its propagation through meteoric <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940007628&hterms=sea+ice+albedo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea%2Bice%2Balbedo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940007628&hterms=sea+ice+albedo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea%2Bice%2Balbedo"><span>Modern shelf <span class="hlt">ice</span>, equatorial Aeolis Quadrangle, Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brakenridge, G. R.</p> <p>1993-01-01</p> <p>As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface <span class="hlt">ice</span> exists at low latitudes and was formed by partial or complete freezing of an inland sea. The <span class="hlt">area</span> of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source <span class="hlt">areas</span>, filled this trough, that <span class="hlt">ice</span> floes formed almost immediately, and that either grounded <span class="hlt">ice</span> or an <span class="hlt">ice</span>-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source <span class="hlt">areas</span>, filled this trough, that <span class="hlt">ice</span> floes formed almost immediately, and that either grounded <span class="hlt">ice</span> or an <span class="hlt">ice</span>-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing <span class="hlt">ice</span> preservation, and at least the lower portions of this dust cover may be cemented by water <span class="hlt">ice</span>. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf <span class="hlt">ice</span> geometries are underway.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JCHyd.164..230F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JCHyd.164..230F"><span>Consideration of grain <span class="hlt">packing</span> in granular iron treatability studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Firdous, R.; Devlin, J. F.</p> <p>2014-08-01</p> <p>Commercial granular iron (GI) is light steel that is used in Permeable Reactive Barriers (PRBs). Investigations into the reactivity of GI have focused on its chemical nature and relatively little direct work has been done to account for the effects of grain shape and <span class="hlt">packing</span>. Both of these factors are expected to influence available grain surface <span class="hlt">area</span>, which is known to correlate to reactivity. Commercial granular iron grains are platy and therefore <span class="hlt">pack</span> in preferential orientations that could affect solution access to the surface. Three <span class="hlt">packing</span> variations were investigated using Connelly Iron and trichloroethylene (TCE). Experimental kinetic data showed reaction rates 2-4 times higher when grains were <span class="hlt">packed</span> with long axes preferentially parallel to flow (VP) compared to <span class="hlt">packings</span> with long axes preferentially perpendicular to flow (HP) or randomly arranged (RP). The variations were found to be explainable by variations in reactive sorption capacities, i.e., sorption to sites where chemical transformations took place. The possibility that the different reactive sorption capacities were related to physical pore-scale differences was assessed by conducting an image analysis of the pore structure of sectioned columns. The analyses suggested that pore-scale factors - in particular the grain surface availability, reflected in the sorption capacity terms of the kinetic model used - could only account for a fraction of the observed reactivity differences between <span class="hlt">packing</span> types. It is concluded that <span class="hlt">packing</span> does affect observable reaction rates but that micro-scale features on the grain surfaces, rather than the pore scale characteristics, account for most of the apparent reactivity differences. This result suggests that treatability tests should consider the <span class="hlt">packing</span> of columns carefully if they are to mimic field performance of PRBs to the greatest extent possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27529384','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27529384"><span>Atmospheric chemistry of mercury in Antarctica and the role of cryptogams to assess deposition patterns in coastal <span class="hlt">ice</span>-free <span class="hlt">areas</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bargagli, R</p> <p>2016-11-01</p> <p>Mercury in the Antarctic troposphere has a distinct chemistry and challenging long-term measurements are needed for a better understanding of the atmospheric Hg reactions with oxidants and the exchanges of the various mercury forms among air-snow-sea and biota. Antarctic mosses and lichens are reliable biomonitors of airborne metals and in short time they can give useful information about Hg deposition patterns. Data summarized in this review show that although atmospheric Hg concentrations in the Southern Hemisphere are lower than those in the Northern Hemisphere, Antarctic cryptogams accumulate Hg at levels in the same range or higher than those observed for related cryptogam species in the Arctic, suggesting an enhanced deposition of bioavailable Hg in Antarctic coastal <span class="hlt">ice</span>-free <span class="hlt">areas</span>. In agreement with the newest findings in the literature, the Hg bioaccumulation in mosses and lichens from a nunatak particularly exposed to strong katabatic winds can be taken as evidence for a Hg contribution to coastal ecosystems by air masses from the Antarctic plateau. Human activities on the continent are mostly concentrated in coastal <span class="hlt">ice</span>-free <span class="hlt">areas</span>, and the deposition in these <span class="hlt">areas</span> of Hg from the marine environment, the plateau and anthropogenic sources raises concern. The use of Antarctic cryptogams as biomonitors will be very useful to map Hg deposition patterns in costal <span class="hlt">ice</span>-free <span class="hlt">areas</span> and will contribute to a better understanding of Hg cycling in Antarctica and its environmental fate in terrestrial ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title7-vol2/pdf/CFR-2011-title7-vol2-sec51-310.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title7-vol2/pdf/CFR-2011-title7-vol2-sec51-310.pdf"><span>7 CFR 51.310 - <span class="hlt">Packing</span> requirements.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... STANDARDS) United States Standards for Grades of Apples <span class="hlt">Packing</span> Requirements § 51.310 <span class="hlt">Packing</span> requirements. (a) Apples tray <span class="hlt">packed</span> or cell <span class="hlt">packed</span> in cartons shall be arranged according to approved and... that apples are of the proper size for molds or cell compartments in which they are <span class="hlt">packed</span>, and that...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title7-vol2/pdf/CFR-2012-title7-vol2-sec51-310.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title7-vol2/pdf/CFR-2012-title7-vol2-sec51-310.pdf"><span>7 CFR 51.310 - <span class="hlt">Packing</span> requirements.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... STANDARDS) United States Standards for Grades of Apples <span class="hlt">Packing</span> Requirements § 51.310 <span class="hlt">Packing</span> requirements. (a) Apples tray <span class="hlt">packed</span> or cell <span class="hlt">packed</span> in cartons shall be arranged according to approved and... that apples are of the proper size for molds or cell compartments in which they are <span class="hlt">packed</span>, and that...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47677','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47677"><span>Tree recovery from <span class="hlt">ice</span> storm injury</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Kevin T. Smith</p> <p>2015-01-01</p> <p><span class="hlt">Ice</span> storms are part of nature, particularly in northeastern North America. The combination of air and surface temperatures, precipitation, and wind that result in damaging layers of <span class="hlt">ice</span> is very specific, occurring infrequently at any given location. Across the region however, damaging <span class="hlt">ice</span> is formed in fragmented <span class="hlt">areas</span> every year. Occasionally as in December 2013 and...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C41C0467V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C41C0467V"><span>Modeling brine and nutrient dynamics in Antarctic sea <span class="hlt">ice</span>: the case of dissolved silica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tremblay, B.; Tison, J.</p> <p>2009-12-01</p> <p>Sea <span class="hlt">ice</span> ecosystems are characterized by micro-algae living in brine inclusions. The growth rate of <span class="hlt">ice</span> algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and <span class="hlt">ice</span> thermodynamics with brine physics and an idealized sea <span class="hlt">ice</span> biological component, characterized by one nutrient, namely dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by <span class="hlt">ice</span> algae. Depending on physical <span class="hlt">ice</span> characteristics, the brine flow is either advective, diffusive or turbulent. The vertical profiles of <span class="hlt">ice</span> salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic <span class="hlt">pack</span> <span class="hlt">ice</span>. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of <span class="hlt">ice</span>. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the <span class="hlt">ice</span>. In presence of growing algae, the simulated ocean-to-<span class="hlt">ice</span> DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the <span class="hlt">ice</span> surface in spring. The latter, if present, tends to expell nutrients from the <span class="hlt">ice</span> in summer. Sketch of salt (left) and nutrient (right) exchanges at the <span class="hlt">ice</span>-ocean interface proposed in this paper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27170707','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27170707"><span>American Spirit <span class="hlt">Pack</span> Descriptors and Perceptions of Harm: A Crowdsourced Comparison of Modified <span class="hlt">Packs</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pearson, Jennifer L; Richardson, Amanda; Feirman, Shari P; Villanti, Andrea C; Cantrell, Jennifer; Cohn, Amy; Tacelosky, Michael; Kirchner, Thomas R</p> <p>2016-08-01</p> <p>In 2015, the Food and Drug Administration issued warnings to three tobacco manufacturers who label their cigarettes as "additive-free" and/or "natural" on the grounds that they make unauthorized reduced risk claims. The goal of this study was to examine US adults' perceptions of three American Spirit (AS) <span class="hlt">pack</span> descriptors ("Made with Organic Tobacco," "100% Additive-Free," and "100% US Grown Tobacco") to assess if they communicate reduced risk. In September 2012, three cross-sectional surveys were posted on Amazon Mechanical Turk. Adult participants evaluated the relative harm of a Marlboro Red <span class="hlt">pack</span> versus three different AS <span class="hlt">packs</span> with the descriptors "Made with Organic Tobacco," "100% Additive-Free," or "100% US Grown Tobacco" (Survey 1; n = 461); a Marlboro Red <span class="hlt">pack</span> versus these AS <span class="hlt">packs</span> modified to exclude descriptors (Survey 2; n = 857); and unmodified versus modified AS <span class="hlt">pack</span> images (Survey 3; n = 1001). The majority of Survey 1 participants rated the unmodified AS <span class="hlt">packs</span> as less harmful than the Marlboro Red <span class="hlt">pack</span>; 35.4%-58.8% of Survey 2 participants also rated the modified (no claims) <span class="hlt">packs</span> as less harmful than Marlboro Red. In these surveys, prior use of AS cigarettes was associated with reduced perceptions of risk (adjusted odds ratio [AOR] 1.59-2.40). "Made with Organic Tobacco" and "100% Additive-Free" were associated with reduced perceptions of risk when comparing the modified versus the unmodified AS <span class="hlt">packs</span> (Survey 3). Data suggest that these AS <span class="hlt">pack</span> descriptors communicate reduced harm messages to consumers. Findings have implications for regulatory actions related to product labeling and packaging. These findings provide additional evidence that the "Made with Organic Tobacco," "100% Additive-Free," and "100% US Grown" descriptors, as well as other aspects of the AS <span class="hlt">pack</span> design, communicate reduced harm to non-, current, and former smokers. Additionally, they provide support for the importance of FDA's 2015 warning to Santa Fe Natural Tobacco Company on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.8327H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.8327H"><span>Short-term sea <span class="hlt">ice</span> forecasting: An assessment of <span class="hlt">ice</span> concentration and <span class="hlt">ice</span> drift forecasts using the U.S. Navy's Arctic Cap Nowcast/Forecast System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin</p> <p>2015-12-01</p> <p>In this study the forecast skill of the U.S. Navy operational Arctic sea <span class="hlt">ice</span> forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea <span class="hlt">ice</span> and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include <span class="hlt">ice</span> concentration, <span class="hlt">ice</span> thickness, <span class="hlt">ice</span> velocity, sea surface temperature, sea surface salinity, and sea surface velocities. <span class="hlt">Ice</span> concentration forecast skill is compared to a persistent <span class="hlt">ice</span> state and historical sea <span class="hlt">ice</span> climatology. Skill scores are focused on <span class="hlt">areas</span> where <span class="hlt">ice</span> concentration changes by ±5% or more, and are therefore limited to primarily the marginal <span class="hlt">ice</span> zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent <span class="hlt">ice</span> state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled <span class="hlt">ice</span> drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended <span class="hlt">ice</span> concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and <span class="hlt">Ice</span> Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and <span class="hlt">ice</span> edge location compared to the independently derived National <span class="hlt">Ice</span> Center <span class="hlt">Ice</span> Edge product.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14749827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14749827"><span>Enhanced <span class="hlt">ice</span> sheet growth in Eurasia owing to adjacent <span class="hlt">ice</span>-dammed lakes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I</p> <p>2004-01-29</p> <p>Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large <span class="hlt">ice</span>-dammed lakes, with a combined <span class="hlt">area</span> twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an <span class="hlt">ice</span> sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the <span class="hlt">ice</span> sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of <span class="hlt">ice</span> sheet melting at the southern margin of the Barents-Kara <span class="hlt">ice</span> sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated <span class="hlt">ice</span> sheet growth and delayed <span class="hlt">ice</span> sheet decay in Eurasia and probably also in North America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1169518','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1169518"><span>Large Scale <span class="hlt">Ice</span> Water Path and 3-D <span class="hlt">Ice</span> Water Content</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Liu, Guosheng</p> <p>2008-01-15</p> <p>Cloud <span class="hlt">ice</span> water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud <span class="hlt">ice</span> water by merging available surface and satellite measurements. The satellite cloud <span class="hlt">ice</span> water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud <span class="hlt">ice</span> water distributions in a 10 deg x 10 deg <span class="hlt">area</span> near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud <span class="hlt">ice</span> water distributions within an <span class="hlt">area</span>, i.e., 10 deg x 10 deg centered at ARM site.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060002674','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060002674"><span>Impacts of the Variability of <span class="hlt">Ice</span> Types on the Decline of the Arctic Perennial Sea <span class="hlt">Ice</span> Cover</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comiso, Josefino C.</p> <p>2005-01-01</p> <p>The observed rapid decline in the Arctic perennial <span class="hlt">ice</span> cover is one of the most remarkable signal of change in the Arctic region. Updated data now show an even higher rate of decline of 9.8% per decade than the previous report of 8.9% per decade mainly because of abnormally low values in the last 4 years. To gain insights into this decline, the variability of the second year <span class="hlt">ice</span>, which is the relatively thin component of the perennial <span class="hlt">ice</span> cover, and other <span class="hlt">ice</span> types is studied. The perennial <span class="hlt">ice</span> cover in the 1990s was observed to be highly variable which might have led to higher production of second year <span class="hlt">ice</span> and may in part explain the observed <span class="hlt">ice</span> thinning during the period and triggered further decline. The passive microwave signature of second year <span class="hlt">ice</span> is also studied and results show that while the signature is different from that of the older multiyear <span class="hlt">ice</span>, it is surprisingly more similar to that of first year <span class="hlt">ice</span>. This in part explains why previous estimates of the <span class="hlt">area</span> of multiyear <span class="hlt">ice</span> during the winter period are considerably lower than the <span class="hlt">area</span> of the perennial <span class="hlt">ice</span> cover during the preceding summer. Four distinct clusters representing radiometrically different types have been identified using multi-channel cluster analysis of passive microwave data. Data from two of these clusters, postulated to come from second year and older multiyear <span class="hlt">ice</span> regions are also shown to have average thicknesses of 2.4 and 4.1 m, respectively, indicating that the passive microwave data may contain some <span class="hlt">ice</span> thickness information that can be utilized for mass balance studies. The yearly anomaly maps indicate high gains of first year <span class="hlt">ice</span> cover in the Arctic during the last decade which means higher production of second year <span class="hlt">ice</span> and fraction of this type in the declining perennial <span class="hlt">ice</span> cover. While not the only cause, the rapid decline in the perennial <span class="hlt">ice</span> cover is in part caused by the increasing fractional component of the thinner second year <span class="hlt">ice</span> cover that is very vulnerable to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRC..11412007L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRC..11412007L"><span>How <span class="hlt">ice</span> shelf morphology controls basal melting</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael</p> <p>2009-12-01</p> <p>The response of <span class="hlt">ice</span> shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-<span class="hlt">ice</span> shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the <span class="hlt">ice</span> shelf base, <span class="hlt">ice</span> shelf morphology plays a critical role in linking external, subsurface heat sources to the <span class="hlt">ice</span>. In this paper, the slope-driven dynamic control of local and <span class="hlt">area</span>-integrated melting rates is examined under a wide range of ocean temperatures and <span class="hlt">ice</span> shelf shapes, with an emphasis on smaller, steeper <span class="hlt">ice</span> shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized <span class="hlt">ice</span> shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-<span class="hlt">ice</span> shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the <span class="hlt">ice</span> shelf; local and <span class="hlt">area</span>-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt <span class="hlt">ice</span> in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the <span class="hlt">ice</span> shelf. Heat flux to the <span class="hlt">ice</span> exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP33C1338B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP33C1338B"><span>Inception of the Laurentide <span class="hlt">Ice</span> Sheet using asynchronous coupling of a regional atmospheric model and an <span class="hlt">ice</span> model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Birch, L.; Cronin, T.; Tziperman, E.</p> <p>2017-12-01</p> <p>The climate over the past 0.8 million years has been dominated by <span class="hlt">ice</span> ages. <span class="hlt">Ice</span> sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of <span class="hlt">ice</span> flow dynamics missing in GCMs. We investigate the growth of the Laurentide <span class="hlt">Ice</span> Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an <span class="hlt">ice</span> sheet model based on the shallow-<span class="hlt">ice</span> approximation, capturing the <span class="hlt">ice</span> flow that may be critical to the spread of <span class="hlt">ice</span> sheets away from mountain <span class="hlt">ice</span> caps. The <span class="hlt">ice</span> sheet model calculates the surface <span class="hlt">area</span> newly covered by <span class="hlt">ice</span> and the change in the <span class="hlt">ice</span> surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger <span class="hlt">areas</span> of <span class="hlt">ice</span> cover and changes in <span class="hlt">ice</span> surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial <span class="hlt">ice</span> growth on the Penny <span class="hlt">Ice</span> Cap causes regional cooling that increases the accumulation on the Barnes <span class="hlt">Ice</span> Cap. We investigate how <span class="hlt">ice</span> and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3652B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3652B"><span>The current evolution of complex high mountain debris-covered glacier systems and its relation with ground <span class="hlt">ice</span> nature and distribution: the case of Rognes and Pierre Ronde <span class="hlt">area</span> (Mont-Blanc range, France).</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bosson, Jean-Baptiste; Lambiel, Christophe</p> <p>2014-05-01</p> <p>The current climate forcing, through negative glacier mass balance and rockfall intensification, is leading to the rapid burring of many small glacier systems. When the debris mantle exceeds some centimeters of thickness, the climate control on <span class="hlt">ice</span> melt is mitigated and delayed. As well, debris-covered glaciers respond to climate forcing in a complex way. This situation is emphasised in high mountain environments, where topo-climatic conditions, such as cold temperatures, amount of solid precipitation, duration of snow cover, nebulosity or shadow effect of rockwalls, limit the influence of rising air temperatures in the ground. Beside, due to Holocene climate history, glacier-permafrost interactions are not rare within the periglacial belt. Glacier recurrence may have removed and assimilated former <span class="hlt">ice</span>-cemented sediments, the negative mass balance may have led to the formation of <span class="hlt">ice</span>-cored rock glaciers and neopermafrost may have formed recently under cold climate conditions. Hence, in addition to sedimentary <span class="hlt">ice</span>, high mountain debris-covered glacier systems can contain interstitial magmatic <span class="hlt">ice</span>. Especially because of their position at the top of alpine cascade systems and of the amount of water and (unconsolidated) sediment involved, it is important to understand and anticipate the evolution of these complex landforms. Due to the continuous and thick debris mantle and to the common existence of dead <span class="hlt">ice</span> in deglaciated <span class="hlt">areas</span>, the current extent of debris-covered glacier can be difficult to point out. Thus, the whole system, according to Little <span class="hlt">Ice</span> Age (LIA) extent, has sometimes to be investigated to understand the current response of glacier systems to the climate warming. In this context, two neighbouring sites, Rognes and Pierre Ronde systems (45°51'38''N, 6°48'40''E; 2600-3100m a.s.l), have been studied since 2011. These sites are almost completely debris-covered and only few <span class="hlt">ice</span> outcrops in the upper slopes still witness the existence of former glaciers</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010048416&hterms=hydrometer&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhydrometer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010048416&hterms=hydrometer&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhydrometer"><span><span class="hlt">Ice</span> Nucleation in Deep Convection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)</p> <p>2001-01-01</p> <p>The processes controlling production of <span class="hlt">ice</span> crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of <span class="hlt">ice</span> crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the <span class="hlt">ice</span> surface <span class="hlt">area</span> decreases, the relative humidity can increase well above <span class="hlt">ice</span> saturation, resulting in bursts of <span class="hlt">ice</span> nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, <span class="hlt">ice</span> crystals, and mixed-phase (<span class="hlt">ice</span>/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous <span class="hlt">ice</span> nucleation. We are focusing on the importance of <span class="hlt">ice</span> nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these <span class="hlt">ice</span> nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27473927','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27473927"><span>Improvising a Posterior Nasal <span class="hlt">Pack</span> with Equipment in a Basic First Aid Kit.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Royer, Allison K; Royer, Mark C</p> <p>2016-09-01</p> <p>Posterior epistaxis is a serious condition that can be difficult to treat in a wilderness setting. The initial standard of care involves <span class="hlt">packing</span> the affected nostril with a 7 to 9 cm nasal <span class="hlt">pack</span> to tamponade the bleed. These <span class="hlt">packs</span> are often unavailable outside of the emergency or operating room. This study set out to determine whether a posterior nasal <span class="hlt">pack</span> could be constructed from the supplies present in a basic first aid kit in order to control massive nasal hemorrhage in a wilderness setting. A basic first aid kit was utilized to construct a posterior nasal <span class="hlt">pack</span> that was inserted into an anatomical model and visibly compared with the Rapid Rhino (Posterior, 7.5 cm; Smith & Nephew, Austin, TX) nasal <span class="hlt">packing</span>. The shape, size, and anatomical <span class="hlt">areas</span> of compression (ie, into nasopharynx and posterior aspect of inferior turbinate) of this <span class="hlt">pack</span> was similar to the commercially available posterior nasal <span class="hlt">pack</span>. Placement in an anatomical model appears to provide similar compression as the commercially available posterior <span class="hlt">pack</span>. This technique may provide short-term hemorrhage control in cases of serious posterior nasal hemorrhage where standard treatment options are not available. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT........67W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT........67W"><span><span class="hlt">Ice</span>-atmosphere interactions in the Canadian High Arctic: Implications for the thermo-mechanical evolution of terrestrial <span class="hlt">ice</span> masses</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wohlleben, Trudy M. H.</p> <p></p> <p>Canadian High Arctic terrestrial <span class="hlt">ice</span> masses and the polar atmosphere evolve codependently, and interactions between the two systems can lead to feedbacks, positive and negative. The two primary positive cryosphere-atmosphere feedbacks are: (1) The snow/<span class="hlt">ice</span>-albedo feedback (where <span class="hlt">area</span> changes in snow and/or <span class="hlt">ice</span> cause changes in surface albedo and surface air temperatures, leading to further <span class="hlt">area</span> changes in snow/<span class="hlt">ice</span>); and (2) The elevation - mass balance feedback (where thickness changes in terrestrial <span class="hlt">ice</span> masses cause changes to atmospheric circulation and precipitation patterns, leading to further <span class="hlt">ice</span> thickness changes). In this thesis, numerical experiments are performed to: (1) quantify the magnitudes of the two feedbacks for chosen Canadian High Arctic terrestrial <span class="hlt">ice</span> masses; and (2) to examine the direct and indirect consequences of surface air temperature changes upon englacial temperatures with implications for <span class="hlt">ice</span> flow, mass flux divergence, and topographic evolution. Model results show that: (a) for John Evans Glacier, Ellesmere Island, the magnitude of the terrestrial snow/<span class="hlt">ice</span>-albedo feedback can locally exceed that of sea <span class="hlt">ice</span> on less than decadal timescales, with implications for glacier response times to climate perturbations; (b) although historical air temperature changes might be the direct cause of measured englacial temperature anomalies in various glacier and <span class="hlt">ice</span> cap accumulation zones, they can also be the indirect cause of their enhanced diffusive loss; (c) while the direct result of past air temperature changes has been to cool the interior of John Evans Glacier, and its bed, the indirect result has been to create and maintain warm (pressure melting point) basal temperatures in the ablation zone; and (d) for Devon <span class="hlt">Ice</span> Cap, observed mass gains in the northwest sector of the <span class="hlt">ice</span> cap would be smaller without orographic precipitation and the mass balance---elevation feedback, supporting the hypothesis that this feedback is playing a role in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12588561','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12588561"><span>PCR detection of psychrophilic Clostridium spp. causing 'blown <span class="hlt">pack</span>' spoilage of vacuum-<span class="hlt">packed</span> chilled meats.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Broda, D M; Boerema, J A; Bell, R G</p> <p>2003-01-01</p> <p>To develop a practical molecular procedure that directly, without isolation, and specifically detects the presence of clostridia which cause 'blown <span class="hlt">pack</span>' spoilage of vacuum-<span class="hlt">packed</span> meat. Primer sets and PCR amplification procedures were developed that detect the presence of 16S rDNA gene and/or 16S-23S rDNA internal transcribed spacer fragments of 'blown <span class="hlt">pack</span>' causing clostridia in meat. The specificity of the developed procedures was evaluated with DNA obtained from close phylogenetic neighbours of 'blown <span class="hlt">pack</span>' causing clostridia, food clostridia and common meat spoilage microorganisms. The sensitivity of detection was assessed in non-enriched and low-temperature-enriched beef mince inoculated with serially diluted pure cultures of Clostridium estertheticum DSMZ 8809T and Cl. gasigenes DB1AT. The efficacy of detection procedures was evaluated for naturally contaminated vacuum-<span class="hlt">packed</span> meat samples. Three primer sets, 16SE, 16SDB and EISR, produced amplicons of the expected size with DNA templates from target clostridia, but failed to yield PCR products with DNAs from any other microorganisms tested. With 16SE and 16SDB primers, minimum levels of detection were 104 CFU g(-1) for non-enriched, and 102 CFU g(-1) for enriched meat samples. Based on the established specificity of these primers, as well as DNA sequencing of amplicons, Cl. gasigenes was confirmed as the causative agent of 'blown <span class="hlt">pack</span>' spoilage in two <span class="hlt">packs</span>, and Cl. estertheticum as the causative agent in the third. The developed method can be used for rapid detection of 'blown <span class="hlt">pack</span>' causing clostridia in commercial blown <span class="hlt">packs</span>, or following low temperature enrichment, for detection of these microorganisms in meat containing as few as 100 clostridial cells per gram. The paper reports practical procedures that can be used for rapid confirmation of the causative agents of clostridial 'blown <span class="hlt">pack</span>' spoilage in commercial spoiled <span class="hlt">packs</span>, or for detection of psychrophilic clostridia in epidemiological trace back of</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.U44A..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.U44A..01A"><span>Recent Changes in Arctic Glaciers, <span class="hlt">Ice</span> Caps, and the Greenland <span class="hlt">Ice</span> Sheet: Cold Facts About Warm <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdalati, W.</p> <p>2005-12-01</p> <p>One of the major manifestations of Arctic change can be observed in the state of balance of Arctic glaciers and <span class="hlt">ice</span> caps and the Greenland <span class="hlt">ice</span> sheet. These <span class="hlt">ice</span> masses are estimated to contain nearly 3 million cubic kilometers of <span class="hlt">ice</span>, which is more than six times greater than all the water stored in the Earth's lakes, rivers, and snow combined and is the equivalent of over 7 meters of sea level. Most of these <span class="hlt">ice</span> masses have been shrinking in recent in years, but their mass balance is highly variable on a wide range of spatial and temporal scales. On the Greenland <span class="hlt">ice</span> sheet most of the coastal regions have thinned substantially as melt has increased and some of its outlet glaciers have accelerated. Near the equilibrium line in West Greenland, we have seen evidence of summer acceleration that is linked to surface meltwater production, suggesting a relatively rapid response mechanism of the <span class="hlt">ice</span> sheet change to a warming climate. At the same time, however, the vast interior regions of the Greenland <span class="hlt">ice</span> sheet have shown little change or slight growth, as accumulation in these <span class="hlt">areas</span> may have increased. Throughout much of the rest of the Arctic, many glaciers and <span class="hlt">ice</span> caps have been shrinking in the past few decades, and in Canada and Alaska, the rate of <span class="hlt">ice</span> loss seems to have accelerated during the late 1990s. These recent observations offer only a snapshot in time of the long-term behavior, but they are providing crucial information about the current state of <span class="hlt">ice</span> mass balance and the mechanisms that control it in one of the most climatically sensitive regions on Earth. As we continue to learn more through a combination of remote sensing observations, in situ measurements and improved modeling capabilities, it is important that we coordinate and integrate these approaches effectively in order to predict future changes and their impact on sea level, freshwater discharge, and ocean circulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C51A0683R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C51A0683R"><span>Inter-comparison of isotropic and anisotropic sea <span class="hlt">ice</span> rheology in a fully coupled model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.</p> <p>2015-12-01</p> <p>We present the sea <span class="hlt">ice</span> climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea <span class="hlt">Ice</span> Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the <span class="hlt">ice</span> and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea <span class="hlt">ice</span> model configuration includes mushy-layer sea <span class="hlt">ice</span> thermodynamics and level-<span class="hlt">ice</span> melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea <span class="hlt">ice</span> mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea <span class="hlt">ice</span> volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the <span class="hlt">pack</span> using buoys and RGPS data. A fundamental component of both <span class="hlt">ice</span> mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006604','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006604"><span>Extent of Low-accumulation 'Wind Glaze' <span class="hlt">Areas</span> on the East Antarctic Plateau: Implications for Continental <span class="hlt">Ice</span> Mass Balance</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140006604'); toggleEditAbsImage('author_20140006604_show'); toggleEditAbsImage('author_20140006604_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140006604_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140006604_hide"></p> <p>2012-01-01</p> <p>Persistent katabatic winds form widely distributed localized <span class="hlt">areas</span> of near-zero net surface accumulation on the East Antarctic <span class="hlt">ice</span> sheet (EAIS) plateau. These <span class="hlt">areas</span> have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in <span class="hlt">area</span> and are found on leeward slopes of <span class="hlt">ice</span>-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze <span class="hlt">areas</span> resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C23B0613H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C23B0613H"><span>Polar <span class="hlt">Ice</span> Caps: a Canary for the Greenland <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.</p> <p>2010-12-01</p> <p> changes in ELA where you can track an “on-off” type of mass balance switch. To place these ELA changes into temporal context, we propose to investigate proglacial lake environments below the various catchments. We intend to take rock flour as an indicator that the individual catchment is above the ELA. By contrasting the chronology from different catchments we can assemble minor ELA changes. Such an approach could be applied for other <span class="hlt">ice</span> caps in Greenland and other <span class="hlt">areas</span>, such as the Quelccaya <span class="hlt">Ice</span> Cap, Peru.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017033','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017033"><span>Sediments in Arctic sea <span class="hlt">ice</span>: Implications for entrainment, transport and release</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn</p> <p>1994-01-01</p> <p>Despite the Arctic sea <span class="hlt">ice</span> cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering <span class="hlt">ice</span> albedo and affecting <span class="hlt">ice</span> ablation is poorly understood. Sea <span class="hlt">ice</span> sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major <span class="hlt">areas</span> of <span class="hlt">ice</span> ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden <span class="hlt">ice</span>, investigates and evaluates processes by which sediment is incorporated into the <span class="hlt">ice</span> cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea <span class="hlt">ice</span> in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire <span class="hlt">ice</span> column, forming turbid <span class="hlt">ice</span>. Observations indicate that frazil and anchor <span class="hlt">ice</span> formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of <span class="hlt">ice</span> floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea <span class="hlt">ice</span> exceeds by far the amounts observed in first-year <span class="hlt">ice</span> from the Laptev Sea in April 1992. Sea <span class="hlt">ice</span> sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source <span class="hlt">area</span>. Apparently, sediment inclusions were resuspended from shelf <span class="hlt">areas</span> before and incorporated into the sea <span class="hlt">ice</span> by suspension freezing. Clay mineralogy of <span class="hlt">ice</span>-rafted sediments provides information on potential source <span class="hlt">areas</span>. A smectite</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919531L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919531L"><span>Ensemble sea <span class="hlt">ice</span> forecast for predicting compressive situations in the Baltic Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehtiranta, Jonni; Lensu, Mikko; Kokkonen, Iiro; Haapala, Jari</p> <p>2017-04-01</p> <p>Forecasting of sea <span class="hlt">ice</span> hazards is important for winter shipping in the Baltic Sea. In current numerical models the <span class="hlt">ice</span> thickness distribution and drift are captured well, but compressive situations are often missing from forecast products. Its inclusion is requested by the shipping community, as compression poses a threat to ship operations. As compressing <span class="hlt">ice</span> is capable of stopping ships for days and even damaging them, its inclusion in <span class="hlt">ice</span> forecasts is vital. However, we have found that compression can not be predicted well in a deterministic forecast, since it can be a local and a quickly changing phenomenon. It is also very sensitive to small changes in the wind speed and direction, the prevailing <span class="hlt">ice</span> conditions, and the model parameters. Thus, a probabilistic ensemble simulation is needed to produce a meaningful compression forecast. An ensemble model setup was developed in the SafeWIN project for this purpose. It uses the HELMI multicategory <span class="hlt">ice</span> model, which was amended for making simulations in parallel. The ensemble was built by perturbing the atmospheric forcing and the physical parameters of the <span class="hlt">ice</span> <span class="hlt">pack</span>. The model setup will provide probabilistic forecasts for the compression in the Baltic sea <span class="hlt">ice</span>. Additionally the model setup provides insight into the uncertainties related to different model parameters and their impact on the model results. We have completed several hindcast simulations for the Baltic Sea for verification purposes. These results are shown to match compression reports gathered from ships. In addition, an ensemble forecast is in preoperational testing phase and its first evaluation will be presented in this work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930016861','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930016861"><span>Radar backscatter measurements from Arctic sea <span class="hlt">ice</span> during the fall freeze-up</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beaven, S.; Gogineni, S. P.; Shanableh, M.; Gow, A.; Tucker, W.; Jezek, K.</p> <p>1993-01-01</p> <p>Radar backscatter measurements from sea <span class="hlt">ice</span> during the fall freeze-up were performed by the United States Coast Guard Icebreaker Polar Star as a part of the International Arctic Ocean Expedition (IAOE'91) from Aug. to Sep. 1991. The U.S. portion of the experiment took place on board the Polar Star and was referred to as TRAPOLEX '91 (Transpolar expedition) by some investigators. Before prematurely aborting its mission because of mechanical failure of her port shaft, the Polar Star reached 84 deg 57 min N latitude at 35 deg E longitude. The ship was in the <span class="hlt">ice</span> (greater than 50 percent coverage) from 14 Aug. until 3 Sep. and was operational for all but 6 days due to two instances of mechanical problems with the port shaft. The second was fatal to the ship's participation in the expedition. During the expedition, radar backscatter was measured at C-band under a variety of conditions. These included measurements from young <span class="hlt">ice</span> types as well as from multiyear and first-/second-year sea <span class="hlt">ice</span> during the fall freeze-up. The sea <span class="hlt">ice</span> types were determined by measurement of the <span class="hlt">ice</span> properties at several of the stations and by visual inspection on others. Radar backscatter measurements were performed over a large portion of the ship's transit into the Arctic <span class="hlt">ice</span> <span class="hlt">pack</span>. These were accompanied by in situ sea <span class="hlt">ice</span> property characterization by the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) at several stations and, when snow was present, its properties were documented by The Microwave Group, Ottawa River (MWG).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00291&hterms=europa+ice&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Deuropa%2Bice','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00291&hterms=europa+ice&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Deuropa%2Bice"><span>Europa's Broken <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1996-01-01</p> <p>Jupiter's moon Europa, as seen in this image taken June 27, 1996 by NASA's Galileo spacecraft, displays features in some <span class="hlt">areas</span> resembling <span class="hlt">ice</span> floes seen in Earth's polar seas. Europa, about the size of Earth's moon, has an icy crust that has been severely fractured, as indicated by the dark linear, curved, and wedged-shaped bands seen here. These fractures have broken the crust into plates as large as 30 kilometers (18.5 miles) across. <span class="hlt">Areas</span> between the plates are filled with material that was probably icy slush contaminated with rocky debris. Some individual plates were separated and rotated into new positions. Europa's density indicates that it has a shell of water <span class="hlt">ice</span> as thick as 100 kilometers (about 60 miles), parts of which could be liquid. Currently, water <span class="hlt">ice</span> could extend from the surface down to the rocky interior, but the features seen in this image suggest that motion of the disrupted icy plates was lubricated by soft <span class="hlt">ice</span> or liquid water below the surface at the time of disruption. This image covers part of the equatorial zone of Europa and was taken from a distance of 156,000 kilometers (about 96,300 miles) by the solid-state imager camera on the Galileo spacecraft. North is to the right and the sun is nearly directly overhead. The <span class="hlt">area</span> shown is about 360 by 770 kilometers (220-by-475 miles or about the size of Nebraska), and the smallest visible feature is about 1.6 kilometers (1 mile) across. The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780007288','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780007288"><span>Kinetics of <span class="hlt">pack</span> aluminization of nickel</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Seigle, L. L.; Gupta, B. K.; Shankar, R.; Sarkhel, A. K.</p> <p>1978-01-01</p> <p>The kinetics of <span class="hlt">pack</span> aluminization of unalloyed nickel in <span class="hlt">packs</span> of varying aluminum activity with various halide activators were studied. Surface compositions of the coatings as functions of time, temperature, and <span class="hlt">pack</span> composition were obtained in order to establish the boundary conditions for diffusion in the system. The structure of the <span class="hlt">packs</span> was also examined in order to clarify the mechanism of aluminum transport. The results indicate that the kinetics of <span class="hlt">pack</span> aluminization are controlled jointly by gas diffusion in the <span class="hlt">pack</span> and solid diffusion in the coating. Levine and Caves' model for gas diffusion was combined with calculations of rates of diffusion in the solid to formulate a more complete theory for the kinetics of <span class="hlt">pack</span> aluminization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TRACE...6..221S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TRACE...6..221S"><span>Fundamental Research on Heat Transfer Characteristics in Shell & Tube Type <span class="hlt">Ice</span> Forming Cold Energy Storage</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, Akio; Utaka, Yoshio; Okawa, Seiji; Ishibashi, Hiroaki</p> <p></p> <p>Investigation of heat transfer characteristics in an <span class="hlt">ice</span> making cold energy storage using a set of horizontal cooling pipes was carried out experimentally. Cooling pipe arrangement, number of pipes used and initial water temperature were varied, and temperature distribution in the tank and the volume of <span class="hlt">ice</span> formed around the pipe were measured. Natural convection was also observed visually. During the experiment, two kinds of layers were observed. One is the layer where <span class="hlt">ice</span> forming is interfered by natural convection and its temperature decreases rapidly with an almost uniform temperature distribution, and the other is the layer where <span class="hlt">ice</span> forms steadily under a stagnant water condition. The former was called that the layer is under a cooling process and the latter that the layer is under an <span class="hlt">ice</span> forming process. The effect of the experimental parameters, such as the arrangement of the cooling pipes, the number of pipes, the initial water temperature and the flow rate of the cooling medium, on the cooling process and the <span class="hlt">ice</span> forming process were discussed. Approximate analysis was also carried out and compared with the experimental results. Finally, the relationship between the <span class="hlt">ice</span> <span class="hlt">packing</span> factor, which is significant in preventing the blockade, and experimental parameters was discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA955001','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA955001"><span>Man in the Arctic, The Changing Nature of His Quest for Food and Water as Related to Snow, <span class="hlt">Ice</span>, and Permafrost</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1962-01-01</p> <p>Sub- marines have been used under the <span class="hlt">ice</span> <span class="hlt">pack</span>. The most systematic and concerted effort has bet that conducted in Greenland where data from nearly...ml -’ -•- <span class="hlt">ice</span> individually, chronic thirst was a common complaint. In fact, one cause of dehydration ex- haustion was seen .15 The problem of...made by truck or sledge and bar- rel. For example, at Hay River water is supplied under franchise by a trucker. This water is drawn from the river and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.213...17B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.213...17B"><span>Gypsum and hydrohalite dynamics in sea <span class="hlt">ice</span> brines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary</p> <p>2017-09-01</p> <p> experimental solubility in this system. Incorporation of hydrohalite solubility into a 1D thermodynamic model of the growth of first-year Arctic sea <span class="hlt">ice</span> showed its precipitation to initiate once the incoming shortwave radiation dropped to 0 W m-2, and that it can reach concentrations of 9.9 g kg-1 within the upper and coldest layers of the <span class="hlt">ice</span> <span class="hlt">pack</span>. This suggests a limited effect of hydrohalite on the albedo of sea <span class="hlt">ice</span>. The insights provided by the solubility measurements into the behaviour of gypsum and hydrohalite in the <span class="hlt">ice</span>-brine system cannot be gleaned from field investigations at present.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917181C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917181C"><span><span class="hlt">Ice</span> cores and calcite precipitates from alpine <span class="hlt">ice</span> caves as useful proxies in paleoclimate reconstructions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colucci, Renato R.; Barbante, Carlo; Bertò, Michele; Dreossi, Giuliano; Festi, Daniela; Forte, Emanuele; Gabrieli, Jacopo; Guglielmin, Mauro; Lenaz, Davide; Luetscher, Marc; Maggi, Valter; Princivalle, Francesco; Schwikowski, Margit; Stenni, Barbara; Žebre, Manja</p> <p>2017-04-01</p> <p>In the last years a growing set of research campaigns have been undertaken in the European southeastern Alps. The aim of such interest is mainly due to the peculiar climatic conditions of this <span class="hlt">area</span>, allowing the existence of periglacial and glacial evidence at the lowest altitude in the Alps. The reason for such "anomaly" is likely ascribable to very high mean annual precipitation and local topoclimatic amplifications. In the frame of this research, in the fall 2013 a 7.8 m long <span class="hlt">ice</span>-core has been extracted from a permanent cave <span class="hlt">ice</span> deposit located in the <span class="hlt">area</span> of Mt. Canin (2,587 masl) in the Julian Alps. The <span class="hlt">ice</span>-core has been cut and analysed in terms of: a) oxygen and hydrogen isotope composition; b); black carbon and dust concentrations; c) water conductivity; d) mineralogical analyses via X-ray powder diffraction. In the fall 2016, in the same <span class="hlt">area</span>, a set of 1.0 m long horizontal <span class="hlt">ice</span> cores have been extracted in another <span class="hlt">ice</span> cave deposit, intercepting a preserved layer of coarse cryogenic cave carbonates (CCCcoarse). Such original finding represents the first alpine evidence of in situ CCCcoarse and the first occurrence from the southern side of the Alps. A unique opportunity to better understand the processes associated with the formation of CCCcoarse and the well-preserved status of samples allow planning, besides U/Th datings, several different analyses which may be associated with the precipitation of CCC. Subglacial calcite crusts, widespread in the <span class="hlt">area</span>, represents a further proxy able to help understanding the evolution of climate during the holocene in this alpine sector. In the light of accelerated climate change we discuss here the potential of this still untapped and fragile cryospheric archives for paleoclimatic reconstructions in high elevated <span class="hlt">areas</span> of the Alps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017431','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017431"><span>Spatially Mapped Reductions in the Length of the Arctic Sea <span class="hlt">Ice</span> Season</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, Claire L.</p> <p>2014-01-01</p> <p>Satellite data are used to determine the number of days having sea <span class="hlt">ice</span> coverage in each year 1979-2013 and to map the trends in these <span class="hlt">ice</span>-season lengths. Over the majority of the Arctic seasonal sea <span class="hlt">ice</span> zone, the <span class="hlt">ice</span> season shortened at an average rate of at least 5 days/decade between 1979 and 2013, and in a small <span class="hlt">area</span> in the northeastern Barents Sea the rate of shortening reached over 65 days/decade. The only substantial non-coastal <span class="hlt">area</span> with lengthening sea <span class="hlt">ice</span> seasons is the Bering Sea, where the <span class="hlt">ice</span> season lengthened by 5-15 days/decade. Over the Arctic as a whole, the <span class="hlt">area</span> with <span class="hlt">ice</span> seasons shortened by at least 5 days/decade is 12.4 × 10(exp 6) square kilimeters, while the <span class="hlt">area</span> with <span class="hlt">ice</span> seasons lengthened by at least 5 days/decade is only 1.1 × 10(exp 6) square kilometers. The contrast is even greater, percentage-wise, for higher rates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000070381&hterms=sonar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsonar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000070381&hterms=sonar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsonar"><span>Variability of Fram Strait <span class="hlt">Ice</span> Flux and North Atlantic Oscillation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwok, Ron</p> <p>1999-01-01</p> <p>An important term in the mass balance of the Arctic Ocean sea <span class="hlt">ice</span> is the <span class="hlt">ice</span> export. We estimated the winter sea <span class="hlt">ice</span> export through the Fram Strait using <span class="hlt">ice</span> motion from satellite passive microwave data and <span class="hlt">ice</span> thickness data from moored upward looking sonars. The average winter <span class="hlt">area</span> flux over the 18-year record (1978-1996) is 670,000 square km, approximately 7% of the <span class="hlt">area</span> of the Arctic Ocean. The winter <span class="hlt">area</span> flux ranges from a minimum of 450,000 sq. km in 1984 to a maximum of 906,000 sq km in 1995. The daily, monthly and interannual variabilities of the <span class="hlt">ice</span> <span class="hlt">area</span> flux are high. There is an upward trend in the <span class="hlt">ice</span> <span class="hlt">area</span> flux over the 18-year record. The average winter volume flux over the winters of October 1990 through May 1995 is 1745 cubic km ranging from a low of 1375 cubic km in 1990 to a high of 2791 cubic km in 1994. The sea-level pressure gradient across the Fram Strait explains more than 80% of the variance in the <span class="hlt">ice</span> flux over the 18-year record. We use the coefficients from the regression of the time-series of <span class="hlt">area</span> flux versus pressure gradient across the Fram Strait and <span class="hlt">ice</span> thickness data to estimate the summer <span class="hlt">area</span> and volume flux. The average 12-month <span class="hlt">area</span> flux and volume flux are 919,000 sq km and 2366 cubic km. We find a significant correlation (R =0.86) between the <span class="hlt">area</span> flux and positive phases of the North Atlantic Oscillation (NAO) index over the months of December through March. Correlation between our six years of volume flux estimates and the NAO index gives R =0.56. During the high NAO years, a more intense Icelandic low increases the gradient in the sea-level pressure by almost 1 mbar across the Fram Strait thus increasing the atmospheric forcing on <span class="hlt">ice</span> transport. Correlation is reduced during the negative NAO years because of decreased dominance of this large-scale atmospheric pattern on the sea-level pressure gradient across the Fram Strait. Additional information is contained in the original.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C52A..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C52A..01N"><span>Error estimates for <span class="hlt">ice</span> discharge calculated using the flux gate approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Navarro, F. J.; Sánchez Gámez, P.</p> <p>2017-12-01</p> <p><span class="hlt">Ice</span> discharge to the ocean is usually estimated using the flux gate approach, in which <span class="hlt">ice</span> flux is calculated through predefined flux gates close to the marine glacier front. However, published results usually lack a proper error estimate. In the flux calculation, both errors in cross-sectional <span class="hlt">area</span> and errors in velocity are relevant. While for estimating the errors in velocity there are well-established procedures, the calculation of the error in the cross-sectional <span class="hlt">area</span> requires the availability of ground penetrating radar (GPR) profiles transverse to the <span class="hlt">ice</span>-flow direction. In this contribution, we use <span class="hlt">Ice</span>Bridge operation GPR profiles collected in Ellesmere and Devon Islands, Nunavut, Canada, to compare the cross-sectional <span class="hlt">areas</span> estimated using various approaches with the cross-sections estimated from GPR <span class="hlt">ice</span>-thickness data. These error estimates are combined with those for <span class="hlt">ice</span>-velocities calculated from Sentinel-1 SAR data, to get the error in <span class="hlt">ice</span> discharge. Our preliminary results suggest, regarding <span class="hlt">area</span>, that the parabolic cross-section approaches perform better than the quartic ones, which tend to overestimate the cross-sectional <span class="hlt">area</span> for flight lines close to the central flowline. Furthermore, the results show that regional <span class="hlt">ice</span>-discharge estimates made using parabolic approaches provide reasonable results, but estimates for individual glaciers can have large errors, up to 20% in cross-sectional <span class="hlt">area</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003M%26PS...38.1319C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003M%26PS...38.1319C"><span><span class="hlt">Ice</span> dynamics of the Allan Hills meteorite concentration sites revealed by satellite aperture radar interferometry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coren, F.; Delisle, G.; Sterzai, P.</p> <p>2003-09-01</p> <p>The <span class="hlt">ice</span> flow conditions of a 100 x 100 km <span class="hlt">area</span> of Victoria Land, Antarctica were analyzed with the synthetic aperture radar (SAR) technique. The <span class="hlt">area</span> includes a number of meteorite concentration sites, in particular the Allan Hills <span class="hlt">ice</span> fields. Regional <span class="hlt">ice</span> flow velocities around the Mid- western and Near-western <span class="hlt">ice</span> fields and the Allan Hills main <span class="hlt">ice</span> field are shown to be 2.5 m yr-1. These sites are located on a horseshoe-shaped <span class="hlt">area</span> that bounds an <span class="hlt">area</span> characterized by higher <span class="hlt">ice</span> flow velocities of up to 5 m yr-1. Meteorite find locations on the Elephant Moraine are located in this "high <span class="hlt">ice</span> flow" <span class="hlt">area</span>. The SAR derived digital elevation model (DEM) shows atypical low surface slopes for Antarctic conditions, which are the cause for the slow <span class="hlt">ice</span> movements. Numerous <span class="hlt">ice</span> rises in the <span class="hlt">area</span> are interpreted to cap sub-<span class="hlt">ice</span> obstacles, which were formed by tectonic processes in the past. The <span class="hlt">ice</span> rises are considered to represent temporary features, which develop only during warm stages when the regional <span class="hlt">ice</span> stand is lowered. <span class="hlt">Ice</span> depressions, which develop in warm stages on the lee side of <span class="hlt">ice</span> rises, may act as the sites of temporary build-up of meteorite concentrations, which turn inoperative during cold stages when the regional <span class="hlt">ice</span> level rises and the <span class="hlt">ice</span> rises disappear. Based on a simplified <span class="hlt">ice</span> flow model, we argue that the regional <span class="hlt">ice</span> flow in cold stages is reduced by a factor of at least 3.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001454&hterms=ice+antarctica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dice%2Bantarctica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001454&hterms=ice+antarctica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dice%2Bantarctica"><span>Breakup of the Larsen <span class="hlt">Ice</span> Shelf, Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>Recent Moderate-resolution Imaging Spectroradiometer (MODIS) satellite imagery analyzed at the University of Colorado's National Snow and <span class="hlt">Ice</span> Data Center revealed that the northern section of the Larsen B <span class="hlt">ice</span> shelf, a large floating <span class="hlt">ice</span> mass on the eastern side of the Antarctic Peninsula, has shattered and separated from the continent. This particular image was taken on March 5, 2002. The shattered <span class="hlt">ice</span> formed a plume of thousands of icebergs adrift in the Weddell Sea. A total of about 3,250 square kilometers of shelf <span class="hlt">area</span> disintegrated in a 35-day period beginning on January 31, 2002. Over the last five years, the shelf has lost a total of 5,700 square kilometers and is now about 40 percent the size of its previous minimum stable extent. <span class="hlt">Ice</span> shelves are thick plates of <span class="hlt">ice</span>, fed by glaciers, that float on the ocean around much of Antarctica. The Larsen B shelf was about 220 meters thick. Based on studies of <span class="hlt">ice</span> flow and sediment thickness beneath the <span class="hlt">ice</span> shelf, scientists believe that it existed for at least 400 years prior to this event and likely existed since the end of the last major glaciation 12,000 years ago. For reference, the <span class="hlt">area</span> lost in this most recent event dwarfs Rhode Island (2,717 square kilometers) in size. In terms of volume, the amount of <span class="hlt">ice</span> released in this short time is 720 billion tons--enough <span class="hlt">ice</span> for about 12 trillion 10-kilogram bags. This is the largest single event in a series of retreats by <span class="hlt">ice</span> shelves along the peninsula over the last 30 years. The retreats are attributed to a strong climate warming in the region. The rate of warming is approximately 0.5 degrees Celsius per decade, and the trend has been present since at least the late 1940s. Overall in the peninsula, the extent of seven <span class="hlt">ice</span> shelves has declined by a total of about 13,500 square kilometers since 1974. This value excludes <span class="hlt">areas</span> that would be expected to calve under stable conditions. Ted Scambos, a researcher with the National Snow and <span class="hlt">Ice</span> Data Center (NSIDC) at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010124078','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010124078"><span>Towards GPS Surface Reflection Remote Sensing of Sea <span class="hlt">Ice</span> Conditions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Komjathy, A.; Maslanik, J. A.; Zavorotny, V. U.; Axelrad, P.; Katzberg, S. J.</p> <p>2000-01-01</p> <p>This paper describes the research to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. The characteristics of the GPS signals and equipment afford the possibility of new measurements not possible with existing radar and passive microwave systems. In particular, the GPS receiving systems are small and light-weight, and as such are particularly well suited to be deployed on small aircraft or satellite platforms with minimal impact. Our preliminary models and experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and fresh-water <span class="hlt">ice</span> as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the <span class="hlt">ice</span> <span class="hlt">pack</span> near Barrow, Alaska suggesting correlation between forward scattered GPS returns and RADARSAT backscattered signals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F"><span>Determination of a Critical Sea <span class="hlt">Ice</span> Thickness Threshold for the Central Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.</p> <p>2017-12-01</p> <p>While sea <span class="hlt">ice</span> extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea <span class="hlt">ice</span> <span class="hlt">pack</span>, determining the spatial variability of sea <span class="hlt">ice</span> thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to <span class="hlt">ice</span> thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner <span class="hlt">ice</span> cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea <span class="hlt">ice</span> are minimal as heat conduction from the ocean through thick <span class="hlt">ice</span> cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of <span class="hlt">ice</span>" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea <span class="hlt">ice</span> thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea <span class="hlt">ice</span> transitions from the thickest multi-year <span class="hlt">ice</span> to the very thin marginal <span class="hlt">ice</span> seas. This provides an ideal location to simulate how the diminishing Arctic sea <span class="hlt">ice</span> interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed <span class="hlt">ice</span> fields to detect changes in the ocean-<span class="hlt">ice</span>-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year <span class="hlt">ice</span>. Turbulent heat fluxes and surface air temperature increase as sea <span class="hlt">ice</span> thickness transitions from perennial <span class="hlt">ice</span> to seasonal <span class="hlt">ice</span>. While models predict a sea <span class="hlt">ice</span> free Arctic at the end of the warm season in future decades, sea <span class="hlt">ice</span> will continue to transform</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23908231','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23908231"><span>Ecological consequences of sea-<span class="hlt">ice</span> decline.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Post, Eric; Bhatt, Uma S; Bitz, Cecilia M; Brodie, Jedediah F; Fulton, Tara L; Hebblewhite, Mark; Kerby, Jeffrey; Kutz, Susan J; Stirling, Ian; Walker, Donald A</p> <p>2013-08-02</p> <p>After a decade with nine of the lowest arctic sea-<span class="hlt">ice</span> minima on record, including the historically low minimum in 2012, we synthesize recent developments in the study of ecological responses to sea-<span class="hlt">ice</span> decline. Sea-<span class="hlt">ice</span> loss emerges as an important driver of marine and terrestrial ecological dynamics, influencing productivity, species interactions, population mixing, gene flow, and pathogen and disease transmission. Major challenges in the near future include assigning clearer attribution to sea <span class="hlt">ice</span> as a primary driver of such dynamics, especially in terrestrial systems, and addressing pressures arising from human use of arctic coastal and near-shore <span class="hlt">areas</span> as sea <span class="hlt">ice</span> diminishes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25908601','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25908601"><span>Exposure age and <span class="hlt">ice</span>-sheet model constraints on Pliocene East Antarctic <span class="hlt">ice</span> sheet dynamics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki</p> <p>2015-04-24</p> <p>The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic <span class="hlt">Ice</span> Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand <span class="hlt">ice</span> sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An <span class="hlt">ice</span> sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased <span class="hlt">ice</span> volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea <span class="hlt">ice</span> cover and inhibited active moisture transport to Antarctica, resulting in reduced <span class="hlt">ice</span> sheet thickness, at least in coastal <span class="hlt">areas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009fpc..book..407I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009fpc..book..407I"><span>Fully Dynamic Bin <span class="hlt">Packing</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivković, Zoran; Lloyd, Errol L.</p> <p></p> <p>Classic bin <span class="hlt">packing</span> seeks to <span class="hlt">pack</span> a given set of items of possibly varying sizes into a minimum number of identical sized bins. A number of approximation algorithms have been proposed for this NP-hard problem for both the on-line and off-line cases. In this chapter we discuss fully dynamic bin <span class="hlt">packing</span>, where items may arrive (Insert) and depart (Delete) dynamically. In accordance with standard practice for fully dynamic algorithms, it is assumed that the <span class="hlt">packing</span> may be arbitrarily rearranged to accommodate arriving and departing items. The goal is to maintain an approximately optimal solution of provably high quality in a total amount of time comparable to that used by an off-line algorithm delivering a solution of the same quality.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..281...19D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..281...19D"><span><span class="hlt">Ices</span> on Mercury: Chemistry of volatiles in permanently cold <span class="hlt">areas</span> of Mercury's north polar region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delitsky, M. L.; Paige, D. A.; Siegler, M. A.; Harju, E. R.; Schriver, D.; Johnson, R. E.; Travnicek, P.</p> <p>2017-01-01</p> <p>Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in 2008-2015 indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury's north polar region. These icy condensed volatiles are thought to be composed of water <span class="hlt">ice</span> and frozen organics that can persist over long geologic timescales and evolve under the influence of the Mercury space environment. Polar <span class="hlt">ices</span> never see solar photons because at such high latitudes, sunlight cannot reach over the crater rims. The craters maintain a permanently cold environment for the <span class="hlt">ices</span> to persist. However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles and induce <span class="hlt">ice</span> chemistry. Mercury's magnetic field contains magnetic cusps, <span class="hlt">areas</span> of focused field lines containing trapped magnetospheric charged particles that will be funneled onto the Mercury surface at very high latitudes. This magnetic highway will act to direct energetic protons, ions and electrons directly onto the polar <span class="hlt">ices</span>. The radiation processing of the <span class="hlt">ices</span> could convert them into higher-order organics and dark refractory materials whose spectral characteristics are consistent with low-albedo materials observed by MESSENGER Laser Altimeter (MLA) and RADAR instruments. Galactic cosmic rays (GCR), scattered UV light and solar energetic particles (SEP) also supply energy for <span class="hlt">ice</span> processing. Cometary impacts will deposit H2O, CH4, CO2 and NH3 raw materials onto Mercury's surface which will migrate to the poles and be converted to more complex Csbnd Hsbnd Nsbnd Osbnd S-containing molecules such as aldehydes, amines, alcohols, cyanates, ketones, hydroxides, carbon oxides and suboxides, organic acids and others. Based on lab experiments in the literature, possible specific compounds produced may be: H2CO, HCOOH, CH3OH, HCO, H2CO3, CH3C(O)CH3, C2O, CxO, C3O2, CxOy, CH3CHO, CH3OCH2CH2OCH3, C2H6, CxHy, NO2, HNO2, HNO3, NH2OH, HNO, N2H2, N3, HCN, Na2O, Na</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890038200&hterms=skin+sensors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dskin%2Bsensors','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890038200&hterms=skin+sensors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dskin%2Bsensors"><span>Distributed <span class="hlt">ice</span> accretion sensor for smart aircraft structures</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gerardi, J. J.; Hickman, G. A.</p> <p>1989-01-01</p> <p>A distributed <span class="hlt">ice</span> accretion sensor is presented, based on the concept of smart structures. <span class="hlt">Ice</span> accretion is determined using spectral techniques to process signals from piezoelectric sensors integral to the airfoil skin. Frequency shifts in the leading edge structural skin modes are correlated to <span class="hlt">ice</span> thickness. It is suggested that this method may be used to detect <span class="hlt">ice</span> over large <span class="hlt">areas</span> with minimal hardware. Results are presented from preliminary tests to measure simulated <span class="hlt">ice</span> growth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A23I..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A23I..05F"><span>Arctic Sea Salt Aerosol from Blowing Snow and Sea <span class="hlt">Ice</span> Surfaces - a Missing Natural Source in Winter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frey, M. M.; Norris, S. J.; Brooks, I. M.; Nishimura, K.; Jones, A. E.</p> <p>2015-12-01</p> <p>Atmospheric particles in the polar regions consist mostly of sea salt aerosol (SSA). SSA plays an important role in regional climate change through influencing the surface energy balance either directly or indirectly via cloud formation. SSA irradiated by sunlight also releases very reactive halogen radicals, which control concentrations of ozone, a pollutant and greenhouse gas. However, models under-predict SSA concentrations in the Arctic during winter pointing to a missing source. It has been recently suggested that salty blowing snow above sea <span class="hlt">ice</span>, which is evaporating, to be that source as it may produce more SSA than equivalent <span class="hlt">areas</span> of open ocean. Participation in the 'Norwegian Young Sea <span class="hlt">Ice</span> Cruise (N-<span class="hlt">ICE</span> 2015)' on board the research vessel `Lance' allowed to test this hypothesis in the Arctic sea <span class="hlt">ice</span> zone during winter. Measurements were carried out from the ship frozen into the <span class="hlt">pack</span> <span class="hlt">ice</span> North of 80º N during February to March 2015. Observations at ground level (0.1-2 m) and from the ship's crows nest (30 m) included number concentrations and size spectra of SSA (diameter range 0.3-10 μm) as well as snow particles (diameter range 50-500 μm). During and after blowing snow events significant SSA production was observed. In the aerosol and snow phase sulfate is fractionated with respect to sea water, which confirms sea <span class="hlt">ice</span> surfaces and salty snow, and not the open ocean, to be the dominant source of airborne SSA. Aerosol shows depletion in bromide with respect to sea water, especially after sunrise, indicating photochemically driven release of bromine. We discuss the SSA source strength from blowing snow in light of environmental conditions (wind speed, atmospheric turbulence, temperature and snow salinity) and recommend improved model parameterisations to estimate regional aerosol production. N-<span class="hlt">ICE</span> 2015 results are then compared to a similar study carried out previously in the Weddell Sea during the Antarctic winter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA103734','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA103734"><span>Review of Thermal Properties of Snow, <span class="hlt">Ice</span> and Sea <span class="hlt">Ice</span>,</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-06-01</p> <p>AD-AL03 734 COLD RE61ONS RESEARCH AND ENGINEERING LAS HANOVER NH F/G 8/12AI3 3REVIEW OF THERMAL PROPERTIES OF SNOW. <span class="hlt">ICE</span> AND SEA <span class="hlt">ICE</span>,(U)UNCLASSIFIlED...Distribution/ Availability Codes Avail and/or D~ Dis~t Special D 1 7 C- T > L) UNITED STATES ARMY CORPS OF ENGINEERS COLD REGIONS RESEARCH AND ENGINEERING...PROGRAM ELEMENT, PROJECT. TASK <span class="hlt">AREA</span> A WORK UNIT NUMBERS U.S. Army Cold Regions Research and Engineering Laboratory Hanover, New Hampshire 03755 DA Pr</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://dx.doi.org/10.1016/S0163-1047(80)91932-9','USGSPUBS'); return false;" href="http://dx.doi.org/10.1016/S0163-1047(80)91932-9"><span>Sleeping distance in wild wolf <span class="hlt">packs</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Knick, S.T.; Mech, L.D.</p> <p>1980-01-01</p> <p>Sleeping distances were observed among members of 13 wild wolf (Canis lupus) <span class="hlt">packs</span> and 11 pairs in northeastern Minnesota to determine if the distances correlated with <span class="hlt">pack</span> size and composition. The study utilized aerial radio-tracking and observation during winter. <span class="hlt">Pack</span> size and number of adults per <span class="hlt">pack</span> were inversely related to <span class="hlt">pack</span> average sleeping distance and variability. No correlation between sleeping distance and microclimate was observed. Possible relationships between social bonding and our results are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175748','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175748"><span>Differential wolf-<span class="hlt">pack</span>-size persistence and the role of risk when hunting dangerous prey</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barber-Meyer, Shannon M.; Mech, L. David; Newton, Wesley E.; Borg, Bridget</p> <p>2016-01-01</p> <p>Risk to predators hunting dangerous prey is an emerging <span class="hlt">area</span> of research and could account for possible persistent differences in gray wolf (Canis lupus) <span class="hlt">pack</span> sizes. We documented significant differences in long-term wolf-<span class="hlt">pack</span>-size averages and variation in the Superior National Forest (SNF), Denali National Park and Preserve, Yellowstone National Park, and Yukon, Canada (p<0.01). The SNF differences could be related to the wolves’ risk when hunting primary prey, for those <span class="hlt">packs</span> (N=3) hunting moose (Alces americanus) were significantly larger than those (N=10) hunting white-tailed deer (Odocoileus virginianus) (F1,8=16.50, p=0.004). Our data support the hypothesis that differential <span class="hlt">pack</span>-size persistence may be perpetuated by differences in primary prey riskiness to wolves, and we highlight two important extensions of this idea: (1) the potential for wolves to provision and defend injured packmates from other wolves and (2) the importance of less-risky, buffer prey to <span class="hlt">pack</span>-size persistence and year-to-year variation. Risk to predators hunting dangerous prey is an emerging <span class="hlt">area</span> of research and could account for possible persistent differences in gray wolf (Canis lupus) <span class="hlt">pack</span> sizes. We documented significant differences in long-term wolf-<span class="hlt">pack</span>-size averages and variation in the Superior National Forest (SNF), Denali National Park and Preserve, Yellowstone National Park, and Yukon, Canada (p<0.01). The SNF differences could be related to the wolves’ risk when hunting primary prey, for those <span class="hlt">packs</span> (N=3) hunting moose (Alces americanus) were significantly larger than those (N=10) hunting white-tailed deer (Odocoileus virginianus) (F1,8=16.50, p=0.004). Our data support the hypothesis that differential <span class="hlt">pack</span>-size persistence may be perpetuated by differences in primary prey riskiness to wolves, and we highlight two important extensions of this idea: (1) the potential for wolves to provision and defend injured packmates from other wolves and (2) the importance of less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27216342','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27216342"><span>Electrocauterization and no <span class="hlt">packing</span> may be comparable with nasal <span class="hlt">packing</span> for postoperative hemorrhage after endoscopic sinus surgery.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Dong-Kyu; Rhee, Chae Seo; Kim, Jeong-Whun</p> <p>2016-05-01</p> <p>Nasal <span class="hlt">packing</span> is commonly performed after functional endoscopic sinus surgery (FESS). However, nasal <span class="hlt">packing</span> is associated with higher cost (owing to the cost of <span class="hlt">packing</span> materials), patient discomfort, delayed wound healing, and concern about toxic shock syndrome. Some surgeons have been performing FESS without <span class="hlt">packing</span>, but there are few studies that show its safety. The purpose of this study was to evaluate the safety of electrocauterization and no <span class="hlt">packing</span>. A total of 490 patients who underwent bilateral FESS for chronic rhinosinusitis were included in this retrospective study, 242 in the nasal <span class="hlt">packing</span> group and 248 in the electrocauterization and no-<span class="hlt">packing</span> group. Electrocauterization was performed by using a suction coagulator. Rates of immediate (first 24 hours after surgery) and delayed postoperative bleeding were compared. Patient characteristics, including concomitant disease and medication history, and Lund-Mackay computed tomography score were also assessed Results: There were no significant differences in age; sex; Lund-Mackay score; use of anticoagulant drugs; or prevalence of hypertension, diabetes, or asthma between the two groups. In the electrocauterization and no-<span class="hlt">packing</span> group, there were fewer patients with allergic rhinitis and more smokers. Primary bleeding did not occur in the nasal <span class="hlt">packing</span> group, but 11 patients (4.4%) had delayed bleeding. Primary bleeding occurred in four patients (1.7%) in the electrocauterization and no-<span class="hlt">packing</span> group, and five patients (2.1%) had delayed bleeding. There were no significant differences in primary (p = 0.058) and secondary bleeding (p = 0.142) between the two groups. All bleeding was minor and easily controlled. Multivariate logistic regression analysis ruled out significant correlation between no <span class="hlt">packing</span> and postoperative bleeding. This study provided evidence that, in terms of postoperative hemorrhage, the safety of the electrocauterization and no-<span class="hlt">packing</span> technique after FESS was comparable with that of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26213674','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26213674"><span>On the nature of the sea <span class="hlt">ice</span> albedo feedback in simple models.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moon, W; Wettlaufer, J S</p> <p>2014-08-01</p> <p>We examine the nature of the <span class="hlt">ice</span>-albedo feedback in a long-standing approach used in the dynamic-thermodynamic modeling of sea <span class="hlt">ice</span>. The central issue examined is how the evolution of the <span class="hlt">ice</span> <span class="hlt">area</span> is treated when modeling a partial <span class="hlt">ice</span> cover using a two-category-thickness scheme; thin sea <span class="hlt">ice</span> and open water in one category and "thick" sea <span class="hlt">ice</span> in the second. The problem with the scheme is that the <span class="hlt">area</span> evolution is handled in a manner that violates the basic rules of calculus, which leads to a neglected <span class="hlt">area</span> evolution term that is equivalent to neglecting a leading-order latent heat flux. We demonstrate the consequences by constructing energy balance models with a fractional <span class="hlt">ice</span> cover and studying them under the influence of increased radiative forcing. It is shown that the neglected flux is particularly important in a decaying <span class="hlt">ice</span> cover approaching the transitions to seasonal or <span class="hlt">ice</span>-free conditions. Clearly, a mishandling of the evolution of the <span class="hlt">ice</span> <span class="hlt">area</span> has leading-order effects on the <span class="hlt">ice</span>-albedo feedback. Accordingly, it may be of considerable importance to reexamine the relevant climate model schemes and to begin the process of converting them to fully resolve the sea <span class="hlt">ice</span> thickness distribution in a manner such as remapping, which does not in principle suffer from the pathology we describe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4508964','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4508964"><span>On the nature of the sea <span class="hlt">ice</span> albedo feedback in simple models</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moon, W; Wettlaufer, J S</p> <p>2014-01-01</p> <p>We examine the nature of the <span class="hlt">ice</span>-albedo feedback in a long-standing approach used in the dynamic-thermodynamic modeling of sea <span class="hlt">ice</span>. The central issue examined is how the evolution of the <span class="hlt">ice</span> <span class="hlt">area</span> is treated when modeling a partial <span class="hlt">ice</span> cover using a two-category-thickness scheme; thin sea <span class="hlt">ice</span> and open water in one category and “thick” sea <span class="hlt">ice</span> in the second. The problem with the scheme is that the <span class="hlt">area</span> evolution is handled in a manner that violates the basic rules of calculus, which leads to a neglected <span class="hlt">area</span> evolution term that is equivalent to neglecting a leading-order latent heat flux. We demonstrate the consequences by constructing energy balance models with a fractional <span class="hlt">ice</span> cover and studying them under the influence of increased radiative forcing. It is shown that the neglected flux is particularly important in a decaying <span class="hlt">ice</span> cover approaching the transitions to seasonal or <span class="hlt">ice</span>-free conditions. Clearly, a mishandling of the evolution of the <span class="hlt">ice</span> <span class="hlt">area</span> has leading-order effects on the <span class="hlt">ice</span>-albedo feedback. Accordingly, it may be of considerable importance to reexamine the relevant climate model schemes and to begin the process of converting them to fully resolve the sea <span class="hlt">ice</span> thickness distribution in a manner such as remapping, which does not in principle suffer from the pathology we describe. PMID:26213674</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title7-vol2/pdf/CFR-2014-title7-vol2-sec51-310.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title7-vol2/pdf/CFR-2014-title7-vol2-sec51-310.pdf"><span>7 CFR 51.310 - <span class="hlt">Packing</span> requirements.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples <span class="hlt">Packing</span> Requirements § 51.310 <span class="hlt">Packing</span> requirements. (a) Apples tray <span class="hlt">packed</span> or cell <span class="hlt">packed</span> in cartons shall be arranged.... 3 2 “Fairly tight” means that apples are of the proper size for molds or cell compartments in which...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title7-vol2/pdf/CFR-2013-title7-vol2-sec51-310.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title7-vol2/pdf/CFR-2013-title7-vol2-sec51-310.pdf"><span>7 CFR 51.310 - <span class="hlt">Packing</span> requirements.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples <span class="hlt">Packing</span> Requirements § 51.310 <span class="hlt">Packing</span> requirements. (a) Apples tray <span class="hlt">packed</span> or cell <span class="hlt">packed</span> in cartons shall be arranged.... 3 2 “Fairly tight” means that apples are of the proper size for molds or cell compartments in which...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JGR....9912573P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JGR....9912573P"><span>Acoustic detection of <span class="hlt">ice</span> crystals in Antarctic waters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Penrose, John D.; Conde, M.; Pauly, T. J.</p> <p>1994-06-01</p> <p>During the voyage of the RSV Aurora Australis to the region of Prydz Bay, Antarctica in January-March 1991, <span class="hlt">ice</span> crystals were encountered at depths from the surface to 125-m in the western <span class="hlt">area</span> of the bay. On two occasions, crystals were retrieved by netting, and echo sounder records have been used to infer additional regions of occurrence. Acoustic target strength estimates made on the <span class="hlt">ice</span> crystal assemblies encountered show significant spatial variation, which may relate to crystal size and/or aggregation. Data from a suite of conductivity-temperature-depth casts have been used to map regions of the study <span class="hlt">area</span> where in situ water temperatures fell below the computed freezing point. Such regions correlate well with those selected on the basis of echogram type and imply that <span class="hlt">ice</span> crystals occurred at depth over large <span class="hlt">areas</span> of the bay during the cruise period. The <span class="hlt">ice</span> crystal distribution described is consistent with that expected from a plume of supercooled water emerging from under the Amery <span class="hlt">Ice</span> Shelf and forming part of the general circulation of the bay. The magnitude of the supercooled water plume is greater than those reported previously in the Prydz Bay region. If misinterpreted as biota on echo sounder records, <span class="hlt">ice</span> crystals could significantly bias biomass estimates based on echo integration in this and potentially other <span class="hlt">areas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27812435','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27812435"><span>Loitering of the retreating sea <span class="hlt">ice</span> edge in the Arctic Seas.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steele, Michael; Ermold, Wendy</p> <p>2015-12-01</p> <p>Each year, the arctic sea <span class="hlt">ice</span> edge retreats from its winter maximum extent through the Seasonal <span class="hlt">Ice</span> Zone (SIZ) to its summer minimum extent. On some days, this retreat happens at a rapid pace, while on other days, parts of the pan-arctic <span class="hlt">ice</span> edge hardly move for periods of days up to 1.5 weeks. We term this stationary behavior "<span class="hlt">ice</span> edge loitering," and identify <span class="hlt">areas</span> that are more prone to loitering than others. Generally, about 20-25% of the SIZ <span class="hlt">area</span> experiences loitering, most often only one time at any one location during the retreat season, but sometimes two or more times. The main mechanism controlling loitering is an interaction between surface winds and warm sea surface temperatures in <span class="hlt">areas</span> from which the <span class="hlt">ice</span> has already retreated. When retreat happens early enough to allow atmospheric warming of this open water, winds that force <span class="hlt">ice</span> floes into this water cause melting. Thus, while individual <span class="hlt">ice</span> floes are moving, the <span class="hlt">ice</span> edge as a whole appears to loiter. The time scale of loitering is then naturally tied to the synoptic time scale of wind forcing. Perhaps surprisingly, the <span class="hlt">area</span> of loitering in the arctic seas has not changed over the past 25 years, even as the SIZ <span class="hlt">area</span> has grown. This is because rapid <span class="hlt">ice</span> retreat happens most commonly late in the summer, when atmospheric warming of open water is weak. We speculate that loitering may have profound effects on both physical and biological conditions at the <span class="hlt">ice</span> edge during the retreat season.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860019345','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860019345"><span>Entrainment, transport and concentration of meteorites in polar <span class="hlt">ice</span> sheets</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drewry, D. J.</p> <p>1986-01-01</p> <p>Glaciers and <span class="hlt">ice</span> sheets act as slow-moving conveyancing systems for material added to both their upper and lower surfaces. Because the transit time for most materials is extremely long the <span class="hlt">ice</span> acts as a major global storage facility. The effects of horizontal and vertical motions on the flow patterns of Antarctic <span class="hlt">ice</span> sheets are summarized. The determination of the source <span class="hlt">areas</span> of meteorites and their transport paths is a problem of central importance since it relates not only directly to concentration mechanisms but also to the wider issues in glaciology and meteorites. The <span class="hlt">ice</span> and snow into which a meteorite falls, and which moves with it to the concentration <span class="hlt">area</span>, encodes information about the infall <span class="hlt">area</span>. The principle environmental conditions being former elevation, temperature (also related to elevation), and age of the <span class="hlt">ice</span>. This encoded information could be used to identify the infall <span class="hlt">area</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol8/pdf/CFR-2010-title7-vol8-sec966-11.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol8/pdf/CFR-2010-title7-vol8-sec966-11.pdf"><span>7 CFR 966.11 - <span class="hlt">Pack</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.11 <span class="hlt">Pack</span>. <span class="hlt">Pack</span> means any of the <span class="hlt">packs</span> of tomatoes as defined and set forth in the United States Standards for Fresh Tomatoes issued by the United States Department of Agriculture (§§ 51...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS12B0282B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS12B0282B"><span>Field Results for an Arctic AUV Designed for Characterizing Circulation and <span class="hlt">Ice</span> Thickness</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bellingham, J. G.; Kirkwood, W. J.; Tervalon, N.; Cokelet, E.; Thomas, H.; Sibenac, M.; Gashler, D.; McEwen, R.; Henthorn, R.; Shane, F.; Osborn, D. J.; Johnson, K.; Overland, J.; Stein, P.; Bahlavouni, A.; Anderson, D.</p> <p>2002-12-01</p> <p>An Autonomous Underwater Vehicle designed for operation at high latitudes and under <span class="hlt">ice</span> completed its first Arctic field tests from the USCGC Healy in fall of 2001. The ALTEX AUV has been under development since 1998, and is being created to provide: unprecedented endurance, ability to navigate at high latitudes, a depth rating of 1500 to 4500 meters depending on payload, and the capability to relay data through the <span class="hlt">ice</span> to satellites via data buoys. The AUV's initial applications are focused on tracking the warm Atlantic Layer inflow - the primary source of seawater to the Arctic Ocean. Consequently the primary payloads are twin pumped CTD systems. Oxygen and nitrate sensors provide the ability to use NO as a tracer. An <span class="hlt">ice</span> profiling sonar allows the AUV to estimate the <span class="hlt">ice</span> thickness in real-time and is designed to generate high quality post-processed <span class="hlt">ice</span> draft data comparable to that collected through the SCICEX program. The experiments in October aboard the USCGC Healy generated numerous water column and under-<span class="hlt">ice</span> data sets. Traditional ship-based CTD operations were used to provide a comparison data set for AUV water column measurements. The post-processed <span class="hlt">ice</span> draft results show reasonable <span class="hlt">ice</span> profiles and have the potential, when combined with other science data collected, to shed some additional light on upper water column processes in <span class="hlt">ice</span>-covered regions. Cruise results include: operating the AUV from the USCGC Healy in the <span class="hlt">ice</span> <span class="hlt">pack</span>, demonstrating inertial navigation system performance, obtaining oceanographic sections with the AUV, obtaining <span class="hlt">ice</span> draft measurements with an AUV born sonar, and testing the data-buoy system. This work is supported by the National Science Foundation under grant NSF-OPP 9910290. The Packard Foundation and the Office of Naval Research have also provided support. The project was initiated under the National Ocean Partnership Program under contract N00014-98-1-0814.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003985','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003985"><span>Seafloor Control on Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.</p> <p>2011-01-01</p> <p>The seafloor has a profound role in Arctic sea <span class="hlt">ice</span> formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea <span class="hlt">ice</span> on the ocean surface. Sea <span class="hlt">ice</span> dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea <span class="hlt">ice</span> together with buoy measurements are used to reveal the bathymetric control on sea <span class="hlt">ice</span> growth and dynamics. Bathymetric effects on sea <span class="hlt">ice</span> formation are clearly observed in the conformation between sea <span class="hlt">ice</span> patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive <span class="hlt">ice</span>-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea <span class="hlt">ice</span> classes, including seasonal and perennial sea <span class="hlt">ice</span>, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea <span class="hlt">ice</span> cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum <span class="hlt">ice</span> extent has decreased drastically. Because of the geologic control, the sea <span class="hlt">ice</span> cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea <span class="hlt">ice</span> patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea <span class="hlt">ice</span> cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea <span class="hlt">ice</span> distribution, which differentially modulates the latent heat flux through <span class="hlt">ice</span> covered and open water <span class="hlt">areas</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130013431','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130013431"><span>On the <span class="hlt">Ice</span> Nucleation Spectrum</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barahona, D.</p> <p>2012-01-01</p> <p>This work presents a novel formulation of the <span class="hlt">ice</span> nucleation spectrum, i.e. the function relating the <span class="hlt">ice</span> crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the <span class="hlt">ice</span> crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface <span class="hlt">area</span> and composition. This is achieved by introducing the concepts of <span class="hlt">ice</span> nucleation coefficient (the number of <span class="hlt">ice</span> germs present in a particle) and nucleation probability dispersion function (the distribution of <span class="hlt">ice</span> nucleation coefficients within the aerosol population). The new formulation is used to generate <span class="hlt">ice</span> nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition <span class="hlt">ice</span> nucleation on dust and soot <span class="hlt">ice</span> nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous <span class="hlt">ice</span> nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the <span class="hlt">ice</span> nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the <span class="hlt">ice</span> nucleation spectrum suggested that experimental methods that measure the <span class="hlt">ice</span> nucleation fraction over few seconds would tend to underestimate the <span class="hlt">ice</span> nuclei concentration. It is shown that inferring the aerosol heterogeneous <span class="hlt">ice</span> nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in <span class="hlt">ice</span> nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous <span class="hlt">ice</span> nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC33A1268F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC33A1268F"><span><span class="hlt">ICE</span>911 Research: Floating Safe Inert Materials to Preserve <span class="hlt">Ice</span> and Conserve Water in Order to Mitigate Climate Change Impacts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.</p> <p>2015-12-01</p> <p><span class="hlt">Ice</span>911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar <span class="hlt">ice</span> melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited <span class="hlt">areas</span> from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for <span class="hlt">ice</span> preservation, using hollow glass spheres deployed over our largest test <span class="hlt">areas</span> yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of <span class="hlt">ice</span>. This year <span class="hlt">Ice</span>911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO <span class="hlt">area</span>, and results are still coming in. The technology that <span class="hlt">Ice</span>911 has been developing for <span class="hlt">ice</span> preservation has also been shown to keep small test <span class="hlt">areas</span> of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of <span class="hlt">Ice</span>911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29199836','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29199836"><span>Molecular Dynamics at the Interface between <span class="hlt">Ice</span> and Poly(vinyl alcohol) and <span class="hlt">Ice</span> Recrystallization Inhibition.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weng, Lindong; Stott, Shannon L; Toner, Mehmet</p> <p>2018-05-01</p> <p><span class="hlt">Ice</span> formation is a ubiquitous process that poses serious challenges for many <span class="hlt">areas</span>. Nature has evolved a variety of different mechanisms to regulate <span class="hlt">ice</span> formation. For example, many cold-adapted species produce antifreeze proteins (AFPs) and/or antifreeze glycoproteins (AFGPs) to inhibit <span class="hlt">ice</span> recrystallization. Although several synthetic substitutes for AF(G)Ps have been developed, the fundamental principles of designing AF(G)P mimics are still missing. In this study, we explored the molecular dynamics of <span class="hlt">ice</span> recrystallization inhibition (IRI) by poly(vinyl alcohol) (PVA), a well-recognized <span class="hlt">ice</span> recrystallization inhibitor, to shed light on the otherwise hidden <span class="hlt">ice</span>-binding mechanisms of chain polymers. Our molecular dynamics simulations revealed a stereoscopic, geometrical match between the hydroxyl groups of PVA and the water molecules of <span class="hlt">ice</span>, and provided microscopic evidence of the adsorption of PVA to both the basal and prism faces of <span class="hlt">ice</span> and the incorporation of short-chain PVA into the <span class="hlt">ice</span> lattice. The length of PVA, i.e., the number of hydroxyl groups, seems to be a key factor dictating the performance of IRI, as the PVA molecule must be large enough to prevent the joining together of adjacent curvatures in the <span class="hlt">ice</span> front. The findings in this study will help pave the path for addressing a pressing challenge in designing synthetic <span class="hlt">ice</span> recrystallization inhibitors rationally, by enriching our mechanistic understanding of IRI process by macromolecules.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3199821','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3199821"><span>Nasal <span class="hlt">packing</span> and stenting</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Weber, Rainer K.</p> <p>2011-01-01</p> <p>Nasal <span class="hlt">packs</span> are indispensable in ENT practice. This study reviews current indications, effectiveness and risks of nasal <span class="hlt">packs</span> and stents. In endoscopic surgery, nasal <span class="hlt">packs</span> should always have smooth surfaces to minimize mucosal damage, improve wound healing and increase patient comfort. Functional endoscopic endonasal sinus surgery allows the use of modern nasal <span class="hlt">packs</span>, since pressure is no longer required. So called hemostatic/resorbable materials are a first step in this direction. However, they may lead to adhesions and foreign body reactions in mucosal membranes. Simple occlusion is an effective method for creating a moist milieu for improved wound healing and avoiding dryness. Stenting of the frontal sinus is recommended if surgery fails to produce a wide, physiologically shaped drainage path that is sufficiently covered by intact tissue. PMID:22073095</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090030603','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090030603"><span>NASA <span class="hlt">Iced</span> Aerodynamics and Controls Current Research</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Addy, Gene</p> <p>2009-01-01</p> <p>This slide presentation reviews the state of current research in the <span class="hlt">area</span> of aerodynamics and aircraft control with <span class="hlt">ice</span> conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including <span class="hlt">icing</span>. The Aircraft <span class="hlt">icing</span> modeling efforts includes the <span class="hlt">Ice</span>-Contaminated Aerodynamics Modeling, which examines the effects of <span class="hlt">ice</span> contamination on aircraft aerodynamics, and CFD modeling of <span class="hlt">ice</span>-contaminated aircraft aerodynamics, and Advanced <span class="hlt">Ice</span> Accretion Process Modeling which examines the physics of <span class="hlt">ice</span> accretion, and works on computational modeling of <span class="hlt">ice</span> accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of <span class="hlt">icing</span> on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of <span class="hlt">icing</span> physics and <span class="hlt">ice</span> accretion for airframes, advanced 3D <span class="hlt">ice</span> accretion prediction codes, CFD methods for <span class="hlt">iced</span> aerodynamics and better understanding of aircraft <span class="hlt">iced</span> aerodynamics and its effects on control surface effectiveness.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740012423','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740012423"><span>Wide <span class="hlt">area</span> coverage radar imaging satellite for earth applications. [surveillance and mapping of <span class="hlt">ice</span> on Great Lakes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stevens, G. H.; Ramler, J. R.</p> <p>1974-01-01</p> <p>A preliminary study was made of a radar imaging satellite for earth applications. A side-looking synthetic-aperture radar was considered and the feasibility of obtaining a wide <span class="hlt">area</span> coverage to reduce the time required to image a given <span class="hlt">area</span> was investigated. Two basic approaches were examined; low altitude sun-synchronous orbits using a multibeam/multifrequency radar system and equatorial orbits up to near-synchronous altitude using a single beam system. Surveillance and mapping of <span class="hlt">ice</span> on the Great Lakes was used as a typical application to focus the study effort.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/990526-global-simulations-ice-nucleation-ice-supersaturation-improved-cloud-scheme-community-atmosphere-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/990526-global-simulations-ice-nucleation-ice-supersaturation-improved-cloud-scheme-community-atmosphere-model"><span>Global Simulations of <span class="hlt">Ice</span> nucleation and <span class="hlt">Ice</span> Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gettelman, A.; Liu, Xiaohong; Ghan, Steven J.</p> <p>2010-09-28</p> <p>A process-based treatment of <span class="hlt">ice</span> supersaturation and <span class="hlt">ice</span>-nucleation is implemented in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to <span class="hlt">ice</span>, (2) <span class="hlt">ice</span> nucleation by aerosol particles and (3) <span class="hlt">ice</span> cloud cover consistent with <span class="hlt">ice</span> microphysics. The scheme is implemented with a 4-class 2 moment microphysics code and is used to evaluate <span class="hlt">ice</span> cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of <span class="hlt">ice</span> mass and mixed phase cloud occurrence better than previous versions of the model. Simulations indicatemore » heterogeneous freezing and contact nucleation on dust are both potentially important over remote <span class="hlt">areas</span> of the Arctic. Cloud forcing and hence climate is sensitive to different formulations of the <span class="hlt">ice</span> microphysics. Arctic radiative fluxes are sensitive to the parameterization of <span class="hlt">ice</span> clouds. These results indicate that <span class="hlt">ice</span> clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1003986','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1003986"><span>Sulphur bath and mud <span class="hlt">pack</span> treatment for rheumatoid arthritis at the Dead Sea <span class="hlt">area</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sukenik, S; Buskila, D; Neumann, L; Kleiner-Baumgarten, A; Zimlichman, S; Horowitz, J</p> <p>1990-01-01</p> <p>Forty patients with classical or definite rheumatoid arthritis in a stage of active disease were treated for two weeks at a spa hotel. The patients were divided into four groups of 10. Group I was treated with daily mud <span class="hlt">packs</span>, group II with daily hot sulphur baths, group III with a combination of mud <span class="hlt">packs</span> and hot sulphur baths, and group IV served as a control group. The patients were assessed by a rheumatologist who was blinded to the treatment modalities. Statistically significant improvement for a period of up to three months was observed in the three treatment groups in most of the clinical indices. Improvement in the control group was minor in comparison and not statistically significant. No significant improvement was observed in any of the laboratory variables measured. Except for three mild cases of thermal reaction there were no side effects. PMID:2180388</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P11C3778E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P11C3778E"><span>Modeling Europa's <span class="hlt">Ice</span>-Ocean Interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elsenousy, A.; Vance, S.; Bills, B. G.</p> <p>2014-12-01</p> <p>This work focuses on modeling the <span class="hlt">ice</span>-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal <span class="hlt">ice</span> growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's <span class="hlt">ice</span>/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper <span class="hlt">ice</span> shell as well as the history of active turbulence at this <span class="hlt">area</span>. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's <span class="hlt">ice</span>/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal <span class="hlt">ice</span> growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's <span class="hlt">ice</span>-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil <span class="hlt">ice</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1242825','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1242825"><span>Investigations of Spatial and Temporal Variability of Ocean and <span class="hlt">Ice</span> Conditions in and Near the Marginal <span class="hlt">Ice</span> Zone. The “Marginal <span class="hlt">Ice</span> Zone Observations and Processes Experiment” (MIZOPEX) Final Campaign Summary</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>DeMott, P. J.; Hill, T. C.J.</p> <p></p> <p>Despite the significance of the marginal <span class="hlt">ice</span> zones of the Arctic Ocean, basic parameters such as sea surface temperature (SST) and a range of sea-<span class="hlt">ice</span> characteristics are still insufficiently understood in these <span class="hlt">areas</span>, and especially so during the summer melt period. The field campaigns summarized here, identified collectively as the “Marginal <span class="hlt">Ice</span> Zone Ocean and <span class="hlt">Ice</span> Observations and Processes Experiment” (MIZOPEX), were funded by U.S. National Aeronautic and Space Administration (NASA) with the intent of helping to address these information gaps through a targeted, intensive observation field campaign that tested and exploited unique capabilities of multiple classes of unmanned aerialmore » systems (UASs). MIZOPEX was conceived and carried out in response to NASA’s request for research efforts that would address a key <span class="hlt">area</span> of science while also helping to advance the application of UASs in a manner useful to NASA for assessing the relative merits of different UASs. To further exercise the potential of unmanned systems and to expand the science value of the effort, the field campaign added further challenges such as air deployment of miniaturized buoys and coordinating missions involving multiple aircraft. Specific research <span class="hlt">areas</span> that MIZOPEX data were designed to address include relationships between ocean skin temperatures and subsurface temperatures and how these evolve over time in an Arctic environment during summer; variability in sea-<span class="hlt">ice</span> conditions such as thickness, age, and albedo within the marginal <span class="hlt">ice</span> zone (MIZ); interactions of SST, salinity, and <span class="hlt">ice</span> conditions during the melt cycle; and validation of satellite-derived SST and <span class="hlt">ice</span> concentration fields provided by satellite imagery and models.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED564244.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED564244.pdf"><span>TLC <span class="hlt">Pack</span> Unpacked</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Oberhofer, Margret; Colpaert, Jozef</p> <p>2015-01-01</p> <p>TLC <span class="hlt">Pack</span> stands for Teaching Languages to Caregivers and is a course designed to support migrants working or hoping to work in the caregiving sector. The TLC <span class="hlt">Pack</span> resources range from A2 to B2 level of the Common European Framework of Reference for Languages (CEFR), and will be made available online in the six project languages: Dutch, English,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900033212&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbalance%2Bsheet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900033212&hterms=balance+sheet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbalance%2Bsheet"><span>Growth of Greenland <span class="hlt">ice</span> sheet - Interpretation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwally, H. Jay</p> <p>1989-01-01</p> <p>An observed 0.23 m/year thickening of the Greenland <span class="hlt">ice</span> sheet indicates a 25 percent to 45 percent excess <span class="hlt">ice</span> accumulation over the amount required to balance the outward <span class="hlt">ice</span> flow. The implied global sea-level depletion is 0.2 to 0.4 mm/year, depending on whether the thickening is only recent (5 to 10 years) or longer term (less than 100 years). If there is a similar imbalance in the northern 60 percent of the <span class="hlt">ice</span>-sheet <span class="hlt">area</span>, the depletion is 0.35 to 0.7 mm/year. Increasing <span class="hlt">ice</span> thickness suggests that the precipitation is higher than the long-term average; higher precipitation may be a characteristic of warmer climates in polar regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12.1921M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12.1921M"><span>Reflective properties of melt ponds on sea <span class="hlt">ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malinka, Aleksey; Zege, Eleonora; Istomina, Larysa; Heygster, Georg; Spreen, Gunnar; Perovich, Donald; Polashenski, Chris</p> <p>2018-06-01</p> <p>Melt ponds occupy a large part of the Arctic sea <span class="hlt">ice</span> in summer and strongly affect the radiative budget of the atmosphere-<span class="hlt">ice</span>-ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea <span class="hlt">ice</span> (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea <span class="hlt">ice</span>. Using the Wentzel-Kramers-Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea <span class="hlt">ice</span> is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond <span class="hlt">ice</span> spectral albedo is determined by two independent scalar values: the transport scattering coefficient and <span class="hlt">ice</span> layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, <span class="hlt">ice</span> layer thickness H, and transport scattering coefficient of <span class="hlt">ice</span> σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and <span class="hlt">pack</span> <span class="hlt">ice</span> in the Arctic. The measured pond albedo</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080047000&hterms=export&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dexport','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080047000&hterms=export&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dexport"><span>Baffin Bay <span class="hlt">Ice</span> Drift and Export: 2002-2007</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwok, Ron</p> <p>2007-01-01</p> <p>Multiyear estimates of sea <span class="hlt">ice</span> drift in Baffin Bay and Davis Strait are derived for the first time from the 89 GHz channel of the AMSR-E instrument. Uncertainties in the drift estimates, assessed with Envisat <span class="hlt">ice</span> motion, are approximately 2-3 km/day. A persistent atmospheric trough, between the coast of Greenland and Baffin Island, drives the prevailing southward drift pattern with average daily displacements in excess of 18-20 km during winter. Over the 5-year record, the <span class="hlt">ice</span> export ranges between 360 and 675 x 10(exp 3) km(exp 2), with an average of 530 x 10(exp 3) km(exp 2). Sea <span class="hlt">ice</span> <span class="hlt">area</span> inflow from the Nares Strait, Lancaster Sound and Jones Sound potentially contribute up to a third of the net <span class="hlt">area</span> outflow while <span class="hlt">ice</span> production at the North Water Polynya contributes the balance. Rough estimates of annual volume export give approximately 500-800 km(exp 3). Comparatively, these are approximately 70% and approximately 30% of the annual <span class="hlt">area</span> and Strait.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A54D..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A54D..06M"><span>The Impact of Cloud Properties on Young Sea <span class="hlt">Ice</span> during Three Winter Storms at N-<span class="hlt">ICE</span>2015</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murphy, S. Y.; Walden, V. P.; Cohen, L.; Hudson, S. R.</p> <p>2017-12-01</p> <p>The impact of clouds on sea <span class="hlt">ice</span> varies significantly as cloud properties change. Instruments deployed during the Norwegian Young Sea <span class="hlt">Ice</span> field campaign (N-<span class="hlt">ICE</span>2015) are used to study how differing cloud properties influence the cloud radiative forcing at the sea <span class="hlt">ice</span> surface. N-<span class="hlt">ICE</span>2015 was the first campaign in the Arctic winter since SHEBA (1997/1998) to study the surface energy budget of sea <span class="hlt">ice</span> and the associated effects of cloud properties. Cloud characteristics, surface radiative and turbulent fluxes, and meteorological properties were measured throughout the field campaign. Here we explore how cloud macrophysical and microphysical properties affect young, thin sea <span class="hlt">ice</span> during three winter storms from 31 January to 15 February 2015. This time period is of interest due to the varying surface and atmospheric conditions, which showcase the variety of conditions the newly-formed sea <span class="hlt">ice</span> can experience during the winter. This period was characterized by large variations in the <span class="hlt">ice</span> surface and near-surface air temperatures, with highs near 0°C when warm, moist air was advected into the <span class="hlt">area</span> and lows reaching -40°C during clear, calm periods between storms. The advection of warm, moist air into the <span class="hlt">area</span> influenced the cloud properties and enhanced the downwelling longwave flux. For most of the period, downwelling longwave flux correlates closely with the air temperature. However, at the end of the first storm, a drop in downwelling longwave flux of about 50 Wm-2 was observed, independent of any change in surface or air temperature or cloud fraction, indicating a change in cloud properties. Lidar data show an increase in cloud height during this period and a potential shift in cloud phase from <span class="hlt">ice</span> to mixed-phase. This study will describe the cloud properties during the three winter storms and discuss their impacts on surface energy budget.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=British+AND+Petroleum&id=ED179378','ERIC'); return false;" href="https://eric.ed.gov/?q=British+AND+Petroleum&id=ED179378"><span>An Evaluation of the Use by Teachers of British Petroleum's Multi-Media Resource <span class="hlt">Pack</span>, A North Sea Adventure.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Scott, Jean; Lloyd, Gerald</p> <p></p> <p>Presented is an evaluation of a multi-media resource <span class="hlt">pack</span>, available from British Petroleum Corporation, which details the discovery and extraction of North Sea oil. The evaluation presented includes three thrusts: (1) a determination of the <span class="hlt">areas</span> where the <span class="hlt">packs</span> were distributed; (2) personal interviews with teachers who had used the <span class="hlt">packs</span>; and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33E..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33E..07F"><span>Routine Mapping of the Snow Depth Distribution on Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farrell, S. L.; Newman, T.; Richter-Menge, J.; Dattler, M.; Paden, J. D.; Yan, S.; Li, J.; Leuschen, C.</p> <p>2016-12-01</p> <p>The annual growth and retreat of the polar sea <span class="hlt">ice</span> cover is influenced by the seasonal accumulation, redistribution and melt of snow on sea <span class="hlt">ice</span>. Due to its high albedo and low thermal conductivity, snow is also a controlling parameter in the mass and energy budgets of the polar climate system. Under a changing climate scenario it is critical to obtain reliable and routine measurements of snow depth, across basin scales, and long time periods, so as to understand regional, seasonal and inter-annual variability, and the subsequent impacts on the sea <span class="hlt">ice</span> cover itself. Moreover the snow depth distribution remains a significant source of uncertainty in the derivation of sea <span class="hlt">ice</span> thickness from remote sensing measurements, as well as in numerical model predictions of future climate state. Radar altimeter systems flown onboard NASA's Operation <span class="hlt">Ice</span>Bridge (OIB) mission now provide annual measurements of snow across both the Arctic and Southern Ocean <span class="hlt">ice</span> <span class="hlt">packs</span>. We describe recent advances in the processing techniques used to interpret airborne radar waveforms and produce accurate and robust snow depth results. As a consequence of instrument effects and data quality issues associated with the initial release of the OIB airborne radar data, the entire data set was reprocessed to remove coherent noise and sidelobes in the radar echograms. These reprocessed data were released to the community in early 2016, and are available for improved derivation of snow depth. Here, using the reprocessed data, we present the results of seven years of radar measurements collected over Arctic sea <span class="hlt">ice</span> at the end of winter, just prior to melt. Our analysis provides the snow depth distribution on both seasonal and multi-year sea <span class="hlt">ice</span>. We present the inter-annual variability in snow depth for both the Central Arctic and the Beaufort/Chukchi Seas. We validate our results via comparison with temporally and spatially coincident in situ measurements gathered during many of the OIB surveys. The results</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3322824','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3322824"><span>Structural Basis for Antifreeze Activity of <span class="hlt">Ice</span>-binding Protein from Arctic Yeast*</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Jun Hyuck; Park, Ae Kyung; Do, Hackwon; Park, Kyoung Sun; Moh, Sang Hyun; Chi, Young Min; Kim, Hak Jun</p> <p>2012-01-01</p> <p>Arctic yeast Leucosporidium sp. produces a glycosylated <span class="hlt">ice</span>-binding protein (LeIBP) with a molecular mass of ∼25 kDa, which can lower the freezing point below the melting point once it binds to <span class="hlt">ice</span>. LeIBP is a member of a large class of <span class="hlt">ice</span>-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-Å resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed β-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96–115 form a long α-helix that <span class="hlt">packs</span> along one face of the β-helix), and a C-terminal hydrophobic loop region (243PFVPAPEVV251). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn185 provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for <span class="hlt">ice</span> binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common β-helical fold similar to that of canonical hyperactive antifreeze proteins, the <span class="hlt">ice</span>-binding site is more complex and does not have a simple <span class="hlt">ice</span>-binding motif. In conclusion, we could identify the <span class="hlt">ice</span>-binding site of LeIBP and discuss differences in the <span class="hlt">ice</span>-binding modes compared with other known antifreeze proteins and <span class="hlt">ice</span>-binding proteins. PMID:22303017</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714301S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714301S"><span>Validating Cryosat-2 elevation estimates with airborne laser scanner data for the Greenland <span class="hlt">ice</span> sheet, Austfonna and Devon <span class="hlt">ice</span> caps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simonsen, Sebastian B.; Sandberg Sørensen, Louise; Nilsson, Johan; Helm, Veit; Langley, Kirsty A.; Forsberg, Rene; Hvidegaard, Sine M.; Skourup, Henriette</p> <p>2015-04-01</p> <p>The ESA CryoSat-2 satellite, launched in late 2010, carries a new type of radar altimeter especially designed for monitoring changes of sea and land <span class="hlt">ice</span>. The radar signal might penetrate into the snow <span class="hlt">pack</span> and the depth of the radar reflecting surface depends on the ratio between the surface and the volume backscatter, which is a function of several different properties such as snow density, crystal structure and surface roughness. In case of large volume scatter, the radar waveforms become broad and the determination of the range (surface elevation) becomes more difficult. Different algorithms (retrackers) are used for the range determination, and estimated surface penetration is highly dependent on the applied retracker. As part of the ESA-CryoVEx/CryoVal-Land <span class="hlt">Ice</span> projects, DTU Space has gathered accurate airborne laser scanner elevation measurements. Sites on the Greenland <span class="hlt">ice</span> sheet, Austfonna and Devon <span class="hlt">ice</span> caps, has been surveyed repeatedly, aligned with Cryosat-2 ground tracks and surface experiments. Here, we utilize elevation estimates from available Cryosat-2 retrackers (ESA level-2 retracker, DTU retracker, etc.) and validate the elevation measurements against ESA-CryoVEx campaigns. A difference between laser and radar elevations is expected due to radar penetration issues, however an inter-comparison between retrackers will shed light on individual performances and biases. Additionally, the geo-location of the radar return will also be a determining factor for the precision. Ultimately, the use of multiple retrackers can provide information about subsurface conditions and utilize more of the waveform information than presently used in radar altimetry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880059050&hterms=europa+ice&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Deuropa%2Bice','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880059050&hterms=europa+ice&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Deuropa%2Bice"><span>Friction of <span class="hlt">ice</span>. [on Ganymede, Callisto, and Europa surfaces</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beeman, M.; Durham, W. B.; Kirby, S. H.</p> <p>1988-01-01</p> <p>Frictional sliding experiments were performed on saw-cut samples of laboratory-made polycrystalline water <span class="hlt">ice</span>, prepared in the same way as the material used by Kirby et al. (1987) in <span class="hlt">ice</span> deformation experiments. The data show that the maximum frictional stress is a function of the normal stress but is not measurably dependent on temperature or sliding rate over the ranges covered in these experiments (77-115 K and 0.0003-0.03 mm/s, respectively). The sliding behavior was invariably stick slip, with the sliding surfaces exhibiting only minor gouge development. In samples with anomalously low strength, a curious arrangement of densely <span class="hlt">packed</span> short vertical fractures was observed. The results of these experiments were applied to a model of near-surface tectonic activity on Ganymede, one of Jupiter's icy moons. The results indicate that a global expansion on Ganymede of 3 linear percent will cause extensional movement on preexisting faults at depths to 7 + or - 3 km.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009528','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009528"><span>Antarctic Sea <span class="hlt">Ice</span> Variability and Trends, 1979-2010</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, C. L.; Cavalieri, D. J.</p> <p>2012-01-01</p> <p>In sharp contrast to the decreasing sea <span class="hlt">ice</span> coverage of the Arctic, in the Antarctic the sea <span class="hlt">ice</span> cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978 - December 2010 reveal an overall positive trend in <span class="hlt">ice</span> extents of 17,100 +/- 2,300 square km/yr. Much of the increase, at 13,700 +/- 1,500 square km/yr, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea <span class="hlt">ice</span> decreases, with an overall <span class="hlt">ice</span> extent trend of -8,200 +/- 1,200 square km/yr. When examined through the annual cycle over the 32-year period 1979-2010, the Southern Hemisphere sea <span class="hlt">ice</span> cover as a whole experienced positive <span class="hlt">ice</span> extent trends in every month, ranging in magnitude from a low of 9,100 +/- 6,300 square km/yr in February to a high of 24,700 +/- 10,000 square km/yr in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing <span class="hlt">ice-area</span> results to <span class="hlt">ice</span>-extent results, in each case the <span class="hlt">ice-area</span> trend has the same sign as the <span class="hlt">ice</span>-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing <span class="hlt">ice</span> concentrations and others with overall decreasing <span class="hlt">ice</span> concentrations. The strong pattern of decreasing <span class="hlt">ice</span> coverage in the Bellingshausen/Amundsen Seas region and increasing <span class="hlt">ice</span> coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C54A..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C54A..03L"><span>Inferring unknow boundary conditions of the Greenland <span class="hlt">Ice</span> Sheet by assimilating ICESat-1 and <span class="hlt">Ice</span>Bridge altimetry intothe <span class="hlt">Ice</span> Sheet System Model.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Larour, E. Y.; Khazendar, A.; Seroussi, H. L.; Schlegel, N.; Csatho, B. M.; Schenk, A. F.; Rignot, E. J.; Morlighem, M.</p> <p>2014-12-01</p> <p>Altimetry signals from missions such as ICESat-1, CryoSat, EnviSat, as well as altimeters onboard Operation <span class="hlt">Ice</span>Bridge provide vital insights into processes such as surface mass balance, mass transport and <span class="hlt">ice</span>-flow dynamics. Historically however, <span class="hlt">ice</span>-flow models have been focused on assimilating surface velocities from satellite-based radar observations, to infer properties such as basal friction or the position of the bedrock. Here, we leverage a new methodology based on automatic differentation of the <span class="hlt">Ice</span> Sheet System Model to assimilate surface altimetry data into a reconstruction of the past decade of <span class="hlt">ice</span> flow on the North Greenland <span class="hlt">area</span>. We infer corrections to boundary conditions such as basal friction and surface mass balance, as well as corrections to the <span class="hlt">ice</span> hardness, to best-match the observed altimetry record. We compare these corrections between glaciers such as Petermann Glacier, 79 North and Zacchariae Isstrom. The altimetry signals exhibit very different patterns between East and West, which translate into very different signatures for the inverted boundary conditions. This study gives us greater insights into what differentiates different basins, both in terms of mass transport and <span class="hlt">ice</span>-flow dynamics, and what could bethe controlling mechanisms behind the very different evolutions of these basins.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5475A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5475A"><span><span class="hlt">Ice</span> thickness measurements and volume estimates for glaciers in Norway</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreassen, Liss M.; Huss, Matthias; Melvold, Kjetil; Elvehøy, Hallgeir; Winsvold, Solveig H.</p> <p>2014-05-01</p> <p>Whereas glacier <span class="hlt">areas</span> in many mountain regions around the world now are well surveyed using optical satellite sensors and available in digital inventories, measurements of <span class="hlt">ice</span> thickness are sparse in comparison and a global dataset does not exist. Since the 1980s <span class="hlt">ice</span> thickness measurements have been carried out by ground penetrating radar on many glaciers in Norway, often as part of contract work for hydropower companies with the aim to calculate hydrological divides of <span class="hlt">ice</span> caps. Measurements have been conducted on numerous glaciers, covering the largest <span class="hlt">ice</span> caps as well as a few smaller mountain glaciers. However, so far no <span class="hlt">ice</span> volume estimate for Norway has been derived from these measurements. Here, we give an overview of <span class="hlt">ice</span> thickness measurements in Norway, and use a distributed model to interpolate and extrapolate the data to provide an <span class="hlt">ice</span> volume estimate of all glaciers in Norway. We also compare the results to various volume-<span class="hlt">area</span>/thickness-scaling approaches using values from the literature as well as scaling constants we obtained from <span class="hlt">ice</span> thickness measurements in Norway. Glacier outlines from a Landsat-derived inventory from 1999-2006 together with a national digital elevation model were used as input data for the <span class="hlt">ice</span> volume calculations. The inventory covers all glaciers in mainland Norway and consists of 2534 glaciers (3143 glacier units) covering an <span class="hlt">area</span> of 2692 km2 ± 81 km2. To calculate the <span class="hlt">ice</span> thickness distribution of glaciers in Norway we used a distributed model which estimates surface mass balance distribution, calculates the volumetric balance flux and converts it into thickness using the flow law for <span class="hlt">ice</span>. We calibrated this model with <span class="hlt">ice</span> thickness data for Norway, mainly by adjusting the mass balance gradient. Model results generally agree well with the measured values, however, larger deviations were found for some glaciers. The total <span class="hlt">ice</span> volume of Norway was estimated to be 275 km3 ± 30 km3. From the <span class="hlt">ice</span> thickness data set we selected</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5..633N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5..633N"><span>Increasing transnational sea-<span class="hlt">ice</span> exchange in a changing Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newton, Robert; Pfirman, Stephanie; Tremblay, Bruno; DeRepentigny, Patricia</p> <p>2017-06-01</p> <p>The changing Arctic sea-<span class="hlt">ice</span> cover is likely to impact the trans-border exchange of sea <span class="hlt">ice</span> between the exclusive economic zones (EEZs) of the Arctic nations, affecting the risk of <span class="hlt">ice</span>-rafted contamination. We apply the Lagrangian <span class="hlt">Ice</span> Tracking System (LITS) to identify sea-<span class="hlt">ice</span> formation events and track sea <span class="hlt">ice</span> to its melt locations. Most <span class="hlt">ice</span> (52%) melts within 100 km of where it is formed; ca. 21% escapes from its EEZ. Thus, most contaminants will be released within an <span class="hlt">ice</span> parcel's originating EEZ, while material carried by over 1 00,000 km2 of ice—an <span class="hlt">area</span> larger than France and Germany combined—will be released to other nations' waters. Between the periods 1988-1999 and 2000-2014, sea-<span class="hlt">ice</span> formation increased by ˜17% (roughly 6 million km2 vs. 5 million km2 annually). Melting peaks earlier; freeze-up begins later; and the central Arctic Ocean is more prominent in both formation and melt in the later period. The total <span class="hlt">area</span> of <span class="hlt">ice</span> transported between EEZs increased, while transit times decreased: for example, Russian <span class="hlt">ice</span> reached melt locations in other nations' EEZs an average of 46% faster while North American <span class="hlt">ice</span> reached destinations in Eurasian waters an average of 37% faster. Increased trans-border exchange is mainly a result of increased speed (˜14% per decade), allowing first-year <span class="hlt">ice</span> to escape the summer melt front, even as the front extends further north. Increased trans-border exchange over shorter times is bringing the EEZs of the Arctic nations closer together, which should be taken into account in policy development—including establishment of marine-protected <span class="hlt">areas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/981847','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/981847"><span>Controls on Arctic sea <span class="hlt">ice</span> from first-year and multi-year survival rates</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hunke, Jes</p> <p>2009-01-01</p> <p>The recent decrease in Arctic sea <span class="hlt">ice</span> cover has transpired with a significant loss of multi year <span class="hlt">ice</span>. The transition to an Arctic that is populated by thinner first year sea <span class="hlt">ice</span> has important implications for future trends in <span class="hlt">area</span> and volume. Here we develop a reduced model for Arctic sea <span class="hlt">ice</span> with which we investigate how the survivability of first year and multi year <span class="hlt">ice</span> control the mean state, variability, and trends in <span class="hlt">ice</span> <span class="hlt">area</span> and volume.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCry....8.2409L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCry....8.2409L"><span><span class="hlt">Ice</span> and AIS: ship speed data and sea <span class="hlt">ice</span> forecasts in the Baltic Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löptien, U.; Axell, L.</p> <p>2014-12-01</p> <p>The Baltic Sea is a seasonally <span class="hlt">ice</span>-covered marginal sea located in a densely populated <span class="hlt">area</span> in northern Europe. Severe sea <span class="hlt">ice</span> conditions have the potential to hinder the intense ship traffic considerably. Thus, sea <span class="hlt">ice</span> fore- and nowcasts are regularly provided by the national weather services. Typically, the forecast comprises several <span class="hlt">ice</span> properties that are distributed as prognostic variables, but their actual usefulness is difficult to measure, and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the automatic identification system (AIS), with the respective forecasted <span class="hlt">ice</span> conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62-67% of ship speed variations can be explained by the forecasted <span class="hlt">ice</span> properties when fitting a mixed-effect model. This statistical fit is based on a test region in the Bothnian Sea during the severe winter 2011 and employs 15 to 25 min averages of ship speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCD.....8.3811L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCD.....8.3811L"><span><span class="hlt">Ice</span> and AIS: ship speed data and sea <span class="hlt">ice</span> forecasts in the Baltic Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Löptien, U.; Axell, L.</p> <p>2014-07-01</p> <p>The Baltic Sea is a seasonally <span class="hlt">ice</span> covered marginal sea located in a densely populated <span class="hlt">area</span> in northern Europe. Severe sea <span class="hlt">ice</span> conditions have the potential to hinder the intense ship traffic considerably. Thus, sea <span class="hlt">ice</span> fore- and nowcasts are regularly provided by the national weather services. Typically, several <span class="hlt">ice</span> properties are allocated, but their actual usefulness is difficult to measure and the ship captains must determine their relative importance and relevance for optimal ship speed and safety ad hoc. The present study provides a more objective approach by comparing the ship speeds, obtained by the Automatic Identification System (AIS), with the respective forecasted <span class="hlt">ice</span> conditions. We find that, despite an unavoidable random component, this information is useful to constrain and rate fore- and nowcasts. More precisely, 62-67% of ship speed variations can be explained by the forecasted <span class="hlt">ice</span> properties when fitting a mixed effect model. This statistical fit is based on a test region in the Bothnian Bay during the severe winter 2011 and employes 15 to 25 min averages of ship speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26339489','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26339489"><span><span class="hlt">Ice</span> swimming - '<span class="hlt">Ice</span> Mile' and '1 km <span class="hlt">Ice</span> event'.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Knechtle, Beat; Rosemann, Thomas; Rüst, Christoph A</p> <p>2015-01-01</p> <p><span class="hlt">Ice</span> swimming for 1 mile and 1 km is a new discipline in open-water swimming since 2009. This study examined female and male performances in swimming 1 mile ('<span class="hlt">Ice</span> Mile') and 1 km ('1 km <span class="hlt">Ice</span> event') in water of 5 °C or colder between 2009 and 2015 with the hypothesis that women would be faster than men. Between 2009 and 2015, 113 men and 38 women completed one '<span class="hlt">Ice</span> Mile' and 26 men and 13 completed one '1 km <span class="hlt">Ice</span> event' in water colder than +5 °C following the rules of International <span class="hlt">Ice</span> Swimming Association (IISA). Differences in performance between women and men were determined. Sex difference (%) was calculated using the equation ([time for women] - [time for men]/[time for men] × 100). For '<span class="hlt">Ice</span> Mile', a mixed-effects regression model with interaction analyses was used to investigate the influence of sex and environmental conditions on swimming speed. The association between water temperature and swimming speed was assessed using Pearson correlation analyses. For '<span class="hlt">Ice</span> Mile' and '1 km <span class="hlt">Ice</span> event', the best men were faster than the best women. In '<span class="hlt">Ice</span> Mile', calendar year, number of attempts, water temperature and wind chill showed no association with swimming speed for both women and men. For both women and men, water temperature was not correlated to swimming speed in both '<span class="hlt">Ice</span> Mile' and '1 km <span class="hlt">Ice</span> event'. In water colder than 5 °C, men were faster than women in '<span class="hlt">Ice</span> Mile' and '1 km <span class="hlt">Ice</span> event'. Water temperature showed no correlation to swimming speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002APS..MARU31011L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002APS..MARU31011L"><span>Molecular <span class="hlt">Packing</span> of Amiphiphiles with Crown Polar Heads at the Air-Water Interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Larson, K.; Vaknin, D.; Villavicencio, O.; McGrath, D.; Tsukruk, V. V.</p> <p>2002-03-01</p> <p>An amphiphilic compound containing a benzyl-15-crown-5 focal point, azobenzene spacer, and a dodecyl tail as a peripheral group has been investigated at the air-water interface. X-ray grazing incident diffraction and reflectivity were preformed on the Langmuir monolayers to elucidate molecular <span class="hlt">packing</span> and orientation. At high surface pressure, we observed intralayer <span class="hlt">packing</span> of the alkyl tails with doubling parameters of the conventional orthorhombic unit cell (supercell) and long-range positional ordering. High tilt of the alkyl tails of about 58º from the surface normal was a signature of molecular <span class="hlt">packing</span> caused by a large mismatch between the cross-sectional <span class="hlt">areas</span> of the polar heads and the alkyl tail. Higher generation molecules of the same series display straight tail orientation and hexagonal lateral <span class="hlt">packing</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26186271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26186271"><span>Adhesive loose <span class="hlt">packings</span> of small dry particles.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A</p> <p>2015-08-28</p> <p>We explore adhesive loose <span class="hlt">packings</span> of small dry spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics and statistical ensemble theory. A dimensionless adhesion parameter (Ad) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive <span class="hlt">packings</span> for Ad > 1. The structural properties of the <span class="hlt">packings</span> in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes the correlation between bulk and contact spheres. Our theoretical and numerical results predict: (i) an equation of state for adhesive loose <span class="hlt">packings</span> that appear as a continuation from the frictionless random close <span class="hlt">packing</span> (RCP) point in the jamming phase diagram and (ii) the existence of an asymptotic adhesive loose <span class="hlt">packing</span> point at a coordination number Z = 2 and a <span class="hlt">packing</span> fraction ϕ = 1/2(3). Our results highlight that adhesion leads to a universal <span class="hlt">packing</span> regime at <span class="hlt">packing</span> fractions much smaller than the random loose <span class="hlt">packing</span> (RLP), which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of <span class="hlt">packings</span> in terms of their continuation from the spherical frictionless RCP.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33B0806H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33B0806H"><span>Discrimination of first year sea <span class="hlt">ice</span> thickness classes from a quad-Pol SAR image.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hudier, E. J. J.</p> <p>2016-12-01</p> <p>Several methods have been developed to relate the average scattering represented by a T3 matrix into a dominant physical mechanism. These decomposition theorems rewrite the coherency matrix as the sum of physical components. Data extracted through these methods can then be used to classify <span class="hlt">ice</span> <span class="hlt">areas</span> according to a similarity in the statistics regarding those components. As the <span class="hlt">ice</span> sheet is still thin enough to rupture under compressive forces, wind and current drag forces erect ridges at the periphery of un-deformed <span class="hlt">ice</span> plates while opening up leads in which a an <span class="hlt">ice</span> cover quickly develops. Freeze up under colder temperatures cause the <span class="hlt">ice</span> to retain more salt in its upper layers therefore altering radar scattering compared to older <span class="hlt">ice</span> <span class="hlt">areas</span>. The statistics presented in the result section were computed implementing an eigenvalue/eigenvector decomposition method coupled with a whishart classifier on RadarSat II images of a late spring sea <span class="hlt">ice</span>. It first shows a good resolution of the different <span class="hlt">ice</span> environments characterized as a) linear ridges, b) rubble fields, c) old un-deformed <span class="hlt">ice</span> and, d) young (thus thinner) un-deformed <span class="hlt">ice</span>. The alpha angle parameter is coherent with a dominant surface scattering mechanism all over the scene which is consistent with a late spring sea <span class="hlt">ice</span> and leads us to anticipate a classification mostly linked to surface roughness and <span class="hlt">ice</span> surface orientation (in ridges). It is thus interesting to note than un-deformed <span class="hlt">ice</span> <span class="hlt">areas</span> result in two separate classes. We observe that <span class="hlt">areas</span> of <span class="hlt">ice</span> formed later during the winter season are well identified and their limits clearly delineated. Whereas, other <span class="hlt">ice</span> <span class="hlt">areas</span> display a certain diversity in term of scattering mechanisms, this type of <span class="hlt">ice</span> turned out to be an almost perfect forward scatterer. While the main factor allowing to separate this type of <span class="hlt">ice</span> from the rest of the sea <span class="hlt">ice</span> may be the salt content of the surface layer, it gives an indirect way to discriminate sea <span class="hlt">ice</span> <span class="hlt">areas</span> of different</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ESASP.686E.365H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ESASP.686E.365H"><span>Comparison of Envisat ASAR and Submarine Sea <span class="hlt">Ice</span> Thickness Statistics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, Nicolas E.; Rodrigues, Joao; Wadhams, Peter</p> <p>2010-12-01</p> <p>In April 2004 and March 2007 the Royal Navy sent the submarine HMS Tireless on missions into the Arctic Ocean. On both occasions the submarine traversed the <span class="hlt">area</span> of remaining multi-year sea <span class="hlt">ice</span> at latitude 85°N north of Greenland acquiring <span class="hlt">ice</span> draft measurements using upward-looking sonar. The <span class="hlt">area</span> is outside of the "Gore Box" used for the release of U.S. Submarine data and was beyond the latitude range of the radar altimeter satellites available at that time. This paper compares <span class="hlt">ice</span> draft statistics with contemporary data from Envisat ASAR to evaluate the level of correlation between SAR backscatter and sea <span class="hlt">ice</span> thickness. The decline in sea <span class="hlt">ice</span> volume over the past decade has predominantly been caused by the loss of old multi-year <span class="hlt">ice</span> due to increased outflow through Fram Strait. Although Tireless found little decrease in the overall <span class="hlt">ice</span> thickness between 2004 and 2007, the <span class="hlt">ice</span> rheology was significantly changed with greatly increased quantities of first- and second-year <span class="hlt">ice</span> in 2007 than had been encountered in 2004. These are evident in changes to the <span class="hlt">ice</span> draft probability density functions (PDFs) and the <span class="hlt">ice</span> appearance as seen by the SAR, and presented here.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-200910220008HQ.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-200910220008HQ.html"><span><span class="hlt">Ice</span> Bridge Antarctic Sea <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-10-21</p> <p>Sea <span class="hlt">ice</span> is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation <span class="hlt">Ice</span> Bridge airborne Earth science mission to study Antarctic <span class="hlt">ice</span> sheets, sea <span class="hlt">ice</span>, and <span class="hlt">ice</span> shelves. Photo Credit: (NASA/Jane Peterson)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001525.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001525.html"><span>Extensive <span class="hlt">Ice</span> Fractures in the Beaufort Sea</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this view of extensive sea-<span class="hlt">ice</span> fracturing off the northern coast of Alaska. The event began in late-January and spread west toward Banks Island throughout February and March 2013. Visualizations of the Arctic often give the impression that the <span class="hlt">ice</span> cap is a continuous sheet of stationary, floating <span class="hlt">ice</span>. In fact, it is a collection of smaller pieces that constantly shift, crack, and grind against one another as they are jostled by winds and ocean currents. Especially during the summer—but even during the height of winter—cracks—or leads—open up between pieces of <span class="hlt">ice</span>. That was what was happening on the left side of the animation (seen here: bit.ly/10kE7sh) in late January. A high-pressure weather system was parked over the region, producing warmer temperatures and winds that flowed in a southwesterly direction. That fueled the Beaufort Gyre, a wind-driven ocean current that flows clockwise. The gyre was the key force pulling pieces of <span class="hlt">ice</span> west past Point Barrow, the northern nub of Alaska that protrudes into the Beaufort Sea. “A fracturing event in this <span class="hlt">area</span> is not unusual because the Beaufort Gyre tends to push <span class="hlt">ice</span> away from Banks Island and the Canadian Archipelago,” explained Walt Meier of the National Snow & <span class="hlt">Ice</span> Data Center (NSIDC). “Point Barrow can act like a ‘pin point’ where the <span class="hlt">ice</span> catches and fractures to the north and east.” In February, however, a series of storms passing over central Alaska exacerbated the fracturing. Strong westerly winds prompted several large pieces of <span class="hlt">ice</span> to break away in an arc-shaped wave that moved progressively east. By the end of February, large pieces of <span class="hlt">ice</span> had fractured all the way to the western coast of Banks Island, a distance of about 1,000 kilometers (600 miles). The data used to create the animation came from the longwave infrared (thermal) portion of the electromagnetic spectrum, so the animation illustrates how</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..189....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..189....1M"><span>Reconciling records of <span class="hlt">ice</span> streaming and <span class="hlt">ice</span> margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide <span class="hlt">Ice</span> Sheet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Margold, Martin; Stokes, Chris R.; Clark, Chris D.</p> <p>2018-06-01</p> <p> rates markedly increased after the YD and the <span class="hlt">ice</span> sheet became limited to the Canadian Shield. This hard-bed substrate brought a change in the character of <span class="hlt">ice</span> streaming, which became less frequent but generated much broader terrestrial <span class="hlt">ice</span> streams. The final collapse of the <span class="hlt">ice</span> sheet saw a series of small ephemeral <span class="hlt">ice</span> streams that resulted from the rapidly changing <span class="hlt">ice</span> sheet geometry in and around Hudson Bay. Our reconstruction indicates that the LIS underwent a transition from a topographically-controlled <span class="hlt">ice</span> drainage network at the LGM to an <span class="hlt">ice</span> drainage network characterised by less frequent, broad <span class="hlt">ice</span> streams during the later stages of deglaciation. These deglacial <span class="hlt">ice</span> streams are mostly interpreted as a reaction to localised <span class="hlt">ice</span>-dynamical forcing (flotation and calving of the <span class="hlt">ice</span> front in glacial lakes and transgressing sea; basal de-coupling due to large amount of meltwater reaching the bed, debuttressing due to rapid changes in <span class="hlt">ice</span> sheet geometry) rather than as conveyors of excess mass from the accumulation <span class="hlt">area</span> of the <span class="hlt">ice</span> sheet. At an <span class="hlt">ice</span> sheet scale, the <span class="hlt">ice</span> stream drainage network became less widespread and less efficient with the decreasing size of the deglaciating <span class="hlt">ice</span> sheet, the final elimination of which was mostly driven by surface melt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26852668','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26852668"><span>Pattern formations and optimal <span class="hlt">packing</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mityushev, Vladimir</p> <p>2016-04-01</p> <p>Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random <span class="hlt">packing</span> on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random <span class="hlt">packing</span> of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random <span class="hlt">packing</span>. It is demonstrated that all random <span class="hlt">packings</span> can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random <span class="hlt">packings</span>. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal <span class="hlt">packings</span> is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://kidshealth.org/en/teens/packing.html','NIH-MEDLINEPLUS'); return false;" href="https://kidshealth.org/en/teens/packing.html"><span>5 Reasons to <span class="hlt">Pack</span> Your Lunch</span></a></p> <p><a target="_blank" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... Staying Safe Videos for Educators Search English Español 5 Reasons to <span class="hlt">Pack</span> Your Lunch KidsHealth / For Teens / 5 Reasons to <span class="hlt">Pack</span> Your Lunch Print 5 Reasons to <span class="hlt">Pack</span> Your Lunch Most schools are ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17999163','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17999163"><span>Effects of vial <span class="hlt">packing</span> density on drying rate during freeze-drying of carbohydrates or a model protein measured using a vial-weighing technique.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gieseler, Henning; Lee, Geoffrey</p> <p>2008-02-01</p> <p>To determine the effects of vial <span class="hlt">packing</span> density in a laboratory freeze dryer on drying rate profiles of crystalline and amorphous formulations. The Christ freeze-drying balance measured cumulative water loss, m(t), and instantaneous drying rate, m(t), of water, mannitol, sucrose and sucrose/BSA formulations in commercial vials. Crystalline mannitol shows drying rate behaviour indicative of a largely homogeneous dried-product layer. The drying rate behaviour of amorphous sucrose indicates structural heterogeneity, postulated to come from shrinkage or microcollapse. Trehalose dries more slowly than sucrose. Addition of BSA to either disaccharide decreases primary drying time. Higher vial <span class="hlt">packing</span> density greatly reduces drying rate because of effects of radiation heat transfer from chamber walls to test vial. Plots of m(t) versus radical t and m(t) versus layer thickness (either <span class="hlt">ice</span> or dried-product) allow interpretation of changes in internal cake morphology during drying. Vial <span class="hlt">packing</span> density greatly influences these profiles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00578&hterms=europa+ice&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Deuropa%2Bice','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00578&hterms=europa+ice&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Deuropa%2Bice"><span>Europa <span class="hlt">Ice</span> Floes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p>Jupiter's moon Europa, as seen in this image taken June 27, 1996 by NASA's Galileo spacecraft, displays features in some <span class="hlt">areas</span> resembling <span class="hlt">ice</span> floes seen in Earth's polar seas. Europa, about the size of Earth's moon, has an icy crust that has been severely fractured, as indicated by the dark linear, curved, and wedged-shaped bands seen here. These fractures have broken the crust into plates as large as 30 kilometers (18.5 miles) across. <span class="hlt">Areas</span> between the plates are filled with material that was probably icy slush contaminated with rocky debris. Some individual plates were separated and rotated into new positions. Europa's density indicates that it has a shell of water <span class="hlt">ice</span> thicker than 100 kilometers (about 60 miles), parts of which could be liquid. Currently, water <span class="hlt">ice</span> could extend from the surface down to the rocky interior, but the features seen in this image suggest that motion of the disrupted icy plates was lubricated by soft <span class="hlt">ice</span> or liquid water below the surface at the time of disruption. This image covers part of the equatorial zone of Europa and was taken from a distance of 156,000 kilometers (about 96,300 miles) by the Solid-state Imaging Subsystem on the Galileo spacecraft. North is to the right and the sun is nearly directly overhead. The <span class="hlt">area</span> shown is about 510 by 989 kilometers (310-by-600 miles), and the smallest visible feature is about 1.6 kilometers (1 mile) across.<p/>The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science, Washington, DC.<p/>This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http:// www.jpl.nasa.gov/galileo/sepo.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C31A..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C31A..01G"><span>Seasonal Changes of Arctic Sea <span class="hlt">Ice</span> Physical Properties Observed During N-<span class="hlt">ICE</span>2015: An Overview</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.</p> <p>2015-12-01</p> <p>Arctic sea <span class="hlt">ice</span> is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea <span class="hlt">ice</span> growth, change and decay. We present preliminary results from in-situ observations on sea <span class="hlt">ice</span> in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four <span class="hlt">ice</span> floes, drifting with the sea <span class="hlt">ice</span> and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal <span class="hlt">ice</span> zone and <span class="hlt">ice</span> started to break up, before moving further north and starting the next drift. The ship stayed within the <span class="hlt">area</span> approximately 80°-83° N and 5°-25° E. While the expedition covered measurements in the atmosphere, the snow and sea <span class="hlt">ice</span> system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea <span class="hlt">ice</span>. Different <span class="hlt">ice</span> types could be investigated: young <span class="hlt">ice</span> in refrozen leads, first year <span class="hlt">ice</span>, and old <span class="hlt">ice</span>. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and <span class="hlt">ice</span> thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying <span class="hlt">ice</span> physical properties and texture, <span class="hlt">ice</span> cores were obtained regularly and analyzed. Optical properties of snow and <span class="hlt">ice</span> were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (<span class="hlt">ice</span> thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C53C..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C53C..03D"><span>A Decade of High-Resolution Arctic Sea <span class="hlt">Ice</span> Measurements from Airborne Altimetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.</p> <p>2017-12-01</p> <p>Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea <span class="hlt">ice</span> cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic <span class="hlt">ice</span> cover, which has thinned, and transitioned from a predominantly multi-year to first-year <span class="hlt">ice</span> cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and <span class="hlt">ice</span> thickness distribution, across a range of <span class="hlt">ice</span> types. Sensors routinely deployed as part of NASA's Operation <span class="hlt">Ice</span>Bridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea <span class="hlt">ice</span> data products that describe the snow depth and thickness of the Arctic <span class="hlt">ice</span> cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea <span class="hlt">ice</span> campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea <span class="hlt">ice</span> surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea <span class="hlt">ice</span> thickness distribution. Results are compared to satellite-derived <span class="hlt">ice</span> thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the <span class="hlt">ice</span> <span class="hlt">pack</span> over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43E0592P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43E0592P"><span>The Last Arctic Sea <span class="hlt">Ice</span> Refuge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.</p> <p>2010-12-01</p> <p>Summer sea <span class="hlt">ice</span> may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for <span class="hlt">ice</span>-associated species. Observations and models indicate that some <span class="hlt">ice</span> in this region forms locally, while some is transported to the <span class="hlt">area</span> by winds and ocean currents. Depending on future changes in melt patterns and sea <span class="hlt">ice</span> transport rates, both the central Arctic and Siberian shelf seas may be sources of <span class="hlt">ice</span> to the region. An international system of monitoring and management of the sea <span class="hlt">ice</span> refuge, along with the <span class="hlt">ice</span> source regions, has the potential to maintain viable habitat for <span class="hlt">ice</span>-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea <span class="hlt">ice</span> in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “<span class="hlt">ice</span> shed” contributing sea <span class="hlt">ice</span> to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of <span class="hlt">ice</span>-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920055266&hterms=sonar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsonar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920055266&hterms=sonar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsonar"><span>An <span class="hlt">ice</span>-ocean coupled model for the Northern Hemisphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cheng, Abe; Preller, Ruth</p> <p>1992-01-01</p> <p>The Hibler <span class="hlt">ice</span> model has been modified and adapted to a domain that includes most of the sea <span class="hlt">ice</span>-covered <span class="hlt">areas</span> in the Northern Hemisphere. This model, joined with the Cox ocean model, is developed as an enhancement to the U.S. Navy's sea <span class="hlt">ice</span> forecasting, PIPS, and is termed PIPS2.0. Generally, the modeled <span class="hlt">ice</span> edge is consistent with the Navy-NOAA Joint <span class="hlt">Ice</span> Center weekly analysis, and the modeled <span class="hlt">ice</span> thickness distribution agrees with submarine sonar data in the central Arctic basin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5339F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5339F"><span>Assessing the accuracy of Greenland <span class="hlt">ice</span> sheet <span class="hlt">ice</span> ablation measurements by pressure transducer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fausto, R. S.; van As, D.; Ahlstrøm, A. P.</p> <p>2012-04-01</p> <p>In the glaciological community there is a need for reliable mass balance measurements of glaciers and <span class="hlt">ice</span> sheets, ranging from daily to yearly time scales. Here we present a method to measure <span class="hlt">ice</span> ablation using a pressure transducer. The pressure transducer is drilled into the <span class="hlt">ice</span>, en-closed in a hose filled with a liquid that is non-freezable at common Greenlandic temperatures. The pressure signal registered by the transducer is that of the vertical column of liquid over the sensor, which can be translated in depth knowing the density of the liquid. As the free-standing AWS moves down with the ablating surface and the hose melts out of the <span class="hlt">ice</span>, an increasingly large part of the hose will lay flat on the <span class="hlt">ice</span> surface, and the hydrostatic pressure from the vertical column of liquid in the hose will get smaller. This reduction in pressure provides us with the ablation rate. By measuring at (sub-) daily timescales this assembly is well-suited to monitor <span class="hlt">ice</span> ablation in remote regions, with clear advantages over other well-established methods of measuring <span class="hlt">ice</span> ablation in the field. The pressure transducer system has the potential to monitor <span class="hlt">ice</span> ablation for several years without re-drilling and the system is suitable for high ablation <span class="hlt">areas</span>. A routine to transform raw measurements into ablation values will also be presented, including a physically based method to remove air pressure variability from the signal. The pressure transducer time-series is compared to that recorded by a sonic ranger for the climatically hostile setting on the Greenland <span class="hlt">ice</span> sheet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130011328','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130011328"><span><span class="hlt">Pack</span> Density Limitations of Hybrid Parachutes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwicker, Matthew L.; Sinclair, Robert J.</p> <p>2013-01-01</p> <p>The development and testing of the Orion crew capsule parachute system has provided a unique opportunity to study dense parachute <span class="hlt">packing</span> techniques and limits, in order to establish a new baseline for future programs. The density of parachute <span class="hlt">packs</span> has a significant influence on vibration loads, retention system stresses, and parachute mortar performance. Material compositions and <span class="hlt">pack</span> densities of existing designs for space capsule recovery were compared, using the <span class="hlt">pack</span> density of the Apollo main parachutes as the current baseline. The composition of parachutes has changed since Apollo, incorporating new materials such as Kevlar , Vectran , Teflon and Spectra . These materials have different specific densities than Nylon, so the densities of hybrid parachute <span class="hlt">packs</span> cannot be directly compared to Nylon parachutes for determination of feasibility or volume allocation. Six parachute <span class="hlt">packs</span> were evaluated in terms of weighted average solid density in order to achieve a non-dimensional comparison of <span class="hlt">packing</span> density. Means of mitigating damage due to <span class="hlt">packing</span> pressure and mortar firing were examined in light of the Capsule Parachute Assembly System (CPAS) and Apollo experience. Parachute design improvements including incorporation of modern materials and manufacturing processes serves to make CPAS the new knowledge base on which future spacecraft parachute systems will be built.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC31H1195T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC31H1195T"><span>A regional-scale estimation of <span class="hlt">ice</span> wedge <span class="hlt">ice</span> volumes in the Canadian High Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Templeton, M.; Pollard, W. H.; Grand'Maison, C. B.</p> <p>2016-12-01</p> <p><span class="hlt">Ice</span> wedges are both prominent and environmentally vulnerable features in continuous permafrost environments. As the world's Arctic regions begin to warm, concern over the potential effects of <span class="hlt">ice</span> wedge melt out has become an immediate issue, receiving much attention in the permafrost literature. In this study we estimate the volume of <span class="hlt">ice</span> wedge <span class="hlt">ice</span> for large <span class="hlt">areas</span> in the Canadian High Arctic through the use of high resolution satellite imagery and the improved capabilities of Geographic Information Systems (GIS). The methodology used for this study is similar to that of one performed in Siberia and Alaska by Ulrich et al, in 2014. Utilizing Ulrich's technique, this study detected <span class="hlt">ice</span> wedge polygons from satellite imagery using ArcGIS. The average width and depth of these <span class="hlt">ice</span> wedges were obtained from a combination of field data and long-term field studies for the same location. The assumptions used in the analysis of <span class="hlt">ice</span> wedge volume have been tested, including trough width being representative of <span class="hlt">ice</span> wedge width, and <span class="hlt">ice</span> wedge <span class="hlt">ice</span> content (Pollard and French 1980). This study used specific field sites located near Eureka on Ellesmere Island (N80°01', W85°43') and at Expedition Fiord on Axel Heiberg Island (N79°23', W90°59'). The preliminary results indicate that the methodology used by Ulrich et al, 2014 is transferrable to the Canadian High Arctic, and that <span class="hlt">ice</span> wedge volumes range between 3-10% of the upper part of permafrost. These findings are similar to previous studies and their importance is made all the more evident by the dynamic nature of <span class="hlt">ice</span> wedges where it could be argued that they are a key driver of thermokarst terrain. The ubiquitous nature of <span class="hlt">ice</span> wedges across arctic terrain highlights the importance and the need to improve our understanding of <span class="hlt">ice</span> wedge dynamics, as subsidence from <span class="hlt">ice</span> wedge melt-out could lead to large scale landscape change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080045469&hterms=conversion+rate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dconversion%2Brate%2527','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080045469&hterms=conversion+rate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dconversion%2Brate%2527"><span>Antarctic Sea <span class="hlt">Ice</span> Thickness and Snow-to-<span class="hlt">Ice</span> Conversion from Atmospheric Reanalysis and Passive Microwave Snow Depth</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Markus, Thorsten; Maksym, Ted</p> <p>2007-01-01</p> <p>Passive microwave snow depth, <span class="hlt">ice</span> concentration, and <span class="hlt">ice</span> motion estimates are combined with snowfall from the European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis (ERA-40) from 1979-200 1 to estimate the prevalence of snow-to-<span class="hlt">ice</span> conversion (snow-<span class="hlt">ice</span> formation) on level sea <span class="hlt">ice</span> in the Antarctic for April-October. Snow <span class="hlt">ice</span> is ubiquitous in all regions throughout the growth season. Calculated snow- <span class="hlt">ice</span> thicknesses fall within the range of estimates from <span class="hlt">ice</span> core analysis for most regions. However, uncertainties in both this analysis and in situ data limit the usefulness of snow depth and snow-<span class="hlt">ice</span> production to evaluate the accuracy of ERA-40 snowfall. The East Antarctic is an exception, where calculated snow-<span class="hlt">ice</span> production exceeds observed <span class="hlt">ice</span> thickness over wide <span class="hlt">areas</span>, suggesting that ERA-40 precipitation is too high there. Snow-<span class="hlt">ice</span> thickness variability is strongly controlled not just by snow accumulation rates, but also by <span class="hlt">ice</span> divergence. Surprisingly, snow-<span class="hlt">ice</span> production is largely independent of snow depth, indicating that the latter may be a poor indicator of total snow accumulation. Using the presence of snow-<span class="hlt">ice</span> formation as a proxy indicator for near-zero freeboard, we examine the possibility of estimating level <span class="hlt">ice</span> thickness from satellite snow depths. A best estimate for the mean level <span class="hlt">ice</span> thickness in September is 53 cm, comparing well with 51 cm from ship-based observations. The error is estimated to be 10-20 cm, which is similar to the observed interannual and regional variability. Nevertheless, this is comparable to expected errors for <span class="hlt">ice</span> thickness determined by satellite altimeters. Improvement in satellite snow depth retrievals would benefit both of these methods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171003','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171003"><span>Role of ground <span class="hlt">ice</span> dynamics and ecological feedbacks in recent <span class="hlt">ice</span> wedge degradation and stabilization</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.</p> <p>2015-01-01</p> <p>Ground <span class="hlt">ice</span> is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. <span class="hlt">Ice</span> wedges, which form near the surface and are the dominant type of massive <span class="hlt">ice</span> in the Arctic, are particularly vulnerable to warming. Yet processes controlling <span class="hlt">ice</span> wedge degradation and stabilization are poorly understood. Here we quantified <span class="hlt">ice</span> wedge volume and degradation rates, compared ground <span class="hlt">ice</span> characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean <span class="hlt">ice</span> wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (<span class="hlt">area</span> of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, <span class="hlt">ice</span>-poor transient layer, <span class="hlt">ice</span>-rich intermediate layer, thermokarst cave <span class="hlt">ice</span>, and wedge <span class="hlt">ice</span> varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground <span class="hlt">ice</span> to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground <span class="hlt">ice</span> dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRF..120.2280J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRF..120.2280J"><span>Role of ground <span class="hlt">ice</span> dynamics and ecological feedbacks in recent <span class="hlt">ice</span> wedge degradation and stabilization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.</p> <p>2015-11-01</p> <p>Ground <span class="hlt">ice</span> is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. <span class="hlt">Ice</span> wedges, which form near the surface and are the dominant type of massive <span class="hlt">ice</span> in the Arctic, are particularly vulnerable to warming. Yet processes controlling <span class="hlt">ice</span> wedge degradation and stabilization are poorly understood. Here we quantified <span class="hlt">ice</span> wedge volume and degradation rates, compared ground <span class="hlt">ice</span> characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean <span class="hlt">ice</span> wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (<span class="hlt">area</span> of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, <span class="hlt">ice</span>-poor transient layer, <span class="hlt">ice</span>-rich intermediate layer, thermokarst cave <span class="hlt">ice</span>, and wedge <span class="hlt">ice</span> varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground <span class="hlt">ice</span> to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground <span class="hlt">ice</span> dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C21C1128W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C21C1128W"><span>Seasonal <span class="hlt">Ice</span> Wedge Dynamics in Fosheim Peninsula, Ellesmere Island, Nunavut</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ward, M. K.; Pollard, W. H.</p> <p>2017-12-01</p> <p><span class="hlt">Areas</span> with <span class="hlt">ice</span>-rice permafrost are vulnerable to thermokarst (lowering of the land surface from melting ground <span class="hlt">ice</span>). The Fosheim Peninsula on Ellesmere Island, Nunavut is a high Arctic polar desert system with cold permafrost 500 m thick that is <span class="hlt">ice</span>-rich in the upper 20 - 30 m. Our team has been monitoring changing permafrost conditions on the Fosheim since 1990. In this <span class="hlt">area</span> ground <span class="hlt">ice</span> consists mainly of <span class="hlt">ice</span>-wedge <span class="hlt">ice</span> and massive tabular <span class="hlt">ice</span> bodies. With a mean annual temperature of - 19°C, the <span class="hlt">area</span> is still sensitive to thermokarst as experienced in 2012; one of the warmest summers on record there was a three-fold increase in thermokarst, with the accelerated deepening of <span class="hlt">ice</span> wedge troughs and the development of retrogressive thaw slumps. In this study, 7 <span class="hlt">ice</span> wedges were monitored for 7 weeks in July and August, 2017. <span class="hlt">Ice</span> wedges were chosen to represent different conditions including varying tough depths (0.36 m to 1.2 m), secondary wedge, varying plant cover (heavily covered to bare soil) and one wedge initially experienced ponding from snow melt that subsequently drained. Data collected included active layer depth measurements, soil moisture, ground temperatures at <span class="hlt">ice</span> wedge through and polygon centres, dGPS and GPR surveys. Using Worldview 2 satellite imagery from 2008, 2012, 2016, these sites were compared to assess changes in polygons at a landscape scale. <span class="hlt">Ice</span> wedges are ubiquitous to the arctic but may respond differently within different high Arctic environments. With the majority of studies being focused in the lower arctic, this study provides important field data from a high arctic site.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150019752','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150019752"><span>Preliminary Findings of Inflight <span class="hlt">Icing</span> Field Test to Support <span class="hlt">Icing</span> Remote Sensing Technology Assessment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, Michael; Reehorst, Andrew; Serke, Dave</p> <p>2015-01-01</p> <p>NASA and the National Center for Atmospheric Research have developed an <span class="hlt">icing</span> remote sensing technology that has demonstrated skill at detecting and classifying <span class="hlt">icing</span> hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize a vertical pointing cloud radar, a multifrequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal <span class="hlt">area</span> <span class="hlt">icing</span> remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide <span class="hlt">icing</span> hazard classification along defined approach paths into an airport.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13A2043L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13A2043L"><span>The Characteristics of <span class="hlt">Ice</span> Cloud Properties in China Derived from DARDAR data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, T.; Zheng, Y.</p> <p>2017-12-01</p> <p><span class="hlt">Ice</span> clouds play an important role in modulating the Earth radiation budget and global hydrological cycle.Thus,study the properties of <span class="hlt">ice</span> clouds has the vital significance on the interaction between the atmospheric models,cloud,radiation and climate .The world has explore the combination of two or several kinds of sensor data to solve the complementary strengths and error reduction to improve accuracy of <span class="hlt">ice</span> cloud at the present , but for China ,has be lack of research on combination sensor data to analysis properties of <span class="hlt">ice</span> cloud.To reach a wider range of <span class="hlt">ice</span> cloud, a combination of the CloudSat radar and the CALIPSO lidar is used to derive <span class="hlt">ice</span> cloud properties. These products include the radar/lidar product (DARDAR) developed at the University of Reading.The China probability distribution of <span class="hlt">ice</span> cloud occurrence frequency, <span class="hlt">ice</span> water path, <span class="hlt">ice</span> water content and <span class="hlt">ice</span> cloud effective radius were presented based on DARDAR data from 2012 to 2016,the distribution and vertical sturctures was discussed.The results indicate that the <span class="hlt">ice</span> cloud occurrence frequency distribution takes on ascend trend in the last 4 years and has obvious seasonal variation, the high concentration <span class="hlt">area</span> in the northeastern part of the Tibetan Plateau,<span class="hlt">ice</span> cloud occurrence frequency is relatively high in northwest <span class="hlt">area</span>.the increased of <span class="hlt">ice</span> cloud occurrence frequency play an integral role of the climate warming in these four years; the general trend for the <span class="hlt">ice</span> water path is southeast <span class="hlt">area</span> bigger than northwest <span class="hlt">area</span>, in winter the IWP is the smallest, biggest in summer; the IWC is the biggest in summer, and the vertical height distribution higher than other seasons; <span class="hlt">ice</span> cloud effective radius and <span class="hlt">ice</span> water content had similar trend..There were slight declines in <span class="hlt">ice</span> cloud effective radius with increase height of China,in the summer <span class="hlt">ice</span> effective radius is generally larger.The <span class="hlt">ice</span> cloud impact Earth radiation via their albedo an greenhouse effects, that is, cooling the Earth by reflecting solar</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20030.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20030.html"><span>Water <span class="hlt">Ice</span> on Pluto</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-10-16</p> <p>The Ralph instrument on NASA's New Horizons spacecraft detected water <span class="hlt">ice</span> on Pluto's surface, picking up on the <span class="hlt">ice</span>'s near-infrared spectral characteristics. (See featured image from Oct. 8, 2015.) The middle panel shows a region west of Pluto's "heart" feature -- which the mission team calls Tombaugh Regio -- about 280 miles (450 kilometers) across. It combines visible imagery from Ralph's Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). <span class="hlt">Areas</span> with the strongest water <span class="hlt">ice</span> spectral signature are highlighted in blue. Major outcrops of water <span class="hlt">ice</span> occur in regions informally called Viking Terra, along Virgil Fossa west of Elliot crater, and in Baré Montes. Numerous smaller outcrops are associated with impact craters and valleys between mountains. In the lower left panel, LEISA spectra are shown for two regions indicated by cyan and magenta boxes. The white curve is a water <span class="hlt">ice</span> model spectrum, showing similar features to the cyan spectrum. The magenta spectrum is dominated by methane <span class="hlt">ice</span> absorptions. The lower right panel shows an MVIC enhanced color view of the region in the white box, with MVIC's blue, red and near-infrared filters displayed in blue, green and red channels, respectively. The regions showing the strongest water <span class="hlt">ice</span> signature are associated with terrains that are actually a lighter shade of red. http://photojournal.jpl.nasa.gov/catalog/PIA20030</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770027123','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770027123"><span><span class="hlt">Ice</span> in space: An experimental and theoretical investigation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Patashnick, H.; Rupprecht, G.</p> <p>1977-01-01</p> <p>Basic knowledge is provided on the behavior of <span class="hlt">ice</span> and <span class="hlt">ice</span> particles under a wide variety of conditions including those of interplanetary space. This information and, in particular, the lifetime of <span class="hlt">ice</span> particles as a function of solar distance is an absolute requirement for a proper interpretation of photometric profiles in comets. Because fundamental properties of <span class="hlt">ice</span> and <span class="hlt">ice</span> particles are developed in this report, the applicability of this information extends beyond the realm of comets into any <span class="hlt">area</span> where volatile particles exist, be it in space or in the earth's atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G21A0858L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G21A0858L"><span>Global <span class="hlt">ice</span> sheet/RSL simulations using the higher-order <span class="hlt">Ice</span> Sheet System Model.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.</p> <p>2017-12-01</p> <p>Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial <span class="hlt">areas</span> and <span class="hlt">ice</span> sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica <span class="hlt">ice</span> sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica <span class="hlt">ice</span> shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the <span class="hlt">Ice</span> Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between <span class="hlt">ice</span> flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large <span class="hlt">ice</span> shelves such as the Ronne and Ross <span class="hlt">ice</span> shelves, as well asthe Agasea Embayment <span class="hlt">ice</span> streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170011211','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170011211"><span><span class="hlt">Ice</span> Crystal <span class="hlt">Icing</span> Research at NASA</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flegel, Ashlie B.</p> <p>2017-01-01</p> <p><span class="hlt">Ice</span> crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to <span class="hlt">ice</span> crystals entering a propulsion system's core flowpath and accreting <span class="hlt">ice</span> resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to <span class="hlt">ice</span> shedding. As part of a community with a growing need to understand the underlying physics of <span class="hlt">ice</span> crystal <span class="hlt">icing</span>, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the <span class="hlt">ice</span> accretion inside current and future engine designs. Fundamental <span class="hlt">icing</span> physics studies on particle impacts, accretion on a single airfoil, and <span class="hlt">ice</span> accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for <span class="hlt">ice</span> accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing <span class="hlt">ice</span> crystal <span class="hlt">icing</span> research challenges are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170006539','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170006539"><span><span class="hlt">Ice</span> Crystal <span class="hlt">Icing</span> Research at NASA</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flegel, Ashlie B.</p> <p>2017-01-01</p> <p><span class="hlt">Ice</span> crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to <span class="hlt">ice</span> crystals entering a propulsion systems core flowpath and accreting <span class="hlt">ice</span> resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to <span class="hlt">ice</span> shedding. As part of a community with a growing need to understand the underlying physics of <span class="hlt">ice</span> crystal <span class="hlt">icing</span>, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the <span class="hlt">ice</span> accretion inside current and future engine designs. Fundamental <span class="hlt">icing</span> physics studies on particle impacts, accretion on a single airfoil, and <span class="hlt">ice</span> accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for <span class="hlt">ice</span> accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing <span class="hlt">ice</span> crystal <span class="hlt">icing</span> research challenges are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A43B0199C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A43B0199C"><span>Partitioning CloudSat <span class="hlt">Ice</span> Water Content for Comparison with Upper-Tropospheric <span class="hlt">Ice</span> in Global Atmospheric Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, W. A.; Woods, C. P.; Li, J. F.; Waliser, D. E.; Chern, J.; Tao, W.; Jiang, J. H.; Tompkins, A. M.</p> <p>2010-12-01</p> <p>CloudSat provides important estimates of vertically resolved <span class="hlt">ice</span> water content (IWC) on a global scale based on radar reflectivity. These estimates of IWC have proven beneficial in evaluating the representations of <span class="hlt">ice</span> clouds in global models. An issue when performing model-data comparisons of IWC particularly germane to this investigation, is the question of which component(s) of the frozen water mass are represented by retrieval estimates and how they relate to what is represented in models. The present study developed and applied a new technique to partition CloudSat total IWC into small and large <span class="hlt">ice</span> hydrometeors, based on the CloudSat-retrieved <span class="hlt">ice</span> particle size distribution (PSD) parameters. The new method allows one to make relevant model-data comparisons and provides new insights into the model’s representation of atmospheric IWC. The partitioned CloudSat IWC suggests that the small <span class="hlt">ice</span> particles contribute to 20-30% of the total IWC in the upper troposphere when a threshold size of 100 μm is used. Sensitivity measures with respect to the threshold size, the PSD parameters, and the retrieval algorithms are presented. The new dataset is compared to model estimates, pointing to <span class="hlt">areas</span> for model improvement. Cloud <span class="hlt">ice</span> analyses from the European Centre for Medium-Range Weather Forecasts model agree well with the small IWC from CloudSat. The finite-volume multi-scale modeling framework model underestimates total IWC at 147 and 215 hPa, while overestimating the fractional contribution from the small <span class="hlt">ice</span> species. These results are discussed in terms of their applications to, and implications for, the evaluation of global atmospheric models, providing constraints on the representations of cloud feedback and precipitation in global models, which in turn can help reduce uncertainties associated with climate change projections. Figure 1. A sample lognormal <span class="hlt">ice</span> number distribution (red curve), and the corresponding mass distribution (black curve). The dotted line</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911372D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911372D"><span>Towards multi-decadal to multi-millennial <span class="hlt">ice</span> core records from coastal west Greenland <span class="hlt">ice</span> caps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Das, Sarah B.; Osman, Matthew B.; Trusel, Luke D.; McConnell, Joseph R.; Smith, Ben E.; Evans, Matthew J.; Frey, Karen E.; Arienzo, Monica; Chellman, Nathan</p> <p>2017-04-01</p> <p>The Arctic region, and Greenland in particular, is undergoing dramatic change as characterized by atmospheric warming, decreasing sea <span class="hlt">ice</span>, shifting ocean circulation patterns, and rapid <span class="hlt">ice</span> sheet mass loss, but longer records are needed to put these changes into context. <span class="hlt">Ice</span> core records from the Greenland <span class="hlt">ice</span> sheet have yielded invaluable insight into past climate change both regionally and globally, and provided important constraints on past surface mass balance more directly, but these <span class="hlt">ice</span> cores are most often from the interior <span class="hlt">ice</span> sheet accumulation zone, at high altitude and hundreds of kilometers from the coast. Coastal <span class="hlt">ice</span> caps, situated around the margins of Greenland, have the potential to provide novel high-resolution records of local and regional maritime climate and sea surface conditions, as well as contemporaneous glaciological changes (such as accumulation and surface melt history). But obtaining these records is extremely challenging. Most of these <span class="hlt">ice</span> caps are unexplored, and thus their thickness, age, stratigraphy, and utility as sites of new and unique paleoclimate records is largely unknown. Access is severely limited due to their high altitude, steep relief, small surface <span class="hlt">area</span>, and inclement weather. Furthermore, their relatively low elevation and marine moderated climate can contribute to significant surface melting and degradation of the <span class="hlt">ice</span> stratigraphy. We recently targeted <span class="hlt">areas</span> near the Disko Bay region of central west Greenland where maritime <span class="hlt">ice</span> caps are prevalent but unsampled, as potential sites for new multi-decadal to multi-millennial <span class="hlt">ice</span> core records. In 2014 & 2015 we identified two promising <span class="hlt">ice</span> caps, one on Disko Island (1250 m. asl) and one on Nuussuaq Peninsula (1980 m. asl) based on airborne and ground-based geophysical observations and physical and glaciochemical stratigraphy from shallow firn cores. In spring 2015 we collected <span class="hlt">ice</span> cores at both sites using the Badger-Eclipse electromechanical drill, transported by a medley</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA217638','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA217638"><span>Airfields on Antarctic Glacier <span class="hlt">Ice</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-12-01</p> <p>glacier <span class="hlt">ice</span> Vu., vA2 2~ FEB 0C DLSPM ONSAEM- T r it Cover: Blue <span class="hlt">ice</span> <span class="hlt">areas</span> near the Scott Glacier. There is a possible landing field at 86035"S, 148025"W...pi. Ii7 t E 9 v 1.. - Site$ At Moliunt HoWe t87*20S. 14W 0W) -nd P-411 lardain t leois lower than that of clear Glacier (85ൎ’S, 16795T~) wur-a...emphasis much more vigorous than isthecasein thehighin- on the <span class="hlt">area</span> of Mount Howe and D’Angelo Bluff teior of Antarctica. For example, near Mawson</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>