Science.gov

Sample records for packaging

  1. New_Package Example Package

    Energy Science and Technology Software Center (ESTSC)

    2004-04-01

    A package created as a tool for developers wishing to Autotool (incorporate the Autotools configure and build processes into) a new or existing package. The package being Autotool’ed can be a Trilinos package, but New_Package is also more generally applicable. There is no useful functioning code in New_Package, The Autotools source files are extensively commented. The package has been used to assist developers in getting Trilinos packages converted to the Autotools configure and build processesmore » in a short time.« less

  2. Scoring Package

    National Institute of Standards and Technology Data Gateway

    NIST Scoring Package (PC database for purchase)   The NIST Scoring Package (Special Database 1) is a reference implementation of the draft Standard Method for Evaluating the Performance of Systems Intended to Recognize Hand-printed Characters from Image Data Scanned from Forms.

  3. Simulation Packages

    NASA Astrophysics Data System (ADS)

    Britz, Dieter

    Not every electrochemist wishes to write his or her own simulation programs, and there are a number of ready-made programs that can be obtained through the Internet or otherwise, some commercial, some free, and some that are online programs. These can be convenient but all have some limitations of various kinds. There have been several reviews describing these packages [104, 114, 523].

  4. Packaged Food

    NASA Technical Reports Server (NTRS)

    1976-01-01

    After studies found that many elderly persons don't eat adequately because they can't afford to, they have limited mobility, or they just don't bother, Innovated Foods, Inc. and JSC developed shelf-stable foods processed and packaged for home preparation with minimum effort. Various food-processing techniques and delivery systems are under study and freeze dried foods originally used for space flight are being marketed. (See 77N76140)

  5. Seafood Packaging

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Technology Transfer Office at Stennis Space Center worked with a New Orleans seafood packaging company to develop a container to improve the shipping longevity of seafood, primarily frozen and fresh fish, while preserving the taste. A NASA engineer developed metalized heat resistant polybags with thermal foam liners using an enhanced version of the metalized mylar commonly known as 'space blanket material,' which was produced during the Apollo era.

  6. Reflective Packaging

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  7. Packaging of MEMS microphones

    NASA Astrophysics Data System (ADS)

    Feiertag, Gregor; Winter, Matthias; Leidl, Anton

    2009-05-01

    To miniaturize MEMS microphones we have developed a microphone package using flip chip technology instead of chip and wire bonding. In this new packaging technology MEMS and ASIC are flip chip bonded on a ceramic substrate. The package is sealed by a laminated polymer foil and by a metal layer. The sound port is on the bottom side in the ceramic substrate. In this paper the packaging technology is explained in detail and results of electro-acoustic characterization and reliability testing are presented. We will also explain the way which has led us from the packaging of Surface Acoustic Wave (SAW) components to the packaging of MEMS microphones.

  8. Packaging for Food Service

    NASA Technical Reports Server (NTRS)

    Stilwell, E. J.

    1985-01-01

    Most of the key areas of concern in packaging the three principle food forms for the space station were covered. It can be generally concluded that there are no significant voids in packaging materials availability or in current packaging technology. However, it must also be concluded that the process by which packaging decisions are made for the space station feeding program will be very synergistic. Packaging selection will depend heavily on the preparation mechanics, the preferred presentation and the achievable disposal systems. It will be important that packaging be considered as an integral part of each decision as these systems are developed.

  9. CH Packaging Operations Manual

    SciTech Connect

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  10. Comparative Packaging Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Antonini, David

    2008-01-01

    This viewgraph presentation describes a comparative packaging study for use on long duration space missions. The topics include: 1) Purpose; 2) Deliverables; 3) Food Sample Selection; 4) Experimental Design Matrix; 5) Permeation Rate Comparison; and 6) Packaging Material Information.

  11. Creative Thinking Package

    ERIC Educational Resources Information Center

    Jones, Clive

    1972-01-01

    A look at the latest package from a British managment training organization, which explains and demonstrates creative thinking techniques, including brainstorming. The package, designed for groups of twelve or more, consists of tapes, visuals, and associated exercises. (Editor/JB)

  12. Didasko Tutorial Package

    Energy Science and Technology Software Center (ESTSC)

    2005-06-09

    Didasko is the tutorial package of Trilinos. It contains several examples to explain the usage of the basic packages (in particular) Epetra, AztecOO, IFPACK, ML, Amesos, Teuchos, Triutils) and a PDF guide that details each example. No new algorithms are included in Didasko. This package is meant to be an introductory, self-contained reference for Trilinos users.

  13. MMIC packaging technology development

    NASA Astrophysics Data System (ADS)

    Li, K.; Yuan, S.

    1993-03-01

    Packaging technology for microwave and millimeter-wave monolithic integrated circuits (MMIC's) was developed. Two packaging approaches were investigated for RF performance and mechanical integrity. One is a packaging approach using quartz (fused silica) material and a glass sealing process. The other is a packaging approach using ceramic (92 percent Alumina) material and a co-firing process. Test results indicate both packaging approaches provide wide frequency band and low insertion loss. The quartz package-breadboard components exhibited operating frequency up to 35 GHz, with insertion loss less than 1.30 dB at 35 GHz. Quartz packages were designed and fabricated to investigate reproducibility. Findings from sample fabrication indicate that metallization and glass sealing process for quartz packages requires substantial improvement before reproducibility can be established. Ceramic packages were designed and fabricated for proof-of-concept in support of MMIC packaging technology development. The ceramic packages exhibited operating frequency up to 36 GHz, with insertion loss less than 1.7 dB at 36 GHz. These proof-of-concept MMIC packages not only show low insertion loss and wide frequency band but also demonstrated the hermetic-seal capability and the mechanical strength for many MMIC applications. Current co-fired ceramic process permits cost effectiveness and timely insertion of MMIC's technology.

  14. Extended precision software packages

    NASA Technical Reports Server (NTRS)

    Phillips, E. J.

    1972-01-01

    A description of three extended precision packages is presented along with three small conversion subroutines which can be used in conjunction with the extended precision packages. These extended packages represent software packages written in FORTRAN 4. They contain normalized or unnormalized floating point arithmetic with symmetric rounding and arbitrary mantissa lengths, and normalized floating point interval arithmetic with appropriate rounding. The purpose of an extended precision package is to enable the user to use and manipulate numbers with large decimal places as well as those with small decimal places where precision beyond double precision is required.

  15. Smart packaging for photonics

    SciTech Connect

    Smith, J.H.; Carson, R.F.; Sullivan, C.T.; McClellan, G.; Palmer, D.W.

    1997-09-01

    Unlike silicon microelectronics, photonics packaging has proven to be low yield and expensive. One approach to make photonics packaging practical for low cost applications is the use of {open_quotes}smart{close_quotes} packages. {open_quotes}Smart{close_quotes} in this context means the ability of the package to actuate a mechanical change based on either a measurement taken by the package itself or by an input signal based on an external measurement. One avenue of smart photonics packaging, the use of polysilicon micromechanical devices integrated with photonic waveguides, was investigated in this research (LDRD 3505.340). The integration of optical components with polysilicon surface micromechanical actuation mechanisms shows significant promise for signal switching, fiber alignment, and optical sensing applications. The optical and stress properties of the oxides and nitrides considered for optical waveguides and how they are integrated with micromechanical devices were investigated.

  16. Packaged die heater

    SciTech Connect

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  17. Stratimikos Wrapper Package

    Energy Science and Technology Software Center (ESTSC)

    2006-08-22

    Stratimikos is a small package of C++ wrappers for linear solver and preconditioning functionality exposed through Thyra interfaces. This package makes is possible to aggregate all of the general linear solver capability from the packages Amesos, AztecOO, Belos, lfpack, ML and others into a simple to use, parameter-list driven, interface to linear solvers. This initial version of Stratimikos contains just one utility class for building linear solvrs and preconditioners out of Epetra-based linear operators.

  18. The ZOOM minimization package

    SciTech Connect

    Fischler, Mark S.; Sachs, D.; /Fermilab

    2004-11-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete.

  19. Developing Large CAI Packages.

    ERIC Educational Resources Information Center

    Reed, Mary Jac M.; Smith, Lynn H.

    1983-01-01

    When developing large computer-assisted instructional (CAI) courseware packages, it is suggested that there be more attentive planning to the overall package design before actual lesson development is begun. This process has been simplified by modifying the systems approach used to develop single CAI lessons, followed by planning for the…

  20. Grooming. Learning Activity Package.

    ERIC Educational Resources Information Center

    Stark, Pamela

    This learning activity package on grooming for health workers is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…

  1. The LCDROOT Analysis Package

    SciTech Connect

    Abe, Toshinori

    2001-10-18

    The North American Linear Collider Detector group has developed simulation and analysis program packages. LCDROOT is one of the packages, and is based on ROOT and the C++ programing language to maximally benefit from object oriented programming techniques. LCDROOT is constantly improved and now has a new topological vertex finder, ZVTOP3. In this proceeding, the features of the LCDROOT simulation are briefly described.

  2. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  3. Market report. Packaging.

    PubMed

    1995-05-01

    Medical Device Technology's second annual packaging study looks at the materials and methods used by its readers throughout Europe. Rises in the level of use of some materials and certain packaging requirements are indicated and subcontracting shows increased demand. PMID:10155386

  4. TRNSYS for windows packages

    SciTech Connect

    Blair, N.J.; Beckman, W.A.; Klein, S.A.; Mitchell, J.W.

    1996-09-01

    TRNSYS 14.1 was released in 1994. This package represents a significant step forward in usability due to several graphical utility programs for DOS. These programs include TRNSHELL, which encapsulates TRNSYS functions, PRESIM, which allows the graphical creation of a simulation system, and TRNSED, which allows the easy sharing of simulations. The increase in usability leads to a decrease in the time necessary to prepare the simulation. Most TRNSYS users operate on PC computers with the Windows operating system. Therefore, the next logical step in increased usability was to port the current TRNSYS package to the Windows operating system. Several organizations worked on this conversion that has resulted in two distinct Windows packages. One package closely resembles the DOS version and includes TRNSHELL for Windows and PRESIM for Windows. The other package incorporates a general front-end, called IISIBat, that is a general simulation tool front-end. 8 figs.

  5. RH Packaging Operations Manual

    SciTech Connect

    Washington TRU Solutions LLC

    2003-09-17

    This procedure provides operating instructions for the RH-TRU 72-B Road Cask, Waste Shipping Package. In this document, ''Packaging'' refers to the assembly of components necessary to ensure compliance with the packaging requirements (not loaded with a payload). ''Package'' refers to a Type B packaging that, with its radioactive contents, is designed to retain the integrity of its containment and shielding when subject to the normal conditions of transport and hypothetical accident test conditions set forth in 10 CFR Part 71. Loading of the RH 72-B cask can be done two ways, on the RH cask trailer in the vertical position or by removing the cask from the trailer and loading it in a facility designed for remote-handling (RH). Before loading the 72-B cask, loading procedures and changes to the loading procedures for the 72-B cask must be sent to CBFO at sitedocuments@wipp.ws for approval.

  6. Packaging Concerns/Techniques for Large Devices

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2009-01-01

    This slide presentation reviews packaging challenges and options for electronic parts. The presentation includes information about non-hermetic packages, space challenges for packaging and complex package variations.

  7. Optoelectronic packaging: A review

    SciTech Connect

    Carson, R.F.

    1993-09-01

    Optoelectronics and photonics hold great potential for high data-rate communication and computing. Wide using in computing applications was limited first by device technologies and now suffers due to the need for high-precision, mass-produced packaging. The use of phontons as a medium of communication and control implies a unique set of packaging constraints that was not present in traditional telecommunications applications. The state-of-the-art in optoelectronic packaging is now driven by microelectric techniques that have potential for low cost and high volume manufacturing.

  8. Seawater Chemistry Package

    Energy Science and Technology Software Center (ESTSC)

    2005-11-23

    SeaChem Seawater Chemistry package provides routines to calculate pH, carbonate chemistry, density, and other quantities for seawater, based on the latest community standards. The chemistry is adapted from fortran routines provided by the OCMIP3/NOCES project, details of which are available at http://www.ipsl.jussieu.fr/OCMIP/. The SeaChem package can generate Fortran subroutines as well as Python wrappers for those routines. Thus the same code can be used by Python or Fortran analysis packages and Fortran ocean models alike.

  9. Packaging for Posterity.

    ERIC Educational Resources Information Center

    Sias, Jim

    1990-01-01

    A project in which students designed environmentally responsible food packaging is described. The problem definition; research on topics such as waste paper, plastic, metal, glass, incineration, recycling, and consumer preferences; and the presentation design are provided. (KR)

  10. Battery packaging - Technology review

    SciTech Connect

    Maiser, Eric

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  11. CH Packaging Program Guidance

    SciTech Connect

    Washington TRU Solutions LLC

    2002-03-04

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT Shipping Package, and directly related components. This document complies with the minimum requirements as specified in TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event there is a conflict between this document and the SARP or C of C, the SARP and/or C of C shall govern. C of Cs state: ''each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' They further state: ''each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SAR P charges the WIPP Management and Operation (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 CFR 71.11. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize these operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

  12. CH Packaging Program Guidance

    SciTech Connect

    Washington TRU Solutions LLC

    2003-04-30

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: ''each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' They further state: ''each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP charges the WIPP management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 CFR 71.11. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document provides the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

  13. Waste Package Program

    SciTech Connect

    Culbreth, W.; Ladkany, S.

    1991-07-21

    This was a progress report on the research program of waste packages at the University of Nevada, Las Vegas. The report has the overviews of what the program has done from January 1991 to June 1991, such as task assignments for personnel, equipment acquisitions, and staff meetings and travels on behalf of the project. Also, included was an abstract on the structural analysis of the waste package container design. (MB)

  14. Comparative Packaging Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.; Oziomek, Thomas V.

    2009-01-01

    Future long duration manned space flights beyond low earth orbit will require the food system to remain safe, acceptable and nutritious. Development of high barrier food packaging will enable this requirement by preventing the ingress and egress of gases and moisture. New high barrier food packaging materials have been identified through a trade study. Practical application of this packaging material within a shelf life test will allow for better determination of whether this material will allow the food system to meet given requirements after the package has undergone processing. The reason to conduct shelf life testing, using a variety of packaging materials, stems from the need to preserve food used for mission durations of several years. Chemical reactions that take place during longer durations may decrease food quality to a point where crew physical or psychological well-being is compromised. This can result in a reduction or loss of mission success. The rate of chemical reactions, including oxidative rancidity and staling, can be controlled by limiting the reactants, reducing the amount of energy available to drive the reaction, and minimizing the amount of water available. Water not only acts as a media for microbial growth, but also as a reactant and means by which two reactants may come into contact with each other. The objective of this study is to evaluate three packaging materials for potential use in long duration space exploration missions.

  15. CH Packaging Program Guidance

    SciTech Connect

    None, None

    2008-09-11

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the pplication." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document provides the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

  16. RH Packaging Program Guidance

    SciTech Connect

    Washington TRU Solutions LLC

    2006-11-07

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions or equivalent approved instructions. Following these instructions assures that operations meet the requirements of the SARP.

  17. CH Packaging Program Guidance

    SciTech Connect

    None, None

    2009-06-01

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document provides the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

  18. RH Packaging Program Guidance

    SciTech Connect

    Washington TRU Solutions LLC

    2008-01-12

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the "RH-TRU 72-B cask") and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions or equivalent approved instructions. Following these instructions assures that operations meet the requirements of the SARP.

  19. CH Packaging Program Guidance

    SciTech Connect

    Washington TRU Solutions LLC

    2005-02-28

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.

  20. Food Packaging Materials

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The photos show a few of the food products packaged in Alure, a metallized plastic material developed and manufactured by St. Regis Paper Company's Flexible Packaging Division, Dallas, Texas. The material incorporates a metallized film originally developed for space applications. Among the suppliers of the film to St. Regis is King-Seeley Thermos Company, Winchester, Ma'ssachusetts. Initially used by NASA as a signal-bouncing reflective coating for the Echo 1 communications satellite, the film was developed by a company later absorbed by King-Seeley. The metallized film was also used as insulating material for components of a number of other spacecraft. St. Regis developed Alure to meet a multiple packaging material need: good eye appeal, product protection for long periods and the ability to be used successfully on a wide variety of food packaging equipment. When the cost of aluminum foil skyrocketed, packagers sought substitute metallized materials but experiments with a number of them uncovered problems; some were too expensive, some did not adequately protect the product, some were difficult for the machinery to handle. Alure offers a solution. St. Regis created Alure by sandwiching the metallized film between layers of plastics. The resulting laminated metallized material has the superior eye appeal of foil but is less expensive and more easily machined. Alure effectively blocks out light, moisture and oxygen and therefore gives the packaged food long shelf life. A major packaging firm conducted its own tests of the material and confirmed the advantages of machinability and shelf life, adding that it runs faster on machines than materials used in the past and it decreases product waste; the net effect is increased productivity.

  1. Food packages for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Fohey, M. F.; Sauer, R. L.; Westover, J. B.; Rockafeller, E. F.

    1978-01-01

    The paper reviews food packaging techniques used in space flight missions and describes the system developed for the Space Shuttle. Attention is directed to bite-size food cubes used in Gemini, Gemini rehydratable food packages, Apollo spoon-bowl rehydratable packages, thermostabilized flex pouch for Apollo, tear-top commercial food cans used in Skylab, polyethylene beverage containers, Skylab rehydratable food package, Space Shuttle food package configuration, duck-bill septum rehydration device, and a drinking/dispensing nozzle for Space Shuttle liquids. Constraints and testing of packaging is considered, a comparison of food package materials is presented, and typical Shuttle foods and beverages are listed.

  2. Detecting small holes in packages

    SciTech Connect

    Kronberg, James W.; Cadieux, James R.

    1996-01-01

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package.

  3. Detecting small holes in packages

    DOEpatents

    Kronberg, J.W.; Cadieux, J.R.

    1996-03-19

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package are disclosed. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package. 3 figs.

  4. CH Packaging Program Guidance

    SciTech Connect

    None, None

    2007-12-13

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted.

  5. CH Packaging Program Guidance

    SciTech Connect

    None, None

    2006-04-25

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package TransporterModel II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant| (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations(CFR) §71.8. Any time a user suspects or has indications that the conditions ofapproval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted.

  6. The Hydra Magnetohydrodynamics Package

    NASA Astrophysics Data System (ADS)

    Koning, J. M.; Kerbel, G. D.; Marinak, M. M.

    2009-11-01

    The Magnetohydrodynamics package of the ALE radiation-hydrodynamics code Hydra is being extended to model the magnetic field and its effect on temperature for ICF targets. The current package capabilities include a fully three-dimensional resistive MHD package in the small Hall limit. An operator split method is used to couple the MHD to the hydrodynamics and is fully implicit in time and second order accurate in space. A three-dimensional vector finite element method is utilized to define a set of spaces and differential operators that maintain the zero divergence of the magnetic field exactly. The Hydra MHD package has been improved by the addition of an exact circuit solution method that enables the potential for multiple circuits. A significant enhancement of Hydra is the addition of a Python interpreter embedded in the code. The Python interpreter allows users to make full use of Python's features in parallel with full access to the parameters and variables in the simulation. Examples of the Python interpreter used with MHD package and Hydra in general will be presented.

  7. TSF Interface Package

    Energy Science and Technology Software Center (ESTSC)

    2004-03-01

    A collection of packages of classes for interfacing to sparse and dense matrices, vectors and graphs, and to linear operators. TSF (via TSFCore, TSFCoreUtils and TSFExtended) provides the application programmer interface to any number of solvers, linear algebra libraries and preconditioner packages, providing also a sophisticated technique for combining multiple packages to solve a single problem. TSF provides a collection of abstract base classes that define the interfaces to abstract vector, matrix and linear soeratormore » objects. By using abstract interfaces, users of TSF are not limiting themselves to any one concrete library and can in fact easily combine multiple libraries to solve a single problem.« less

  8. Waste package reliability analysis

    SciTech Connect

    Pescatore, C.; Sastre, C.

    1983-01-01

    Proof of future performance of a complex system such as a high-level nuclear waste package over a period of hundreds to thousands of years cannot be had in the ordinary sense of the word. The general method of probabilistic reliability analysis could provide an acceptable framework to identify, organize, and convey the information necessary to satisfy the criterion of reasonable assurance of waste package performance according to the regulatory requirements set forth in 10 CFR 60. General principles which may be used to evaluate the qualitative and quantitative reliability of a waste package design are indicated and illustrated with a sample calculation of a repository concept in basalt. 8 references, 1 table.

  9. SPHINX experimenters information package

    SciTech Connect

    Zarick, T.A.

    1996-08-01

    This information package was prepared for both new and experienced users of the SPHINX (Short Pulse High Intensity Nanosecond X-radiator) flash X-Ray facility. It was compiled to help facilitate experiment design and preparation for both the experimenter(s) and the SPHINX operational staff. The major areas covered include: Recording Systems Capabilities,Recording System Cable Plant, Physical Dimensions of SPHINX and the SPHINX Test cell, SPHINX Operating Parameters and Modes, Dose Rate Map, Experiment Safety Approval Form, and a Feedback Questionnaire. This package will be updated as the SPHINX facilities and capabilities are enhanced.

  10. 49 CFR 178.602 - Preparation of packagings and packages for testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Preparation of packagings and packages for testing... SPECIFICATIONS FOR PACKAGINGS Testing of Non-bulk Packagings and Packages § 178.602 Preparation of packagings and packages for testing. (a) Except as otherwise provided in this subchapter, each packaging and package...

  11. 49 CFR 178.602 - Preparation of packagings and packages for testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Preparation of packagings and packages for testing...) SPECIFICATIONS FOR PACKAGINGS Testing of Non-bulk Packagings and Packages § 178.602 Preparation of packagings and packages for testing. (a) Except as otherwise provided in this subchapter, each packaging and package...

  12. AN ADA NAMELIST PACKAGE

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    The Ada Namelist Package, developed for the Ada programming language, enables a calling program to read and write FORTRAN-style namelist files. A namelist file consists of any number of assignment statements in any order. Features of the Ada Namelist Package are: the handling of any combination of user-defined types; the ability to read vectors, matrices, and slices of vectors and matrices; the handling of mismatches between variables in the namelist file and those in the programmed list of namelist variables; and the ability to avoid searching the entire input file for each variable. The principle user benefits of this software are the following: the ability to write namelist-readable files, the ability to detect most file errors in the initialization phase, a package organization that reduces the number of instantiated units to a few packages rather than to many subprograms, a reduced number of restrictions, and an increased execution speed. The Ada Namelist reads data from an input file into variables declared within a user program. It then writes data from the user program to an output file, printer, or display. The input file contains a sequence of assignment statements in arbitrary order. The output is in namelist-readable form. There is a one-to-one correspondence between namelist I/O statements executed in the user program and variables read or written. Nevertheless, in the input file, mismatches are allowed between assignment statements in the file and the namelist read procedure statements in the user program. The Ada Namelist Package itself is non-generic. However, it has a group of nested generic packages following the nongeneric opening portion. The opening portion declares a variety of useraccessible constants, variables and subprograms. The subprograms are procedures for initializing namelists for reading, reading and writing strings. The subprograms are also functions for analyzing the content of the current dataset and diagnosing errors. Two nested generic packages follow the opening portion. The first generic package contains procedures that read and write objects of scalar type. The second contains subprograms that read and write one and two-dimensional arrays whose components are of scalar type and whose indices are of either of the two discrete types (integer or enumeration). Subprograms in the second package also read and write vector and matrix slices. The Ada Namelist ASCII text files are available on a 360k 5.25" floppy disk written on an IBM PC/AT running under the PC DOS operating system. The largest subprogram in the package requires 150k of memory. The package was developed using VAX Ada v. 1.5 under DEC VMS v. 4.5. It should be portable to any validated Ada compiler. The software was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  13. Future trends in electronic packaging

    NASA Astrophysics Data System (ADS)

    Elshabini, Aicha; Wang, Gangqiang; Barlow, Fred

    2006-03-01

    Electronic packaging is traditionally defined as the back-end process that transforms bare integrated circuits (IC) into functional products. As the IC feature size decreases and the size of silicon wafer increases, the cost per IC is reduced and the performance is enhanced. The future IC chips will be larger in size, have more input/output terminals (I/Os), and require higher power. In addition to the advancements in IC technology, electronic packaging is also driven by the market requirements for low cost, small size, and multi-functional electronic products. In response to these requirements, packaging related areas such as design, packaging architectures, materials, processes, and manufacturing equipment are all changing rapidly. Wafer-level packaging (WLP) offers the benefits of low cost and smallest size for single chip packages, since the package is done at wafer level other than individual die. After packages reach the horizontal limit of dimensions, 3D stacking solution provides more efficient packages through expanding packages in the vertical dimension. Functional integration is achieved with 3D stacking architectures. System in package (SiP), one of the solutions to system integration, incorporates electronics, non-electronic devices such as optical devices, biological devices, micro-electro-mechanical systems (MEMS), etc, and interconnection in a single package, to form smart structures or microsystems. MEMS devices require specialized packaging to serve new market applications. This paper and presentation describe the technology requirements and challenges of these advancing packaging areas. The potential solutions and future trends are presented.

  14. Automatic Differentiation Package

    Energy Science and Technology Software Center (ESTSC)

    2007-03-01

    Sacado is an automatic differentiation package for C++ codes using operator overloading and C++ templating. Sacado provide forward, reverse, and Taylor polynomial automatic differentiation classes and utilities for incorporating these classes into C++ codes. Users can compute derivatives of computations arising in engineering and scientific applications, including nonlinear equation solving, time integration, sensitivity analysis, stability analysis, optimization and uncertainity quantification.

  15. Type B drum packages

    SciTech Connect

    McCoy, J.C.

    1994-08-01

    The Type B drum packages (TBD) are conceptualized as a family of containers in which a single 208 L or 114 L (55 gal or 30 gal) drum containing Type B quantities of radioactive material (RAM) can be packaged for shipment. The TBD containers are being developed to fill a void in the packaging and transportation capabilities of the U.S. Department of Energy as no container packaging single drums of Type B RAM exists offering double containment. Several multiple-drum containers currently exist, as well as a number of shielded casks, but the size and weight of these containers present many operational challenges for single-drum shipments. As an alternative, the TBD containers will offer up to three shielded versions (light, medium, and heavy) and one unshielded version, each offering single or optional double containment for a single drum. To reduce operational complexity, all versions will share similar design and operational features where possible. The primary users of the TBD containers are envisioned to be any organization desiring to ship single drums of Type B RAM, such as laboratories, waste retrieval activities, emergency response teams, etc. Currently, the TBD conceptual design is being developed with the final design and analysis to be completed in 1995 to 1996. Testing and certification of the unshielded version are planned to be completed in 1996 to 1997 with production to begin in 1997 to 1998.

  16. CH Packaging Maintenance Manual

    SciTech Connect

    Washington TRU Solutions

    2002-01-02

    This procedure provides instructions for performing inner containment vessel (ICV) and outer containment vessel (OCV) maintenance and periodic leakage rate testing on the following packaging seals and corresponding seal surfaces using a nondestructive helium (He) leak test. In addition, this procedure provides instructions for performing ICV and OCV structural pressure tests.

  17. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  18. Waste disposal package

    DOEpatents

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  19. Metric Education Evaluation Package.

    ERIC Educational Resources Information Center

    Kansky, Bob; And Others

    This document was developed out of a need for a complete, carefully designed set of evaluation instruments and procedures that might be applied in metric inservice programs across the nation. Components of this package were prepared in such a way as to permit local adaptation to the evaluation of a broad spectrum of metric education activities.…

  20. Jpetra Kernel Package

    Energy Science and Technology Software Center (ESTSC)

    2004-03-01

    A package of classes for constructing and using distributed sparse and dense matrices, vectors and graphs, written in Java. Jpetra is intended to provide the foundation for basic matrix and vector operations for Java developers. Jpetra provides distributed memory operations via an abstract parallel machine interface. The most common implementation of this interface will be Java sockets.

  1. Printer Graphics Package

    NASA Technical Reports Server (NTRS)

    Blanchard, D. C.

    1986-01-01

    Printer Graphics Package (PGP) is tool for making two-dimensional symbolic plots on line printer. PGP created to support development of Heads-Up Display (HUD) simulation. Standard symbols defined with HUD in mind. Available symbols include circle, triangle, quadrangle, window, line, numbers, and text. Additional symbols easily added or built up from available symbols.

  2. Electro-Microfluidic Packaging

    NASA Astrophysics Data System (ADS)

    Benavides, G. L.; Galambos, P. C.

    2002-06-01

    There are many examples of electro-microfluidic products that require cost effective packaging solutions. Industry has responded to a demand for products such as drop ejectors, chemical sensors, and biological sensors. Drop ejectors have consumer applications such as ink jet printing and scientific applications such as patterning self-assembled monolayers or ejecting picoliters of expensive analytes/reagents for chemical analysis. Drop ejectors can be used to perform chemical analysis, combinatorial chemistry, drug manufacture, drug discovery, drug delivery, and DNA sequencing. Chemical and biological micro-sensors can sniff the ambient environment for traces of dangerous materials such as explosives, toxins, or pathogens. Other biological sensors can be used to improve world health by providing timely diagnostics and applying corrective measures to the human body. Electro-microfluidic packaging can easily represent over fifty percent of the product cost and, as with Integrated Circuits (IC), the industry should evolve to standard packaging solutions. Standard packaging schemes will minimize cost and bring products to market sooner.

  3. YWCA Vocational Readiness Package.

    ERIC Educational Resources Information Center

    Scott, Jeanne

    This document outlines, in detail, the Vocational Readiness Package for young girls, which is a week-long program utilizing simulation games and role-playing, while employing peer group counseling techniques to dramatize the realities concerning women in marriage and careers today. After three years of using this program, the authors have compiled…

  4. Packaging materials properties data

    SciTech Connect

    Walker, M.S.

    1991-01-01

    Several energy absorbing materials are used in nuclear weapons component shipping containers recently designed for the Y-12 Plant Program Management Packaging Group. As a part of the independent review procedure leading to Certificates of Compliance, the US Department of Energy Technical Safety Review Panels requested compression versus deflection data on these materials. This report is a compilation of that data.

  5. Packaging Materials Properties Data

    SciTech Connect

    Leduc, D.

    1991-10-30

    Several energy absorbing materials are used in nuclear weapons component shipping containers recently designed for the Y-12 Plant Program Management Packaging Group. As a part of the independent review procedure leading to Certificates of Compliance, the U.S. Department of Energy Technical Safety Review Panels requested compression versus deflection . data on these materials. This report is a compilation of that data.

  6. Package for fragile objects

    DOEpatents

    Burgeson, Duane A.

    1977-01-01

    A package for fragile objects such as radioactive fusion pellets of micron size shipped in mounted condition or unmounted condition with a frangible inner container which is supported in a second inner container which in turn is supported in a final outer container, the second inner container having recesses for supporting alternate design inner containers.

  7. High Efficiency Integrated Package

    SciTech Connect

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  8. Sustainable Library Development Training Package

    ERIC Educational Resources Information Center

    Peace Corps, 2012

    2012-01-01

    This Sustainable Library Development Training Package supports Peace Corps' Focus In/Train Up strategy, which was implemented following the 2010 Comprehensive Agency Assessment. Sustainable Library Development is a technical training package in Peace Corps programming within the Education sector. The training package addresses the Volunteer…

  9. Parenteral packaging waste reduction.

    PubMed

    Baetz, B W

    1990-08-01

    The consumption of pharmaceutical products generates waste materials which can cause significant environmental impact when incinerated or landfilled. The purpose of this work is to stimulate discussion among hospital pharmacists and purchasing managers relating to the waste management aspects of their purchasing decisions. As a case study example, a number of commercially available "single use" parenterals are evaluated from a waste reduction perspective, for both the product container and for the packaging of these containers. Glass vials are non-incinerable, and are currently non-recyclable due to the higher melting temperatures required for borosilicate glass. However, plastic vials are potentially both incinerable and recyclable. Packaging quantities are considerably lower for plastic vials on a unit container basis, and also vary to a measurable degree between different manufacturers for a given type of container material. From an environmental perspective, waste reduction potential should become an important criterion in the selection of pharmaceutical products for hospital use. PMID:10105986

  10. RH Packaging Program Guidance

    SciTech Connect

    Washington TRU Solutions, LLC

    2003-08-25

    The purpose of this program guidance document is to provide technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the SARP and/or C of C shall govern. The C of C states: ''...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, ''Operating Procedures,'' of the application.'' It further states: ''...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, ''Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC approved, users need to be familiar with 10 CFR {section} 71.11, ''Deliberate Misconduct.'' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions. Following these instructions assures that operations are safe and meet the requirements of the SARP. This document is available on the Internet at: ttp://www.ws/library/t2omi/t2omi.htm. Users are responsible for ensuring they are using the current revision and change notices. Sites may prepare their own document using the word-for-word steps in th is document, in sequence, including Notes and cautions. Site specific information may be included as necessary. The document, and revisions, must then be submitted to CBFO at sitedocuments@wipp.ws for approval. A copy of the approval letter from CBFO shall be available for audit purposes. Users may develop site-specific procedures addressing preoperational activities, quality assurance (QA), hoisting and rigging, and radiation health physics to be used with the instructions contained in this document. Users may recommend changes to this document by submitting their recommendations (in writing) to the WIPP M&O Contractor RH Packaging Maintenance Engineer for evaluation. If approved, the change(s) will be incorporated into this document for use by ALL users. Before first use and every 12 months after, user sites will be audited to this document to ensure compliance. They will also be audited within one year from the effective date of revisions to this document.

  11. The Ettention software package.

    PubMed

    Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp

    2016-02-01

    We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. PMID:26686659

  12. Waste package reliability

    SciTech Connect

    Sastre, C.; Pescatore, C.; Sullivan, T.

    1986-02-01

    Probabilistic Reliability Analysis is identified as the preferred method to identify, organize, and convey the necessary information to meet the NRC standard on reasonable assurance of waste package performance according to regulatory requirements. The document addresses both the qualitative and quantitative aspects of the analysis, and suggests reliability analysis requirements by a prospective license applicant, as well as review procedures by the regulatory agency. In particular, a method for the quantitative evaluation of a waste package reliability is demonstrated through a simplified analysis. The method is based on the repetitive usage of a performance model for values of the model parameters that span their range of uncertainty. Techniques for selecting values of the input parameters, viewed as random variables, and for generating empirical correlations among experimental data are also described. Aspects which would need to be covered in a more comprehensive document are indicated.

  13. Anticounterfeit packaging technologies

    PubMed Central

    Shah, Ruchir Y.; Prajapati, Prajesh N.; Agrawal, Y. K.

    2010-01-01

    Packaging is the coordinated system that encloses and protects the dosage form. Counterfeit drugs are the major cause of morbidity, mortality, and failure of public interest in the healthcare system. High price and well-known brands make the pharma market most vulnerable, which accounts for top priority cardiovascular, obesity, and antihyperlipidemic drugs and drugs like sildenafil. Packaging includes overt and covert technologies like barcodes, holograms, sealing tapes, and radio frequency identification devices to preserve the integrity of the pharmaceutical product. But till date all the available techniques are synthetic and although provide considerable protection against counterfeiting, have certain limitations which can be overcome by the application of natural approaches and utilization of the principles of nanotechnology. PMID:22247875

  14. Software packager user's guide

    NASA Technical Reports Server (NTRS)

    Callahan, John R.

    1995-01-01

    Software integration is a growing area of concern for many programmers and software managers because the need to build new programs quickly from existing components is greater than ever. This includes building versions of software products for multiple hardware platforms and operating systems, building programs from components written in different languages, and building systems from components that must execute on different machines in a distributed network. The goal of software integration is to make building new programs from existing components more seamless -- programmers should pay minimal attention to the underlying configuration issues involved. Libraries of reusable components and classes are important tools but only partial solutions to software development problems. Even though software components may have compatible interfaces, there may be other reasons, such as differences between execution environments, why they cannot be integrated. Often, components must be adapted or reimplemented to fit into another application because of implementation differences -- they are implemented in different programming languages, dependent on different operating system resources, or must execute on different physical machines. The software packager is a tool that allows programmers to deal with interfaces between software components and ignore complex integration details. The packager takes modular descriptions of the structure of a software system written in the package specification language and produces an integration program in the form of a makefile. If complex integration tools are needed to integrate a set of components, such as remote procedure call stubs, their use is implied by the packager automatically and stub generation tools are invoked in the corresponding makefile. The programmer deals only with the components themselves and not the details of how to build the system on any given platform.

  15. Aquaculture information package

    SciTech Connect

    Boyd, T.; Rafferty, K.

    1998-08-01

    This package of information is intended to provide background information to developers of geothermal aquaculture projects. The material is divided into eight sections and includes information on market and price information for typical species, aquaculture water quality issues, typical species culture information, pond heat loss calculations, an aquaculture glossary, regional and university aquaculture offices and state aquaculture permit requirements. A bibliography containing 68 references is also included.

  16. Navy packaging standardization thrusts

    NASA Astrophysics Data System (ADS)

    Kidwell, J. R.

    1982-11-01

    Standardization is a concept that is basic to our world today. The idea of reducing costs through the economics of mass production is an easy one to grasp. Henry Ford started the process of large scale standardization in this country with the Detroit production lines for his automobiles. In the process additional benefits accrued, such as improved reliability through design maturity, off-the-shelf repair parts, faster repair time, and a resultant lower cost of ownership (lower life-cycle cost). The need to attain standardization benefits with military equipments exists now. Defense budgets, although recently increased, are not going to permit us to continue the tremendous investment required to maintain even the status quo and develop new hardware at the same time. Needed are more reliable, maintainable, testable hardware in the Fleet. It is imperative to recognize the obsolescence problems created by the use of high technology devices in our equipments, and find ways to combat these shortfalls. The Navy has two packaging standardization programs that will be addressed in this paper; the Standard Electronic Modules and the Modular Avionics Packaging programs. Following a brief overview of the salient features of each program, the packaging technology aspects of the program will be addressed, and developmental areas currently being investigated will be identified.

  17. Plutonium stabilization and packaging system

    SciTech Connect

    1996-05-01

    This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material.

  18. 78 FR 19007 - Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... COMMISSION Certain Products Having Laminated Packaging, Laminated Packaging, and Components Thereof.... 1337, on behalf of Lamina Packaging Innovations LLC of Longview, Texas. An amended complaint was filed... importation of certain products having laminated packaging, laminated packaging, and components thereof...

  19. 78 FR 13083 - Products Having Laminated Packaging, Laminated Packaging, and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... COMMISSION Products Having Laminated Packaging, Laminated Packaging, and Components Thereof; Notice of... Commission has received a complaint entitled Products Having Laminated ] Packaging, Laminated Packaging, and... filed on behalf of Lamina Packaging Innovations LLC on February 20, 2013. The complaint...

  20. 21 CFR 355.20 - Packaging conditions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (toothpastes and tooth powders) packages shall not contain more than 276 milligrams (mg) total fluorine per... packages shall not contain more than 120 mg total fluorine per package. (3) Exception. Package...

  1. 21 CFR 355.20 - Packaging conditions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (toothpastes and tooth powders) packages shall not contain more than 276 milligrams (mg) total fluorine per... packages shall not contain more than 120 mg total fluorine per package. (3) Exception. Package...

  2. 21 CFR 355.20 - Packaging conditions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (toothpastes and tooth powders) packages shall not contain more than 276 milligrams (mg) total fluorine per... packages shall not contain more than 120 mg total fluorine per package. (3) Exception. Package...

  3. Optimal segmentation and packaging process

    DOEpatents

    Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.

    1999-01-01

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.

  4. Packaging - Materials review

    NASA Astrophysics Data System (ADS)

    Herrmann, Matthias

    2014-06-01

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device, valve, etc.), chemical inertness, cost issues, and others. Finally, proper cell design has to be considered for effective thermal management (i.e. cooling and heating) of battery packs.

  5. Packaging - Materials review

    SciTech Connect

    Herrmann, Matthias

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device, valve, etc.), chemical inertness, cost issues, and others. Finally, proper cell design has to be considered for effective thermal management (i.e. cooling and heating) of battery packs.

  6. Attitude sensor package

    NASA Technical Reports Server (NTRS)

    Aceti, R.; Trischberger, M.; Underwood, P. J.; Pomilia, A.; Cosi, M.; Boldrini, F.

    1993-01-01

    This paper describes the design, construction, testing, and successful flight of the Attitude Sensor Package. The payload was assembled on a standard HITCHHIKER experiment mounting plate, and made extensive use of the carrier's power and data handling capabilities. The side mounted HITCHHIKER version was chosen, since this configuration provided the best viewing conditions for the instruments. The combustion was successfully flown on board Space Shuttle Columbia (STS-52), in October 1992. The payload was one of the 14 experiments of the In-Orbit Technology Demonstration Program (Phase 1) of the European Space Agency.

  7. The Kull IMC package

    SciTech Connect

    Gentile, N A; Keen,N; Rathkopf, J

    1998-10-01

    We describe the Kull IMC package, and Implicit Monte Carlo Program written for use in A and X division radiation hydro codes. The Kull IMC has been extensively tested. Written in C++ and using genericity via the template feature to allow easy integration into different codes, the Kull IMC currently runs coupled radiation hydrodynamic problems in 2 different 3D codes. A stand-alone version also exists, which has been parallelized with mesh replication. This version has been run on up to 384 processors on ASCI Blue Pacific.

  8. Aristos Optimization Package

    Energy Science and Technology Software Center (ESTSC)

    2007-03-01

    Aristos is a Trilinos package for nonlinear continuous optimization, based on full-space sequential quadratic programming (SQP) methods. Aristos is specifically designed for the solution of large-scale constrained optimization problems in which the linearized constraint equations require iterative (i.e. inexact) linear solver techniques. Aristos' unique feature is an efficient handling of inexactness in linear system solves. Aristos currently supports the solution of equality-constrained convex and nonconvex optimization problems. It has been used successfully in the areamore » of PDE-constrained optimization, for the solution of nonlinear optimal control, optimal design, and inverse problems.« less

  9. Specificity of retroviral RNA packaging.

    PubMed Central

    Aronoff, R; Linial, M

    1991-01-01

    Encapsidation of retroviral RNA has been shown to be dependent on specific cis-acting signals, in particular, the packaging region (psi) located near the 5' end of the retroviral genome. In this report, we show that a 683-base avian extended packaging sequence (psi+) derived from Rous sarcoma virus will direct packaging of heterologous hygromycin mRNA into avian virions when present at the 3' end of the transcript in the sense orientation. However, this packaging is not as efficient as the packaging of RNA encoded by a standard avian retroviral vector. A quail cell line containing a Rous sarcoma virus mutant, SE21Q1b, produces virions which will package endogenous cellular mRNAs randomly, roughly in proportion to their intracellular concentrations. We found that viral particles from SE21Q1b retain the capacity to specifically encapsidate hygromycin mRNAs containing the avian psi+. To determine whether packaging of cellular mRNA would occur in other retroviral packaging lines, we assayed virion RNA isolated from the retroviral particles produced by avian and murine packaging lines for the presence of endogenous cellular mRNAs. Endogenous cellular mRNAs were not found randomly packaged into virions produced by any of the packaging lines examined except SE21Q1b. Some specific sequences, however, were found packaged into avian virions. Endogenous retrovirus-related mink cell focus-inducing murine leukemia virus RNAs and 30S viruslike RNAs were found to be efficiently packaged into murine virions even in the presence of RNAs containing all cis-acting retroviral sequences. Images PMID:1985218

  10. Safety Analysis Report for packaging (onsite) steel waste package

    SciTech Connect

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  11. CH Packaging Operations Manual

    SciTech Connect

    None, None

    2009-05-27

    This document provides the user with instructions for assembling a payload. All the steps in Subsections 1.2, Preparing 55-Gallon Drum Payload Assembly; 1.3, Preparing "Short" 85-Gallon Drum Payload Assembly (TRUPACT-II and HalfPACT); 1.4, Preparing "Tall" 85-Gallon Drum Payload Assembly (HalfPACT only); 1.5, Preparing 100-Gallon Drum Payload Assembly; 1.6, Preparing Shielded Container Payload Assembly; 1.7, Preparing SWB Payload Assembly; and 1.8, Preparing TDOP Payload Assembly, must be completed, but may be performed in any order as long as radiological control steps are not bypassed. Transport trailer operations, package loading and unloading from transport trailers, hoisting and rigging activities such as ACGLF operations, equipment checkout and shutdown, and component inspection activities must be performed, but may be performed in any order and in parallel with other activities as long as radiological control steps are not bypassed. Steps involving OCA/ICV lid removal/installation and payload removal/loading may be performed in parallel if there are multiple operators working on the same packaging. Steps involving removal/installation of OCV/ICV upper and lower main O-rings must be performed in sequence, except as noted.

  12. CH Packaging Operations Manual

    SciTech Connect

    None, None

    2008-09-11

    This document provides the user with instructions for assembling a payload. All the steps in Subsections 1.2, Preparing 55-Gallon Drum Payload Assembly; 1.3, Preparing "Short" 85-Gallon Drum Payload Assembly (TRUPACT-II and HalfPACT); 1.4, Preparing "Tall" 85-gallon Drum Payload Assembly (HalfPACT only); 1.5, Preparing 100-Gallon Drum Payload Assembly; 1.6, Preparing SWB Payload Assembly; and 1.7, Preparing TDOP Payload Assembly, must be completed, but may be performed in any order as long as radiological control steps are not bypassed. Transport trailer operations, package loading and unloading from transport trailers, hoisting and rigging activities such as ACGLF operations, equipment checkout and shutdown, and component inspection activities must be performed, but may be performed in any order and in parallel with other activities as long as radiological control steps are not bypassed. Steps involving OCA/ICV lid removal/installation and payload removal/loading may be performed in parallel if there are multiple operators working on the same packaging. Steps involving removal/installation of OCV/ICV upper and lower main O-rings must be performed in sequence.

  13. Japan's electronic packaging technologies

    NASA Astrophysics Data System (ADS)

    Tummala, Rao R.; Pecht, Michael

    1995-02-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  14. Japan's electronic packaging technologies

    NASA Technical Reports Server (NTRS)

    Tummala, Rao R.; Pecht, Michael

    1995-01-01

    The JTEC panel found Japan to have significant leadership over the United States in the strategic area of electronic packaging. Many technologies and products once considered the 'heart and soul' of U.S. industry have been lost over the past decades to Japan and other Asian countries. The loss of consumer electronics technologies and products is the most notable of these losses, because electronics is the United States' largest employment sector and is critical for growth businesses in consumer products, computers, automobiles, aerospace, and telecommunications. In the past there was a distinction between consumer and industrial product technologies. While Japan concentrated on the consumer market, the United States dominated the industrial sector. No such distinction is anticipated in the future; the consumer-oriented technologies Japan has dominated are expected to characterize both domains. The future of U.S. competitiveness will, therefore, depend on the ability of the United States to rebuild its technological capabilities in the area of portable electronic packaging.

  15. Space station power semiconductor package

    NASA Technical Reports Server (NTRS)

    Balodis, Vilnis; Berman, Albert; Devance, Darrell; Ludlow, Gerry; Wagner, Lee

    1987-01-01

    A package of high-power switching semiconductors for the space station have been designed and fabricated. The package includes a high-voltage (600 volts) high current (50 amps) NPN Fast Switching Power Transistor and a high-voltage (1200 volts), high-current (50 amps) Fast Recovery Diode. The package features an isolated collector for the transistors and an isolated anode for the diode. Beryllia is used as the isolation material resulting in a thermal resistance for both devices of .2 degrees per watt. Additional features include a hermetical seal for long life -- greater than 10 years in a space environment. Also, the package design resulted in a low electrical energy loss with the reduction of eddy currents, stray inductances, circuit inductance, and capacitance. The required package design and device parameters have been achieved. Test results for the transistor and diode utilizing the space station package is given.

  16. IN-PACKAGE CHEMISTRY ABSTRACTION

    SciTech Connect

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  17. Packaging investigation of optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Zhike, Zhang; Yu, Liu; Jianguo, Liu; Ninghua, Zhu

    2015-10-01

    Compared with microelectronic packaging, optoelectronic packaging as a new packaging type has been developed rapidly and it will play an essential role in optical communication. In this paper, we try to summarize the development history, research status, technology issues and future prospects, and hope to provide a meaningful reference. Project supported by the National High Technology Research and Development Program of China (Nos. 2013AA014201, 2013AA014203) and the National Natural Science Foundation of China (Nos. 61177080, 61335004, 61275031).

  18. About the ZOOM minimization package

    SciTech Connect

    Fischler, M.; Sachs, D.; /Fermilab

    2004-11-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete.

  19. Packaging Design Criteria for the Steel Waste Package

    SciTech Connect

    BOEHNKE, W.M.

    2000-10-19

    This packaging design criteria provides the criteria for the design, fabrication, safety evaluation, and use of the steel waste package (SWP) to transport remote-handled waste and special-case waste from the 324 facility to Central Waste Complex (CWC) for interim storage.

  20. Anhydrous Ammonia Training Module. Trainer's Package. Participant's Package.

    ERIC Educational Resources Information Center

    Beaudin, Bart; And Others

    This document contains a trainer's and a participant's package for teaching employees on site safe handling procedures for working with anhydrous ammonia, especially on farms. The trainer's package includes the following: a description of the module; a competency; objectives; suggested instructional aids; a training outline (or lesson plan) for…

  1. Package Up Your Troubles--An Introduction to Package Libraries

    ERIC Educational Resources Information Center

    Frank, Colin

    1978-01-01

    Discusses a "package deal" library--a prefabricated building including interior furnishing--in terms of costs, fitness for purpose, and interior design, i.e., shelving, flooring, heating, lighting, and humidity. Advantages and disadvantages of the package library are also considered. (Author/MBR)

  2. Balloon gondola diagnostics package

    NASA Technical Reports Server (NTRS)

    Cantor, K. M.

    1986-01-01

    In order to define a new gondola structural specification and to quantify the balloon termination environment, NASA developed a balloon gondola diagnostics package (GDP). This addition to the balloon flight train is comprised of a large array of electronic sensors employed to define the forces and accelerations imposed on a gondola during the termination event. These sensors include the following: a load cell, a three-axis accelerometer, two three-axis rate gyros, two magnetometers, and a two axis inclinometer. A transceiver couple allows the data to be telemetered across any in-line rotator to the gondola-mounted memory system. The GDP is commanded 'ON' just prior to parachute deployment in order to record the entire event.

  3. Thyra Abstract Interface Package

    Energy Science and Technology Software Center (ESTSC)

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilitiesmore » to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Code also currently exists for testing objects and providing composite objects such as product vectors.« less

  4. Anasazi Block Eigensolvers Package

    Energy Science and Technology Software Center (ESTSC)

    2004-03-01

    ANASAZI is an extensible and interoperable framework for large-scale eigenvalue algorithms. The motivation for this framework is to provide a generic interface to a collection of algorithms for solving large-scale eigenvalue problems. ANASAZI is interoperable because both the matrix and vectors (defining the eigenspace) are considered to be opaque objects---only knowledge of the matrix and vectors via elementary operations is necessary. An implementation of Anasazi is accomplished via the use of interfaces. One of themore » goals of ANASAZI is to allow the user the flexibility to specify the data representation for the matrix and vectors and so leverage any existing software investment. The algorithms that will be included in package are Krylov-based and preconditioned eigensolvers.« less

  5. Tritium waste package

    DOEpatents

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  6. Tritium waste package

    DOEpatents

    Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

    1995-11-07

    A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

  7. The LISA Technology Package

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2009-01-01

    The LISA Technology Package (LTP) is the payload of the European Space Agency's LISA Pathfinder mission. LISA Pathfinder was instigated to test, in a flight environment, the critical technologies required by LISA; namely, the inertial sensing subsystem and associated control laws and micro-Newton thrusters required to place a macroscopic test mass in pure free-fall. The UP is in the late stages of development -- all subsystems are currently either in the final stages of manufacture or in test. Available flight units are being integrated into the real-time testbeds for system verification tests. This poster will describe the UP and its subsystems, give the current status of the hardware and test campaign, and outline the future milestones leading to the UP delivery.

  8. Meros Preconditioner Package

    Energy Science and Technology Software Center (ESTSC)

    2004-04-01

    Meros uses the compositional, aggregation, and overload operator capabilities of TSF to provide an object-oriented package providing segregated/block preconditioners for linear systems related to fully-coupled Navier-Stokes problems. This class of preconditioners exploits the special properties of these problems to segregate the equations and use multi-level preconditioners (through ML) on the matrix sub-blocks. Several preconditioners are provided, including the Fp and BFB preconditioners of Kay & Loghin and Silvester, Elman, Kay & Wathen. The overall performancemore » and scalability of these preconditioners approaches that of multigrid for certain types of problems. Meros also provides more traditional pressure projection methods including SIMPLE and SIMPLEC.« less

  9. Tpetra Kernel Package

    Energy Science and Technology Software Center (ESTSC)

    2004-03-01

    A package of classes for constructing and using distributed sparse and dense matrices, vectors and graphs. Templated on the scalar and ordinal types so that any valid floating-point type, as well as any valid integer type can be used with these classes. Other non-standard types, such as 3-by-3 matrices for the scalar type and mod-based integers for ordinal types, can also be used. Tpetra is intended to provide the foundation for basic matrix and vectormore » operations for the next generation of Trilinos preconditioners and solvers, It can be considered as the follow-on to Epetra. Tpetra provides distributed memory operations via an abstract parallel machine interface, The most common implementation of this interface will be MPI.« less

  10. Piecewise Cubic Interpolation Package

    Energy Science and Technology Software Center (ESTSC)

    1982-04-23

    PCHIP (Piecewise Cubic Interpolation Package) is a set of subroutines for piecewise cubic Hermite interpolation of data. It features software to produce a monotone and "visually pleasing" interpolant to monotone data. Such an interpolant may be more reasonable than a cubic spline if the data contain both 'steep' and 'flat' sections. Interpolation of cumulative probability distribution functions is another application. In PCHIP, all piecewise cubic functions are represented in cubic Hermite form; that is, f(x)more » is determined by its values f(i) and derivatives d(i) at the breakpoints x(i), i=1(1)N. PCHIP contains three routines - PCHIM, PCHIC, and PCHSP to determine derivative values, six routines - CHFEV, PCHFE, CHFDV, PCHFD, PCHID, and PCHIA to evaluate, differentiate, or integrate the resulting cubic Hermite function, and one routine to check for monotonicity. A FORTRAN 77 version and SLATEC version of PCHIP are included.« less

  11. Radioxenon packaging contamination

    SciTech Connect

    Lieto, R.P.; Morrison, N.

    1985-12-01

    Xenon-133 in multiple unit-dose vials is a commonly employed radionuclide in nuclear medicine. Because it is an inert gas, shipments of radioxenon for nuclear medicine departments are not required to be checked for contamination. An evaluation of 30 shipments containing /sup 133/Xe vials revealed consistent contamination of the inner plastic packaging jackets. Surveys were performed using a Geiger-Muller survey meter, a dose calibrator, and a scintillation camera. Study of the xenon removal from the jackets indicated storage in a fume hood until the following day reduced the contaminated materials to background levels. The dose calibrator was found to be a quick and sensitive survey instrument for determining contamination in these plastic jackets.

  12. ROBOVOLC: The Geochemical Package

    NASA Astrophysics Data System (ADS)

    Gurrieri, S.; Giudice, G.; Giammanco, S.; Coltelli, M.; Muscato, G.

    2004-12-01

    ROBOVOLC is a special designed robot equipped with different scientific packages to collect solid, liquid and gas samples and make several measurements. This project was developed to reduce the risks to researchers working in volcanic areas (Muscato G. et al., 2003). In particular, the geochemical package allows to collect some different typology of gas samples (dray gases, NaOH flask, acid condense) and perform some direct measurements (gas temperature, mass and energy release, dry gas/steam ratio). The gases from fumaroles are collected by a 1.2m heated probe in order to keep the robot away from the fumaroles. The gas temperature is measured by several thermocouples located in different part of the probe (on the top to measure the fumarolic temperature) and along the gas canalization in order to check the temperature decreasing. The first step in the sampling procedure consists of the thermal stabilization of the equipment. In this phase, the fumarolic gases flow inside the system for a variable period of time depending on the temperature and flux of the fumaroles. Dray gases and acid condense (Capasso et al., 1992) are collected after the fumarolic gas is cooled by a pyrex glass steam condenser. This stage allows to measure the volumes of both liquid and gas phase and, therefore, to calculate the gas/steam ratio. NaOH flask (Giggenbach, 1975) can be collected excluding the condensed by some electro valves. The gas flux inside the flask can be regulated by a motorized system and a video camera. All the gas canalization is made in pyrex glass and PTFE.

  13. Chip packaging technique

    NASA Technical Reports Server (NTRS)

    Jayaraj, Kumaraswamy (Inventor); Noll, Thomas E. (Inventor); Lockwood, Harry F. (Inventor)

    2001-01-01

    A hermetically sealed package for at least one semiconductor chip is provided which is formed of a substrate having electrical interconnects thereon to which the semiconductor chips are selectively bonded, and a lid which preferably functions as a heat sink, with a hermetic seal being formed around the chips between the substrate and the heat sink. The substrate is either formed of or includes a layer of a thermoplastic material having low moisture permeability which material is preferably a liquid crystal polymer (LCP) and is a multiaxially oriented LCP material for preferred embodiments. Where the lid is a heat sink, the heat sink is formed of a material having high thermal conductivity and preferably a coefficient of thermal expansion which substantially matches that of the chip. A hermetic bond is formed between the side of each chip opposite that connected to the substrate and the heat sink. The thermal bond between the substrate and the lid/heat sink may be a pinched seal or may be provided, for example by an LCP frame which is hermetically bonded or sealed on one side to the substrate and on the other side to the lid/heat sink. The chips may operate in the RF or microwave bands with suitable interconnects on the substrate and the chips may also include optical components with optical fibers being sealed into the substrate and aligned with corresponding optical components to transmit light in at least one direction. A plurality of packages may be physically and electrically connected together in a stack to form a 3D array.

  14. Packaging Software Assets for Reuse

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.; Marshall, J. J.; Downs, R. R.

    2010-12-01

    The reuse of existing software assets such as code, architecture, libraries, and modules in current software and systems development projects can provide many benefits, including reduced costs, in time and effort, and increased reliability. Many reusable assets are currently available in various online catalogs and repositories, usually broken down by disciplines such as programming language (Ibiblio for Maven/Java developers, PyPI for Python developers, CPAN for Perl developers, etc.). The way these assets are packaged for distribution can play a role in their reuse - an asset that is packaged simply and logically is typically easier to understand, install, and use, thereby increasing its reusability. A well-packaged asset has advantages in being more reusable and thus more likely to provide benefits through its reuse. This presentation will discuss various aspects of software asset packaging and how they can affect the reusability of the assets. The characteristics of well-packaged software will be described. A software packaging domain model will be introduced, and some existing packaging approaches examined. An example case study of a Reuse Enablement System (RES), currently being created by near-term Earth science decadal survey missions, will provide information about the use of the domain model. Awareness of these factors will help software developers package their reusable assets so that they can provide the most benefits for software reuse.

  15. Package-interface thermal switch

    SciTech Connect

    Hyman, N.L.

    1995-05-24

    The package-interface thermal switch (PITS) is an active temperature control device for modulating the flow of thermal energy from satellite equipment, such as electronic modules or batteries, to the satellite mounting deck which serves as a heat sink. PITS comprises a mounting bolt made of a shaped memory alloy (SMA) actuating bolt and a non-metallic rod with a helical spring surrounding it forming a mounting bolt for a satellite equipment package. At least four mounting bolts are used for installing the equipment package and are preloaded to a predetermined stress representing the desired thermal conductance between the heat sink and the package. The SMA actuating bolt is in thermal contact with the component or package and expands or contracts as the result of changing package temperature and the helical return spring forces against the SMA actuating bolt portion of the PITS, increasing (hot-on`1 condition) or decreasing (cold-off condition) the pressure of the package against the mounting deck. As the PITS changes its total length, the thermal conductance between the two objects is increased or decreased. Thus thermal conductance changes as a direct function of package temperature, resulting in active temperature control. The simple design of the PITS reduces the cost and weight of the thermal control subsystem in satellites and its high reliability eliminates the requirement for thermal design verification testing.

  16. Oral Hygiene. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This learning activity package on oral hygiene is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  17. Solar water heater design package

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  18. Chemical Energy: A Learning Package.

    ERIC Educational Resources Information Center

    Cohen, Ita; Ben-Zvi, Ruth

    1982-01-01

    A comprehensive teaching/learning chemical energy package was developed to overcome conceptual/experimental difficulties and time required for calculation of enthalpy changes. The package consists of five types of activities occuring in repeated cycles: group activities, laboratory experiments, inquiry questionnaires, teacher-led class

  19. 49 CFR 173.63 - Packaging exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Packaging exceptions. 173.63 Section 173.63... SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.63 Packaging exceptions...) Cartridges, power devices which are used to project fastening devices. (2) Packaging for Cartridges,...

  20. 49 CFR 173.63 - Packaging exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packaging exceptions. 173.63 Section 173.63... SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.63 Packaging exceptions... which are used to project fastening devices. (2) Packaging for cartridges, small arms, and...

  1. 49 CFR 173.411 - Industrial packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Industrial packagings. 173.411 Section 173.411... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.411 Industrial packagings. (a) General. Each industrial packaging must comply with the requirements of this section which specifies packaging tests,...

  2. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed...

  3. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed...

  4. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed...

  5. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed...

  6. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed...

  7. CDIAC catalog of numeric data packages and computer model packages

    SciTech Connect

    Boden, T.A.; O`Hara, F.M. Jr.; Stoss, F.W.

    1993-05-01

    The Carbon Dioxide Information Analysis Center acquires, quality-assures, and distributes to the scientific community numeric data packages (NDPs) and computer model packages (CMPs) dealing with topics related to atmospheric trace-gas concentrations and global climate change. These packages include data on historic and present atmospheric CO{sub 2} and CH{sub 4} concentrations, historic and present oceanic CO{sub 2} concentrations, historic weather and climate around the world, sea-level rise, storm occurrences, volcanic dust in the atmosphere, sources of atmospheric CO{sub 2}, plants` response to elevated CO{sub 2} levels, sunspot occurrences, and many other indicators of, contributors to, or components of climate change. This catalog describes the packages presently offered by CDIAC, reviews the processes used by CDIAC to assure the quality of the data contained in these packages, notes the media on which each package is available, describes the documentation that accompanies each package, and provides ordering information. Numeric data are available in the printed NDPs and CMPs, in CD-ROM format, and from an anonymous FTP area via Internet. All CDIAC information products are available at no cost.

  8. Packaging Considerations for Biopreservation

    PubMed Central

    Woods, Erik J.; Thirumala, Sreedhar

    2011-01-01

    Summary The packaging system chosen for biopreservation is critical for many reasons. An ideal biopreservation container system must provide for closure integrity, sample stability and ready access to the preserved material. This means the system needs to be hermetically sealed to ensure integrity of the specimen is maintained throughout processing, storage and distribution; the system must remain stable over long periods of time as many biobanked samples may be stored indefinitely; and functionally closed access systems must be used to avoid contamination upon sample withdraw. This study reviews the suitability of a new commercially available vial configuration container utilizing blood bag style closure and access systems that can be hermetically sealed and remain stable through cryopreservation and biobanking procedures. This vial based systems allow for current good manufacturing/tissue practice (cGTP) requirements during processing of samples and may provide the benefit of ease of delivery by a care giver. In this study, the CellSeal® closed system cryovial was evaluated and compared to standard screw cap vials. The CellSeal system was evaluated for durability, closure integrity through transportation and maintenance of functional viability of a cryopreserved mesenchymal stem cell model. The results of this initial proof-of-concept study indicated that the CellSeal vials are highly suitable for biopreservation and biobanking, and provide a suitable container system for clinical and commercial cell therapy products frozen in small volumes. PMID:21566715

  9. Amesos Solver Package

    Energy Science and Technology Software Center (ESTSC)

    2004-03-01

    Amesos is the Direct Sparse Solver Package in Trilinos. The goal of Amesos is to make AX=S as easy as it sounds, at least for direct methods. Amesos provides interfaces to a number of third party sparse direct solvers, including SuperLU, SuperLU MPI, DSCPACK, UMFPACK and KLU. Amesos provides a common object oriented interface to the best sparse direct solvers in the world. A sparse direct solver solves for x in Ax = b. wheremore » A is a matrix and x and b are vectors (or multi-vectors). A sparse direct solver flrst factors A into trinagular matrices L and U such that A = LU via gaussian elimination and then solves LU x = b. Switching amongst solvers in Amesos roquires a change to a single parameter. Yet, no solver needs to be linked it, unless it is used. All conversions between the matrices provided by the user and the format required by the underlying solver is performed by Amesos. As new sparse direct solvers are created, they will be incorporated into Amesos, allowing the user to simpty link with the new solver, change a single parameter in the calling sequence, and use the new solver. Amesos allows users to specify whether the matrix has changed. Amesos can be used anywhere that any sparse direct solver is needed.« less

  10. Packaged air conditioner

    SciTech Connect

    Blair, R.R.

    1988-03-29

    This patent describes a package terminal air conditioning unit that is formed of an interior unit disposed within a building, a separate exterior unit disposed outside the building, and connecting duct means connecting the interior unit to the exterior unit, in which the interior unit comprises a cabinet, an indoor heat exchanger coil, and a cylindrical fan which includes a cylindrical fan rotor, means mounting the rotor in the cabinet, and a volute shaped member. The exterior unit comprises an outside heat exchanger coil and an outside cabinet separated from the indoor cabinet and housing the outdoor heat exchanger; and the connecting duct means comprises a pair of refrigerant lines passing between the two cabinets for connecting the two heat exchanger coils, a compressor, and an expansion valve to complete an air conditioning circuit. The improvement comprises the compressor contained in the indoor cabinet of the interior unit so that the exterior unit is kept as small and light as possible, and has a relatively small power requirement as compared with the interior unit. The indoor cabinet is molded of a synthetic resin and is formed of a base section, a back section, and a removable front cover section that interlock to form an equipment compartment that houses the compressor and an adjacent air duct that connects an inlet vent and an outlet vent with the indoor heat exchanger coil situated therebetween; both of which compartments are opened by removal of only the front cover section.

  11. Particle Environment Package (PEP)

    NASA Astrophysics Data System (ADS)

    Barabash, S.; Wurz, P.; Brandt, P.; Wieser, M.; Holmström, M.; Futaana, Y.; Stenberg, G.; Nilsson, H.; Eriksson, A.; Tulej, M.; Vorburger, A.; Thomas, N.; Paranicas, C.; Mitchell, D. G.; Ho, G.; Mauk, B. H.; Haggerty, D.; Westlake, J. H.; Fränz, M.; Krupp, N.; Roussos, E.; Kallio, E.; Schmidt, W.; Szego, K.; Szalai, S.; Khurana, Krishan; Jia, Xianzhe; Paty, C.; Wimmer-Schweingruber, R. F.; Heber, B.; Kazushi, Asamura; Grande, M.; Lammer, H.; Zhang, T.; McKenna-Lawlor, S.; Krimigis, S. M.; Sarris, Th.; Grodent, D.

    2013-09-01

    Particle Environment Package (PEP) is a suite of particle sensors proposed for the ESA JUICE mission. PEP includes sensors for the comprehensive measurements of electrons, ions, energetic neutrals, and neutral gas. PEP covers over nine decades of energy <0.001 eV to >1 MeV with full angular coverage. Combining remote global imaging via energetic neutral atoms (ENAs) with in-situ measurements, PEP addresses all scientific objectives of the JUICE mission relevant to particle measurements. PEP will seek answers for four overarching science questions: How does the corotating magnetosphere of Jupiter interact with complex and diverse environment of Ganymede? How does the rapidly rotating magnetosphere of Jupiter interact with seemingly inert Callisto? What are the governing mechanisms and their global impact of release of material into the Jupiter magnetosphere from Europa and Io? How do internal and solar wind drivers cause such energetic, time variable and multi-scale phenomena in the steadily rotating giant magnetosphere of Jupiter? We discuss the suite's sensor basic design, performance, radiation mitigation principles and demonstrate how the suite fully addresses its scientific objectives.

  12. In-Package Chemistry Abstraction

    SciTech Connect

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.

  13. Optimal segmentation and packaging process

    DOEpatents

    Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.

    1999-08-10

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.

  14. Laser Welding in Electronic Packaging

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The laser has proven its worth in numerous high reliability electronic packaging applications ranging from medical to missile electronics. In particular, the pulsed YAG laser is an extremely flexible and versatile too] capable of hermetically sealing microelectronics packages containing sensitive components without damaging them. This paper presents an overview of details that must be considered for successful use of laser welding when addressing electronic package sealing. These include; metallurgical considerations such as alloy and plating selection, weld joint configuration, design of optics, use of protective gases and control of thermal distortions. The primary limitations on use of laser welding electronic for packaging applications are economic ones. The laser itself is a relatively costly device when compared to competing welding equipment. Further, the cost of consumables and repairs can be significant. These facts have relegated laser welding to use only where it presents a distinct quality or reliability advantages over other techniques of electronic package sealing. Because of the unique noncontact and low heat inputs characteristics of laser welding, it is an ideal candidate for sealing electronic packages containing MEMS devices (microelectromechanical systems). This paper addresses how the unique advantages of the pulsed YAG laser can be used to simplify MEMS packaging and deliver a product of improved quality.

  15. Safety evaluation for packaging (onsite) concrete-lined waste packaging

    SciTech Connect

    Romano, T.

    1997-09-25

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.

  16. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  17. Microelectronics packaging research directions for aerospace applications

    NASA Technical Reports Server (NTRS)

    Galbraith, L.

    2003-01-01

    The Roadmap begins with an assessment of needs from the microelectronics for aerospace applications viewpoint. Needs Assessment is divided into materials, packaging components, and radiation characterization of packaging.

  18. Large area LED package

    NASA Astrophysics Data System (ADS)

    Goullon, L.; Jordan, R.; Braun, T.; Bauer, J.; Becker, F.; Hutter, M.; Schneider-Ramelow, M.; Lang, K.-D.

    2015-03-01

    Solid state lighting using LED-dies is a rapidly growing market. LED-dies with the needed increasing luminous flux per chip area produce a lot of heat. Therefore an appropriate thermal management is required for general lighting with LEDdies. One way to avoid overheating and shorter lifetime is the use of many small LED-dies on a large area heat sink (down to 70 μm edge length), so that heat can spread into a large area while at the same time light also appears on a larger area. The handling with such small LED-dies is very difficult because they are too small to be picked with common equipment. Therefore a new concept called collective transfer bonding using a temporary carrier chip was developed. A further benefit of this new technology is the high precision assembly as well as the plane parallel assembly of the LED-dies which is necessary for wire bonding. It has been shown that hundred functional LED-dies were transferred and soldered at the same time. After the assembly a cost effective established PCB-technology was applied to produce a large-area light source consisting of many small LED-dies and electrically connected on a PCB-substrate. The top contacts of the LED-dies were realized by laminating an adhesive copper sheet followed by LDI structuring as known from PCB-via-technology. This assembly can be completed by adding converting and light forming optical elements. In summary two technologies based on standard SMD and PCB technology have been developed for panel level LED packaging up to 610x 457 mm2 area size.

  19. Spack: the Supercomputing Package Manager

    SciTech Connect

    Gamblin, T.

    2013-11-09

    The HPC software ecosystem is growing larger and more complex, but software distribution mechanisms have not kept up with this trend. Tools, Libraries, and applications need to run on multiple platforms and build with multiple compliers. Increasingly, packages leverage common software components, and building any one component requires building all of its dependencies. In HPC environments, ABI-incompatible interfaces (likeMPI), binary-incompatible compilers, and cross-compiled environments converge to make the build process a combinatoric nightmare. This obstacle deters many users from adopting useful tools, and others waste countless hours building and rebuilding tools. Many package managers exist to solve these problems for typical desktop environments, but none suits the unique needs of supercomputing facilities or users. To address these problems, we have Spack, a package manager that eases the task of managing software for end-users, across multiple platforms, package versions, compilers, and ABI incompatibilities.

  20. New Packaging for Amplifier Slabs

    SciTech Connect

    Riley, M.; Thorsness, C.; Suratwala, T.; Steele, R.; Rogowski, G.

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  1. Handling difficult materials: Aseptic packaging

    SciTech Connect

    Lieb, K.

    1994-03-01

    Since aseptic packages, or drink boxes, were introduced in the US in the early 1980s, they have been praised for their convenience and berated for their lack of recyclability. As a result, aseptic packaging collection has been linked with that of milk cartons to increase the volume. The intervening years since the introduction of aseptic packaging have seen the drink box industry aggressively trying to create a recycling market for the boxes. Communities and schools have initiated programs, and recycling firms have allocated resources to see whether recycling aseptic packaging can work. Drink boxes are now recycled in 2.3 million homes in 15 states, and in 1,655 schools in 17 states. They are typically collected in school and curbside programs with other polyethylene coated (laminated) paperboard products such a milk cartons, and then baled and shipped to five major paper companies for recycling at eight facilities.

  2. High Frequency Electronic Packaging Technology

    NASA Technical Reports Server (NTRS)

    Herman, M.; Lowry, L.; Lee, K.; Kolawa, E.; Tulintseff, A.; Shalkhauser, K.; Whitaker, J.; Piket-May, M.

    1994-01-01

    Commercial and government communication, radar, and information systems face the challenge of cost and mass reduction via the application of advanced packaging technology. A majority of both government and industry support has been focused on low frequency digital electronics.

  3. Packaged bulk micromachined triglyceride biosensor

    NASA Astrophysics Data System (ADS)

    Mohanasundaram, S. V.; Mercy, S.; Harikrishna, P. V.; Rani, Kailash; Bhattacharya, Enakshi; Chadha, Anju

    2010-02-01

    Estimation of triglyceride concentration is important for the health and food industries. Use of solid state biosensors like Electrolyte Insulator Semiconductor Capacitors (EISCAP) ensures ease in operation with good accuracy and sensitivity when compared to conventional sensors. In this paper we report on packaging of miniaturized EISCAP sensors on silicon. The packaging involves glass to silicon bonding using adhesive. Since this kind of packaging is done at room temperature, it cannot damage the thin dielectric layers on the silicon wafer unlike the high temperature anodic bonding technique and can be used for sensors with immobilized enzyme without denaturing the enzyme. The packaging also involves a teflon capping arrangement which helps in easy handling of the bio-analyte solutions. The capping solves two problems. Firstly, it helps in the immobilization process where it ensures the enzyme immobilization happens only on one pit and secondly it helps with easy transport of the bio-analyte into the sensor pit for measurements.

  4. Spack: the Supercomputing Package Manager

    Energy Science and Technology Software Center (ESTSC)

    2013-11-09

    The HPC software ecosystem is growing larger and more complex, but software distribution mechanisms have not kept up with this trend. Tools, Libraries, and applications need to run on multiple platforms and build with multiple compliers. Increasingly, packages leverage common software components, and building any one component requires building all of its dependencies. In HPC environments, ABI-incompatible interfaces (likeMPI), binary-incompatible compilers, and cross-compiled environments converge to make the build process a combinatoric nightmare. This obstaclemore » deters many users from adopting useful tools, and others waste countless hours building and rebuilding tools. Many package managers exist to solve these problems for typical desktop environments, but none suits the unique needs of supercomputing facilities or users. To address these problems, we have Spack, a package manager that eases the task of managing software for end-users, across multiple platforms, package versions, compilers, and ABI incompatibilities.« less

  5. Packaging Review Guide for Reviewing Safety Analysis Reports for Packagings

    SciTech Connect

    DiSabatino, A; Biswas, D; DeMicco, M; Fisher, L E; Hafner, R; Haslam, J; Mok, G; Patel, C; Russell, E

    2007-04-12

    This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE Order 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his or her review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. This PRG is generally organized at the section level in a format similar to that recommended in Regulatory Guide 7.9 (RG 7.9). One notable exception is the addition of Section 9 (Quality Assurance), which is not included as a separate chapter in RG 7.9. Within each section, this PRG addresses the technical and regulatory bases for the review, the manner in which the review is accomplished, and findings that are generally applicable for a package that meets the approval standards. This Packaging Review Guide (PRG) provides guidance for DOE review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE O 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. The primary objectives of this PRG are to: (1) Summarize the regulatory requirements for package approval; (2) Describe the technical review procedures by which DOE determines that these requirements have been satisfied; (3) Establish and maintain the quality and uniformity of reviews; (4) Define the base from which to evaluate proposed changes in scope and requirements of reviews; and (5) Provide the above information to DOE organizations, contractors, other government agencies, and interested members of the general public. This PRG was originally published in September 1987. Revision 1, issued in October 1988, added new review sections on quality assurance and penetrations through the containment boundary, along with a few other items. Revision 2 was published October 1999. Revision 3 of this PRG is a complete update, and supersedes Revision 2 in its entirety.

  6. Watermarking spot colors in packaging

    NASA Astrophysics Data System (ADS)

    Reed, Alastair; Filler, TomáÅ.¡; Falkenstern, Kristyn; Bai, Yang

    2015-03-01

    In January 2014, Digimarc announced Digimarc® Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers. Digimarc Barcode is a machine readable code that carries the same information as a traditional Universal Product Code (UPC) and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the Point of Sale (POS) station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design. This significantly improves the Items per Minute (IPM) metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode. A method of watermarking print ready image data used in the commercial packaging industry is described. A significant proportion of packages are printed using spot colors, therefore spot colors needs to be supported by an embedder for Digimarc Barcode. Digimarc Barcode supports the PANTONE spot color system, which is commonly used in the packaging industry. The Digimarc Barcode embedder allows a user to insert the UPC code in an image while minimizing perceptibility to the Human Visual System (HVS). The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted and proofed.

  7. Rapid Active Sampling Package

    NASA Technical Reports Server (NTRS)

    Peters, Gregory

    2010-01-01

    A field-deployable, battery-powered Rapid Active Sampling Package (RASP), originally designed for sampling strong materials during lunar and planetary missions, shows strong utility for terrestrial geological use. The technology is proving to be simple and effective for sampling and processing materials of strength. Although this originally was intended for planetary and lunar applications, the RASP is very useful as a powered hand tool for geologists and the mining industry to quickly sample and process rocks in the field on Earth. The RASP allows geologists to surgically acquire samples of rock for later laboratory analysis. This tool, roughly the size of a wrench, allows the user to cut away swaths of weathering rinds, revealing pristine rock surfaces for observation and subsequent sampling with the same tool. RASPing deeper (.3.5 cm) exposes single rock strata in-situ. Where a geologist fs hammer can only expose unweathered layers of rock, the RASP can do the same, and then has the added ability to capture and process samples into powder with particle sizes less than 150 microns, making it easier for XRD/XRF (x-ray diffraction/x-ray fluorescence). The tool uses a rotating rasp bit (or two counter-rotating bits) that resides inside or above the catch container. The container has an open slot to allow the bit to extend outside the container and to allow cuttings to enter and be caught. When the slot and rasp bit are in contact with a substrate, the bit is plunged into it in a matter of seconds to reach pristine rock. A user in the field may sample a rock multiple times at multiple depths in minutes, instead of having to cut out huge, heavy rock samples for transport back to a lab for analysis. Because of the speed and accuracy of the RASP, hundreds of samples can be taken in one day. RASP-acquired samples are small and easily carried. A user can characterize more area in less time than by using conventional methods. The field-deployable RASP used a Ni/Cad rechargeable battery. Power usage was less than 1 Wh/ cm3 even when sampling strong basalts, so many samples could be taken on a single battery charge.

  8. 10 CFR 71.35 - Package evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Package evaluation. 71.35 Section 71.35 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for Package Approval 71.35 Package evaluation. The application must include the following: (a)...

  9. 10 CFR 71.35 - Package evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Package evaluation. 71.35 Section 71.35 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for Package Approval 71.35 Package evaluation. The application must include the following: (a)...

  10. 10 CFR 71.35 - Package evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Package evaluation. 71.35 Section 71.35 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for Package Approval 71.35 Package evaluation. The application must include the following: (a)...

  11. 49 CFR 173.29 - Empty packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Empty packagings. 173.29 Section 173.29... SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.29 Empty packagings. (a) General. Except as otherwise provided in this section, an empty packaging containing only the residue of...

  12. 7 CFR 58.626 - Packaging equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging equipment. 58.626 Section 58.626 Agriculture....626 Packaging equipment. Packaging equipment designed to mechanically fill and close single service... Standards for Equipment for Packaging Frozen Desserts and Cottage Cheese. Quality Specifications for...

  13. Think INSIDE the Box: Package Engineering

    ERIC Educational Resources Information Center

    Snyder, Mark; Painter, Donna

    2014-01-01

    Most products people purchase, keep in their homes, and often discard, are typically packaged in some way. Packaging is so prevalent in daily lives that many of take it for granted. That is by design-the expectation of good packaging is that it exists for the sake of the product. The primary purposes of any package (to contain, inform, display,…

  14. 21 CFR 820.130 - Device packaging.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Device packaging. 820.130 Section 820.130 Food and... QUALITY SYSTEM REGULATION Labeling and Packaging Control § 820.130 Device packaging. Each manufacturer shall ensure that device packaging and shipping containers are designed and constructed to protect...

  15. 49 CFR 173.29 - Empty packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Empty packagings. 173.29 Section 173.29... SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.29 Empty packagings. (a) General. Except as otherwise provided in this section, an empty packaging containing only the residue of...

  16. 7 CFR 58.626 - Packaging equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Packaging equipment. 58.626 Section 58.626 Agriculture....626 Packaging equipment. Packaging equipment designed to mechanically fill and close single service... Standards for Equipment for Packaging Frozen Desserts and Cottage Cheese. Quality Specifications for...

  17. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Unit packaging. 157.27 Section 157.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide...

  18. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Unit packaging. 157.27 Section 157.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide...

  19. 21 CFR 820.130 - Device packaging.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Device packaging. 820.130 Section 820.130 Food and... QUALITY SYSTEM REGULATION Labeling and Packaging Control § 820.130 Device packaging. Each manufacturer shall ensure that device packaging and shipping containers are designed and constructed to protect...

  20. 10 CFR 71.35 - Package evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Package evaluation. 71.35 Section 71.35 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for Package Approval § 71.35 Package evaluation. The application must include the following: (a)...

  1. 10 CFR 71.35 - Package evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Package evaluation. 71.35 Section 71.35 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for Package Approval § 71.35 Package evaluation. The application must include the following: (a)...

  2. Think INSIDE the Box: Package Engineering

    ERIC Educational Resources Information Center

    Snyder, Mark; Painter, Donna

    2014-01-01

    Most products people purchase, keep in their homes, and often discard, are typically packaged in some way. Packaging is so prevalent in daily lives that many of take it for granted. That is by design-the expectation of good packaging is that it exists for the sake of the product. The primary purposes of any package (to contain, inform, display,

  3. 49 CFR 173.411 - Industrial packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... record retention applicable to Industrial Packaging Type 1 (IP-1), Industrial Packaging Type 2 (IP-2), and Industrial Packaging Type 3 (IP-3). (b) Industrial packaging certification and tests. (1) Each IP... radiation levels recorded or calculated at the external surfaces for the condition before the test. (3)...

  4. 21 CFR 820.130 - Device packaging.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Device packaging. 820.130 Section 820.130 Food and... QUALITY SYSTEM REGULATION Labeling and Packaging Control § 820.130 Device packaging. Each manufacturer shall ensure that device packaging and shipping containers are designed and constructed to protect...

  5. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Unit packaging. 157.27 Section 157.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide...

  6. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Unit packaging. 157.27 Section 157.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide...

  7. 7 CFR 58.626 - Packaging equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Packaging equipment. 58.626 Section 58.626 Agriculture....626 Packaging equipment. Packaging equipment designed to mechanically fill and close single service... Standards for Equipment for Packaging Frozen Desserts and Cottage Cheese. Quality Specifications for...

  8. 21 CFR 820.130 - Device packaging.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Device packaging. 820.130 Section 820.130 Food and... QUALITY SYSTEM REGULATION Labeling and Packaging Control § 820.130 Device packaging. Each manufacturer shall ensure that device packaging and shipping containers are designed and constructed to protect...

  9. 7 CFR 58.626 - Packaging equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Packaging equipment. 58.626 Section 58.626 Agriculture....626 Packaging equipment. Packaging equipment designed to mechanically fill and close single service... Standards for Equipment for Packaging Frozen Desserts and Cottage Cheese. Quality Specifications for...

  10. 21 CFR 820.130 - Device packaging.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Device packaging. 820.130 Section 820.130 Food and... QUALITY SYSTEM REGULATION Labeling and Packaging Control § 820.130 Device packaging. Each manufacturer shall ensure that device packaging and shipping containers are designed and constructed to protect...

  11. 40 CFR 157.27 - Unit packaging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Unit packaging. 157.27 Section 157.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PACKAGING REQUIREMENTS FOR PESTICIDES AND DEVICES Child-Resistant Packaging § 157.27 Unit packaging. Pesticide...

  12. 7 CFR 58.626 - Packaging equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Packaging equipment. 58.626 Section 58.626 Agriculture....626 Packaging equipment. Packaging equipment designed to mechanically fill and close single service... Standards for Equipment for Packaging Frozen Desserts and Cottage Cheese. Quality Specifications for...

  13. Green Packaging Management of Logistics Enterprises

    NASA Astrophysics Data System (ADS)

    Zhang, Guirong; Zhao, Zongjian

    From the connotation of green logistics management, we discuss the principles of green packaging, and from the two levels of government and enterprises, we put forward a specific management strategy. The management of green packaging can be directly and indirectly promoted by laws, regulations, taxation, institutional and other measures. The government can also promote new investment to the development of green packaging materials, and establish specialized institutions to identify new packaging materials, standardization of packaging must also be accomplished through the power of the government. Business units of large scale through the packaging and container-based to reduce the use of packaging materials, develop and use green packaging materials and easy recycling packaging materials for proper packaging.

  14. The reduction of packaging waste

    SciTech Connect

    Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

    1994-04-01

    Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

  15. Reference waste package environment report

    SciTech Connect

    Glassley, W.E.

    1986-10-01

    One of three candidate repository sites for high-level radioactive waste packages is located at Yucca Mountain, Nevada, in rhyolitic tuff 700 to 1400 ft above the static water table. Calculations indicate that the package environment will experience a maximum temperature of {similar_to}230{sup 0}C at 9 years after emplacement. For the next 300 years the rock within 1 m of the waste packages will remain dehydrated. Preliminary results suggest that the waste package radiation field will have very little effect on the mechanical properties of the rock. Radiolysis products will have a negligible effect on the rock even after rehydration. Unfractured specimens of repository rock show no change in hydrologic characteristics during repeated dehydration-rehydration cycles. Fractured samples with initially high permeabilities show a striking permeability decrease during dehydration-rehydration cycling, which may be due to fracture healing via deposition of silica. Rock-water interaction studies demonstrate low and benign levels of anions and most cations. The development of sorptive secondary phases such as zeolites and clays suggests that anticipated rock-water interaction may produce beneficial changes in the package environment.

  16. Truss Performance and Packaging Metrics

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M.; Collins, Timothy J.; Doggett, William; Dorsey, John; Watson, Judith

    2006-01-01

    In the present paper a set of performance metrics are derived from first principals to assess the efficiency of competing space truss structural concepts in terms of mass, stiffness, and strength, for designs that are constrained by packaging. The use of these performance metrics provides unique insight into the primary drivers for lowering structural mass and packaging volume as well as enabling quantitative concept performance evaluation and comparison. To demonstrate the use of these performance metrics, data for existing structural concepts are plotted and discussed. Structural performance data is presented for various mechanical deployable concepts, for erectable structures, and for rigidizable structures.

  17. An Arbitrary Precision Computation Package

    Energy Science and Technology Software Center (ESTSC)

    2003-06-14

    This package permits a scientist to perform computations using an arbitrarily high level of numeric precision (the equivalent of hundreds or even thousands of digits), by making only minor changes to conventional C++ or Fortran-90 soruce code. This software takes advantage of certain properties of IEEE floating-point arithmetic, together with advanced numeric algorithms, custom data types and operator overloading. Also included in this package is the "Experimental Mathematician's Toolkit", which incorporates many of these facilitiesmore » into an easy-to-use interactive program.« less

  18. Package for integrated optic circuit and method

    DOEpatents

    Kravitz, Stanley H.; Hadley, G. Ronald; Warren, Mial E.; Carson, Richard F.; Armendariz, Marcelino G.

    1998-01-01

    A structure and method for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package.

  19. Package for integrated optic circuit and method

    DOEpatents

    Kravitz, S.H.; Hadley, G.R.; Warren, M.E.; Carson, R.F.; Armendariz, M.G.

    1998-08-04

    A structure and method are disclosed for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package. 6 figs.

  20. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  1. RAGG - R EPISODIC AGGREGATION PACKAGE

    EPA Science Inventory

    The RAGG package is an R implementation of the CMAQ episodic model aggregation method developed by Constella Group and the Environmental Protection Agency. RAGG is a tool to provide climatological seasonal and annual deposition of sulphur and nitrogen for multimedia management. ...

  2. Electronic Spreadsheet Packages for Microcomputers.

    ERIC Educational Resources Information Center

    Gibson, Larry M.

    1984-01-01

    Describes capabilities and advantages of spreadsheet software, including its ability to perform "what-if" analysis quickly and easily. Also noted are additional advantages; applications, including use in the library environment; history and development; new-generation spreadsheets; and enhanced packaging in the near future. A spreadsheet software…

  3. Comparison of different LED Packages

    NASA Astrophysics Data System (ADS)

    Dieker, Henning; Miesner, Christian; Püttjer, Dirk; Bachl, Bernhard

    2007-09-01

    In this paper different technologies for LED packaging are compared, focusing on Chip on Board (COB) and SMD technology. The package technology which is used depends on the LED application. A critical fact in LED technology is the thermal management, especially for high brightness LED applications because the thermal management is important for reliability, lifetime and electrooptical performance of the LED module. To design certain and long life LED applications knowledge of the heat flow from LEDs to the complete application is required. High sophisticated FEM simulations are indispensable for modern development of high power LED applications. We compare simulations of various substrate materials and packaging technologies simulated using FLOTHERM software. Thereby different substrates such as standard FR4, ceramic and metal core printed circuit boards are considered. For the verification of the simulated results and the testing of manufactured modules, advanced measurement tools are required. We show different ways to experimentally characterize the thermal behavior of LED modules. The thermal path is determined by the transient thermal analysis using the MicReD T3Ster analyzer. Afterwards it will be compared to the conventional method using thermocouples. The heat distribution over the module is investigated by an IR-Camera. We demonstrate and compare simulation and measurement results of Chip-on-Board (COB) and Sub-Mounted Devices (SMD) technology. The results reveal that for different applications certain packages are ideal.

  4. A Computerized Petroleum Geology Package.

    ERIC Educational Resources Information Center

    Moser, Louise E.

    1983-01-01

    Describes a package of computer programs developed to implement an oil exploration game that gives undergraduate students practical experience in applying theoretical principles of petroleum geology. The programs facilitate management of the game by the instructor and enhance the learning experience. (Author/MBR)

  5. Improved switch-resistor packaging

    NASA Technical Reports Server (NTRS)

    Redmerski, R. E.

    1980-01-01

    Packaging approach makes resistors more accessible and easily identified with specific switches. Failures are repaired more quickly because of improved accessibility. Typical board includes one resistor that acts as circuit breaker, and others are positioned so that their values can be easily measured when switch is operated. Approach saves weight by using less wire and saves valuable panel space.

  6. DATACUBE: A datacube manipulation package

    NASA Astrophysics Data System (ADS)

    Allan, Alasdair; Currie, Malcolm J.

    2014-05-01

    DATACUBE is a command-line package for manipulating and visualizing data cubes. It was designed for integral field spectroscopy but has been extended to be a generic data cube tool, used in particular for sub-millimeter data cubes from the James Clerk Maxwell Telescope. It is part of the Starlink software collection (ascl:1110.012).

  7. Food Nanotechnology - Food Packaging Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Astonishing growth in the market for nanofoods is predicted in the future, from the current market of $2.6 billion to $20.4 billion in 2010. The market for nanotechnology in food packaging alone is expected to reach $360 million in 2008. In large part, the impetus for this predicted growth is the ...

  8. Audio/ Videoconferencing Packages: High Cost

    ERIC Educational Resources Information Center

    Murillo, Sonia; Rizzuto, Mary; Sawyers, Urel

    2005-01-01

    This report compares two integrated course delivery packages: "Centra 6" and "WebEx". Both applications feature asynchronous and synchronous audio communications for online education and training. They are relatively costly products, and provide useful comparisons with the two less expensive products to be evaluated in the following report #53.…

  9. The Macro - Games Course Package.

    ERIC Educational Resources Information Center

    Heriot-Watt Univ., Edinburgh (Scotland). Esmee Fairbairn Economics Research Centre.

    Part of an Economic Education Series, the course package is designed to teach basic concepts and fundamental principles of macroeconomics and how they can be applied to various world problems. For use with college students, learning is gained through lectures, discussion, simulation games, programmed learning, and text. Time allotment is a 15-week…

  10. Food Nanotechnology: Food Packaging Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Astonishing growth in the market for nanofoods is predicted in the future, from the current market of $2.6 billion to $20.4 billion in 2010. The market for nanotechnology in food packaging alone is expected to reach $360 million in 2008. In large part the impetus for this predicted growth is the e...

  11. FDCSUSYDecay: An MSSM decay package

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Wang, Jian-xiong

    2007-08-01

    FDCSUSYDecay is a FORTRAN program package generated by FDC (Feynman Diagram Calculation) system fully automatically. It is dedicated to calculate at tree-level all the possible 2-body decays of SUSY and Higgs particles in the Minimal Supersymmetric extension of the Standard Model (MSSM). The format of its output files complies with SUSY Les Houches Accord and can be easily imported by other packages. Program summaryManuscript title:FDCSUSYDecay: An MSSM decay package Authors:Wei Qi, Jian-xiong Wang Program title:FDCSUSYDecay (Version 1.00) Catalogue identifier:ADYV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYV_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:22 008 No. of bytes in distributed program, including test data, etc.:622 751 Distribution format:tar.gz Programming language:FORTRAN 77 Operating system:Linux Keywords:SUSY decay, MSSM, FDC PACS:02.70.-c, 12.60.Jv Classification:11.1, 11.6 External routines:CERNLIB 2003 (or up) Nature of problem: This package can calculate all the possible SUSY particle and Higgs 2-body decay width and branch ratio at tree-level in the MSSM model. Solution method: By running FDC, the Feynman rules for the MSSM model are generated, all the decay widths are calculated analytically and corresponding FORTRAN codes are generated for this package. Running time: Less than 1 second for both high-scale and low-scale modes on a Pentium IV 2.4 GHz machine (512 MB memory).

  12. Sensory impacts of food-packaging interactions.

    PubMed

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials. PMID:19389606

  13. Amesos2 Templated Direct Sparse Solver Package

    Energy Science and Technology Software Center (ESTSC)

    2011-05-24

    Amesos2 is a templated direct sparse solver package. Amesos2 provides interfaces to direct sparse solvers, rather than providing native solver capabilities. Amesos2 is a derivative work of the Trilinos package Amesos.

  14. 27 CFR 6.93 - Combination packaging.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Combination packaging. 6.93 Section 6.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL âTIED-HOUSEâ Exceptions § 6.93 Combination packaging. The act by an industry member of packaging and...

  15. 27 CFR 6.93 - Combination packaging.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Combination packaging. 6.93 Section 6.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Exceptions § 6.93 Combination packaging. The act by an industry member of packaging and...

  16. 27 CFR 6.93 - Combination packaging.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Combination packaging. 6.93 Section 6.93 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL âTIED-HOUSEâ Exceptions § 6.93 Combination packaging. The act by an industry member of packaging and...

  17. 16 CFR 1702.12 - Packaging specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Packaging specifications. 1702.12 Section 1702.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  18. 16 CFR 1702.12 - Packaging specifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Packaging specifications. 1702.12 Section 1702.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  19. 16 CFR 1702.12 - Packaging specifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Packaging specifications. 1702.12 Section 1702.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  20. 16 CFR 1702.12 - Packaging specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Packaging specifications. 1702.12 Section 1702.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  1. 9 CFR 354.72 - Packaging.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Packaging. 354.72 Section 354.72... CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Supervision of Marking and Packaging § 354.72 Packaging. No container which bears or may bear any official identification or any...

  2. 9 CFR 354.72 - Packaging.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Packaging. 354.72 Section 354.72... CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Supervision of Marking and Packaging § 354.72 Packaging. No container which bears or may bear any official identification or any...

  3. 27 CFR 6.93 - Combination packaging.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Combination packaging. 6..., DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Exceptions § 6.93 Combination packaging. The act by an industry member of packaging and distributing distilled spirits, wine, or malt beverages in...

  4. 21 CFR 355.20 - Packaging conditions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Packaging conditions. 355.20 Section 355.20 Food... HUMAN USE ANTICARIES DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 355.20 Packaging... accord with § 355.60. (b) Tight container packaging. To minimize moisture contamination, all...

  5. 7 CFR 58.640 - Packaging.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Packaging. 58.640 Section 58.640 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.640 Packaging. The packaging of the semifrozen product shall be done by means which will...

  6. 7 CFR 58.640 - Packaging.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging. 58.640 Section 58.640 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.640 Packaging. The packaging of the semifrozen product shall be done by means which will...

  7. 16 CFR 1702.12 - Packaging specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Packaging specifications. 1702.12 Section 1702.12 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS; PETITION...

  8. 27 CFR 6.93 - Combination packaging.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Combination packaging. 6..., DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Exceptions § 6.93 Combination packaging. The act by an industry member of packaging and distributing distilled spirits, wine, or malt beverages in...

  9. 21 CFR 355.20 - Packaging conditions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Packaging conditions. 355.20 Section 355.20 Food... HUMAN USE ANTICARIES DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 355.20 Packaging... accord with § 355.60. (b) Tight container packaging. To minimize moisture contamination, all...

  10. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings. 172.514 Section 172.514... SECURITY PLANS Placarding § 172.514 Bulk packagings. (a) Except as provided in paragraph (c) of this section, each person who offers for transportation a bulk packaging which contains a hazardous...

  11. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consistent with the Food and Drug Administration's regulations regarding such guaranties (21 CFR 7.12 and 7... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or...

  12. 76 FR 30551 - Specifications for Packagings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Pipeline and Hazardous Materials Safety Administration 49 CFR Part 178 Specifications for Packagings CFR... on a packaging, a test report must be prepared. The test report must be maintained at each location where the packaging is manufactured and each location where the design qualification tests are...

  13. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings. 172.514 Section 172.514... SECURITY PLANS Placarding § 172.514 Bulk packagings. (a) Except as provided in paragraph (c) of this section, each person who offers for transportation a bulk packaging which contains a hazardous...

  14. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consistent with the Food and Drug Administration's regulations regarding such guaranties (21 CFR 7.12 and 7... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or...

  15. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... consistent with the Food and Drug Administration's regulations regarding such guaranties (21 CFR 7.12 and 7... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or...

  16. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... consistent with the Food and Drug Administration's regulations regarding such guaranties (21 CFR 7.12 and 7... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or...

  17. 27 CFR 19.360 - Filling packages.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Filling packages. 19.360 Section 19.360 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT..., Packaging, and Removal of Products § 19.360 Filling packages. A proprietor may draw spirits into...

  18. YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM

    SciTech Connect

    G. Housley; C. Shelton-davis; K. Skinner

    2005-08-26

    The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

  19. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Packaged olives. 932.9 Section 932.9 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.9 Packaged olives. Packaged olives means (a) processed olives...

  20. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Packaged olives. 932.9 Section 932.9 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.9 Packaged olives. Packaged olives means (a) processed olives...

  1. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Packaged olives. 932.9 Section 932.9 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.9 Packaged olives. Packaged olives means (a) processed olives...

  2. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Packaged olives. 932.9 Section 932.9 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.9 Packaged olives. Packaged olives means (a) processed olives...

  3. 7 CFR 932.9 - Packaged olives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Packaged olives. 932.9 Section 932.9 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.9 Packaged olives. Packaged olives means (a) processed olives...

  4. 27 CFR 41.71 - Package.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Package. 41.71 Section 41.71 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO IMPORTATION OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Packages § 41.71 Package....

  5. 39 CFR 121.4 - Package Services.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Package Services. 121.4 Section 121.4 Postal Service UNITED STATES POSTAL SERVICE POST OFFICE SERVICES SERVICE STANDARDS FOR MARKET-DOMINANT MAIL PRODUCTS § 121.4 Package Services. (a) End-to-End. (1) The service standard for Sectional Center Facility (SCF) turnaround Package Services mail...

  6. 7 CFR 65.130 - Consumer package.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Consumer package. 65.130 Section 65.130 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards..., PEANUTS, AND GINSENG General Provisions Definitions § 65.130 Consumer package. Consumer package means...

  7. 7 CFR 58.640 - Packaging.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Packaging. 58.640 Section 58.640 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.640 Packaging. The packaging of the semifrozen product shall be done by means which will...

  8. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings. 172.514 Section 172.514... SECURITY PLANS Placarding § 172.514 Bulk packagings. (a) Except as provided in paragraph (c) of this section, each person who offers for transportation a bulk packaging which contains a hazardous...

  9. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings. 172.514 Section 172.514... SECURITY PLANS Placarding § 172.514 Bulk packagings. (a) Except as provided in paragraph (c) of this section, each person who offers for transportation a bulk packaging which contains a hazardous...

  10. EDExpress Packaging Training, 2001-2002.

    ERIC Educational Resources Information Center

    Office of Student Financial Assistance (ED), Washington, DC.

    Packaging is the process of finding the best combination of aid to meet a student's financial need for college, given limited resources and the institutional constraints that vary from school to school. This guide to packaging under the EDExpress software system outlines three steps to packaging. The first is determining the student's need for…

  11. 9 CFR 354.72 - Packaging.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Packaging. 354.72 Section 354.72... CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Supervision of Marking and Packaging § 354.72 Packaging. No container which bears or may bear any official identification or any...

  12. 9 CFR 354.72 - Packaging.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Packaging. 354.72 Section 354.72... CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Supervision of Marking and Packaging § 354.72 Packaging. No container which bears or may bear any official identification or any...

  13. 7 CFR 58.640 - Packaging.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Packaging. 58.640 Section 58.640 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.640 Packaging. The packaging of the semifrozen product shall be done by means which will...

  14. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... consistent with the Food and Drug Administration's regulations regarding such guaranties (21 CFR 7.12 and 7... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or...

  15. 7 CFR 58.640 - Packaging.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Packaging. 58.640 Section 58.640 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.640 Packaging. The packaging of the semifrozen product shall be done by means which will...

  16. 9 CFR 354.72 - Packaging.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Packaging. 354.72 Section 354.72... CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Supervision of Marking and Packaging § 354.72 Packaging. No container which bears or may bear any official identification or any...

  17. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings. 172.514 Section 172.514... SECURITY PLANS Placarding § 172.514 Bulk packagings. (a) Except as provided in paragraph (c) of this section, each person who offers for transportation a bulk packaging which contains a hazardous...

  18. 27 CFR 19.360 - Filling packages.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Filling packages. 19.360 Section 19.360 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT..., Packaging, and Removal of Products § 19.360 Filling packages. A proprietor may draw spirits into...

  19. 19 CFR 134.53 - Examination packages.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Examination packages. 134.53 Section 134.53... TREASURY COUNTRY OF ORIGIN MARKING Articles Found Not Legally Marked 134.53 Examination packages. (a) Site of marking(1) Customs custody. Articles (or containers) in examination packages may be marked...

  20. PACKAGING, FILMS AND COATINGS: TECHNOLOGIES AND APPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increasing demand for biodegradable and compostable packaging by both industry and consumers. With the growing concern over the state of the environment and a desire to decrease the use of petroleum-based packaging, packaging from renewable resources that is produced using environmental...

  1. Chip Scale Package Implementation Challenges

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    1998-01-01

    The JPL-led MicrotypeBGA Consortium of enterprises representing government agencies and private companies have jointed together to pool in-kind resources for developing the quality and reliability of chip scale packages (CSPs) for a variety of projects. In the process of building the Consortium CSP test vehicles, many challenges were identified regarding various aspects of technology implementation. This paper will present our experience in the areas of technology implementation challenges, including design and building both standard and microvia boards, and assembly of two types of test vehicles. We also discuss the most current package isothermal aging to 2,000 hours at 100 C and 125 C and thermal cycling test results to 1,700 cycles in the range of -30 to 100 C.

  2. The bacteriophage DNA packaging machine.

    PubMed

    Feiss, Michael; Rao, Venigalla B

    2012-01-01

    Large dsDNA bacteriophages and herpesviruses encode a powerful ATP-driven DNA-translocating machine that encapsidates a viral genome into a preformed capsid shell or prohead. The key components of the packaging machine are the packaging enzyme (terminase, motor) and the portal protein that forms the unique DNA entrance vertex of prohead. The terminase complex, comprised of a recognition subunit (small terminase) and an endonuclease/translocase subunit (large terminase), cuts viral genome concatemers. The terminase-viral DNA complex docks on the portal vertex, assembling a motor complex containing five large terminase subunits. The pentameric motor processively translocates DNA until the head shell is full with one viral genome. The motor cuts the DNA again and dissociates from the full head, allowing head-finishing proteins to assemble on the portal, sealing the portal, and constructing a platform for tail attachment. A body of evidence from molecular genetics and biochemical, structural, and biophysical approaches suggests that ATP hydrolysis-driven conformational changes in the packaging motor (large terminase) power DNA motion. Various parts of the motor subunit, such as the ATPase, arginine finger, transmission domain, hinge, and DNA groove, work in concert to translocate about 2 bp of DNA per ATP hydrolyzed. Powerful single-molecule approaches are providing precise delineation of steps during each translocation event in a motor that has a speed as high as a millisecond/step. The phage packaging machine has emerged as an excellent model for understanding the molecular machines, given the mechanistic parallels between terminases, helicases, and numerous motor proteins. PMID:22297528

  3. Transportation and packaging resource guide

    SciTech Connect

    Arendt, J.W.; Gove, R.M.; Welch, M.J.

    1994-12-01

    The purpose of this resource guide is to provide a convenient reference document of information that may be useful to the U.S. Department of Energy (DOE) and DOE contractor personnel involved in packaging and transportation activities. An attempt has been made to present the terminology of DOE community usage as it currently exists. DOE`s mission is changing with emphasis on environmental cleanup. The terminology or nomenclature that has resulted from this expanded mission is included for the packaging and transportation user for reference purposes. Older terms still in use during the transition have been maintained. The Packaging and Transportation Resource Guide consists of four sections: Sect. 1, Introduction; Sect. 2, Abbreviations and Acronyms; Sect. 3, Definitions; and Sect. 4, References for packaging and transportation of hazardous materials and related activities, and Appendices A and B. Information has been collected from DOE Orders and DOE documents; U.S Department of Transportation (DOT), U.S. Environmental Protection Agency (EPA), and U.S. Nuclear Regulatory Commission (NRC) regulations; and International Atomic Energy Agency (IAEA) standards and other international documents. The definitions included in this guide may not always be a regulatory definition but are the more common DOE usage. In addition, the definitions vary among regulatory agencies. It is, therefore, suggested that if a definition is to be used in a regulatory or a legal compliance issue, the definition should be verified with the appropriate regulation. To assist in locating definitions in the regulations, a listing of all definition sections in the regulations are included in Appendix B. In many instances, the appropriate regulatory reference is indicated in the right-hand margin.

  4. Packaging shRNA retroviruses.

    PubMed

    Chang, Kenneth; Marran, Krista; Valentine, Amy; Hannon, Gregory J

    2013-08-01

    To silence a mammalian gene by RNAi using an encoded trigger, a short-hairpin RNA (shRNA) is integrated into the host cell genome as a stable transgene. Target cells are infected with viral plasmid containing shRNA inserted into the vector backbone. Before infection, the plasmid is transfected into a packaging cell line, which provides the trans-acting factors necessary for virus production. These include, minimally, capsid proteins and reverse transcriptase, but they can also include other regulatory factors (e.g., tat for some lentiviral vectors). It is critical to choose the correct packaging cell system for the viral backbone to be used. The packaging cell also defines the host range of the virus, depending on the envelope protein that it expresses. Ecotropic viruses are limited to rodent hosts, whereas amphotropic viruses have a broader host range that also includes humans. Often, investigators will express a nonretroviral envelope, such as vesicular stomatitus virus (VSV) glycoprotein, to enhance virus stability and host range and to enable viruses to be concentrated following production. Although viruses carrying shRNAs are packaged almost identically to viruses carrying protein-encoding genes, one twist is worth noting. shRNAs are efficiently cleaved by the host RNAi biogenesis machinery, which can reduce the level of viral genomic RNAs and consequently viral titers. Therefore, titers can be enhanced by cotransfecting the viral plasmid with a small interfering RNA (siRNA) that targets DGCR-8/Pasha, which is a core microRNA (miRNA) biogenesis component. siRNAs against Drosha can also be used. PMID:23906912

  5. Packaged wastewater treatment: An overview

    SciTech Connect

    Johnson, D.

    1993-06-17

    The paper presents an overview of wastewater treatment problems and solutions for industrial plants which discharge their wastewater to a publicly-owned treatment works (POTW). Since POTWs have limitations on the amount and type of wastes they can effectively treat, many require that their industrial customers limit concentrations of some effluent wastes and eliminate others. Characterizing plant wastewater becomes very important in the selection process for packaged wastewater treatment. Other considerations are also discussed.

  6. Auxiliary propulsion system flight package

    NASA Technical Reports Server (NTRS)

    Collett, C. R.

    1987-01-01

    Hughes Aircraft Company developed qualified and integrated flight, a flight test Ion Auxiliary Propulsion System (IAPS), on an Air Force technology satellite. The IAPS Flight Package consists of two identical Thruster Subsystems and a Diagnostic Subsystem. Each thruster subsystem (TSS) is comprised of an 8-cm ion Thruster-Gimbal-Beam Shield Unit (TGBSU); Power Electronics Unit; Digital Controller and Interface Unit (DCIU); and Propellant Tank, Valve and Feed Unit (PTVFU) plus the requisite cables. The Diagnostic Subsystem (DSS) includes four types of sensors for measuring the effect of the ion thrusters on the spacecraft and the surrounding plasma. Flight qualifications of IAPS, prior to installation on the spacecraft, consisted of performance, vibration and thermal-vacuum testing at the unit level, and thermal-vacuum testing at the subsystem level. Mutual compatibility between IAPS and the host spacecraft was demonstrated during a series of performance and environmental tests after the IAPS Flight Package was installed on the spacecraft. After a spacecraft acoustic test, performance of the ion thrusters was reverified by removing the TGBSUs for a thorough performance test at Hughes Research Laboratories (HRL). The TGBSUs were then reinstalled on the spacecraft. The IAPS Flight Package is ready for flight testing when Shuttle flights are resumed.

  7. The bacteriophage DNA packaging motor.

    PubMed

    Rao, Venigalla B; Feiss, Michael

    2008-01-01

    An ATP-powered DNA translocation machine encapsidates the viral genome in the large dsDNA bacteriophages. The essential components include the empty shell, prohead, and the packaging enzyme, terminase. During translocation, terminase is docked on the prohead's portal protein. The translocation ATPase and the concatemer-cutting endonuclease reside in terminase. Remarkably, terminases, portal proteins, and shells of tailed bacteriophages and herpes viruses show conserved features. These DNA viruses may have descended from a common ancestor. Terminase's ATPase consists of a classic nucleotide binding fold, most closely resembling that of monomeric helicases. Intriguing models have been proposed for the mechanism of dsDNA translocation, invoking ATP hydrolysis-driven conformational changes of portal or terminase powering DNA motion. Single-molecule studies show that the packaging motor is fast and powerful. Recent advances permit experiments that can critically test the packaging models. The viral genome translocation mechanism is of general interest, given the parallels between terminases, helicases, and other motor proteins. PMID:18687036

  8. Active packaging with antifungal activities.

    PubMed

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-01

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time. PMID:26803804

  9. Radioactive material package seal tests

    SciTech Connect

    Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

    1990-01-01

    General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

  10. Waste Package Design Methodology Report

    SciTech Connect

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  11. RECLAMATION OF RADIOACTIVE MATERIAL PACKAGING COMPONENTS

    SciTech Connect

    Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

    2011-06-06

    Radioactive material packages are withdrawn from use for various reasons; loss of mission, decertification, damage, replacement, etc. While the packages themselves may be decertified, various components may still be able to perform to their required standards and find useful service. The Packaging Technology and Pressurized Systems group of the Savannah River National Laboratory has been reducing the cost of producing new Type B Packagings by reclaiming, refurbishing, and returning to service the containment vessels from older decertified packagings. The program and its benefits are presented.

  12. Challenges in the Packaging of MEMS

    SciTech Connect

    Malshe, A.P.; Singh, S.B.; Eaton, W.P.; O'Neal, C.; Brown, W.D.; Miller, W.M.

    1999-03-26

    The packaging of Micro-Electro-Mechanical Systems (MEMS) is a field of great importance to anyone using or manufacturing sensors, consumer products, or military applications. Currently much work has been done in the design and fabrication of MEMS devices but insufficient research and few publications have been completed on the packaging of these devices. This is despite the fact that packaging is a very large percentage of the total cost of MEMS devices. The main difference between IC packaging and MEMS packaging is that MEMS packaging is almost always application specific and greatly affected by its environment and packaging techniques such as die handling, die attach processes, and lid sealing. Many of these aspects are directly related to the materials used in the packaging processes. MEMS devices that are functional in wafer form can be rendered inoperable after packaging. MEMS dies must be handled only from the chip sides so features on the top surface are not damaged. This eliminates most current die pick-and-place fixtures. Die attach materials are key to MEMS packaging. Using hard die attach solders can create high stresses in the MEMS devices, which can affect their operation greatly. Low-stress epoxies can be high-outgassing, which can also affect device performance. Also, a low modulus die attach can allow the die to move during ultrasonic wirebonding resulting to low wirebond strength. Another source of residual stress is the lid sealing process. Most MEMS based sensors and devices require a hermetically sealed package. This can be done by parallel seam welding the package lid, but at the cost of further induced stress on the die. Another issue of MEMS packaging is the media compatibility of the packaged device. MEMS unlike ICS often interface with their environment, which could be high pressure or corrosive. The main conclusion we can draw about MEMS packaging is that the package affects the performance and reliability of the MEMS devices. There is a gross lack of understanding between the package materials, induced stress, and the device performance. The material properties of these packaging materials are not well defined or understood. Modeling of these materials and processes is far from maturity. Current post-package yields are too low for commercial feasibility, and consumer operating environment reliability and compatibility are often difficult to simulate. With further understanding of the materials properties and behavior of the packaging materials, MEMS applications can be fully realized and integrated into countless commercial and military applications.

  13. The Model 9977 Radioactive Material Packaging Primer

    SciTech Connect

    Abramczyk, G.

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, the package must maintain its radioactive material as subcritical

  14. UWV (Unmanned Water Vehicle) - Umbra Package v. 1.0

    Energy Science and Technology Software Center (ESTSC)

    2012-09-13

    This package contains modules that model the mobility of systems moving in the water. This package currently models first order physics -basically a velocity integrator. This package depends on interface classes (typically base classes) that reside in the Mobility package.

  15. Lunar Dust Analysis Package - LDAP

    NASA Astrophysics Data System (ADS)

    Chalkley, S. A.; Richter, L.; Goepel, M.; Sovago, M.; Pike, W. T.; Yang, S.; Rodenburg, J.; Claus, D.

    2012-09-01

    The Lunar Dust Analysis package (L-DAP) is a suite of payloads which have been designed to operate in synergy with each other at the Lunar Surface. The benefits of combining these payloads in a single package allow very precise measurements of a particular regolith sample. At the same time the integration allows mass savings since common resources are shared and this also means that interfaces with the Lander are simplified significantly leading to benefits of integration and development of the overall mission. Lunar Dust represents a real hazard for lunar exploration due to its invasive, fine microscopic structure and toxic properties. However it is also valuable resource which could be exploited for future exploration if the characteristics and chemical composition is well known. Scientifically, the regolith provides an insight into the moon formation process and there are areas on the Moon which have never been ex-plored before. For example the Lunar South Pole Aitken Basin is the oldest and largest on the moon, providing excavated deep crust which has not been found on the previous lunar landing missions. The SEA-led team has been designing a compact package, known as LDAP, which will provide key data on the lunar dust properties. The intention is for this package to be part of the payload suite deployed on the ESA Lunar Lander Mission in 2018. The LDAP has a centralised power and data electronics, including front end electronics for the detectors as well as sample handling subsystem for the following set of internal instruments : • Optical Microscope - with a 1μm resolution to provide context of the regolith samples • Raman and LIBS spectrographic instrumentation providing quantification of mineral and elemental composition information of the soil at close to grain scale. This includes the capability to detect (and measure abundance of) crystalline and adsorbed volatile phases, from their Raman signature. The LIBS equipment will also allow chemical identification of other ejecta in the vicinity of the Lander. • Atomic (Magnetic) Force Microscope - providing nano-scale measurement of the fine particles and presence of nanophase Fe which is potentially toxic to humans • Lenseless Microscope, a novel, low mass technology based on combining diffraction patterns derived from a laser illumination of the sample to give high resolution 3D images of the regolith presented. In this paper we cover the high level science requirements and explain how this has driven the overall package design as well as the specific payload features. The complex sample handling system which allows the co-located payloads to share rego-lith samples and be able to make physical measure-ment in the sub micron scale. The use of micro-machining and MEMS technology is covered. The paper also discusses the harsh environmental conditions at the Lunar South Pole and the impact this has on the operation and survivability of an externally mounted package. The expected performance of the whole package, including the use of LIBS under lunar vacuum conditions is also presented.

  16. EXAMINATION OF SHIPPING PACKAGE 9975-05050

    SciTech Connect

    Daugherty, W.

    2014-11-06

    Shipping package 9975-05050 was examined in K-Area following its identification as a high wattage package. Elevated temperature and fiberboard moisture content are key parameters that impact the degradation rate of fiberboard within 9975 packages in a storage environment. The high wattage of this package contributes significantly to component temperatures. After examination in K-Area, the package was provided to SRNL for further examination of the fiberboard assembly. The moisture content of the fiberboard was relatively low (compared to packages examined previously), but the moisture gradient (between fiberboard ID and OD surfaces) was relatively high, as would be expected for the high heat load. The cane fiberboard appeared intact and displayed no apparent change in integrity relative to a new package.

  17. 49 CFR 178.905 - Large Packaging identification codes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Large Packaging identification codes. 178.905... PACKAGINGS Large Packagings Standards § 178.905 Large Packaging identification codes. Large packaging code... letter(s) specified in paragraph (b) of this section. (a) Large packaging code number designations are...

  18. 49 CFR 178.915 - General Large Packaging standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false General Large Packaging standards. 178.915 Section... PACKAGINGS Large Packagings Standards § 178.915 General Large Packaging standards. (a) Each Large Packaging.... Large Packagings intended for solid hazardous materials must be sift-proof and water-resistant. (b)...

  19. 49 CFR 178.935 - Standards for wooden Large Packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for wooden Large Packagings. 178.935... PACKAGINGS Large Packagings Standards § 178.935 Standards for wooden Large Packagings. (a) The provisions in this section apply to wooden Large Packagings intended to contain solids. Wooden Large Packaging...

  20. 49 CFR 178.905 - Large Packaging identification codes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Large Packaging identification codes. 178.905... PACKAGINGS Large Packagings Standards § 178.905 Large Packaging identification codes. Large packaging code... letter(s) specified in paragraph (b) of this section. (a) Large packaging code number designations are...

  1. 49 CFR 178.905 - Large Packaging identification codes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Large Packaging identification codes. 178.905... PACKAGINGS Large Packagings Standards § 178.905 Large Packaging identification codes. Large packaging code... letter(s) specified in paragraph (b) of this section. (a) Large packaging code number designations are...

  2. 49 CFR 178.905 - Large Packaging identification codes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Large Packaging identification codes. 178.905... PACKAGINGS Large Packagings Standards § 178.905 Large Packaging identification codes. Large packaging code... letter(s) specified in paragraph (b) of this section. (a) Large packaging code number designations are...

  3. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  4. Block LancZos PACKage

    Energy Science and Technology Software Center (ESTSC)

    2005-05-01

    BLZPACK (for Block LancZos PACKage) is a standard Fortran 77 implementation of the block Lanczos algorithm intended for the solution of the standard eigenvalue problem Ax=ux or the generalized eigenvalue problem Ax=uBx, where A and B are real, sparse symmetric matrices, u and eigenvalue and x and eigenvector. The development of this eigensolver was motivated by the need to solve large, sparse, generalized problems from free vibration analyses in structural engineering. Several upgrades were performedmore » afterwards aiming at the solution of eigenvalues problems from a wider range of applications.« less

  5. PIV Data Validation Software Package

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    A PIV data validation and post-processing software package was developed to provide semi-automated data validation and data reduction capabilities for Particle Image Velocimetry data sets. The software provides three primary capabilities including (1) removal of spurious vector data, (2) filtering, smoothing, and interpolating of PIV data, and (3) calculations of out-of-plane vorticity, ensemble statistics, and turbulence statistics information. The software runs on an IBM PC/AT host computer working either under Microsoft Windows 3.1 or Windows 95 operating systems.

  6. RF packaging for space applications

    NASA Astrophysics Data System (ADS)

    Drevon, C.; Monfraix, P.; Paillard, M.; Schaffauser, C.; Vendier, O.

    2002-12-01

    Alcatel Space has been working in the field of RF hybrids for a long time. This paper presents the evolution of microwave packaging, up to 40 GHz, towards more and more miniaturisation. RF packaging presents challenging trade-offs between electrical performances and manufacturability, the higher the frequency; the more these two parameters are intertwined. An important step in the field of miniaturisation was the use, beginning of 90's, of MMICs based on GaAs - Gallium Arsenide - and micropackages, following by the introduction of mixed LF/MMwave MCM. Now a good choice could be made between those MCMs and advanced micropackages. The next evolution is the use of flip-chip interconnection to minimise the length of RF connections. In term of bonding reliability, the results give values over more than five times the limits from the standards, even after 500 thermal cycles. The association of power flip-chip which high thermal conductive substrates like Aluminum Nitride - could give at least 40% reduction in the Rth for an amplifier with MMIC mounted flip-chip with emitter bumps. The glob-top technology is not yet used for higher frequencies (i.e. some or some tens of GHz). However, the results presented in this paper show that glob-top are compatible with GaAs MMICs working up to 12 GHz. With some specific design rules, the right encapsulant and the associated processes, there are little degradations of the electrical performances of a Low Level Amplifier working at 10.7 - 12.7 GHz. This has been also checked after thermal cycles.Another emergent technology with MEMS - MicroElectroMechanical Systems - could be used soon for space application, especially for very small switches with low losses. This will be made only if they could be encapsulated with an adapted packaging and if the reliability is full demonstrated following space criteria. Now, those different technologies could be associated with other miniaturization new concepts adapted to the microwave needs, such as 3D technology, UTCS (Ultra Thin Chip Stacking) or SIP (System-In-Package).

  7. Shipboard Medicine on Package Cruises

    PubMed Central

    Carter, John W.

    1972-01-01

    Cheap package cruises have become very popular in Great Britain, but the ships used for these cruises are often not suitable for elderly, handicapped, and mentally unfit people. The cruises run to very tight schedules with many strenuous shore excursions, and do not necessarily constitute restful holidays at sea. Many passengers who embark on these cruises are suffering from pre-existing diseases, which may become exacerbated during the voyage. Such patients should be forewarned and should be equipped by their doctors with a covering letter giving full details of their medical condition and its treatment. PMID:4259345

  8. Tempo2: Pulsar Timing Package

    NASA Astrophysics Data System (ADS)

    Hobbs, George; Edwards, Russell

    2012-10-01

    Tempo2 is a pulsar timing package developed to be used both for general pulsar timing applications and also for pulsar timing array research in which data-sets from multiple pulsars need to be processed simultaneously. It was initially developed by George Hobbs and Russell Edwards as part of the Parkes Pulsar Timing Array project. Tempo2 is based on the original Tempo (ascl:1509.002) code and can be used (from the command-line) in a similar fashion. It is very versatile and can be extended by plugins.

  9. Biopolymer-based antimicrobial packaging: a review.

    PubMed

    Cha, Dong Su; Chinnan, Manjeet S

    2004-01-01

    The term antimicrobialpackaging encompasses any packaging technique(s) used to control microbial growth in a food product. These include packaging materials and edible films and coatings that contain antimicrobial agents and also techniques that modify the atmosphere within the package. In recent years, antimicrobial packaging has attracted much attention from the food industry because of the increase in consumer demand for minimally processed, preservative-free products. Reflecting this demand, the preservative agents must be applied to packaging in such away that only low levels of preservatives come into contact with the food. The film or coating technique is considered to be more effective, although more complicated to apply. New antimicrobial packaging materials are continually being developed. Many of them exploit natural agents to control common food-borne microorganisms. Current trends suggest that, in due course, packaging will generally incorporate antimicrobial agents, and the sealing systems will continue to improve. The focus of packaging in the past has been on the appearance, size, and integrity of the package. A greater emphasis on safety features associated with the addition of antimicrobial agents is perhaps the next area for development in packaging technology. PMID:15462127

  10. Challenges in the Packaging of MEMS

    SciTech Connect

    BROWN, WILLIAM D.; EATON, WILLIAM P.; MALSHE, AJAY P.; MILLER, WILLIAM M.; O'NEAL, CHAD; SINGH, SUSHILA B.

    1999-09-24

    Microelectromechanical Systems (MEMS) packaging is much different from conventional integrated circuit (IC) packaging. Many MEMS devices must interface to the environment in order to perform their intended function, and the package must be able to facilitate access with the environment while protecting the device. The package must also not interfere with or impede the operation of the MEMS device. The die attachment material should be low stress, and low outgassing, while also minimizing stress relaxation overtime which can lead to scale factor shifts in sensor devices. The fabrication processes used in creating the devices must be compatible with each other, and not result in damage to the devices. Many devices are application specific requiring custom packages that are not commercially available. Devices may also need media compatible packages that can protect the devices from harsh environments in which the MEMS device may operate. Techniques are being developed to handle, process, and package the devices such that high yields of functional packaged parts will result. Currently, many of the processing steps are potentially harmful to MEMS devices and negatively affect yield. It is the objective of this paper to review and discuss packaging challenges that exist for MEMS systems and to expose these issues to new audiences from the integrated circuit packaging community.

  11. MMIC Package for Millimeter Wave Frequency

    NASA Technical Reports Server (NTRS)

    Bharj, Sarjit Singh; Yuan, Steve

    1997-01-01

    Princeton Microwave Technology has successfully demonstrated the transfer of technology for the MMIC package. During this contract the package design was licensed from Hughes Aircraft Company for manufacture within the U.S. A major effort was directed towards characterization of the ceramic material for its dielectric constant and loss tangent properties. After selection of a ceramic tape, the high temperature co-fired ceramic package was manufactured in the U.S. by Microcircuit Packaging of America, Inc. Microwave measurements of the MMIC package were conducted by an intercontinental microwave test fixture. The package demonstrated a typical insertion loss of 0.5 dB per transition up to 32 Ghz and a return loss of better than 15 db. The performance of the package has been demonstrated from 2 to 30 Ghz by assembling three different MMIC amplifiers. Two of the MMIC amplifiers were designed for the 26 Ghz to 30 Ghz operation while the third MMIC was a distributed amplifier from 2 to 26.5 Ghz. The measured gain of the amplifier is consistent with the device data. The package costs are substantially lower than comparable packages available commercially. Typically the price difference is greater than a factor of three. The package cost is well under $5.00 for a quantity of 10,000 pieces.

  12. Natural biopolimers in organic food packaging

    NASA Astrophysics Data System (ADS)

    Wieczynska, Justyna; Cavoski, Ivana; Chami, Ziad Al; Mondelli, Donato; Di Donato, Paola; Di Terlizzi, Biagio

    2014-05-01

    Concerns on environmental and waste problems caused by use of non-biodegradable and non-renewable based plastic packaging have caused an increase interest in developing biodegradable packaging using renewable natural biopolymers. Recently, different types of biopolymers like starch, cellulose, chitosan, casein, whey protein, collagen, egg white, soybean protein, corn zein, gelatin and wheat gluten have attracted considerable attention as potential food packaging materials. Recyclable or biodegradable packaging material in organic processing standards is preferable where possible but specific principles of packaging are not precisely defined and standards have to be assessed. There is evidence that consumers of organic products have specific expectations not only with respect to quality characteristics of processed food but also in social and environmental aspects of food production. Growing consumer sophistication is leading to a proliferation in food eco-label like carbon footprint. Biopolymers based packaging for organic products can help to create a green industry. Moreover, biopolymers can be appropriate materials for the development of an active surfaces designed to deliver incorporated natural antimicrobials into environment surrounding packaged food. Active packaging is an innovative mode of packaging in which the product and the environment interact to prolong shelf life or enhance safety or sensory properties, while maintaining the quality of the product. The work will discuss the various techniques that have been used for development of an active antimicrobial biodegradable packaging materials focusing on a recent findings in research studies. With the current focus on exploring a new generation of biopolymer-based food packaging materials with possible applications in organic food packaging. Keywords: organic food, active packaging, biopolymers , green technology

  13. Type A radioactive liquid sample packaging family

    SciTech Connect

    Edwards, W.S.

    1995-11-01

    Westinghouse Hanford Company (WHC) has developed two packagings that can be used to ship Type A quantities of radioactive liquids. WHC designed these packagings to take advantage of commercially available items where feasible to reduce the overall packaging cost. The Hedgehog packaging can ship up to one liter of Type A radioactive liquid with no shielding and 15 cm of distance between the liquid and the package exterior, or 30 ml of liquid with 3.8 cm of stainless steel shielding and 19 cm of distance between the liquid and the package exterior. The One Liter Shipper can ship up to one liter of Type A radioactive liquid that does not require shielding.

  14. Apparatus and method for skin packaging articles

    NASA Technical Reports Server (NTRS)

    Madsen, B.; Pozsony, E. R.; Collin, E. E. (Inventor)

    1973-01-01

    A system for skin packaging articles including a loading zone for positioning articles to be packaged upon a substrate, a thermoplastic film heating and vacuum operated skin packaging zone for covering the articles with film laminated to the substrate and a slitting zone for separating and trimming the individual skin packaged articles. The articles are passed to the successive zones. The loading zone may be adapted for conveyorized instead of hand loading. In some cases, where only transverse cutting of the film web is necessary, it may be desirable to eliminate the slitting zone and remove the skin packaged article or articles directly from the packaging zone. A conveniently located operating panel contains controls for effecting automatic, semiautomatic or manual operation of the entire system of any portions in any manner desired.

  15. Packaging challenges for integrated silicon photonic circuits

    NASA Astrophysics Data System (ADS)

    Pavarelli, Nicola; Lee, Jun Su; O'Brien, Peter A.

    2014-05-01

    Cost-effective packaging of silicon photonic devices presents a significant bottleneck to commercialization of the technology. One way of addressing this packaging challenge is to use techniques that have been developed by the electronics industry and which also benefit from the use of advanced electronics assembly equipment. Even packaging processes such as fiber coupling can benefit from this approach, along with the hybrid integration of devices such as electronic components (e.g. modulator driver integrated circuits). In this paper, we will present developments made by our group towards achieving scalable fiber and electronic packaging processes that rely on electronic assembly techniques such as flip-chip assembly. We will also provide an overview of packaged prototypes being developed within our group for telecom and sensing applications and how these packaging technologies are now being made available to users through the ePIXfab foundry service.

  16. Pixel level packaging for uncooled IRFPA

    NASA Astrophysics Data System (ADS)

    Dumont, G.; Rabaud, W.; Baillin, X.; Pornin, JL.; Carle, L.; Goudon, V.; Vialle, C.; Pellat, M.; Arnaud, A.

    2011-06-01

    As packaging represents a significant part of uncooled IR detectors price, a collective packaging process would contribute to enlarge uncooled IRFPA application to very low cost camera market. Since the first proof of the pixel level packaging for uncooled IRFPA in 2008, CEA-LETI is still strongly involved in the development of an innovative packaging technology. This one aims at encapsulating each pixel under vacuum in the direct continuity of the bolometer process. Moreover, a thin film getter has been developed to be integrated in the micropackaging so as to increase the packaging lifespan. This paper presents the recent development at CEA-LETI of this pixel level packaging technology including getter integration and vacuum level measurements.

  17. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  18. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  19. Lessons learned during Type A Packaging testing

    SciTech Connect

    O`Brien, J.H.; Kelly, D.L.

    1995-11-01

    For the past 6 years, the US Department of Energy (DOE) Office of Facility Safety Analysis (EH-32) has contracted Westinghouse Hanford Company (WHC) to conduct compliance testing on DOE Type A packagings. The packagings are tested for compliance with the U.S. Department of Transportation (DOT) Specification 7A, general packaging, Type A requirements. The DOE has shared the Type A packaging information throughout the nuclear materials transportation community. During testing, there have been recurring areas of packaging design that resulted in testing delays and/or initial failure. The lessons learned during the testing are considered a valuable resource. DOE requested that WHC share this resource. By sharing what is and can be encountered during packaging testing, individuals will hopefully avoid past mistakes.

  20. NFR TRIGA package design review report

    SciTech Connect

    Clements, M.D.

    1994-08-26

    The purpose of this document is to compile, present and document the formal design review of the NRF TRIGA packaging. The contents of this document include: the briefing meeting presentations, package description, design calculations, package review drawings, meeting minutes, action item lists, review comment records, final resolutions, and released drawings. This design review required more than two meeting to resolve comments. Therefore, there are three meeting minutes and two action item lists.

  1. Design considerations for automated packaging operations

    SciTech Connect

    Fahrenholtz, J.; Jones, J.; Kincy, M.

    1993-12-31

    The paper is based on work performed at Sandia National Laboratories to automate DOE packaging operations. It is a general summary of work from several projects which may be applicable to other packaging operations. Examples are provided of robotic operations which have been demonstrated as well as operations that are currently being developed. General design considerations for packages and for automated handling systems are described.

  2. High performance microsystem packaging: A perspective

    SciTech Connect

    Romig, A.D. Jr.; Dressendorfer, P.V.; Palmer, D.W.

    1997-10-01

    The second silicon revolution will be based on intelligent, integrated microsystems where multiple technologies (such as analog, digital, memory, sensor, micro-electro-mechanical, and communication devices) are integrated onto a single chip or within a multichip module. A necessary element for such systems is cost-effective, high-performance packaging. This paper examines many of the issues associated with the packaging of integrated microsystems, with an emphasis on the areas of packaging design, manufacturability, and reliability.

  3. Antimicrobial food packaging in meat industry.

    PubMed

    Quintavalla, Stefania; Vicini, Loredana

    2002-11-01

    Antimicrobial packaging, an active packaging concept, can be considered an extremely challenging technology that could have a significant impact on shelf-life extension and food safety of meat and meat products. Use of antimicrobial substances can control the microbial population and target specific microorganisms to provide higher safety and quality products. Many classes of antimicrobial compounds have been evaluated in film structures, both synthetic polymers and edible films: organic acids and their salts, enzymes, bacteriocins, and miscellaneous compounds such as triclosan, silver zeolites, and fungicides. The characteristics of some antimicrobial packaging systems are reviewed in this article. The regulatory status of antimicrobial packaging in EU is also examined. PMID:22061613

  4. Yucca Mountain Waste Package Closure System

    SciTech Connect

    shelton-davis; Colleen Shelton-Davis; Greg Housley

    2005-10-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  5. Yucca Mountain Waste Package Closure System

    SciTech Connect

    Herschel Smartt; Arthur Watkins; David Pace; Rodney Bitsoi; Eric Larsen; Timothy McJunkin; Charles Tolle

    2006-04-01

    The current disposal path for high-level waste is to place the material into secure waste packages that are inserted into a repository. The Idaho National Laboratory has been tasked with the development, design, and demonstration of the waste package closure system for the repository project. The closure system design includes welding three lids and a purge port cap, four methods of nondestructive examination, and evacuation and backfill of the waste package, all performed in a remote environment. A demonstration of the closure system will be performed with a full-scale waste package.

  6. Packaged optofluidic microbubble resonators for optical sensing.

    PubMed

    Tang, Ting; Wu, Xiang; Liu, Liying; Xu, Lei

    2016-01-10

    A microbubble resonator (MBR) coupled with a fiber taper is packaged with low-index polymer. The cladding polymer serves as a protective matrix for the coupling system to avoid environmental disturbance. The packaged structure is portable and provides good performance to maintain high Q factors for a long working period. The hollow structure of the MBR makes the packaged system useful for practical chemical and biomedical sensing applications. To evaluate the performance of the packaged MBRs-based sensor, we carry out bulk refractive index and surface-sensing measurements with achieved sensitivities of 18.8 nm/RIU and 31.29 pm/nm, respectively. PMID:26835777

  7. Transportation package design using numerical optimization

    SciTech Connect

    Harding, D. C.; Witkowski, W. R.

    1991-01-01

    The purpose of this overview is twofold: first, to outline the theory and basic elements of numerical optimization; and second, to show how numerical optimization can be applied to the transportation packaging industry and used to increase efficiency and safety of radioactive and hazardous material transportation packages. A more extensive review of numerical optimization and its applications to radioactive material transportation package design was performed previously by the authors (Witkowski and Harding 1992). A proof-of-concept Type B package design is also presented as a simplified example of potential improvements achievable using numerical optimization in the design process.

  8. Polymer Composites for Intelligent Food Packaging

    NASA Astrophysics Data System (ADS)

    He, Jiating; Yap, Ray Chin Chong; Wong, Siew Yee; Li, Xu

    2015-09-01

    Over the last 50 years, remarkable improvements in mechanical and barrier properties of polymer composites have been realized. Their improved properties have been widely studied and employed for food packaging to keep food fresh, clean and suitable for consumption over sufficiently long storage period. In this paper, the current progress of science and technology development of polymer composites for intelligent food packaging will be highlighted. Future directions and perspectives for exploring polymer composites for intelligent food packaging to reveal freshness and quality of food packaged will also be put forward.

  9. NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Kayali, Sammy

    2000-01-01

    NEPP program objectives are to: (1) Access the reliability of newly available electronic parts and packaging technologies for usage on NASA projects through validations, assessments, and characterizations, and the development of test methods/tools; (2)Expedite infusion paths for advanced (emerging) electronic parts and packaging technologies by evaluations of readiness for manufacturability and project usage consideration; (3) Provide NASA projects with technology selection, application, and validation guidelines for electronic parts and packaging hardware and processes; nd (4) Retain and disseminate electronic parts and packaging quality assurance, reliability validations, tools, and availability information to the NASA community.

  10. Hermetic packaging for microwave modules. Final report

    SciTech Connect

    Hollar, D.L.

    1996-10-01

    Microwave assemblies, such as radar modules, require hermetically sealed packaging. Since most of these assemblies are used for airborne applications, the packages must be lightweight. The aluminum alloy A-40 provides the needed characteristics of these applications. This project developed packaging techniques using the A-40 alloy as a housing material and laser welding processes to install connectors, purge tube, and covers on the housings. The completed package successfully passed the hermetic leak requirements and environmental testing. Optimum laser welding parameters were established in addition to all of the related tooling for assembly.

  11. Type B Packaging and Transportation Planning

    SciTech Connect

    Beebe, C. L.; Anderson, T. J.; Hintze, W. D.

    2003-02-27

    This paper describes the analyses performed to determine whether or not the eleven major Department of Energy sites had adequate planning and resources available to implement their shipping baselines. The study covers only Environmental Management off-site shipments using Type B and Type A-Fissile packaging. The time frame evaluated is from 2001-2010. The results indicate issues with respect to having certified packaging for planned shipments, the packaging inventory available to support schedules, and the material sufficiently characterized to enable package selection.

  12. Microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  13. Packaging performance evaluation and performance oriented packaging standards for large packages for poison inhalation hazard materials

    SciTech Connect

    Griego, N.R.; Mills, G.S.; McClure, J.D.

    1997-07-01

    The U.S. Department of Transportation Research & Special Programs Administration (DOT-RSPA) has sponsored a project at Sandia National Laboratories to evaluate the protection provided by current packagings used for truck and rail transport of materials that have been classified as Poison Inhalation Hazards (PIH) and to recommend performance standards for these PIH packagings. Hazardous materials span a wide range of toxicity and there are many parameters used to characterize toxicity; for any given hazardous material, data are not available for all of the possible toxicity parameters. Therefore, it was necessary to select a toxicity criterion to characterize all of the PIH compounds (a value of the criterion was derived from other parameters in many cases) and to calculate their dispersion in the event of a release resulting from a transportation accident. Methodologies which account for material toxicity and dispersal characteristics were developed as a major portion of this project and applied to 72 PIH materials. This report presents details of the PIH material toxicity comparisons, calculation of their dispersion, and their classification into five severity categories. 16 refs., 5 figs., 7 tabs.

  14. PRIDE Surveillance Projects Data Packaging Project Information Package Specification Version 1.1

    SciTech Connect

    Kelleher, D. M.; Shipp, R. L.; Mason, J. D.

    2010-08-31

    Information Package Specification version 1.1 describes an XML document format called an information package that can be used to store information in information management systems and other information archives. An information package consists of package information, the context required to understand and use that information, package metadata that describes the information, and XML signatures that protect the information. The information package described in this specification was designed to store Department of Energy (DOE) and National Nuclear Security Administration (NNSA) information and includes the metadata required for that information: a unique package identifier, information marking that conforms to DOE and NNSA requirements, and access control metadata. It is an implementation of the Open Archival Information System (OAIS) Reference Model archival information package tailored to meet NNSA information storage requirements and designed to be used in the computing environments at the Y-12 National Security Complex and at other NNSA sites.

  15. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    SciTech Connect

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  16. Packaging and Embedded Electronics for the Next Generation

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2010-01-01

    This viewgraph presentation describes examples of electronic packaging that protects an electronic element from handling, contamination, shock, vibration and light penetration. The use of Hermetic and non-hermetic packaging is also discussed. The topics include: 1) What is Electronic Packaging? 2) Why Package Electronic Parts? 3) Evolution of Packaging; 4) General Packaging Discussion; 5) Advanced non-hermetic packages; 6) Discussion of Hermeticity; 7) The Class Y Concept and Possible Extensions; 8) Embedded Technologies; and 9) NEPP Activities.

  17. Space Shuttle power extension package

    NASA Technical Reports Server (NTRS)

    Loftus, J. P., Jr.; Craig, J. W.

    1980-01-01

    A modification kit for the Space Transportation System (STS) Orbiter is proposed to provide more power and mission duration for payloads. The power extension package (PEP), a flexible-substrate solar array deployed on the Space Shuttle Orbiter remote manipulator system, can provide as much as 29 kW total power for durations of 10 to 48 days. The kit is installed only for those flights which require enhanced power or duration. The PEP is made possible by development of the flexible-substrate array technology and, in itself, contributes to the technology base for the use of large area solar cells. Modifications to the Orbiter thermal control and life support systems to improve heat balance and to reduce consumables are proposed. The changes consist of repositioning the Orbiter forward radiators and replacing the lithium hydroxide scrubber with a regenerable solid amine.

  18. Belos Block Linear Solvers Package

    Energy Science and Technology Software Center (ESTSC)

    2004-03-01

    Belos is an extensible and interoperable framework for large-scale, iterative methods for solving systems of linear equations with multiple right-hand sides. The motivation for this framework is to provide a generic interface to a collection of algorithms for solving large-scale linear systems. Belos is interoperable because both the matrix and vectors are considered to be opaque objects--only knowledge of the matrix and vectors via elementary operations is necessary. An implementation of Balos is accomplished viamore » the use of interfaces. One of the goals of Belos is to allow the user flexibility in specifying the data representation for the matrix and vectors and so leverage any existing software investment. The algorithms that will be included in package are Krylov-based linear solvers, like Block GMRES (Generalized Minimal RESidual) and Block CG (Conjugate-Gradient).« less

  19. Recycled plastics for food packaging

    SciTech Connect

    Thorsheim, H.R.; Armstrong, D.J.

    1993-08-01

    There is a strong movement in this country to decrease the amount of waste produced and to use resources more efficiently. The Food and Drug Administration (FDA) is interested in helping to resolve the solid waste problem. The FDA supports recycling and the broader societal goal of diverting material from the solid waste stream, when it is consistent with the statutory responsibilities to protect the public health. The National Environmental Policy Act of 1969 (NEPA) mandates that the FDA review the impact of new food-packaging materials on the environment. Currently, no regulations have been issued for the use of recycled polymers in contact with food. Plastics are permeable, and the possibility that a contaminant such as a pesticide or motor oil might be absorbed by a plastic container and remain in the resin after recycling is very real. The paper discusses FDA policy and research to ensure that recycled plastics are safe for food-contact use.

  20. Modular optimization code package: MOZAIK

    NASA Astrophysics Data System (ADS)

    Bekar, Kursat B.

    This dissertation addresses the development of a modular optimization code package, MOZAIK, for geometric shape optimization problems in nuclear engineering applications. MOZAIK's first mission, determining the optimal shape of the D2O moderator tank for the current and new beam tube configurations for the Penn State Breazeale Reactor's (PSBR) beam port facility, is used to demonstrate its capabilities and test its performance. MOZAIK was designed as a modular optimization sequence including three primary independent modules: the initializer, the physics and the optimizer, each having a specific task. By using fixed interface blocks among the modules, the code attains its two most important characteristics: generic form and modularity. The benefit of this modular structure is that the contents of the modules can be switched depending on the requirements of accuracy, computational efficiency, or compatibility with the other modules. Oak Ridge National Laboratory's discrete ordinates transport code TORT was selected as the transport solver in the physics module of MOZAIK, and two different optimizers, Min-max and Genetic Algorithms (GA), were implemented in the optimizer module of the code package. A distributed memory parallelism was also applied to MOZAIK via MPI (Message Passing Interface) to execute the physics module concurrently on a number of processors for various states in the same search. Moreover, dynamic scheduling was enabled to enhance load balance among the processors while running MOZAIK's physics module thus improving the parallel speedup and efficiency. In this way, the total computation time consumed by the physics module is reduced by a factor close to M, where M is the number of processors. This capability also encourages the use of MOZAIK for shape optimization problems in nuclear applications because many traditional codes related to radiation transport do not have parallel execution capability. A set of computational models based on the existing beam port configuration of the Penn State Breazeale Reactor (PSBR) was designed to test and validate the code package in its entirety, as well as its modules separately. The selected physics code, TORT, and the requisite data such as source distribution, cross-sections, and angular quadratures were comprehensively tested with these computational models. The modular feature and the parallel performance of the code package were also examined using these computational models. Another outcome of these computational models is to provide the necessary background information for determining the optimal shape of the D2O moderator tank for the new beam tube configurations for the PSBR's beam port facility. The first mission of the code package was completed successfully by determining the optimal tank shape which was sought for the current beam tube configuration and two new beam tube configurations for the PSBR's beam port facility. The performance of the new beam tube configurations and the current beam tube configuration were evaluated with the new optimal tank shapes determined by MOZAIK. Furthermore, the performance of the code package with the two different optimization strategies were analyzed showing that while GA is capable of achieving higher thermal beam intensity for a given beam tube setup, Min-max produces an optimal shape that is more amenable to machining and manufacturing. The optimal D2O moderator tank shape determined by MOZAIK with the current beam port configuration improves the thermal neutron beam intensity at the beam port exit end by 9.5%. Similarly, the new tangential beam port configuration (beam port near the core interface) with the optimal moderator tank shape determined by MOZAIK improves the thermal neutron beam intensity by a factor of 1.4 compared to the existing beam port configuration (with the existing D2O moderator tank). Another new beam port configuration, radial beam tube configuration, with the optimal moderator tank shape increases the thermal neutron beam intensity at the beam tube exit by a factor of 1.8. All these results indicate that MOZAIK is viable and effective and is ready for deployment to address shape optimization problems involving radiation transport in nuclear engineering applications.

  1. Comparison of TAPS Packages for Engineering

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit

    2008-01-01

    Purpose: This paper aims to present the development of technology-assisted problem solving (TAPS) packages at University Tenaga Nasional (UNITEN). The project is the further work of the development of interactive multimedia based packages targeted for students having problems in understanding the subject of engineering mechanics dynamics.

  2. Plastic-Sealed Hybrid Power Circuit Package

    NASA Technical Reports Server (NTRS)

    Miller, W. N.; Gray, O. E.

    1983-01-01

    Proposed design for hybrid high-voltage power-circuit package uses molded plastic for hermetic sealing instead of glass-to-metal seal. New package used to house high-voltage regulators and solid-state switches for applications in aircraft, electric automobiles, industrial equipment, satellites, solarcell arrays, and other equipment in extreme environments.

  3. PyTrilinos Rapid Prototyping Package

    Energy Science and Technology Software Center (ESTSC)

    2005-03-01

    PyTrilinos provides access to selected Trilinos packages from the python scripting language. This allows interactive and dynamic creation of Trilinos objects, rapid prototyping that does not require compilation, and "gluing" Trilinos scripts to other python modules, such as plotting, etc. The currently supported packages are Epetra, EpetraExt, and NOX.

  4. Developing Oral Language. Learning Package No. 1.

    ERIC Educational Resources Information Center

    Hong, Zhang; Smith, Carl, Comp.

    Originally developed for the Department of Defense Schools (DoDDS) system, this learning package on developing oral language is designed for teachers who wish to upgrade or expand their teaching skills on their own. The package includes a comprehensive search of the ERIC database; a lecture giving an overview on the topic; the full text of several…

  5. Using Folk Literature. Learning Package No. 3.

    ERIC Educational Resources Information Center

    Smith, Carl, Comp.

    Originally developed for the Department of Defense Schools (DoDDS) system, this learning package on using folk literature is designed for teachers who wish to upgrade or expand their teaching skills on their own. The package includes a comprehensive search of the ERIC database; a lecture giving an overview on the topic; the full text of several…

  6. Extending the Basal. Learning Package No. 13.

    ERIC Educational Resources Information Center

    Collins, Norma; Smith, Carl, Comp.

    Originally developed for the Department of Defense Schools (DoDDS) system, this learning package on extending the basal is designed for teachers who wish to upgrade or expand their teaching skills on their own. The package includes a comprehensive search of the ERIC database; a lecture giving an overview on the topic; the full text of several…

  7. Observation and Feedback. Learning Package No. 12.

    ERIC Educational Resources Information Center

    Aiex, Nola Kortner; Smith, Carl, Comp.

    Originally developed for the Department of Defense Schools (DoDDS) system, this learning package on observation and feedback is designed for teachers who wish to upgrade or expand their teaching skills on their own. The package includes a comprehensive search of the ERIC database; a lecture giving an overview on the topic; the full text of several…

  8. A Thermodynamics Course Package in Onenote

    ERIC Educational Resources Information Center

    Falconer, John L.; Nicodemus, Garret D.; Medlin, J. Will; deGrazia, Janet; McDanel, Katherine P.

    2014-01-01

    A ready-to-use package of active-learning materials for a semester-long chemical engineering thermodynamics course was prepared for instructors, and similar materials are being prepared for a material and energy balance course. The course package includes ConcepTests, explanations of the ConcepTests for instructors, links to screencasts, chapter…

  9. A Thermodynamics Course Package in Onenote

    ERIC Educational Resources Information Center

    Falconer, John L.; Nicodemus, Garret D.; Medlin, J. Will; deGrazia, Janet; McDanel, Katherine P.

    2014-01-01

    A ready-to-use package of active-learning materials for a semester-long chemical engineering thermodynamics course was prepared for instructors, and similar materials are being prepared for a material and energy balance course. The course package includes ConcepTests, explanations of the ConcepTests for instructors, links to screencasts, chapter

  10. 49 CFR 173.63 - Packaging exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... which case they are excepted from the packaging requirements of § 173.62: (1) No more than 50 detonators... follows in which case they are excepted from the packaging requirements of § 173.62: (1) No more than 50.... (a) Cord, detonating (UN 0065), having an explosive content not exceeding 6.5 g (0.23 ounces) per...

  11. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Drug Administration's regulations regarding such guaranties (21 CFR 7.12 and 7.13) will be... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging...

  12. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Drug Administration's regulations regarding such guaranties (21 CFR 7.12 and 7.13) will be... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging...

  13. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Drug Administration's regulations regarding such guaranties (21 CFR 7.12 and 7.13) will be... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging...

  14. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Drug Administration's regulations regarding such guaranties (21 CFR 7.12 and 7.13) will be... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging...

  15. Gary M. Klingler Algebra Teacher Assistance Packages

    ERIC Educational Resources Information Center

    Klingler, Gary

    2005-01-01

    Several packages designed by Elizabeth Marquez for mathematics teachers of grades 6-12, officially entitled the Teacher Assistance Package in Support of Better Algebra Assessment, is a series of resources developed to accompany ET's End-of-Course Algebra Assessment. It is designed to enhance teachers classroom assessment by providing examples of…

  16. 27 CFR 19.276 - Package scales.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Package scales. 19.276 Section 19.276 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Construction, Equipment and Security § 19.276 Package scales. Proprietors shall ensure...

  17. 39 CFR 3055.23 - Package Services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Package Services. 3055.23 Section 3055.23 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL SERVICE PERFORMANCE AND CUSTOMER SATISFACTION REPORTING Annual Reporting of Service Performance Achievements § 3055.23 Package Services. For each product...

  18. 39 CFR 3055.23 - Package Services.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 39 Postal Service 1 2013-07-01 2013-07-01 false Package Services. 3055.23 Section 3055.23 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL SERVICE PERFORMANCE AND CUSTOMER SATISFACTION REPORTING Annual Reporting of Service Performance Achievements § 3055.23 Package Services. For each product...

  19. 39 CFR 3055.60 - Package Services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Package Services. 3055.60 Section 3055.60 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL SERVICE PERFORMANCE AND CUSTOMER SATISFACTION REPORTING Periodic Reporting of Service Performance Achievements § 3055.60 Package Services. (a) Single-Piece Parcel Post. For the Single-Piece Parcel...

  20. 39 CFR 3055.23 - Package Services.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Package Services. 3055.23 Section 3055.23 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL SERVICE PERFORMANCE AND CUSTOMER SATISFACTION REPORTING Annual Reporting of Service Performance Achievements § 3055.23 Package Services. For each product...

  1. 39 CFR 3055.60 - Package Services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Package Services. 3055.60 Section 3055.60 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL SERVICE PERFORMANCE AND CUSTOMER SATISFACTION REPORTING Periodic Reporting of Service Performance Achievements § 3055.60 Package Services. (a) Single-Piece...

  2. 39 CFR 3055.23 - Package Services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Package Services. 3055.23 Section 3055.23 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL SERVICE PERFORMANCE AND CUSTOMER SATISFACTION REPORTING Annual Reporting of Service Performance Achievements § 3055.23 Package Services. For each product...

  3. 39 CFR 3055.60 - Package Services.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Package Services. 3055.60 Section 3055.60 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL SERVICE PERFORMANCE AND CUSTOMER SATISFACTION REPORTING Periodic Reporting of Service Performance Achievements § 3055.60 Package Services. (a) Single-Piece...

  4. 39 CFR 3055.60 - Package Services.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 39 Postal Service 1 2013-07-01 2013-07-01 false Package Services. 3055.60 Section 3055.60 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL SERVICE PERFORMANCE AND CUSTOMER SATISFACTION REPORTING Periodic Reporting of Service Performance Achievements § 3055.60 Package Services. (a) Single-Piece...

  5. Statistical Software Packages for the Microcomputer.

    ERIC Educational Resources Information Center

    Finley, Sevilla, Comp.

    The nine microcomputer statistical software packages that are described comprise the statistical software collection at the Appalachia Educational Laboratory (AEL). The packages are compatible with AEL's Apple II microcomputer, though many are also available with other microcomputers. References to software reviews are included for some programs.…

  6. Waste package performance in unsaturated rock

    SciTech Connect

    Pigford, T.H.; Lee, W.W.-L.

    1989-03-01

    The unsaturated rock and near-atmospheric pressure of the potential nuclear waste repository at Yucca Mountain present new problems of predicting waste package performance. In this paper we present some illustrations of predictions of waste package performance and discuss important data needs. 11 refs., 9 figs., 1 tab.

  7. Introduction to Software Packages. [Final Report.

    ERIC Educational Resources Information Center

    Frankel, Sheila, Ed.; And Others

    This document provides an introduction to applications computer software packages that support functional managers in government and encourages the use of such packages as an alternative to in-house development. A review of current application areas includes budget/project management, financial management/accounting, payroll, personnel,…

  8. Developing a Package Training System for Industry

    ERIC Educational Resources Information Center

    Battersby, D. L. N.

    1974-01-01

    The hotel and catering industry is one of Great Britain's largest. A packaged training system has been developed to satisfy the needs of this industry, an ever-growing occupational field with multiple categories. The material provided in each package outlines short pieces of instruction and helps the trainer create appropriate training. (DS)

  9. Antimicrobial packaging for fresh-cut fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fresh-cut fruits are minimally processed produce which are consumed directly at their fresh stage without any further kill step. Microbiological quality and safety are major challenges to fresh-cut fruits. Antimicrobial packaging is one of the innovative food packaging systems that is able to kill o...

  10. Cigarette package design: opportunities for disease prevention

    PubMed Central

    DiFranza, JR; Clark, DM; Pollay, RW

    2003-01-01

    Objective To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. Methods A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Data Synthesis Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. Conclusion The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers.

  11. Cigarette package design: opportunities for disease prevention

    PubMed Central

    DiFranza, JR; Clark, DM; Pollay, RW

    2003-01-01

    Objective To learn how cigarette packages are designed and to determine to what extent cigarette packages are designed to target children. Methods A computer search was made of all Internet websites that post tobacco industry documents using the search terms: packaging, package design, package study, box design, logo, trademark and design study. All documents were retrieved electronically and analyzed by the first author for recurrent themes. Data Synthesis Cigarette manufacturers devote a great deal of attention and expense to package design because it is central to their efforts to create brand images. Colors, graphic elements, proportioning, texture, materials and typography are tested and used in various combinations to create the desired product and user images. Designs help to create the perceived product attributes and project a personality image of the user with the intent of fulfilling the psychological needs of the targeted type of smoker. The communication of these images and attributes is conducted through conscious and subliminal processes. Extensive testing is conducted using a variety of qualitative and quantitative research techniques. Conclusion The promotion of tobacco products through appealing imagery cannot be stopped without regulating the package design. The same marketing research techniques used by the tobacco companies can be used to design generic packaging and more effective warning labels targeted at specific consumers. PMID:19570250

  12. 7 CFR 322.9 - Mailed packages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.9 Mailed packages. (a) If you import a package of honeybees, honeybee germ plasm, or bees other than honeybees...

  13. 7 CFR 322.9 - Mailed packages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.9 Mailed packages. (a) If you import a package of honeybees, honeybee germ plasm, or bees other than honeybees...

  14. 49 CFR 130.21 - Packaging requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.21 Packaging requirements. Each packaging used for the transportation of oil subject to this part must be... transportation, there will be no release of oil to the environment....

  15. 49 CFR 130.21 - Packaging requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.21 Packaging requirements. Each packaging used for the transportation of oil subject to this part must be... transportation, there will be no release of oil to the environment....

  16. 49 CFR 130.21 - Packaging requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.21 Packaging requirements. Each packaging used for the transportation of oil subject to this part must be... transportation, there will be no release of oil to the environment....

  17. 49 CFR 130.21 - Packaging requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.21 Packaging requirements. Each packaging used for the transportation of oil subject to this part must be... transportation, there will be no release of oil to the environment....

  18. 49 CFR 130.21 - Packaging requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OIL TRANSPORTATION OIL SPILL PREVENTION AND RESPONSE PLANS § 130.21 Packaging requirements. Each packaging used for the transportation of oil subject to this part must be... transportation, there will be no release of oil to the environment....

  19. Browndye: A Software Package for Brownian Dynamics

    PubMed Central

    McCammon, J. Andrew

    2010-01-01

    A new software package, Browndye, is presented for simulating the diffusional encounter of two large biological molecules. It can be used to estimate second-order rate constants and encounter probabilities, and to explore reaction trajectories. Browndye builds upon previous knowledge and algorithms from software packages such as UHBD, SDA, and Macrodox, while implementing algorithms that scale to larger systems. PMID:21132109

  20. Temperature, Pulse, and Respiration. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This learning activity package on temperature, pulse, and respiration is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  1. Teaching Old Packaging New Tricks - 12593

    SciTech Connect

    England, Jeffery L.; Shuler, James M.

    2012-07-01

    Waste disposition campaigns have been an industry and government focus area since the mid- 1970's. With increased focus on this issue, and a lot of hard work, most waste packaging and transportation issues have been addressed. The material has been successfully shipped and dis-positioned. DOE has successfully de-inventoried materials from multiple sites to meet material consolidation, footprint reduction, nonproliferation, and regulatory obligations with cost savings from reduced maintenance and regulatory compliance. There has been a wide range of certified shipping packagings for the transportation of hazardous materials to meet most of the waste needs. The remaining materials are problematic, generally low volume, and do not meet the certified content of the existing inventory of packaging. Designing, testing and certifying new packaging designs can be a long and expensive process and for small volumes of material it is cost prohibitive. One very cost effective option is to lease and use a certified packaging to overpack waste containers. There are many robust certified packagings available with the capability to envelope the waste content. The capability to use inner containers, inside the current fleet of certified casks or packaging, to address specific content problems of additional shielding (e.g., U-233) or containment (e.g., sodium bonded nuclear material) has successfully expanded the capability for timely cost effective shipment of unique contents. This option has been used successfully in the NAC-LWT, T-3 and other packagings. (authors)

  2. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Drug Administration's regulations regarding such guaranties (21 CFR 7.12 and 7.13) will be... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging...

  3. Performing Remarkable Feats with Presentation Graphics Packages.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia

    1994-01-01

    Describes easy-to-use, easy-to-learn dedicated graphics packages for developing slide presentations shown directly from computers. A general description of the features of five packages and suggestions for software selection are provided. A sidebar provides graphics tips, such as the use of color, typefaces, and formatting, for developing…

  4. Teachers' Guidelines for Evaluating Commercial Phonics Packages.

    ERIC Educational Resources Information Center

    Osborn, Jean; Stahl, Steven; Stein, Marcy

    The number of packages--kits, games, computer discs, audiotapes, and videotapes--offering phonics instruction is growing almost daily. These commercial packages are marketed to parents to use with their children or to teachers and school districts as supplements to classroom programs of reading instruction. This booklet outlines questions which…

  5. 19 CFR 19.10 - Examination packages.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Examination packages. 19.10 Section 19.10 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... Examination packages. Merchandise sent from a bonded warehouse to the appraiser's stores for examination...

  6. 19 CFR 134.53 - Examination packages.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Examination packages. 134.53 Section 134.53 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY COUNTRY OF ORIGIN MARKING Articles Found Not Legally Marked § 134.53 Examination packages....

  7. 7 CFR 322.9 - Mailed packages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.9 Mailed packages. (a) If you import a package of honeybees, honeybee germ plasm, or bees other than honeybees...

  8. 7 CFR 322.9 - Mailed packages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.9 Mailed packages. (a) If you import a package of honeybees, honeybee germ plasm, or bees other than honeybees...

  9. 7 CFR 322.9 - Mailed packages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.9 Mailed packages. (a) If you import a package of honeybees, honeybee germ plasm, or bees other than honeybees...

  10. Evaluation of Five Microcomputer CAD Packages.

    ERIC Educational Resources Information Center

    Leach, James A.

    1987-01-01

    Discusses the similarities, differences, advanced features, applications and number of users of five microcomputer computer-aided design (CAD) packages. Included are: "AutoCAD (V.2.17)"; "CADKEY (V.2.0)"; "CADVANCE (V.1.0)"; "Super MicroCAD"; and "VersaCAD Advanced (V.4.00)." Describes the evaluation of the packages and makes recommendations for…

  11. Fiberboard Humidity Data for 9975 Shipping Packages

    SciTech Connect

    Daugherty, W.

    2015-07-31

    The 9975 surveillance program is identifying a technical basis to support extending the storage period of 9975 packages in KAC beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Two efforts have been undertaken to better understand the levels and behavior of moisture within the fiberboard assemblies of the 9975 shipping package. In the first effort, an initial survey of humidity and temperature in the upper air space of 26 packages stored in KAC was made. The data collected within this first effort help to illustrate how the upper air space humidity varies with the local ambient temperature and package heat load. In the second effort, direct measurements of two test packages are providing a correlation between humidity and fiberboard moisture levels within the package, and variations in moisture throughout the fiberboard assembly. This effort has examined packages with cane fiberboard and internal heat levels of 5 and 10W to date. Additional testing is expected to include 15 and 19W heat levels, and then repeat the same four heat levels with softwood fiberboard assemblies. This report documents the data collected to date within these two efforts

  12. Fiberboard humidity data for 9975 shipping packages

    SciTech Connect

    Daugherty, W. L.

    2015-07-31

    The 9975 surveillance program is identifying a technical basis to support extending the storage period of 9975 packages in KAC beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis.Two efforts have been undertaken to better understand the levels and behavior of moisture within the fiberboard assemblies of the 9975 shipping package. In the first effort, an initial survey of humidity and temperature in the upper air space of 26 packages stored in KAC was made. The data collected within this first effort help to illustrate how the upper air space humidity varies with the local ambient temperature and package heat load. In the second effort, direct measurements of two test packages are providing a correlation between humidity and fiberboard moisture levels within the package, and variations in moisture throughout the fiberboard assembly. This effort has examined packages with cane fiberboard and internal heat levels of 5 and 10W to date. Additional testing is expected to include 15 and 19W heat levels, and then repeat the same four heat levels with softwood fiberboard assemblies. This report documents the data collected to date within these two efforts.

  13. 39 CFR 121.4 - Package Services.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Package Services. 121.4 Section 121.4 Postal Service UNITED STATES POSTAL SERVICE POST OFFICE SERVICES SERVICE STANDARDS FOR MARKET-DOMINANT MAIL PRODUCTS § 121.4 Package Services. (a) End-to-End. (1) The service standard for Sectional Center...

  14. PRIDE Surveillance Projects Data Packaging Project, Information Package Specification Version 1.0

    SciTech Connect

    Kelleher, D.M.; Shipp, R. L.; Mason, J. D.

    2009-09-28

    This document contains a specification for a standard XML document format called an information package that can be used to store information and the context required to understand and use that information in information management systems and other types of information archives. An information package consists of packaged information, a set of information metadata that describes the packaged information, and an XML signature that protects the packaged information. The information package described in this specification was designed to be used to store Department of Energy (DOE) and National Nuclear Security Administration (NNSA) information and includes the metadata required for that information: a unique package identifier, information marking that conforms to DOE and NNSA requirements, and access control metadata. Information package metadata can also include information search terms, package history, and notes. Packaged information can be text content, binary content, and the contents of files and other containers. A single information package can contain multiple types of information. All content not in a text form compatible with XML must be in a text encoding such as base64. Package information is protected by a digital XML signature that can be used to determine whether the information has changed since it was signed and to identify the source of the information. This specification has been tested but has not been used to create production information packages. The authors expect that gaps and unclear requirements in this specification will be identified as this specification is used to create information packages and as information stored in information packages is used. The authors expect to issue revised versions of this specification as needed to address these issues.

  15. 49 CFR 178.935 - Standards for wooden Large Packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for wooden Large Packagings. 178.935... FOR PACKAGINGS Large Packagings Standards § 178.935 Standards for wooden Large Packagings. (a) The provisions in this section apply to wooden Large Packagings intended to contain solids. Wooden...

  16. 49 CFR 178.940 - Standards for flexible Large Packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for flexible Large Packagings. 178.940... PACKAGINGS Large Packagings Standards § 178.940 Standards for flexible Large Packagings. (a) The provisions in this section apply to flexible Large Packagings intended to contain liquids and solids....

  17. 49 CFR 178.915 - General Large Packaging standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false General Large Packaging standards. 178.915 Section... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Large Packagings Standards § 178.915 General Large Packaging standards. (a) Each Large Packaging must...

  18. 49 CFR 173.61 - Mixed packaging requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mixed packaging requirements. 173.61 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.61 Mixed packaging requirements. (a) An explosive may not be packed in the same outside packaging with any...

  19. 49 CFR 178.930 - Standards for fiberboard Large Packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for fiberboard Large Packagings. 178.930... PACKAGINGS Large Packagings Standards § 178.930 Standards for fiberboard Large Packagings. (a) The provisions in this section apply to fiberboard Large Packagings intended to contain solids. Rigid...

  20. 49 CFR 173.61 - Mixed packaging requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Mixed packaging requirements. 173.61 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.61 Mixed packaging requirements. (a) An explosive may not be packed in the same outside packaging with any...

  1. 49 CFR 173.223 - Packagings for certain flammable solids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packagings for certain flammable solids. 173.223...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.223 Packagings for certain flammable solids. (a) Packagings for “Musk...

  2. 49 CFR 178.920 - Standards for metal Large Packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for metal Large Packagings. 178.920... PACKAGINGS Large Packagings Standards § 178.920 Standards for metal Large Packagings. (a) The provisions in this section apply to metal Large Packagings intended to contain liquids and solids. Metal...

  3. 49 CFR 173.3 - Packaging and exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Packaging and exceptions. 173.3 Section 173.3... SHIPMENTS AND PACKAGINGS General § 173.3 Packaging and exceptions. (a) The packaging of hazardous materials.... standard packaging must be open to inspection by a representative of the Department. (b) The...

  4. 16 CFR 1700.15 - Poison prevention packaging standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Poison prevention packaging standards. 1700... PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.15 Poison prevention packaging..., using, or ingesting household substances, the Commission has determined that packaging designed...

  5. 49 CFR 178.930 - Standards for fiberboard Large Packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for fiberboard Large Packagings. 178.930... FOR PACKAGINGS Large Packagings Standards § 178.930 Standards for fiberboard Large Packagings. (a) The provisions in this section apply to fiberboard Large Packagings intended to contain solids. Rigid...

  6. 49 CFR 178.920 - Standards for metal Large Packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for metal Large Packagings. 178.920... FOR PACKAGINGS Large Packagings Standards § 178.920 Standards for metal Large Packagings. (a) The provisions in this section apply to metal Large Packagings intended to contain liquids and solids....

  7. 49 CFR 178.502 - Identification codes for packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Identification codes for packagings. 178.502... FOR PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.502 Identification codes for packagings. (a) Identification codes for designating kinds of packagings consist of the following: (1)...

  8. 49 CFR 178.910 - Marking of Large Packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Marking of Large Packagings. 178.910 Section 178... PACKAGINGS Large Packagings Standards § 178.910 Marking of Large Packagings. (a) The manufacturer must: (1) Mark every Large Packaging in a durable and clearly visible manner. The marking may be applied in...

  9. 16 CFR 1700.15 - Poison prevention packaging standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Poison prevention packaging standards. 1700... PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.15 Poison prevention packaging..., using, or ingesting household substances, the Commission has determined that packaging designed...

  10. 49 CFR 178.905 - Large Packaging identification codes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Large Packaging identification codes. 178.905... FOR PACKAGINGS Large Packagings Standards § 178.905 Large Packaging identification codes. Large packaging code designations consist of: two numerals specified in paragraph (a) of this section; followed...

  11. 49 CFR 178.502 - Identification codes for packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Identification codes for packagings. 178.502... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.502 Identification codes for packagings. (a) Identification codes for designating kinds of packagings consist of the following: (1) A...

  12. 49 CFR 173.223 - Packagings for certain flammable solids.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Packagings for certain flammable solids. 173.223...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.223 Packagings for certain flammable solids. (a) Packagings for “Musk...

  13. 49 CFR 178.920 - Standards for metal Large Packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for metal Large Packagings. 178.920... PACKAGINGS Large Packagings Standards § 178.920 Standards for metal Large Packagings. (a) The provisions in this section apply to metal Large Packagings intended to contain liquids and solids. Metal...

  14. 49 CFR 178.920 - Standards for metal Large Packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for metal Large Packagings. 178.920... PACKAGINGS Large Packagings Standards § 178.920 Standards for metal Large Packagings. (a) The provisions in this section apply to metal Large Packagings intended to contain liquids and solids. Metal...

  15. IFT Scientific Status Summary 2008: Innovative Food Packaging Solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food and beverage packaging comprises 55-65% of the $110 billion value of packaging in the United States. This review provides a summary of innovative technology developments in food packaging. The expanded role of food and beverage packaging is reviewed. Active and intelligent food packaging, ba...

  16. 49 CFR 173.3 - Packaging and exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Packaging and exceptions. 173.3 Section 173.3... SHIPMENTS AND PACKAGINGS General § 173.3 Packaging and exceptions. (a) The packaging of hazardous materials.... standard packaging must be open to inspection by a representative of the Department. (b) The...

  17. 49 CFR 173.61 - Mixed packaging requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Mixed packaging requirements. 173.61 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.61 Mixed packaging requirements. (a) An explosive may not be packed in the same outside packaging with any...

  18. 49 CFR 178.915 - General Large Packaging standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false General Large Packaging standards. 178.915 Section... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Large Packagings Standards § 178.915 General Large Packaging standards. (a) Each Large Packaging must...

  19. 49 CFR 173.61 - Mixed packaging requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Mixed packaging requirements. 173.61 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.61 Mixed packaging requirements. (a) An explosive may not be packed in the same outside packaging with any...

  20. 49 CFR 178.915 - General Large Packaging standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false General Large Packaging standards. 178.915 Section... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Large Packagings Standards § 178.915 General Large Packaging standards. (a) Each Large Packaging must...

  1. 49 CFR 173.61 - Mixed packaging requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Mixed packaging requirements. 173.61 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.61 Mixed packaging requirements. (a) An explosive may not be packed in the same outside packaging with any...

  2. 49 CFR 178.915 - General Large Packaging standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false General Large Packaging standards. 178.915 Section... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Large Packagings Standards § 178.915 General Large Packaging standards. (a) Each Large Packaging must...

  3. A Compact, Modular Superconducting Bolometer Array Package

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2008-01-01

    We have designed a detector package to house a superconducting bolometer array, SQUID multiplexers, bias and integration circuitry, optical filtering, electrical connectors, and thermal/mechanical interfaces. This package has been used successfully in the GISMO 2mm camera, a 128-pixel camera operating at a base temperature of 270mK. Operation at lower temperatures is allowed by providing direct heat sinking to the SQUIDS and bias resistors, which generate the bulk of the dissipation in the package. Standard electrical connectors provide reliable contact while enabling quick installation and removal of the package. Careful design has gone into the compensation for differing thermal expansions, the need for heat sinking of the bolometer array, and the placement of magnetic shielding in critical areas. In this presentation, we detail the design and performance of this detector package and describe its scalability to 1280- pixel arrays in the near future.

  4. Radiation treatment for sterilization of packaging materials

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, Mohammad; Sampa, Maria Helena O.; Chmielewski, Andrzej G.

    2007-08-01

    Treatment with gamma and electron radiation is becoming a common process for the sterilization of packages, mostly made of natural or synthetic plastics, used in the aseptic processing of foods and pharmaceuticals. The effect of irradiation on these materials is crucial for packaging engineering to understand the effects of these new treatments. Packaging material may be irradiated either prior to or after filling. The irradiation prior to filling is usually chosen for dairy products, processed food, beverages, pharmaceutical, and medical device industries in the United States, Europe, and Canada. Radiation effects on packaging material properties still need further investigation. This paper summarizes the work done by different groups and discusses recent developments in regulations and testing procedures in the field of packaging technology.

  5. Nonreturnable packaging: The environmental debate. (Latest citations from Packaging Science and Technology Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the environmental and economic impacts of nonreturnable versus returnable food packaging containers. Topics include the burdens on the environment due to nonreturnable beverage containers, economic considerations for the packaging industry, and government regulations imposed to reduce waste disposal. Various packaging containers are examined, including glass, aluminum, tin-plate, cardboard, and plastics. Government legislation in the soft drink and beverage industries, dairy packaged products, and paperboard packaging are discussed. (Contains a minimum of 199 citations and includes a subject term index and title list.)

  6. Compostability of bioplastic packaging materials: an overview.

    PubMed

    Kale, Gaurav; Kijchavengkul, Thitisilp; Auras, Rafael; Rubino, Maria; Selke, Susan E; Singh, Sher Paul

    2007-03-01

    Packaging waste accounted for 78.81 million tons or 31.6% of the total municipal solid waste (MSW) in 2003 in the USA, 56.3 million tons or 25% of the MSW in 2005 in Europe, and 3.3 million tons or 10% of the MSW in 2004 in Australia. Currently, in the USA the dominant method of packaging waste disposal is landfill, followed by recycling, incineration, and composting. Since landfill occupies valuable space and results in the generation of greenhouse gases and contaminants, recovery methods such as reuse, recycling and/or composting are encouraged as a way of reducing packaging waste disposal. Most of the common materials used in packaging (i.e., steel, aluminum, glass, paper, paperboard, plastics, and wood) can be efficiently recovered by recycling; however, if packaging materials are soiled with foods or other biological substances, physical recycling of these materials may be impractical. Therefore, composting some of these packaging materials is a promising way to reduce MSW. As biopolymers are developed and increasingly used in applications such as food, pharmaceutical, and consumer goods packaging, composting could become one of the prevailing methods for disposal of packaging waste provided that industry, governments, and consumers encourage and embrace this alternative. The main objective of this article is to provide an overview of the current situation of packaging compostability, to describe the main mechanisms that make a biopolymer compostable, to delineate the main methods to compost these biomaterials, and to explain the main standards for assessing compostability, and the current status of biopolymer labeling. Biopolymers such as polylactide and poly(hydroxybutyrate) are increasingly becoming available for use in food, medical, and consumer goods packaging applications. The main claims of these new biomaterials are that they are obtained from renewable resources and that they can be biodegraded in biological environments such as soil and compost. Although recycling could be energetically more favorable than composting for these materials, it may not be practical because of excessive sorting and cleaning requirements. Therefore, the main focus is to dispose them by composting. So far, there is no formal agreement between companies, governments and consumers as to how this packaging composting will take place; therefore, the main drivers for their use have been green marketing and pseudo-environmental consciousness related to high fuel prices. Packaging compostability could be an alternative for the disposal of biobased materials as long as society as a whole is willing to formally address the challenge to clearly understand the cradle-to-grave life of a compostable package, and to include these new compostable polymers in food, manure, or yard waste composting facilities. PMID:17370278

  7. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  8. Air-depolyable geophysics package

    SciTech Connect

    Hunter, S.L.; Harben, P.E.

    1993-11-01

    We are using Lawrence Livermore National Laboratory`s (LLNL`s) diverse expertise to develop a geophysical monitoring system that can survive being dropped into place by a helicopter or airplane. Such an air-deployable system could significantly decrease the time and effort needed to set up such instruments in remote locations following a major earthquake or volcanic eruption. Most currently available geophysical monitoring and survey systems, such as seismic monitoring stations, use sensitive, fragile instrumentation that requires personnel trained and experienced in data acquisition and field setup. Rapid deployment of such equipment can be difficult or impossible. Recent developments in low-power electronics, new materials, and sensors that are resistant to severe impacts have made it possible to develop low-cost geophysical monitoring packages for rapid deployment missions. Our strategy was to focus on low-cost battery-powered systems that would have a relatively long (several months) operational lifetime. We concentrated on the conceptual design and engineering of a single-component seismic system that could survive an air-deployment into an earth material, such as alluvium. Actual implementation of such a system is a goal of future work on this concept. For this project, we drew on LLNL`s Earth Sciences Department, Radio Shop, Plastics Shop, and Weapons Program. The military has had several programs to develop air-deployed and cannon-deployed seismometers. Recently, a sonobuoy manufacturer has offered an air-deployable geophone designed to make relatively soft landings.

  9. Factory packaged modular power plants

    SciTech Connect

    Prochaska, J.K.

    1995-12-01

    Since the reciprocating Diesel engine was introduced in the late 1930s, Stewart & Stevenson has been a major supplier of engine-generator sets. The relatively small size and simplicity of these units made them ideal for remote location service. Since the late 1960s, we have applied the same approach to gas turbines using proven aircraft engines, adapted for landbased service with only minimal modifications. The inherent light weight, small size, and modular nature of aircraft engines makes them ideal for a compact generator set that is easy to ship and install. Stewart & Stevenson`s initial contracts to manufacture generator sets for U.S. Navy ship service were a solid background for a quality control oriented operation. In the early 1980s, we began building land-based cogeneration units, many located ({open_quotes}shoehorned{close_quotes} in some cases) in existing facilities of colleges and health institutions. From this experience, we have developed a unique factory packaging approach. By installing as many components as possible on a single lift skid, the field installation work is dramatically reduced. Further, by investing an extra one to two months of manufacturing time in commissioning and debugging the controls and other auxiliaries in the factory, the field startup time is a bare minimum. On one project, we were able to place a 22 MW LM2500 unit in operation (in a remote Caribbean island) only 28 days from the initial phone call.

  10. The Fireball integrated code package

    SciTech Connect

    Dobranich, D.; Powers, D.A.; Harper, F.T.

    1997-07-01

    Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state of the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.

  11. Packaging development programs recommended for the U.S.Department of Energy

    SciTech Connect

    Edwards, W.S.

    1996-05-21

    U.S. Department of Energy facilities were visited to determine their specific packaging needs. Those individual site needs were analyzed to determine widespread packaging needs. Those packaging needs are: replacements for aging Type B packagings, plutonium packaging, overpacks for large containers, heavily shielded Type B packaging, large radioactive liquid packaging, standardized waste packaging, and packaging for explosives.

  12. 49 CFR 173.36 - Hazardous materials in Large Packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Packagings (e.g., 51H) are only authorized for use with flexible inner packagings. (3) Friction. The nature and thickness of the outer packaging must be such that friction during transportation is not likely...

  13. 49 CFR 173.36 - Hazardous materials in Large Packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Packagings (e.g., 51H) are only authorized for use with flexible inner packagings. (3) Friction. The nature and thickness of the outer packaging must be such that friction during transportation is not likely...

  14. Food packages for use on the Gemini 4 flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Food packages for use on the Gemini 4 flight. Packages include beef and gravy, peaches, strawberry cereal cubes and beef sandwiches. Water gun is used to reconstitute dehydrated food. Scissors are used to open the packages.

  15. Controlling lipid oxidation of food by active packaging technologies.

    PubMed

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2013-04-30

    Active packaging is an innovative strategy in preventing lipid oxidation. Different active substances with different mechanisms of action have been investigated for imparting antioxidant activity to active packaging systems, including free radical scavengers, metal chelators, ultraviolet (UV) absorbers, oxygen scavengers, and singlet oxygen quenchers. Antioxidant agents have been incorporated into active packaging systems in different forms, mainly including independent sachet packages, adhesive-bonded labels, physical adsorption/coating on packaging material surface, being incorporated into packaging polymer matrix, multilayer films, and covalent immobilization onto the food contact packaging surface. In this paper, we review recent advances in antioxidant active packaging with the highlight of the development and application of non-migratory active packaging systems. The potential use of emerging technologies in antioxidant active packaging is also emphasized. We further describe challenges and opportunities towards the commercial application of such antioxidant active packaging systems, with a focus on maintaining safety, quality and nutrition of packaged foods. PMID:23576007

  16. Requirements for food packaged in polymeric films.

    PubMed

    Rizvi, S S

    1981-01-01

    The requirements of barrier properties of packaging materials against environmental factors vary with food products. The chemical, physical, and biological mechanisms of food deterioration due to environmental factors, vital properties required in packaging materials, and developments in progress and future trends to maintain the required standard of food quality have been critically reviewed. Theoretical and experimental results for a variety of food products in relation to the properties of the packaging materials are discussed. Methods of prediction of food stability and their industrial applications are also emphasized by specific examples. PMID:7011684

  17. Void-Free Lid for Food Packaging

    NASA Technical Reports Server (NTRS)

    Watson, C. D.; Farris, W. P.

    1986-01-01

    Flexible cover eliminates air pockets in sealed container. Universal food-package lid formed from flexible plastic. Partially folded, lid unfolded by depressing center portion. Height of flat portion of lid above flange thereby reduced. Pressure of food against central oval depression pops it out, forming dome that provides finger grip for mixing contents with water or opening lid. Therefore food stays fresh, allows compact stacking of partially filled containers, and resists crushing. Originally developed for packaging dehydrated food for use in human consumption on Space Shuttle missions. Other uses include home canning and commercial food packaging.

  18. Optical smart packaging to reduce transmitted information.

    PubMed

    Cabezas, Luisa; Tebaldi, Myrian; Barrera, John Fredy; Bolognini, Néstor; Torroba, Roberto

    2012-01-01

    We demonstrate a smart image-packaging optical technique that uses what we believe is a new concept to save byte space when transmitting data. The technique supports a large set of images mapped into modulated speckle patterns. Then, they are multiplexed into a single package. This operation results in a substantial decreasing of the final amount of bytes of the package with respect to the amount resulting from the addition of the images without using the method. Besides, there are no requirements on the type of images to be processed. We present results that proof the potentiality of the technique. PMID:22274339

  19. Flat conductor cable for electrical packaging

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Flat conductor cable (FCC) is relatively new, highly promising means for electrical packaging and system integration. FCC offers numerous desirable traits (weight, volume and cost savings, flexibility, high reliability, predictable and repeatable electrical characteristics) which make it extremely attractive as a packaging medium. FCC, today, finds wide application in everything from integration of lunar equipment to the packaging of electronics in nuclear submarines. Described are cable construction and means of termination, applicable specifications and standards, and total FCC systems. A list of additional sources of data is also included for more intensive study.

  20. Training package 1 for slitting data analysis

    SciTech Connect

    Prime, Michael Bruce

    2015-03-23

    This document and accompanying files are intended as a first training package on how to analyze slitting data. The end goal is to have Idaho National Laboratory (INL) personnel trained to analyze future slitting data taken in the INL Hot Cell on clad, Low-Enriched Uranium (LEU) fuel plates. This first data package will cover data analysis for a monolithic material (as compared to a layered material like the clad fuel plates). The additional issues for layered specimens will be covered in a future training package.

  1. Status and Trend of Automotive Power Packaging

    SciTech Connect

    Liang, Zhenxian

    2012-01-01

    Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.

  2. Laser applications in integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Lu, Yongfeng; Song, Wen D.; Ren, ZhongMin; An, Chengwu; Ye, Kaidong D.; Liu, DaMing; Wang, Weijie; Hong, Ming Hui; Chong, Tow Chong

    2002-06-01

    Laser processing has large potential in the packaging of integrated circuits (IC). It can be used in many applications such as laser cleaning of IC mold tools, laser deflash to remove mold flash form heat sinks and lead wires of IC packages, laser singulation of BGA and CSP, laser reflow of solder ball on GBA, laser marking on packages and on SI wafers. During the implementation of all these applications, laser parameters, material issues, throughput, yield, reliability and monitoring techniques have to b taken into account. Monitoring of laser-induced plasma and laser induced acoustic wave has been used to understand and to control the processes involved in these applications.

  3. 10 CFR 60.143 - Monitoring and testing waste packages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long...

  4. Package testing capabilities at the Pacific Northwest Laboratory

    SciTech Connect

    Taylor, J.M.

    1993-06-01

    The purpose of this paper is to describe the package testing capabilities at the Pacific Northwest Laboratory (PNL). In the past all of the package testing that was performed at PNL was done on prototype or mocked up radioactive material packaging. Presently, we are developing the capability to perform testing on non-radioactive material packaging. The testing on the non-radioactive material packaging will be done to satisfy the new performance oriented packaging requirements (DOT Docket HM-181, 1991). This paper describes the equipment used to perform the performance oriented packaging tests and also describes some testing capability for testing radioactive material packaging.

  5. Package testing capabilities at the Pacific Northwest Laboratory

    SciTech Connect

    Taylor, J.M.

    1993-01-01

    The purpose of this paper is to describe the package testing capabilities at the Pacific Northwest Laboratory (PNL). In the past all of the package testing that was performed at PNL was done on prototype or mocked up radioactive material packaging. Presently, we are developing the capability to perform testing on non-radioactive material packaging. The testing on the non-radioactive material packaging will be done to satisfy the new performance oriented packaging requirements (DOT Docket HM-181, 1991). This paper describes the equipment used to perform the performance oriented packaging tests and also describes some testing capability for testing radioactive material packaging.

  6. CERAMIC WASTE FORM DATA PACKAGE

    SciTech Connect

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  7. Glass Ceramic Formulation Data Package

    SciTech Connect

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form.

  8. Solder Mounting Technologies for Electronic Packaging

    SciTech Connect

    VIANCO, PAUL T.

    1999-09-23

    Soldering provides a cost-effective means for attaching electronic packages to circuit boards using both small scale and large scale manufacturing processes. Soldering processes accommodate through-hole leaded components as well as surface mount packages, including the newer area array packages such as the Ball Grid Arrays (BGA), Chip Scale Packages (CSP), and Flip Chip Technology. The versatility of soldering is attributed to the variety of available solder alloy compositions, substrate material methodologies, and different manufacturing processes. For example, low melting temperature solders are used with temperature sensitive materials and components. On the other hand, higher melting temperature solders provide reliable interconnects for electronics used in high temperature service. Automated soldering techniques can support large-volume manufacturing processes, while providing high reliability electronic products at a reasonable cost.

  9. Installation package for concentrating solar collector panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  10. 7 CFR 905.140 - Gift packages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ORANGES, GRAPEFRUIT, TANGERINES, AND TANGELOS GROWN IN FLORIDA Rules and Regulations Non-Regulated Fruit § 905.140 Gift packages. Any...

  11. Waste Package Component Design Methodology Report

    SciTech Connect

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1.

  12. Motivating Reluctant Learners: Innovative Contingency Packages.

    ERIC Educational Resources Information Center

    Raschke, Donna; And Others

    1987-01-01

    Contingency packages can be incorporated into classroom management techniques for reluctant learners (who may have already experienced failure in education) to encourage enthusiasm and motivation for learning. Suggestions are provided for implementing programs using a robot or football concepts. (CB)

  13. micromap: A Package for Linked Micromaps

    EPA Science Inventory

    The R package micromap is used to create linked micromaps, which display statistical summaries associated with areal units, or polygons. Linked micromaps provide a means to simultaneously summarize and display both statistical and geographic distributions by linking statistical ...

  14. 40 CFR 262.30 - Packaging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... under 49 CFR parts 173, 178, and 179. ... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.30 Packaging. Before transporting hazardous waste or offering hazardous waste for transportation off-site, a generator must...

  15. 40 CFR 262.30 - Packaging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... under 49 CFR parts 173, 178, and 179. ... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.30 Packaging. Before transporting hazardous waste or offering hazardous waste for transportation off-site, a generator must...

  16. 40 CFR 262.30 - Packaging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... under 49 CFR parts 173, 178, and 179. ... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.30 Packaging. Before transporting hazardous waste or offering hazardous waste for transportation off-site, a generator must...

  17. 40 CFR 262.30 - Packaging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... under 49 CFR parts 173, 178, and 179. ... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.30 Packaging. Before transporting hazardous waste or offering hazardous waste for transportation off-site, a generator must...

  18. 40 CFR 262.30 - Packaging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... under 49 CFR parts 173, 178, and 179. ... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.30 Packaging. Before transporting hazardous waste or offering hazardous waste for transportation off-site, a generator must...

  19. 7 CFR 905.140 - Gift packages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ORANGES, GRAPEFRUIT, TANGERINES, AND TANGELOS GROWN IN FLORIDA Rules and Regulations Non-Regulated Fruit § 905.140 Gift packages. Any...

  20. 7 CFR 905.140 - Gift packages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ORANGES, GRAPEFRUIT, TANGERINES, AND TANGELOS GROWN IN FLORIDA Rules and Regulations Non-Regulated Fruit § 905.140 Gift packages. Any...

  1. Installation package for a solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Installation information is given for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings.

  2. 10 CFR 71.33 - Package description.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for... radioactive constituents; (2) Identification and maximum quantities of fissile constituents; (3) Chemical and... operating pressure; (6) Maximum weight; (7) Maximum amount of decay heat; and (8) Identification and...

  3. 10 CFR 71.33 - Package description.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for... radioactive constituents; (2) Identification and maximum quantities of fissile constituents; (3) Chemical and... operating pressure; (6) Maximum weight; (7) Maximum amount of decay heat; and (8) Identification and...

  4. 10 CFR 71.33 - Package description.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for... radioactive constituents; (2) Identification and maximum quantities of fissile constituents; (3) Chemical and... operating pressure; (6) Maximum weight; (7) Maximum amount of decay heat; and (8) Identification and...

  5. 10 CFR 71.33 - Package description.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for... radioactive constituents; (2) Identification and maximum quantities of fissile constituents; (3) Chemical and... operating pressure; (6) Maximum weight; (7) Maximum amount of decay heat; and (8) Identification and...

  6. 10 CFR 71.33 - Package description.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Application for... radioactive constituents; (2) Identification and maximum quantities of fissile constituents; (3) Chemical and... operating pressure; (6) Maximum weight; (7) Maximum amount of decay heat; and (8) Identification and...

  7. Smart packaging systems for food applications: a review.

    PubMed

    Biji, K B; Ravishankar, C N; Mohan, C O; Srinivasa Gopal, T K

    2015-10-01

    Changes in consumer preference for safe food have led to innovations in packaging technologies. This article reviews about different smart packaging systems and their applications in food packaging, packaging research with latest innovations. Active and intelligent packing are such packaging technologies which offer to deliver safer and quality products. Active packaging refers to the incorporation of additives into the package with the aim of maintaining or extending the product quality and shelf life. The intelligent systems are those that monitor the condition of packaged food to give information regarding the quality of the packaged food during transportation and storage. These technologies are designed to the increasing demand for safer foods with better shelf life. The market for active and intelligent packaging systems is expected to have a promising future by their integration into packaging materials or systems. PMID:26396360

  8. A waste package strategy for regulatory compliance

    SciTech Connect

    Stahl, D.; Cloninger, M.O.

    1990-04-01

    This paper summarizes the strategy given in the Site Characterization Plan for demonstrating compliance with the post closure performance objectives for the waste package and the Engineered Barrier System contained in the Code of Federal Regulations. The strategy consists of the development of a conservative waste package design that will meet the regulatory requirements with sufficient margin for uncertainty using a multi-barrier approach that takes advantage of the unsaturated nature of the Yucca Mountain site. 7 refs., 1 fig.

  9. Isorropia Partitioning and Load Balancing Package

    Energy Science and Technology Software Center (ESTSC)

    2006-09-01

    Isorropia is a partitioning and load balancing package which interfaces with the Zoltan library. Isorropia can accept input objects such as matrices and matrix-graphs, and repartition/redistribute them into a better data distribution on parallel computers. Isorropia is primarily an interface package, utilizing graph and hypergraph partitioning algorithms that are in the Zoltan library which is a third-party library to Tilinos.

  10. HOPSPACK: Hybrid Optimization Parallel Search Package.

    SciTech Connect

    Gray, Genetha A.; Kolda, Tamara G.; Griffin, Joshua; Taddy, Matt; Martinez-Canales, Monica

    2008-12-01

    In this paper, we describe the technical details of HOPSPACK (Hybrid Optimization Parallel SearchPackage), a new software platform which facilitates combining multiple optimization routines into asingle, tightly-coupled, hybrid algorithm that supports parallel function evaluations. The frameworkis designed such that existing optimization source code can be easily incorporated with minimalcode modification. By maintaining the integrity of each individual solver, the strengths and codesophistication of the original optimization package are retained and exploited.4

  11. Microsystem packaging of an RF SAW correlator.

    SciTech Connect

    Palmer, David A.; Brocato, Robert Wesley; Studor, George F.

    2005-01-01

    An electrically programmable surface acoustic wave (SAW) correlator was recently completed from design through small scale production in support of low power space-based communications for NASA. Three different versions of this RF microsystem were built to satisfy design requirements and overcome packaging and system reliability related issues. Flip-chip packaging and conventional thick film hybrid assembly techniques are compared in the fabrication of this microsystem.

  12. Recyclability and the selection of packaging materials

    NASA Astrophysics Data System (ADS)

    Berry, David

    1992-12-01

    Costs of solid-waste disposal, concern for environmental impact, and "green" marketing opportunities have placed more attention on recyclability of packaging materials. Recyclability is determined not only by the characteristics of materials themselves, but also by the presence or absence of collection facilities, ease of separation, technology for reprocessing, and markets for recovered materials. By these measures, packaging materials are becoming more recyclable and recyclability is growing in importance as a factor in material selection.

  13. Packaging material for thin film lithium batteries

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  14. Antimicrobial food packaging: potential and pitfalls

    PubMed Central

    Malhotra, Bhanu; Keshwani, Anu; Kharkwal, Harsha

    2015-01-01

    Nowadays food preservation, quality maintenance, and safety are major growing concerns of the food industry. It is evident that over time consumers’ demand for natural and safe food products with stringent regulations to prevent food-borne infectious diseases. Antimicrobial packaging which is thought to be a subset of active packaging and controlled release packaging is one such promising technology which effectively impregnates the antimicrobial into the food packaging film material and subsequently delivers it over the stipulated period of time to kill the pathogenic microorganisms affecting food products thereby increasing the shelf life to severe folds. This paper presents a picture of the recent research on antimicrobial agents that are aimed at enhancing and improving food quality and safety by reduction of pathogen growth and extension of shelf life, in a form of a comprehensive review. Examination of the available antimicrobial packaging technologies is also presented along with their significant impact on food safety. This article entails various antimicrobial agents for commercial applications, as well as the difference between the use of antimicrobials under laboratory scale and real time applications. Development of resistance amongst microorganisms is considered as a future implication of antimicrobials with an aim to come up with actual efficacies in extension of shelf life as well as reduction in bacterial growth through the upcoming and promising use of antimicrobials in food packaging for the forthcoming research down the line. PMID:26136740

  15. Protection of microelectronic devices during packaging

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  16. Applications of Nanomaterials in Food Packaging.

    PubMed

    Bumbudsanpharoke, Nattinee; Choi, Jungwook; Ko, Seonghyuk

    2015-09-01

    Nanomaterials have drawn great interest in recent years due to their extraordinary properties that make them advantageous in food packaging applications. Specifically, nanoparticles can impart significant barrier properties, as well as mechanical, optical, catalytic, and antimicrobial properties into packaging. Silver nanoparticles (AgNPs) and nanoclay account for the majority of the nano-enabled food packaging on the market, while others, such as nano-zinc oxide (ZnO) and titanium, share less of the current market. In current food packaging, these nanomaterials are primarily used to impart antimicrobial function and to improve barrier properties, thereby extending the shelf life and freshness of packaged food. On the other hand, there is growing concern about the migration of nanomaterials from food contact materials to foodstuffs and its associated potential risks. Indeed, insufficient data about environmental and human safety assessments of migration and exposure of nanomaterials are hindering their market growth. To overcome this barrier, the public believes that legislation from government agencies is critical. This review provides an overview of the characteristics and functions of major nanomaterials that are commonly applied to food packaging, including available and near- future products. Migration research, safety issues, and public concerns are also discussed. PMID:26716190

  17. Operating and maintenance instructions for the Hedgehog sample package (A DOT 7A Type A Package)

    SciTech Connect

    Edwards, W.S.

    1995-04-07

    The Operating and Maintenance Instructions for the HEDGEHOG Sample Package describe the sequence of operations required to use this package as a US Department of Transportation (DOT) Requirements Specification 7A, Type A package for radioactive materials (RAM). This instruction includes air shipment in accordance with the International Air Transport Association (IATA) Dangerous Goods Regulations, as well as the DOT. This package can be used to ship up to one liter of radioactive liquid without shielding and up to 250 ml of radioactive liquid that requires shielding.

  18. Safety analysis report for packages: packaging of fissile and other radioactive materials. Final report

    SciTech Connect

    Chalfant, G.G.

    1984-01-01

    The 9965, 9966, 9967, and 9968 packages are designed for surface shipment of fissile and other radioactive materials where a high degree of containment (either single or double) is required. Provisions are made to add shielding material to the packaging as required. The package was physically tested to demonstrate that it meets the criteria specified in USDOE Order No. 5480.1, chapter III, dated 5/1/81, which invokes Title 10, Code of Federal Regulations, Part 71 (10 CFR 71), Packing and Transportation of Radioactive Material, and Title 49, Code of Federal Regulations, Part 100-179, Transportation. By restricting the maximum normal operating pressure of the packages to less than 7 kg/cm/sup 2/ (gauge) (99 to 54 psig), the packages will comply with Type B(U) regulations of the International Atomic Energy Agency (IAEA) in its Regulations for the Safe Transport of Radioactive Materials, Safety Series No. 6, 1973 Revised Edition, and may be used for export and import shipments. These packages have been assessed for transport of up to 14.5 kilograms of uranium, excluding uranium-233, or 4.4 kilograms of plutonium metal, oxides, or scrap having a maximum radioactive decay energy of 30 watts. Specific maximum package contents are given. This quantity and the configuration of uranium or plutonium metal cannot be made critical by any combination of hydrogeneous reflection and moderation regardless of the condition of the package. For a uranium-233 shipment, a separate criticality evaluation for the specific package is required.

  19. White LED with High Package Extraction Efficiency

    SciTech Connect

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated in the package may cause a deterioration of encapsulant materials, affecting the performance of both the LED die and phosphor, leading to a decrease in the luminous efficacy over lifetime. Recent studies from research groups at Rensselaer Polytechnic Institute found that, under the condition to obtain a white light, about 40% of the light is transmitted outward of the phosphor layer and 60% of the light is reflected inward.1,2 It is claimed that using scattered photon extraction (SPE) technique, luminous efficacy is increased by 60%. In this project, a transparent/translucent monolithic phosphor was used to replace the powdered phosphor layer. In the normal pcLED package, the powdered phosphor is mixed with silicone either to be deposited on the top of LED die forming a chip level conversion (CLC) white LED or to be casted in the package forming a volume conversion white LED. In the monolithic phosphors there are no phosphor powder/silicone interfaces so it can reduce the light scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is inserted in the white LED package between the blue LED die and phosphor layer. It will selectively transmit the blue light from the LED die and reflect the phosphor's yellow inward emission outward. The two technologies try to recover backward light to the outward direction in the pcLED package thereby improving the package extraction efficiency.

  20. 49 CFR 173.465 - Type A packaging tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Type A packaging tests. 173.465 Section 173.465... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.465 Type A packaging tests. (a) The packaging, with contents, must be capable of withstanding the water spray, free drop, stacking and...

  1. 49 CFR 173.465 - Type A packaging tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Type A packaging tests. 173.465 Section 173.465... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.465 Type A packaging tests. (a) The packaging, with contents, must be capable of withstanding the water spray, free drop, stacking and...

  2. 49 CFR 173.465 - Type A packaging tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Type A packaging tests. 173.465 Section 173.465... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.465 Type A packaging tests. (a) The packaging, with contents, must be capable of withstanding the water spray, free drop, stacking and...

  3. 49 CFR 373.105 - Low value packages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Low value packages. 373.105 Section 373.105... Carrier Receipts and Bills § 373.105 Low value packages. The carrier and shipper may elect to waive the... “low value” packages. This includes the option of shipping such packages under the provisions of 49...

  4. 49 CFR 373.105 - Low value packages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Low value packages. 373.105 Section 373.105... Carrier Receipts and Bills § 373.105 Low value packages. The carrier and shipper may elect to waive the... “low value” packages. This includes the option of shipping such packages under the provisions of 49...

  5. 49 CFR 373.105 - Low value packages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Low value packages. 373.105 Section 373.105... Carrier Receipts and Bills § 373.105 Low value packages. The carrier and shipper may elect to waive the... “low value” packages. This includes the option of shipping such packages under the provisions of 49...

  6. 16 CFR 1700.5 - Noncomplying package requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Noncomplying package requirements. 1700.5 Section 1700.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.5 Noncomplying package requirements. To...

  7. 16 CFR 1700.5 - Noncomplying package requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Noncomplying package requirements. 1700.5 Section 1700.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.5 Noncomplying package requirements. To...

  8. 16 CFR 1700.5 - Noncomplying package requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Noncomplying package requirements. 1700.5 Section 1700.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.5 Noncomplying package requirements. To...

  9. 16 CFR 1700.5 - Noncomplying package requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Noncomplying package requirements. 1700.5 Section 1700.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.5 Noncomplying package requirements. To...

  10. 16 CFR 1700.5 - Noncomplying package requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Noncomplying package requirements. 1700.5 Section 1700.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS POISON PREVENTION PACKAGING § 1700.5 Noncomplying package requirements. To...

  11. 21 CFR 226.80 - Packaging and labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Packaging and labeling. 226.80 Section 226.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR TYPE A MEDICATED ARTICLES Packaging and Labeling § 226.80 Packaging and labeling. (a) Packaging...

  12. 49 CFR 373.105 - Low value packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Low value packages. 373.105 Section 373.105... Carrier Receipts and Bills § 373.105 Low value packages. The carrier and shipper may elect to waive the... “low value” packages. This includes the option of shipping such packages under the provisions of 49...

  13. 7 CFR 58.340 - Printing and packaging.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Printing and packaging. 58.340 Section 58.340... Procedures § 58.340 Printing and packaging. Printing and packaging of consumer size containers of butter... packaging equipment should be provided. The outside cartons should be removed from bulk butter in a...

  14. 7 CFR 58.413 - Cutting and packaging rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cutting and packaging rooms. 58.413 Section 58.413....413 Cutting and packaging rooms. When small packages of cheese are cut and wrapped, separate rooms... outward to minimize the entrance of unfiltered air into the cutting and packaging room. The...

  15. 7 CFR 58.241 - Packaging, repackaging and storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Packaging, repackaging and storage. 58.241 Section 58... Service 1 Operations and Operating Procedures § 58.241 Packaging, repackaging and storage. (a) Containers. Packages or containers used for the packaging of nonfat dry milk or other dry milk products shall be...

  16. 49 CFR 178.503 - Marking of packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Marking of packagings. 178.503 Section 178.503... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.503 Marking of packagings. (a) A manufacturer must mark every...

  17. 7 CFR 58.53 - Supervisor of packaging required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Supervisor of packaging required. 58.53 Section 58.53... Packaging Products with Official Identification § 58.53 Supervisor of packaging required. The official....54 through 58.57, shall be done only under the supervision of a supervisor of packaging....

  18. 49 CFR 173.60 - General packaging requirements for explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false General packaging requirements for explosives. 173...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.60 General packaging requirements for explosives. (a) Unless otherwise provided in this...

  19. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  20. 7 CFR 58.53 - Supervisor of packaging required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Supervisor of packaging required. 58.53 Section 58.53... Packaging Products with Official Identification § 58.53 Supervisor of packaging required. The official....54 through 58.57, shall be done only under the supervision of a supervisor of packaging....

  1. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging... requirement, the value of such packaging materials and containers will be taken into account as originating...

  2. 49 CFR 178.910 - Marking of Large Packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Marking of Large Packagings. 178.910 Section 178... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Large Packagings Standards § 178.910 Marking of Large Packagings. (a) The manufacturer must: (1)...

  3. 9 CFR 112.10 - Special packaging and labeling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Special packaging and labeling. 112.10... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.10 Special packaging and labeling. A biological product, which requires special packaging...

  4. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging... requirement, the value of such packaging materials and containers will be taken into account as originating...

  5. 7 CFR 58.413 - Cutting and packaging rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cutting and packaging rooms. 58.413 Section 58.413....413 Cutting and packaging rooms. When small packages of cheese are cut and wrapped, separate rooms... outward to minimize the entrance of unfiltered air into the cutting and packaging room. The...

  6. 49 CFR 173.206 - Packaging requirements for chlorosilanes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Packaging requirements for chlorosilanes. 173.206...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.206 Packaging requirements for chlorosilanes. (a) When § 172.101 of...

  7. 7 CFR 58.151 - Packaging and repackaging.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Packaging and repackaging. 58.151 Section 58.151... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Packaging and General Identification § 58.151 Packaging and repackaging. (a) Packaging dairy products or cutting and repackaging...

  8. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging... requirement, the value of such packaging materials and containers will be taken into account as originating...

  9. 9 CFR 112.10 - Special packaging and labeling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Special packaging and labeling. 112.10... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.10 Special packaging and labeling. A biological product, which requires special packaging...

  10. 7 CFR 58.151 - Packaging and repackaging.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging and repackaging. 58.151 Section 58.151... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Packaging and General Identification § 58.151 Packaging and repackaging. (a) Packaging dairy products or cutting and repackaging...

  11. 49 CFR 173.62 - Specific packaging requirements for explosives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specific packaging requirements for explosives... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Definitions, Classification and Packaging for Class 1 § 173.62 Specific packaging requirements for explosives. (a) Except as provided in § 173.7...

  12. 27 CFR 19.599 - Bottling and packaging records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bottling and packaging... Records § 19.599 Bottling and packaging records. A proprietor who bottles or packages spirits must prepare a “bottling and packaging” record for each lot of spirits bottled or packaged. The bottling...

  13. 49 CFR 178.3 - Marking of packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Marking of packagings. 178.3 Section 178.3... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS § 178.3 Marking of packagings. (a) Each packaging represented as manufactured to a DOT specification or a UN standard must...

  14. 7 CFR 58.340 - Printing and packaging.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Printing and packaging. 58.340 Section 58.340... Procedures § 58.340 Printing and packaging. Printing and packaging of consumer size containers of butter... packaging equipment should be provided. The outside cartons should be removed from bulk butter in a...

  15. 49 CFR 173.25 - Authorized packagings and overpacks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Authorized packagings and overpacks. 173.25...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.25 Authorized packagings and overpacks. (a) Authorized packages containing hazardous materials...

  16. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging... requirement, the value of such packaging materials and containers will be taken into account as originating...

  17. 49 CFR 173.206 - Packaging requirements for chlorosilanes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packaging requirements for chlorosilanes. 173.206...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.206 Packaging requirements for chlorosilanes. (a) When § 172.101 of...

  18. 49 CFR 178.3 - Marking of packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Marking of packagings. 178.3 Section 178.3... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR PACKAGINGS § 178.3 Marking of packagings. (a) Each packaging represented as manufactured to a DOT specification or...

  19. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  20. 49 CFR 178.503 - Marking of packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Marking of packagings. 178.503 Section 178.503... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.503 Marking of packagings. (a) A manufacturer...

  1. 49 CFR 373.105 - Low value packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Low value packages. 373.105 Section 373.105... Carrier Receipts and Bills § 373.105 Low value packages. The carrier and shipper may elect to waive the... “low value” packages. This includes the option of shipping such packages under the provisions of 49...

  2. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for...

  3. 19 CFR 10.3022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.3022...-Colombia Trade Promotion Agreement Rules of Origin § 10.3022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for...

  4. 19 CFR 10.1022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.1022... Free Trade Agreement Rules of Origin § 10.1022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail sale,...

  5. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for...

  6. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for...

  7. 19 CFR 10.3022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.3022...-Colombia Trade Promotion Agreement Rules of Origin § 10.3022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for...

  8. 19 CFR 10.2022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.2022... Trade Promotion Agreement Rules of Origin § 10.2022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for...

  9. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for...

  10. 19 CFR 10.1022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.1022... Free Trade Agreement Rules of Origin § 10.1022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail sale,...

  11. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for...

  12. 19 CFR 10.1022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.1022... Free Trade Agreement Rules of Origin § 10.1022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail sale,...

  13. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for...

  14. 7 CFR 993.501 - Consumer package of prunes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Consumer package of prunes. 993.501 Section 993.501... CALIFORNIA Pack Specification as to Size Definitions § 993.501 Consumer package of prunes. Consumer package of prunes means consumer package as defined in § 993.22. Effective Date Note: At 70 FR 30613, May...

  15. 7 CFR 58.151 - Packaging and repackaging.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Packaging and repackaging. 58.151 Section 58.151... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Packaging and General Identification § 58.151 Packaging and repackaging. (a) Packaging dairy products or cutting and repackaging...

  16. 49 CFR 173.25 - Authorized packagings and overpacks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Authorized packagings and overpacks. 173.25...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.25 Authorized packagings and overpacks. (a) Authorized packages containing hazardous materials...

  17. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  18. 7 CFR 58.340 - Printing and packaging.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Printing and packaging. 58.340 Section 58.340... Procedures § 58.340 Printing and packaging. Printing and packaging of consumer size containers of butter... packaging equipment should be provided. The outside cartons should be removed from bulk butter in a...

  19. 7 CFR 58.229 - Filler and packaging equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry...

  20. 49 CFR 173.25 - Authorized packagings and overpacks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Authorized packagings and overpacks. 173.25...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.25 Authorized packagings and overpacks. (a) Authorized packages containing hazardous materials...